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Abstract

With the sequence of genomes of many organisms now available, the major challenge of

functional genomics is ”re-assembling the pieces”. A chemical reaction network is considered

to be a very simple and efficient view of a living system. A general purpose kinetic simulator

(KINSOLVER) is developed. As a stochastic alternative, an efficient statistical Monte Carlo

method is applied to identify an ensemble of deterministic models consistent with RNA and

protein profiling data for biological clock of Neuropora crassa. Maximally Informative Next

Experiment (MINE) is designed and employed to guide new experiments to further improve

the quality of the quantitative prediction. A Java Servlet based web site (ENSSOLVER) is

developed to visualize and analyze the simulation results.
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Chapter 1

Introduction

With genome sequencing projects providing nearly complete inventory of the building blocks

of life, functional genomics is now facing the challenge of ”re-assembling the pieces” [1].

Time-dependent RNA [9] and protein profiling [10], protein-protein [11] and protein-DNA

interaction mapping [12], and the in vitro reconstruction of biological reaction networks

[13] are giving us detailed new insights into the make up and dynamics of a living cell’s

genetic and biochemical circuitry. Biological reaction network models or genetic networks

provide a powerful theoretical and computational framework for integrating and summarizing

such genomic, proteomic and metabolic information by allowing for a detailed, quantitative

description of how the cell’s molecular species (including genes, RNA, protein and other

environmental molecules) interact with each other. In principle, genetic networks enable us

to quantitatively describe the dynamics of a living cell. This may include, but not be limited

to: how the cell evolves as a function of time, how the cell responds to the environmental

change, how the cell behaves differently subject to alteration by genetic engineering.

The most fundamental question of life science is, what is a living system? From the

quantitative biological circuit modelling’s perspective, we can try to answer this question

by asking another question: given the inventory of most molecular species and cellular com-

partments and sets of experimental data for the dynamic global response of the cell, i.e.,

the time-dependent concentrations for the molecular species in a cell, how do you recon-

struct the genetic network? This question basically consists of two parts: (1) the genetic

network topology (which species is interacting with which species, in other words, how the

1
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network is connected); (2) the model parameters (kinetic reaction rates and initial concen-

trations). The systems approach is now at the heart of functional genomics and seems to be

the most promising approach to this fundamental question. A full understanding of funda-

mental processes like transcription, metabolism, development, biological clock, mating, aging

and pathogenicity will be obtained when a hypothesized gene regulatory and biochemical

reaction network can successfully predict the global response observed through genomics

experiments.

Genetic networks can be partially identified for a few well-studied systems like the lac

operon [2], trp operon [3, 4], GAL gene cluster [5], qa gene cluster [6], cell cycle [7], and bio-

logical clock [26]. These genetic networks display a diversity of dynamic behavior, including

a transient response, switch-like behavior and oscillations. My research will focus on biolog-

ical clock of Neurospora crassa. This particular genetic network has provided fundamental

insights into how the clock functions in a variety of eukaryotes and provides an exciting

example of a gene regulatory pathway with an oscillatory response.

Chemical reaction network [8] provides a simple, general framework for quantitative mod-

eling of a genetic network’s dynamic behavior in terms of the time-dependent concentrations

of molecular species governed by a system of ordinary differential equations (ODEs). For the

deterministic models, given all rates coefficients and initial concentrations, any genetic net-

work’s behavior will be determined. A general purpose kinetic simulator is developed armed

with several standard ODE solvers [14]. But the problem we are facing here is that the rates

coefficients and initial concentrations are mostly unknown, and the experimental data are

typically sparse and noisy. The ensemble method has been proposed to step around this

problem [27] by avoiding these traditional modeling attempts relying on educated guess of

these unknown parameters. The basic idea is: instead of trying to identify one unique model

parameter set, one should rather, at least initially, admit a random distribution of all possible

parameter sets, i.e., a statistical ensemble of candidate models according to the likelihood

function based on the comparison of model prediction and the available experimental data.
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Provided the ensemble of model parameter sets, we can then predict ensemble averages

along with the uncertainties. Then one question follows naturally: how do we improve the

prediction further? One quick answer is that we should collect more experimental data. The

Maximally Informative Next Experiment (MINE) is designed and implemented to guide

the future experiments, which will provide the maximally additional information so as to

maximally constrain the model parameters. The basic idea is to compare the ensemble of

model parameter sets with themselves by performing virtual experiments using the kinetics

simulator.

In Chapter 2, I will discuss how to model an arbitrary genetic network and simulate

it by computers. Chapter 3 contains the Monte Carlo ensemble method based on kinetics

models. In Chapter 4, I will discuss the application of Monte Carlo ensemble method to the

biological clock of Neurospora crassa. Chapter 5 will be focused on Maximally Informative

Next Experiment (MINE). In Chapter 6, I will discuss the GUI software ENSSOLVER which

is used to visualize the simulation results.



Chapter 2

Kinetics Model (KINSOLVER)

2.1 Introduction to kinetics model

A biological system can be viewed as a chemical reaction network [8]. Validating a genetic

network depends upon our ability to simulate a particular reaction network and to predict

how the network responds to various experimental perturbations. In order to refine and

examine the behavior of a genetic network in a genomic context, an efficient general purpose

simulator, KINSOLVER [14], is designed and implemented to simulate genetics networks

represented by coupled nonlinear differential equations, i.e. compute the time dependent

concentrations of each species from a simple interface for specifying and refining the target

reaction network.

The system of Ordinary Differential Equations (ODEs) is a very basic and useful math-

ematical model in many areas, such as engineering, economics, physics, biology, etc.. The

following is the canonical first order initial value problem (IVP) in general normal form (any

higher order ODEs can be constructed by first order ODEs.):

dy

dt
= f(t,y)

y(t0) = y0

where

t is the time-like independent variable,

y is the column N-vector of dependent variables,

N is the size of the vector,

4
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d
dt

denotes differentiation with respect to t,

t0 is the initial time and y0 is the N-vector initial condition, and

f is a N-vector valued function of t and y.

A kinetics model is a specification of reactions between hypothesized molecular partic-

ipants. The diagrammatic representation is like Figure 2.1. The species are represented as

boxes. The reactions are represented by circles. The arrows indicate the directions of reac-

tions. Since any living system can be viewed as a chemical reaction network, a thorough

understanding of how these models behave is important.

For one particular equation: S1 + S2 ⇋ S3 + S4, there are 4 species, and 2 reactions:

forward and backward, indicated by ⇋. Suppose the forward reaction rate is kf and backward

reaction rate is kb. We want to write out the differential equation for the species, e.g. S1.

In the forward reaction the species is consumed, therefore: −kf [S1][S2]. For the backward

reaction, S1 is generated: +kb[S3][S4]. Therefore we have:

dS1

dt
= −kf [S1][S2] + kb[S3][S4]

Similar equations for the other 3 species can be constructed. Usually the backward reaction

rate is smaller, sometimes just 0.

For this simple Hydrogen Combustion Model, the 3 reactions are:

H2 + O ⇋ H + OH

H + O2 ⇋ O + OH

H2 + OH ⇋ H2O + H.

Based on the method just introduced, we can obtain the full multiplicative mass balance

kinetics, i.e. the complete set of ODEs:

d[H2]

dt
= −kf1[H2][O] + kb1[H][OH] − kf3[H2][OH] + kb3[H2O][OH]
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d[O]

dt
= −kf1[H2][O] + kb1[H][OH] + kf2[H][O2] − kb2[O][OH]

d[O2]

dt
= −kf2[H][O2] + kb2[O][OH]

d[H]

dt
= +kf1[H2][O] − kb1[H][OH] − kf2[H][O2]

+kb2[O][OH] + kf3[H2][OH] − kb3[H2O][OH]

d[OH]

dt
= +kf1[H2][O] − kb1[H][OH] + kf2[H][O2]

−kb2[O][OH] − kf3[H2][OH] + kb3[H2O][OH]

d[H2O]

dt
= kf3[H2][OH] − kb3[H2O][OH]

where kfi and kbi are the forward and backward reaction rates respectively for reaction

number i.

Now, we have formalized the kinetics modeling. The routine can be applied to any deter-

ministic genetic network regardless how complex they are. The genetic network for biological

clock of Neuropora crassa is shown as in Figure 2.2.

2.2 Numerical methods for kinetics model

Kinetics model is just a system of ODEs. So the simulation is just the numerical integration

of ODEs.

The Euler method [15] is the simplest numerical method for solving ODEs which utilizes

the first order of Taylor series expansion:

yn+1 = yn + hf(tn, yn)

where yn is the solution at time tn, and yn+1 is the estimate of the solution of time tn+1

based on yn and slope at tn. h is the step size of discretization.

The RK method [16] is a classical higher order method. Here is one example for 4th order

RK:

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)
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where

k1 = hf(tn, yn)

k2 = hf(tn +
1

2
h, yn +

1

2
k1)

k3 = hf(tn +
1

2
h, yn +

1

2
k1)

k4 = hf(tn + h, yn + k3)

These two conventional methods are efficient for non-stiff problems. But for many genetic

networks, they actually exhibit the property of stiffness and make conventional methods to

be very inefficient [17].

A formal definition of stiffness was given by L. F. Shampine and C. W. Gear [18]:

”By a stiff problem we mean one for which no solution component is unstable

(no eigenvalue has a real part which is at all large and positive) and at least

some component is very stable (at least one eigenvalue has a real part which is

large and negative). Further, we will not call a problem stiff unless its solution is

slowly varying with respect to the most negative real part of the eigenvalues.”

In other words, stiffness is defined in relation to the most negative mode and the time span

we are interested in.

Let us have a look at a simple example. A typical stiff differential equation can be given

by:

dy

dt
= −103[y − exp(−t)] − exp(−t)

y(0) = 0

where y is a scalar for simplicity. The exact solution is:

y(t) = exp(−t) − exp(−103t)
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which consists of two components: exp(−t) and exp(−103t). Obviously, exp(−103t) varies

more rapidly than exp(−t). This system consists of two normal modes: τ1 = 1 and τ2 = 10−3.

In order to reach equilibrium, we have to consider the time scale τ1, while we also have to

consider τ2 for the sake of step size of time. Apparently, if we make the step size too big,

it will invalidate the conventional numerical methods. Hence the step size has to be small,

about the same scale as τ2. But the total integration time needed to reach equilibrium is

much bigger than the step size. As a consequence, we have to wait an unbearably long

time. A more general analysis using Jacobian matrix and various numerical methods for stiff

problems are discussed in [17].

Figure 2.1: Simple Hydrogen Combustion Model.
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Figure 2.2: A genetic network for the biological clock. The white-collar-1 (wc-1), white-collar-
2 (wc-2), frequency (frq), and clock controlled gene (ccg) gene symbols can be superscripted
0, 1, r0, r1, indicating, respectively, a transcriptionally inactive (0) or active (1) gene or a
translationally inactive (r0) or active (r1) mRNA. Associated protein species are denoted
by capitals. Reactions in the network are represented by circles. Arrows entering circles
identify reactants; arrows leaving circles identify products; and bi-directional arrows identify
catalysts. The labels on each reaction, such as S4 , also serve to denote the rate coefficients
for each reaction. Reactions without products, such as D8 , are decay reactions. Reactions
A and P have cooperative kinetics: (A) nWCC + frq0 → frq1 and (P ) WCC + mFRQ
→ WC-2 + mFRQ. The n and m are Hill coefficients or cooperativities. Only for the A
reaction, a backward reaction, (Ā) frq1 → nWCC + frq0, is included, with non-zero rate
coefficient Ā.



Chapter 3

Monte Carlo (MC) Method and Ensemble of Models

3.1 Monte Carlo (MC) method

Many systems in physics have very high degrees of freedom, which makes conventional direct

numerical integration methods not applicable due to the fact that their estimate of error is

O(N−2/d), where N is the total number of points and d is the dimension of the system.

But MC method’s estimate of error is O(N−2), it does not depend on the dimension of the

system.

Modern Monte Carlo methods have their recent roots in the 1940s, when Fermi, Ulam,

von Neumann, Metropolis began considering the use of random numbers to exam different

problems in physics from a stochastic perspective [19]. A MC method allows us to follow the

time dependence of a model for which the change or growth is not well defined. The basic

idea is to provide approximate solutions to a problem by performing statistical sampling

experiments.

The beauty of a MC method indicates that the scope of applications is enormous. It is

now widely used in physics, biology, finance and other disciplines [21] [22].

3.1.1 Simple sampling

Suppose, we wish to calculate the one-dimensional definite integral:

I =

∫ b

a

f(θ) dθ. (3.1)

10
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The simple sampling Monte Carlo method gives an estimate value of this integral by choosing

n points θi randomly from the interval [a, b] with a uniform distribution:

I ∼=
b − a

n

n
∑

i=1

f(θi). (3.2)

Here we actually approximate the average of the function f(θ) to be:

〈f(θ)〉 ∼=
1

n

n
∑

i=1

f(θi). (3.3)

Consider f(θi) as the random response variable, use the Law of Large Numbers when n

is large, we have:

σ2 =
1

n
[
1

n

n
∑

i=1

f(θi)
2 − [

1

n

n
∑

i=1

f(θi)]
2]. (3.4)

The error for this estimate is O( 1√
n
), the convergence is very slow. Also, simple sampling

will only be approximate for functions that are relatively smooth. Any sharp peak in the

function f will probably be missed by a simple MC method. One simple, quick fix is to divide

the interval into a set of unequal sub-intervals and perform the simple MC integration for

each sub-interval. But the more general approach is to sample the function according to the

its shape, which means the number of random points for each interval dθ should be selected

proportional to f(θ)dθ. This leads to the development of importance sampling as a Monte

Carlo method.

3.1.2 Importance sampling

We can rewrite the general definite integral 3.1 as:

I =

∫ b

a

f(θ) dθ =

∫ b

a

f(θ)

p(θ)
p(θ) dθ, (3.5)

where the density function p(θ) satisfies:

∫ b

a

p(θ) dθ = 1. (3.6)

Also, define:

y(θ) =

∫ θ

0

p(θ′) dθ′, (3.7)
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which gives:

dy

dθ
= p(θ); y(θ = a) = a; y(θ = b) = b.

Now, the integration becomes:

I =

∫ b

a

f(θ(y))

p(θ(y))
dy. (3.8)

Apply the same technique as simple sampling here gives the average of the function of

f(θ) as:

〈f(θ)〉 ∼=
1

n

n
∑

i=1

f(θ(yi))

p(θ(yi))
, (3.9)

with the variance to be:

σ2 =

∫ b

a

[
f(θ)

p(θ)
]2p(θ) dθ − [

∫ b

a

f(θ)

p(θ)
p(θ) dθ]2. (3.10)

If we can select the p to have similar behavior as f , then f/p will be very smooth. The

reason for this major improvement is: the distribution of the points of x is now dy/dθ = p(θ)

based on the uniform distribution of y, which means we indeed allocate more points to the

more important places.

Let’s look at a real high-dimensional thermal system, which will be directly adopted to the

ensemble method for genetic network identification. The expectation value of an observable

A(Θ), where Θ is the phase space vector governed by the Hamiltonian function H(Θ), can

be expressed as:

〈A(Θ)〉 =
1

Z

∫ ∞

−∞
A(Θ)e−βH(Θ) dΘ, (3.11)

where β = 1
kT

, k is Boltzman constant and T is temperature. Z is called partition function

which is the normalization factor for the canonical ensemble:

Z =

∫ ∞

−∞
e−βH(Θ) dΘ (3.12)

Comparing 3.12 with 3.5, we let A(Θ) = f(Θ)
p(Θ)

and p(Θ) = 1
Z
e−βH(Θ). According to the

results of 3.9, the expectation value is:

〈A(Θ)〉 ∼=
1

n

n
∑

i=1

A(Θi). (3.13)
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Now the question is how we can actually generate random numbers according to p(Θ). In

general, there is no efficient analytical algorithm to generate a sequence of random numbers

for arbitrary weight function. It will be even more complicated when the Hamiltonian is a

general non-linear function, the blackbox energy criterion, depending on the vector Θ. One

approach comes from Metropolis Algorithm.

3.1.3 Metropolis Algorithm

The idea of using Markov Chain proposed by Metropolis [20] is that one starts from an initial

state Θ0 and then further states are generated which are ultimately distributed according

to equilibrium p(Θ) when n goes to infinity. In order that the Markov process converges

to p(Θ), the transition rate (the probability of transition from Θi to Θj in phase space)

T (Θi → Θj) must satisfy the detailed balance condition:

p(Θi)T (Θi → Θj) = p(Θj)T (Θj → Θi) (3.14)

Then we get:

p(Θi)

p(Θj)
=

T (Θj → Θi)

T (Θi → Θj)
, (3.15)

where

p(Θi)

p(Θj)
=

W (Θi)

W (Θj)
(3.16)

This effectively allows us to rely on the weight function instead of the equilibrium density

function.

The following is the overall flow of Metropolis Algorithm:

1. Specify an initial state Θ0 in phase space.

2. Propose a new state Θ′ with Tp(Θ → Θ′), where Tp(Θ → Θ′) is a user defined

perturbation function

3. Accept the new state Θ′ with Ta(Θ → Θ′) and reject it with 1 − Ta(Θ → Θ′), where

Ta(Θ → Θ′) = min(1, W (Θ′)
W (Θ)

)
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4. Go back to step (2)

For the previous thermal system example:

W (Θ′)

W (Θ)
= e−β△H , (3.17)

where △H is the energy difference between the proposed new state and the old state. This

random walk approach enables us to get the required distribution regardless of the complexity

of the Hamiltonian. In an equilibrium state, the knowledge of un-normalized weight function

is enough to calculate the expectation value of corresponding observables, since only ratios

of probabilities, Q(Θ′)
Q(Θ)

= W (Θ′)
W (Θ)

, enter into the Metropolis acceptance probability Ta.

3.2 Ensemble of Models

In trying to model the genetic network such as shown in Figure 2.2, we are faced with a

fundamental and ubiquitous difficulty of systems biology: essentially all the relevant model

parameters (including, e.g., molecular species initial concentrations and reaction rate coef-

ficients) are unknown and there are a large number of such unknown parameters while the

available experimental data are sparse and noisy. Even a relatively simple genetic network

can require many unknown model parameters. For example, 47 parameters (including 16

initial species concentrations, 26 rate coefficients and 5 unknown concentration unit con-

version factors) are required to model the above simple genetic network for the biological

clock in Figure 2.2. The unknown parameters are typically poorly constrained only by a

sparse set of noisy profiling data, available only for a limited number of molecular species

(e.g. 183 data points for altogether 5 different species in this biological clock system). To

obtain a meaningful comparison of the model to the available data, we have employed a novel

ensemble method of circuit identification which was developed for the context of sparse, noisy

time-dependent profiling data without requiring, e.g., any stationary state assumption con-

cerning the reactants and products in the genetic network. Instead of trying to identify one

unique model parameter set, our goal in this ensemble method is to generate a large, random
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sample of models, i.e., an ensemble of models, consistent with the available RNA and protein

profiling data, implemented as a Monte Carlo (MC) simulation technique. In the ensemble

method, a random walk is initiated in the 47-dimensional space of model parameters, and a

likelihood function Q is used to guide the walk into a parameter region of near-maximum

Q-values. The Q-value in this context is the likelihood that the genetic network model in

Figure 2.2 could have given rise to the observed profiling data, calculated as a function of

the model parameters (i.e., the rate coefficients, initial concentration values of all species,

and unit conversion factors of observed species in the genetic network). We now give a more

detailed, formal description of the ensemble approach.

Let the M -dimensional vector Θ := (Θ1, · · · , ΘM) denote the unknown parameters, com-

prising the natural logarithms of the rate coefficients, of the initial species concentrations

and of any unknown unit conversion factors in the model. All species concentrations are

measured and given here in a common, but unknown ”model unit” of concentration and

all rate coefficients in unites of 1/(hour × cuk−1) for reactions of kth-order (i.e., having k

reactants). The ensemble of models is then formally described in terms of a probability dis-

tribution, the likelihood function Q(Θ), on the ”model space” of all ”model vectors” Θ. To

construct such a Q(Θ), suppose that in a series of Me experiments, labeled by e = 1, · · · ,Me

in each experiment the concentrations [s] of certain species s, labeled by s = 1, · · · ,Ms

(Note: Ms may just be a subset of the total species in this genetic network), are measured

at time points t, labeled by t = 1, · · · ,Mt, let Yl := ln([s]xt,Θ) for each data point labeled

by l := (t, s, e). Here, the superscript (x) in [s]xt,Θ denotes that concentration is measured in

some experimental units of concentration, such as photon or radioactive decay count units

or ratio of induction units. Next, let Y := (Y1, · · · , YD) denote the D-dimensional vector

of all those Yl, where D = MsMT ME. Likewise, let F(Θ) := (F1(Θ), · · · , FD(Θ)) denote

the corresponding predicted values for these observables Y for a given model Θ. For the

above described set of observables Y, the predicted values Fl(Θ) are calculated from Θ by

numerically solving the network’s system of rate equations with the rate coefficients and
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initial conditions comprised by Θ and then calculating from that solution the predicted ln-

concentration Fl(Θ) := ln(φs,t,e[s]t,e) for each observed species s at each observation time

point t in each experiment e. Here, [s]t,e denotes the predicted species concentrations, given

in the model unit ”cu”, and φs,t,e denotes the unknown unit conversion factor from the model

unit to the various detector units used to represent the experimental data. Subsets of experi-

mental data points (s, t, e) which have been measured under identical conditions in the same

experiment with the same experimental detection method share the same φs,t,e-parameters

are required.

It is reasonable to assume (but not fundamental to our ensemble method!) that the

probability distribution P (Y|µ) of the data Y, given their corresponding mean values µ =

µ1, · · · , µD, is representable as a multivariate Gaussian, without error correlations between

different data points Yl. Hence, we will use in the following:

P (Y|µ) = const × e−χ2/2

with

χ2(Y; µ) :=
D

∑

l=1

(Yl − µl)
2/σ2

l

where µl and σl denote the mean and standard deviation of the observable Yl. σl is an esti-

mated value for all log-concentration data points Yl. If multiple realizations of each profiling

experiment are performed, then the full variance-covariance matrix for the experimental data

can be estimated and used in the previous equation.

A given P (Y|µ) does of course not uniquely determine the model ensemble. There is

an infinite manifold of Q(Θ) which is consistent with the data distribution P (Y|µ), and

we have to make ”reasonable” choices. The simplest choice which we have adopted here is

to take P (Y|µ) as the likelihood (in which the experimental data Y are viewed as fixed)

to determine the ensemble Q(Θ). Thus the parameters Θ are distributed according to the

following likelihood function:

Q(Θ) = P (Y;F(Θ)) := Ω−1W (Θ) := Ω−1e−H(Θ)
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where Ω :=
∑

Θ
is the normalization factor. Here the Hamiltonian or energy function is

introduced to emphasize the analogy to the Boltzmann factor as in the previous thermal

system example, H(Θ) := − ln W (Θ).

In standard data-fitting methods, such as maximum likelihood, least-squared fitting and

maximum entropy approaches, one would attempt to construct the correct model by finding

a unique Θ which minimize Q(Θ). Due to the large number of unknown model parameters

and sparsity and noise of the experimental data, such approaches are bound to fail in the

present context. The basic philosophy here is that one should not attempt to find a unique Θ,

unless it is warranted by the quantity and quality of the underlying data. Rather, one should

admit all Θ as possible candidates for the correct model with a probability distribution

which reasonably reflects a Θ’s degree of consistency with the data.

For any ensemble of the general form Q(Θ) := Ω−1W (Θ) with an analytically known or

numerically calculable weight function W (Θ), we can evaluate the ensemble average of any

quantity G(Θ),

〈G(.)〉 :=
∑

Θ

G(Θ)Q(Θ) = [
∑

Θ

G(Θ)W (Θ)]/[
∑

Θ

W (Θ)]

Of course we actually cannot explore all the possible Θ space. For the Monte Carlo ensemble

method,

〈G(.)〉MC :=
1

I

I
∑

i=1

G(Θ(i))

is actually used to calculate ensemble mean from Monte Carlo sample Θ(1), . . . ,Θ(I). The

standard deviation is calculated based on the same Monte Carlo sample, where G(.) could

be squared of any unknown parameter.

The Metropolis Algorithm described in the previous chapter is perfect for this problem.

All the crucial components needed in Metropolis Algorithm now have been defined here, to

generate random samples of Θ according to Q(Θ).



Chapter 4

Monte Carlo (MC) Studies for the Biological Clock of Neurospora crassa

4.1 Introduction

Biological rhythmicity and the clock mechanisms that drive biological rhythms are funda-

mental properties of many groups of cellular life, ranging from prokaryotes to humans. Cir-

cadian clocks function to control daily rhythms in cellular activities and behavior. A detailed

understanding of the molecular and biochemical basis for circadian rhythmicity is essential

to human physiology, including endocrine function, sleep/wake cycles, psychiatric illness, as

well as drug tolerances and effectiveness [23] [24]. Simple eukaryotes provide appropriate

experimental systems to investigate the clock because clock mechanisms are evolutionarily

conserved, such as Neurospora crassa, a well-defined model organism with one of the most

highly characterized clocks. The biological clock [25] provides a prototypical and biologically

ubiquitous example of how a complex trait can emerge from the interaction of even a small

number of gene regulatory elements.

In the lowly bread mould, Neurospora crassa, biomolecular reactions involving the white-

collar-1(wc-1), white-collar-2(wc-2) and frequency(frq) genes and their products constitute

building blocks of a biological clock [26]. A central, open question of systems biology is

whether these building blocks are necessary and sufficient to define a genetic network that

oscillates and how, in quantitative detail, such oscillations emerge from the interactions

between these building blocks. A novel method of genetic network identification [27] is used to

find an ensemble of oscillating network models, constituted from wc-1, wc-2 and frq and their

products, and which is quantitatively consistent with available RNA and protein profiling

data on the Neurospora crassa biological clock. The use of genetic networks to integrate

18
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diverse experimental information and to predict the behavior of a complex trait, such as the

biological clock, provides a new paradigm for quantitative genetics at the molecular level

[28].

Key features of the genetic network that permit oscillations are:

1. The presence of functional wc-1, wc-2, and frq genes, generating protein products WC-

1, WC-2 and FRQ, and the white collar complex (WCC ) formed by WC-1 and WC-2 ;

2. A closed feedback loop of the biomolecular reactions in the genetic network with: WCC

activating the frq gene → the activated frq gene producing frq mRNA → frq mRNA

producing FRQ protein, and → FRQ deactivating WCC ;

3. Dynamical frustration arising in the feedback loop due to WCC ’s stimulating the

production of FRQ while FRQ induces the deactivation of WCC ;

4. A minimal level of cooperativity in the activity of WCC in activating the frq gene

and/or in the activity of the frequency protein FRQ in deactivating WCC.

4.2 Genetic Network Model for the Biological Clock

A genetic network for the biological clock, consisting of 25 reactions and 16 participating

biomolecular species, is shown in Figure 2.2. The experimental basis for each reaction in

the network will now be described. There is strong evidence that the proteins WC-1 and

WC-2 in this network form a complex (WCC ) which acts as a transcription factor for the frq

and clock-controlled genes, ccg [29][30]. In turn, the oscillator protein FRQ provides negative

feedback by interacting with WC-1 conditionally on WC-2 [31] and positive feedback through

the post-transcriptional control of WC-1 synthesis [26]. The band (bd) gene is hypothesized

to be one of these ccg genes in the circuit [29][32].

One alternative light-dependent biological clock model will also be introduced in the next

sections, which includes 3 more species: Phot, frq1L and WCCL; and 10 more reactions. If I
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say clock model, I actually mean the light-independent biological clock model as in Figure

2.2, unless otherwise specified.

The dynamical behavior of this network is then described in terms of kinetic rate equa-

tions [33], with assumed, standard mass action kinetics, forming a system of coupled ordinary

differential equations (ODEs). A unique solution of these coupled ODEs which can be directly

compared to experimental time-dependent profiling data requires as input a knowledge of

the initial (starting) concentrations of all molecular species and of the rate coefficients of

all reactions (such as those given in column (A) of Table 4.1, from an ensemble fit to the

experimental data) which describe gene activation, transcription, protein synthesis, complex

formation, and mRNA and protein decay. Some of these reactions (i.e. A, Ā, C1, P and Ac)

involve the participation of the clock proteins FRQ and WCC. As uncovered by a math-

ematical analysis of this rate equation model (see Stability Analysis in the Appendix A),

the genetic network in 2.2 can display a diversity of dynamical behaviors, including regular

circadian oscillations and damped oscillatory transients to a stable stationary state.

4.3 Experimental Methods

The wc-1 RNA data are digitized from Figure. 1 [26], and the frq RNA data are digitized

from Figure. 1C [31]. The WC-1 protein data are digitized from Figure. 1 [26], and the FRQ

protein, from Figure. 1C [31]. The physiological bd data are from Figure. 2 [29]. The CCG

data subject to different light entrainment experiments are taken from [58].

4.4 Metropolis Algorithm for Biological Clock

Here is the description how the Metropolis Algorithm is used for identification of a genetic

network for the biological clock.

In our actual simulation runs, we did not update all Θ-components, according to the fore-

going procedure. Rather, we chose the ln of unknowns, independent unit conversion factors

ln(φs,t,e) so as to maximize Q(Θ), given the M ′ = 42 remaining (non-unit-conversion-factor)
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Θ-components. Only the remaining Θ-components were subjected to the random Metropolis

updating steps described above, using the so-maximized Q(Θ) as the terminal distribution.

Due to the Gaussian dependence of the original Q(Θ) on the ln unit conversion factors,

ln(φs,t,e), this ”reduced” MC procedure is mathematically equivalent to the ”full” MC pro-

cedure of subjecting all M Θ-components, including all ln(φs,t,e), to random Metropolis

updates. The corresponding ”reduced” values of χ2, minimized with respect to the inde-

pendent ln(φs,t,e), are what is shown in Figures 4.1 and 4.3. σl
∼= 0.14 is assumed for all

ln-concentration data points Yl.

For the model in Figure 2.2 with n = m = 4, we first chose some set of rate coefficients

and initial concentrations to give us a (weakly damped or undamped) oscillatory solution.

We then re-scaled the rate coefficients and initial concentrations and shifted the initial time

value so that the period, maximal amplitude and phase of the oscillation for the [CCG]

protein species in the model roughly matched those of the experimental [CCG] data. The

resulting model parameter vector served as the initial Θ in our MC equilibration run for

the n = m = 4 model. For MC equilibration runs with other cooperativity exponents n

and m, a Θ from a fully equilibrated n = m = 4 run served as the MC initial. We used

a 1 : 1 random mixture of local and global updating moves, with the maximum proposed

step width automatically adjusted after every 20th sweep (where 1 sweep = M ′ Metropolis

updating steps) so as to keep the average Metropolis acceptance probability in both local

and global updating steps around 50%, e.g., between 0.34 and 0.66 for results reported

in Figures 4.2 and 4.3. After about 4 ∼ 6 × 104 equilibration MC sweeps, about 4 × 104

accumulation MC sweeps were performed and the components of the resulting Θ at the end

of each accumulation sweep were included into our MC random sample.

In Figure 4.1 the progress of such a MC random walk towards its ”equilibrium state” is

shown. This ”equilibrium” is reached when the probability for a given parameter set to be

visited equals the likelihood, Q, and, consequently, when the walk mainly explores regions of

near-maximal Q-values or, equivalently, near-minimal values of χ2. The ”model ensemble” is
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then the collection of models ”Θ” which are visited after the random walk has settled into

its equilibrium state.

In conventional maximum-likelihood methods, one seeks to identify a unique model Θ(opt)

by maximization of some likelihood function Q(Θ). This is then sometimes complemented

by a sensitivity analysis, based on the local behavior of Q(Θ) in close proximity to Θ(opt), or

based on an ad hoc, brute force exploration of a few wider, but dimensionally limited param-

eter regions. Such an approach is justified if experimental data are abundant, available for

essentially all molecular species, and low in noise, resulting in a Q(Θ) sharply peaked at

Θ(opt). By contrast, in our current situation, experimental data are sparse, noisy and avail-

able for only a few of the many potentially relevant molecular species. As a consequence,

there may then exist vast expanses of Θ-space where Q(Θ) is maximal, or nearly so, and

any unique, ”optimal” choice of (if one exists, by whatever choice of likelihood!) may seri-

ously misrepresent the information actually contained in the data. The crucial advantage

of the ensemble method is that it systematically explores those expanses of Θ-space. In

doing so, it allows us to get a more complete and systematic understanding of what can

be known, inferred or predicted on the basis of the existing data and, of equal importance,

what is not known and can not be predicted. Thus, the method allows us to make some

quite definitive, experimentally testable model predictions for some model parameters and

some observable properties, even though many other parameters and properties may be very

poorly constrained. Furthermore, the presently most poorly constrained properties are those

whose future measurement will provide the most stringent additional constraints. Hence the

ensemble can systematically guide the design of maximally informative ”new” experiments,

based on the available ”old” data.
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4.5 Results for light-independent biological clock model

4.5.1 Comparison to profiling experiments

Predictions by the model ensemble using the ensemble averages +/− 2 ensemble standard

deviations are shown in Figure. 4.2 and are quite in accord with the experimental data.

The conclusion is that the genetic network in Figure 2.2 is sufficient to explain published

profiling data on the biological clock. The ensemble means and standard deviations for the

26 rate coefficients of the model are given in column (A) of Table 4.1. While a plethora of

models have been proposed to explain biological rhythms [34], there needs to be a tighter

linkage between theory and experiment, as noted by [35]. In Figure 4.2 we present detailed

experimental support for the model in Figure 2.2.

The model ensemble makes a number of predictions consistent with experimental obser-

vations. The WC-1 protein is predicted to lag the FRQ protein with close to an 8-hour

phase difference in Figure 4.2C, consistent with the experimentally observed 8-hour phase

difference [26]. The FRQ protein and frq RNA are predicted to oscillate with a (4-6)-hour

phase difference in Figure 4.2B and Figure 4.2C, as observed [32]. The de-repression of FRQ

takes 14-19 hours of the circadian cycle, as observed in Figure 4.2C [36]. The range of ln[wc-

1 r1] oscillations implies a less than 2-fold induction of the wc-1 r1 mRNA (compared to over

12-fold induction of frq mRNA) during the cycle in the model in Figure 4.2B; indeed, only

limited oscillations in wc-1 mRNA are observed, if any [26]. The level of WC-2 (presump-

tively in the nucleus) is predicted to be in great excess of other proteins, as observed [31].

Finally, the rate of translational synthesis of FRQ (L3 in Figure 2.2) is relatively rapid (with

translation coefficient on the order of L3 ∼ 4/hour in column (A) of Table 4.1) compared

to the post-translational degradation of WCC mediated by FRQ in the decay reaction p

(with an average cycle-maximum decay coefficient on the order of P × [FRQ ]m ∼ 1.2/hour)

[31]. The model also trivially concurs with experiments in that knocking out either the wc-1,

wc-2, or frq genes is predicted to eliminate oscillations, as observed [29]. Our estimated value
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of 5 hours is consistent with the FRQ protein life-time of ≈ 4 − 7 hours, obtained directly

from the FRQ-decay data of Liu et al [37] , independent of our model ensemble.

4.5.2 Minimal requirements for a ticking clock

Having identified a circuit in Figure 2.2 that is simple and explains observations on the

biological clock in the absence of external environmental stimuli, it is natural to ask what

features of the clock are essential for oscillations. A key feature to obtain oscillations in the

genetic network has been the introduction of cooperative kinetics in the activation of frq

(A) and/or the deactivation of WCC (P), with cooperativity exponents or Hill coefficients

n and m, respectively, as defined in Figure 2.2. From the mathematical stability analysis in

the Appendix A (for a slightly simplified version of the model, with WC-2 set to a time-

independent constant), it can be seen that some minimal amount of cooperativity, namely

nm > 4, is required for the model to exhibit undamped oscillations regardless of initial con-

ditions. There is some evidence that FRQ acts as a dimer [38]. Four model ensembles were

identified with varying Hill coefficients, with n=m and n=4, 3, 2, or 1 [33]. From Figure

4.3A, it can be seen that the ensemble without cooperativity (n = m = 1) has χ2-values

substantially larger than those of the three ensembles with cooperativity. The χ2-values

of the remaining three model ensembles, with cooperativity, significantly overlap, and the

best fits are achieved with Hill coefficients of n = m = 3, substantially less than postu-

lated in some previous models [39] and in correspondence to the most robust version of a

simplified stochastic model with the same Hill Coefficient n = 3 [40]. On the basis of the

limited-duration data available, we cannot at present discriminate between truly oscillatory

(undamped) models and weakly damped oscillatory models, such as the n = m = 2 model

shown in Figure 4.3A. The exact mechanism by which the FRQ protein deactivates WCC

complex is unknown. Smolen et al. [41] propose that the FRQ protein simply sequesters

WCC complex in contrast to the model in Figure 2.2 in which FRQ degrades WC-1 in the P

reaction. Is it necessary that the P reaction be a degradation reaction? To answer this ques-
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tion the ensemble method was used to reconstruct the likelihood functions under 4 distinct

hypotheses about WCC deactivation with 3 slight modifications in the P reaction, defined

in Figure 4.3B. Two of these hypotheses are variants on Smolen’s sequestering hypothesis

supplemented with cooperativity; and another simply assumes that FRQ catalytically trig-

gers WCC complex falling apart into its constituents, WC-1 and WC-2. As can be seen

in Figure 4.3B, these alternative deactivation mechanisms are reasonably competitive with

the proposed degradation mechanism in Figure 2.2. At this point in time the data do not

strongly support a particular deactivation mechanism, although the original deactivation

mechanism in Figure 2.2 appears to outperform the 3 other mechanisms proposed in Figure

4.3B. Reaction networks with both positive and negative feedback elements have been pro-

posed to explain the dynamics of the biological clock [42][43]. The network in Figure 2.2

has both kinds of elements. One positive feedback element in the clock appears to be the

post-transcriptional control of WC-1 synthesis [26] by FRQ in reaction C1 of Figure 2.2. In

Figure 4.3A, we also show the results for a model without this positive feedback of FRQ on

WC-1 synthesis, i.e., assuming a modified C1 reaction, wc-1 r0 → wc-1 r1, without participa-

tion of FRQ. As can be seen, the two ensembles overlap substantially in their likelihood χ2

values and they do not differ significantly with regard to fit to available profiling data on

the Neurospora crassa clock. The FRQ positive feedback in reaction C1 is evidently not an

essential element of the network topology for the biological clock to function, as concluded

elsewhere [41][38].

So, why is there post-transcriptional control of WC-1 by FRQ [26][38][44]? A possible

answer is suggested by the predicted life-time of the translationally active wc-1 r1 mRNA,

〈D7〉
−1 ≈ 20 hours (from Table 4.1), which is comparable to a full (∼ 24-hour) oscillation

period and about 30 times longer than the predicted life-time of the inactive wc-1 r0 species,

〈D1〉
−1 ≈ 0.65 hour. We thus hypothesize that the primary function of the C1 reaction is

not to control WC-1 production, but simply to enable it by conferring sufficient longevity

to the wc-1 mRNA. Without this mRNA stabilization, the clock system would be relegated



26

to a non-oscillatory region of its parameter space, i.e., the wc-1 mRNA would decay too

fast for the clock to tick. One might ask how a fit to the data can be achieved without the

positive feedback by FRQ on wc-1 mRNA, as shown by the light-blue curve in Figure 4.3A.

The answer is that, in our circuit without posttranscriptional regulation of wc-1 mRNA,

the modified C1 reaction (without FRQ participation) still serves to lengthen the life-time

of the wc-1 mRNA, i.e., 〈D7〉 is still substantially reduced relative to 〈D1〉. The problem is

that, without FRQ participation, we are lacking a biochemical explanation for the life-time

increase. The existence of the FRQ-induced mRNA stabilization and its detailed biochemical

mechanism needs to be explored further experimentally. The fact that, compared to its FRQ

regulator (Figure 4.2C), wc-1 r1 has a much weaker oscillation amplitude is an immediate

consequence and already a direct experimental confirmation of the FRQ-induced mRNA

stabilization. For life-times comparable to the oscillation period, [wc-1 r1] tends to ”average

out” the oscillations in its FRQ-controlled production rate. If the wc-1 r1 mRNA life-time

were much shorter than the oscillation period it would be difficult to reconcile the two

experimental observations that, on the one hand, FRQ is a critical translational activator;

yet, on the other hand, the resulting activation, as measured by [wc-1 r1], oscillates much

more weakly than the activator itself.

A central feature of the genetic network representing the biological clock in Figure 2.2 is

its closed, dynamically frustrated feedback loop [45] where, on the one hand, WCC activates

the frq gene and, on the other hand, the FRQ protein deactivates WCC. Visualization of the

model ensemble provides insights into how clock oscillations emerge in the genetic network

in a way consistent with the data in Figure 4.2. Key parameters of this feedback loop in

Figure 2.2 are the rates of activation (A) and deactivation (Ā of frq by WCC and the

rate of deactivation of WCC by FRQ (P ). In the mathematical stability analysis given

in the Appendix A, a function R has been identified which partitions the 47-dimensional

parameter space into one domain where only undamped oscillations occur (red) and another

where damped oscillations are possible (blue) as shown in Figure 4.4.
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In Figure 4.4, the n = m = 4 model ensemble is projected into the (A′, P ′, Ā′) volume,

where the rate constants (A,P, Ā) have been re-scaled to be dimensionless quantities. As can

be seen, these re-scaled ensemble rates represent a cylinder (red) containing about 82% of

the ensemble that satisfy the Routh-Hurwitz Criterion for instability (R > 0 at all fix points,

see below) which is necessary and sufficient for the model to exhibit only sustained oscilla-

tions. The remaining 18% of the ensemble (blue), which are scattered, do not have sustained

oscillations. If this subset of damped oscillators (blue) is trimmed from the ensemble, the

remaining models (red) form a tight droplet of re-scaled model parameters. Similar plots in

which the z-axis Ā is replaced with the other re-scaled rate coefficients that control tran-

scription and translation of frq in the closed feedback loop (S4, L3) are not as constrained

and can take a broader spectrum of values on the vertical axis (as shown in Figure 4.5).

The values of the re-scaled rates (A′, P ′, Ā′) of activation and inactivation of frq and decay

of WCC are thus key quantitative elements for sustained oscillations. The plot in Figure 4.4

emphasizes that the data in Figure 4.2 are consistent with a genetic network with sustained

oscillations, but do not eliminate some genetic networks with damped oscillations (in blue).

4.5.3 Robustness of the biological clock

Perturbation of the ensemble shown in Figure 4.4 also allows examination of the robustness

of the biological clock. One of the key predictions of the model ensemble is that the life-

time (1/D7) of the translationally active wc-1 mRNA is long (∼ 20 hours). To examine

robustness of the model, we varied this key parameter for each ensemble member from

14 hours in the reduced model with WC-2 constant (〈D7〉 = 0.05/hour in column (A) of

Table 4.1) down to 1.0 hour (or D7 = 1.0/hour), keeping all other rate coefficients fixed

at their ensemble-generated values. As indicated in Table 4.2 by the percentage of stable

oscillators in the so-perturbed ensemble, the cyclical dynamics is robust against an about

15-fold decrease of life-time, but then the ensemble precipitously becomes arrhythmic at

a life-time of ∼ 1.33 hours (or D7 = 0.75/hour) or shorter. The actual distribution of
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D7-values in the unperturbed ensemble of Figure 4.4 imposes a much tighter constraint of

D7 < 0.20/hour, i.e., the experimental data, through the ensemble likelihood, only support

a life-time of translationally active wc-1 mRNA longer than 5 hours.

4.5.4 Stability analysis of genetic network

The model in Figure 2.2 can be translated into a system of 16 differential equations describing

the rate of change of each of the 16 species in the genetic network as a function of time

t. The 16 species concentrations [wc-11], [wc-1r0], [wc-1r1], [WC-1], [wc-21], [wc-2r], [WC-

2], [WCC], [frq0], [frq1], [frqr1], [FRQ], [ccg0], [ccg1], [ccgr1], and [CCG] are abbreviated

here to u1, ur0, ur1, up, v1, vr, vp, w, f0, f1, fr, fp, g0, g1, gr and gp, respectively, with constant

total frq-gene concentration fG := f0 + f1. The reaction labels in Figure 2.2 double as

the rate coefficients in the reaction network. This 16-dimensional model can be reduced to

a 7-dimensional one by several simplifications. The clock-controlled gene and its products

(g0, g1, gr and gp) can be dropped from the rate equations because their dynamics are driven

entirely by the clock genes (wc-1, wc-2 and frq) and their products, and the ccg products do

not feed back on the clock genes in Figure 2.2. The WC-2 protein is in 5-fold molar excess over

FRQ and WC-1 in the nucleus [31], and hence wc-2 and its products (v1, vr, vp) can be treated

approximately as constants. The total amount of each gene, e.g., f0 + f1 =: fG is constant,

allowing us to eliminate f0. Likewise, the concentration of the unregulated wc-1 gene, u1, is

a constant [26]. These simplifications leads to a reduced model with a ”dynamical vector”

obeying the following 7 rate equations, of the general form y := (f1, fr, fp, w, up, ur1, ur0),

with the 7 components of the ”reaction rate vector” given by the right-hand sides of the

rate equations: ẏ = Γ(y), with the 7 components of the ”reaction rate vector” given by the

right-hand sides of the rate equations:

ḟ1 = A(fG − f1)w
n − Āf1

ḟr = S3(fG − f1) − S4f1 − D3fr
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ḟp = L3fr − D6fp

ẇ = E2up − D8w − nA(fG − f1)w
n + nĀf1 − Pwfm

p

u̇p = L1ur1 − D4up − E2up

u̇r1 = C1ur0fp − D7ur1

u̇r0 = V1 − D1ur0 − C1ur0fp

Here, e.g., ẇ := dw/dt, denotes the time derivative of w(t); E2 := C2vp = constant, and

V1 := S1u1 = constant. The Hill coefficients n and m are, respectively, the number of WCC

molecules needed to cooperatively activate frq and ccg; and the number of FRQ molecules

needed to degrade cooperatively WCC.

To explore the long-time dynamics of our biological clock model, we analyze its stationary

states or ”fixed points” (FP), denoted by y∗, where all species’ time derivatives would vanish,

i.e., the solution(s) of the 7 coupled equations Γ(y∗) = 0. By quasi-static approximation, all

species can be eliminated except fp and w. The FPs are given by the following 2 functions:

w =
C2L1S1ur0fpvp

D7(D8 + Pfm
P )(D1 + C1fp)(D4 + C2vp)

fp =
L3(S3ĀfG + S4Pwn)

D6D3(Ā + Awn)

By linearizing the rate equations near the FP, we can find out whether or not the FP

is stable (i.e., for slight departures the system returns to the FP) [46][47]. If all FPs of the

model are unstable, then a variety of non-trivial dynamical behaviors are possible, including

oscillations. So, a necessary and sufficient condition for the model to exhibit only sustained

oscillations, regardless of initial conditions, is that all its FPs be unstable [46]. Stability or

instability of a FP is governed by the ”stability matrix” J, the Jacobian of Γ(y) with matrix

elements Jij := ∂Γi/∂yj evaluated at which, for our 7-dimensional model, has the general

form:
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The non-zero J-matrix elements are given by γ1 = Awn + Ā, γ2 = D3, γ3 = D6, γ4 =

D8 + n2Awn−1(fG − f1) + Pfm
p , γ5 = D4 + E2, γ6 = D7, γ7 = D1 + C1fp, b̄1 = S4 − S3,

b̄2 = L3, b̄3 = −mPwfm−1
p , d̄1 = n(Awn +Ā), d̄3 = −ē3 = C1ur0, b4 = E2, b5 = L1, b6 = C1fp

and d1 = nAwn−1(fG − f1), with all concentrations set to their respective FP values (e.g.

fp = f ∗
p ). The sparseness and regularity of this matrix J is due to the closed feedback loop

in the genetic network in 2.2 and mathematically resembles the linearized system of the

synthetic oscillator known as the repressilator [45].

A FP is unstable if and only if J at least one of the (in general complex) eigenvalues

of acquires a positive real part. The eigenvalues of J, denoted by λ are the roots of the 7th

order characteristic polynomial Φ(λ) := det(J − λE) where E denotes the unit matrix [48].

By factorization of Φ(λ) into lower-order sub-polynomials and a Routh-Hurwitz analysis [49]

of these sub-polynomials, we can prove that an FP is unstable (i.e., a complex λ exists with

Φ(λ) = 0 and Re(λ) > 0 ) if and only if

R := A2
3 + A2

1A4 − A1A2A3 > 0

where the an are coefficients of a 4th order sub-polynomial of Φ(λ) given in terms of the

J-matrix elements by

A1 = γ1 + γ2 + γ3 + γ4,
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A2 = (γ1 + γ2)(γ3 + γ4) + γ1γ2 + γ3γ4 − d1d̄1,

A3 = γ1γ2(γ3 + γ4) + γ3γ4(γ1 + γ2) − d1d̄1(γ2 + γ3),

A4 = γ1γ2γ3γ4 − d1b̄1b̄2b̄3 − d1d̄1γ2γ3.

The more straightforward alternative is to calculate the eigenvalues directly and check

the sign of the real parts. The results of the two methods are identical.

Figure 4.4 shows a projection of a Monte-Carlo-generated model ensemble into a 3D

parameter subspace. Different colors indicate whether the model FPs are all unstable (R > 0,

in red) or whether at least one FP of the model is stable (R < 0, in blue) according to the

Routh-Hurwitz analysis. It can also be proved that the foregoing FP instability criterion

(R > 0) can be satisfied if and only if the level of cooperativity in the model exceeds a

threshold given by

nm > 4.

as in Appendix A.

4.6 Light-dependent biological clock model and results

The previous model describes the circadian clock of Neurospora crassa in the absence of

environmental cues. But the biological clock is indeed entrainable by exogenous stimuli such

as light, temperature and nutrition. Entrainment synchronizes the endogenous oscillations

with the exogenous time and allows behavioral flexibility. The blue light photoreceptor, WC-

1, mediates light input to the circadian system through direct binding (with WC-2 to form

WCC by heterodimerizing via PAS domains) to the frq promoter [30]. A modified clock

model is proposed with inclusion of extra light-dependent species and reactions as shown in

Figure 4.6.

Phot is the species representing externally controlled light, which transforms WCC and

frq to WCCL and frqL respectively. The behavior of the light dependent species are analogical

to the original species in dark. This model effectively includes the light signaling pathway.
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In Figure 4.7, 3 more profiling data sets of CCG are present [58](40 data points for

6+6 hours LD cycle, 31 data points for 9+9 hours LD cycle and 31 data points for 18+18

hours LD cycle). The light intensity is 20 µmol photons/m2/s. The fitting also includes

the original data used for the previous light-independent model. The subtitles of duration

indicate the light-dark cycle (e.g. 12 hours means 6 hours dark + 6 hours light). The initial

Θ used in these model identification runs is taken from the original light-independent n =

m = 4 model parameter vector. The predicted conidiation rhythm by Monte Carlo average

fits the experimental data very well, which gives the conclusion that the genetic network

given in Figure 4.6 is sufficient to explain these available clock data. The circadian rhythm

is synchronized by the external light entrainments, which shows the adaptiveness of the

biological system. The endogenous clock anticipates the day cycle for the whole system to

optimize its various physiological processes. 12-hour LD cycle gives about 17 cycles, 18-hour

LD cycle gives 11 cycles, and 36-hour LD cycle gives 5 cycles. So Figure 4.7 indeed shows

the virtual daily life of Neuropora crassa.

Based on the prediction of column (C) of Table 4.1, same statement as before can be

made to address the necessity of post-transcriptional control of WC-1 by FRQ. 〈D7〉
−1 ≈

16.7 hour, while 〈D1〉
−1 ≈ 0.136 hour. The life time of wc-1 r1 (〈D7〉

−1) is longer that of

wc-1 r0 (〈D1〉
−1) by a magnitude of 100. At the same time, the range of D7 values is again

constrained to be significantly above 5 hours. Also, the estimated value of D6 is about 0.193

(the FRQ protein life time ∼ 5 hours), which is again consistent with the experimental

observation [37].

When we introduce the light-dependent species and reactions, what happens to the fitting

to the original dark data and does inclusion of more light-dependent data indeed improve the

prediction? Figure 4.8 shows the comparison to the original dark data. This figure contains

3 columns for different χ2 calculation. As you may notice that in Table 4.1, the difference

between D1 (∼ 0.141/hour) and D7 (∼ 0.0717/hour) for column (B) is not as big as the

other two (One of our key predictions is that life time of wc-1 r1 is significantly longer). The
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explanation for this is that for column (B) fitting, the predicted behavior of CCG protein at

initial time is unreasonably high as shown in the inset of Figure 4.8B. When the light data is

included, values of D1 (∼ 7.33/hour) and D7 (∼ 0.0632/hour) return to the appropriate ratio

( 115). The fitting to the dark data by the light-dependent clock model still gives accurate

prediction for FRQ protein, and even better outcome for CCG (without the unrealistic early

time concentration). The light-dependent model not only interprets the light entrainment

experimental data, but also maintains the prediction for the dark data. This also warns us

that this high dimensional unknown parameters space could give very different, sometimes

biologically wrong prediction as column (B) runs into a wrong parameters space. Then

more experimental data and more realistic model guides the exploration back (or closer) to

correctness.

4.7 Discussion

The usual modus operandi for quantitative genetics is to narrow progressively the search

for quantitative trait loci (QTLs) to explain a complex trait in terms of a position on a

chromosome [50]. The ultimate expression of this approach is the Human HapMap [51]. Once

there with the QTL in hand from the use of the HapMap, the story ends with the question

of what the QTL does. Here we have introduced a different complementary paradigm for

explaining a complex trait. Two genetic networks are introduced as a precise hypothesis

to explain how genes and their products control the biological clock (as in Figure 4.2 and

4.7). The resulting genetic networks provide quantitative and testable predictions about how

biomolecules interact to determine such a complex trait. Analysis of the biological clock in

Neurospora crassa has yielded predictions as to the necessary and sufficient conditions for

sustained endogenous biological rhythms. Recently Elowitz and Leibler demonstrated that

a synthetic oscillator called the repressilator could be constructed in E. coli [45]. Successful

engineering of the repressilator depended critically on using the associated genetic network

describing the repressilator. The ultimate test of our genetic network herein for the biological
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clock in Neurospora crassa will be its successful exploitation to synthesize a biological clock

in a strain without a timepiece.

0 20000 40000
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Monte Carlo Sweep

Figure 4.1: Monte Carlo random walk equilibration in the parameter (Θ) space of the models.
Progress towards equilibrium is monitored by χ2 = −2 ln Q+const which is a measure of the
departure between the data and the model prediction of the genetic network in Figure 2.2,
for model cooperativities (i.e., Hill Coefficients) n = m = 4. As the fit is refined, χ2 ,
on average, decreases with progressive Monte Carlo sweeps in the parameter space. One
”sweep” comprises one visit, on average, to all M unknown parameter values, Θ1, ...ΘM

(where M = 47 in this model), with a consequent random decision whether or not to change
the visited parameter, based on the Metropolis updating rule. This random search method
for finding a parameter region near a minimum of χ2 occasionally takes a risk and permits
the χ2 to increase (worsen the fit), thereby allowing the walk to escape from local minima
in the χ2-surface, as seen in the figure.
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Figure 4.2: Comparison to experiments. A model ensemble for the genetic network in Figure
2.2, with cooperativities n = m = 4, predicts various profiling data on the biological clock
of Neurospora crassa. In each panel, predictions of the model ensemble for the lg of con-
centration (in model concentration units ”cu”) are shown with +/− 2 ensemble standard
deviations (shaded areas) about the ensemble mean (continuous lines). The points are the
experimental lg data. (A) levels of conidiation for a bd mutant, hypothesized to be a measure
of a CCG protein, over a 7-day interval; (B) levels of wc-1 r1 and frqr RNA over time t; (C)
levels of FRQ and WC-1 protein over time t.
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Figure 4.3: Comparison of model fits. Some model ensembles, using modified or simplified
versions of the model in Figure 2.2, outperform the original model in terms of χ2-values. A
histogram of values of χ2 = −2 ln Q+const is shown for varying model ensembles. (A) The
number of molecules of WCC (n) or FRQ (m) working together cooperatively (i.e., the Hill
coefficients) in reactions A and P are varied with n = m. Also the histogram of χ2-values for
a model ensemble without post-transcriptional regulation of wc-1 by FRQ is reported. Some
models with less cooperativity in the action of WCC or FRQ (e.g. n = m = 3, dark blue
curve) or without post-transcriptional regulation (light blue curve) have smaller χ2-values
on average than the n = m = 4 model. We have explored in detail models with n 6= m (for
n,m = 2, · · · , 4) with additional Monte Carlo runs as in Figure 4.3; it was unnecessary to
consider n = 1 and m = 1, · · · , 4 or m = 1 and n = 1, · · · , 4 because these cases do not satisfy
the condition nm > 4 necessary for oscillations (see Appendix A). The best model ensemble
(histogram most shifted to the left) to date remained n = m = 3. (B) The deactivation
reaction (P ) is varied, allowing by 4 different deactivation mechanisms (including the one in
Figure 2.2, in black) to be compared for their goodness of fit. Each deactivation reaction is
defined in the Figure legend.
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Figure 4.4: 3D projection of the model ensemble. The 3D parameter sub-space is spanned
by re-scaled, dimensionless rate coefficients P ′, A′ and Ā′. Points in the ensemble allowing
only sustained, undamped oscillations are shown in red; points in the ensemble that allow
for damped oscillations (from the Stability Analysis in Appendix A) are shown in blue, for
the model of Figure 2.2 with n = m = 4. To construct P ′, A′ and Ā′, define the ”maximal”
concentrations of WCC and FRQ, wx := L1V1/(D7D8) and fpx := fGS4L3/(D3D6), where
V1 := S1u1 := S1[wc-1 1] is the rate of [wc-1 r0]-production and fG := f0 + f1 := [frq0] + [frq1]
is the total, constant frq-gene concentration. Using the FRQ protein life-time 1/D6 as the
”unit of time”, then define dimensionless, re-scaled rate coefficients, such as P ′, A′, Ā′, L′

3, S ′
4

and D′
8 , respectively, for the P , A, Ā, L3, S4 and D8-reactions as follows: P ′ := P (fpx)

m/D6,
A′ := A(wx)

n/D6, Ā′ := Ā/D6 , L′
3 := L3/D6, S ′

4 := S4/D6 and D′
8 := D8/D6. The re-scaling

permits us to collapse higher-dimensional parameter sub-spaces, of dynamically equivalent
models, into lower-dimensional ones.
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Figure 4.5: 3D projection of the model ensemble. (A) z -axis is replaced by S ′
4 := S4/D6. (B)

z -axis is replaced by L′
3 := L3/D6.

Figure 4.6: Genetic network for biological clock of Neuropora crassa with consideration of
light. 3 more species are introduced: Phot, WCCL and frq1L, and consequently E1, E2, B,
B̄, Cc and Q-reactions are included.
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Figure 4.7: Comparison to experiments. A model ensemble for the genetic network in Figure
4.6, with cooperativities n = m = 4, predicts CCG data on the biological clock of Neurospora
crassa. In each panel, predictions of the model ensemble for the lg of concentration (in
model concentration units ”cu”) of CCG protein are shown with +/− 2 ensemble standard
deviations (shaded areas) about the ensemble mean (continuous lines). (A) 6+6 hours LD
cycle; (B) 9+9 hours LD cycle; (C) 18+18 hours LD cycle. The CCG protein data are
obtained from [58].
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Figure 4.8: Comparison of three different fitting methods for CCG and FRQ in the dark.
(A) χ2 is computed based on wc-1 r1. (B) χ2 is computed based on wc-1 r1+wc-1 r0. The
inset for CCG shows the lg-concentration at very early time. The peak value is greater than
the average of later oscillation about 4 fold at lg-scale. (C) χ2 is computed based on wc-
1 r1+wc-1 r0 together with the light dependent data from [58] (6+6, 9+9 and 18+18 hours
LD cycle).
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X k 〈 X 〉 σ(X)
(A) (B) (C) (A) (B) (C)

A 5 0.0126 0.572 0.260 0.112 0.145 0.103

Ābar 1 0.297 0.338 0.293 0.457 0.0323 0.051

S1 1 10.4 24.4 2.00E-04 3.53 9.85 4.36E-05

S2 1 0.247 0.077 0.333 0.740 0.535 1.20

S3 1 2.77E-3 5.29E-4 1.91E-04 0.0103 1.59E-3 6.10E-04

S4 1 6.05 8.34 5.41 2.11 0.989 2.57

D1 1 1.54 0.141 7.33 0.485 0.0608 1.36

D2 1 8.87E-4 1.73E-3 0.572 6.18E-4 5.60E-4 1.57

D3 1 0.547 0.439 0.448 0.0584 0.0489 0.0622

C1 2 0.0127 0.0519 5.08 8.44E-3 0.0316 1.85

L1 1 63.0 79.2 71.2 12.0 12.8 8.29

L2 1 15.6 20.2 1.49 1.34 2.49 8.01

L3 1 6.56 5.76 62.5 2.68 2.08 14.9

D4 1 0.318 0.352 0.600 0.0812 0.0599 0.277

D5 1 0.368 0.349 0.0977 0.0384 0.0356 0.0124

D6 1 0.208 0.241 0.193 0.0123 0.0200 9.52E-3

D7 1 0.0496 0.0717 0.0632 0.0102 0.0158 9.62E-3

D8 1 1.17E-3 6.09E-3 0.0362 2.59E-3 7.5E-3 9.27E-3

C2 2 2.16 7.34 6.77 0.749 1.27 1.96

P 5 4.83 10.5 3.69 9.66 10.2 3.15

Ac 5 1.83 2.26 6.95 1.70 2.02 1.90

Bc 1 5.26 0.186 0.455 2.43 8.27E-3 0.0957

Sc 1 0.467 1.92E-3 2.56E-05 1.35 3.05E-3 2.09E-05

Lc 1 2.42 9.21 0.376 7.35 10.2 0.462

Dcr 1 3.69 4.83 0.487 2.40 2.64 0.0921

Dcp 1 0.185 5.66 0.453 7.80E-3 2.25 0.0832

E1 2 - - 1.67E-3 - - 1.12E-4

Ē1bar 1 - - 7.54E-3 - - 7.47E-4

E2 2 - - 8.02E-4 - - 2.71E-4

Ē2bar 1 - - 2.32E-05 - - 3.23E-05

B 2 - - 1.08E-05 - - 2.95E-06

B̄bar 1 - - 4.9E-3 - - 2.33E-4

S5 1 - - 5.12E-4 - - 6.91E-4

D9 1 - - 2.00E-05 - - 2.14E-05

Cc 5 - - 3.24E-05 - - 1.00E-05

Q 5 - - 3.49E-07 - - 5.67E-07

Table 4.1: Rate coefficients in the genetic network model of the biological clock (n = m = 4)
predicting its observed oscillations. Ensemble mean 〈X〉 and ensemble standard deviation
σ(X) := [〈X2〉 − 〈X〉2]1/2 for rate coefficients (X) in the n = m = 4 biological clock model.
For a kth order reaction (with k = 1,2 or 5), the rate coefficient is given in units of 1/(hour×
cuk−1) where ”cu” represents the arbitrary, but common model unit of concentration.Column
(A): χ2 is computed based on wc-1 r1. Column (B): χ2 is computed based on wc-1 r1+wc-
1 r0.Column (C): χ2 is computed based on wc-1 r1+wc-1 r0 together with the light dependent
data from [58] (6+6, 9+9 and 18+18 hours LD cycle). ’-’ means this reaction is not included
in the corresponding model.
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D7 [1/hours] posc [%]
0.05 82
0.10 81
0.15 79
0.20 78
0.25 77
0.50 73
0.75 68
0.80 58
0.85 41
0.90 26
0.95 14
1.00 6
1.25 0
1.50 0

Table 4.2: This analysis corresponds to Column (A) in Table reftable1. As the life-time
of the translationally active wc-1 messenger RNA, wc-1 r1, decreases (or equivalently, its
decay rate coefficient D7 increases), the model ensemble predicts that the system becomes
arrhythmic. The percentage of stable oscillators, posc, in the model ensemble from Figure 4.4
(for the n = m = 4 model in Figure 2.2 with WC-2 constant) perturbed by the decay rate
coefficient D7 for each ensemble member being varied from 0.05 (∼ the mean estimate in
Table 4.1) to 1.50 while keeping all other rate coefficients fixed at ensemble-generated values.
This percentage monotonically decreases as the life-time of the translationally active wc-1
mRNA decreases (or equivalently, as its decay rate coefficient D7 increases).



Chapter 5

Maximally Informative Next Experiment (MINE)

5.1 Introduction

To gain complete information about a cell reaction network’s topology and rate constants, so

as to predict system response, it is crucial to perform time-dependent profiling experiments

on the system under a wide variety of externally controlled perturbations, including varying

combinations of gene knock-outs, enzyme inhibition and environmental control parameters,

such as amino acid availability, carbon source availability, light intensity, and their time

dependencies. However, not all experiments will be equally informative. Given the data from

the ”old” experiments already performed, which ”new” experiment should we perform next,

in order to gain the maximal information about the genetic network?

To formalize this question, let the design of any individual profiling experiment be com-

pletely described in terms of an L-tuple of ”control variables” u := (u1, · · · , uL) which

comprises all those parameters, both continuous and discrete, whose values are known and,

to some extent, controllable by the experimenter (in contrast to the a priori unknown model

parameters Θ). This ”control vector” u comprises, but is not limited to:

1. discrete (binary) variables specifying those species for which measurements are taken;

2. discrete variables specifying for each measured species (mRNA, protein, or other) the

number of time-points;

3. the continuous t-values for each of these measurement time-points;
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4. binary variables describing, respectively, the functional presence of or absence of known

molecular species (including genes and proteins) and known reactions, which are con-

trollable, e.g. by gene knockout or enzyme inhibition;

5. continuous variables describing the (in general) time-dependent values of extracellular

environmental parameters, e.g, time-dependent carbon source and amino acid avail-

ability.

Thus, u comprises all experimental design parameters which we need to adjust or choose

so as to gain the maximal amount of information from the ”new” experiment. In return,

the new experimental results can be fed into the ensemble Monte Carlo program to further

shrink the size of the uncertainty.

Let Q(Θ,u) denotes the ensemble likelihood, based on the prior, old experiments, with

observed ”old” data vector Y and corresponding model prediction F(Θ,u), with respect to

a proposed, new profiling experiment with control vector u. Clearly, the question of which

new experiment is ”maximally informative” is not a mathematically well-defined problem.

We have to make a reasonable ad hoc choice for a design criterion and then try it out in

real-life applications. To motivate the choice of design criterion, suppose, for now, that we

are given only two possible choices of models, Θ(such as a Hill Coefficient of n = 4 in

4.1) and Θ∗ (such as n = 3 in Fig 2), which both give predictions, F(Θ,u) and F(Θ∗,u),

consistent with the ”old” experimental data (within the experimental uncertainties). In order

to distinguish between these two choices, we want to perform a new experiment, with control

vector u. The predicted outcomes for this new experiment would be, respectively, F(Θ,u)

and F(Θ∗,u). The crucial point to notice here is this: the more these two predicted outcomes

F(Θ,u) and F(Θ∗,u) differ from each other, the ”better” the new experiment will allow us

to discriminate between the two model choices.

As a ”metric” of the difference between the two outcomes we could choose, e.g.,

VΘ,Θ∗(u) := |F(Θ,u) − F(Θ∗,u)|2, with | · · · | denoting the Euclidean norm. We would

thus arrive at a reasonable design criterion for a ”maximally informative” new experiment:
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choose your u so that it maximizes VΘ,Θ∗(u), given Θ and Θ∗. Different criteria have been

proposed.

5.2 Maximization Criteria

In our ensemble method for circuit identification, we are of course given a large set, or

even an entire continuum, of choices for our Θ and Θ∗ which are consistent with the ”old”

experimental data and distributed according to their joint distribution Q(Θ,Θ∗) = Q(Θ)×

Q(Θ∗). The generalized criterion for a maximally informative experiment is to choose u such

that it maximizes the average of VΘ,Θ∗(u) over all possible choices of (Θ,Θ∗):

V (u) :=
∑

Θ

∑

Θ∗

VΘ,Θ∗Q(Θ)Q(Θ∗) = 2[〈|F(.,u)|2〉Q − |〈F(.,u)〉Q|
2]

where the second equality follows immediate from
∑

Θ Q(Θ) = 1. Note that our proposed

approach does not require that the genetic network reaches a stationary state or equilibrium

[55]. Standard non-linear minimization methods [56] can be used to minimize V (u).

Generally speaking, F(Θ,u) is a vector. Suppose it is a 2-dimensional vector

F(Θ,u) =





F1(Θ,u)

F2(Θ,u)





where F1(Θ,u) and F2(Θ,u) correspond to two measurements. The score function can be

re-written as:

V (u) = 2(〈[∆F1(Θ,u)]2〉Q + 〈[∆F2(Θ,u)]2〉Q)

where ∆Fi = Fi−〈Fi〉. The variances will get minimized independently. Hence, the selection

of time points for these two measurements are not independent, which means this criterion

guides the next experiment to be measured at 2 same time points.

Figure 5.1 shows the basic idea of the solution. We consider not only the magnitude,

but also the relative direction between them in a fictitious space. Now we call them vectors:

Ai.In the case of 2 vectors, we want to maximize |A1×A2|, i.e., the area enclosed by these 2
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vectors. Obviously, the maximum is achieved when the 2 vectors are orthogonal. Same idea

can be applied to higher dimensional cases.

Let the number of species we want to measure is denoted by Ms, and for each species,

Mt time points are measured for each species. Therefore, we have N = MsMt unknown

parameters for vector u, where ui corresponds to (si, ti) for i = 1 · · ·N . Also define

di(Θ,Θ∗) = d(Θ,Θ∗, ui) = F(Θ, ui) − F(Θ∗, ui).

Here we want to choose u1, · · · , uN so that all the |di(Θ,Θ∗)|2 are maximized, with the

constraint that di(Θ,Θ∗) is independent of dj(Θ,Θ∗).

Define a finite subspace D = {a(Θ,Θ∗)}, where a(Θ,Θ∗) =
∑

i aidi(Θ,Θ∗). Also define

the orthornormal system (ONS) in this subspace D as e1, · · · , eN ∈ D, where ei · ej = δij.

Hence, di =
∑n

l=1 el(el · di), where dl
i = el · di. As a natural consequence, the determinant

is thus well defined as

det(dl
i) where i = 1 · · ·N and l = 1 · · ·N.

In 2-dimensional case, we have

det





d1
1 d2

1

d1
2 d2

2



 := area .

The score function which we want to maximize can now be re-written as V (u) = |det(dl
i)|

2.

V (u) is independent of the choice of e1, · · · , eN . Therefore, we get

|det(dl
i)|

2 = |det(Dij)|
2

where Dij = Dji = di · dj, and i, j = 1, · · · , n. Hence,

Dij =
∑

Θ

∑

Θ∗

(di·dj)Q(Θ,Θ∗) = 2〈∆Fi∆Fj〉Q = 2
∑

Θ

∆Fi∆FjQ(Θ) = 2[〈FiFj〉Q−〈Fi〉Q〈Fj〉Q].

In summary, 3 criteria have been proposed. The first one is to use the trace of the

variance-covariance matrix of proposed measurements, Tr(Dij). The second method is to use
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the determinant of this variance-covariance matrix to enforce the independence, det(Dij).

The third one follows the second method directly by normalization, Tr(Dij)det(Dij)/
∏

i Dii.

The foregoing approach is the last link to complete the ”computing life paradigm” and is

being incorporated into an integrated workflow system [57] wherein new experiments u are

designed by the simulations and minimization procedures outlined above, with an ensemble Q

based on the pre-existing ”old” data. The results from the new experiments are then merged

into the pre-existing data vector Y and its distribution P (Y) and are thereby incorporated

into new ensemble Q, to be used in the design of the next new experiment. With the inclusion

of each new experimental data set, the ensemble Q will become more refined, until, at last,

it identifies the ”true” underlying kinetics model of the system under study. The approach

thus provides a rational way to design new experiments.

5.3 MINE for Biological Clock

Microarrays are the powerful tools which are widely used for surveying the expression levels

of thousands of genes simultaneously. Each microarray experiment to be designed involves

obtaining mRNA levels on all 11, 000 genes in the Neurospora genome for 13 time points.

Some of the genes are duplicated on the chip so that we have several replicate expression

profiles (12, 544 spots in total). For example, all of the clock genes and qa cluster genes are

measured 5 times by each chip.

In the MINE calculations, 3 mRNA species, ccgr, frqr and wc-1r, are virtually measured

under different experimental perturbation for each Θ on the ln scale. For a typical Monte

Carlo accumulation run, there are 40, 000 different Θ values. For every 200 Θ values, one is

picked to run the virtual experiment. So the ensemble average is taken at level of 200. The

dimension of matrix D is 39 (3 mRNA times 13 time points).

To run experiments for the light-dependent clock model as in Figure 4.6, the first question

to ask is of course at what level of light intensity is most informative. In Figure 4.7, the light

intensity was set at 20 µmol photons/m2/s. This is simply a one-dimensional optimal search.
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The microarray experiments are very expensive although this technology indeed enables

us to measure thousands of mRNA levels simultaneously. This solves the ”spatial” problem,

but not the ”temporal” problem. In other words, which time points should be measured

remains an ”expensive” question. Figure 5.3 shows the MINE results for different time points.

This is a two-dimensional optimization: one direction for first time point, and the other

direction for spacing between two consecutive points. The virtual experiments are run under

constant dark. Variation grows as time goes on for any prediction, so late measurements

will be dominant. In other words, all 13 time points are condensed to the latest possible

time for microarray measurements. This is a reasonable, but not useful result due to the fact

of dependence between different time points. The second method, determinant criterion,

gives different results. Subject to the constraint of 60-hour microarray measurement, 5-hour

spacing and immediate start of measurement is the guide for the next experiment. The third

normalized determinant method yields the same results as the second one. Obviously, the

independence enforcement pushes all the time points away from each other to maximize the

criterion.

Another interesting dimension we can explore is the the different spacing ratio. Define r

to be a ratio as in Figure 5.4. This virtual experiment is run under constant dark again.

Figure 5.1: Area and vectors.
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Figure 5.2: MINE prediction for different light intensity experiments. Three criteria are used,
with LD cycle being 6+6 hours, the first measurement taking place at 0.5 hours, the spacing
between consecutive measurements being 4 hours, and the total time points being 13. Görl’s
light intensity corresponds to 100 in the model units. x-axis shows different light intensity and
y-axis shows three different scores for three different methods. (A) Trace method indicates
as large light intensity as possible. (B) Determinant method shows a peak at 200, which is
about 40 µmol photons/m2/s. (C) Normalized determinant method clearly identifies 200 as
the best choice.
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Figure 5.3: MINE prediction for different measurement time experiments. x-axis, t s, denotes
the spacing between two consecutive measurements, and y-axis, tL, denotes the first mea-
surement time. The furthest time a microarray chip can measure is about 60 hours. Different
contour color shows scores of three different maximization criteria. (A) Trace method indi-
cates that we want to delay the start of measurement as late as possible and maximize
the spacing at the same time. (B) Determinant method indicates that we want to make the
spacing as large as possible while start the measurements as early as possible. (C) Normalized
determinant method gives the same results as in the second method.
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Figure 5.4: Definition of r ratio. Each 2 consecutive measurements are combined to define
2t s. The ratio r is explored by moving the middle bar between its left barrier and right
barrier, from 0 to 1.
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Figure 5.5: MINE prediction for different spacing ratio experiments. x-axis is t s, where 2t s is
defined as total spacing for two consecutive measurements, and y-axis, r, denotes the spacing
ratio as define in Figure 5.4. Again, three contour plots are shown for three different criteria.
(A) The dependent trace method again predicts to delay the even-numbered measurement
to be as late as possible, which is equivalent to make a replicate. (B) Determinant method
enforces independence and the even-numbered measurements are forced to be in the middle
of odd-numbered measurements for any fixed t s. (C) The normalized determinant method
gives similar results as the second method.



Chapter 6

ENSSOLVER

The simulation results from the statistical ensemble code ens.for are consisted of tremendous

amount of raw data in plain text files. It’s very difficult to draw any inference from raw data

files directly. A visualization tool, ENSSOLVER, has been designed and implemented to

help the ensemble code users to debug the program and analyze the simulation results. This

web-based Graphical User Interface (GUI) can be accessed via http://gene.csp.uga.edu (or

http://gene2.csp.uga.edu as public demonstration with limited functions).

Figure 6.1 shows the hierarchical structure of ENSSOLVER. After you log onto

gene.csp.uga.edu, you get to the root. Then different models shall be created, e.g. bio-

logical clock. Under each model, you can upload different runs, which is ens.o01 file. Then

ens.o01 is processed to generate all the appropriate modules for further plotting and analysis.

ENSSOLVER is based on Java Servlet [52]. GNUPLOT [53] and GIFSICLE [54] are used

for plotting.

For each run, there are 2 frames. The left frame displays 5 different tasks you can perform:

• Monte Carlo Average vs Real Time: plot the ensemble average of each species against

real time;

• Monte Carlo Average Projection: plot one species versus another species against real

time and animation of the trajectory movement;

• Monte Carlo Parameter: plot Monte Carlo parameters, such as rate coefficients, against

the virtual time (Monte Carlo Step);
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• ENSSOLVER for one MC Step: plot the kinetic simulation according to the selection

of one particular parameters set;

• Manage Files: manage the data files.

The right frame displays the results from server, such as the gif figure, statistical calcu-

lation, downloadable column data files.

The following Figures 6.2 and 6.3 give examples of using ENSSOLVER for analysis of

biological clock.

Figure 6.1: The Hierarchical Structure of ENSSOLVER.
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Figure 6.2: Example of output. In this example, a plot of χ2 versus Monte Carlo sweep is
displayed together with caption of run name and model name. Some statistics about χ2 is
shown next. You can also replot the figure based on your needs and download the column
file for further manipulation. This accumulation run explores a region with all the χ2 being
equally good (near-minimal values of χ2) although some of them do not yield sustained
oscillation.
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Figure 6.3: Example of output. This is a 2-dimensional histogram plot for two Monte Carlo
parameters: one is χ2 and the other is the rate coefficient D7, followed by some statistics of
the two parameters. The rate coefficient D7 is very well constrained in the range of 0.05 and
0.07.
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Appendix A

Stability Analysis for Biological Clock Model

A.1 Introduction to Routh-Hurwitz Analysis

The Routh-Hurwitz stability analysis is a method for determining whether or not a system

is stable based upon the coefficients in the system’s characteristic equation. It is particularly

useful for higher-order systems because it does not require the polynomial expressions in the

transfer function to be factored.

Consider the characteristic equation

det(J − λE) = A0λ
n + A1λ

n−1 + · · · + An−1λ + An = 0

determining the n eigenvalues λ of a real n × n square matrix J, where E is the identity

matrix. The following 2-step criterion can be used:

1. If any of the coefficients are zero or negative and at least one of the coefficients are

positive, there is a root or roots that are imaginary or that have positive real parts.

Therefore, the system is unstable.
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2. If all coefficients are positive, arrange the coefficients in rows and columns in the

following pattern:

sn A0 A2 A4 A6 · · ·

sn−1 A1 A3 A5 A7 · · ·

sn−2 B1 B2 B3 B4 · · ·

sn−3 C1 C2 C3 C4 · · ·

sn−4 D1 D2 D3 D4 · · ·

...
...

...

s2 E1 E2

s1 F1

s0 G1

,

where

B1 = A1A2−A0A3

A1

C1 = B1A3−A1B2

B1

· · ·

B2 = A1A4−A0A5

A1

C2 = B1A5−A1B3

B1

· · ·

B3 = A1A6−A0A7

A1

C1 = B1A7−A1B4

B1

· · ·

...
...

...

The Routh-Hurwitz stability criterion states that the number of roots with positive real

parts is equal to the number of changes in sign of the coefficients in the sn, · · · , s0 column.

Note that the exact values are not required for the coefficients; only the sign matters.

A.2 Stability Criterion R > 0 for Biological Clock Model

According to 7-dimensional clock model’s rate equations, we can have

D = J − λE =
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





































−(γ1 + λ) 0 0 d1 0 0 0

b̄1 −(γ2 + λ) 0 0 0 0 0

0 b̄2 −(γ3 + λ) 0 0 0 0

d̄1 0 b̄3 −(γ4 + λ) b4 0 0

0 0 0 0 −(γ5 + λ) b5 0

0 0 d̄3 0 0 −(γ6 + λ) b6

0 0 ē3 0 0 0 −(γ7 + λ)







































.

Then, the characteristic polynomial can be written as

K(λ) = [Q(λ) − q(λ)]G(λ)

where

q(λ) = γ1 + λ,

Q(λ) =
d1d̄1

γ4 + λ
+

d1b̄3b̄2b̄1

(γ4 + λ)(γ3 + λ)(γ2 + λ)
,

G(λ) = (γ2 + λ)(γ3 + λ) · · · (γ7 + λ).

Obviously, λ5 = −γ5 < 0, λ6 = −γ6 < 0, λ7 = −γ7 < 0. They always yield stable FP.

Therefore, we investigate the reduced characteristic polynomial instead as

P (λ) = (γ1 + λ) · · · (γ4 + λ) − d1d̄1(γ2 + λ)(γ3 + λ) − d1b̄3b̄2b̄1.

Also define

g1 =
γ1 + γ4

2
− [(

γ1 − γ4

2
)2 + d1d̄1]

1/2,

g2 = γ2,

g3 = γ3,

g4 =
γ1 + γ4

2
− [(

γ1 − γ4

2
) + d1d̄1]

1/2.

Then, P (λ) can be expressed as

P (λ) = (g1 + λ)(g2 + λ)(g3 + λ)(g4 + λ) + b4
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where b = −d1b̄1b̄2b̄3. The proof for g2 and g3 being positive is trivial. Since d1d̄1 < γ4γ1,

g1 and g4 are also positive. For real λ, since g1, g2, g3 and g4 are all larger than 0, no real

unstable eigenvalues exist. Expand P (λ) as

P (λ) = A0λ
4 + A1λ

3 + A2λ
2 + A3λ + A4

where

A0 = 1,

A1 =
4

∑

i=1

gi,

A2 =
1

2
(

4
∏

i=1

gi)
∑

i6=j

1

gigj

,

A3 = (
4

∏

i=1

gi)
4

∑

i=1

1

gi

,

A4 =
4

∏

i=1

gi + b4.

Since ai > 0 for i = 0, 1, 2, 3, 4, second step of RH criterion is required. Thus the RH

table is constructed as in the previous section:

A0 A2 A4

A1 A3

B1 B2

C1

D1

where

B1 = (
4

∏

i=1

gi)(
∑

i6=j

1

gigj

−

∑4
i=1

1
gi

∑4
i=1 gi

),

B2 =
4

∏

i=1

gi + b4,

C1 = (A1A2A3 − A2
3 − A2

1A4)/(A2A1 − A3),

D1 = B2.
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All the elements in the first column of the RH table is inherently positive except c1.

According to the RH criterion, if and only if c1 < 0 can yield an eigenvalue with positive

real part to make the system unstable, which gives the following criterion:

R := A2
3 + A2

1A4 − A1A2A3 > 0.

A.3 Stability Criterion nm > 4 for Biological Clock Model

Before working on the necessary and sufficient condition for instability: nm > 4 criterion,

let us summarize all the relevant stability parameters as the following:

(P1) γ1 = Awn + Ā

(P2) γ2 = D3

(P3) γ3 = D6

(P4) γ4 = n2Af0w
n−1 + D8 + Pfm

p = nd1 + D8 + Pfm
p

(P5) b̄1 = S4 − S3

(P6) b̄2 = L3

(P7) b̄3 = −mPwfm−1
p

(P8) d1 = nAf0w
n−1 =

1

n
(γ4 − η) where η := D8 + Pfm

p

(P9) d̄1 = n(Awn + Ā) = nγ1

The Stationary constraints in Section 4.5.4 can be expressed in terms of the stability

parameters by setting all the differential equations to be zero:

(S1) A =
γ1

wn

f1

fG

(S2) S3 = −b̄1
f1

fG

+
γ2γ3

b̄2

fp

fG

(S3) fr =
γ3

b̄2

fp

(S4) E2 =
1

up

(D8w −
b̄3fp

m
)
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(S5) L1 = (D4 + E2)
up

ur1

(S6) D7 = C1fp
ur0

ur1

(S7) V1 = (D1 + C1fp)ur0

Lemma A.3.1

b̄1b̄2 ≤ γ2γ3
fp

f1

.

Proof From (S2), we get

S3 = −b̄1
f1

fG

+
γ2γ3

b̄2

fp

fG

. Because S3 has to be positive as a rate coefficient, hence, the result follows.

Lemma A.3.2

d1 ≤
γ4

n

1

1 + |b̄3|/b30

where

b30 := mn2(1 −
f1

fG

)
γ1

fp/f1

.

Proof Put (P1) into (S1), we get

Ā = γ1(1 −
f1

fG

) and A =
1

wn
(γ1 − Ā) =

1

wn
γ1

f1

fG

.

The (P8) can be written as

w =
n

d1

γ1f1(1 −
f1

fG

).

At the same time, (P7) indicates that

Pfm
p =

|b̄3|fp

mw
=

|b̄3|

mn

d1

γ1(1 − f1/fG)

fp

f1

.

Then, (P4) gives

D8 = γ4 − nd1 − Pfm
p = γ4 − (n +

|b̄3|/γ1

mn(1 − f1/fG)

fp

f1

)d1.

D8 is a rate coefficient, which means D8 > 0. The result follows.
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Lemma A.3.3

d1|b̄3| ≤
1

n
γ4b30ϕ3 <

1

n
γ4b30

where

ϕ3 :=
|b̄3|/b30

1 + |b̄3|/b30

.

Proof This is a direct result from Lemma A.3.2 since

ϕ3 =
|b̄3|/b30

1 + |b̄3|/b30

< 1.

Lemma A.3.4

η ≥ ηx where η := γ4 − nd1 and ηx = γ4ϕ3.

Proof From Lemma A.3.2, we have γ4 − nd1 ≥ γ4ϕ3, which is η ≥ ηx.

Lemma A.3.5

b4 ≤ b4
xϕfϕ3 < b4

x

where

b4 := d1b̄1b̄2|b̄3|, b
4
x := γ1γ2γ3γ4nm,ϕf := 1 −

f1

fG

and ϕ3 =
|b̄3|/b30

1 + |b̄3|/b30

.

Proof Combine Lemma A.3.1 and A.3.3, we get

d1b̄1b̄2|b̄3| ≤ γ2γ3
fp

f1

1

n
γ4b30ϕ3.

Since

b30 = mn2(1 −
f1

fG

)
γ1

fp/f1

,

the result follows. Also note that 0 < ϕf < 1 and 0 < ϕ3 < 1.
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The original characteristic polynomial coefficients can be written as:

A0 = 1,

A1 = γ1 + γ2 + γ3 + γ4,

A2 = (γ2 + γ3)(γ1 + γ4) + γ2γ3 + γ1η,

A3 = γ2γ3(γ1 + γ4) + (γ2 + γ3)γ1η,

A4 = γ1γ2γ3η + b4.

Consider a special case such that: γ1 = γ2 = γ3 = γ4 = γ. We have:

A1 = 4γ,

A2 = 5γ2 + γη,

A3 = 2γ3 + 2γ2η,

A4 = γ3η + b4.

Put them into the R criterion:

R := A2
3 + A2

1A4 − A1A2A3 = 16γ2b4 − 36γ6 − 24γ5η − 4γ4η2.

Use the lemmas just proved, we can get

R ≤ [16nmϕfϕ3 − (36 + 24ϕ3 + 4ϕ2
3)]γ

6.

The necessary condition for R > 0 is that

16nmϕfϕ3 − (36 + 24ϕ3 + 4ϕ2
3) > 0,

which means

16nm >
1

ϕf

(
36

ϕ3

+ 4ϕ3 + 24) =: Γ1.

By checking the monotonicity of Γ1 with respect to ϕ3,

∂Γ1

∂ϕ3

=
1

ϕf

(−
36

ϕ2
3

+ 4) < 0 for 0 < ϕf < 1 and 0 < ϕ3 < 1.



69

Therefore, the necessary condition for instability is

nm >
15

4
= 3.75.

Define a new set of variables:

a :=
1

2
(γ2 + γ3),

g := (γ2γ3)
1/2 ≤ a,

f := γ1 + γ4,

h := (γ1η)1/2

j := (γ2 + γ3)
1/2 ≤

1

2
f.

The characteristic polynomial coefficients can be re-written as:

A1 := f + 2a,

A2 := 2af + g2 + h2,

A3 := g2f + 2ah2,

A4 := g2h2 + b4.

Because j2g2 = γ1γ2γ3γ4 and Lemma A.3.5, b4 ≤ nmϕfϕ3j
2g2. Therefore, A4 ≤ g2(h2+nm

4
j2)

and ϕ3j
2 ≤ h2 < j2.

Also define

X := A1A2A3

Y := A2
3 + A2

1A4

Then

X := (f + 2a)(2af + j2 + a2)(g2f + 2ah2)(g2f + 2ah2)

Y := (g2f + 2ah2)2 + (f + 2a)2(g2h2 + b4).
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Therefore,

R = Y − X

= (f + 2a)2b4 − 2af [(g2 − h2)2 + (g2f + 2ah2)(f + 2a)],

where R > 0 indicates instability. Check R with respect to h2 at fixed f, g, a, b:

∂R

∂(h2)
= −2af [2(h2 − g2) + 2a(f + 2a)] = 0.

Hence, h2 = g2 − a(f + 2a) < g2 − 2a2 < −a2 < 0, which means the maximum location is

on the negative part of h2. For h2 > 0, since g2 ≤ a2,

∂R

∂(h2)
= −4af(h2 + af + 2a2 − g2) < 0.

Therefore, R monotonically decreases with respect to h2 for h2 ≥ 0. Based on the mono-

tonicity, h2 ≥ ϕ3j
2 immediately concludes that R(h2) ≤ R(ϕ3j

2). Also, note that

b4 ≤ γ1γ2γ3γ4nmϕfϕ3 = nmϕfϕ3j
2g2,

hence, R ≤ R1, where

R1 := nmϕfϕ3j
2g2(f + 2a)2 − 4a2fϕ3j

2(f + 2a) − 2af 2g2(f + 2a) − 2af(g2 − ϕ3j
2)2.

Let j = 1
2
ϕjf , note 0 < ϕj ≤ 1. Then

R1 = − 2ag4f + (4p − 4a2g2f 2)

+ (4pag2 + ϕ2
jag2 − 2ϕ3ϕ

2
ja

3 − 2ag2)f 3

+ (pg2 − ϕ3ϕ
2
ja

2)f 4 −
1

8
ϕ2

3ϕ
4
jaf 5

where

p :=
nm

4
ϕfϕ3ϕ

2
j .

Consider the special test case again, γ1 = γ2 = γ3 = γ4 = γ. R1 is reduced to:

R1 = [64p − (36 + 24ϕ3 + 4ϕ2
3)]γ

6.
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The necessary condition for instability requires R1 > 0, which means

p >
36 + 24ϕ3 + 4ϕ2

3

64
.

Therefore, we have

nm >
1

4ϕf

(
9

ϕ3

+ 6 + ϕ3) =: Γ2.

Function Γ2 is monotonically decreasing for 0 < ϕ3 < 1. Therefore the necessary condition

for instability is the same as the previous conclusion:

nm >
15

4
= 3.75.

Let x = f
2a

and ϕg = g
a
, R1 can be re-written as:

R1 = − 4ϕ4
ga

6x + 4(nmϕ3ϕfϕ
2
jϕ

2
g − 4ϕ2

g)a
6x2

+ 8(nmϕ3ϕfϕ
2
jϕ

2
g − 2ϕ3ϕ

2
j − 2ϕ2

g)a
6x3

+ 4(nmϕ3ϕfϕ
2
jϕ

2
g − 4ϕ3ϕ

2
j)a

6x4

− 4ϕ3ϕ
2
ja

6x5.

Since 0 < ϕf < 1,0 < ϕ3 < 1,0 < ϕj ≤ 1, then

R1 < R2 := G2(x)ϕfϕ3ϕ
2
ja

6,

where

G2(x) := −4ϕ4
gx + 4(k − 4)ϕ2

gx
2 + 8[(k − 1)ϕ2

g − 2]x3 + 4(kϕ2
g − 4)x4 − 4x5

Also let ϕ2
g = 1 − y, where 0 ≤ y < 1, then

G2(x) = H0(x) + H1(x)

where

H0(x) := −4x + 4(k − 4)x2 + 8(k − 3)x3 + 4(k − 4)x3 − 4x5

H(x, y) := 4(2y − y2)x − 4(k − 4)yx2 − 8(k − 1)yx3 − 4kyx4

k := nm
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Note that H0(x) does not contain y.

G2(x) monotonically increases with respect to k. So, let us try the marginal case such

that k = 4. H0(x) is greatly simplified,

H0(x) = −4x(x2 − 1)2,

which indicates that

H0(x) ≤ 0 ∀x ≥ 0.

At the same time,

H(x, y) = 4x[2(1 − 3x2 − 2x3)y − y2].

Let s(x) := 1 − 3x2 − 2x3. There are 2 cases for analysis:

1. s(x) ≥ 0. Maximize H(x, y) with respect to y:

∂H(x, y)

∂y
= 4x[2s(x) − 2y] = 0,

which gives y0(x) = s(x) ≥ 0. Obviously, H(x, y) ≤ H(x, y0(x)) = 4x[s(x)]2. Therefore,

G2(x) = H0(x) + H(x, y)

≤ H0(x) + H(x, y0(x))

= 4x{[s(x)]2 − (1 − x2)2}

= 4x[s(x) − (1 − x2)][s(x) + (1 − x2)]

= −4x(2x2 + 2x3)[s(x) + (1 − x2)]

Because s(x) ≥ 0 and 0 ≤ x < 1, G2(x) < 0.

2. s(x) < 0. Because 0 ≤ y < 1, H(x, y) ≤ 0. Hence,

G2(x) = H0(x) + H(x, y) < 0.

Also note that R2 is a monotonically increasing function with respect to k. Therefore for any

k ≤ 4, R ≤ R1 < R − 2, 0 is always satisfied, which means the instability is not possible.
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Therefore, the necessary condition for existence of FP instability is that:

nm > 4.

Now let us prove that nm > 4 is also a sufficient condition for existence of FP instability.

Take ϕj = 1, ϕg = 1, ϕ3 → 1−0+, ϕf → 1−0+, we can get R → R1−0+ → R2−0+, i.e.

R can be arbitrarily close to R1 and R2. Let ǫ := k − 4 > 0, and note that y = 1 − ϕ2
g = 0,

we get

R2(x) = H0(x)

= −4x + 4ǫx2 + 8(1 + ǫ)x3 + 4ǫx4 − 4x5

In order to prove the ”existence”, we just need to choose the right point, e.g. x = 1, then

R2(1) = +16ǫ > 0,

which gives

R → G2(1)a6 > 0.

So, the unstable FP is found at x = 1, y = 0. Hence, nm > 4 being the sufficient condition

is proved.

In conclusion, the level of cooperativity in the clock model, nm > 4, is a necessary and

sufficient condition for existence of FP instability (R > 0).


