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ABSTRACT 

 An unrelenting human quest regarding the brain science is: what is the intrinsic 

relationship between the brain’s structural and functional architectures, which partly 

defines what we are and who we are. Recent studies suggest that each brain’s 

cytoarchitectonic region has a unique set of extrinsic inputs and outputs, named as 

“connectional fingerprint”, which largely determines the functions that each brain area 

performs. However, their explicit connections are largely unknown. For example, in what 

extent they are inclined to be coherent with each other and otherwise they will intend to 

show more heterogeneity? In this dissertation, based on my previously proposed brain 

structural atlas which represents the most consistent structural connectome across 

different populations, I developed a novel group-wise optimization framework to 

computationally model the functional homogeneity behind them. The optimization 

procedure is conducted under the joint structural and functional regulations and therefore 

the achieved common brain landmarks reflect the consistency of brain structure and 

function simultaneously.  
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CHAPTER 1 

INTRODUCTION 

1.1 Thesis Statements 

An unrelenting human quest regarding the brain science is: what is the intrinsic 

relationship between the brain’s structural and functional architectures, which partly 

defines what we are and who we are. Recent studies suggest that each brain’s 

cytoarchitectonic area has a unique set of extrinsic inputs and outputs, called the 

“connectional fingerprint” [1], which largely determines the functions that each brain 

area performs. This close relationship between structural connectivity pattern and brain 

function has also been confirmed and replicated in recent studies in the literature [1, 3] 

and our own works [4-9]. However, their explicit connections are largely unknown. For 

example, in what extent they are inclined to be coherent with each other and otherwise 

they will intend to show more heterogeneity [10]? We need a comprehensive 

understanding of the principles that regulate the information processing (function) in a 

particular structural pattern, and between the interacting structural units in the brain as a 

whole. 

In current stage, Functional Magnetic Resonance Imaging (fMRI) [11-16] is the most 

popular method that can examine the functional activities of the whole brain when people 

performing a specific task or having rest, due to its non-invasive and in vivo nature. After 

decades of active research, there has been mounting evidence [17-21] that the total 

human brain function emerges from and is realized by the interaction of multiple 
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concurrent neural processes or networks, each of which is spatially distributed across 

specific structural substrate of neuroanatomical areas [22-23]. However, due to the lack 

of effective computational brain mapping approaches, it is very challenging to robustly 

and faithfully reconstruct concurrent functional networks from fMRI (either task fMRI or 

resting state fMRI) data and quantitatively measure their network-level interactions. In 

other words, many important hidden functional characteristics are ignored by current 

model based fMRI analysis and which might lead to potential inaccurate or biased 

comprehensions of cognitive response either in task or resting state. 

The second challenging issue that has received intensive attention recently is how to 

establish a stable and neuroscience grounded foundation or substrates for synthetically 

and quantitatively measuring connectivity and dynamic interactions, either within 

individual brains or comparing them across populations. Due to the scarcity of ground-

truth data, researchers have to validate and replicate data from multiple subjects so that 

sufficient statistical power can be achieved. However, this population-level data pooling 

step requires the determination of accurate correspondences between regions of interest 

(ROIs) across different brains, which is a major barrier in human brain mapping [24] and 

neuroimaging for several decades [25-29]. Despite the enormous efforts on exploring the 

most consistent structural connectivity patterns among different populations [5], 

nevertheless, it is still considerable challenging to integrate the structural information 

with the corresponding consistent functional profiles. This challenge is not only come 

from the remarkable individual variability of cortical anatomy, connection and function, 

but also come from the critical lack of effective computational model for robustly and 

comprehensively estimating the brain structural and functional relationship. 
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To tackle these longstanding challenges, by using diffusion tensor imaging (DTI), 

functional magnetic resonance imaging (fMRI) techniques and the state-of-the-art sparse 

learning method, we construct DICCCOL based holistic atlases (DICCCOL-H) that 

reflect both group-wise consistent structural connectivity patterns and functional 

homogeneity of the human brain. 

 

1.2 Contributions 

Representation of common brain architectures by DICCCOL: Each DICCCOL 

landmark possesses intrinsically-established structural/functional correspondences across 

individuals, and the DICCCOL map collectively offers a universal representation of 

common structural brain architectures across individuals and populations (chapter 2) [5]. 

Also, an effective and efficient DICCCOL prediction framework (chapter 2) [5,114] will 

automatically predict all DICCCOLs in a new, single brain, thus offering an 

individualized reference system for human brains and enabling numerous applications. In 

the absence of task-based fMRI data, for example, in cases where it is impractical to 

acquire large-scale fMRI data in real-world situations such as the MCI populations [4] 

mentioned in this thesis (chapter 3), the DICCCOL models can be used instead in 

predicting functional brain regions based on the widely available DTI data. In 

comparison with image registration, including group-wise and multi-atlases image 

registration algorithms, and cortical parcellation methods, the DICCCOL map and its 

prediction framework offer a novel solution to the immensely challenging problem of 

accurately localizing functional regions in individuals and automatically establishing 

their correspondences [5]. In comparison with Talairach or other atlases that encodes 
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functional localizations by stereotaxic coordinates, the DICCCOL brain reference system 

encodes functional localizations of common brain structures by consistent fiber 

connection patterns, which are much more reproducible and predictable across brains [5]. 

Sparse representation of whole brain fMRI signals: In most previous fMRI 

studies, researchers have mainly relied on a common practice of averaging or smoothing 

single fMRI signals within a neighborhood [115,116]. In this thesis, on the contrary, we 

decomposed fMRI signals into linear combinations of multiple components based on the 

sparse representation of whole-brain fMRI signals. This novel data-driven strategy 

naturally accounts for the fact that a brain region might be involved in multiple functional 

processes [17, 20, 21, 34] and thus its fMRI signal is composed of various components. 

Our results (chapter 4) have demonstrated that this novel strategy can effectively and 

robustly reconstruct multiple simultaneous functional networks, including both task-

evoked networks and RSNs, which can be well reproduced across individual brains. 

Reconstruction of multiple concurrent interacting functional networks in the 

brain: GLM-based activation detection and ICA-based clustering have been arguably the 

dominant methods in task fMRI and resting state fMRI data analyses. Unfortunately, both 

methods are limited in reconstructing multiple concurrent, interacting functional 

networks. As a consequence, it is still largely uncertain, during either task performance or 

resting state, whether/how functional networks spatially overlap/interact with each other 

and whether the functional brain architecture is composed of highly-specialized 

components, or it is general-purpose machinery. In this thesis (chapter 4), novel sparse 

representation and dictionary learning methodology effectively infer the spatial overlap 

patterns among those brain networks, which are represented by the time series of the 
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over-complete basis dictionaries. The results have also revealed the common and 

widespread spatial overlaps within and among both task-evoked and resting state 

networks. 

DICCCOL-H based optimization: Different from the classic DICCCOL system, 

which optimizes and predicts each DICCCOL landmark only based on the group-wise 

structural connectivity consistency, the proposed DICCCOL-H (chapter5) [117] will 

optimize the landmark’s structure and function simultaneously: the functional constraint 

is come from the group-wise agreement of those consistent functional network 

components identified by an innovative fMRI signals sparse representation. During the 

optimization, the landmarks will move towards the locations which possess more group-

wise functional homogeneity. At the same time, the structural constraint ensures that the 

established structural similarity will not be destroyed. To our knowledge, this framework 

is the first one to formally consider the group-wise structural consistency and functional 

homogeneity at the same time. 

 

1.3 Thesis Outline 

As illustrated in Fig.1, this thesis contains four sections which are corresponding to 

chapter 2 to chapter 5. First, I will introduce DICCCOL system (chapter 2) and its 

applications (chapter 3), since it is the foundation of the proposed joint 

structural/functional optimization process; Then, an innovative sparse representation of 

the whole brain fMRI signals will be presented, in which the most consistent functional 

networks are recovered and identified as functional templates (chapter 4); Finally, we use 

these templates as functional regulations to optimize our previous DICCCOL system to 
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Fig.1. Overview. The four components are in colored boxes, which will be detailed in 

chapter 2-5. 

 

achieve the Holistic Atlases of Brain Structure and Function, also named as DICCCOL-H 

(chapter 5).  
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CHAPTER 2 

DICCCOL LANDMARKS 

2.1 Motivation 

When measuring structural and/or functional brain connectivity, network nodes, or 

regions of interests (ROIs), provide the structural substrates for measuring connectivity 

within individual brain and for comparing them across different populations [24]. Thus, 

identification of reliable, reproducible and accurate ROIs that are consistent across 

different brains is critically important for the success of connectivity mapping [6, 8, 9, 

118]. However, from our perspective, determination of corresponding brain ROIs in 

different brains is perhaps one of the foremost challenges in human brain mapping, due to 

four critical reasons [24]. 1) The functional and/or cytoarchitectural boundaries between 

cortical regions are unclear [24, 28, 119]; 2) The individual variability of cortical 

structure and function is remarkable [24, 29]; 3) The properties of ROIs are highly 

nonlinear [6, 8, 9, 24]. For instance, a slight change of the size or location of a ROI might 

dramatically alter its structural and/or functional connectivity profiles (e.g., shown in 

Fig.2) [6]. 4) It is even more challenging to identify accurate ROIs in some brain disease 

patients in that the brain architecture might have been altered during neurodevelopment 

[120-125]. 



8 

 

 

Fig.2. Non-linearity of structural connectivity. (a) The size changes to the yellow 

bubble, or the location moves from the red one. (b)-(d): Fiber connections (in white) 

before the movement (b), after the enlargement (c), and after the movement (d). 

 

Current approaches for identifying ROIs in brain imaging can be broadly classified 

into four categories [24,126]. The first is manual labeling by experts based on their 

domain knowledge [127]. While widely used, this method is vulnerable to inter-subject  

and intra-subject variation and its reproducibility may be low. The second method is to 

cluster ROIs from the brain image itself and is data-driven [128-129]. However, these 

data-driven approaches are typically sensitive to the clustering parameters used, and their 

neuroscience interpretation is not clear. The third one is to predefine ROIs in a template 

brain, and warp them to the individual space using image registration algorithms [130, 

131]. The accuracy of these atlas-based warping methods is limited due to the variability 

of neuroanatomy across different brains. The fourth method uses task-based fMRI 

paradigms to identify activated brain regions as network ROIs [132]. This methodology 

is regarded as the benchmark approach for ROI identification. However, task-based fMRI 
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is demanding and time-consuming [120, 112] and it is impractical to acquire extensive 

fMRI data for large-scale brain networks.  

In response to the challenges of mapping a common brain architecture and inspired 

by the connectional fingerprint concept [1] and fiber clustering literature [2,133,135], we 

hypothesize that there is a common human brain architecture that can be effectively 

represented by group-wise consistent structural fiber connection patterns. To test this 

hypothesis, I extensively extended my previous work (section 2.2) [6] which used DTI 

datasets to discover the dense and common cortical landmarks likely present across all 

human brains. We have dubbed this strategy: Dense Individualized and Common 

Connectivity-based Cortical Landmarks (DICCCOL). The basic idea is that we optimize 

the localizations of each DICCCOL landmark in individual brains by maximizing the 

group-wise consistency of their white matter fiber connectivity patterns. This approach 

effectively and simultaneously addresses the above-mentioned three challenges in the 

following ways. 1) The DICCCOLs provide intrinsically-established correspondences 

across subjects, which avoids the pitfall of seeking unclear cortical boundaries. 2) 

Individual structural variability is effectively addressed by directly determining the 

locations and sizes of DICCCOL landmarks in each individual’s space. 3) The 

nonlinearity of cortical connection properties is adequately addressed by a global 

optimization and search procedure, in which group-wise consistency is used as an 

effective constraint. 
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2.2 Trace-Map Model 

Bundle description based on the trace-map model: Many algorithms, such as 

spectral clustering [133], normalized cut clustering [134] and atlas-based clustering [2], 

have been developed to cluster white matter fibers into different bundles. However, an 

open problem remains: how can a fiber bundle be described quantitatively? In this thesis, 

we need a quantitative fiber bundle descriptor or model to represent fibers and compare 

their similarities within and across different subjects. Hence, we have proposed a novel 

method by which to describe the fiber bundle; we call this method the trace-map model. 

The core idea of trace-map contains three steps: first, each fiber curve was divided into 

segments and each segment was composed of a collection of points. Then, the Principal 

Component Analysis (PCA) was used to find the principal direction of each segment, 

represented as a vector as showed in Fig. 3(a). Finally, the vectors were translated to the 

origin of a global spherical coordinate system and shoot from the origin to the surface of 

a unit sphere centered at the origin. In this way, we can have a trace point on the sphere, 

and then the same procedure was performed on the segments of all ohter fibers in each 

bundle (Fig. 3(b) and (c)). Fig. 3(d) shows two examples. The top image is a U-shape 

fiber bundle and its corresponding trace-map. The bottom image is a line-shape case. 

 There are two issues to be noted here. One is that all subjects’ brains must be 

aligned. In our implementation, the principal direction of each brain was calculated using 

PCA. This principal direction was then used to align different brains into a randomly 

selected template subject. Thus, fiber bundles with similar shapes but different 

orientations can be differentiated by the different trace-point distributions on the standard 

sphere surface. The second issue is that one of the two ends of the fiber bundles needs to 
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Fig.3. Trace-map model. (a) Calculation of the principal direction for one segment of 

each fiber. (b) Each segment could be represented by a series of vectors. (c) After 

translation to the origin of a global coordinate system, each vector shoots to a unit 

sphere whose center is the origin. (d) Two examples of fiber bundles and their trace-

maps. The top row is a U-shape fiber bundle example and the bottom row is a line-

shape one. For both cases, the left are fiber bundles and the right are their trace-map 

representations. 

 

be assigned as the start point. Since each fiber bundle was extracted from a small region 

on the cortical surface, we selected the end that was closest to the center of the region. 

This is very important to ensure that the trace-maps of one fiber at different optimization 

procedures are consistent. 

The proposed trace-map model has the following advantages. 1) It is an effective way 

to represent and compare fiber bundles. Essentially, the trace-map model transforms a 

fiber bundle to a set of points distributed on the surface of a unit sphere. It projects the 

complex, geometric features of the fiber onto point distribution patterns in a standard 

space, in which different fiber bundles from different subjects can be compared 

quantitatively. The patterns reflect the accumulation of the strength of the fiber bundle in 

different directions. To a certain extent, it is similar to the idea of inflating the convoluted 

cortical surface onto a standard sphere: after projecting the cortical surface to a standard 
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Fig.4. Examples of trace-map. (a), (b) and (c), (d) are two pairs of similar fiber 

bundles. (e)-(h) are their trace-maps, respectively. 

 

sphere surface, the folding patterns across different subjects can be compared and 

analyzed. 2) The trace-map model is not sensitive to the small variations of the fiber 

bundles. This is a very important property when performing comparisons across different 

subjects, because we are more interested in comparing the overall shapes of the fiber 

bundles. 

Fiber bundle comparison based on trace-map model: Our rationale for comparing 

fiber bundles through trace-maps is that similar fiber bundles have similar overall trace-

map patterns. Fig. 4 shows four examples. Figs. 4(a) and 4(b) are a pair of fiber bundles 

that are similar by visual inspection. We can see that their trace-maps, Fig. 4(e) and 4(f), 

are also similar. Fig. 4(c) and 4(d) show another pair of similar fiber bundles and their 

corresponding trace-maps are shown in Fig. 4(g) and 4(h). Again, we can clearly see the 

similar patterns of the point distributions in the trace-maps.  
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Fig.5. Comparison of trace-maps. The point densities in red circles are compared. 

 

 After arriving at a trace-map representation of the fiber bundles, the bundles can be 

compared by defining the distance between their corresponding trace-maps, as shown in 

Fig. 5. For each point,   , in one trace-map, its corresponding location,    , in the other 

trace-map can easily be found in terms of the same location. The point density, denoted 

by den(  ), is then calculated as follows: 

                                             den(    ) =   /N                                                                             (1) 

   is the number of points in the trace-map whose center is    with radius d, which is in 

the range of 0-1.0 since the standard sphere onto which we project the fiber bundles is a 

unit sphere surface; in this work we empirically choose d=0.3. N is the total number of 

points in the trace-map. As shown in Fig. 5, we calculate the point density in the red 

circle. The total distance of two trace-maps is defined as: 

                            

D(  ,   ) = 
∑     (  )     (   

)  
   

 
 + 

∑     (  )     (   
)  

   

 
                        (2) 

T1 and T2 are two trace-maps.    is a point in T1 and     is its corresponding point in T2 

which share the similar location.    is a point in T2 and     is its corresponding point in 

T1. n and m are numbers of points in T1 and T2 respectively. Intuitively, Eq. (2) means 
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Fig.6. Validation of trace-map. (a), (b): Distance between one fiber bundle and all the 

others in the same brain. The chosen fiber bundle is exactly located at the red peak 

area within the yellow circle. (b), (d): Larger view of yellow circles in (a) and (b). 

 

that we iterate over all data points in one trace-map, and measure the density within a 

circle centered at the data point in consideration and also a circle placed in the 

corresponding location in the other trace-map. This iterative process is repeated over the 

data points in the other trace-map, and the same procedure is iterated over all possible 

locations in each trace-map. Notably, we simplified the computation by only considering 

locations where a data point is present in one or the other trace-map. 

To evaluate the effectiveness and distinctiveness of the trace-map model, we 

randomly chose a subject and extracted the fiber bundles from all possible ROIs whose 

centers are the vertices of the cortical surface with a certain scale of neighborhood (4-ring 

mesh vertex neighborhood in this work). The fiber bundles were then represented by 

trace-maps and the distances between the trace-maps of the selected ROIs and the rest 

were calculated. The distance between the trace-map of the selected ROI and the trace-

maps of all other ROIs on the cortical surface are shown in Fig. 6.  

From the result, we can see that: 1) most of the fiber bundles emanating from other 

ROIs have significant differences in comparison with the selected ROI. That is, most of 

the regions in the cortex are blue. 2) Considering the small neighborhood of the ROI we 
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chose, the trace-map distances between the selected ROI and others roughly follow a 

Gaussian distribution. This result suggests that the trace-map of an ROI is quite 

distinctive, which is critical to unambiguously characterize the current ROI. 

 

2.3 Whole Brain Optimization 

Initialization and overview of the DICCCOL discovery framework: Similar to the 

above mentioned work, we randomly selected one subject as the template and generated a 

dense, regular map of 3D grid points within the boundary box of the reconstructed 

cortical surface. The intersection locations between the grid map and the cortical surface 

were used as the initial landmarks. As a result, we generated 2056 landmarks on the 

template (Figs. 7a-7b). Then, we registered this grid of landmarks to other subjects by 

warping their T1-weighted MRI images to the same template MRI image using the linear 

registration algorithm FSL FLIRT. This linear warping is expected to initialize the dense 

grid map of landmarks and establish their rough correspondences across different 

subjects (Figs. 7a-7b). The aim of this initialization was to create a dense map of 

DICCCOL landmarks distributed over major functional brain regions. 

Then, we extracted white matter fiber bundles emanating from small regions around 

the neighborhood of each initial DICCCOL landmark (Figs. 7c-7g). The centers of these 

small regions were determined by the vertices of the cortical surface mesh, and each 

small region served as the candidate for landmark location optimization. Fig. 7d shows 

examples of the candidate fiber bundles we extracted. Afterwards, we projected the fiber 

bundles to a standard sphere space, called trace-map [9, 10], as shown in Fig. 7e, and 

calculated the distance between any pair of trace-maps in different subjects within the 
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group. Finally, we performed a whole space search to find one group of fiber bundles 

(Fig. 7f) which gave the least group-wise variance. Fig. 7g shows examples of the 

optimized locations (red bubble) and the DICCCOL landmark movements (yellow 

arrow). 

Fig.7. DICCCOL optimization framework. (a)-(b): Illustration of landmark 

initialization among a group of subjects. (a) We generated a dense regular grid map on a 

randomly selected template. (b) We registered this grid map to other subjects using linear 

registration algorithm. The green bubbles are the landmarks. (c)-(g): The workflow of our 

DICCCOL landmark discovery framework. (c) The corresponding initialized landmarks 

(green bubbles) in a group of subjects. (d) A group of fiber bundles extracted from the 

neighborhood of the landmark. (e) Trace-maps corresponding to each fiber bundle. (f) 
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The optimized fiber bundle of each subject. (g) The movements of the landmarks from 

initial locations (green) to the optimized locations (red). Step (1): Extracting fiber 

bundles from different locations close to the initial landmark. Step (2): Transforming the 

fiber bundles to trace-maps. Step (3): Finding the group of fiber bundles which make the 

group variance the least. Step (4): Finding the optimized location of initial landmark (red 

bubble). (h)-(j): Illustration of trace-map distance. (h) A sphere coordinate system for 

finding the sample points. We totally have 144 sample points by adjusting angle Φ and θ. 

(i) A sphere with 144 sample points. (j) Two trace-maps. The two red circles belong to 

the same sample point and will be compared based on the point density information 

within red circles. 

 

Optimization of landmark locations: We formulate the problem of optimization of 

landmark locations and sizes as an energy minimization problem, which aims to 

maximize the consistency of structural connectivity patterns across a group of subjects. 

By searching the whole space of landmark candidate locations and sizes, we can find an 

optimal combination of new landmarks that ensure the fiber bundles from different 

subjects have the least group variance. Mathematically, the energy function we want to 

minimize is defined as: 

       E (  ,    , … ,   ) = ∑  (     ) , k ≠ l and k , l=1,2,…,m                        (3) 

   ..    are m subjects. We let    (     ) = D (      ), and rewrite the Eq. (3) as below: 

                     E (  ,    , … ,   ) = 
∑∑ (       )

  
   

 
 , k ≠ l and k , l=1,2,…,m                     (4) 

For any two subjects          , we transformed them to the corresponding vector 

format,          , of trace-maps.     and     are the ith element of           respectively. 

Intuitively, we aim to minimize the group distance among fiber shapes defined by trace-

maps here. 

In our implementation, for each landmark of the subject, we examined around 30 

locations (surface vertices of 5-ring neighbors of the initial landmark) and extracted their 

corresponding emanating fiber bundles as the candidates for optimization. Then, we 
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transformed the fiber bundles to trace-maps. After representing them as vectors, we 

calculated the distance between any pair of them from different subjects. Thus, we can 

conduct a search in the whole space of landmark location combinations to find the 

optimal one which has the least variance of fiber bundles shapes within the group. The 

optimization procedure (Eq.(4)) is performed for each of those 2056 initial landmarks 

separately. 

Determination of consistent DICCCOLs: Ten subjects were randomly selected and 

were equally divided into two groups. The above mentioned steps were performed 

separately in these two groups. Due to that the computational cost of landmark 

optimization procedure via global search grows exponentially with the number of 

subjects used [6], we can more easily deal with 5 subjects in each group at current stage. 

As a result, we obtained two independent groups of converged landmarks. For each 

initialized landmark in different subjects in two groups, we used both quantitative (via 

trace-map) and qualitative (via visual evaluation) methods to evaluate the consistency of 

converged landmarks. First, for each converged landmark in one group, we sought the 

most consistent counterparts in another group by measuring their distances of trace-maps 

and ranked the top 5 candidates in the decreasing order as possible corresponding 

landmarks in two groups. Then, we used an in-house batch visualization tool (illustrated 

in Fig. 8) to visually examine all of the top 5 landmark pairs in two separate groups. If the 

fiber shape patterns were determined to be the most consistent across two independent 

groups, the landmark pair was determined as a DICCCOL landmark. In addition, the 

trace-map distances between any pair of DICCCOL landmarks across subjects were also 

checked to verify that the landmark was similar across groups of subjects. Finally, we 
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Fig.8. One example of DICCCOL landmark. 

 

determined 358 DICCCOL landmarks by two experts independently by both visual 

evaluation and trace-map distance measurements, and a third expert independently 

verified these results. If any of the subjects in two separate groups exhibited substantially 

different fiber shape pattern, that landmark was discarded. Therefore, all of the 

discovered 358 DICCCOLs were independently confirmed in two different groups of 

subjects, and their fiber connection patterns turned out to be very consistent. The 

visualizations of all 358 DICCCOLs are released online at: http://dicccol.cs.uga.edu. 

 

2.4 DICCCOL Prediction 

It has been shown in the literature that prediction of functional brain regions via DTI 

data has superior advantages since a DTI scan takes less than ten minutes and is widely 

available [114]. Here, we are motivated to predict the 358 DICCCOL landmarks in a 

single subject’s brain. The prediction of DICCCOLs is akin to the optimization procedure 



20 

 

in Section 2.3. We will transform a new subject (on MRI image via FSL FLIRT) to be 

predicted to the template brain which was used for discovering the DICCCOLs and 

perform the optimization procedure following the Eq. (4). It is noted that there is a slight 

difference from Section 2.3 since we already have the locations of DICCCOLs in the 

model brains. Therefore, we will keep those DICCCOLs in these models unchanged, and 

optimize the new subject only to minimize the trace-map difference among the new 

group including the models and the subject to be predicted. Specifically,    ,    , … , 

     and    represent the model dataset and the new subject to be predict, respectively. 

Formally, we summarize the algorithm as bellow: 

1) We randomly select one case from the model dataset as a template (   ), and each 

of the 358 DICCCOL landmarks in the template is roughly initialized in    by 

transforming them to the subject via a linear registration algorithm FSL FLIRT. 

2) For     we extract white matter fiber bundles emanating from small regions 

around the neighbourhood of each initialized DICCCOL landmark. The centers of 

these small regions will be determined by the vertices of the cortical surface 

mesh, and each small region will serve as the candidate for landmark location 

optimization. 

3) For      each of the 358 model DICCCOLs will be fixed for the optimization. 

4) We project the fiber bundles of the candidate landmarks in    to a standard sphere 

space, called trace-map, as shown in Fig. 3. For each landmark to be optimized in 

    we calculate the trace-map distances between the candidate landmark and 

those DICCCOL landmarks in the model subjects within the group.  
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5) For each landmark, we performed a whole space search to find one group of fiber 

bundles which gives the least group-wise variance. The candidate landmark in    

with the least group-wise variance is selected as the predicted DICCCOL 

landmark.  

As we can see, even though the prediction is an exhaustive search algorithm in which 

the performance is dependent on how many candidates we choose from   , it can be 

finished within linear time because we will not move the DICCCOLs in the model brains. 

Therefore, the DICCCOL prediction in a new brain with DTI data is very fast, typically 

around ten minutes on a desktop computer. 

 

2.5 The Advantages of DICCCOL 

Reproducibility and predictability: The 358 DICCCOLs were identified via a data-

driven whole brain search procedure (Sections 2.2-2.4) in ten randomly selected subjects 

(equally and randomly divided into two independent groups), as shown in Fig. 9a. As an 

example, we randomly selected five DICCCOLs (five enlarged color spheres in Fig. 9a) 

and plotted their emanating fibers in these ten brains (Figs. 9b-9f). It can be clearly seen 

that the fiber connection patterns of the same landmark in ten brains are very consistent, 

suggesting that DICCCOLs represent common structural brain architecture. Importantly, 

by visual inspection, all of these 358 DICCCOLs have consistent fiber connection 

patterns in these ten brains. For more details, the visualization of all of these 358 

landmarks is available online at: http://dicccol.cs.uga.edu. In addition to visual 

evaluation, we quantitatively measured the differences of fiber shape patterns represented 

by the trace-maps (Section 2.2) for each DICCCOL within and across two groups (Figs. 
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Fig.9. Reproducibility and predictability of DICCCOL. (a): The 358 DICCCOLs. (b)-

(f): DTI-derived fibers emanating from 5 landmarks (enlarged color bubbles in (a)) in 

2 groups of 5 subjects (in 2 rows) respectively. (g)-(k): The predicted 5 landmarks in 2 

group of 5 subjects (in 2 rows) and their corresponding connection fibers. (l): Average 

trace-map distance for each landmark in the first group (rows in (b)-(f)); the color bar 

is on top of (o)-(p). (m): Average trace-map distance for each landmark in the second 

group (rows in (b)-(f)); (n): Average trace-map distance for each landmark across 2 

groups in (b)-(f); (o)-(p): Average trace-map distance for each landmark in the 2 

predicted groups in (g)-(k), respectively. (q): The decrease fraction of trace-map 

distance before and after optimization (the color bar on the top of (q)). The 

initialization was performed via a linear image warping algorithm. 

 
9l-9n). The average trace-map distance is 2.19, 2.05 and 2.15 using Eq. (4). It is evident 

that the quantitative trace-map representations of fiber bundles for each DICCCOL has 

similar patterns within and across two separate groups, demonstrating the consistency of 

DICCCOL’s fiber connection patterns. 

In addition to the remarkable reproducibility of each DICCCOL in Figs. 9b-9f, the 

358 DICCCOLs can be effectively and accurately predicted in a single, separate brain 
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with DTI data, as exemplified in Figs. 9g-9k. Here, each landmark was predicted in ten 

separate test brains (Figs. 9g-9k) based on the template fiber bundles of corresponding 

landmarks (Figs. 9b-9f). We can clearly see that the predicted landmarks have quite 

consistent fiber connection patterns in these test brains (Figs. 9g-9k) as those in the 

template brains (Figs. 9b-9f), indicating that the DICCCOLs are predictable across 

different brains. Quantitatively, the predicted landmarks have similar quantitative trace-

map patterns as those in the template brains, as shown in Figs. 9o-9p. The average trace-

map distance is 2.27 and 2.17. As a comparison, the predicted landmarks have much 

more consistent fiber trace-map patterns than the linearly registered ones via FSL FLIRT 

(Fig. 9q). The average decrease fraction of trace-map distance is 15.5%. These results 

support the DICCCOL as an effective, quantitative representation of common structural 

brain architecture that is reproducible and predicable across subjects and populations. 

Unified ROI Solution: As summarized in Fig. 10, our data-driven discovery 

approach has identified 358 DICCCOLs that are consistent and reproducible across over 

143 brains based on DTI data. Extensive studies have shown that these 358 landmarks 

can be accurately predicted across different subjects and populations. Our work has 

demonstrated that there is deep-rooted regularity in the structural architecture of the 

human brain, which has been jointly and spontaneously encoded by the DICCCOL map. 

The DICCCOL map has been evaluated by four independent multimodal fMRI and DTI 

datasets which contained over 143 subjects covering different age groups, i.e., adolescent, 

adult, and elderly. In total, 121 consistent and stable functional ROIs derived from eight 

task-based fMRI network (auditory, attention, emotion, empathy, fear, semantic decision 

making, visual and working memory networks) and one R-fMRI network (default mode 
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Fig.10. The architecture of DICCCOL system. Spheres in orange (total 6), red (total 

8), brown (total 9), pink (total 8), blue (total 27), yellow (total 14), cyan (total 14), 

purple (total 16), and black-red (total 19) colors stand for landmarks in empathy, 

default mode, visual, auditory, attention, working memory, fear, emotion, and 

semantic decision making networks that are identified from fMRI datasets. The green 

spheres (totally 263) stand for landmarks that are not functionally-labeled yet. The 

DICCCOLs serve as structural substrates to represent the common human brain 

architecture. For instance, nine different functionally-specialized brain networks ((b)-

(j)) identified from different fMRI datasets are integrated into the same universal brain 

reference system (a) via DICCCOL. Then, the functionally-labeled DICCCOLs in the 

universal space can be predicted in each individual brain with DTI data such that the 

DICCCOLs and their functional identities can be readily transferred to a local 

coordinate system (k). 

 
network), shown in Fig. 10b-10j, were used to functionally label the predicted 

DICCCOLs for individuals (section 3.1). Our extensive experimental results 

demonstrated that the DICCCOL representation of functional ROIs is accurate, robust, 

consistent and reproducible in multiple multimodal fMRI and DTI datasets. With the  
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universal DICCCOL brain reference system, different measurements of the structural and 

functional properties of the brain, e.g., morphological measurements derived from 

structural MRI data and functional measurements derived from fMRI data, can be 

reported, integrated, and compared within the DICCCOL reference system. For instance, 

we can report fMRI-derived activated regions by their corresponding closest DICCCOL 

IDs, instead of their stereotaxic coordinates in relation to the Talairach or MNI coordinate 

system. 

In a broader sense, the DICCCOL map provides a general platform to aggregate and 

integrate functional networks from different multimodal DTI and fMRI datasets to the 

universal DICCCOL map, the sum of which can then be transferred to a new, separate 

individual or population via DTI data. For instance, the functional labeling of a portion of 

the DICCCOLs in an individual dataset, e.g., in Fig. 10b-10j, can be readily transferred to 

the universal template space (Fig. 10a), and then be propagated to other individual brains, 

as shown in Fig. 10k. In this way, specific functional localizations on the DICCCOL map 

achieved in one multimodal fMRI and DTI dataset (e.g., Fig. 10b-10j) can contribute to 

the same functional localization problem in other brains, once DTI data, on which the 

DICCCOL map prediction can be accurately performed, is available (e.g., Fig. 10k). This 

common DICCCOL platform offers an alternative approach and can be complementary 

to current methods, such that contributions from different labs can be effectively 

integrated and compared. 
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CHAPTER 3 

APPLICATIONS OF DICCCOL 

3.1 Functional Labelling of DICCCOL 

Data: In total, we used four different multimodal DTI/fMRI datasets for functional 

labelling of the DICCCOL map, as summarized in Table 1. In brief, dataset 1 included 

the DTI, R-fMRI (resting-state fMRI), and five task-based fMRI scans of eleven healthy 

young adults recruited at The University of Georgia (UGA) Bioimaging Research Center 

(BIRC) under IRB approval. The scans were performed on a GE 3T Signa MRI system 

using an 8-channel head coil at the UGA BIRC. The five task-based fMRI scans were 

based on in-house verified paradigms including emotion, empathy, fear, semantic 

decision making, and working memory tasks at UGA BIRC. The dataset 2 included 

twenty three healthy adult students recruited under UGA IRB approval. Working memory 

task-based fMRI and DTI scans were acquired for these participants at the UGA BIRC. 

The dataset 3 included twenty elderly healthy subjects recruited and scanned at the UGA 

BIRC under IRB approval. Multimodal DTI and Stroop task-based fMRI datasets were 

acquired using the same imaging parameters as those in datasets 1 and 2. The dataset 4 

included multimodal DTI, R-fMRI and task-based fMRI scans for 89 subjects including 

three age groups of adolescents (28), adults (53) and elderly participants (23). These 

participants were recruited and scanned on a 3T MRI scanner in West China Hospital, 

Huaxi MR Research Center, Chengdu, China under IRB approvals.  
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Datasets Types Networks 

Dataset 1 DTI, R-fMRI, five task-based fMRI 

scans 

Emotion, Empathy, Fear, 

Semantic decision making, 

Working memory 

Dataset 2 DTI, one task-based fMRI scan Working memory 

Dataset 3 DTI, one task-based fMRI scan Attention  

Dataset 4  DTI, R-fMRI, two task-based fMRI 

scans 

Default mode, Visual, Auditory  

Table.1. Datasets for DICCCOL functional labelling. 

 

Functional localizations of DICCCOLs: In total, we were able to identify 121 

functional ROIs that were consistently activated from nine brain networks (working 

memory, default mode, auditory, semantic decision making, emotion, empathy, fear, 

attention, and visual networks) based on the fMRI datasets. To examine the functional 

co-localizations of 358 DICCCOLs, we mapped the 121 functionally-labelled brain ROIs 

onto the DICCCOL map. Surprisingly, 95 out of the 358 DICCCOLs were consistently 

co-localized in one or more functional brain networks determined by fMRI datasets 

across different subjects and/or populations (see Fig. 11). Specifically, 76 of them are 

located adjacently to one functional network, 16 of them are located within two 

functional networks, and 3 of them are located inside three functional networks. 

To quantitatively evaluate the functional localization accuracy by the 95 DICCCOLs, 

we measured the Euclidean distance between the centers of each DICCCOL and each 

fMRI-derived landmark, and reported the results in Fig. 11 [5]. There are 9 sub-figures 

corresponding to the 9 functional networks identified using fMRI datasets, that is, 

working memory (Fig. 11a), default mode (Fig. 11b), auditory (Fig. 11c), semantic 

decision making (Fig. 11d), emotion (Fig. 11e), empathy (Fig. 11f), fear (Fig. 11g), 

attention (Fig. 11h), and visual networks (Fig. 11i) respectively. In each sub-figure, the 
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fMRI-derived landmarks are highlighted by white spheres, while the corresponding 

DICCCOLs are highlighted in other colors. The distances (measured in mm) between the 

centers of fMRI landmarks and DICCCOLs are shown in the bottom panel, in which the 

horizontal axis indexes activations and the vertical axis is the distance in the unit of mm. 

Each bar represents the median (interface between the red and yellow bars), minimum 

and maximum value (two ends of the white line), 25% (bottom of the red bar) and 75%  

(top of the yellow bar) of the distances for each fMRI activation peak. The average 

distances for the nine functional networks are 6.07 mm 5.43 mm, 6.48 mm, 6.25 mm, 

6.12 mm, 6.41 mm, 5.93 mm, 5.94 mm, and 7.59 mm respectively. On average, the 

distance is 6.25 mm. The results in Fig. 11 demonstrate that the DICCCOLs are 

consistently co-localized with functional brain regions, and the DICCCOL map itself 

offers an effective and quantitative representation of common functional brain 

architecture that is reproducible across subjects and populations. 
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Fig.11. Statistics of DICCCOL functional labelling. Specifically, 76 of them are 

located adjacently to one functional network, 16 of them are located within two 

functional networks, and 3 of them are located inside three functional networks. (a): 

Working memory network (dataset 2). White spheres represent fMRI-derived 

benchmarks, and yellow spheres represent corresponding DICCCOLs. The distances 

between centers of fMRI benchmarks and DICCCOLs are shown in the bottom 

panel, in which the horizontal axis indexes activations and the vertical axis is the 

distance in the unit of mm. Each bar represents the median (interface between the red 

and yellow bars), minimum and maximum value (two ends of the white line), 25% 

(bottom of the red bar) and 75% (top of the yellow bar) of the distances for each 

fMRI activation peak. The average distance is 6.07 mm. (b)-(i): results for default 

mode (dataset 1), auditory (dataset 4), semantic decision making(dataset 1), emotion 

(dataset 1), empathy (dataset 1), fear (dataset 1), attention (dataset 3), visual networks 

(dataset 4), respectively. In (b)-(i), white spheres stand for fMRI benchmarks and 

other colors represent corresponding DICCCOLs. The average distances between 

centers of fMRI benchmarks and DICCCOLs in these networks are 5.50 mm, 6.48 

mm, 6.25 mm, 6.12 mm, 6.41 mm, 5.93 mm, 5.94 mm, and 7.59 mm, respectively. 
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Fig.12. Meta-analysis of DICCCOL. Each column represents BrainMap-reported 

fMRI activations and associated behavioral domains for each DICCCOL landmark, 

and each row stands for DICCCOL landmarks that are involved in the same 

behavioral domain. The 55 BrainMap behavioral domains are represented by nine 

different colors as shown in the bottom panel. The same DICCCOL landmark might 

be involved in the same functional network reported by multiple literature papers, 

represented by red (1), green (2), blue (3), orange (4), Cyan (5) and yellow (6) colors 

in the grid, respectively.  

 

3.2 Meta-Analysis of DICCCOL 

Based on our previous work [5, 137], we successfully labeled DICCCOLs with 

corresponding functional roles (involved functional networks) through meta-analysis. In 

brief, we registered the average coordinates of each DICCCOL to a standard atlas space 

and searched in a small range to check if any functional task activation reports for this 

location existed [137]. If one or more activation reports were found in the considered 

range they were assigned to this DICCCOL as the corresponding functional roles. All the 

functional tasks (networks) used to label DICCCOLs were divided into five categories: 

action, perception, cognition, interoception and emotion [138]. For example, action 
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Fig.13. Applications based on DICCCOL. 

 

includes eight sub-functional networks such as execution, imagination and inhibition. In 

total we labeled 339 DICCCOLs with 55 sub-functional networks. 

 

3.3 Applying DICCCOL on Brain Disease 

We already successfully applied DICCCOL on multiple brain disease or disorders as 

showed in Fig.13, such as Mild Cognitive Impairment (MCI) [4], Post-traumatic Stress 

Disorder (PTSD) [60], Schizophrenia (SZ) [51], Prenatal Cocaine Exposure (PCE) [7] 

and many others [52]. Here, I will use MCI as an example to illustrate how to perform 

connectivity analysis based on DICCCOL landmarks.  

Discrepant DICCCOLs – landmarks with white matter alterations in MCI: 

Many previous studies have shown that some structure alterations including gray matter 

loss and/or white matter disruptions can be repetitively observed in MCI across different 

datasets and labs. Since DICCCOLs are defined based on the group-wise consistency of 

white matter profiles, we hypothesized that the DICCCOLs related to those altered white 

matter bundles would show different patterns between MCI patients and aged controls. In 

our experiment, we used two independent datasets including the MCI patients and aged 
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controls. After applying the DICCCOL prediction procedure [5] on both of them, some 

predicted DICCCOLs showed abnormal characteristics compared to the others. That is, 

these DICCCOLs displayed higher group trace-map distances with MCI patients 

compared to the aged controls, indicating their fiber bundle patterns have higher 

variability at these locations. By using simple t-tests to evaluate and explore those 

abnormal DICCCOLs that have significantly (p=0.05) higher distributions of trace-map 

distance in MCIs, we obtained 56 and 95 discrepant DICCCOLs for the two datasets. The 

results are illustrated in Fig.14. 

These discrepant DICCCOLs are plotted on the cortical surface using green and red 

bubbles (Fig 14(a) and (b)) for two independent datasets. Though distributed over the 

whole cortex, they still show some clear assembling patterns and, as we expected, most 

of them are located in areas which are consistent with previous findings: orange and 

purple arrows show some DICCCOLs located at the cingulate region and entorhinal 

cortex [139-142], respectively. The magenta arrows highlight the prefrontal areas [143] 

and dorsal part of the cortex which might be involved in the alteration of the corpus 

callosum [144-146]. In general, the discrepant DICCCOLs are located near the regions 

that have previously been proved to be associated with atrophy/alteration of either GM or 

WM. One discrepant DICCCOL was randomly selected within each dataset and its 

corresponding fiber bundles were shown on the top and bottom of Fig.14 (a) (dataset 1) 

and (b) (dataset 2) as examples. The locations of the selected ones are marked with black 

circles. Examples of severely altered white matter bundles of MCI patients are 

highlighted with red boxes. To quantitatively measure the difference of those discrepant 

DICCCOLs between MCI patients and aged controls, the average value and the standard 
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deviation of the trace-map distance within aged controls and MCI patients of the two 

datasets were calculated and displayed in Fig. 14(c). From this visualization, we can see 

that the average trace-map distances of MCI patients are significantly higher than those 

of aged controls (p<0.05). 

Note that those discrepant DICCCOLs are no longer capable of providing consistent 

structural connectivity patterns, their intrinsic correspondences across different 

individuals are much less accurate. Hence in the following classification and functional 

network analysis, we discarded these discrepant DICCCOLs and constructed the 

functional connectomes only based on those “normal” DICCCOLs. However, those 

discrepant DICCCOLs may warrant further investigations. 
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Fig.14. Discrepant DICCCOLs in MCI. In total, we obtained 56 for Dataset 1 and 95 

for Dataset 2. The discrepant DICCCOLs are displayed as colored bubbles on the 

cortex. We randomly chose one as an example and showed the white matter bundles 

extracted from the selected DICCCOL on the top and bottom of (a) (dataset 1) and (b) 

(dataset 2). Some cases with significant differences between MCI subjects and normal 

controls are highlighted using red boxes. Sub-figure (c) shows the comparison of 

trace-map distance of the discrepant DICCCOLs between MCI and normal controls. 
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Classification based on functional connectomes: for each preserved DICCCOL, we 

can effectively acquire its fMRI time series by averaging in a small neighborhood (3 

rings of surface mesh and the radius is approximate 3mm). We evaluated the functional 

connectivity (FC) between each pair of DICCCOLs with Pearson correlation coefficients 

and constructed an M M symmetric matrix for later analysis. Here, M equals the number 

of preserved DICCCOLs. For dataset 1 M=302, and M=263 for dataset 2. 

Since we only have two classes (MCI subjects and normal controls), we adopted a 

simple t-test (p<0.05) in the first stage to remove the connectivity without significant 

differences between two disease/control classes. However, the t-test evaluates the 

features separately, which means it does not consider the relevance among the features 

and thus it cannot capture the redundancy of these preserved features. To tackle this 

problem, we employed the Correlation-based Feature Selection (CFS) [147] algorithm as 

the second-stage feature selection. The core idea of CFS is that through a heuristic 

process it evaluates the merit of a subset of features by considering the goodness of 

individual features for predicting the class along with the degree of inter-correlation 

among them. Unlike the first stage t-test, CFS will compute feature-class and feature-

feature correlations simultaneously. Given a feature subset S with k features, the        

is defined as follows: 

                                          = 
      (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

√  (   )     (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
                                                              (5) 

where      (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  and      (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  are the mean feature-class correlation and the average 

feature-feature inter-correlation, respectively. 

Once we obtained the most common and discriminative connectivity following this 

two-stage feature selection procedure, a support vector machine classifier [148] with 
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linear kernel was employed for solving the classification problem. Due to the limited 

numbers of subjects in the two datasets, we adopted the commonly used “leave-one-out” 

cross-validation strategy to evaluate the sensitivity (proportion of patients correctly 

predicted) and specificity (proportion of healthy controls correctly predicted) of our 

selected features. 

We summarized the number of preserved features at each feature selection stage and 

its corresponding classification results in Fig. 15. In general, we had 45451 and 34453 

features (pair-wise functional connectivity) initially. After the first stage feature selection 

(t-test) those features with no significant differentiation power were discarded and 

2106/3691 connections passed through the significance test for Datasets 1 and 2, 

respectively. Interestingly, there were 134 common features across both datasets and they 

were treated as the input for the second stage feature selection (CFS). The feature training 

in the second stage was conducted within each dataset and all the subjects in the dataset 

were used for the training process. After that, we achieved 33 and 45 connectivity 

patterns for the two datasets, which served as “connectomics signatures” for the 

subsequent disease/control classification and neuroscience interpretation. One important 

issue that should be noted is that some useful features may also be discarded in the first 

stage given the fact that a subset of features could have strong differentiation power 

together even if they could not pass the significance test alone. However, due to the 

computation power we did not utilize feature-feature relations given the large search 

space. On the other hand, if these features made it through the first stage feature 

selection, they would be captured by the CFS (second stage) algorithm. 
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Fig.15. Classification using DICCCOL. 

 

To better demonstrate the advantages of our method, we reported not only the 

classification accuracy with the final feature set, but also the number of survived 

connectivities and the intermediate classification results at each stage of the whole feature 

selection procedure. With the most relevant and discriminative connectivity selected, the 

classification accuracy substantially improved and we achieved 100% and 95.8% 

accuracies for the two datasets. Specifically, using the common (134, in total) functional 

connectivity of the t-test results from the two datasets, the classification accuracy was not 

decreased (the accuracy did not change for Dataset 1 and improved for Dataset 2). This 

supports the feasibility of using common connectivity of different datasets to constrain 

the feature space in the following step. The functional networks involved in the finally-

preserved functional features (functional connectomes) were analyzed in the next section. 

Functional connectomes with high differentiation power: Based on the meta-

analysis results (section 3.2) of DICCCOL, we quantitatively analyzed the composition 

of the acquired “connectome signatures” and the details are summarized in Table 2 and 

Fig. 16. Not surprisingly, cognition-related DICCCOLs played the most critical role 
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within the signatures in both datasets. Those DICCCOLs involved in perception tasks 

also stood for a relatively high proportion (Table 2). 

 Involved Connectivity  Involved DICCCOLs 

Tota

l 

Increase

d 

Decrease

d 

Tota

l 

Action Perceptio

n 

Cognitio

n 

Emotion 

Datase

t 1 

33 12 21 53 32/60.4

% 

33/62.3

% 

47/88.7

% 

32/60.4

% 

Datase

t 2 

45 44 1 67 41/61.2

% 

43/64.2

% 

56/83.6

% 

33/49.3

% 

Table 2. Composition of “connectome signatures”. 

Fig. 16 is a visual presentation of the “connectome signatures”. The green ticks in the 

middle ring indicate 358 DICCCOLs and they are roughly arranged according to the axial 

projection of the cortex surface: from top to bottom the ticks represent the DICCCOLs 

located at frontal, parietal, temporal and occipital lobes. The red and green curves 

represent increased and decreased connectivities, respectively. From the figure, we can 

see many increased ones (red curves) in both datasets. In fact in dataset 2, only one 

decreased connectivity exists. This result is consistent with previous studies [149-151] 

that increased connectivity is a common symptom in MCI and early stage AD, which is 

interpreted as a compensatory mechanism for reallocation or recruitment of cognitive 

resources to maintain routine performance in MCI/AD patients.  
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Fig.16. Illustration of connectome signatures. Representation of the derived 

“connectome signatures” (left) and their corresponding Functional Relation Matrix 

(FRM) (right). The green ticks in the middle ring indicate 358 DICCCOLs. The red 

and green curves represent increased and decreased connectivity, respectively. 

Connectivity histogram shows the degree of connectivity at a specific DICCCOL. 

Four colored rings in the outer layer represent four categories of functional networks: 

perception, action, cognition and emotion. The heat map between DICCCOLs and the 

functional network shows the total frequency of involvement in all of the functional 

networks. 
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CHAPTER 4 

HOLISTIC ATLASES OF FUNCTIONAL NETWORKS AND INTERACTIONS 

(HAFNI) 

4.1 Rationale and Overview 

Traditionally, the subtraction approach (contrast between task and baseline epochs) 

has been the dominant methodology in both task-based fMRI paradigm design and fMRI 

data analysis [30-31]. Despite its remarkable successes and significant neuroscientific 

insights, nevertheless, it has considerable difficulty in reconstructing concurrent, 

interacting functional networks, as it was already widely recognized and pointed out in 

the literature that spatially overlapping networks subserving different functions are likely 

to be unnoticed by the blocked subtraction paradigms [32-33]. Meanwhile, from a human 

neuroscience perspective, it has been widely reported that a variety of brain regions and 

networks exhibit strong functional diversity and heterogeneity [17, 20, 21, 34]. That is, 

the same brain region could participate in multiple functional processes/domains 

simultaneously and a single functional network might recruit various neuroanatomic 

areas at different stages as well. Besides task-based fMRI, resting state fMRI has been 

another major neuroimaging technique to examine the intrinsic functional activities when 

the subject did not perform any task [35-37]. A variety of computational methods 

including independent component analysis (ICA) [38-39], normalized cut [40] and other 

clustering algorithms [41], have been employed to estimate resting state networks (RSNs) 

[35, 37, 42]. It should be pointed out, however, that virtually all current RSNs 
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identification methods did employ the strategy of spatially clustering fMRI signals [38-

40] and assumed that RSNs are not spatially overlapping with each other. In addition, 

there has been increasing interest in examining the relationship/interaction between task-

evoked and intrinsic resting state functional networks [43-44]. 

Recently, we have applied an effective sparse coding algorithm on a dataset which 

includes 19 subjects performing a working memory task [45-46]. The results are very 

interesting that we can observe some stimulus correlated or anti-correlated components 

after the signals decomposition. Inspired by this finding and in order to effectively 

address the abovementioned fundamental questions and bridge the current significant 

neuroscience knowledge gaps, we developed an innovative computational framework of 

sparse representation of whole-brain fMRI signals and apply it on the recently publicly 

released Human Connectome Project (HCP) high-quality fMRI data [47]. 

 

4.2 Sparse Representations of fMRI Signals 

Given a collection of data vectors X = [  , …,   ] ∈      , if there exists a linear 

combination of a small size of    that can effectively represent X, we call X admits a 

sparse approximation over dictionary D, where D = [  , …,   ] ∈      . For each fMRI 

dataset having n voxels with t time length, we are aiming to learn a neuroscience 

meaningful and over-complete dictionary        (m>t and m<<n) for the sparse 

representation of whole brain signals S, where                
   . The lost function 

is defined as: 

                                       
 

 
           

                                                           (6) 
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Fig.17. Computational pipeline of sparse representation of fMRI signals. 

 

Similar to LASSO [48], λ is a regularization parameter which is used as a trade-off 

item between the sparsity level of coefficient (  ) and the regression residual. 

As illustrated in Fig.17, sparse representation includes three steps: first, for each 

single subject’s brain, we extract pre-processed fMRI signals of all gray matter (GM) 

voxels by using individual GM mask. Then after normalization by using zero mean and 

standard deviation of 1, these signals are resembled into a big matrix S ϵ       (Fig.17.a), 

where t is the number of time points (fMRI volume numbers) and n columns represent 

fMRI signals extracted from n GM voxels. Finally, by applying a publicly available 

efficient online dictionary learning methods [49], each fMRI signal (each column vector) 

in S can be modeled as a linear combination of a small size of learned dictionary atoms 

(Fig.17.b) with corresponding coefficients (Fig.17.c). For example, a specific signal 
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vector,   , can be represented as the product of basis dictionary D and   , where    is the 

corresponding coefficient vector in the coefficient weight matrix. 

A particularly important characteristic of this framework is that the reference weight 

matrix [49] naturally reveals the spatial overlap patterns (Fig.17-c) among those 

reconstructed brain networks, which are represented by the time series of the over-

complete basis dictionaries (Fig.17-b). It turned out that this novel methodology can 

effectively and robustly uncover multiple functional networks, including both task-

evoked and Resting State Networks (RSNs), that can be well-characterized and 

interpreted in spatial, temporal and frequency domains. 

 

4.3 Functional Network Component Analysis 

As each functional network has its own spatial pattern and time series that serve as 

the basis for sparsely representing the whole-brain fMRI signals, a natural question 

arises: what are the neuroscience meanings of those hundreds of network components? 

To address this question, we propose a synthetic analysis method to identify those 

neuroscience meaningful components and establish their correspondences across different 

brains. 

Temporal-Frequency analysis: For task fMRI (block design), the frequency of a 

cycle between the task and the baseline in the stimulus             is calculated by: 

                                 =  
 

                                             
 * 

 

  
                    (7) 

where TR is repetition time. For the time series of the j-th network component    , we 

can obtain its frequency spectrum     by using fast Fourier transform on its signal, and 
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calculate the energy concentration        of the stimulus curve frequency over all 

frequency ranges: 

                                                   =                 / ∑                                                   (8) 

Where                 is the energy of the stimulus frequency in the spectrum, and       

denotes the energy of the i-th position in the spectrum of the j-th network component. 

Intuitively, a large        suggests that this network component is more likely to be 

responsive to the task stimulus and should be considered as the task related network. 

Meanwhile, we can obtain Pearson correlation between the signal of each network 

component with the stimulus curve, which is defined as:  

                                                        = corr(   ,              )                                    (9) 

Essentially,         measures the temporal similarity between the component’s time series 

and the stimulus curve, where a large value indicates better correspondence between the 

component and the stimulus. 

Spatial analysis: For both task and resting state fMRI, we do have reliable pre-

knowledge, such as the contrast templates derived from general linear model (GLM) and 

typical RSN templates [50]. The spatial similarity is defined by the overlapping rate R 

between the spatial patterns (A) of the network component and the above mentioned 

templates (T):  

                                                     R (A, T) = 
     

   
                                                          (10) 

Temporal-frequency and spatial analysis can effectively compensate each other since 

they reflect the intrinsic properties of the network components with different domains. 

Especially for resting state fMRI with which the temporal and frequency characteristics 
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have not been fully understood or quantitatively described, spatial analysis becomes a 

driving force for successful identification of those RSNs under both task and resting state. 

 

4.4 Group-wise Consistent Functional Templates 

We applied the sparse representation framework on HCP-Q1 dataset [47] (68 

subjects). The primary goals of HCP task fMRI datasets were to identify as many core 

functional regions in the brain as possible that can be correlated to structural and 

functional connectomes. HCP dataset can be considered as one of the most systematic 

and comprehensive mapping of connectome-scale functional networks for a large 

population in the literature so far. Totally it contains seven tasks and within each task 

multiple contrasts (sub tasks) are covered.  

In total, we have identified and confirmed 5, 3, 2, 2, 2, 3 and 6 group-wise consistent 

task-evoked networks, or called task component templates here, for motor (M1-M5 in 

Fig.18), emotion (E1-E3 in Fig.18), gambling (G1-G2 in Fig.18), language (L1-L2 in 

Fig.18), relational (R1-R2 in Fig.19), social (S1-S3 in Fig.19), and working memory 

(WM) (W1-W6 in Fig.19) networks, respectively. In particular, these 23 consistent 

functional task templates are reproducible and consistent across all of the HCP subjects 

we examined. 

We also went through all of the decomposed dictionary atoms and successfully 

identified nine reproducible and consistent RSNs in all of the seven task fMRI datasets 

across all of the HCP subjects. Fig.20 shows the nine RSNs (nine rows) in these seven 

tasks (the first seven columns) for one exemplar subject. Meanwhile, for comparison 

purpose, the corresponding RSNs identified by both of the dictionary learning method 
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and the independent component analysis (ICA) [152] method from rsfMRI data are 

shown in the eighth and ninth columns in Fig.20. It is evident that all of the nine RSNs 

derived from either task fMRI or rsfMRI data are consistent with the template [153], and 

thus are called RSNs templates here. Particularly, the nine RSNs templates can be 

robustly reconstructed across individuals. All the above mentioned 86 templates (23 for 

task and 63 RSNs in seven tasks) are also called HAFNI templates and they will be used 

in the DICCCOL-H optimization (section 5). 

A fundamental difference between the HAFNI templates and GLM-based activation 

maps is that the HAFNI templates are simultaneously derived from the optimally de-

composed fMRI signals based on the sparse representation of whole-brain data (as 

illustrated in Fig.17), while the GLM-based maps were obtained from individual fMRI 

signals based on separate model-driven subtraction procedures. 
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Fig.18. HAFNI templates – part I. 
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Fig.19. HAFNI templates – part II. 
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Fig.20. HAFNI templates – part III. 
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CHAPTER 5 

CONSTRUCTION OF HOLISTIC ATLASES BASED ON DICCCOL  

(DICCCOL-H) 

5.1 Rationale and Overview 

Recently, there have been extraordinary interests and efforts in measuring large-scale, 

whole-brain connectivity, known as “connectomics” [4-5,7-8,51-54], and it is considered 

as one of the highest priority research areas in NIH’s interim report which is in response 

to the President Obama’s “BRAIN Initiative” project [55]. Essentially, when mapping the 

brain connectivity, Regions of Interests (ROIs) provide the foundation or structural 

substrates for measuring connectivity within individual brains and for comparing results 

across populations. Thus, identification of reliable, reproducible and accurate ROIs with 

correspondences across individual brain is critically important for the success of brain 

connectivity mapping. 

Our previous work of DICCCOL [5] (section 2) is the first successful attempt in the 

field to construct group-wise ROIs by identifying the most consistent white matter 

connectivity patterns across different individuals. Many studies [4,7,51-52,56-

57,58,43,59,60-63,64-69,70-72,73-77,78-80] already demonstrated that it is an effective 

and robust ROI modeling framework and has significant improvement compared to the 

previous registration method[5]. Despite DICCCOL system is an important advancement 

in human brain mapping, however, it did not consider the functional homogeneity and 

heterogeneity behind those brain structural consistencies. To tackle this fundamental 
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issue, we propose to construct a novel Holistic Atlases of Brain Structure and Function 

based on DICCCOL system and the brain’s functional sparse representation, and we 

name it as DICCCOL-H. 

 

5.2 DICCCOL Prediction and Functional Labeling 

We applied DICCCOL prediction procedure on the HCP data to acquire the initial 

locations of the landmarks which provided a reliable and neuroscience grounded 

foundation for further joint optimization under both structural and functional regulations. 

After we have all 358 DICCCOL landmarks in the new brain, we can functionally 

label them using the functional network templates derived in section 4.4. We construct a 

functional regulation profile for each predicted DICCCOL landmark. This functional 

regulation profile is a binary vector with L-dimension and L is the number of network 

templates (86 in this work). For example, if one DICCCOL landmark is located in the 

region of a specific template, the corresponding item in the regulation vector will be 1, 

otherwise will be 0. Through this way, the functional regulation profile can effectively 

encode the functional expression of every DICCCOL landmark in individual space. 

 

5.3 Optimization on Structure and Function Simultaneously 

Because the DICCCOL landmarks already possess the most consistent structural 

connectivity across different populations, our primary objective is to maximize the 

functional homogeneity and minimize the potential affection to the established structural 

consistency simultaneously. This process includes two steps: 1) Construction of the 

functional regulation model. Since for each subject and each DICCCOL landmark, we 
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Fig.21. Illustration of joint optimization. 

 

already achieved its functional regulation profile through functional labeling. For each 

DICCCOL, we assemble all the functional profiles within the group (68 subjects) and do 

a simple but efficient voting for each template. Thus we arrive with a 358*L matrix. Here 

L is the number of functional network templates. Each element represents the subject 

number that in those subjects the current DICCCOL is consistently located in a specific 

functional template. The larger number means more individuals have agreement that the 

current DICCCOL should belong to this functional network.  

In this work, we adopt a relatively strict criterion that if more than half of the group 

individuals commit this template, the corresponding matrix element will be considered as 

value 1 in the functional regulation model. 2) Joint optimization. In brief, using the 

predicted location as the initial searching point, we move the DICCCOL landmark within 

a small neighborhood and examine if there exists an appropriate location at which the 
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functional profiles become more consistent to the functional regulation model, and at the 

same time the structural connectivity has not significant change. The neighborhood is 

defined as a circle with radius of 3mm because the average registration error is 

considered as 6mm [5]. The basic idea is illustrated in Fig.21. The green bubble 

represents the initial location. According to its current functional regulation profile, the 

green one will move to the neighboring locations that makes it more consistent to the 

functional regulation model. For example, if its current functional profile is <0, 0> and 

the regulation model is <1, 0>, it will intend to move along the red arrow. Otherwise, it 

will move to the other two directions or stay at the initial location given the regulation 

mode as <0, 0>. It should be noted that this optimization process is performed under the 

structural constraints, which can effectively preserve the already established structural 

consistency through DICCCOL prediction. 

The overall optimize function is summarized as:  

                       E =   (      ) ∙ |         |                                            (11) 

Here   and    represent the initial location and the candidate location need to be examined, 

respectively. FR is the functional regulation vector.        is the trace-map distance 

between the candidate location and the initial location.   (      ) is defined as: 

             (      ) ={
                     

             

 
                    

                   (12) 

Here   is the standard deviation of the group-wise trace-map distance of the predicted 

DICCCOL landmarks. Intuitively, if the structural connectivity does not change much, 

the functional regulation item will be the driving force for the optimization process. If 

not, the functional regulation item will be penalized that the DICCCOL landmark will be 
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inclined to stay at the initial location to maintain its already established structural 

consistency. This process will be applied to each DICCCOL landmark separately and 

eventually we can achieve the optimized landmarks, which reflect both the structural and 

functional consistency across different individuals. 

Identification of common structural and functional landmarks: The above 

mentioned optimization process has been applied to the HCP Q1 dataset. Totally 84 

DICCCOL landmarks were successfully optimized under the functional regulation model 

which consists of 86 consistent functional templates. It is noted that this common 

functional regulation model, which is represented as an 84*86 binary matrix, is derived 

from the group-wise voting. Hence it is possible that only a part of the model contributes 

to the individual optimization process. For example, for a specific subject, if some of 

these 84 DICCCOL landmarks are already consistent with the regulation model, then 

these DICCCOLs will be ignored for efficiency consideration. 

The optimization result is shown in Fig.22. One subject is randomly selected as an 

example and the optimized landmarks are displayed on an inflated cortical surface with 

colored bubbles. The green and red ones represent the landmarks before and after the 

optimization (Fig.22 (a)). Figs.22 (b-d) are three enlarged examples and the yellow 

arrows illustrated the direction of the landmarks’ movements during the optimization. In 

addition, the white matter bundles connecting to the original and optimized landmarks are 

also displayed. Fig.22 (e) shows the average changes of functional regulation profiles 

before (left) and after (right) the optimization. The rows and columns represent optimized 

landmarks and different functional templates. The larger value indicates more 

consistency. We can clearly see that the overall structural connectivity patterns do not 
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Fig.22. Results of joint optimization. (a) One subject is randomly selected as an 

example. Green and red bubbles represent original and optimized landmarks, 

respectively. (b-d) show three enlarged examples and the fiber bundles before and 

after the optimization. Yellow arrows indicate the direction of the movement during 

the optimization. (e) and (f) show the average changes of functional regulation profiles 

and trace-map distance before and after the optimization. (g) displays the percentage 

regarding the changes of the trace-map distance and the improvement of functional 

consistency. 

 change much (Fig.22b-d), however, the corresponding functional consistency is 

significantly improved (Fig.22e). The quantitatively analysis of structural changes and 

functional consistency improvement are shown in Fig.22 (f-g). Obviously, our 
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Fig.23. Spatial distribution of optimized DICCCOL-H landmarks. (a) Spatial 

distributions of the 84 optimized landmarks. (b) The effective regulation number of all 

DICCCOL landmarks. (c) Optimization results of #145 landmark in one subject. Red 

and blue areas denote two functional networks. 

 
optimization goal is successfully achieved that the overall functional consistency is 

significantly improved (30% on average of improvement) while the consistent structural 

connectivity is effectively preserved (2% on average of changes). 

Landmarks possessing both structural and functional consistencies: In this 

section, we focus on the latent information delivered by the identified functional 

regulation model. As mentioned before, the functional regulation model involves 84 
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DICCCOL landmarks and 86 consistent functional templates. Fig. 23 (a) demonstrates 

the spatial locations of these 86 landmarks. Colored bubbles represent all the 358 

landmarks and the green ones are those landmarks that can be optimized through our 

functional regulations. It is obvious that most of them are assembled in the occipital, 

parietal and temporal lobes and few of them are located in the frontal lobe. One 

explanation is that, in frontal lobe the overlapping pattern of different functional 

templates is much more complicated than other brain regions, which makes it difficult to 

satisfy the voting procedure, since frontal lobe is considered to contribute more towards 

the high-level brain functions. Another possibility is because of the functional templates 

which are used to generate the regulation model. Though the HCP Q1 data has seven sets 

of task data, it is possible that some brain regions were not covered by any task networks 

or resting state networks. This situation led to the result of insufficient functional 

regulations for some brain regions. Fig.23 (b) shows the effective regulation number of 

every DICCCOL landmarks. For each optimized landmark there are 4 regulation profiles 

on average. For example, the #145 landmark (highlighted with red arrow) (Fig. 23(c)) has 

two regulation profiles, which come from language network and motor component of 

resting state network [50]. One subject is selected to demonstrate the optimization 

process of this landmark as showed in Fig. 23(c). Red and blue areas denote two 

functional networks and eventually the #145 landmark in this subject was moved from 

the region which was covered by one functional network to the nearby overlap region 

according to functional regulation model. 
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