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Abstract

Stable transition-metal carbide nanocrystals were observed to form with sizable
abundance in laser vaporization molecular-beam experiments of the 1990’s [1, 2].
Inspired by the experimental observations, I have carried out first-principles total-
energy calculations, employing density functional theory (DFT), for 3×3×3 titanium
carbide nanocrystals. Two sibling nanocrystals, Ti14C13 and Ti13C14, are compared
in this dissertation. Both of them can be viewed as fragments of bulk TiC, but the
first was found to be abundant and stable in the experiments while the second was
not seen at all. The analysis of their structural, energetic, and vibrational properties
shows differences in the nearest-neighbor Ti-C bonding in these two species and a
significant weakening in the bond to the corner carbon atom in Ti13C14. In addition,
an electronic level analysis, aided by visualization of the molecular orbitals of Ti14C13

and Ti13C14, shows the different adaptability for orbitals available to titanium and
carbon atoms in different geometrical arrangements, resulting in a difference in the
Ti-C bond strength in these nanocrystals.

In this dissertation, I also examine the effects of alloying on titanium carbide
nanocrystals. DFT calculations are performed on a system similar to Ti14C13, but
with one of its titanium atoms replaced with a zirconium atom, yielding Ti13ZrC13.
Two categories of Ti13ZrC13 species — Ti13ZrcorC13, with the zirconium atom at a
corner site, and Ti13ZrfcC13, with the zirconium atom at a face-center site — are
compared to each other and to pure Ti14C13, in structural, energetic, and vibra-
tional properties. My analysis shows that the change in the vibrational spectrum of
Ti13ZrcorC13 due to alloying is primarily the effect of the mass difference between
Zr and Ti, while the change in Ti13ZrfcC13 also reflects a modification of the bond
strength in the molecule. Thus, the IR spectrum of Ti13ZrfcC13 shows more promi-
nent new features than that of Ti13ZrcorC13. Because of its lower ground total-energy,
Ti13ZrcorC13 is expected to be substantially more abundant in experiments, and thus
the IR spectrum of Ti13ZrC13 is predicted to be closer to that of Ti13ZrcorC13.
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Chapter 1

Introduction

1.1 Dissertation Objective

Stable transition-metal carbide clusters are an important class of nanoscale clus-

ters. They were discovered in laser vaporization molecular-beam experiments in the

early 1990s [1–5], where a series of ‘magic number’ peaks appeared in time-of-

flight mass spectra, indicating cluster compositions that are relatively stable. There

are two types of stable species: the metallocarbohedrene (met-car) M8C12, where M

stands for one of many possible metal species, and the larger so called “nanocrystals”

that exhibit ∼1:1 metal/carbon stoichiometries characteristic of bulk metal carbides,

thus suggesting N1 × N2 × N3 lattice structures for this type of cluster. Numerous

previous ab initio studies [6–22] have mostly investigated the properties of met-car

clusters. In this dissertation, I focus on the nanocrystals, the other prominent class

of metal-carbide nanoclusters, and in particular, Ti-C nanocrystals. These species

can be viewed as fragments of bulk TiC, and exhibit a range of interesting proper-

ties that the bulk does not have. For example, not all ideal cubic fragments of bulk

TiC are shown as stable nanocrystals in the experiments, and the stable nanocrys-

tals are often carbon deficient. To give a theoretical explanation for the questions

raised in the experiments, I perform first principle calculations on 3 × 3 × 3 tita-

nium carbide nanocrystals using density functional theory (DFT) [23, 24], one of

the most prominent approaches offering the capability of efficiently computing the

electronic structure, total energy and other properties of molecular and condensed
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matter systems. The 3 × 3 × 3 nanocrystals, the main topic of this dissertation, are

in the smallest size of the nanocrystal class, but formed in the greatest abundance

among the nanocrystals in experiments, by far. Viewed as truncations of bulk TiC,

which has the same structure as NaCl, there are two possible structures that can

form 3 × 3 × 3 cubes. All metal atoms are either at the eight corner site and six

face-center sites, or at the one body-center sites and twelve edge-center sites. The

former yields Ti14C13 and the latter yields Ti13C14. However, only Ti14C13 is seen

as stable in the experiments. From the ab initio investigation on their structural,

energetic, vibrational and electronic properties, I try to give a physical explanation

for the prominence of 3 × 3 × 3 nanocrystal Ti14C13 and absence of the other pos-

sible 3 × 3 × 3 nanocrystal Ti13C14. This sheds light on how carbon deficiency in

nanocrystals is related to the strength of the bonds to the atoms at corners of the

nanocrystals.

In addition to studying on the pure transition-metal carbide nanocrystals, I also

report the zirconium-alloy effects in the 3 × 3 × 3 nanocrystal. One metal atom of

Ti14C13, which is observed abundant in the experiments, is replaced by a zirconium

atom, resulting in Ti13ZrC13, By considering symmetries of the 3 × 3 × 3 cubic

structure, I divide Ti13ZrC13 nanocrystals into two possible categories, depending on

the distribution of the zirconium atom on the metal sites in the 3× 3× 3 structure.

One has the zirconium atom at the corner of the nanocrystal, named Ti13ZrcorC13,

and the other has the zirconium atom at the face-center of the nanocrystal, named

Ti13ZrfcC13. By comparing these two isomers of Ti13ZrC13, and describing their

similarities and differences to Ti14C13, I demonstrate the effect on structural and

bonding properties due to the introduction of the zirconium atom. I calculate the IR

spectrum of the nanocrystal Ti13ZrC13, using a random zirconium occupation model.

After making a correction to this model, I predict that the IR spectrum of the alloy

2



carbide nanocrystal Ti13ZrC13 is dominated by the IR spectrum of Ti13ZrcorC13,

which is very similar to the IR spectrum of pure metal carbide nanocrystal Ti14C13.

1.2 Dissertation Organization

The material in this dissertation is arranged in the following manner: The experi-

mental background on the discovery of metal carbide clusters and nanocrystals is

first introduced. Then the theoretical methods applying density functional theory

are described, and the parameters used in the calculations are specified. Following

a detailed investigation of the structural, energetic, vibrational and electronic prop-

erties of titanium carbide nanocrystals, the alloy effects of replacing one titanium

atom with one zirconium atom are finally discussed.

The chapters are ordered as follows: Chapter 2 gives a review of the experimental

development on the metal carbide nanocrystals. Chapter 3 provides an overview

of density functional theory, the basis of my calculations. Chapter 4 describes the

choices of Ti-C nanocrystals to study, the parameters for the DFT calculations, con-

vergence tests and other preliminary considerations. The calculation for bulk TiC

is also discussed in this chapter, as the nanocrystal structure will be given in com-

parison with the bulk structure in the later chapters. Chapter 5 gives the results

and comparisons on structural and energetic properties of Ti14C13 and Ti13C14. Two

auxiliary systems, Ti6C13 and Ti13C6, which are just the truncated nanocrystals

obtained by removing the corner atoms of Ti14C13 and Ti13C14, are also included to

prepare the discussion of the stability of corner atoms. Chapter 6 introduces a force-

constant model for the vibrational analysis and presents the results of calculating

the vibrational modes of the titanium carbide nanocrystals. The calculated infrared

spectrum of Ti14C13 is compared here with the experimental data. Chapter 7 gives

the detailed electronic structure analysis of Ti14C13 and Ti13C14. The Kohn-Sham

3



waves functions obtained in the DFT calculation are visualized, which help us under-

stand the formation of bonds and their connection to electronic structure near the

highest occupied molecular orbital (HOMO). Chapter 8 summarizes the structural,

energetic and vibrational analysis of two types of 3×3×3 titanium carbide nanocrys-

tals and accumulates the evidence that the carbon atoms are weakly bonded when

they occupy corner sites. How this analysis explains why we only see Ti14C13 and

the reason for the carbon deficiency in nanocrystals is then discussed. Chapter 9

presents the computational results of Ti13ZrC13, which is similar to Ti14C13 except

that one titanium atom is replaced by a zirconium atom. The alloying effects on the

vibrational spectrum due to changes in the mass and bonding in the nanocrystals

are shown. Finally, I summarize and give conclusions for this dissertation in chapter

10. In the appendix, I briefly introduce a 3D visualization tool that I developed to

study normal modes of vibrations. Some figures in this dissertation are generated

with this tool.
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Chapter 2

Background

2.1 Discovery of Metal-Carbon Nanoclusters

In 1992 [3], Guo, Kerns, and Castleman discovered a stable and abundant cluster

with mass 518 amu during the course of studying the dehydrogenation reactions

of hydrocarbons. The new stable cluster was known to be composed of titanium

atoms and carbon atoms. At first it was not possible to identify the specific stoi-

chiometry based on the mass, because the mass of the main isotope of Ti is 48 amu,

exactly four times the mass of 12C. On repeating the experiment with 13C instead,

the experimentalists were able to deduce a stoichiometry of 8 metal atoms and 12

carbons.

Soon after the discovery of Ti8C12, it was shown that this species was not the

only cluster form for metal-carbon nanoparticles. In the investigation of the titanium

carbon and vanadium carbon clusters, a family of larger metal-carbon systems were

observed by Pilgrim and Duncan [1, 2] in laser-induced photodissociation experi-

ments in 1993. The data display a series magic number peaks in the mass spectrum.

A part of the mass spectrum reported by Pilgrim and Duncan [1, 25, 26] is

shown in figure 2.1. Confirmed again by using 13C later, one sharp peak with mass

528 amu was assigned to be the metallo-carbohedrenes or “met-cars” Ti8C12. The

clusters corresponding to peaks at higher masses were indexed to be perfect or nearly

perfect N1 × N2 × N3 nanocrystals. These nanocrystals can be viewed as fragments

of bulk TiC, which has the same structure as NaCl. For example, in the TinCm

5



Figure 2.1: Mass spectrum of titanium-carbon clusters obtained by Pilgrim and
Duncan (Reprinted from ref. [1]). The Ti8C12 and Ti14C13 clusters are formed pref-
erentially. A series of larger clusters are also observed.
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spectrum in figure 2.1, the other prominent mass peak at mass 828 amu is assigned

to the stoichiometry Ti14C13, which has the right composition to be a 3×3×3 cubic

nanocrystal.

The nanocrystals all exhibit ∼1:1 metal carbon stoichiometries characteristic of

bulk-like cubic lattice structures. The presence of the “met-car” nanoclusters and the

metal-carbide nanocrystals has been confirmed by many experiments since their dis-

covery. They have been obtained from photofragmentation, from metastable decay,

and from other techniquesas well [27]. Although transition-metal carbide nanoclus-

ters and nanocrystals were first discovered for titanium as the metal, other transition

metals like vanadium, zirconium, etc. have been observed to form similar nanoclus-

ters and nanocrystals, as well [2, 28–31].

2.2 Truncated Carbon Deficient Nanocrystals

The ideal titanium carbide nanocrystals are like the full cubic fragments of bulk

TiC, which has the rock-salt structure. The metal atoms and carbon atoms in the

ideal nanocrystals sit on alternating sites of the N1 × N2 × N3 truncated lattice. In

the ideal structure, the number of carbon atoms is either the same as the number

of titanium atoms, or at most differs by one, if N1, N2 and N3 are all odd numbers.

Some ideal nanocrystals, for example the 3 × 3 × 3 Ti14C13 and 3 × 3 × 5 Ti23C22,

are produced in the gas phase in the laser vaporization molecular beam experiments

[1, 2, 32].

But in these experiments, one interesting observation is that not all nanocrystals

are observed as the ideal fragments of bulk TiC, and some are often carbon deficient.

The phenomenon can be seen for the nanocrystals with different sizes. If all the edges

of the nanocrystal have an odd number of atoms, like the 3× 3× 3 nanocrystal, the

atoms at all eight corners of the nanocrystal have to be of the same species. In other

7



(a) (b)

Figure 2.2: Two possibilities for 3 × 3 × 3 Ti-C nanocrystal species.
(a) Ti14C13.
(b) Ti13C14.
Titanium atoms are indicated by white spheres and carbon atoms are indicated by
black spheres. This same color scheme is used through this dissertation for ball-and-
stick figures.

words, they have to be either all metal atoms or all carbon atoms. Although the

perfect structure for nanocrystals with an odd number of atoms along each edges

is observed, the number of metal atoms for these observed nanocrystals is always

one more than the number of carbon atoms, indicating that the nanocrystals formed

are of the type with metal atoms, not carbon atoms, at all corners. For example,

the 3 × 3 × 3 nanocrystal could have two possible types, as shown in figure 2.2.

One possibility, Ti14C13, has titanium atoms on its six face-center sites and eight

corner sites and carbon atoms on the body-center site and twelve edge-center sites.

The other possibility, Ti13C14, has carbon atoms on its face-center and corner sites

and titanium atoms on the body-center and edge-center sites. They both can been

8



viewed as fragments of the bulk TiC. However, Ti14C13 is observed abundance in

the experiments, and its 3× 3× 3 sibling, Ti13C14, which is also a possible fragment

of bulk TiC, is not seen at all in the experiments [1, 2, 32, 33].

If at least one edge has an even number of atoms, the alternation of atoms along

the edge requires that the corners at the two ends of the edge cannot be occupied

by the same type of atom. For example, unlike the 3 × 3 × 3 nanocrystal, there is

only one ideal 3 × 3 × 4 nanocrystal M18C18, where M is a metal like titanium or

vanadium. For an ideal 3 × 3 × 4 structure, four corners sites on one 3 × 3 face

must be occupied by metal and the four remaining corners on the other 3 × 3 face,

by carbon. However, the nanocrystals with an even number of atoms along one or

more edges are never observed with the ideal stoichiometry, but always show missing

carbon atoms. For example, vanadium-carbide nanocrystals exhibit a trend to have

four fewer carbon atoms than the ideal structure for the 3 × 3 × 4 and 3 × 4 × 4

nanocrystals. This suggests that the four carbon atoms at corner sites of the ideal

version of the nanocrystals are absent [32]. The situation is more complicated in

the mass spectrum of larger titanium carbide nanocrystals, as titanium has multiple

stable isotopes. But if isotopically pure titanium were used, a similar picture for

titanium carbide nanocrystals would be observed in all likelihood.

2.3 Vibrational Spectroscopy of Metal-Carbide Nanoclusters and

Nanocrystals

The infrared absorption or emission spectrum can help us understand the rotational

and vibrational motions of a molecule and thus understand the internal structure

and properties [34]. Such experimental techniques, for example, have been used to

measure the vibrational spectra of carbon nanoclusters in soot [27]. However, metal-

carbide clusters, such as the M8C12 met-car and M14C13 nanocrystals, are produced
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by laser vaporization in pulsed-nozzle sources [1, 2]. In these experiments, they are

produced at low density in the gas phase, and it is not possible to use standard

techniques to obtain the IR absorption spectrum. In the late 1990s, the introduction

of a new technique called the infrared resonance-enhanced multiphoton ionization

(IR-REMPI) method made it possible to measure the infrared spectrum [35] for

strongly bound clusters produced in the gas phase in laser vaporization molecular

beam experiments. Infrared multiphoton excitation with a pulsed free-electron laser

results in thermionic electron emission for neutral clusters and the resulting ions are

detected in a time-of-flight mass spectrometer. Multiphoton ionization is strongly

enhanced on an infrared-active vibrational resonance of the nanocluster. Although

this IR-REMPI spectrum is not the same as the linear absorption spectrum, it

can be quite similar and it yields valuable information on the IR optical properties

[36]. The IR-REMPI method has been applied on titanium carbide nanoclusters

and nanocrystals in molecular beams. As shown in figure 2.3, reprinted from the

experimental work of ref. [35], the 3 × 3 × 3 nanocrystal Ti14C13 has a strong IR

resonance peak that appears at 485 cm−1 and the second IR band that appears at

around 630 cm−1.
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Figure 2.3: IR-REMPI spectrum of Ti14C13 nanocrystals (Reprinted from ref. [36]).
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Chapter 3

First-Principles Total-Energy Methodology

3.1 Introduction to Density Functional Theory

Density Functional Theory (DFT) [23, 24] is arguably the most successful quantum

mechanical approach to offer the capability of computing the electronic structure,

total energy and other properties of molecular and condensed matter systems. The

DFT method has undergone great progress in the past decades [37–40], and various

approaches for solving the DFT equations have been implemented in many dif-

ferent computer codes [41]. In this chapter, I will introduce the basic theorems and

approximations on which my calculations of metal-carbide nanocrystals are based.

For simplicity, electron spins are not included in the discussion, as spin consideration

will not be significant to the present research.

Real material and molecular systems, including the nanocrystal systems I have

studied, are essentially many-body systems of interacting electrons and atomic

nuclei. Because of the very large difference in mass between the electrons and nuclei

for all atomic species except, perhaps, hydrogen, and the fact that the forces elec-

trons and nuclei exert on each other are equal in magnitude, the electrons respond

nearly instantaneously to the motion of the nuclei. Thus the nuclear motion can

be treated adiabatically, or even ignored, leading to a separation of electronic and

nuclear coordinates in the many-body wave function. This adiabatic approximation,

also called the Born-Oppenheimer approximation [42], separates the full many-body

problem to the problem of electrons and fixed nuclei. If nuclear dynamics are needed
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for a given problem, the electronic contribution to the potential felt by the nuclei will

be the ground-state electronic energy computed for the instantaneous configuration

of the nuclei. So the Hamiltonian for the solution of the dynamics of the electrons

in some frozen-in potential of the nuclei can be written as equation 3.1

Ĥ = −1

2

∑

i

∇2
i +

∑

i

Vext(ri) +
1

2

∑

i6=j

1

|ri − rj|
+

1

2

∑

I 6=J

1

|RI − RJ |
, (3.1)

where Hartree atomic units are used (~ = me = e = 4π
ε0

= 1). The parameter ri is

the coordinate of the ith electron and RI is the coordinate of the Ith nucleus, or ion.

There are four terms in the above Hamiltonian. The first term is the kinetic energy

operator for the electrons. The second term is the potential energy of the electrons

due to the fixed nuclei, and perhaps, other external fields that may be present. The

third term is the repulsive electron-electron Coulomb interaction. And the last term

is the classical Coulomb interaction energy of the nuclei, which is a constant for fixed

nuclei. While this term, as a constant energy shift, does not affect the electrons, it

is useful to include here so that the resulting total energy, viewed as parametrically

depending on nuclear positions, can later be used as the potential energy for nuclear

motion.

The traditional quantum mechanical approach to the system defined by the above

Hamiltonian is based on solving for complicated many-electron wave functions. As

each electron has 3 degrees of freedom, the many-body wave functions of an N-

electron system includes 3N variables. The basic idea of DFT is to describe the

multi-electron system via the electron density, rather than the many-body wave

functions. The relatively low computational expense is the main advantage, as the

density is only a function of r, the basic variable of the system which is defined by

only 3 spatial coordinates, much fewer than the 3N variables in the approach using

many-electron wave functions.
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The theorems established by Hohenberg and Kohn [23] in 1964 give DFT a firm

base. The first Hohenberg-Kohn theorem asserts the existence of a one-to-one map-

ping between the ground-state electron density and the ground-state wave function

of a many-electron system. In the approach of Hohenberg and Kohn [23, 43], the

potential Vext(r) is determined uniquely, except for a constant, by the ground-state

electron density n(r). The Hamiltonian can be fully determined after Vext(r) is deter-

mined, and the many-body wave functions Ψi(r1, r2, ..., rN) are then theoretically

determined. As a result, the ground-state energy of the system can be viewed as a

functional of the electron density. This energy functional in Hohenberg and Kohn’s

approach is

EHK = T [n] + V [n] + Eint[n] + U, (3.2)

where T [n] is the kinetic energy of the electrons, V [n] is the electron-nuclear interac-

tion energy, Eint[n] is the electron-electron interaction and U is the nuclear-nuclear

interaction. Thus, the ground-state electron density determines all properties of the

system, and it can be checked self-consistently with Ψ0(r1, r2, ..., rN). Moreover, the

second Hohenberg-Kohn theorem proves that the ground-state density minimizes

the total electronic energy of the system. In other words, if an electron density func-

tional other than the true ground-state density is used in the energy functional, the

resulting energy is higher than the true ground-state energy of the system.

In practice, the Hohenberg-Kohn theorems are not often used to directly make

calculations, as the exact form for the density functional is unknown to us. Instead,

the most common strategy employed is through the Kohn-Sham method. The ansatz

of Kohn and Sham [24] assumes that the exact ground-state density of the original

interacting system is equal to that of some chosen auxiliary non-interacting system.

The Kohn-Sham equations,

[−1

2
∇2 + V̂ eff (r)]ψi = εiψi, (3.3)
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are the Schrödinger equations for this auxiliary non-interacting system, where

V̂ eff (r) is the effective potential in which the fictitious non-interacting particles

are moving. In principle, Kohn and Sham map the many-body strongly interacting

electrons in a static external potential onto that of a single particle moving in an

effective potential. The density of the auxiliary system is given by sums of modulus

squares of the orbitals which the non-interacting electrons occupy. For the ground-

state of the system with N electrons, the electron density of the auxiliary system

is

n(r) =
∑

i

|ψi(r)|2, (3.4)

where the sum is up to the highest occupied orbital. The effective potential includes

the external potential and the effects of the Coulomb interactions between the elec-

trons.

The Kohn-Sham equations 3.3 must be solved self-consistently so that the occu-

pied electronic states generate a charge density that produces the electronic potential

that was used to construct the equations. Usually one starts with an initial guess for

the electron density n(r), then one can calculate the corresponding Veff and solve

the Kohn-Sham equations for the ψi. From these one calculates a new density1 and

starts again. This procedure is then repeated until convergence is reached.

3.2 Approximations for Exchange-Correlation Energy

The Kohn-Sham ground-state energy functional can be written as

EKS = Ts[n] + EHartree[n] + V [n] + U + Exc[n], (3.5)

1In practice, generating the input density for the (i+1)th iteration is more complicated
than merely using the density produced from the orbitals calculated in the ith iteration.
Many so called “mixing schemes” have been used over the years. However, for brevity, I
will not discuss their detailed background in this dissertation.
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where the Hartree energy EHartree is the classic mean-field Coulomb interaction

energy, defined as

EHartree[n] =
1

2

∫

d3rd3r′
n(r)n(r’)

|r − r′| , (3.6)

and comparing with the Hohenberg-Kohn functional 3.2, we have

Exc[n] = Eint[n] − EHartree[n] + T [n] − Ts. (3.7)

Exc[n], named exchange-correlation energy, is just the difference of the internal elec-

tronic interactions and the kinetic energies of the true interacting many-body system

from those of the independent particles in the Kohn-Sham system. It describes the

effects of the Pauli exclusion principle and the difference of the exact energy from

the energy of uncorrelated states. The difficult many-body terms in equation 3.1 are

incorporated into Exc[n].

Possessing the exact exchange-correlation potential means that we can solve the

many-body problem exactly. However, the major shortcoming of DFT is that the

exact functional for the exchange-correlation energy is not known except for rare

cases. Good approximate expressions for the exchange-correlation energy are used to

allow the calculation of certain physical quantities quite accurately. One approximate

method of describing the exchange-correlation energy is the local-density approxi-

mation (LDA). The exchange-correlation energy can be written as:

Exc[n] =

∫

d3rn(r)εxc[n(r)], (3.8)

where εxc is the exchange-correlation energy per electron at a point r. In the local-

density approximation,the exchange-correlation energy per electron at a point r in

the inhomogeneous electron gas is equal to the exchange-correlation energy per elec-

tron in a homogeneous electron gas that has the same density as the inhomogeneous

electron gas at point r. The exchange-correlation energy of the homogeneous gas

can been obtained with great accuracy using quantum Monte Carlo simulation [43–

45]. The local-density approximation assumes that the exchange-correlation energy
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functional is purely local. So the only information needed is the exchange-correlation

energy of the homogeneous gas as a function of density.

Although the LDA is very successful for a large variety of problems, it ignores

corrections to the exchange-correlation energy at a point r due to nearby inho-

mogeneity in the electron density. Another method widely used is the generalized

gradient approximation (GGA). The exchange-correlation energy is approximated

by the form

Exc[n] =

∫

d3rn(r)εxc[n(r),∇n(r), r], (3.9)

thus including local density gradient information, as well. It has been demonstrated

that GGA gives good atomic ground-state energies [46, 47]. In comparison with LDA,

GGA, by including gradient corrections, tends to describe density inhomogeneity

better than LDA. It improves the accuracy of the dissociation energies and bond-

lengths of small molecules [48], often significantly. Although GGA corrects some

deficiencies of the LDA, sometimes it overcorrects the LDA prediction [49].

3.3 Plane-wave Basis Set and K-Point Sampling in Periodic Cells

In principle, the Kohn-Sham single-particle wave functions [50] may be represented

in terms of any complete basis set. In my calculations, I use a well-converged plane-

wave basis set, as it facilitates evaluation of various terms in the Hamiltonian through

fast Fourier transforms, allows for straightforward truncation and systematic con-

vergence through the plane-wave cutoff energy, and permits the efficient calculation

of Hellman-Feynman [51, 52] forces without a Pulay correction term [43].

In a periodic system, the Kohn-Sham eigenfunctions can be written using Bloch’s

Theorem [53]

ψ
i,k(r) = ei(k·r)u

i,k(r), (3.10)
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where ui,k(r) is a cell-periodic term, and the range of k can be restricted to one

primitive cell of the reciprocal lattice, which usually is chosen to be the Brillouin

zone. As the periodic u
i,k(r) can be Fourier transformed to a sum using the plane-

wave basis set with wave vectors that are reciprocal lattice vectors indexed by G,

the electronic wave functions at a k-point in the Brillouin zone are written in the

form as

ψ
i,k(r) =

∑

G

c
i,k(G)ei(G+k)·r (3.11)

When a plane-wave basis set is used, the Kohn-Sham equation 3.3 is expressed as

[
1

2
|k+G|2δ

GG
′ +Vext(G−G

′)+VHartree(G−G
′)+Vxc(G−G

′)]c
i,k(G) = εici,k(G).

(3.12)

In this equation, the various potentials are described in their Fourier transforms and

the kinetic energy is diagonal. Certain terms in equation 3.12, such as Vxc and the

local part of Vext, are more easily evaluated in real space, and this is accomplished

using fast Fourier transforms. For non-periodic systems, like the nanocrystals that I

have studied, a periodic simulation-box, named supercell, is used in order to apply

Bloch’s theorem and permit a plane-wave basis. In the supercell, the molecule is

placed in the center, and the size of the unit cell is chosen to be large enough that

the molecule and its nearest periodic image do not interact significantly. Periodic

boundary conditions are applied to the supercell. Thus, we can test the convergence

by increasing the volume of the supercell to isolate the molecule ever further until

physical quantities of interest no longer change by a significant amount.

Using a plane-wave basis set, the solution of equation 3.12 is to diagonalize

the Hamiltonian matrix which is indexed by k+G. In principle, an infinite number

of plane wave functions indexed with G on an infinite number of k-points in the

Brillouin zone should be calculated. But two efforts can be made to reduce the com-

putational effort. First, for k-points that are very close together, the wave functions
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will be almost identical. So it is possible to represent the electronic wave functions

over a region of k-space by the wave functions at a single k-point. We can choose

only a finite grid of k-points on the Brillouin zone. Second, for a given k-point, the

coefficient c
i,k(G) for the plane waves of high G value, which corresponds to large

kinetic energy 1
2
(k + G)2 and high resolution in real space, will be close to zero.

So we can choose some particular cutoff energy to make a finite plane-wave basis

set. The above two efforts change the problem of calculating an uncountably infinite

number of continuous electronic wave functions to one of calculating a finite number

of electronic plane-wave coefficients at a finite number of k-points. It is always pos-

sible to reduce the magnitude of the resulting error by using denser k-points and

increasing the cutoff energy, until results are satisfactorily converged.

3.4 Pseudopotentials

Physically, the valence electrons interact more strongly between atoms than the

core electrons, and the core electrons on different atoms are almost independent of

the environment surrounding the atom. It therefore seems reasonable to freeze the

core electrons in their atomic configuration and not have to re-compute the core

states each time. This “frozen core” approximation is implemented by replacing

the nucleus and core electrons with a so-called “pseudo-ion-core”, which interacts

with the remaining valence electrons by a “pseudopotential” designed to mimic the

correct core-valence interactions over a wide range of conditions. Thus, only the

valence electrons are included explicitly in the calculations.

A good pseudopotential can further save the computational effort. In the full

nuclear potential, the valence wave functions oscillate rapidly at the region of the core

electrons and the nucleus, due to the strong potential and the orthogonality condition

between different states. As a matter of fact, this will lead to a very large cutoff
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energy and a large plane wave basis set, too large to do realistic calculations. The

rapid oscillations of the wave functions near the cores of the atoms can be removed

if we use a weaker pseudopotential. Then, the electronic wave functions can be

expanded using far fewer plane-wave basis functions than would be needed otherwise.

Outside the core radius, the norm-conserving condition, which extends the range of

transferability of the pseudopotential, requires that each pseudowavefunction used

to define the pseudopotential, must match the corresponding true wavefunction, so

that the real and pseudo wavefunctions generate the same charge density outside

the core.

The pseudopotential is generated through an ab initio procedure. First, the real

wave functions in a full nuclear potential are calculated for an isolated atom using an

all-electron DFT approach. The pseudo valence wave functions are then constructed

by modifying the real wave functions in the core region by removing the oscilla-

tions, with the norm-conservation constraint enforced. Finally, the pseudopotential,

which is the potential having the pseudowavefunctions defined above as its solution,

is obtained by inverting the Schrödinger equation. This procedure makes the pseu-

dopotential transferable among a variety of systems. In my calculation, the ab initio,

norm-conserving pseudopotentials [47, 54, 55] employed maintain good total-energy

convergence using a minimum number of plane waves.
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Chapter 4

Preliminary Considerations and Calculations

4.1 Choices for Calculations on Ti-C Nanocrystals

There are two possible choices of 3×3×3 titanium carbide nanocrystals, as discussed

in section 2.2, which both can be viewed as fragments of bulk TiC. Ti14C13, one

possibility of the 3 × 3 × 3 structure, has titanium atoms on its face-center and

corner sites and carbon atoms on the body-center and edge-center sites. Ti13C14, the

other possibility, switches the occupation sites of titanium atoms and carbon atoms

in Ti14C13. Interestingly, Ti14C13 is shown to be highly abundant in the experiments,

while Ti13C14 is not seen at all [1, 26, 35]. One possibility for this disparity is that

Ti13C14 could be mechanically unstable. Another possibility is that, if Ti13C14 is

mechanically stable, it could be weakly metastable, and then competing factors in

the experiments may cause Ti13C14 to dissociate before being detected, or perhaps

never even form.

To understand the stability issue of transition-metal carbide nanocrystals, and

specifically Ti-C nanocrystals, DFT calculations are performed on the following four

systems: Ti14C13, Ti13C14, Ti6C13 and Ti13C6. As shown in figure 4.1, if we take

away eight corner titanium atoms of Ti14C13 and eight carbon atoms of Ti13C14, we

obtain the corresponding truncated nanocrystals Ti6C13 and Ti13C6, respectively.

The choice of these systems in the preliminary considerations is based on the idea

that a comparison of the truncated nanocrystals, Ti6C13 and Ti13C6, with the ideal

nanocrystals, Ti14C13 and Ti13C14, gives us a picture of the role of the corner atoms
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in these cubic nanocrystals. This can help us understand the stability of atoms at

the corner sites, the strength of the corner bonds, and the reason that only one type

of 3 × 3 × 3 nanocrystal, Ti14C13, is seen in the experiments.

To calculate the atomization energy, the energy to fully dissociate a nanocrystal

into individual atoms, DFT calculations for an isolated carbon atom and an isolated

titanium atom are also performed. The theoretical work to understand the ener-

getic properties of these titanium carbide nanocrystals will be presented in the next

chapter.

4.2 Convergence Testing and Common Parameters

As discussed in chapter 3, several approximations are made in the DFT calcula-

tions. Most of the approximations are controllable, as we can systematically vary the

parameters of the computation to achieve convergence. Thus, convergence testing is

essential for choosing suitable parameters and achieving a good balance between

computation time and computational accuracy.

For all four nanocrystal species, many convergence parameters for the DFT calcu-

lations are set to be the same. We use ab initio, highly transferable, optimized norm-

conserving pseudopotentials [55] to describe the ion-core interaction with valence

electrons. The pseudopotentials are generated to be optimally convergent for a plane-

wave basis with a 50 Ry cutoff energy. For the carbon atom, the 2s and 2p orbitals

both participate in chemical bonding, whereas the 1s orbital is generally inert to the

chemical environment. For the titanium atom, it has been shown that including 3p

“semi-core” states in the valence manifold, in addition to the 3d and 4s states, is

essential to avoid sizable errors. To be cautious, I also include 3s electrons as valence

electrons. The inclusion of 3s and 3p as valence states increases the accuracy signif-

icantly with reasonable computational cost. Hence, the carbon atom is treated with
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(a) (b)

(c) (d)

Figure 4.1: Titanium carbide nanocrystal species selected for calculations.
(a) Ti14C13.
(b) Ti6C13.
(c) Ti13C14.
(d) Ti13C6.
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4 valence electrons, and the titanium atom is treated with 12 valence electrons. The

calculations are well converged for a 50 Ry plane-wave cutoff, resulting in a basis

set of about 44,000 plane waves to represent the Kohn-Sham single-particle wave

functions.

The size of the supercell for the nanocrystals is set big enough to be well con-

verged, giving nearly zero interaction between a nanocrystal system and its nearest

periodic images. As the periodic supercell is very large, the Brillouin zone is very

small, and the wave functions at different points of the Brillouin zone are very similar.

Thus, we achieve good convergence by sampling only the (0,0,0) k-point (Γ point) in

the Brillouin zone. Energy levels are broadened into Gaussians of 0.05 eV to speed

up the numerical convergence. The detailed parameters for the DFT calculations

of the TiC nanocrystals are shown in Table 4.1. These parameters are used for all

four nanocrstal systems and the isolated titanium and carbon atoms. Furthermore,

the DFT exchange and correlation energies for all calculations are treated with the

generalized gradient approximation (GGA) of Perdew et al. [49].

As the nanocrystals can be viewed as fragments of bulk TiC, all four systems

of nanocrystals are assumed to have Oh point symmetry, and the linear dimension

is about 4 Å. (Calculations on bulk TiC are presented and discussed in the next

section.) The convergence tests shows that a (10.28 Å)3 supercell is sufficiently large

to make interactions between nearest periodic images negligible, as there is about

6 Å of intervening vacuum.

4.3 Bulk Ti-C Calculations

There are several purposes for the DFT calculation of bulk TiC. First, as the exper-

imental data for the bulk TiC structure is known, the comparison between experi-

mental and calculated data helps confirm the accuracy of the pseudopotentials used
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Table 4.1: Computational parameters for TiC nanosystems and single atoms.

Exchange and correlation energy GGA [49]
k-point (0,0,0)/(Γ point)

cutoff energy 50 Ry
Total energy tolerance 1e−5 eV
Energy level broading 0.05 eV

symmetries Oh

supercell 10.28 × 10.28 × 10.28 (Å)3

Pseudopotentials Optimized norm-conserving
pseudopotentials [55]

Reciprocal lattice 90 × 90 × 90
Plane wave basis set ∼44000 plane waves

in the DFT calculations. Second, the initial atomic configuration of the nanocrystal

systems will be drawn from the bulk lattice and then relaxed to equilibrium. Third,

the length of the Ti-C bonds in the nanocrystals will be compared to the bulk Ti-C

bond length in later chapters.

As we know, TiC bulk has the same fcc crystal structure as rocksalt, NaCl.

Titanium atoms and carbon atoms sit on alternating sites of a simple cubic lattice.

The calculation for bulk TiC uses a k-point grid comprising 28 irreducible points,

which is well converged, as tests show. We compute the dependence of the total

energy of the system on the primitive cell vector length of the fcc lattice, as shown

in Figure 4.2. Fitting with a third-order polynomial function, we find the total

energy is minimized when the primitive cell vector is 3.077 Å. The primitive cell

vector is
√

2LT iC , where LT iC is the nearest-neighbor Ti-C distance. This distance

is computed to be 2.176 Å, which differs from the experimental value (2.16 Å) [56]

by 0.7%. This level of agreement in structural parameters is typical for GGA-based

DFT calculations.
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Figure 4.2: Bulk TiC total energy vs. cell vector length.
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Chapter 5

Structure and Energetics

5.1 Relaxed Structure

In my DFT calculations, the 3 × 3 × 3 nanocrystals Ti14C13 and Ti13C14 are set

to have the symmetry of the Oh group, which contains 48 symmetry operations.

Because of symmetry, there are only three distinct types of nearest-neighbor bonds,

including 6 bonds (BF bonds) between the body-center atom and the face-center

atoms, 24 bonds (FE bonds) between the face-center and the edge-center atoms,

and 24 bonds (EC bonds) between the edge-center and the corner atoms. In the

similar DFT calculations done for Ti6C13 and Ti13C6, as eight corner atoms are

removed, only BF and FE bonds are present. The relaxed structures of the above

four nano systems are shown in figure 5.1. Their bond-lengths are reported in Table

5.1, as percent changes relative to the Ti-C bond-length of bulk TiC. Given the

overall structure and the Oh symmetry, specifying the BF, FE and EC bond-lengths

uniquely determines the structure.

We can see that in Ti14C13 and Ti13C14, all bonds are shorter then the bond

in TiC bulk, except for the bond from body-center to face-center in Ti13C14, which

is only slightly longer. The change in bond-length is related to the environment in

which the atoms reside. In bulk TiC, every atom is surrounded in every direction by

neighbors, but in the nanocrystal, the removal of surrounding material causes the

shortening of the bond-lengths. From the table, we can also see the role of the corner

atoms. For both Ti14C13 and Ti13C14, if we remove the corner atoms, leaving Ti6C13
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Figure 5.1: Four relaxed Ti-C nanocrystal species. Large dark-grey spheres indicate
the positions of the carbon atoms and small light-grey spheres indicate the positions
of titanium atoms.
(a)Ti14C13.
(b) Ti6C13.
(c) Ti13C14.
(d) Ti13C6.
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Table 5.1: Relaxed structure for Ti14C13, Ti13C14, Ti6C13 and Ti13C6. Bond-lengths
are calculated as percentage differences to 2.176 Å., the calculated Ti-C bond-length
of TiC bulk:

Bond type Ti14C13 Ti13C14 Ti6C13 Ti13C6

BF -3.6% +0.2% -1.6% +3.8%
FE -1.8% -4.7% -6.3% -6.6%
EC -7.4% -6.1% - -

and Ti13C6, the bond-length between the body-center atom to face-center atom (BF

bond) is enlarged and the bond-length from the edge-center to the face-center atom

(FE bond) is reduced.

5.2 Ground-State Energy

The total ground-state energies of Ti14C13,Ti13C14,Ti6C13 and Ti13C6 are obtained

at their equilibrium Oh structures. Table 5.2 gives the raw ground-state total ener-

gies of the individual titanium and carbon atoms and the nanocrystals. Because of

the different stoichiometric compositions, the absolute total energies of the nanocrys-

tals cannot be compared directly. But the atomization energy, which is the energy to

break apart the entire system into individual atoms, can be obtained using these raw

energies. As there are only Ti-C bonds as the nearest-neighbor bonds, the average

energy of Ti-C bonds in each system can be calculated just by dividing its atomiza-

tion energy by the total number of nearest-neighbor Ti-C bonds. As shown in table

5.3, the average Ti-C bond energies are very similar for Ti14C13, Ti13C14, Ti6C13,

but significantly higher for Ti13C6, which differs from the other three by ∼0.5 eV. In

chapter 8.1, I will discuss how this comparison informs us about the relative stability

of corner atoms in Ti-C nanocrystals.
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Table 5.2: Raw ground-state total energies of the individual titanium and carbon
atoms and the nanocrystals.

System Raw Ground-state Energy (eV)
Ti -1578.18
C -145.91

Ti14C13 -24190.07
Ti13C14 -22756.04
Ti6C13 -11474.78
Ti13C6 -21516.50

Table 5.3: Average Ti-C bond energy.

Ti14C13 Ti13C14 Ti6C13 Ti13C6

Atomization Energy (eV) 198.68 196.92 108.83 124.68
Number of Ti-C Bonds 54 54 30 30

Ebond (eV/bond) 3.68 3.65 3.63 4.16
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Chapter 6

Vibrational Analysis

6.1 Harmonic Force-Constant Model

A harmonic force-constant model is used in my analysis of the vibrational states of

the nanocrystals. In this model, I assume that the forces on the atoms are linearly

proportional to the displacement of each atom away from its equilibrium position.

In the real system, the interatomic forces are not exactly linearly proportional to

the displacements in the atomic degrees of freedom. But as the displacements are

small, the error caused by ignoring anharmonicity is also fairly small. Of course,

anharmonicities become physically important at high temperatures, but we can still

learn a lot by focusing on the harmonic regime.

To obtain the vibrational modes, I first need to calculate a force-constant matrix.

For cubic nanocrystals such as Ti14C13 and Ti13C14, Cartesian coordinates are the

most convenient to use, with the x, y, and z directions parallel to the three body-to-

face-center axes. In the following discussion, I number each atom in the nanocrystal,

and by convention set the generalized coordinates q1, q2, q3 to be the x, y, z displace-

ment of atom 1 from its equilibrium position; q4, q5, q6 to be the x, y, z displacement

of atom 2 from its equilibrium position; and so on. Correspondingly, the forces on

atom 1 in the x, y, z direction are F1, F2, F3, respectively; the forces on atom 2 in

the x, y, z direction are F4, F5, F6, respectively; and so on. Then in the harmonic
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force-constant model, we have
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, (6.1)

where the matrix {Ki,j} is a 3N × 3N force-constant matrix for a system with N

atoms, as each atom has three degrees of freedom.

The values of the force-constant matrix elements can be obtained through a

series of DFT calculations. Using the Hellman-Feynman theorem, we can compute

the forces on all atoms due to the perturbation of each atom in turn from its equi-

librium position. Each column in the force-constant matrix represents the force on

each atomic degree of freedom due to one unit displacement of the atomic degree

of freedom corresponding to the given column. So for an ideal system within the

harmonic limit, the entire force-constant matrix can be obtained column-by-column

by doing DFT calculations on a series of perturbations of different amplitude for

each atom in turn, and then computing the best linear fit of the resulting forces

on each atomic degree of freedom. Thus, if there are N atoms in the system, 3N

displacements may be required to obtain the entire force-constant matrix, if only one

perturbation amplitude per degree of freedom is used. In general, several amplitudes

are used for fitting. However, we can take advantage of the symmetry of the system

to reduce the number of displacements. For example, for the 3× 3× 3 nanocrystals

like Ti14C13 or Ti13C14, there are only four groups of atoms, including 1 body-center

atom, 6 face-center atoms, 12 edge-center atoms and 8 corner atoms. The columns of

the force-constant matrix corresponding to the atoms in the same group are equiv-

alent if point-group rotational operations are applied. In practice, for the 3 × 3 × 3

nanocrystals with Oh symmetry, I only perturb four atoms in the Cartesian direc-

tions: the center atom (0,0,0); the face-center atom in the positive x direction (1,0,0);
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the edge-center atom (1,1,0); and the corner atom (1,1,1). In addition, the x, y, z

displacements of one atom may also be equivalent under a symmetry operation. For

example, if we know the forces due to displacing the body-center atom in the +x

direction, under symmetry operations, we also know the forces if that atom is dis-

placed in the -x direction, the ±y direction, and the ±z direction. Note that positive

displacements and negative displacements along a coordinate axis for other atoms

are not necessarily equivalent by symmetry. In my calculation of the 3×3×3 systems,

9 atomic degrees of freedom need to be perturbed to obtain enough information to

complete the force-constant matrix. They are the body-center atoms (0,0,0) in the

+x direction, the face-center atom (1,0,0) in the ± x direction and the +y direction,

the edge-center atom (1,1,0) in the ±x direction and the +z direction, and the corner

atom ( 1,1,1) in the ± x direction.

The force-constant matrix must preserve serval important properties. First, it is

a symmetric matrix, because

Kij =
∂2E

∂qi∂qj

=
∂2E

∂qj∂qi

= Kji,

where E is the total energy. Second, because of the point-group symmetry, we have

the commutation relationship

KR̂s = R̂sK,

where R̂s is the 3N × 3N matrix representation of a symmetry operation of the

point group. The Oh group, to which Ti14C13 and Ti13C14 belongs, has 48 symmetry

operations, including rotations, inversion and reflections. Each symmetry matrix R̂s

is constructed in such a way that if it multiplies a unit displacement of one atomic

degree of freedom, it results in a unit displacement on another atomic degree of

freedom according to the corresponding symmetry operation. So in each 3N × 3N

matrix R̂s for the Oh symmetry operations, each column and row contains exactly

one “1”, and all other entries are zero. After we apply the above constraints, we find
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that among 6,561(=812) force-constant matrix elements for Ti14C13 or Ti13C14, only

95 are independent.

In this form of force-constant matrix, three translation modes and three rotation

modes are explicitly included and should come out to have zero frequency on solving

for the normal modes. Thus, we can further reduce the independent matrix elements

by considering the so-called acoustic sum rules. If the columns for the 3N × 3N

force-constant matrix {Ki,j} are ordered as in equation 6.1, the equations for the

acoustic sum rules are
N−1
∑

j=0

Ki,3j+1 = 0

N−1
∑

j=0

Ki,3j+2 = 0

N−1
∑

j=0

Ki,3j+3 = 0

for i = 0..3N.

The above three set of equations, along with equation 6.1, actually state that, if

all atoms have the same displacement along the x, y, or z direction (or any direction,

in fact), the total force on the system should be zero. If we use these equations as

constraints, there will be no forces on the atoms if the system is in pure translation.

In other words, the acoustic sum rules guarantee that the frequencies for the three

linearly independent translation modes are zero. We can further extend the sum rules

to account for pure rotations and thus get three linearly independent rotational

modes with zero frequency. If all atoms rigidly rotate about any axis, the force-

constant matrix should have the property that the total torque on the system is

zero. If we do not constrain the force-constant matrix to account for the transitional

and rotational acoustic sum rules, there will be 6 frequencies that are not exactly

zero, but close to zero for translation and rotation. After adding these constraints to

the force-constant fitting procedure, the six lowest frequencies are exactly zero. The
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acoustic sum rules for the force-constant matrix are also a check on the precision

of the harmonic force-constant model and the importance of numerical errors. The

effects on the force-constant matrix should be very small, and they are on the order

of 1% of the largest force constant in my calculation.

In summary, the system is perturbed on the limited number of independent

atomic degrees of freedom, and DFT calculations are performed for each in turn to

get the Hellman-Feynman forces due to the perturbation. Then several constraints,

such as the symmetry of the force-constant matrix, its commutation with the sym-

metry operation matrices, and the acoustic sum rules, are enforced as constraints to

obtain the entire force-constant matrix K.

6.2 Normal Modes of Vibration

After we obtain the 3N × 3N force-constant matrix K, the 3N normal modes |xi >

with frequencies ωi can been obtained by solving the problem of small oscillations

[57]. This involves solving a generalized eigenvalue problem in the matrix form

(K − Mω2)|x >= 0,

where M is a diagonal 3N × 3N mass matrix. If the columns of the force-constant

matrix K are ordered as in equation 6.1, the first three diagonal elements of M are

the mass of the first atom, followed by the mass of the second in the next three

diagonal positions, and so on. As the force-constant matrix has been fitted using

the constraints discussed in the last section, the resulting 3N eigenmodes contain 6

translation and rotation modes with zero frequency and 3N − 6 vibrational modes.

If the system is mechanically stable, the 3N − 6 vibrational modes all have real

frequencies, i.e., ω2 > 0. Otherwise, some of the vibrations will have imaginary

frequency. With the calculated normal-mode frequencies, we can plot the vibrational
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density of states, where the relative intensity is proportional to the degeneracy of

the corresponding vibrational frequency.

Using the method stated in the last section, the normal modes for Ti14C13 and

Ti13C14 and the truncated Ti13C6 and Ti6C13 are calculated, and the ordered fre-

quencies are listed in tables 6.1– 6.4, respectively. The results show that the fre-

quencies are all real for Ti14C13, Ti13C14 and Ti13C6. But there are a few imaginary

frequencies in Ti6C13. This indicates that Ti6C13 is not mechanically stable. This is

perhaps not surprising as this species is not observed at all in the experiments. In

these tables, I also list the symmetry labels for the corresponding vibrations. From

group theory, we know that the calculated eigenmodes must belong to one of the spe-

cific irreducible representations of the symmetry group to which the system belongs

[58]. The four nanocrystals we calculated are all assumed to have Oh symmetry, as

stated previously. Thus, the vibrational modes all belong to one of the irreducible

representations of the Oh group. To obtain the symmetry label, or equivalently the

irreducible representation, for a given non-degenerate mode or set of degenerate

modes, the character numbers for the symmetry operation R̂s of the Oh group are

calculated for that mode or set of modes and then compared with the corresponding

value in the group character table. The character number for the symmetry opera-

tions in the subspace spanned by modes {|xj >}, with degeneracy d, is given by:

χ(R̂s) =
d

∑

j=1

< xj|MR̂s|xj >,

where M is the mass matrix. In the symmetry labels shown in the tables, A represents

a nondegenerate mode, E represents a two-fold degenerate mode, and T represents

a three-fold degenerate mode.

Atomic-displacement patterns for the normal modes are visualized using a special

tool I developed using Java3D. The tool is introduced in Appendix A. Different atoms

can be assigned different colors for spheres with different diameters. For example,
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in the following figures, large dark grey spheres represent the carbon atoms, and

small light grey spheres represent the titanium atoms. To visualize the vibration in

the static image, an arrows through a sphere is used to point in the direction of

the corresponding atomic displacement. The length of the arrow is proportional to

the relative magnitude of the atomic displacement in the vibrations. In multimedia

presentations, the modes can be shown in real-time animations, instead of being

represented by static arrows.

The visualization of the atomic-displacement patterns can help us understand

the nature of the vibrations and give us useful information on the properties of the

system. For example, by visualizing the imaginary modes of Ti6C13, as shown in

figure 6.1, we find that the imaginary modes always involve motion of edge atoms.

This indicates that the carbon atom is not stable at the edge-center sites for Ti6C13.

More discussion on the stability of corner atoms of Ti14C13 and Ti13C14, with the

aid of the visualization tool, will be presented in section 8.2.

6.3 Density of States and IR Spectrum

We can plot the vibrational density of states with the calculated 3N − 6 vibrational

frequencies. In order to facilitate comparisons with finite-resolution experimental

data, the lines of vibrational levels are broadened by convoluting with a Gaussian.

Thus, the broadened vibrational density of states at frequency f is given by:

I(f) =
1

σ
√

2π

3N−6
∑

j=1

e−
(f−fj)2

2σ2 ,

where σ is the broadening width in the convolution. Figures 6.2 and 6.3 show the

vibrational density of states for Ti14C13 and Ti13C14, respectively. In these figures,

the lower panel shows separate vibrational densities of states for infrared-active

modes, Raman-active modes and other modes. Infrared-active modes dynamically

generate oscillating dipole moments that couple to light. For the Oh symmetry group,
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Table 6.1: Vibrational modes for Ti14C13.

Frequency Symmetry Frequency Symmetry Frequency Symmetry
(cm−1) (cm−1) (cm−1)

155 Eu 326 A1g 489 T1u

194 T2g 340 T2u 509 Eg

200 T1u 365 A2g 526 A1g

204 T2u 368 T2g 563 T1g

232 T2g 383 A1g 574 Eu

246 Eg 399 T2u 667 T1u

254 A2u 415 T1g 680 T1u

267 Eg 417 T1u 745 T2g

290 T1g 424 Eg 789 A2u

297 T1u 483 T2g

326 T1u 483 T2u

Table 6.2: Vibrational modes for Ti13C14.

Frequency Symmetry Frequency Symmetry Frequency Symmetry
(cm−1) (cm−1) (cm−1)

168 Eu 340 A1g 554 Eg

193 T2u 356 Eg 560 T2g

195 T2g 390 T1u 574 A2u

209 A2g 420 T1u 576 T1u

221 Eg 427 Eg 619 A1g

239 T1u 455 T2g 646 T1g

276 T2u 457 Eu 698 T2u

280 T1g 471 T1g 702 T1u

294 A2u 481 T2u 729 T2g

298 T2g 484 T1u

303 T1u 508 A1g
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Table 6.3: Vibrational modes for Ti13C6.

Frequency Symmetry Frequency Symmetry Frequency Symmetry
(cm−1) (cm−1) (cm−1)

54 Eu 198 Eg 392 Eg

113 T1g 217 A2g 440 T1u

118 T2u 233 T2u 448 A1g

134 T2g 249 T1u 647 T1g

142 T1u 288 A1g 682 T2u

172 T2g 301 Eg 696 T1u

184 A2u 303 T1u 708 T2g

Table 6.4: Vibrational modes for Ti6C13.

Frequency Symmetry Frequency Symmetry Frequency Symmetry
(cm−1) (cm−1) (cm−1)
381i T1u 110 T2g 461 T1u

363i A2u 125 T1u 485 A2g

354i T2g 356 A1g 525 Eg

212i Eu 371 T2u 560 T2g

181i T1g 417 T1u 560 T1g

159i T2u 426 T2u 589 T1u

92 Eg 456 Eg 613 A1g
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(a) (b)

(c) (d)

Figure 6.1: First four imaginary vibrational levels for Ti6C13 (Refer to table 6.4).
(a) T1u symmerty.
(b) A2u symmetry.
(c) T2g symmetry.
(d) Eu symmetry.
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dynamic dipole moments can only be generated by vibrations with T1u symmetry.

So after assigning symmetry labels, one can deduce which modes are infrared-active.

Similarly, the Raman-active modes belong to either T2g, A1g or Eg symmetry.

The infrared-active modes are experimentally observable. The induced dipole

in a molecule can act as a radiator [34], and the intensity of infrared absorption

for a given mode is proportional to the magnitude of the derivative of the dipole

moment with respect to the vibration amplitude of the normal modes. The overall

infrared spectrum is obtained, then, by including the dipole derivative magnitude as

a weighting factor for each infrared-active mode in the expression for the infrared

vibrational density of states. After figuring out which modes are dipole active, we

can displace the atoms from their equilibrium position according to the pattern

of the vibrational mode and perform a DFT calculation to obtain the new total

charge distribution, including electronic and core charges. Since the unperturbed

nanocrystals in this study have no dipole moment, the dipole moment of the distorted

structure, divided by the distortion amplitude, is the finite-difference approximation

to the dipole derivative.

The convoluted IR spectrum of Ti14C13 is shown in figure 6.4. The vibrational

patterns of the atoms for the modes corresponding to the two major peaks in the

IR spectrum are visualized in figure 6.5. For each case, I only show one of the three

degenerate modes in T1u symmetry, and omit the other two rotational versions to

save space. The mode at frequency 489 cm−1, corresponding to the highest peak in

the IR spectrum, is shown in figure 6.5(a). In this mode, the carbon atoms on the

top layer and the bottom layer vibrate in the same direction mainly perpendicular to

the surface, but with slight in-plane “breathing” motion. Also, one can see that the

four carbon atoms surrounding the middle layer move in the opposite direction to

the motion of the carbon atoms on the top and bottom layers, and their vibrations

are perfectly perpendicular to the middle layer because of the symmetry required
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by the T1u mode. The vibrations of other atoms are relatively weaker in this mode.

The mode, corresponding to the second highest peak of the IR spectrum, is shown

in figure 6.5(b). In this mode, the relative vibration of the carbon atoms in the

middle plane, excluding the body-center carbon atom, are much stronger than that

of other atoms. In comparison with those in the vibrational mode of the first peak,

the relative vibrational amplitude of carbon atoms on the top and bottom layers are

much smaller in this higher frequency mode.

The calculated IR spectrum can be compared with the experimental data [35, 36],

as shown in figure 6.4. The overall agreement with experiment on frequencies and

relative intensities is quite good. Several small peaks at low frequency are out of the

experimental range. The peak at frequency 489 cm−1 matches the more intense IR

peak in the experimental data, 485 cm−1. The second strong peak in the calculations

is at 667 cm−1, and the experimental frequency for the second peak is 630 cm−1. This

small deviation from experiment results in part from approximations in the calcula-

tions, such as finite differences in estimating force constants, excluding anharmonic

effects, etc. In addition, differences between theory and experiment arise from the

fact that the experimental spectra result from multi-phonon processes, and thus may

not accurately reflect the linear vibrational spectrum. Therefore, the overall agree-

ment in peak frequencies is quite good. The relative intensities of the two major

peaks are quite comparable with the experimental data, as well.

42



Figure 6.2: Vibrational density of states for Ti14C13 (upper panel), and the separation
into different types of modes (lower panel). Gaussian convolution broadening width
is 10 cm−1.
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Figure 6.3: Vibrational density of states for Ti13C14 (upper panel), and the separation
into different types of modes (lower panel). Gaussian convolution broadening width
is 10 cm−1.
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Figure 6.4: Comparison between the experimental spectrum and calculated IR spec-
trum for Ti14C13. The upper panel shows the experimental spectrum from ref. [35].
The lower panel shows the calculated spectrum with a Gaussian convolution width
10 cm−1.
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(a) (b)

Figure 6.5: Vibrations in IR-active modes of Ti14C13.
(a) Generating the highest peak (489 cm−1) in the IR spectrum.
(b) Generating the second highest peak (667 cm−1) in the IR spectrum.
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Chapter 7

Electronic Structure Analysis

7.1 Electronic Orbitals

As discussed in chapter 3, pseudopotentials are chosen to use because the core elec-

trons do not experience substantial modification relative to isolated atoms. In my

calculations, four electrons in the 2s and 2p atomic orbitals of carbon and twelve elec-

trons in the 3s, 3p , 3d and 4s atomic orbitals of titanium are treated as valence elec-

trons and considered as participating in the chemical bonding. So in total, Ti14C13

contains 220 valence electrons occupying ∼110 molecular orbitals, and Ti13C14 con-

tains 8 electrons fewer than Ti14C13 occupying ∼106 molecular orbitals.

Just like the vibrational modes, the molecular orbitals of Ti14C13 and Ti13C14 also

transform according to irreducible representations of the Oh symmetry group. The

symmetry label of each orbital, or, more precisely, each degenerate orbital manifold,

is determined using a similar method to that used to obtain the symmetry labels

for vibrational modes. For symmetry operation R̂i, the αβ element of its matrix

representation in the degenerate subspace expanded by {ψ1, ψ2..., ψn} is calculated

as
∫

ψ∗
α(r)R̂iψβ(r)dr3. (7.1)

We only need to calculate the trace of this matrix,

n
∑

α=1

∫

ψ∗
α(r)R̂iψα(r)dr3, (7.2)
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as this is just the character number χi for R̂i in this subspace. Then we can compare

the results with the character table of the Oh group, and determine the symmetries

for all orbitals. Table 7.1 shows the symmetry labels and energies for all the occupied

orbitals and a few unoccupied orbitals for Ti14C13. The energies are relative the

highest occupied molecular orbital (HOMO). Thus the energy of the HOMO is set

to zero, and the next higher energy level is the lowest unoccupied molecular orbital

(LUMO). Table 7.2 shows the results for its sibling species, Ti13C14, for comparison.

7.2 Visualization of Wave Functions

Although the symmetries of the wave functions are obtained in the last section,

visualization of the wave function can help us better understand the formation of

molecular bonds. The electronic wave functions generated by the electronic structure

codes are generally complex, but because of time reversal invariance, it is always

possible to perform a unitary transformation on the wave functions to make them

real, for easier visualization.

For a non-degenerate wave function, it is possible simply to multiply by an overall

complex phase coefficient to make it real [59]. For degenerate complex wave functions,

we obtain a basis of real wave functions in the degenerate subspace by the following

procedure. Suppose the original degenerate complex wave functions are ψi(r) with

i=1..n, and the real wave functions are φj(r) with j=1..n. We would like to find a

unitary matrix C = {cij} such that

φj(r) =
∑

i

ψi(r)cij. (7.3)

In the spin unpolarized multielectronic system, we have time reversal symmetry,

such that

ψ∗
j (r) = T̂ψj(r) =

∑

i

ψi(r)tij, (7.4)
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Table 7.1: Kohn-Sham orbitals for Ti14C13.

Index Symmetry Energy (eV) Index Symmetry Energy (eV)
1 a1g -55.976 59–61 t1u -9.661

2–4 t1u -55.948 62–63 eg -9.329
5–7 t2g -55.937 64–66 t2u -8.882
8 a2u -55.937 67–69 t2g -8.819
9 a1g -55.862 70–72 t1u -4.198

10–12 t1u -55.850 73 a2u -3.823
13–14 eg -55.842 74–75 eg -3.135
15–17 t2g -33.380 76 a1g -3.112
18–20 t1u -33.375 77–79 t2g -3.086

21 a1g -33.328 80–82 t1u -2.826
22 a2u -33.267 83–84 eu -2.285
23 a1g -33.247 85–87 t2g -2.254

24–26 t1u -33.099 88–90 t1u -2.079
27–29 t2u -33.076 91–93 t1g -2.067
30–32 t2g -33.021 94–96 t2u -2.065
33–35 t1g -33.007 97–98 eg -1.867
36–37 eg -32.992 99–101 t1g -1.743
38–40 t1u -32.955 102–104 t1u -1.581
41–42 eu -32.950 105–105 a2g -1.317
43–44 eg -32.948 106–108 t2u -1.258
45–47 t2g -32.819 109–111(HOMO) t2g 0.000
48–50 t1u -32.793 112(LUMO) a1g 0.094
51–53 t2u -32.760 113 a2u 0.191
54–56 t1g -32.737 114–115 eu 0.244

57 a1g -10.977 116–118 t1u 0.750
58 a1g -9.708 119–120 eg 0.820
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Table 7.2: Kohn-Sham orbitals for Ti13C14.

Index Symmetry Energy (eV) Index Symmetry Energy (eV)
1 a1g -56.369 57–58 eg -9.743
2 a1g -55.934 59 a1g -9.315

3–5 t1u -55.915 60–62 t1u -8.909
6–8 t2g -55.891 63–65 t2g -8.664
9–10 eg -55.869 66 a2u -7.928
11–13 t2u -55.869 67 a1g -4.198
14–16 t1u -33.585 68–70 t2g -4.020

17 a1g -33.330 71–73 t1u -3.427
18–20 t2g -33.208 74–76 t2u -3.291
21–22 eg -33.199 77–78 eg -2.798
23–25 t1u -33.153 79–81 t1g -2.720
26–28 t2u -33.132 82 a2u -2.278
29–31 t1u -33.116 83–85 t1u -2.227
32–34 t1g -33.049 86–88 t2g -2.201
35–36 eg -33.029 89–91 t2u -1.812

37 a2u -33.006 92–93 eg -1.778
38–40 t2u -32.952 94–96 t1u -1.702

41 a2g -32.899 97–98 eu -1.572
42–44 t2g -32.864 99–101 t2g -1.499
45–47 t1u -32.728 102 a1g -1.099
48–49 eu -32.643 103–105 t1g -0.653
50–52 t1g -32.625 106–108(HOMO) t1u 0.000
53–53 a1g -11.084 109–111(LUMO) t2g 0.238
54–56 t1u -9.996 112–113 eg 0.827
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where the matrix of T̂ , {tij}, is symmetric and unitary. As φj(r) is a real wave

function, we have

φj(r) = φ∗
j(r). (7.5)

With equation 7.3-7.5, we can derive that

∑

k

ψk(r)ckj =
∑

ik

ψk(r)tkic
∗
ij, (7.6)

and we can get

ckj =
∑

i

tkic
∗
ij, (7.7)

or in matrix form

C = TC∗. (7.8)

Using CC† = 1, we have

CCT = T. (7.9)

As T is unitary and symmetric, we can always find matrix P and D such that

T = PDP T , (7.10)

where D is a diagonal matrix. Finally we get the matrix

C = PD
1
2 (7.11)

to transform the degenerate basis from complex wave functions to real wave func-

tions.

After we get the real wave functions, we can plot their isosurfaces. In this disser-

tation, black and white colors are just used to give the phase information, indicating

whether the isosurface of the real wave function is positive or negative.

7.3 Analysis of Molecular Orbital Energy Level Diagrams

The Kohn-Sham orbital energy diagrams of Ti14C13 and Ti13C14 are shown in figure

7.1– 7.2. There are four energy regions for the molecular orbitals. Region I is around
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Figure 7.1: Kohn-Sham energy level diagram of Ti14C13.
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Figure 7.2: Kohn-Sham energy level diagram of Ti13C14.
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-56 eV; region II is around 33 eV; Region III is about -11∼8 eV; and region IV

is higher than -5 eV. By visualizing these molecular orbitals, one finds that large

gaps among the energy bands are mainly due to their relationship with the atomic

orbitals from which they arise.

To give a better illustration, some example molecular orbitals of Ti14C13 in dif-

ferent regions are shown in figure 7.3–7.6. To save space, only one representative

orbital from each degenerate set is shown in these figures. For example, we will only

show orbital 5 and not its degenerate partners, orbital 6 and orbital 7.

The molecular orbitals of Ti14C13 in region I, as shown in figure 7.3, are formed

primarily by 3s atomic orbitals of titanium. The 3s orbitals of face-center and corner

titanium atoms may have different contributions. For example, orbitals 5∼8 are

primarily formed by 3s orbitals of the corner titanium atom and orbitals 10∼13 are

primarily formed by 3s orbitals of the face-center titanium atoms.

Some molecular orbitals of Ti14C13 in region II, as shown in figure 7.4, are formed

primarily by 3p atomic orbitals of titanium. The different directions of these p

orbitals reflect the symmetry of the corresponding molecular orbitals. In region III,

as shown in figure 7.5, the orbitals are formed primarily by 2s atomic orbitals of

carbon. In this energy region, we can also see a small contribution from atomic p

orbitals of titanium.

Hybridization of the atomic orbitals in region IV is much stronger than in the

lower energy regions. The molecular orbitals in this region are formed primarily by

hybridization of carbon 2p atomic orbitals and titanium 3d atomic orbitals. This

region includes the highest occupied molecular orbital (HOMO) and lowest unoccu-

pied molecular orbital (LUMO). The molecular orbitals in region IV are the ones

that mainly contribute to the molecular bonding, which we are most interested in.

This is further discussed in the next section.
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(a) Orbital 5 (b) Orbital 8

(c) Orbital 10 (d) Orbital 13

Figure 7.3: Electron orbitals of Ti14C13 in region I of orbital energy diagram in figure
7.1. The isosurfaces are plotted for the wave function equals ±0.091 (Å)−

3
2 .

(a) Orbital 5, -55.937 eV, t2g symmetry.
(b) Orbital 8, -55.937 eV, a2u symmetry.
(c) Orbital 10, -55.850 eV, t1u symmetry.
(d) Orbital 13, -55.842 eV, eg symmetry.
Titanium atoms are indicated by light grey spheres, and carbon atoms are indicated
by dark grey spheres. They may not be seen if they are enclosed by the visualized
isosurface of the Kohn-Sham orbitals. The black or white color on the isosurface is
just used to indicate whether the real wave function is positive or negative. This
visualization scheme for orbitals is used throughout this dissertation.
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(a) Orbital 15 (b) Orbital 23

(c) Orbital 51 (d) Orbital 54

Figure 7.4: Electron orbitals of Ti14C13 in region II of orbital energy diagram in
figure 7.2. The isosurfaces are plotted for the wave function equals ±0.091 (Å)−

3
2 .

(a) Orbital 15, -33.380 eV, t2g symmetry.
(b) Orbital 23, -33.247 eV, a1g symmetry.
(c) Orbital 51, -32.760 eV, t2u symmetry.
(d) Orbital 54, -32.737 eV, t1g symmetry.
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(a) Orbital 59 (b) Orbital 67

Figure 7.5: Some orbitals of Ti14C13 in region III of orbital energy diagram in figure
7.2. The isosurfaces are plotted for the wave function equals ±0.091 (Å)−

3
2 .

(a) Orbital 59, -9.661 eV, t1u symmetry.
(b) Orbital 67, -8.819 eV, t2g symmetry.

7.4 Molecular Bonding of Ti14C13 and Ti13C14

To better understand molecular bonding in Ti14C13 and Ti13C14, I plot the Kohn-

Sham orbitals near in energy to the HOMOs for each species. The rotational ver-

sions of degenerate orbitals are omitted to save space. Orbitals near the HOMO

and LUMO are labelled with reference to the HOMO and LUMO. For example, in

Ti14C13, orbitals 109–111 are the degenerate HOMOs and orbital 112 is the LUMO.

Then the degenerate orbitals 106–108 are named HOMO-1 and the non-degenerate

orbital 113 is named LUMO+1.

The HOMO, LUMO, HOMO-1 and LUMO+1 of Ti14C13 are shown in figure

7.6. The HOMO-1,(7.6(a)), has t2u symmetry. It exhibits π-bonding between dxy-

like atomic orbitals on the corner titanium atoms and p-like atomic orbitals on the
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(a) HOMO-1 (b) HOMO

(c) LUMO (d) LUMO+1

Figure 7.6: HOMO-1, HOMO, LUMO and LUMO+1 of Ti14C13

(a) HOMO-1, -1.258 eV, t2u symmetry.
(b) HOMO, 0 eV, t2g symmetry.
(c) LUMO, 0.094 eV, a1g symmetry.
(d) LUMO+1, 0.191 eV, a2u symmetry.
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(a) HOMO-1 (b) HOMO

(c) LUMO (d) LUMO+1

Figure 7.7: HOMO-1, HOMO, LUMO and LUMO+1 of Ti13C14

(a) HOMO-1, -0.653 eV, t1g symmetry.
(b) HOMO, 0 eV, t1u symmetry.
(c) LUMO, 0.238 eV, t2g symmetry.
(d) LUMO+1, 0.827 eV, eg symmetry.
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edge-center carbon. The HOMO of Ti14C13, which has t2g symmetry, is primarily

constructed from a σ-bonding arrangement of dxy-like atomic orbitals of titanium

in the three atomic planes parallel to a given face of the cube. In figure 7.6(b), ddσ

bonds form between the face-center and corner titanium atoms on the upper and

lower faces, and a weaker ddσ bonding arrangement is seen in the central plane for

face-center titanium atoms. There are also non-bonding atomic p orbitals shown on

some edge-center carbon atoms in the middle layer. The LUMO of Ti14C13 has a1g

symmetry. As seen in 7.6(c), it is formed from a non-bonding arrangement of dz2-like

orbitals on the corner titanium atoms, where the local z-axis for each atom is taken

to lie along the body diagonal. There is essentially no overlap. The LUMO+1, shown

in 7.6(d), is mostly constructed from atomic dz2-like orbitals on the corner titanium

atoms and dxy-like atomic orbitals on the face-center titanium atoms. There is a

slight bonding character between the corner atomic orbitals and p-like orbitals at

the edge-center carbon atoms.

By comparison, we can see in figure 7.7 that the HOMO-1 of Ti13C14, with t2g

symmetry, only has weak σ-like bonds between atomic p-orbitals of corner carbon

and atomic dxy orbitals of edge-center titanium. Moreover, this bonding arrangement

appears to be highly strained. The HOMO of Ti13C14, with t1u symmetry, comprises

primarily corner carbon atomic p-orbitals, which are oriented along an edge. Along

the same edge appears a small contribution from the atomic p-orbital of the edge-

center titanium atom. The corner carbon p-orbitals and edge-center titanium p-

orbital are arranged in an anti-bonding σ configuration. A slight contribution from

the non-bonding d-like orbitals is seen on the other edge-center titanium atoms.

The LUMO of Ti13C14 has t2g symmetry. The central plane looks similar to the

surface layer in the HOMO of Ti14C13. The dxy atomic orbitals on the edge-center

titanium atoms in the central plane form σ bonds with the dxy atomic orbital of the
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central titanium atom. The HOMO+1 of Ti13C14, with T2g symmetry, only shows

non-bonded dx2−y2 atomic orbitals on all titanium atoms.

The nature of the HOMOs, LUMOs, and nearby molecular orbitals of Ti14C13

and Ti13C14 has a great impact on the stability of the corner atoms in these two

nanocrystals. We will discuss this effect in detail in section 8.4 of the next chapter.

61



Chapter 8

Stability of Corner Carbon atoms

8.1 Nearest-Neighbor Ti-C Bonding Energy

We come back to an issue first mentioned in section 4.1. A large abundance of the

nanocrystal Ti14C13 is seen in the experiments, but its sibling nanocrystal Ti13C14 is

not seen at all. One question this raises is whether Ti13C14 is intrinsically mechani-

cally stable or not? In the previous vibrational analysis, all vibrational normal-mode

frequencies for Ti13C14 are real. This indicates that Ti13C14 is mechanically stable

in the ground-state. If there are small perturbations of the atoms of Ti13C14, the

atoms will return to their equilibrium positions. So there must be competing factors

in the molecular beam, as the clusters are condensing and equilibrating, that favor

Ti14C13 and prefer to take carbon atoms from corner sites if they land there. One

signature validating this hypothesis would be if carbon atoms bond only relatively

weakly (compared to titanium) to corner sites of the nanocrystal. In this section, we

show an analysis of the energetic properties which lead us to conclude that carbon

atoms at corner sites form much weaker bonds to the other atoms of the nanocrystal

than when titanium atoms occupy the corner sites. The vibrational and electronic

analysis in the subsequent two sections will further confirm this picture.

In chapter 5, we calculated the total energy of the abundant Ti14C13, the nonex-

istent Ti13C14, and the corresponding truncated fragments obtained by removing the

corner atoms. In all of these four systems, the only nearest-neighbor bonds are Ti-C

bonds. So we count the total number of Ti-C bonds for each species and divide its
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molecular binding energy by this number, to give an average Ti-C bond energy. As

shown in table 5.3, if we go from Ti14C13 to Ti6C13 by removing the corner titanium

atoms, the corner Ti-C bonds are all broken, but the average Ti-C bond energy is

barely changed. This indicates that the energy of the corner Ti-C bonds of Ti14C13

is roughly equal to the average Ti-C bond energy of Ti14C13. For the same analysis

for Ti13C14, if we remove the corner carbon atoms, and thus break all corner Ti-C

bonds, the average Ti-C bond energies of Ti13C6 and Ti13C14 differ by ∼0.5 eV per

bond. This difference is huge given that each Ti-C bond in the full nanocrystal has

an average energy of about 3.6 eV. As we know, if we take bonds away from Ti13C14

and the average bond energy goes up a lot, it suggests that bond energy of the

removed bonds must be much lower than the average. This is a somewhat indirect

conclusion that the Ti-C bonds to corner carbon atoms in Ti13C14 are weaker than

other Ti-C bonds, which have nearly the same average energy as in Ti14C13, Ti13C14

and Ti6C13. In other words, the corner carbon atoms are weakly bonded in Ti13C14.

Although this is only a comparison in average Ti-C bond energy, and the nearest

Ti-C bond in the truncated species should not be considered identical to the corre-

sponding Ti-C bond in the full nanocrystal, the difference is unlikely to be as large

as 0.5 eV per bond. So we conclude that the significant increase of average bond

energy by removing the corner carbon atoms indicates that the energy of the bonds

to these atoms is much lower than average.

8.2 Vibrational Modes Related to Corner Atoms

The picture that the bond to the corner carbon atoms is comparatively weak is

further strengthened in our vibrational analysis. Just as the vibrational frequency

of a ball attached to a soft spring is lower than that of a ball attached to a stiff

spring, the vibrational frequency of atoms connected by soft bonds is lower than
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that of atoms connected by stiffer bonds. The nanocrystals Ti14C13 and Ti13C14 all

have 27 atoms and 75 vibrational modes. Because they have similar structures and

the same symmetry, the vibrational modes of Ti14C13 and Ti13C14 have a one-to-one

correspondence, with the same symmetry labels. For example, the highest frequency

mode of Ti14C13 is an A2u mode with frequency 789 cm−1. As shown in figure 8.1(a),

this mode mainly activates bonds to corner atoms, and the involvement of other

Ti-C bonds is negligible. The corresponding A2u mode in Ti13C14 ,shown in figure

8.1(b), has frequency 574 cm−1. This huge red-shift demonstrates the significant

softening of the corner bonds in going from Ti14C13 to Ti13C14. One may argue that

the vibrational frequency is determined by two factors, the bond stiffness and the

atomic masses. Indeed, the mass distribution is different in these two systems. But

this could not result in such a huge red shift effect. To eliminate the mass effect,

we can just artificially switch the mass of titanium atoms and carbon atoms in

Ti14C13 and make the same mass distribution as Ti13C14. However, even if this mass

adjustment is made, a big red-shift of more than 150 cm−1 can still be observed for

the A2u mode in going from Ti14C13 to Ti13C14. So from comparison of the A2u mode

of Ti14C13 and Ti13C14, we know that the corner bonds of Ti14C13 are stiffer than

those of Ti13C14.

The stiffness of a bond only reflects the strength of the restoring force on the

atoms due to a small perturbation. While the stiffness of a bond does not have

to correlate with the strength of the bond, which is the energy to break the bond

and take away the connected atoms, there is a general trend in chemical bonds

that a stiffer bond is usually a stronger bond. Thus, our vibrational results provide

corroborating evidence that the bonds to corner carbon atoms in Ti13C14 are weaker

than the bonds to corner titanium atoms in Ti14C13.
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(a) Ti14C13 (b) Ti13C14

Figure 8.1:
(a) A2u mode for Ti14C13, frequency 789 cm−1

(b) A2u mode for Ti13C14, frequency 574 cm−1

These A2u modes mainly activate bonds to corner atoms.

65



8.3 Displacement of Corner Atom along Body Diagonal

To follow up on the assertion that a stiffer bond is a stronger bond, DFT total-energy

calculations are done for a series of displacements of a corner atom away from its

equilibrium position. Figure 8.2 shows the variation of the total energy, relative

to that of the equilibrium configuration, as one corner atom is displaced from its

equilibrium position along the body diagonal of the cube. In the figure, a positive

displacement refers to moving a corner atom outward from the center of the 3×3×3

cube, and a negative displacement refers to moving a corner atom inward. We can

see that near the equilibrium position, the curvature for Ti14C13 is smaller than that

for Ti13C14. This also indicates that the bonds to the corner carbon atom in Ti13C14

are softer than those to the corner titanium atom in Ti14C13, which is the conclusion

made in the last section. In the limit of large displacement, each energy curve should

asymptote to the dissociation limit for removing the corner atom. If the energy of the

equilibrium structure is set to zero for both nanocrystal species, then the difference

in corner-atom dissociation energies for Ti14C13 and Ti13C14 is just the difference in

the two asymptotic limits. In fact, we are more interested in comparing the difference

between Ti14C13 and Ti13C14 than in obtaining the absolute dissociation energy for

each system separately. From the graph, we can see that it requires more energy to

remove one corner titanium atom from Ti14C13 than to remove one corner carbon

atom in Ti13C14. The energy difference is approximately 2 eV. Thus, the analysis

of figure 8.2 confirms the trend mentioned in the last section: that the softer corner

carbon bond in Ti13C14 (compared to the corner titanium bond in Ti14C13) implies

a weaker bond, as well.
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Figure 8.2: Energy variations due to a displacement of one corner atom along the
body diagonal of Ti14C13 and Ti13C14. The ground-state total energy at the equilib-
rium structure is set to zero.
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8.4 Connection to the Electronic Structure

To gain a better understanding of the reasons for the differences in bonds to corner

carbon atoms in Ti13C14, from bonds to corner titanium atoms in Ti14C13, I examine

and compare the high-lying filled electronic orbitals for these two systems. Isosurfaces

for some of these electronic orbitals of Ti14C13 and Ti13C14 were shown in chapter

7. As seen in figure 7.6 and figure 7.7, visualizing the orbitals near the HOMO can

give us a clearer picture of the nature of corner-atom bonding. The fact that the

molecular orbitals involved most substantially in corner-atom bonding are among the

highest in energy of filled orbitals suggests that these atoms are the most susceptible

to detachment by any process that causes electronic excitation.

Comparing the HOMOs for Ti14C13 and Ti13C14 reveals very distinct bonding

interactions. In the former, the HOMO arises primarily from a σ bonding arrange-

ment of atomic d orbitals linking four corner titanium atoms to the face-center

titanium of their common face. In contrast, the HOMO of Ti13C14 emerges from a

weak anti -bonding interaction of atomic p orbitals on two adjacent corner carbon

atoms and an atomic p orbitals on the edge-center titanium atom of their common

edge. Thus, analysis of the HOMOs alone already shows the disparity in corner-atom

bonding between these two nanocrystal species.

A similar disparity is seen in the HOMO-1 of the two 3× 3× 3 nanocrystals. As

figure 7.6 shows, the HOMO-1 for Ti14C13 involves π-like bonding between corner

titanium d orbitals and adjacent edge-center carbon p orbitals. The orientational

flexibility of the atomic d orbitals permits the formation of this comparatively strong

π-like bonding interaction when titanium atoms sit at corner sites. In contrast, the

carbon atoms at the corners of Ti13C14 have no d orbitals. The HOMO-1 in this

case, as figure 7.7 shows, is formed primarily from p orbitals on the corner carbons

interacting comparatively weakly with d orbitals of adjacent edge-center titanium
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atoms. The problem here is that the manifold of p orbitals at the corner site lacks

the orientational flexibility to form strong bonds with the neighboring edge-center

atoms. Indeed, in most cases when carbon forms covalent bonds to three nearest

neighbors, it does so using sp2 hybrid orbitals which are planar, with 120◦ bond

angles. The corner sites of this cubic nanocrystal are inhospitable to this type of

bonding interaction, because the geometry is far from planar and the bond angles

are nearly 90◦. No electronic arrangement is quite suitable for corner bonds with

carbon atoms in the corner sites. As figure 7.7 illustrates, the bonds that do form

are highly strained electronically, and thus tend to be weak, compared to the corner-

titanium case.
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Chapter 9

Alloying Effects on the Ti Sites

9.1 Possibilities of Ti14−xZrxC13 nanocrystals

Up to now, all the experiments related with the transition-metal carbide nanocrystals

were done with pure transition metals, like titanium, vanadium, zirconium, etc. I am

interested to know what will be the effects if an alloy of transition metals, such as

titanium-zirconium, is used in producing the nanocrystal. Starting from Ti14C13, up

to 14 titanium atoms in the 3 × 3 × 3 nanocrystal can be replaced by zirconium

atoms. For each alloy concentration x, yielding Ti14−xZrxC13, there are multiple

isomers depending on the distribution of zirconium atoms among the metal sites. For

example, there are 14 possible ways to replace one titanium atom with one zirconium

atom in Ti14C13. However, due to symmetry, these 14 possible forms belongs to two

distinct categories. Eight of the 14 forms, designated Ti13ZrcorC13, has a zirconium

atom substituting the titanium atom of Ti14C13 at a corner cite. The other six of the

14 forms, designated Ti13ZrfcC13, replace a titanium atom on a face-center. In this

chapter, I will use these two categories of the x=1 case of Ti14−xZrxC13 to study the

effects of metal-atom alloying on the properties of cubic metal-carbide nanocrystals.

In the analysis, I will highlight both similarities to pure Ti14C13, and the new features

arising from the zirconium alloying as well.
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9.2 Ti13ZrcorC13

I have treated zirconium with 12 valence electrons per atom, just as we did for

titanium. Other DFT computational parameters have also been chosen to be the

same as for the Ti14C13, so I am able to compare the structure of Ti13ZrcorC13, with

that of Ti14C13 on an equal footing. The equilibrium positions of the atoms obtained

from DFT total energy minimizations are compared to each other in table 9.1. In

figure 9.1, it can be seen that the structures of the two nanocrystals are hard to

distinguish. Only the Zr-C bonds at the zirconium corner of Ti13ZrcorC13 are slightly

longer than the corresponding corner Ti-C bonds in Ti14C13. Other than that, the

lengths of the Ti-C bonds are not significantly changed due to the substitution of

zirconium for titanium at a corner site.

In order to examine the effect of alloying on the vibrational spectrum, I have used

the technique described in chapter 6 to compute the force constant matrix. Using the

force constant matrix, I have then calculated the vibrational modes and frequencies.

Because one titanium atom in Ti14C13 is replaced by a zirconium atom, the perfect

Oh symmetry of Ti14C13 is broken. As a result, Ti13ZrcorC13 has C3v symmetry. As

the C3v point group is a subgroup of the Oh point group, some degenerate levels of

Ti14C13, which is in higher symmetry, will split in Ti13ZrcorC13. Thus, there will be

more distinct lines in the vibrational spectrum for Ti13ZrcorC13 than for Ti14C13. The

decomposition of Oh irreducible representations into direct sums of C3v irreducible

representations is shown in table 9.2. This shows how the normal-mode symmetries

changed and degenerate levels split as the nanocrystal symmetry is reduced from

Oh to C3v. I find that there are 54 vibrational levels for Ti13ZrcorC13, including 18

labelled A1, 9 labelled A2, and 27 labelled E.

Table 9.3 shows the calculated frequencies and corresponding symmetry labels

for Ti13ZrcorC13 vibrational levels. The vibrational modes transforming like the A1 or
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Table 9.1: Positions of atoms in Ti13ZrcorC13 and Ti14C13. Coordinates are in units
of Angstroms.

Ti13ZrcorC13 Ti14C13

x y z x y z
Zr 2.11 2.11 2.11 Ti 2.01 2.01 2.01

2.10 0.00 0.00 2.10 0.00 0.00
-2.10 -0.01 -0.01 -2.10 0.00 0.00
0.00 2.10 0.00 0.00 2.10 0.00
-0.01 -2.10 -0.01 0.00 -2.10 0.00
0.00 0.00 2.10 0.00 0.00 2.10
-0.01 -0.01 -2.10 0.00 0.00 -2.10

Ti -2.03 2.00 2.00 Ti -2.01 2.01 2.01
2.00 -2.03 2.00 2.01 -2.01 2.01
2.00 2.00 -2.03 2.01 2.01 -2.01
-2.01 -2.01 2.00 -2.01 -2.01 2.01
2.00 -2.01 -2.01 2.01 -2.01 -2.01
-2.01 2.00 -2.01 -2.01 2.01 -2.01
-2.01 -2.01 -2.01 -2.01 -2.01 -2.01
0.00 0.00 0.00 0.00 0.00 0.00
2.14 2.14 -0.02 2.14 2.14 0.00
-2.13 2.14 0.00 -2.14 2.14 0.00
2.14 -2.13 0.00 2.14 -2.14 0.00
-2.14 -2.14 0.00 -2.14 -2.14 0.00
-0.02 2.14 2.14 0.00 2.14 2.14

C 0.00 -2.13 2.14 C 0.00 -2.14 2.14
0.00 2.14 -2.13 0.00 2.14 -2.14
0.00 -2.14 -2.14 0.00 -2.14 -2.14
2.14 -0.02 2.14 2.14 0.00 2.14
-2.13 0.00 2.14 -2.14 0.00 2.14
2.14 0.00 -2.13 2.14 0.00 -2.14
-2.14 0.00 -2.14 -2.14 0.00 -2.14
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(a) Ti13ZrcorC13 (b) Ti14C13

Figure 9.1: Equilibrium structure of Ti13ZrcorC13 and Ti14C13. Zr-C bond in
Ti13ZrcorC13 is about 6% longer than the corresponding Ti-C bond in Ti14C13.
All ball-and-stick figures in this chapter use the following visualization scheme: The
zirconium atom is indicated by a smaller and darker sphere to distinguish with
titanium atoms which are indicated by white spheres and carbon atoms which are
indicated by grey spheres.

Table 9.2: Mode splitting from Ti14C13 (Oh) to Ti13ZrcorC13 (C3v). The first column
gives the number of the vibrational levels in Ti14C13 belonging to the corresponding
symmetry label.

Ti14C13 Oh irreducible representation splitting for C3v symmetry

3 A1g −→ A1

0 A1u −→ A2

1 A2g −→ A2

2 A2u −→ A1

4 Eg −→ E

2 Eu −→ E

3 T1g −→ A2+E
7 T1u −→ A1+E
5 T2g −→ A1+E
4 T2u −→ A2+E
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Table 9.3: Normal-mode frequencies and symmetry labels for Ti13ZrcorC13.

Frequency Symmetry Frequency Symmetry Frequency Symmetry
(cm−1) (cm−1) (cm−1)

141 E 329 E 485 A2

181 A1 334 A1 485 E
181 E 339 E 490 A1

199 E 341 A2 492 E
202 A2 363 A2 510 E
206 E 365 A1 532 A1

208 A1 370 E 562 E
230 A1 387 A1 564 A2

230 E 395 E 573 E
245 E 396 A2 668 E
247 A1 409 E 674 A1

269 E 412 E 682 E
289 A2 416 A2 683 A1

290 E 427 A1 746 E
295 A1 439 E 751 A1

299 E 474 E 793 A1

323 A1 481 A1
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Figure 9.2: IR density of states of Ti13ZrcorC13. The solid line is computed with the
force constant matrix of Ti13ZrcorC13. The dotted line is computed with the force
constant matrix of Ti14C13. Vibrational lines have been convoluted with a Gaussian
of width 10 cm−1 to produce the curves.
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E irreducible representations are infrared-active. Because of the symmetry lowering,

due to alloying, there are more IR-active modes of Ti13ZrcorC13 than of Ti14C13. Some

vibrational levels in Ti14C13, such as those of A1g, A2u, Eg, Eu, T1g, T2g, T2g and

T2u symmetry, which are not infrared-active, become infrared-active in the reduced

symmetry of Ti13ZrcorC13.

Changes in the vibrational spectrum due to alloying arise from two effects: force-

constant modifications and differences between masses of titanium and zirconium

atoms. It is useful to isolate the mass effect to see the extent to which it accounts

for the change in the vibrational spectrum in going form Ti14C13 to Ti13ZrcorC13.

This is accomplished by computing the normal modes and frequencies with the force

constants of pure Ti14C13, but with the mass of one corner titanium atom changed to

that of zirconium. The normal-mode frequencies of Ti13ZrcorC13 obtained using the

force-constant matrix of Ti14C13 are shown in table 9.4, and the vibrational density of

states of the IR-active modes computed with each of the two force-constant matrices

are compared in figure 9.2. We can see that the densities of states computed with

the force constant matrix of Ti13ZrcorC13 and the force constant matrix of Ti14C13

are almost the same. This shows that changes in the IR vibrational spectrum on

going from Ti14C13 to Ti13ZrcorC13 are very much dominated by mass substitutions.

In this case, alloying has very little effect on the force constants, and thus very little

effect on the bonding properties.

Figure 9.3 Shows the IR spectrum, including the dipole oscillator strength of

the IR-active modes, for both Ti14C13 and Ti13ZrcorC13. As we see, even though

Ti13ZrcorC13 has a much richer IR density of states than Ti14C13, due to its reduced

symmetry, its IR spectrum is nearly identical to that of Ti14C13. The geometric and

electronic structure of the two nanocrystals are sufficiently similar that the new IR-

active modes in Ti13ZrcorC13 resulting from the reduced symmetry have very small

dipole derivatives and are thus very weak.
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Table 9.4: Normal-mode frequencies and symmetry labels for Ti13ZrcorC13, with
force-constant matrix from Ti14C13.

Frequency Symmetry Frequency Symmetry Frequency Symmetry
(cm−1) (cm−1) (cm−1)

146 E 324 E 483 E
176 A1 326 A1 483 A2

183 E 335 E 489 A1

197 E 340 A2 489 E
200 A1 361 A1 509 E
202 E 365 A2 526 A1

204 A2 366 E 560 E
227 A1 382 A1 563 A2

227 E 399 E 573 E
243 E 399 A2 663 A1

244 A1 415 E 666 E
265 E 415 A2 680 A1

286 E 416 A1 680 E
290 A2 416 E 740 A1

295 A1 422 E 744 E
296 E 481 E 787 A1

298 A1 481 A1
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Figure 9.3: Computed IR spectrum for Ti13ZrcorC13 compared to that of Ti14C13.
Gaussian convolution width is 10 cm−1.
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(a) Ti13ZrfcC13 (b) Ti14C13

Figure 9.4: Equilibrium structure of Ti13ZrfcC13 and Ti14C13. Significant lengthening
of Zr-C bonds can be visualized.

9.3 Ti13ZrfcC13

To study the properties of Ti13ZrfcC13, I perform the same types calculations as I did

for Ti13ZrcorC13 and described in section 9.2. As shown in table 9.5 and visualized

in figure 9.4, the lengths of the corresponding Ti-C bonds between Ti13ZrfcC13 and

in Ti14C13 are very similar, and the Zr-C in bonds Ti13ZrfcC13 are longer than the

corresponding Ti-C bonds in Ti14C13. The most significant change in Ti13ZrfcC13 is

the bond between the face-center zirconium atom to the body-center carbon atom,

which is about 12% longer than the corresponding Ti-C bond in Ti14C13.

The Ti13ZrfcC13 nanocrystal has C4v symmetry. This reduction of symmetry

from the Oh group of pure Ti14C13 will cause degenerate modes to split. Using

standard group theoretical techniques, I find the splitting rules as shown in table 9.6.
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Table 9.5: Positions of atoms in Ti13ZrfcC13 and Ti14C13. Coordinates are in units
of Angstroms.

Ti13ZrfcC13 Ti14C13

x y z x y z
Zr 2.36 0.00 0.00 Ti 2.10 0.00 0.00
Ti -2.04 0.00 0.00 Ti -2.10 0.00 0.00
Ti 0.04 2.10 0.00 Ti 0.00 2.10 0.00
Ti 0.04 -2.10 0.00 Ti 0.00 -2.10 0.00
Ti 0.04 0.00 2.10 Ti 0.00 0.00 2.10
Ti 0.04 0.00 -2.10 Ti 0.00 0.00 -2.10
Ti 2.00 2.05 2.05 Ti 2.01 2.01 2.01
Ti -1.99 2.01 2.01 Ti -2.01 2.01 2.01
Ti 2.00 -2.05 2.05 Ti 2.01 -2.01 2.01
Ti 2.00 2.05 -2.05 Ti 2.01 2.01 -2.01
Ti -1.99 -2.01 2.01 Ti -2.01 -2.01 2.01
Ti 2.00 -2.05 -2.05 Ti 2.01 -2.01 -2.01
Ti -1.99 2.01 -2.01 Ti -2.01 2.01 -2.01
Ti -1.99 -2.01 -2.01 Ti -2.01 -2.01 -2.01
C 0.06 0.00 0.00 C 0.00 0.00 0.00
C 2.12 2.27 0.00 C 2.14 2.14 0.00
C -2.10 2.13 0.00 C -2.14 2.14 0.00
C 2.12 -2.27 0.00 C 2.14 -2.14 0.00
C -2.10 -2.13 0.00 C -2.14 -2.14 0.00
C 0.00 2.14 2.14 C 0.00 2.14 2.14
C 0.00 -2.14 2.14 C 0.00 -2.14 2.14
C 0.00 2.14 -2.14 C 0.00 2.14 -2.14
C 0.00 -2.14 -2.14 C 0.00 -2.14 -2.14
C 2.12 0.00 2.27 C 2.14 0.00 2.14
C -2.10 0.00 2.13 C -2.14 0.00 2.14
C 2.12 0.00 -2.27 C 2.14 0.00 -2.14
C -2.10 0.00 -2.13 C -2.14 0.00 -2.14
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Table 9.6: Mode splitting from Ti14C13 (Oh) to Ti13ZrfcC13 (C4v). The first column
gives the number of the vibrational levels in Ti14C13 belonging to the corresponding
symmetry label.

Ti14C13 Oh irreducible representation Splitting for C4v symmetry

3 A1g −→ A1

0 A1u −→ A2

1 A2g −→ B1

2 A2u −→ B2

4 Eg −→ A1+B1

2 Eu −→ A2+B2

3 T1g −→ A2+E
7 T1u −→ A1+E
5 T2g −→ B2+E
4 T2u −→ B1+E

I expect there to be 60 vibrational levels for Ti13ZrfcC13, including 15 labelled A1, 6

labelled A2, 9 labelled B1, 9 labelled B2, and 21 labelled E. Just as for Ti13ZrcorC13,

I also compare the vibrational modes calculated two different ways: one using the

force constants specifically calculated for Ti13ZrcorC13 and the other using the force

constants of Ti14C13, where the effect of alloying on the modes only enters in the

atomic masses. The results are shown in tables 9.7 and 9.8.

Among these modes, those of A1 and E symmetry are IR-active. The vibrational

density of states of the IR-active modes computed with these two methods are com-

pared in figure 9.5. In contrast with the case for Ti13ZrcorC13, it can be seen from

figure 9.5 that changing the masses alone is not sufficient to account for the differ-

ences of the IR densities of states between Ti14C13 and Ti13ZrfcC13. This suggests a

difference in bonding characteristics between the Ti-C bond and Zr-C bond in this

alloy nanocrystal. Table 9.9 compares vibrational levels of Ti14C13 and Ti13ZrfcC13
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Table 9.7: Normal-mode frequencies and symmetry labels for Ti13ZrfcC13.

Frequency Symmetry Frequency Symmetry Frequency Symmetry
(cm−1) (cm−1) (cm−1)

149 A2 319 E 485 B2

151 B2 324 A1 488 B1

167 A1 334 A1 491 A1

186 E 343 B1 501 E
189 B2 348 E 506 A2

192 E 366 A1 507 A1

205 B1 370 E 530 A1

208 E 374 B1 530 B1

213 A1 381 B2 534 E
233 E 397 E 547 B2

243 B2 412 A2 571 A2

253 B1 415 A1 638 E
253 B2 427 E 655 A1

254 A1 436 B1 688 A1

267 B1 453 E 695 B2

272 E 464 B1 695 E
282 A1 468 A1 749 E
299 A2 474 E 790 B2

303 E 485 E
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Table 9.8: Normal-mode frequencies and symmetry labels for Ti13ZrfcC13,with force-
constant matrix from Ti14C13.

Frequency Symmetry Frequency Symmetry Frequency Symmetry
(cm−1) (cm−1) (cm−1)

155 A2 324 A1 483 E
155 B2 325 E 483 B1

173 A1 326 A1 488 E
186 E 335 E 489 A1

194 B2 340 B1 509 A1

195 E 365 E 509 B1

200 E 365 B1 525 A1

204 B1 368 B2 563 E
223 E 374 A1 563 A2

232 B2 396 E 574 A2

236 A1 399 B1 574 B2

246 B1 412 E 667 E
254 B2 415 A2 667 A1

255 A1 416 A1 675 A1

267 B1 417 E 680 E
268 E 423 A1 744 E
290 A2 424 B1 745 B2

291 A1 472 E 789 B2

294 E 483 B2
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Figure 9.5: IR density of states of Ti13ZrfcC13. The solid line is computed with the
force constant matrix of Ti13ZrfcC13.The dotted line is computed with the force
constant matrix of Ti14C13. Vibrational lines have been convoluted with a Gaussian
of width 10 cm−1.

with frequencies greater than 600 cm−1. The modes of Ti13ZrfcC13 are computed two

ways. One uses the same force-constants and masses as Ti14C13, except the mass of

one face-center titanium atom is replaced with the mass of the zirconium atom. This

allows us to see the effect of the pure mass change on the frequencies. The other

way uses both correct force constants and masses of Ti13ZrfcC13. In comparison with

the frequencies calculated in the first way, the frequency splitting calculated in the

second way can additionally show the effects on changes in bonding.
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Table 9.9: Shifts of normal-mode frequencies in going from Ti14C13 (Oh) to
Ti13ZrfcC13 (C4v). The frequencies are in units of cm−1.

Ti14C13 Ti13ZrfcC13

Using KT i13C13Zrfc Using KT i13ZrfcC13

frequency symmetry frequency symmetry frequency symmetry

789 A2u 789 B2 790 B2

745 T2g 745 B2 749 E
744 E 695 B2

679 T1u 680 E 695 E
675 A1 655 A1

667 T1u 667 A1 638 E
667 E 688 A1

The comparisons in table 9.9 show that the change in bond stiffness due to

replacing a face-center titanium atom with zirconium plays a significant role. The

Zr-C bond and Ti-C bond in Ti13ZrfcC13 are quite different. For example, consider

the 679 cm−1 T1u mode of Ti14C13. In Ti13ZrfcC13, using the correct force constants,

this mode splits into a 695 cm−1 E mode and a 655 cm−1 A1 mode. The large 40 cm−1

splitting can be understood by comparing the normal-mode displacement patterns,

as shown in figure 9.6. It shows that the largest amplitude of vibration is on the

central carbon atom in both cases. For the A1 mode, this vibration stretches and

compresses the bond to the zirconium atom, whereas for the E modes, the central

carbon vibrates perpendicular to this bond. Thus, the much lower frequency of the

A1 mode compared to the E mode indicates that bonding of the central carbon to

the zirconium atom at the face-center is weaker than to the titanium atoms at the

other faces in Ti13ZrfcC13. One may argue that the highest frequency modes, labelled

A2u for Ti14C13 and B2 for Ti13ZrfcC13, are essentially the same, indicating that this
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mode does not probe changes in bonding due to the Zr substitution. Actually, the

mode with the highest frequency in B2 symmetry dose not activate the Zr-C bonds

in Ti13ZrfcC13. But this indicates that Ti-C bonds in Ti13ZrfcC13 and Ti14C13 are

very similar. I also examine the difference between the Zr-C bond in Ti13ZrfcC13 and

the corresponding Ti-C bond in Ti14C13. As shown in the table 9.9, if we use the

force-constant matrix of Ti14C13 but the correct masses of the Ti13ZrfcC13, the 679

cm−1 mode of Ti14C13 split into an E mode at frequency 680 cm−1 and an A1 mode

at frequency of 675 cm−1. Similar to the splitting calculated with the correct force

constants and masses of Ti13ZrfcC13, as stated above, only the A1 mode involves

stretching and compressing of the Zr-C bond. For this mode, however, there is a

red-shift from 675 cm−1 using the force constants of Ti14C13 to 655 cm−1 using

the force constants of Ti13ZrfcC13. This indicates that the Zr-C bond between the

central carbon to the face-center in Ti13ZrfcC13 is softer than the corresponding Ti-

C bond in Ti14C13. Similar analysis shows the Zr-C bonds between the face-center

zirconium atom and the edge-center carbon atoms in Ti13ZrfcC13 are also softer than

the corresponding Ti-C bonds in Ti14C13.

The splitting of vibrational frequencies associated with the Zr-C bond in

Ti13ZrfcC13 also affects the IR spectrum, with intensities calculated from the dipole

derivatives as before. As shown in figure 9.7, the large mode splittings discussed

above result in new features in the IR spectrum of Ti13ZrfcC13,compared with the

IR spectrum of Ti14C13. These new features are sufficiently widely separated that

they should be clearly detectable experimentally, if Ti13ZrfcC13 could ever be formed

in abundance.
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(a)

(b)

Figure 9.6: Vibrations mainly activating the body-center atom in Ti13ZrfcC13.
(a)Ti13ZrfcC13 E mode 695 cm−1

(b)Ti13ZrfcC13 A1 mode 655 cm−1
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Figure 9.7: Computed IR spectrum for Ti13ZrfcC13 compared to that of Ti14C13.
Gaussian convolution width is 10 cm−1.
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Table 9.10: Ti-C and Zr-C bond-length comparison in bulk and Ti13ZrC13 nanocrys-
tals. The table compares the Zr-C bond and Ti-C bond for bulk pure crystal, the
Zr-C bond of Ti13ZrcorC13 and Ti-C bond of Ti14C13 between edge-center and corner
(EC), the Zr-C bond of Ti13ZrfcC13 and Ti-C bond of Ti14C13 between the body-
center and face-center (BF), and between the face-center and edge-center (FE).

Bond type Zr-C bond-length(Å) Ti-C bond-length (Å)
Bulk 2.35 2.17
EC 2.13 2.02
BF 2.36 2.10
FE 2.28 2.14

9.4 Ti13ZrC13 and Ti14C13

As discussed in the last two sections, the Zr-C bond in the Ti13ZrC13 nanocrystal is

longer than the Ti-C bond. This is not unexpected, as we know that the zirconium

atom is larger than the titanium atom, and the Zr-C bond in the bulk ZrC crystal

is also longer than the Ti-C bond in the bulk TiC crystal. Table 9.10 compares the

lengths of the bonds directly connected to the zirconium atom in the two forms of

Ti13ZrC13 and the corresponding bonds in Ti14C13. In the nanocrystals, the bond-

length trends for Zr-C bonds track those for Ti-C bonds quite well, including the

significant bond shortening relative to bulk and the shortening of bonds to atoms at

corner sites.

Having calculated the vibrational spectra of Ti13ZrcorC13 and Ti13ZrfcC13. we

would like to predict the vibrational spectrum of Ti13ZrC13 that would be seen exper-

imentally. The relative weights of each species that go into computing the total spec-

trum depend on the relative abundances of each Ti13ZrC13 species. A simple model,

which could easily be applied to the general Ti14−xZrxC13 alloy, assumes zirconium
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atoms go randomly on the metal sites. Then the contribution of each distinct isomer

would be proportional to the number of configurations that are equivalent to each

other by symmetry for this isomer. For example, in Ti13ZrC13, there are 6 possible

ways for the zirconium atom to occupy at a face-center site and 8 possible ways to

occupy a corner site. Thus, if it is a completely random occupation, the predicted

Ti13ZrC13 IR spectrum, IT i13ZrC13 , would be given by

IT i13ZrC13 ∝ 8IT i13ZrcorC13 + 6IT i13ZrfcC13
.

The IR spectrum for Ti13ZrC13, assuming random substitution, is shown in figure

9.8. The IR spectrum for Ti14C13 is reproduced in the upper panel for comparison.

It shows that the IR peak of frequency ∼680 cm−1 splits into two distinct intense

peaks for Ti13ZrC13, one still at ∼680 cm−1 and the other red-shifted to ∼630 cm−1.

The splitting is primarily due to Ti13ZrfcC13, as discussed in the previous section.

The random zirconium occupation model is overly simplistic. Different distribu-

tions of the same number of zirconium atoms on different metal sites may result

in alloy nanocrystals of very different total energy. Indeed, we find for Ti13ZrC13

that Ti13ZrcorC13 is 0.64 eV lower in energy than Ti13ZrfcC13. As we have seen,

this difference in energy is related to the relative weakening of bonds to zirconium

in Ti13ZrfcC13, as compared to Ti13ZrcorC13. Assuming that the difference in free

energy between various configurations of a given nanocrystal alloy composition is

dominated by difference in total energy, i.e. ∆E ≈ ∆F, then we would expect the

relative abundance of two such configuration to be proportional to e−
∆E
kT , where k

is the Boltzmann constant and T is the temperature. Based on these considera-

tions, at a temperature of 3,000K, which is probably in the range of experimental

conditions for the laser vaporization experiments, Ti13ZrcorC13 would be about 12

times more abundant than Ti13ZrfcC13. In fact, the approach using the random
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Figure 9.8: IR spectrum of Ti13ZrC13 calculated using random substitution model.
It is compared with the calculated IR spectrum of Ti14C13.
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zirconium occupation model is equivalent to considering T = ∞, where any anhar-

monic temperature effects, including thermal dissociation, are ignored. As a result

of the different relative abundances of Ti13ZrcorC13 and Ti13ZrfcC13 at finite tem-

perature, the IR spectrum of Ti13ZrC13 will be dominated by Ti13ZrcorC13. Because

Ti13ZrcorC13 has a very similar IR spectrum to Ti14C13, as described in section 9.2,

the prominent new IR features coming from Ti13ZrfcC13 are predicted to be very

weak in the IR spectrum of Ti13ZrC13.
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Chapter 10

Conclusions

Inspired by experimental observations of the sizable abundance of stable transition-

metal carbide nanocrystals, observed in laser-vaporization molecular beam experi-

ments, I performed first-principles calculations, using density functional theory, to

analyze the structural, energetic,vibrational, and electronic properties of the 3×3×3

titanium carbide nanocrystals Ti14C13 and absence of Ti13C14, which both can be

viewed as fragments of bulk TiC. The analysis presented in my dissertation reveals

a physical explanation for the prominence of Ti14C13 and absence of Ti13C14 in the

molecular beam experiments. Using two auxiliary systems, Ti6C13 and Ti13C6, the

effects of taking corner atoms away from the two sibling 3 × 3 × 3 nanocrystals are

examined. The analysis leads me to conclude that carbon atoms at corner sites form

much weaker bonds to the other atoms of the nanocrystal than when metal atoms

occupy the corner sites. Vibrational analysis further strengthens the above picture

and reproduces the infrared spectrum of Ti14C13, in comparison with experimental

data. An electronic explanation is given as well. In Ti14C13, which is observed abun-

dant in the experiments, the d orbitals of titanium atoms are well adapted to the

right geometrical arrangement for corner sites and form strong bonds with adja-

cent edge-center carbon atoms, as well as adjacent face-center titanium atoms. In

contrast, in the hypothetical nanocrystal Ti13C14, the s and p orbitals accessible to

corner carbon atoms for forming bonds lack the orientational flexibility needed to

form strong bonds with the three adjacent edge-center titanium atoms, and thus
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the corner bonds that do form in this species are highly strained and consequently

weakened.

The effect of alloying in titanium carbide nanocrystals is also examined in my

research. Two categories of Ti13ZrC13 isomers, Ti13ZrcorC13 and Ti13ZrfcC13, are

compared to each other and to pure Ti14C13. In the analysis of the vibrational spec-

trum, the alloy effects are separated into the change of mass and the modifications

of the force constants. It is found that the force constants in Ti13ZrcorC13 are almost

identical to those of Ti14C13, and the peaks in its IR spectrum are only slightly broad-

ened relative to those in Ti14C13. But in Ti13ZrfcC13, the Zr-C bonds are longer and

weaker than the other Ti-C bonds. This difference leads to new peaks in the IR spec-

trum of Ti13ZrfcC13, which may be observable in the experiments if it could ever be

formed in sufficient abundance. As the DFT calculation shows, the total energy of

Ti13ZrcorC13 is significantly lower than that of Ti13ZrfcC13. Thus, the abundance of

Ti13ZrcorC13 is predicated to be considerably higher than that of Ti13ZrfcC13 in an

equilibrium ensemble of Ti13ZrC13 nanocrystals. Hence, the new feature of the IR

spectrum predicted for Ti13ZrfcC13 is not expected to be prominent in the overall

Ti13ZrC13 IR spectrum.
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Appendix A

A Tool to Visualize Normal Modes of Vibration

A.1 Introduction

Among various approaches employed to gain insight into interactions that occur

at the atomic level in the field of nanoscience, one useful method is to perform

vibrational analysis, from which we can obtain information about structure and

bonding properties, and then compare to experiments of infrared and Raman spectra.

However, the quantity of data provided for the vibrational normal modes is very

large. Looking at the results in their numeric form is cumbersome and impractical,

even for simple molecules with only a few atoms. A valuable alternative is to use a

visualization tool to generate a 3D animation of each normal mode to gain a better

understanding of the physical implications of the modes. With the help of advanced

Java technologies including Java 3D and Java Advanced Imaging [60–64], I have

created a software tool, named oscillator, to construct the molecular system and

visualize the normal modes of vibration in three dimensions. This tool has been used

in my research on transition-metal carbide nanocrystals.

oscillator includes many useful features that are required to visualize the

vibrational modes of coupled oscillators. The tool can visualize each normal mode of

vibration either by animating the atomic motions for that made or by drawing arrows

to show the vibrational pattern in a static 3D image. The following sections do not

go into details of my Java3D programming [63, 64], but rather give an overview of

the major elements used in this tool.
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Figure A.1: Main Layout of oscillator.

A.2 User Interface

Programmed in Java, oscillator is a cross-platform application. The prerequisite

is to install the J2SE [65] and Java3D packages. As of the writing of this dissertation,

the latest versions of J2SE and Java3D can be downloaded from Sun’s website [66].

The tool has been archived in a Jar file and can be run with the command “java

-jar ”. When the program is open, the main layout of oscillator is as shown in

figure A.1. The topmost part of the window is the main Menu, which controls all

functions of this tool. The toolbar, which gives a collection of the most frequently

used functions, is under the main menu and is separated into several groups according

to their functions, including file input/output, system configuration, appearance
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Figure A.2: Field of View in oscillator.

modification, and help. The the middle panel is the “canvas” where the 3D image

resides. When exporting images or movies, the content in this panel is saved. The 3D

images on the canvas are drawn in one-point perspective [67, 68], as shown in figure

A.2. If we treat the vanishing point in this perspective as the user’s eye position,

or the viewer point, the user’s view field is set to be fixed as 45◦. By default, or if

the user clicks the reset button on the left panel, the z axis points out the canvas

perpendicularly, and the center of the canvas is at the origin of the coordinate system.

Thus, the viewer point is at z ≈1.79, and objects with x and y range of -1.0 to +1.0

at the z = 0 plane can be fully viewed across. The user can navigate through the 3D

space using the mouse. Brief instructions on how to navigate through the 3D space

are shown on the left panel of the main layout, along with the reset button. On the

left panel, the x, y, z position of the viewer, indicating the vanishing point, is also

updated when the user navigates through the 3D space. On the bottom of the main

layout, the labels of the atoms and bonds and their properties are to be listed. The 3D

objects in the canvas and their labels in the list panel are maintained concurrently.

When atoms or bonds are added by the user and shown in the canvas, their labels will
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be listed in the panels below. If a 3D object is selected by clicking, no matter whether

in the 3D canvas or in the list panel containing labels, the selected object will blink

in the canvas and will be highlighted in the list panel. When objects are selected,

their detailed properties will also be shown in the property panels to the right of

the label panels at the bottom. On the right of the main layout is the symmetry

list panel, where the user can read the currently specified symmetry information

for the system. If the “Modify” button in this panel is clicked, a dialog box will

open for the user to modify the symmetry constraints for the molecular system. The

list of normal modes of vibration is shown on the panel below the symmetry list

panel. After loading information about the modes, the labels for the modes, usually

indicated by their frequencies, will be shown in order. The user can visualize any

vibrational mode by selecting a mode label in this panel. The overall vibrational

amplitude in a mode animation is exaggerated to make the atomic motions clearly

visible.

A.3 System Configuration

In this tool, atoms are represented by spheres. When the user clicks the menu item

Edit/Add Atom, a dialog box will open as in Figure A.3. The user then sets the atom

position, sphere radius and appearance, followed by clicking the “Add” button. For

a specific system, the size of the 3D objects on the canvas can be zoomed using the

mouse. Rotations about the origin can be made via a mouse drag motion with the

left mouse key pressed. Translation parallel to the screen can be made via a mouse

drag motion with the right mouse button pressed. Zooming perpendicular to the

viewer screen can be made via a mouse drag motion with either the middle mouse

button pressed or the Alt-key plus left mouse button simultaneously pressed.
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Figure A.3: Interactive dialog for adding or editing an atom.
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The geometry of the system is easy to interpret if interatomic bonds are also

visualized. In this tool, bonds are represented by cylinders connecting the atoms.

The user first chooses the atoms that are to be bonded either by selecting from the

atom list or by picking directly from the 3D canvas. When the atoms are blinking,

indicating that they are selected, the user can click the menu item Edit/Add Bond.

After selecting the bond color in the pop up dialog window, bonds will be added

connecting the nearest neighbors among selected atoms.

If the system size is large, it can be very tedious to adding atoms and bonds

one-by-one. This tool allows the user to use the symmetry of the system to make

building the configuration faster. Each symmetry operation is realized by a 3 ×

3 transformation matrix that transforms all the atom positions. The tool has pre-

defined several basic symmetry operations, such as inversion, reflection and n-fold

rotations. A list of symmetry operations, specified by the user, is always maintained

in the program. When the user adds atoms or bonds, the symmetry operations in

the symmetry list are checked one-by-one to see if any more atoms or bonds should

be added to maintain the symmetry. If so, the program will ask the user either to

add the new objects or to remove the broken symmetry operations from the list.

Note that adding new atoms and bonds could introduce more unmapped atoms or

bonds. Therefore, this procedure is recursive, and if the user cancels in the middle

of the procedure, no atoms or bonds will be added.

It is very simple to delete atoms or bonds when the user wants to modify the

system. The user only needs to choose the atoms or bonds to be deleted either by

selecting them from the list panel or by picking them directly from the 3D canvas,

and then press the delete button in the toolbar. Similar to adding atoms or bonds,

when the user removes atoms or bonds, the symmetry operations in the symmetry list

are also checked one-by-one to see if any symmetries are broken. If so, the program

will find the unmapped atoms or bonds and ask whether they should also be deleted.
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Note that deleting the mapped object could cause a third object to be unmapped

by some symmetry. In this case, a set of all deleted objects is maintained. If the

user cancels in the middle of the procedure, the atoms or bonds in the set will be

put back onto the canvas. The oscillator tool also supports “Undo” and “Redo”

functions, in case the user modifies the system erroneously.

To simplify the initial system configuration of the molecule, the tool also sup-

ports the import of a system-configuration file. The following is an example of such

an input file, drawn from my research on Ti13ZrC13:

*********************************************************

oscillator - - - - Research-0.0.1

Ti13C13Zr

3 //# of species

Zr

1 0.024 0 0 0 // # of Zr atoms, radius, r g b color

0.2055304626 0.2055304626 0.2055304626

Ti

13 0.03 0.6 0.6 0.6 // # of Ti atoms, radius, r g b color

0.2039474879 -0.0004336492 -0.0004336492

-0.2042850431 -0.0005424017 -0.0005424017

-0.0004336492 0.2039474879 -0.0004336492

-0.0005424017 -0.2042850431 -0.0005424017

-0.0004336492 -0.0004336492 0.2039474879

-0.0005424017 -0.0005424017 -0.2042850431

-0.1970392410 0.1949460653 0.1949460653

0.1949460653 -0.1970392410 0.1949460653

0.1949460653 0.1949460653 -0.1970392410

-0.1959264718 -0.1959264718 0.1947540635
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0.1947540635 -0.1959264718 -0.1959264718

-0.1959264718 0.1947540635 -0.1959264718

-0.1955860334 -0.1955860334 -0.1955860334

C

13 0.045 0.2 0.2 0.2 // # of C atoms, radius, r g b color

0.0000148717 0.0000148717 0.0000148717

0.2078266148 0.2078266148 -0.0019371636

-0.2076161319 0.2077690036 -0.0002206789

0.2077690036 -0.2076161319 -0.0002206789

-0.2083253840 -0.2083253840 -0.0000402928

-0.0019371636 0.2078266148 0.2078266148

-0.0002206789 -0.2076161319 0.2077690036

-0.0002206789 0.2077690036 -0.2076161319

-0.0000402928 -0.2083253840 -0.2083253840

0.2078266148 -0.0019371636 0.2078266148

-0.2076161319 -0.0002206789 0.2077690036

0.2077690036 -0.0002206789 -0.2076161319

-0.2083253840 -0.0000402928 -0.2083253840

bond

0.01 // bond radius

*******************end of file*****************************

The file is in a specific format. The version is named “Research-0.0.1” in the first

line and cannot be changed if this format is used. The user can specify a brief,

descriptive comment in the second line, which will be skipped when read in. The

following lines described the atoms and bonds. If the user wants to include com-

ments, he or she can put them at the end of each line following a “//” designator.
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The third line of the file gives the number of species of atoms. This file contains

three species of atoms, including Zr, Ti, and C, details of which are described in

the next three sections. Each section gives the name of the element first. Then the

number of atoms of that type, the radius for the spheres that represent the atoms,

and the color of these spheres are given in the next line. The color is given as red,

green, and blue, at the range [0..1]. The Cartesian coordinates of each atom of the

same species are then given line-by-line. After the atoms are configured in each

section, bonds are then configured. For this format version, “Research-0.0.1”, only

the radius of the bond is given, only nearest-neighbor bonds will be drawn. For a

different version, i.e. “Research-0.0.2”, more properties, such as bond color, may be

required. Details for different format versions can be found in the help pages of the

tool. After the file is imported using the menu command “File/Import config”, the

user can further modify the system as previously discussed. After the user finishes

the configuration, he or she can save it for later use. The saved format is different

from the format of the imported file. An internal format is used and contains more

information, such as the position of the vanishing point for the 3D visualization.

The user can use menu “File/open” to open the saved file with the internal format,

and the 3D image will be shown in exactly the same way as when it was saved. The

static image on the 3D screen, which illustrates the configuration of the system, can

also be exported to a jpeg file.

A.4 Visualizing Vibrational Modes

Information specifying the vibrational modes is imported into oscillator from a

text file with the following general configuration:

*********************************************************

oscillator - - - Version Modes-0.0.1
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Ti13ZrC13

81 // degree of freedom

// eigen frequencies

...

...

// eigen vectors

... ...

... ...

18 0.9 // frame, amplitude

*******************end of file*****************************

In a similar manner as the file that configures the system, this input version is named

“Modes-0.0.1”, and the user can provide a descriptive title in the second line. The

third line gives the number of atomic degrees of freedom, which should equal 3N if the

number of atoms in the system is N . The next line “// eigen frequencies” is followed

by 3N lines specifying labels for 3N eigen frequencies. Usually one can just use the

values of the frequencies as the labels. Following the line “// eigen frequencies”, the

next 3N lines give the 3N × 3N matrix for the eigenvectors. The 3N numbers in

each row are separated by blank spaces and each eigenvector is specified in a column

of the matrix. The 3N eigenvectors have a one-to-one correspondence with the 3N

mode frequencies, in the same order. For each eigenvector, the 3N values give the

relative motion of the N atoms, with predefined order, in the x, y, and z direction.

The last line of this text file gives the number of frames that will be calculated and

visualized for one cycle of vibration and a coefficient to adjust the amplitude of the

vibrations.

After the mode configuration file is loaded, the labels of the normal modes will be

shown in the mode list. If the user selects “show animation” in the menu, the modes

can be shown in real-time animations. If this menu item is deselected, arrows through
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Figure A.4: Visualization of a normal mode. The relative motions of atoms are
indicated using arrows.

spheres are used to point in the direction of the atomic motion at an instant of the

vibration, as shown in figure A.4. The lengths of the arrows are proportional to the

relative magnitudes of the atomic displacements in the vibrations. In the animated

mode, all the frames of the motion can be saved one-by-one to jpeg files using menu

item “File/Save movie”, and a Quick Time movie file is generated using these frames.

It is important to note that the oscillation frequency of an animated mode is the

same for all modes and is not proportional to the specific mode frequency. In the

static format, the image of the system with arrows attached can be exported to a

single jpeg file.
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A.5 Summary

This tool, oscillator, provides for interactive and collaborative visualization of

numerical data in analyzing the normal modes of vibration. The above sections give

an overview of the functions of the tool. It offers a user friendly interface including

menu and tool bar. In the main layout, the detailed information of atoms and bonds

is updated concurrently with their modification on the 3D canvas. In addition, the

viewer’s position and the symmetry information of the system are also easily set

and shown. After loading the large set of numerical data specifying normal modes,

the user can visualize these vibrational modes in both animated and static formats.

Images of the system configuration and frames for small movies of the vibrational

modes can be exported to files in standard formats. The present version of this tool

has been used to generate several figures appearing in this dissertation.
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