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ABSTRACT 

In this thesis, we present two techniques to improve the performance of the 

genetic algorithm (GA). First we use Maximal Hyper-Rectangle (MHR) 

analysis to improve GA search reliability. We propose a method to find a 

sufficiently large MHR for new individual insertion in GA with polynomial 

computational complexity. Second, we propose an idea of relative fitness to 

improve increasing the convergence and searching more space. The 

individuals are selected for reproduction according to both of their global 

rank and regional rank. We apply the two techniques to some GA problems, 

and the results demonstrate their merits. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

The genetic algorithm (GA) is based on Darwin’s evolution theory. In nature, individuals 

that better fit the environment are more likely to survive, breed and pass their 

characteristics on to the future generations. In a typical GA, first an initial population is 

created containing a number of individuals. Each individual has an associated fitness 

measure, typically representing an objective value. Only individuals with relatively high 

fitness are selected to produce offspring by crossover, mutation and/or other operators, 

while those with lower fitness will get discarded from the population. The result is 

another set of individuals based on the previous population, usually leading to subsequent 

populations with better average fitness. 

The GA approach has repeatedly proven to be a robust search and optimization 

method in numerous theoretical and practical domains. However, there are some potential 

problems with the GA. 

One of them is that it is not easy to evaluate the confidence level as to whether a 

GA run may have missed a complete area of good points, and whether the global 

optimum was found. We accept this but hope to improve the confidence in our results by 

showing that no large gaps are left unvisited in the search space. One way to reduce the 

risk is to ensure that some individuals are created randomly in every generation. It is 

usually observed that as the search progresses, the population gets gradually concentrated 
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in one or a few regions which may or may not contain the global optimum. The capability 

of exploring new space will be weaker. Niching methods [1] attempt to search more 

space using fitness sharing, crowding or other diversity promotion techniques. The 

problem with these methods is that they are implicit rather than explicit in their attempt to 

cover the search space. Despite the use of niching methods, there could be large regions 

of the search space that are never explored. 

To overcome these drawbacks, our idea is to create some individuals directly in 

each generation, placing them in big empty spaces to promote exploration. In doing this, 

the convergence may be slightly slower but the probability of premature convergence to 

local sub-optima is significantly reduced. By inserting some individuals in big empty 

spaces, our confidence in the results increases because no large gaps exist in the search 

space. However it is not easy to find the biggest empty space, particularly in multi-

dimensional problems. Fortunately, however, for a GA problem, it is not necessary to 

find the exact biggest empty space; a sufficiently large empty space is good enough to 

insert new individuals. In Chapter 2, we present a method to find a sufficiently large 

empty space for new individual insertion in a GA with polynomial computational 

complexity. We also apply it to a number of real GA problems to check its performance. 

Another problem is how to trade off improving the convergence and searching 

more space. The traditional GA with elitist selection is suitable for locating the optimum 

of unimodal functions as the population converges to a single solution in the search 

space. Real GA problems, however, often lead to multimodal domains and so require the 

identification of multiple optima, either global or local.  
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There are numerous approaches for attempting to find a diverse set of good solutions for 

a multimodal problem. Two of the most successful approaches are fitness sharing and 

crowding. Fitness sharing was originally introduced by Holland [2] and improved by 

Goldberg and Richardson [3]. The idea behind a fitness sharing scheme is that, if similar 

individuals are required to share fitness, then the number of individuals that can reside in 

any one portion of the fitness landscape is limited by the fitness of that portion of the 

landscape. Sharing results in individuals being allocated to optimal regions of the fitness 

landscape. This method can locate and maintain multiple solutions from different peaks 

within a population, however, a GA under sharing will not sufficiently converge 

population elements atop the peaks it locates. The crowding method [4, 5] is based on the 

idea of preserving diversity by ensuring that new individuals replaced similar members of 

the population. The number of individuals congregating about a peak is largely 

determined by the size of that peak’s basin of attraction. The crowding method also can 

locate and maintain multiple solutions within a population. However, some good 

solutions may be ignored if the sizes of their basins of attraction are small. 

We wish to find a good scheme that can find multiple good solutions, converge to 

a peak in each basin of attraction, and make the concentration near the peaks with higher 

fitness higher. In Chapter 3, we propose the idea of “relative fitness” to approach this 

goal. When individuals are selected for reproduction, we not only consider their fitness, 

but also consider their neighbors’ fitness. We apply this idea to a number of GA 

examples and compare its performance with traditional GA and some niching methods.  
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CHAPTER 2 

IMPROVING GA SEARCH RELIABILITY USING MAXIMAL HYPER-

RECTANGLE ANALYSIS
1
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 Chongshan Zhang, Khaled Rasheed, Accepted by The Genetic and Evolutionary Computation Conference       

(GECCO-2005), nominated as best papers. 

   Reprinted here with permission of publisher, 04/26/2005. 



 

5 

  

 

2.0 ABSTRACT 

In Genetic algorithms it is not easy to evaluate the confidence level in whether a GA run 

may have missed a complete area of good points, and whether the global optimum was 

found. We accept this but hope to measure some degree of confidence in our results by 

showing that no large gaps were left unvisited in the search space. This can be achieved 

to some extent by inserting new individuals in big empty spaces. However it is not easy 

to find the biggest empty spaces, particularly in multi-dimensional problems.  For a GA 

problem, however, it is not necessary to find the exact biggest empty spaces, a 

sufficiently large empty space is good enough to insert new individuals. In this paper, we 

present a method to find a sufficiently large empty space for new individual insertion in a 

GA while keeping the computational complexity as a polynomial function. Its merit was 

demonstrated in several domains. 

 

Categories and Subject Descriptors 

I.2.8 [Computing Methodologies]: Artificial Intelligence – problem solving, control 

method, and search. 

 

General Terms  

Algorithm, Performance. 

 

Keywords 

Genetic Algorithms, Optimization, Maximal Hyper-Rectangle. 
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2.1 INTRODUCTION 

Genetic algorithm [9] search is a probabilistic search approach which is founded on the 

ideas of evolutionary processes. The GA procedure is based on the Darwinian principle 

of survival of the fittest. For the general GA, first an initial population is created 

containing a number of individuals. Each individual has an associated fitness measure, 

typically representing an objective value. Only individuals with relatively high fitness are 

selected to reproduce offspring by crossover and mutation, while those with lower fitness 

will get discarded from the population. The result is another set of individuals based on 

the previous population, leading to subsequent populations with better individual fitness 

in most cases. The GA approach has repeatedly proven to be a robust search and 

optimization method in numerous theoretical and practical domains. 

However there are potential problems. If we strictly adhere to the Darwinian 

evolution paradigm, the population in every generation only weakly depends on the 

initial population, because all offspring are created from their parents. However, only the 

first generation is created randomly. It is inevitable as the GA converges that exploitation 

will replace the initial exploration. Nevertheless, it is hard to guarantee that this will not 

happen too soon leading to premature convergence.  One way to reduce the risk is to 

ensure that some individuals are created randomly in every generation. It is usually 

observed that as the search progresses, the population gets gradually concentrated in one 

or a few regions which may or may not contain the global optimum. The capability of 

exploring new space will be weaker. Niching methods [8] attempt to reduce the risk using 

sharing, crowding or other diversity promotion techniques. The problem with these 

methods is that they are implicit rather than explicit in their attempt to cover the search 
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space. Despite the use of niching methods, there could be large regions of the search 

space that are never explored. To overcome these drawbacks, our idea is to create some 

individuals directly in each generation, placing them in big empty spaces to promote 

exploration. In doing this, the convergence may be slightly slower but the probability of 

premature convergence to local sub-optima is significantly reduced. By inserting some 

individuals in big empty spaces, our confidence in the results increases because no large 

gaps exist in the search space. 

However, finding the biggest empty space in a multi-dimension space is not easy. 

The first step is to define empty space. We can use empty hyper-sphere, empty hyper-

rectangle or other shapes. For example, if we adopt empty hyper-rectangle, it is still an 

infinite set. Liang-ping Ku et al.
[1]

 proposed using Maximal Hyper Rectangle (MHR) to 

measure the empty space and tried to find the biggest MHR. In this paper, we adopt the 

concept of MHR to describe the empty space (Figure 2.1), defined as follows: 

(1) All the sides of MHR are parallel to the respective axis, and orthogonal to the rest. 

(2) MHR does not contain any points in its interior. 

(3) No other MHR exists which falls entirely within the interior of the MHR. In other 

words, on each surface of the MHR, there is at lease one point. 

We adopt the MHR concept because it is representative of all possible empty hyper-

rectangles and the number of MHRs is finite. Secondly, it is easier to handle because the 

space and points are usually described in the Cartesian coordinate system.  

The problem of finding empty hyper-rectangles has been studied repeatedly in the 

literature. In [1], the computational complexity to find the biggest MHR is O(n
2k-

1
k

3
(lgn)

2
), where n is number of points and k is the number of dimensions in the dataset. 
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Liu et al.
[2]

 motivate the use of empty space knowledge for discovering constraints. Their 

proposed algorithm runs in O(n
2(k-1)

k
3
(lgn)

2
). Even in two dimensions this algorithm is 

impractical for large values of n. In an attempt to address both the time and space 

complexity, they proposed only maintaining maximal empty hyper-rectangles which are 

larger than some size. However the number of MHRs may still be very large because it is 

difficult to correctly set the size, a priori, in some problems. Furthermore, many MHRs 

are largely overlapping. Edmonds et al.
[3]

 proposed finding all MHRs by considering each 

0-entry<x, y> of M one at a time, row by row, where M is an |X|×|Y| matrix (for two 

dimensions), X and Y denote the set of distinct values in the data set in each of the 

dimensions. Their proposed algorithm runs in O(n
2(k-1)

k). However, it is not applicable for 

continuous spaces. Other approaches have been proposed that use decision tree classifiers 

to approximately separate occupied space from unoccupied space, then post-process the 

discovered regions to determine MHRs
[4]

. These methods do not guarantee that all 

maximal empty rectangles are found. 

 

 

 

 

 

 

Figure 2.1 Two examples of MHRs in a 2-D space 
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Despite the extensive literature on this problem, none of the known algorithms are 

effective for large data sets. Fortunately, for the purpose of improving the GA reliability, 

we do not have to find the exact biggest MHR, a sufficiently big MHR is good enough. 

Now the problem we will consider is as follows: Given a k-dimensional space S, 

where each dimension r is bounded by a minimum (Sminr) and a maximum (Smaxr) value. 

S contains n points (individuals). The problem is to find a sufficiently large MHR in 

which to insert a new individual.  

The rest of the paper is organized as follows: In Section 2, we describe the 

proposed algorithm, and check the time complexity of the algorithm by setting points in S 

randomly and finding the calculation time for different numbers of points and 

dimensions. In Section 3, we apply this algorithm to some real GA problems. Section 4 

presents the conclusions and future work. 

 

2.2 THE PROPOSED APPROACH 

The main idea of the algorithm is as follows: There are n points in a k-dimensional space 

S (then S has 2k surfaces), the middle point of  two points Pi and Pj is Mij. Near each Mij, 

there is always a small empty hype-rectangle the center of which is Mij and its volume is 

≥ 0. We expand the empty rectangle with the same speed along all directions until some 

surface, for example, surface k+, meets a point. Then along direction k+, the expanding 

will stop, while along direction k-, which is the opposite of k+, the speed of expansion is 

doubled. The speed of expansion along other directions remains the same. The expansion 
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continues until some surface meets a point. The expansion will stop when all surface 

meet point (Figure 2.2). 

 We use a variable “time t” to measure the expansion of the empty hype-rectangle. 

When t=0, the volume of the empty rectangle =0, i.e. the distance between each surface 

and Mij, dr is 0. At the beginning, the speed along all directions, v = 1. If surface r+ has 

met a point, we set vr+ = 0 and vr- = 2. Then the distance between each surface and Mij, dr 

=vr*t.  

          

 

 

 

 

 

 

 

                            (a)                                             (b)  

 

                  

 

 

 

                                             (c)                                             (d) 

 

Figure 2.2 Example to illustrate the expansion process of a MHR in a 2-D space 

(a) an empty rectangle expands starting from a middle point; (b) one surface meets 

a point; (c) the other two surfaces meet two other points; (d) all surfaces meet points. 

Mij Mij 

Mij Mij 
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When the empty rectangle expands, we can increase t by a small amount (∆t) each time, 

and then check whether some surface met some point. However, if ∆t is too small, we 

will have to check too many times. If ∆t is too big, the time that some surface meets some 

points may lie between t and t+∆t.  

 To solve this problem, instead, we try to find which surface and point will meet 

first. With the current expansion speed, each point can be approached at some time ti. We 

take Pi as an example. For each direction, we can find tir according to the distance 

between the current position of surface r and Pi and the speed vir. Suppose the maximum 

among ti1, ti2, …ti2k is tir, then tir is the time (ti) that the surface s of the empty rectangle 

expanding with the current speed meets Pi. To deal with the boundary, we add two points 

Pn+1 and Pn+2 to represent the boundary when we do the expansion, one with coordinates 

that are the positions of all lower surfaces of S, the other with coordinates that are the 

positions of all upper surfaces of S. To find the time the empty rectangle meets a surface, 

we consider the minimum among tn+1,1, tn+1,2, …tn=1,k rather than maximum. Suppose the 

minimum among t1, t2, …tn, tn+1, tn+2 is tp, then point p is the point that the empty 

rectangle expanding with the current speed will first meet, and tp is the meeting time.  

 After we find the point that the empty rectangle first meets, we update the 

position and expansion speed of all surfaces of the empty rectangle and continue the 

expansion process until all surfaces meet points. The expanded empty rectangle is a MHR, 

we call it Expanding MHR (EMHR).  The EMHRij is a big MHR expanding from Mij. 

The maximum among all EMHRij can be considered a sufficient MHR.  
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Although we did not investigate all MHRs because the number of MHRs is O(n
2k-2

), we 

do expand in each MHR at least k(2k-1) times because there is at least one point on each 

surface of each MHR.  

 In the course of a GA optimization, the number of points visited will increase 

gradually. If we run the above process every time a new point is created, the efficiency 

will be very low because some expansions may be repeated many times unnecessarily. In 

the real program, the algorithm is as follows. Given a k-dimensional space, we first start 

with no point in S. We consider all the vertices of S as initial points, so the only middle 

point is the center of S, and the EMHR is the whole S. We add the EMHR to the set of 

EMHRs. Then the n points are added to S, one point at a time. At each insertion, only the 

EMHRs which contain the newly added point will be updated by doing expansion from 

its relative middle point, because EMHRs which do not contain the newly added point 

will not change. We do new expansions from the middle points between the newly added 

point and other points, and add their EMHRs to the set of EMHRs. At each time, the 

above algorithm will have same results with expansions from all middle points between 

any two points. The MHR we require is the biggest among all EMHRs. 

  We do not have to keep track of all EMHRs. First, if two middle points are very 

close, their EMHRs will strongly overlap; thus we can discard one of them. Second, if an 

EMHR is very small, we can discard it.  For example, if the volume of space S is V, the 

number of points so far is N, then if the volume of an EMHR is less than V/N, we can 

discard it, because it will never be the biggest EMHR. 
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 The detailed algorithm is also described using pseudo-code (Figure 2.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 The pseudo-code of the proposed algorithm 

We use the above algorithm to find a sufficiently large MHR to periodically add new 

points to a GA population. One reason is that the calculation to find the exact biggest 

MHR is too high, while for our purpose, a sufficiently large MHR is good enough. 

Another reason is that, when we try to find the big empty space in a GA trace, we may 

Algorithm FindBigEmptySpace 

Begin 

Set the corner vertices of space S as initial points. 

Set the Linked list of EMHRs (LE) = NULL. 

EMHR(M) = Expending(M) // Expansion starts from M. At this step, M is the 

center of S, and EMHR(M) is the whole S 

Insert(LE, EMHR(M)) // Add EMHR(M) to LE 

 

When a new point P is inserted into S, 

   Check LE 
        If (EMHRi contains P), update EMHRi 

    From the mid point Mi between P and every other point i,  

        EMHR(Mi) = Expending(Mi) 

        Insert(LE, EMHR(Mi)) 

   Check LE 

        If(Two EMHRs strongly overlap), delete one of them 

        If(EMHRi is not big enough) delete EMHRi from LE // The above two steps 

may be done once every several points. 

        Return biggest EMHR and its center. 

End 

 

Expending(M) 

Do (while not all dimensions of hyper-rectangle (HR) have met points) 

    For each point Pi, 

    Timei = getTime(Pi) // the time on which the expanding HR meets with Pi 

DimAndPj = minimun(Timei) // the point that the expanding HR will meet first 

( along some dimension) 

Update the expansion speeds. 

EndDo 
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prefer more squared space rather than a narrow space (Figure 2.4). The above expanding 

algorithm tends to find more squared space, because the shorter side will be meet in 

expanding method earlier.  

  

 

 

 

 

 

Figure 2. 4 A more squared space is more interesting empty space 

Analysis of complexity: for expanding from one point, the calculation to find the next 

point the expanding empty rectangle will meet is done in O(nk) because in order to find 

the time for one point when the expanding empty rectangle meet it, we have to check all 

of its coordinates, i.e. O(k), and we have to find the time for all the points (n of them). 

The expanding will stop when all surfaces meet points, so the total calculation for 

expanding from one point is O(nk
2
). We do expansions from all middle points between 

any two points, so, the total calculation is O(n
3
k

2
).  

 As pointed out earlier, we do not have to keep track of all EMHRs. If two middle 

points are too close, we only keep one of them and if an EMHR is too small, we discard it. 

The exact number of EMHRs to be discarded depends on the definitions of “too close” 

and “too small” but the real complexity may be lower than O(n
3
k

2
). 
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We compared the running time of the algorithm for finding the exact largest MHR and 

our proposed algorithm for finding a sufficiently large MHR with randomly generated 

data. For the sake of comparison, we find the biggest MHR by checking all MHRs, 

because we only try to show it is an exponential function. Figure 2.5 shows the results in 

terms of the actual CPU time. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Running time for finding exact biggest MHR and sufficient big MHR 

(In logarithmic scale) 
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For finding the exact biggest MHR for k=4 and for only 30 points, the running time is 

several minutes! Furthermore, even for k=4, the running time increases at a very fast rate 

as n increases. When n increases, for example, from 16 to 32, the running time increases 

more than 700 times. From Figure 2.5, we can see that the slope of the curve increases 

when k increases. This means that the order is a function of k. On the other hand, the 

running time for finding a sufficiently large MHR using our algorithm, even for several 

hundred points, is a few seconds. When the number of points doubled, the running time is 

usually increased by 8 to 10 times and not depend on k. From Figure 2.5, we can see that 

the slope of the curves is nearly the same for different values of k, showing that our 

algorithm runs in polynomial rather than exponential time. 

 

2.3.  APPLICATION TO GA OPTIMIZATION 

In this section, we apply our algorithm, inserting new individuals at big empty spaces, to 

some GA problems, to examine its effect on performance. We consider five examples of 

continuous-parameter GA problems. Functions 1, 2 are taken form previous studies
[5, 6, 7]

. 

F1 is symmetric while F2 is non-symmetric and both have many local optima. The 

functions are shown in Figures 2.6 and 2.7. Note that we inverted the plots by adding a 

negative sign to the functions for the sake of clarity but all the functions used in this 

paper are minimized. The global optimum of F1 is at (0, 0) and the global optimum of F2 

is at (0.375, 0.375). F3 is constructed based on F1 by copying a small range including the 

global optimum to another location, in order to see the effect of position of global minima. 

Similarly F4 is constructed based on F2. F5 is constructed using F1 and F2 with each 

function located at different ranges, so the whole function is not continuous. The ranges 
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of all functions are set to 20,20 21 ≤≤− xx . In the range, each function has thousands of local 

optima in addition to the global optimum.  
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Figure 2.7 F2 With 01 =d  and 75.02 =d  
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The initial population is generated randomly. Rank based selection is used as it is more 

robust in general. Then the population enters the following loop with fixed population 

size N.  

Selection: part of the population ( Nrs ⋅ , where rs<1, is the ratio of selection) are 

selected to propagate to the next generation and will also be allowed to produce offspring.  

The selection probability of an individual is ∑
=

−−
=

N

i

c

i

c

ii rankrankp
1

)(/)( , where c is a 

constant. The individual with highest fitness is guaranteed to be selected.  

Crossover: part of the population ( Nrc ⋅ , where rc<1, is the ratio of crossover) is 

created by crossover of two parents selected randomly from the above selected 

population. The crossover operator is 2,1  , if  ),(* 1,2,1,2,1, =>−+= ixxxxRxx iiiiii
, where R is a 

random number.   

New individual insertions (by our method): the rest of the population 

( Nrr cs )1( −− ) is created at big empty spaces, which are found according to our algorithm 

using all the points visited so far during the course of the optimization. The largest MHR 

is selected and a point is created at its center. This is repeated for the required number of 

individuals. 

Mutation: each of the individuals in the selected population mutated with some 

probability Pm. This is done after the crossover step so if they took part in a crossover, it 

was with their original genes rather then their mutated forms. The mutation operator is 

non-uniform mutation
[9]

 with b
TtRyyt )/1(),( −⋅⋅=∆ , where y is the distance between the 

individual and the boundary, R is random number, t is the generation number, T is the 
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maximum generation number, b is a system parameter determining the degree of non-

uniformity.  

 In this paper, the parameters are set as rs =50%, rc=30% (in the comparisons when 

no insertions are done this becomes 50%), Pm=0.2, c=0.5, and b=2. We use a population 

size of 10 and terminate the process after 50 generations.  

 With the insertion of new individuals at big empty spaces, we expected more 

space to be covered. In other words, at the end of the GA process, the empty spaces 

should be smaller than without insertion. Indeed the experiments supported this 

expectation. Figure 2.8 shows the total individual distribution for F1. F2 has similar 

behavior. 

 Figure 2.8 shows that with the insertion of new individuals, the distribution of 

total points visited throughout the optimization is more uniform than that without 

insertion. After 50 generations, without inserting individuals at big empty spaces, the 

biggest empty square is 7.4×7.4, while with individual insertion; the biggest empty 

square is 3.0x3.0. Thus more space is searched by using our algorithm. 

 One way to measure the success of a GA run is by checking if there are 

individuals within a tight ε-neighborhood of the optimum. In this paper, we consider the 

GA run to be successful if the individual with highest fitness is within the basin of 

attraction of the global optimum. The motivation behind this is to reduce the computation 

time. If the individual with highest fitness is close to the optimum and in its basin of 

attraction, usually it will go to the optimum gradually. The basin of attraction of F1 is 

0.13.0/35.0/ 2

2

2

1 <+ xx ,  and for F2, it is 0.15.0/)(4.0/)75.0( 2

21

2

21 <−+−+ xxxx . 
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Figure 2.8 Population distribution for F1 

We test the performance of our algorithm by checking how many runs are successful 

among 200 runs. The results are shown in Figures 2.9 and 2.10. 

 From Figure 2.9 and Figure 2.10, we see that our method actually degrades the 

performance for F1 and F2. Although this may seem surprising it is understandable. 
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Figure 2.9 Performance of the algorithm for F1 

 

 

 

 

 

 

Figure 2.10 Performance of the algorithm for F2 

Although F1 and F2 have many local optima, their main shapes are simple. Take F1 for 

example, its main shape is determined by the first and second terms of F1, 2

2

2

1 xx + , 

therefore, the values near the center (0,0) of the space is small while the values near the 

corner and the boundary of the space is big. The local change is caused by the third and 

fourth terms of F1, )4cos(4.0)3cos(3.0 21 xx ππ −− . With the regular process of evolution, 
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the population will concentrate near the center gradually because of the effect of selection, 

crossover and mutation. The range near the boundary of the space may have big empty 

spaces. So if we insert some individuals in big empty spaces, with high probability they 

will be near the boundary rather than the center of the space. This will explore more 

space, however, for F1, the global optimum is at (0, 0), the insertion has no contribution 

to success and will degrade the performance. 

 However, in practice, we do not know the location of the global optimum, and the 

function may have any shape. So it is necessary to explore more space in order to avoid 

missing some space where the global optimum lies. 

 To demonstrate this, we constructed F3 and F4 based on F1 and F2 respectively. 

To create F3, we copied a small range which contains the global optimum to another 

location, for example, (9-11, 9-11), and add a small value to the original function to make 

the original global minimum a local minimum. The expression of F3 is as follows: 

0.17.0)4cos(4.0)3cos(3.02

),(

21

2

2

2

1

213

++−−+

=

xxxx

xxF

ππ
   

where 2,1,1|10| =≥− ixi
 

7.0))10(4cos(4.0))10(3cos(3.0

)10(2)10(),(

21

2

2

2

1213

+−−−−

−+−=

xx

xxxxF

ππ
 

where 2,1,1|10| =≤− ixi
 

 F4 is constructed similarly. 

 We then checked the performance of the algorithm for F3 and F4. The results for 

F3 and F4 are shown in Figures 2.11 and 2.12 respectively. The figures show that for F3 
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and F4 the ratio of successful runs with individual insertions in big empty spaces is 

higher. If the global optimum is not in the range where most values are good, inserting 

new individuals will increase the probability of finding it. 

 

 

 

 

 

 

 

Figure 2.11 Performance of the algorithm for F3 

 

 

 

 

 

 

 

Figure 2.12 Performance of the algorithm for F4 
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Figure 2.13 F5 

We next considered a discontinuous function. F5 is constructed by putting F1 at the range 

(7-13, 7-13) with its origin at (10, 10) and the range ((-7)-(-13), (-7)-(-13)) with its origin 

at (-10, -10), F2 at the range ((-7)-(-13), 7-13) with its origin at (-10, 10) and the range 

((7-13, (-7)-(-13)) with its origin at (10, -10). The function surface is shown in Figure 

2.13. In its full range, the function is discontinuous. We further added to each continuous 

region a different constant (0, 4, 6, 12 respectively) so that the whole function has only 

one global optimum. 

 Figure 2.14 shows the performance of the algorithm for F5. The figure shows that 

for F5 the ratio of successful runs with and without insertion of new individuals in big 

empty space is nearly the same. It means the contribution of inserting new individual in 

empty space is nearly the same as the cost of inserting. 
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Figure 2.14 Performance of the algorithm for F5 

We hypothesized that increasing the range of the peak containing the global optimum 

will degrade the contribution of individual insertions while decreasing that range will 

have the opposite effect. To test this we first increased the range with the global optimum 

from 6×6 to 18×18, and repeated the experiments.  Figure 2.15 shows the results. We 

then decreased that range from 6×6 to 2×2 and the results are shown in Figure 2.16. The 

results clearly support our hypothesis. (Figure 2.15,  2.16). 

 

 

 

 

 

 

Figure 2.15 Performance of the algorithm for F5 
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Figure 2.16 Performance of the algorithm for F5 

All of the functions discussed so far were two-dimentional. Although we expected that 

the performance of the algorithm should be the same, we considered functions with 

higher dimension. F6 is constructed from F1 by expanding its dimension to four as 

follows, 

4.1)5.1cos(4.0)cos(3.02                  

)5.1cos(4.0)cos(3.02),(
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Its basin is 0.11.2/1.3/1.2/1.3/ 2

4

2
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1
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2

2

1 <+++ xxxxx . F7 is constructed from F6 in the same 

manner we constructed F3 from F1, also for the same reason. We used a population size 

of 20 and terminated the process after 50 generations in this case. We tested the 

performance of our algorithm by checking how many runs are successful among 200 runs. 

The results for F6 and F7 are shown in Figures 2.17 and 2.18 respectively. 
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Figure 2.17 Performance of the algorithm for F6 

 

 

 

 

 

 

 

Figure 2.18 Performance of the algorithm for F7 

From Figure 2.17 and 2.18, we can find that the performance for F6 and F7 is similar to 

F1 and F3 respectively, showing that our algorithm has same behavior for functions with 

higher dimension. 
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2.4. CONCLUSIONS 

In this paper, we propose a modification for the classical Darwinian evolution metaphor 

commonly used in evolutionary optimization by periodically inserting new individuals at 

big empty spaces. To efficiently do this we propose an algorithm to find sufficiently large 

empty hyper-rectangles with polynomial running time. We show that it is efficient and 

scalable. 

  We conducted experiments to check its performance using several functions. The 

experimental results demonstrate that more spaces indeed will be searched if inserting 

new individuals in big empty spaces. Even when the global optimum is not located at the 

range where all or most points have good fitness, the GA with insertion of new 

individuals will have a higher probability of finding the global optimum. This is 

particularly useful in discontinuous and multi-modal optimization domains. The proposed 

method also provides a potential tool for measuring the reliability of a GA search (or any 

other search method for that matter) based on the size of the gaps in the search space. 

Further research is planned to identify such measures. 
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3.0 ABSTRACT 

The GA approach has been proven to be a robust search and optimization method in 

numerous theoretical and practical domains. However, there are some potential problems 

with GA. One of them is that when we use GA to study multimodal problems, we face a 

trade off between searching more regions and keeping convergence. 

In this paper, we propose the idea of relative fitness to solve this problem. When 

individuals are selected to the next generation, we not only consider their fitness, but also 

consider their neighbors’ fitness. One strait forward idea is to consider the global rank 

and regional rank together. We apply this idea to some GA examples and compare their 

performance with traditional GA and some niching methods. The results show that this 

method indeed searches more regions than traditional GA, while at the same time giving 

better converge in each basin of attraction. 

 

3.1 INTRODUCTION 

Genetic Algorithm (GA) [1] search is a probabilistic search approach which is founded 

on the ideas of evolutionary processes. The GA procedure is based on the Darwinian 

principle of survival of the fittest. For the traditional GA, first an initial population is 

created containing a number of individuals. Each individual has an associated fitness 

measure, typically representing an objective value. Only individuals with relatively high 

fitness are selected to produce offspring by crossover and mutation, while those with 

lower fitness will get discarded from the population. The result is another set of 

individuals based on the previous population, leading to subsequent populations with 
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better individual fitness in most cases. After some number of generations, the population 

should have better individual fitness values on average. The GA approach has repeatedly 

proven to be a robust search and optimization method in numerous theoretical and 

practical domains. 

The traditional GA considers the entire population to act as a common gene pool, 

with fitness as the primary feature affecting the likelihood of an individual taking part in 

the creation of new offspring, and surviving to the next generation. As a result, with the 

process of evaluation, the individuals will usually gradually concentrate in one region of 

the search space. 

It has repeatedly been proven that the GA is a robust method to find a good 

enough solution in numerous theoretical and practical domains. However, sometimes we 

hope to find more than one or even all good solutions for the problem. 

Let’s consider the evolution in the real world. Although the individuals most fit 

the environment (high fitness) most likely survive to next generation, the evolution of the 

wolves in a mountain in Asia is extremely unlikely affected by the lions in a forest in 

America. It means that the evolution in vivo is not only affected by the fitness, but also 

affected by another major parameter, namely that of the physical space, within which 

evolution occurs. 

Ideas such as that of a global population being subdivided into smaller, 

infrequently communicating subpopulations, along with related concepts such as 

speciation and other mating restrictions, give rise to the concept of multimodal problems, 

i.e., problems in which there are a number of points that are better than all their 

neighboring solutions, but do not have as good a fitness as the globally optimal solution 
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(Figure 3.1). Multimodality is a typical aspect of the type of problems for which GAs are 

often employed, either in an attempt to locate the global optimum (particularly when a 

local optimum has the largest basin of attraction), or to identify a number of high-fitness 

solutions corresponding to various local optima. 

 

 

 

 

 

 

Figure 3.1 Landscape features of a multimodal problem. (There are three optima with 

different sizes of basins of attraction, and different “shapes”.) 

There are numerous approaches for attempting to find a diverse set of good 

solutions for a multimodal problem. Two of the most successful approaches are fitness 

sharing [2] and crowding [3, 4]. 

The idea behind a fitness sharing scheme is that, if similar individuals are required 

to share payoff or fitness, then the number of individuals that can reside in any one 

portion of the fitness landscape is limited by the fitness of that portion of the landscape. 

Sharing results in individuals being allocated to optimal regions of the fitness landscape. 

Theoretically the number of individuals residing near any peak should be proportional to 

the height of that peak. The fitness method can locate and maintain multiple solutions 
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within a population, However, A GA under sharing will not sufficiently converge 

population elements atop the peaks it locates. 

The crowding method is based on the idea of preserving diversity by ensuring that 

new individuals replaced similar members of the population. The number of individuals 

congregating about a peak is largely determined by the size of that peak’s basin of 

attraction. As a consequence, the individuals are easily trapped by local optima, so it may 

not be suitable for problems with many local optima. The crowding method also can 

locate and maintain multiple solutions within a population. However, some good 

solutions (peaks with high fitness) may be ignored if the sizes of their basins of attraction 

are small. 

We wish to find a good scheme that can find multiple good solutions, converge to 

a peak in each basin of attraction, and make the concentration near the peaks with higher 

fitness higher. In this paper we propose a method to attempt to approach this aim. 

The rest of this paper is organized as follows. Section 2 describes the proposed 

approaches. In section 3, we apply the proposed approaches to a multimodal example and 

analyze the results. In section 4, we apply the proposed approaches to an optimization 

problem. Finally, we present our conclusions and future work in section 5. 

 

3.2 THE PROPOSED APPROCH 

Suppose there are 10 lions in a small plain, some strong, some weak and there are 100 

monkeys in the nearby wide forest, also some strong and some weak. The weakest lion is 

still more powerful than the strongest monkey. The interaction between individuals 
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among the same group is stronger than that among different groups, while also there is 

interaction between groups. 

If we select individuals for reproduction or propagation to the next generation 

based only on the strength of the animal, any lion will have a higher probability to be 

selected than all the monkeys. Therefore we may lose the chance that a monkey may be 

mutated to human, which has higher fitness. 

If we attempt to solve this problem by adjusting their fitness according to the 

population density, a common approach for fitness sharing methods, after some 

generations, when the density of lions is larger than that of monkeys by the same ratio 

that a lion is stronger than a monkey, the whole population will reach an equilibrium.  

Each individual will have the same shared fitness on average. The evolution in each 

group will nearly stop. 

If we suppose that the offspring only compete with their parents, a common 

approach for crowding methods, the size of each group will remain the same although 

evolution in each group still continues. It ignores the fact that the lion is stronger than the 

monkey, in other words, it completely eliminates the interaction between groups. 

We would like to simulate a situation in which the strongest lions have the highest 

probability of being selected, and the strongest monkeys have a higher selection 

probability than the weakest lions, because the interaction between lions and monkeys is 

weaker than that between lions. As a consequence the strongest lions and monkeys 

survive, while the density of lions is higher than monkeys. 
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To reach this aim, we propose that the individuals be ranked according to their global 

rank and regional rank (we name this double rank in order to make the description 

concise). The strongest lions have high global rank and regional rank; the strongest 

monkeys have low global rank, but have high regional rank, while the weakest lions have 

low global rank and regional rank. The global rank reflects the interaction between 

groups (also individuals), and makes the density of lions higher than that of monkeys, 

while the regional rank reflects the interaction between individuals in the same group, 

and maintains diversity. The fitness of the strongest individual in a basin of attraction 

does not decrease because of other individuals close to it. The evolution will never stop 

until it reaches the peak. 

In this paper, the selection probability (new fitness) is determined by the global 

and regional rank as follows: 
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where 
rg RR , denote the global rank and the regional rank respectively, λ,  d are 

constants, which determine the weights of the global rank and the regional rank. 

We will apply the double rank method to some GA examples to investigate its properties, 

and compare it with traditional GAs and fitness sharing methods. We briefly introduce 

these methods first. 

In practice the fitness sharing scheme works by considering each possible pairing 

of individuals i and j within the population and calculating a distance d(i , j) between 
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them. The fitness F of each individual i is then adjusted according to the number of 

individuals falling within some pre-specified distance σsh using a power-law distribution: 
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where the sharing function sh(d) is a function of the distance d given by: 
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where α, σsh are constants to determine the shape of the sharing function and sharing 

range. 

 

3.3 APPLICATION TO A MULTIMODAL PROBLEM 

The initial population is generated randomly. Rank based selection is used as it is more 

robust in general. The population size remains constant. Then the population enters the 

following loop with fixed population size N. 

Selection: Part of the population ( Nrs ⋅ , where rs<1, is the selection ratio) are 

selected to propagate to the next generation and will also be allowed to produce 

offspring.  The selection probability of an individual is ∑
=

−−
=

N

i

c

i

c

ii rankrankp
1

)(/)( , 

where c is a constant. The individual with highest fitness is guaranteed to be selected. 

Crossover: Part of the population ( Nrc ⋅ , where rc<1, is the ratio of crossover) is 

created by crossover of two parents selected randomly from the above selected 
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population. The crossover operator is: 2,1  , if  ),(* 1,2,1,2,1, =>−+= ixxxxRxx iiiiii
, where R is 

a random number. 

Mutation: Each of the individuals in the selected population is mutated with 

some probability Pm. This is done after the crossover step so if they took part in a 

crossover, it was with their original genes rather then their mutated forms. The mutation 

operator is non-uniform mutation [1] with b
TtRyyt )/1(),( −⋅⋅=∆ , where y is the distance 

between the individual and the boundary, R is random number, t is the generation 

number, T is the maximum generation number, b is a system parameter determining the 

degree of non-uniformity. In this paper, the parameters are set as rs =50%, rc=50%. 

Pm=0.2, c=0.5, and b=2. 

Let us consider the simple function shown in Figure 3.1. It consists of three parts; 

each part is a basin of attraction. The left part is a circle function: 

2
)0.1(0.1*5.10.1 −−+= xfitness , 0.20.0 << x , the peak is 2.5 at x = 1.0. The second 

part is a parabolic function: ))5.2(*0.40.1(*0.30.1 2
−−+= xfitness , 0.30.2 <≤ x , 

the peak is 4.0 at x = 3. The third part is a normal function: 

])4(*0.10exp[*0.20.1 2
−−+= xfitness , 0.50.3 <≤ x , the peak is 3.0 at x = 4. 

We apply traditional GA, fitness sharing, and the double rank method to this 

example, and check the distribution of the population after some generations. We use a 

population size of 20 and terminate the process after 50 generations. The same 

experiment was repeated 500 times with different random initial populations. The density 

of points for traditional GA, fitness sharing and double rank methods are shown in 

Figures 3.2, 3.3, and 3.4 respectively. 
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Figure 3.2 Population distribution for traditional GA 

 

 

 

 

 

Figure 3.3 Population distribution for double rank method 

 

 

 

 

 

Figure 3.4 Population distribution for fitness sharing method 

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5
x

no
. 

of
 p

oi
nt

s

0

100

200

300

400

500

600

700

0 1 2 3 4 5x

no
. 

of
 p

oi
nt

s

0

100

200

300

400

500

600

0 1 2 3 4 5x

no
. 

of
 p

oi
nt

s



 

40 

  

 

The above figures show the general behavior of different algorithms. For the tradition 

GA, the population gets gradually concentrated to the global optimum as the search 

progresses in this case. For the fitness sharing method, the points distribute in three 

basins of attraction. However in the left basins of attraction where the function is flatter 

than other region, the distribution of points is also flat, there is no sharp peak. It means 

the points in this region do not concentrate to the peak. For double rank method, 

comparing with traditional GA, the points distribute in all three basins of attraction rather 

than one region. Comparing with fitness sharing method, the density of points near the 

optimum in each basin of attraction is obviously high no matter the shape of the 

functions. 

Although it is not easy to say which algorithm is better than others because an EA 

which excels with a given class of problems might yield poor results when applied to 

another class, and whether an EA performs well may depend on the interest of the 

researcher. There are some common judgments. 

(1) For multimodal problems, whether the algorithm can locate and maintain multiple 

solutions. 

(2) Whether the number of individuals residing near higher peaks is larger than that 

near lower peaks. 

(3) Whether the individuals in a niche converge to the peak located in the niche 

quickly. 
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(4) Whether the results depend on the landscape features besides the fitness of peaks, 

such as the basins of attraction being broad or narrow, the curve of the function 

being flat or steep, and so on. 

(5) Whether the computational complexity is high. 

(6) Others, such as whether it is easy to implement, whether it is stable and so on. 

Usually these depend on what operators are adopted, and are not easy to generally 

critique. 

For traditional GA, the population tends to gradually concentrate to one region with high 

fitness as the search progresses. Therefore it is usually used to perform optimization to 

find a relatively good solution, rather than to deal with multimodal problems. 

Fitness sharing method can locate and maintain multiple solutions within a 

population, and the number of individuals residing near higher peaks is larger than that 

near lower peaks. However, A GA under sharing will not sufficiently converge the 

population elements atop the peaks it locates. The distribution of points in the left of 

basin of attraction in Figure 3.3 shows this clearly. Suppose after some generations, the 

points distribute in different basins proportionally according to the fitness of the peaks. 

Under this condition, sharing is not useful any more, but only hindering the points’ 

convergence to the peaks. On the other hand, the evolution result depends on the shape of 

function and the size of the basin of attraction. If the function is shifted up or down, the 

results will be different although the problem does not really change. 

For the double rank method, it can locate and maintain multiple solutions within a 

population like fitness sharing and crowding methods. Meanwhile, the population can 
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gradually concentrate near the peak in each basin of attraction, due to the effect of 

regional rank. Suppose the number of individuals in one region is nearly fixed after some 

generation, the evolution in the basin of attraction is similar to traditional GA. The 

number of individuals residing near higher peaks tends to be larger than that near lower 

peaks due to the effect of global rank. On the other hand, the results are not strongly 

influenced by the shape of the function, the size of basin of attraction, and whether the 

function shifts up or down. The mean drawback of this method is that additional 

calculation time is required to compute the regional rank for each individual. 

For a high dimension, complex function, it is not easy to show the density of 

points after some generations of evolution graphically. We propose two criteria to 

measure its performance: (1) how close the individuals converge to the optima in each 

basin (2) whether the individuals converge to more regions. 

Criterion (1) can be measured by the following expression: 

∑
=

−=
1

))()((
i

ii xfxpconv  

where )( ixp is the optimum value of the basin where xi lies. The smaller conv is, the 

better the convergence of the algorithm. 

We use the concept of entropy to describe criterion (2) as follows: 
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where ni is the number of individuals in basin i. Higher entropy means the individuals 

distribute in more regions. The higher the entropy is, the better the performance. 

F1 has 3 basins. Each basin has one optimum which can be determined. After we 

determine which basin the individuals belong to, we can find the difference between the 
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fitness and the relative optimum for each individual, then we can calculate conv. After we 

count the number of individuals in each basin, we can calculate entropy. 

We use a population size of 40 and terminate the process after 50 generations. 

Same run is repeated 500 times to get the average of conv and entropy. The results are 

shown in Figures 3.5 and 3.6. 

 

 

 

 

 

 

Figure 3.5 Comparison of convergence of the algorithms 

 

 

 

 

 

 

Figure 3.6 Comparison of the algorithms’ ability to find more solutions 
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From Figures 3.5 and 3.6, we can see that with our proposed method, double rank, the 

individuals will locate more basins of attraction, same as fitness method. On the other 

hand, the individuals will get close to optima in each basin of attraction. However the 

convergence is slow. 

 

3.4 APPLICATION TO AN OPTIMAIZTION PROBLEM 

We have mentioned that for traditional GA, the population gets gradually concentrated to 

one region where the global optimum may or may not be located. In case the proposed 

method can locate and maintain multiple solutions within a population, we expect that if 

we apply the double rank method to an optimization problem, sometime we may decrease 

the possibility of missing the global optimum, particularly when the global optimum 

resides in a small basin of attraction. 

To check this exception, we apply the proposed method to a continuous real-

parameter GA problem (denoted as F2), which is taken from previous studies [5, 6, 7]. F2 

is symmetric and has many local optima. The function is shown in Figure 3.7. Note that 

we inverted the plots by adding a negative sign to the functions for the sake of clarity but 

all the functions used in this paper are minimized. The global optimum of F1 is at (0, 0), 

its ranges are set to 20,20 21 ≤≤− xx . In the range, F2 has thousands of local optima in 

addition to the global optimum. 

One way to measure the success of a GA run is by checking if there are 

individuals within a tight ε-neighborhood of the optimum. In this paper, we consider the 

GA run to be successful if the individual with highest fitness is within the basin of 
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attraction of the global optimum. The motivation behind this is to reduce the computation 

time. If the individual with highest fitness is close to the optimum and in its basin of 

attraction, usually it will go to the optimum gradually. The basin of attraction of F2 is 

0.13.0/35.0/ 2

2

2

1 <+ xx . 

 

 

 

 

 

 

 

Figure 3.7 F2   7.0)4cos(4.0)3cos(3.02),( 21

2

2

2

1212 +−−+= xxxxxxF ππ  

We test the performance of our method by checking how many runs are successful 

among 200 runs. The results are shown in Figures 3.8. 

From Figure 3.8, we see that our method actually degrades the performance for 

F2. Although this may seem surprising it is understandable. Although F2 have many local 

optima, their main shapes are simple. Its main shape is determined by the first and second 

terms, 2

2

2

1 xx + , therefore, the values near the center (0,0) of the space are small while the 

values near the corner and the boundary of the space is big. The local change is caused by 

the third and fourth terms, )4cos(4.0)3cos(3.0 21 xx ππ −− . With the regular process of 

evolution, the population will concentrate near the center gradually because of the effect 
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of selection, crossover and mutation. If we select individuals using the fitness adjusted 

according global and regional rank, some region far away (0, 0) will be visited. This will 

explore more space, however, for F2, the global optimum is at (0, 0), this effect has no 

contribution to success and will degrade the performance. However, in practice, we do 

not know the location of the global optimum, and the function may have any shape. So it 

is necessary to explore more space in order to avoid missing some space where the global 

optimum lies. 

 

 

 

 

 

 

 

Figure 3.8 Performance of the algorithm for F2 

To demonstrate this, we constructed F3 based on F2. We copied a small range which 

contains the global optimum to another location, for example, (9-11, 9-11), and add a 

small value to the original function to make the original global minimum a local 

minimum. The expression of F3 is as follows: 
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where 1|10| ≥−ix . 
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where 1|10| ≤−ix . 

We then checked the performance of the algorithm for F3. The results for F3 are 

shown in Figures 3.9. Figure show that for F3 the ratio of successful runs with 

considering regional rank is higher. If the global optimum is not in the range where most 

values are good, considering global and regional rank will increase the probability of 

finding it. 

 

 

 

 

 

 

 

Figure 3.9 Performance of the algorithm for F3 
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compare with other algorithms. We suggest some ideas about how to measure the GA’s 

performance. The results show that with this method the population can locate multiple 

solutions in multiple peaks, while still converging to optima in each basin of attraction. 

For some GA problems, it can also decrease the possibility of missing the global 

optimum. 

For the double rank method, we have to choose a range in which we calculate the 

regional rank, however setting a reasonable range requires prior knowledge of the GA 

problem. For real GA problems, however, we usually have no prior information about the 

search space and the landscape features. On the other hand, the range relative to each 

individual should be different because the features of the landscape around each new 

individual are different. Also for double rank, inside or outside the region, the physical 

space of the individuals is not taken into account. To overcome these limitations, in the 

future, we plan to use a rank function with distance for each individual to replace double 

rank. The rank function with distance for an individual is the rank of the individual in the 

range confined by a hyper-cube the center of which is the individual and the radius of 

which is the distance value. After we obtained the rank function with distance for each 

individual, we do not have to set a range to calculate the fitness by regional and global 

rank, instead, we calculate the fitness by a suitable weight function. The effect of the 

weight function is similar to that in double rank method. 
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CHAPTER 4 

CONCLUSIONS 

 

In this thesis, we present two techniques to improve the performance of the genetic 

algorithm (GA). 

First, we propose a modification for the classical Darwinian evolution 

metaphor commonly used in evolutionary optimization by periodically inserting 

new individuals at big empty spaces. To efficiently do this we propose an algorithm 

to find sufficiently large empty hyper-rectangles with polynomial running time. We 

show that it is efficient and scalable. 

We conducted experiments to check its performance using several functions. 

The experimental results demonstrate that more space indeed will be searched by 

inserting new individuals in big empty spaces. Even when the global optimum is 

not located at the range where all or most points have good fitness, the GA with 

insertion of new individuals will have a higher probability of finding the global 

optimum. This is particularly useful in discontinuous and multi-modal optimization 

domains. The proposed method also provides a potential tool for measuring the 

reliability of a GA search (or any other search method for that matter) based on the 

size of the gaps in the search space. Further research is planned to identify such 

measures. 
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Second, we proposed a relative fitness approach to investigate multimodal and 

optimization problems. When individuals are selected for reproduction or 

propagation to the next generation, we not only consider their global rank, but also 

consider their regional rank. We apply this idea to some GA examples to analyze 

its behavior and compare with other algorithms. We suggest some ideas about how 

to measure the GA’s performance. The results show that with this method the 

population can locate multiple solutions, while still converging to optima in each 

basin of attraction. For some GA problem, it also can decrease the possibility of 

missing the global optimum. 
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