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Abstract

The discrete choice model is a powerful method that can quantify consumer preferences

for both non-market and market goods. In either stated preference surveys with choice exper-

iments or revealed preference data like the retail-level transaction records, discrete outcomes

are in the form of multivariate correlated variables. From the view of multivariate probability

distributions, this dissertation investigates several methods that improve the estimation and

interpretation of discrete choice models. First, for the mixed logit model, Gauss-Hermite

integration is found to be a powerful alternative to maximum simulated likelihood when

the number of random parameters is moderate(≤6). It avoids simulation bias and simula-

tion noise and only incurs controllable approximation error. Further, the Bayesian approach

and the block delete jackknife are tested to outperform the Delta method in describing the

distribution of mean Willingness to Pay in the mixed logit model. The virtues of a nor-

mally distributed cost coefficient is also validated with both empirical and synthetic data

set. Finally, in the sense of aggregating discrete choices outcomes in a real market, a utility-

consistent count system is developed as a tool to analyze consumer brand choices.

Index words: Mixed logit model, Gauss-Hermite quadrature, mean willingness to pay,
Bayesian estimation, block delete jackknife, multivariate Poisson-log
Normal, incomplete demand system, over-dispersion, scanner data
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Chapter 1

Introduction and Literature Review

The discrete choice model is a powerful method to measure consumer preferences for both

non-market and market goods. In non-market valuation, discrete choice experiments can help

to reveal consumers’ willingness to pay for interested attributes in either public goods like

the natural resource, or a new product that is not available in the market yet. For market

good, analysis of revealed preference data such as the retail-level consumption transactions

can provide insights to market structures and customer segments. In both cases, multivariate

probability distributions are crucial in the calculation of choice probabilities especially when

heterogeneities in consumer preferences are considered. This dissertation investigates several

methods that improve the estimation and interpretation of two important discrete choice

models – the mixed logit model, and the multivariate count data model which can be derived

from repeated discrete choices over time (Hellerstein and Mendelsohn, 1993).

As one of the most flexible methods in discrete choice analysis, mixed logit models have

been widely applied in various disciplines including non-market valuation, transportation

analysis, and health economics, etc. According to Train (2009), the three main advantages

of the mixed logit model are 1) allowing for random taste variations as it can handle respon-

dents’ tastes that vary with unobserved variables or purely randomly; 2) enable unrestricted

substitution patterns by avoiding the restriction of proportionate substitutes; 3) allowing

dynamic correlations in unobserved factors over time so that panel data could be analyzed

as the lagged response to changes in attributes can be accommodated.

Given the high flexibility allowed for consumer preferences, the estimation of mixed

logit models becomes more complex as no closed-form choice probability is available.

1



Although maximum simulated likelihood estimation is entrenched in most statistical soft-

ware, researchers have discovered that the number of simulation draws may be too small

to ensure estimation accuracy (Czajkowski et al., 2017). Instead of quasi-Monte Carlo sim-

ulation, the first chapter explores the application of quadrature methods in approximating

choice probabilities in mixed logit models. We extend the previous work by Breffle et al.

(2005) which considered Gauss-Hermite quadrature in the estimation of a probit choice

model with two uncorrelated random parameters. We generalize this approach to the mixed

logit model with repeated choices and with correlated random coefficients. By specifying

the exact likelihood function, we avoid simulation error but incur approximation error

which depends on the degree of the Hermite orthogonal polynomial used. We show that by

appropriately trimming the points of evaluation and rescaling the weights, the number of

evaluation points can be substantially reduced without introducing significant approxima-

tion error. As a counterpart, this chapter also discusses the possibility of applying another

quadrature method, the sparse grid, in mixed logit models as an alternative solution to high-

dimensional integration. Our empirical analysis with two available survey data sets suggests

Gauss-Hermite quadrature as the preferable method in mixed logit models, especially when

the number of random coefficients is relatively small (≤6) and the sample size is small.

For the interpretation of mixed logit models, representation of Willingness to Pay (WTP)

has long been debated given the non-zero probability of a zero-denominator when unbounded

distributions are applied to the cost coefficient (Hensher and Greene, 2003; Train and Sonnier,

2005; Hess et al., 2005; Daly et al., 2012). However, economic theory indicates the marginal

utility of income for normal goods is always positive if the consumption is non-zero. Under

this assumption, a well-defined approximation of the moments in WTP – the ratio of two

random coefficients – is available according to the theory built in Marsaglia et al. (2006). With

this justification, the second chapter explores the distribution of the most important statistic

- the mean - of WTP in the mixed logit model with three methods: the classical Delta method,

the Bayesian approach with individual-level willingness to pay, and a resampling method

2



using the block delete jackknife. The empirical analysis shows the drawback of the Delta

method, reveals the skewness introduced by a log-normally distributed cost coefficient, and

validates the virtues of the Bayesian approach and the block delete jackknife. The potential

of applying a normally distributed cost coefficient is further validated by a synthetic data

set with 2000 respondents.

In terms of consumer brand choice, the third chapter provides a new approach which

recognizes that quantities purchased are discrete and over-dispersed and demands may be

correlated. As a consequence, we specify a multivariate Poisson-log normal distribution to fit

the non-negative count outcomes in consumer demand. As an extension of typical discrete

choice models like the mixed logit model that focus on consumers’ binomial or multinomial

decisions in a single choice, count data models are developed in the sense of aggregating the

discrete choice outcomes with the theoretical foundation derived from a repeated application

of the discrete choices (Hellerstein and Mendelsohn, 1993). However, most existing models

in the multivariate count case are lacking of a consistent underlying framework that can be

derived from the well-developed consumer utility theories (Bhat et al., 2015).

To represent consumer preferences in a utility-consistent way, we consider the incom-

plete demand system for its virtues in fully integrating the extensive commodity selection

and intensive derived demand choices within a coherent and consistent model of consumer

behavior, as noted by von Haefen (2002). Specifically, a demand specification with log-linear

from – a necessary requirement given the exponential link in the Poisson-log normal count

data model – is adopted. With the assumption that the prices of all other goods outside

the system are quasi-fixed, unconditional price effects and income effects can be computed

from the properly specified incomplete demand system. Further, this chapter is unique in

applying the count data demand system with the real transaction data at the retail level.

Using the panel set of scanner data provided by the IRI markeing data set, we analyze 1927

houeshold choices for four major brands in the facial tissue market in Eau Claire, Wisconsin

in 2011 and provide insights on market structure and consumer segments.
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Abstract

As one of the most flexible methods in discrete choice analysis, mixed logit models have been

widely applied in various disciplines. Although maximum simulated likelihood is entrenched

in most statistical software, researchers have discovered that the number of simulation draws

may be too small to ensure estimation accuracy. Instead of focusing on quasi-Monte Carlo

simulation, this paper explores the application of quadrature methods in approximating

choice probabilities in mixed logit models. We extend Gauss-Hermite quadrature to the

mixed logit model with correlated coefficients, and improve estimation speed by trimming

the low-impact nodes in multi-dimensional integration. As a counterpart, sparse grid inte-

gration is also evaluated as a candidate. Our empirical analysis with two available survey

data sets validates the merit of Gauss-Hermite quadrature in estimation accuracy and effi-

ciency. Compared to the other two methods, we suggest the Gauss-Hermite quadrature as the

preferable method in mixed logit models, especially when the number of random coefficients

is relatively small (≤ 6) and the sample size is small.

Keywords: Mixed Logit Model, Numerical Integration, Gauss-Hermite Quadrature, Sparse

Grid, quasi-Monte Carlo Simulation
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2.1 Introduction

The mixed logit model is a preferred estimator of random utility models due to its flexibility

and ability to explain a wide variety of behavioral choices. Since discrete choice models

provide constructs for the calculation of willingness to pay (WTP) for many economically

important attributes in both market and non-market settings, mixed logit is ideally suited

to capture random heterogeneity in in WTP.

The method of Maximum Simulated Likelihood (MSL) has become entrenched as the

preferred estimator of mixed logit models. This method has been implemented in several sta-

tistical packages and has the attractive property that coefficients may be specified under any

distribution that can be randomly generated. Commonly, random coefficients are assumed to

be distributed normally or log-normally and it is under these distributions that we consider

almost exact maximum likelihood estimation of the mixed logit model.

As is well-known, MSL estimators incur simulation error that depends on the random

number generator used and the number of draws. Further, increasing the number of draws

does not guarantee that the resulting estimator is closer to the true model. In fact, a recent

work (Czajkowski et al., 2017) suggests that tens of thousands of draws may be necessary

in order to achieve satisfactory MSL results. On the other hand, exact maximum likelihood

estimation suffers from the “curse of dimensionality” due to having to integrate over a

multivariate distribution.

This research extends the previous work by Breffle et al. (2005) which considered Gauss-

Hermite quadrature in the estimation of a probit choice model with two uncorrelated random

parameters. We generalize this approach to the mixed logit model with repeated choices and

with correlated random coefficients. By specifying the exact likelihood function, we avoid

simulation error but incur approximation error which depends on the degree of the Hermite

orthogonal polynomial used. In an application with two lognormally and two normally dis-
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tributed random coefficients, high order Gauss-Hermite integration using 32 nodes would

require 324 (over one million) evaluation points.

We show that by appropriately trimming the points of evaluation and rescaling the

weights, the number of evaluation points can be substantially reduced without introducing

significant approximation error. At the same time, we discuss the possibility of applying

another quadrature method, the sparse grid, in mixed logit models as an alternative solution

to high-dimensional integration. In empirical applications, trimmed Gauss-Hermite quadra-

ture is demonstrated and compared to MSL estimation using various numbers of scrambled

Halton and Sobol pseudo-random draws. We conclude that exact maximum likelihood esti-

mation is a powerful alternative to MSL that practitioners should consider. Also, Gauss-

Hermite quadrature is a better choice than sparse grid integration in mixed logit models as

it avoids the problem of negative integrated choice probabilities.

2.2 Literature Review

2.2.1 The Mixed Logit Model

The mixed logit model (Revelt and Train, 1998) is a typical discrete choice model under the

assumption of utility-maximizing behavior by the decision-maker. Although the traditional

multinomial logit model is still quite prevalent in both industrial and academic analyses, the

assumption of homogeneous preferences for all respondents is unnecessarily stringent. Also,

the independence of irrelevant alternatives (IIA) assumption of logit can be unrealistic in

many settings, as it does not allow for different degrees of substitution or complementarity

among choices and requires identical cross-price elasticities for a given product, which is

obviously implausible (Hausman, 1975).

The mixed logit model is widely preferred given its flexibility in approximating any

random utility model (McFadden and Train, 2000). According to Train(2009), the three main

advantages of the mixed logit model are 1) allowing for random taste variations as it can

handle respondents’ tastes that vary with unobserved variables or purely randomly; 2) enable
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unrestricted substitution patterns by avoiding the restriction of proportionate substitutes;

3) allowing dynamic correlations in unobserved factors over time so that panel data could

be analyzed as the lagged response to changes in attributes can be accommodated.

Over the past 15 to 20 years, many studies have applied the mixed logit model in a large

range of fields including non-market valuation (e.g., Hensher et al., 2005; Scarpa et al., 2007;

Duchesne et al., 2010, etc.), transportation analysis (e.g., Boyd and Mellman, 1980; Cardell

and Dunbar, 1980; González-Savignat, 2004; Hess et al., 2004; Shen, 2009; Srikukenthiran

et al., 2014; Lee et al., 2016, etc.), and health economics (e.g., Hall et al., 2006; King et al.,

2007; Paterson et al., 2008; Regier et al., 2009; Hole, 2008; Hole and Kolstad, 2012, etc.),

etc.

2.2.2 Estimation Methods of Mixed logit models

Given that the expression of choice probabilities does not have a closed form in mixed logit

models, simulation is widely adopted in numerical evaluations and thus leaves the sampling

method a crucial, debatable issue. Before Train (2000), pseudo-random draws (Monte Carlo)

were used for almost all simulations in mixed logit models. The efficiencies of pseudo-random

draws are always questionable as it can hardly ensure a representative sample from the mixing

distribution, especially when the number of draws is small.

An important alternative sampling method is the quasi-Monte Carlo (QMC) method

like the Halton sequence and the Sobol sequence. The Halton sequences follow the idea of

dividing the unit interval evenly step by step according to the Halton number set, then

transfer the Halton sequence into the quasi-random draws by the one-to-one projection with

the inverse cumulative function of the mixing distribution. Bhat (2001) first tested Halton

sequences for mixed logit models and found it substantially outperforms the pseudo-random

draws. Train (2000) further explained the reason as 1) the Halton draws can achieve a fairly

even coverage over the domain of the mixing distribution, so that the simulated probabilities

vary less over observations; 2) draws in the Halton sequences tend to fill in the spaces that
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were left empty by the previous observations, so that the simulated probabilities become

negatively correlated over observations, and thus reduce the variance in the log-likelihood

function.

Following this trend, more researchers investigate the performance of QMC methods with

different sampling sequences. For example, the shuffled Halton, scrambled Halton (Daly et al.,

2003; Hess and Polak, 2003; Wang and Kockelman, 2008), and the randomized Halton draws

(Sándor and Train, 2004; Munger et al., 2012) are further developed and compared with each

other. Other sequences like the Sobol sequences, randomized Sobol sequences, the modified

Latin hypercube sampling, and the randomized lattice rules are sometimes found to have

better performance than Halton sequences in certain circumstances like higher dimensional

cases (Garrido, 2003; Hess et al., 2006; Munger et al., 2012).

However, an important problem with the existing QMC sampling methods is that the

simulation noise does not necessarily show a monotonic decreasing trend as the number of

draws increases. Thus, determining the number of draws to achieve stable status is time-

consuming and somewhat subjective. For example, Train (2000) noticed the variances of

estimators with 125 Halton draws are unexpectedly larger than that from the 100 Halton

draws case. Czajkowski et al. (2017) further found the simulation bias is not negligible, and

the number of draws used by many empirical applications is too low for reliable inferences.

They recommend 15,000 Sobol draws to achieve the estimation accuracy within 1% of true

values.

Crucial information ignored by most existing simulation methods is the coefficients’ dis-

tribution – only the well-defined QMC algorithms are used to generate random draws in MSL.

While for Gauss-Hermite quadrature, evaluation points are carefully selected and weighted

based on the coefficients’ distribution. Such a “directional” sampling method enables a more

comprehensive coverage of the parameters’ distribution. A common concern for quadra-

ture techniques is that they may be computationally too burdensome in practice (Albright

et al., 1977; Hausman and Wise, 1978). However, Butler and Moffitt (1982) illustrated that

11



such concern is only true for standard quadrature techniques such as trapezoidal integration

or its improved variants. Butler and Moffitt (1982) also showed that Gaussian quadrature

is extremely efficient with computational feasibility in calculating single-bound or double-

bound Tobit models. In 2005, Breffle et al. introduced Gaussian quadrature into the estima-

tion of uncorrelated normally-distributed random parameters. From an empirical analysis

with stated preference data on fishing in Green Bay, they showed that quadrature is faster

than simulations with pseudo-random draws in obtaining a high level of accuracy. To fur-

ther extend this method, we will demonstrate how it can be applied in mixed logit models

with correlated random parameters and test its performance in comparison to some QMC

methods.

Another counterpart to Gaussian quadrature in likelihood approximation is quadrature

on sparse grids that originates from Smolyak (1963) and further developed by Krueger and

Kubler (2004), Winschel and Krätzig (2004), and Heiss and Winschel (2008). Unlike the

product rule in multivariate quadrature where the full grid of points is evaluated, sparse

grids integration only uses a subset of the evaluation nodes from the product and rescales

the weights appropriately. In other words, it aims to be exact in the class of complete

polynomials instead of tensor products of univariate polynomials (Heiss and Winschel, 2008).

Such a feature helps sparse grid integration avoid the exponential growth of evaluation nodes.

However, this method also has a potential drawback in generating negative weights, which can

lead to negative probabilities in likelihood functions. In our analysis, we will also empirically

examine the performance of sparse grid integration in mixed logit models.

2.3 Methodology

Like many other econometric models, the likelihood function in the mixed logit model does

not have a closed form. Let the utility function of individual i for alternative j be

Uij = β′ixij + εij
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Mixed logit extends the assumption that the coefficient βi is a fixed true value (for every

respondent) to a distribution f(β|θ), where θ is a vector of parameters that determines the

distribution of β and needs to be estimated. For example, in terms of a normally distributed

coefficient β ∼ N(µ, σ), parameters µ and σ instead of β are the object of our interest. Given

the error term εij ∼ EV (0, 1), the likelihood or the choice probabilities could be expressed

as an integration of the logit-form integrand:

Pij =

∫
Lij(β)f(β|θ)dβ =

∫
eβ

′xij∑J
j=1 e

β′xij
f(β|θ)dβ

Clearly, the likelihood cannot be derived analytically so that numerical approximation

methods, such as the quadrature methods, are needed. The idea of quadrature methods is to

approximate an integral as a weighted sum of the integrand evaluated at a series of nodes.

Following Heiss and Winschel (2008) and Skrainka and Judd (2011), for the integral with

one dimension,

I[g] :=

∫
Ω

w(x)f(x)dx, Ω ⊂ R, w(x) ≥ 0 ∀x ∈ Ω

the approximation is called a quadrature formula as

Q[g] :=
R∑
k=1

wkf(yk), yk ∈ Ω

where yk is the node and wk is the corresponding weight, R is the total number of the

nodes. For multivariate integration, let x = [x1, x2, . . . , xD], then

ID[g] :=

∫
Ω1

∫
Ω2

· · ·
∫

ΩD

g(x)w̃(x)dxD . . . d2d1, Ω ⊂ Rd, w̃(x) ≥ 0 ∀x ∈ Ω

where w̃(x) is the joint probability density function of x, and variables in x are assumed

to be independently and identically distributed so that w̃(x) = ΠD
d=1w(xd). The approxi-

mation Q[g], then, is called the cubature formula and it needs to be carefully investigated

in order to identify the nodes. During the past 50 years, researchers have explored various

quadrature rules aiming to deliver high accuracy at low computational cost (less nodes).
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Quadrature approaches, like Gauss-Hermite and the sparse grid integration can deal with

moderate dimensional integration with high accuracy and efficiency in general. Following we

will introduce their application to the mixed logit model.

2.3.1 Simulation Method

Monte Carlo method is one of the most popular choices for numerical integration with random

numbers. Through an appropriate distribution, the nodes are randomly selected and a weight

is equally assigned to each node (wk = 1/R), so that the simulated integral is

Q[g] =
1

R

R∑
r=1

g(xr)

By the Law of Large Numbers, Monte Carlo method displays
1√
R

convergence so that

the accuracy of the estimator would only be increased at the rate of
√
R as R increases. Train

(2009) further discussed the property of the Maximum Simulated Likelihood (MSL) estimator

in the mixed logit model. Under the assumption that the number of draws R rises faster than

√
n, where n is the number of observations, simulation bias disappears asymptotically. For

high-dimensional (m) integration, the Monte Carlo method has the advantage of avoiding the

exponential increase of evaluating nodes by randomly selecting points in the m-dimensional

space.

How to select the random draws to optimize the estimation efficiency of the Monte

Carlo Method is of interest and debate. As discussed before, instead of using the pseudo-

random draws, quasi-Monte Carlo (QMC) methods with low-discrepancy sequences have

a faster rate of convergence close to O(
1

R
) as the nodes are more evenly distributed over

the integration space. With these virtues, the QMC method is widely applied in today’s

mixed logit estimation. In our application, two most commonly used QMC sequence: the

scrambled Sobol and Halton quasi-random sequences (in MATLAB) are considered to test

the performance of the simulation method.

14



2.3.2 Gauss-Hermite Integration

Breffle et al. (2005) provided a nice introduction to the use of Hermite orthogonal polyno-

mials to integrate a function of a standard normal random variable using Gauss-Hermite

quadrature. Thus our treatment will be brief.

The integral

∫ ∞
−∞

e−ε
2

f (ε) dε ≈
d∑

h=1

whf(εh)

here the approximation is defined by a Hermite orthogonal polynomial of degree d, Hd(ε),

with associated weights wh (h = 1, 2, , d). For a standard normal random variable, a change

of variable results in

(2π)−1/2

∫ ∞
−∞

e−ε
2/2f (ε) dε ≈

d∑
h=1

w∗hf(ε∗h)

where ε∗h =
√

2εh and w∗h = wh/
√
π. Note that Σw∗h = 1.

A. Mixed Logit with a Single Random Parameter

Let the ith person’s utility from alternative j (j = 1, 2, . . . , J) be written

Uij = f(β + σε)xij + θij + εij

where β and σ are parameters, ε is a standard normal random variable, xij is an attribute

that can vary by individuals and alternatives, θ is composed of other attributes weighted

by constant parameters, and εij is an independent and identically distributed extreme value

random variable. The probability that person i chooses alternative j then becomes

Pij =

∫ ∞
−∞

exp( f(β + σε)xij + θij)∑J
k=1 exp( f(β + σε)xik + θik)

exp (−ε2/2)√
2π

dε

When using a Hermite polynomial of degree d, this probability can by approximated by
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Pij ≈
d∑

h=1

w∗h
exp( f(β + σε∗h)xij + θij)∑J
k=1 exp( f(β + σε∗h)xik + θik)

In a panel context, assume that individual i faces t = 1, 2, . . . , T choices and that random

parameters are constant over all choices faced by the individual. The probability of the

observed sequence of T choices by individual i may be expressed as

Pi(T ) =

∫ [ T∏
t=1

exp( f(β + σε)xij(t) + θij(t))∑J
k=1 exp( f(β + σε)xik(t) + θik(t))

]
exp (−ε2/2)√

2π
dε

Here j(t) indicates the attributes of the alternative that was chosen at the tth choice

occasion. The Gauss-Hermite (G-H) quadrature approximation is

Pi(T ) ≈
d∑

h=1

w∗h

[
T∏
t=1

exp
(
f (β + σε∗h)xij(t) + θij(t)

)∑J
k=1 exp

(
f (β + σε∗h)xik(t) + θik(t)

)] .
B. Mixed Logit with Mltivariate Normal Correalted Parameters

With m possibly correlated parameters, define

Vij = f1(β1 + σ1ε1)x1ij + · · ·+ fm(βm + σmεm)xmij + θij,

then

Pij =

∫
Rm

exp(Vij)∑J
k=1 exp(Vik)

exp(−1/2EΣ−1E ′)

(2π)m/2|Σ|1/2
dε1 . . . dεm

where E = [ε1 . . . εm] and Σ is the variance-covariance matrix of E.

As before, for a d-degree Hermite orthogonal polynomial, let ε∗h =
√

2εh. Define the set

H as the Cartesian product H = ε∗h × ε∗h . . . × ε∗h. Thus H is of dimension dm by m. In a

similar manner define the set W = w∗h × w∗h . . . × w∗h. Next, define wm as the product of

the columns of W such that it is now a dm by 1 vector whose sum is one. Finally define

E∗ = HS where S is the (upper triangular) Cholesky decomposition of Σ.

We now write

16



Vij∗ = f1(β1 + E∗1)x1ij + · · ·+ fm(βm + E∗m)xmij + θij

where E∗p denotes the pth column of E∗. This permits expressing the approximation as

Pij ≈ wm′
exp(V ∗ij)∑J
k=1 exp(V ∗ik)

It is straightforward to extend the approach to panel data:

Pi(T ) ≈ w′m

[
T∏
t=1

exp(V ∗ij(t))∑J
k=1 exp(V ∗ikt)

]
.

C. Trimmed Gauss-Hermite Quadrature

To motivate the rationale for trimming the nodes consider the 20th degree (scaled) Hermite

orthogonal polynomials in Table 2.1. Note that the weights, w∗, decline rapidly for larger

absolute values of the nodes, ε∗. The fact that they are not zero is a consequence of the

possibility that the function of ε∗ may be highly convex. However, in the context of random

parameters logit, we are dealing with probabilities so that

f (ε∗) =
exp( f(β + σε∗)xij + θij)∑J
k=1 exp( f(β + σε∗)xik + θik)

< 1 ∀ i, j.

This feature of the mixed logit suggests that large absolute values of the nodes contribute

little to the log likelihood.

The third column in Table 2.1 shows that if m = 4 (four random parameters), the largest

weight in the implied w∗4 is 0.046 and the smallest weight 2.47E-51. Since the sum of the

160,000 elements of w∗4 is one, then we know the mean weight is 1/(204) = .00000625. Thus

we can consider trimming those nodes which are associated with weights less than some

fraction of the mean weight of w∗m. For the case of w∗4 and d = 20, if nodes with weights of

one-tenth of the mean, one-hundredth of the mean, and one-thousandth of the mean were
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trimmed, then 6,832, 10,416, and 14,880 points respectively would need to be evaluated.

Clearly this is a substantial reduction from 160,000 points.

Note that once the degree of the Hermite polynomial is chosen and the number of random

parameters decided, then the same set of points and weights can be duplicated by any other

analyst given the fraction trimmed. This ability to easily replicate estimation is not afforded

to MSL since the exact method to generate the random draws may not be available to the

analyst. Additionally, under Gauss-Hermite quadrature only one set of nodes and weights is

needed for each respondent; whereas typically a different set of random draws is required for

each respondent under MSL.

Of course, once the weights are trimmed, they no longer sum to one. We suggest rescaling

the weights after trimming to assure they sum to one. Our investigations suggest that for a

given degree d, that there is little to be gained by selecting a trimming fraction smaller than

one-hundredth of the mean. Precision is uniformly gained by increasing the degree of the

orthogonal polynomial given a level of trimming. It is an empirical issue as to the selection

of the degree and the fraction trimmed as this will depend on the specific mixed logit model

analyzed. We advocate increasing the degree of the orthogonal polynomial until estimated

parameters stabilize.

2.3.3 Sparse Grids Integration

In addition to Gauss-Hermite integration, we also consider applying sparse grid in mixed

logit models for its good performance in integrating higher dimensional polynomials. The

key idea of sparse grid integration is to carefully choose and reweight the evaluation nodes to

avoid the “curse of dimensionality” in multivariate quadrature. Instead of approximating a

multi-dimensional integral by combining the univariate quadrature rules in a tensor product

approach, sparse grid integration carefully identifies the essential evaluations nodes so that

the calculation load is greatly reduced. To optimally select the nodes, Smolyak (1963)

provided a general rule on how to extend univariate operators to multiple dimensions.
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Wasilkowski and Wozniakowski (1995) gave a more explicit expression of the Smolyak rule

and Heiss and Winschel (2008) further extended the approach to approximating the likeli-

hood with numerical integration in multiple dimensions. In some recent research, the per-

formance of sparse grid integration is further evaluated in both the BLP (Berry et al., 1995)

and mixed logit model (eg., Skrainka and Judd, 2011). More details on the algorithm of

sparse grid integration can be found in the Appendix A.

However, one potential problem with sparse grid integration is the possibility of negative

weights for some nodes. This means theoretically it is possible to have a negative approx-

imated integral although the integrand is positive everywhere (Heiss and Winschel, 2008).

Although Heiss and Winschel mentioned that the effects should be alleviated by increasing

the accuracy of the approximation formula and they didn’t encounter such problem in their

simulation analysis, we address this question in the analysis of mixed logit models with real

survey data. In an application, we adopt the sparse grid node and weights generated by the

code provided by Heiss and Winschel (2008) in MATLAB.

2.4 Data

For ease of replication, we choose two available data sets to compare the performance of the

three numerical integration methods in the mixed logit model. The first data set is provided

by Train and Sonnier (2005) on consumers’ choice among different types of vehicles (gas,

electric and hybrid) under different combinations of price, operating cost, range, and perfor-

mance. This experiment is a part of the survey that targeted vehicle owners in California.

California Air Resources Board has been interested in the promotion of vehicles with fewer

pollutant emissions.

The survey contacted respondents randomly throughout the state by telephone and those

who planned to purchase a car within the next three years were invited to participate in this

survey. 100 participants are included in total. Each participant received a questionnaire
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with 15 questions of vehicle choices. To make the data set a balanced panel, we adopt the

first 10 questions for each respondent. Thus, there are 100× 10 choice situations with 3000

alternatives. For each question, three different vehicle types are listed, and the respondents

are asked to choose the one vehicle that they prefer the most given the attribute levels. A

sample of the data is shown in Table 2.2. Attributes assigned to each alternative include:

(a) Engine type: gasoline, electric, or hybrid

(b) Purchase price (in $10, 000)

(c) Operating cost (in dollars per month)

(d) Performance:

i. High performance: Top speed of 120 mph, and 8 seconds to reach 60 mph

ii. Middle performance: Top speed of 100 mph, and 12 seconds to reach 60 mph

iii. Low performance: Top speed of 80 mph, and 16 seconds to reach 60 mph

(e) Range: miles between refueling/recharging

Considering the high correlation coefficient between the purchase price and the operation

cost (p-value < 0.001), we drop the operating cost variable in the following analysis. We also

combine the middle performance and the low performance as one group to simplify the anal-

ysis. The choice experiments were designed to provide wide variation in each attribute and

as little covariance among attributes as possible while maintaining plausibility. A summary

of the attributes is provided in Table 3.2.

The second data set was introduced by Huber and Train (2001) and further analyzed

by Elshiewy et al. (2017). It records 361 respondents’ choices on electricity suppliers with

the attributes including fixed price, length of contract, type of company, time-of-use rates,

and seasonal rates. The survey was conducted by Electric Power Research Instituted. Each

respondent was given 12 questions regarding four types of suppliers with different combina-

tions of the attributes listed below:
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(a) Fixed price (in cents per kilowatt-hour): 7 or 9 cents per kWh

(b) Length of contract (year): no contract, 1-year contract, or 5-year contract. During

the contract period, the utility company guarantees the prices and the consumers

will face with a penalty if they switch to other utility carriers

(c) Type of company:

i. The local utility

ii. A “well-known company other than the local utility”

iii. An unfamiliar company

(d) Time-of-use rate: the rate policy that charges 11 cents per kWh from 8 am to 8

pm and 5 cents per kWh from 8 pm to 8 am

(e) Seasonal rates: the rate policy that charges 10 cents per kWh in summer, 8 cents

in winter, and 6 cents in spring and fall

A sample of the data is shown in Table 2.4. All the attributes in this data set are

categorical variables. The levels of the attributes are allocated randomly over the questions,

with summary statistics listed in Table 2.5. Considering the number of respondents is higher

in the electricity data set, sparse grid integration is applied in comparison to the Gauss-

Hermite integration and quasi-Monte Carlo simulation.

2.5 Empirical Results

2.5.1 Gauss-Hermite Integration v.s. quasi-Monte Carlo Simulation

First, we compare the performance of Gauss-Hermite Integration and the quasi-Monte Carlo

simulation with the vehicle data set provided by Train and Sonnier (2005). For the model

specification, assume a linear form utility function that the utility of respondent i to choose
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alternative j in question t is:

Uijt =βprice,iPriceijt + βRange,iRangeijt + βEV,iElectricV ehicleijt + βHybrid,iHybridV ehicleijt

+ βPerfPerformance+ εijt

where εijt ∼ EV (0, 1) to ensure the logit form of the choice probability. To allow potential

heterogeneity in respondent preferences, the coefficients of the first four attributes are set

to be random. Only the effect of vehicle performance (βPerf ) is assumed to be fixed. Also,

βprice,i and βRange,i are log-normally distributed to ensure to the positive range of the marginal

utility (price enters as the negative of vehicle cost). Parameters for the other two variables,

Electric Vehicle and Hybrid Vehicle, are specified as normally distributed since no other prior

information is available for their shape.

As Train and Weeks (2005) pointed out: “Specifying the utility coefficients to be inde-

pendent implicitly constrains the scale parameter to be constant”(p.5). Consequently we

estimate the vehicle choice model with correlated random parameters. To obtain a bench-

mark for the “true value” of the model specification, the (almost) exact maximum likelihood

estimator of with a high degree (64th) Hermite polynomial is adopted, with the nodes whose

weights less than one-hundredth of the mean weight(1/644) trimmed and the remaining

nodes re-weighted. The result is shown in Table 2.6. Further, a likelihood ratio test of the

hypothesis that the six correlations are zero yields a χ2 test statistic of 24.06 (p < 0.001),

justifying the specification of correlated random parameters.

For comparison, we estimate the model with both the quasi-Monte Carlo simulation and

the Gauss-Hermite integration under differing numbers of draws and nodes, respectively. For

the quasi-Monte Carlo simulation, we select two commonly adopted sequences, the scrambled

Sobol and the Halton sequences, provided in MATLAB. The study by Czajkowski et al.

(2017) gives a detailed description of the Sobol sequences and, in their simulations, Sobol

draws were found to slightly outperform Halton draws. Both methods dominated modified

Latin hypercube sampling. Under the maximum simulated likelihood estimation, 10,000,

20,000, 40,000, 80,000, and 160,000 scrambled Sobol and Halton draws per respondent were
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used for model estimation. In the case of Gauss-Hermite integration, a 24th degree (10,416

points), a 32th degree (21,312 points), a 48nd degree (55,440 points), a 52th degree (66,512

points), and a 56nd degree (75,712) Hermite polynomial with weights less than one-tenth of

the mean trimmed were used for estimation. The full estimation result is provided in Table

2.7 and 2.8.

As a measure of estimation accuracy, we calculate the percentage absolute deviation of

the estimates from the benchmark true value in the (almost) exact ML model with 64th

degree Hermite polynomial. In Table 2.7 and 2.8, the darker a cell is marked, the higher the

percent absolute deviation observed, or, the estimate accuracy is worse. Figure 2.1 and 2.2

illustrate how the individual parameters and their estimated standard errors behave over

different numbers of evaluation nodes (G-H integration) or scrambled random draws.

From Figures 2.1 and 2.2, the performance of the G-H integration is much more stable

and accurate than MSL with both the Halton and Sobol sequences. The G-H integration with

66,512 nodes closely approximates the mean of coefficients with all estimators within 1% of

the true values. Achieving accurate estimators of the standard errors requires higher degree

polynomials as several of the correlations are small and insignificant. The G-H estimated

standard errors are within 2% of the true values when 75,712 nodes are used. With regard

to MSL estimation, much more draws are needed to achieve the same level of accuracy, and

the Halton sequence appears to dominate the Sobol sequence in general. For the mean of

coefficients, the Halton sequence achieves reasonably accurate estimates when 80,000 draws

are used, where all estimators are within 1% of the true values, except for the variable

“Range”. However, when the number of draws doubled to 160,000, the estimation accuracy

decreased unexpectedly. Thus, the high accuracy in 80,000 draws is just a “lucky” point

whose performance can hardly be guaranteed. For the Sobol sequence, convergence speed

is much slower as all estimated means are within 4% of the true values when 80,000 draws

are used, except for the variable “Range” whose mean estimator locates way far from the

true value. With the number of draws doubled to 160,000, the Sobol sequence shows a nice
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improvement that all estimators are within 2% of the true value. Further, the MSL estimated

standard errors converge even more slowly. It takes the Halton sequence 80,000 draws to have

all estimated standard errors within 2% of the true values, except for the standard error of

variable “Range”. But again the accuracy doesn’t improve as the number of draws is doubled.

For the Sobol sequence, it can never achieve an accuracy of having all estimated standard

errors to within 2% of the true value even when 160,000 draws are taken.

2.5.2 Gauss-Hermite Integration v.s. Sparse Grid Integration

In this section, we further evaluate the performance of Gauss-Hermite integration in com-

parison to the Sparse Grid integration which is known for its power accommodating high

dimensional integration. The electricity data set is used because it has more respondents and

more independent variables. To give a comprehensive view, we also apply the quasi-Monte

Carlo simulation with the Halton sequence. The utility function is specified in a linear form

of the attributes as:

Uijt =βprice,iPriceijt + βlength,iContractLengthijt + βLocal,iLocalUtilityijt

+ βwellknown,iWellKnownUtilityijt + βT imeuse,iTimeRate

+ βseasonal,iSeasonlRate+ εijt

Similarly, ε ∼ EV (0, 1) to ensure the logit form of choice probabilities. As shown in this

equation, all the six attribute parameters are set to be random to allow for heterogeneity

in consumers’ preferences. Thus, a respondent’s choice probability requires a 6-dimensional

integration. Similarly, correlated random coefficients are considered as it is more general.

To provide a close approximation to the true model specification, the (almost) exact

likelihood estimator is obtained with the G-H integration of 24th degree Hermite polynomial,

with the node whose weight less than one-hundredth of the mean trimmed. Note that we

choose a lower polynomial degree considering the integration dimension and sample size are

increased. For the sparse grid integration, we select the accuracy level k of 15, 18 and 19, with

the number of evaluating nodes of 356,797, 1,044,885, 1,425,481, respectively. For the G-H
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integration, 15 and 20 degree Hermite polynomials are applied, with the number of nodes

being 272,821 and 788,992, respectively. In addition, MSL is evaluated as a supplement with

the Halton sequences of 3,000, 6,000, and 12,000 draws for each respondent, respectively,

that is 1,083,000, 2,155,000, 4,332,000 draws in total. The full estimation result is shown in

Tables 2.9 and 2.10, where a darker cell means higher discrepancy between the estimated

and the true value.

Again, we plot the percent absolute deviation of the coefficient estimators under the three

methods. For the mean of the coefficients in respondents’ utility function (Figure 2.3 and

Figure 2.4), G-H integration with 272,821 nodes has most estimators within 6% of the true

value. When the number of nodes is increased to 788,992, the estimate accuracy is improved

for all parameters except for the correlation between the “well-known Utility” and the rate

policy “seasonal price”. To be more specific, all estimated means are within 2% deviation

of the true value with 788,992 nodes, except for three correlations (the one between “well-

known utility” and “seasonal price”, the one between “fixed price” and “contract length”,

as well as the one between “contract length” and “time of use”). For sparse grid integration,

though, we find the estimation accuracy does not monotonically increase as the number of

nodes grows. Although the mean estimators for coefficients and their standard errors are

within 3% absolute deviation, estimators for correlations between coefficients are far from

the true values. In terms of MSL with the Halton sequence, the estimation accuracy is even

less satisfied, especially for the correlations between coefficients.

Such a difference is even clearer for the estimated standard errors. As shown in Figure

2.5, there is a clear and strong converge trend for the G-H estimators to approach the true

value as the nodes increased from 272,821 to 788,992. The percent absolute deviations for

all standard error estimators are within 3% of the true value when the number of nodes

equals 788,992. However, no clear improvements in accuracy are observed for the sparse

grid estimators when the number of nodes is increased from 356,797 to 1,425,481, which
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corresponds to accuracy levels of 15 and 20, respectively. Similarly, no strong converge trend

is observed for the MSL method with the Halton sequence (Figure 2.6).

Another problem observed for sparse grid method is the negative choice probabilities that

results from the re-weighting algorithm. For the sparse grid integration with the accuracy

level k = 18, a negative integrated choice probability is observed for respondent 226 in

our analysis. This obviously detracts from the usefulness of sparse grid integration within

the framework of discrete choice models. Thus, we drop this respondent from the analysis.

Heiss and Winschel (2008) mention that such negative approximated integrals can be seen

as an evidence of extremely crude approximations that might be solved if accuracy levels

are increased. However, in empirical studies where the the integral has the special meaning

of choice probabilities, it might be hard for one to foresee this problem and it’s difficult to

find a criteria that satisfies both the goals of reducing calculation load and avoiding negative

integrals.

2.5.3 Discussion

In summary, the empirical test with two choice experiment data sets validates the stable

performance of Gauss-Hermite integration in the estimation of the mixed logit models. As

we trimmed the negligible nodes, the calculation load of Gauss-Hermite integration is largely

reduced so that the application of this method is feasible to moderate dimensional integrals,

like the mixed logit model with 4 to 6 random variables. Comparing the three methods, the

estimation accuracy is always improved when the number of evaluation nodes increased for

Gauss-Hermite integration. While for quasi-Monte Carlo simulation and sparse grid integra-

tion, such a convergence trend can hardly be guaranteed. In addition, our results indicate

that sparse grid integration may not very suitable for mixed logit models given the possibility

of negative integrated choice probabilities.
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2.6 Conclusion

This paper explores the potential of numerical integration in the estimation of mixed logit

models, validates the feasibility and the satisfactory performance of Gauss-Hermite quadra-

ture in approximating the choice probabilities especially when the number of random param-

eters is relatively small (≤ 6). We draw our conclusions from empirically comparing the

estimation accuracy and efficiency among three candidate methods: quasi-Monte Carlo sim-

ulation, G-H quadrature, and spare grid integration. All these approximate solutions to

multivariate integrals, with the only difference in how the evaluation nodes are selected and

weighted.

For the most commonly adopted estimation method, quasi-Monte Carlo simulation, we

find that the problems of slow convergence rates and unstable accuracy are not negligible.

Chapter 10 in Train (2009) provides a detailed treatment of the simulation bias and the

simulation noise that arise from MSL estimation. For a fixed number of draws, simulation

bias increases with the number of respondents (N). However if the number of draws increases

faster than
√
N , then Train shows that simulation bias disappears asymptotically. Of course

simulation noise decreases as the number of draws increases, and it also decreases with N .

To some extent, then, the rather small size (N=100) of the vehicle example may act

to magnify the discrepancies between G-H and MSL estimation. Based on results reported

by Czajkowski and Budzinski (2017), it appears that tripling the sample size reduces by

approximately 50 percent the number of MSL draws needed for the same level of accuracy.

This suggests that even with a sample of 300 respondents, tens of thousands of draws would

still be required to achieve parameters and standard deviations within several percent of

their true values. While other empirical models or simulation studies could be investigated,

the point is that simulation bias and noise will always be a consequence of the maximum

simulated likelihood approach. So even if our data set is regarded as a rather limited example,
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we are confident that our findings would be generally representative of more exhaustive

studies.

Ultimately the question becomes how much simulation error is acceptable. Increasing the

number of draws used for quasi-Monte Carlo simulation to investigate parameter stability

is not a foolproof approach because, while expected simulation bias and noise decrease with

increased draws, the empirical outcome is uncertain. This phenomenon can be observed for

both Sobol and Halton sampling in the figures provided. The G-H method has the property

that overall accuracy will always be improved as the degree of the Hermite polynomial is

increased.

Finally, when an analyst is considering MSL estimation there is uncertainty as to which

simulation method will work the best. Should every empirical application entertain Halton,

Sobol, and modified Latin hypercube sampling in order to validate the results? Further,

replicability is compromised unless the analyst has the identical, scrambled draws.

These issues can be avoided completely by instead adopting almost exact ML estimation

using Gauss-Hermite quadrature. Given its ease of application and replication, it is a powerful

alternative to maximum simulated likelihood as it avoids simulation bias and simulation noise

and only incurs controllable approximation error. Certainly this is a desirable trade off.

In terms of the other numerical integration method, sparse grid, estimation accuracy

appears questionable plus the integrated choice probability is not always positive. Similar

with the simulation method, there is no monotonic relationship between the estimation

accuracy and the number of quadrature nodes, so that the selection of the accuracy level

in empirical analysis would be arbitrary to some extent. Also, the problem of a negative

integrated choice probability is a dead end in terms of the model estimation. These two

reasons distance us from applying this method in the mixed logit model. In conclusion,

for typical problems in environmental and natural resources economics with a relatively

small number of random coefficients and modest sample sizes, we recommend Gauss-Hermite

quadrature as worthy of consideration.
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Table 2.1: 20th Degree nodes and Weights for Gaussian-Hermite Quadrature

i ε∗i w∗i (w∗i )
4

1 -5.387 2.229E-13 (<0.00001) 2.470E-51 (<0.00001)
2 -4.604 4.399E-10 (<0.00001) 3.746E-38 (<0.00001)
3 -3.945 1.086E-07 (<0.00001) 1.391E-28 (<0.00001)
4 -3.348 7.803E-06 (<0.00001) 3.706E-21 (<0.00001)
5 -2.789 2.283E-04 0.0002 2.718E-15 (<0.00001)
6 -2.255 3.244E-03 0.0032 1.107E-10 (<0.00001)
7 -1.739 2.481E-02 0.025 3.789E-07 (<0.00001)
8 -1.234 1.090E-01 0.109 1.412E-04 0.00014
9 -0.737 2.867E-01 0.287 6.754E-03 0.0068
10 -0.245 4.622E-01 0.462 4.565E-02 0.046
11 0.245 4.622E-01 0.462 4.565E-02 0.046
12 0.737 2.867E-01 0.287 6.754E-03 0.0068
13 1.234 1.090E-01 0.109 1.412E-04 0.00014
14 1.739 2.481E-02 0.025 3.789E-07 (<0.00001)
15 2.255 3.244E-03 0.0032 1.107E-10 (<0.00001)
16 2.789 2.283E-04 0.0002 2.718E-15 (<0.00001)
17 3.348 7.803E-06 (<0.00001) 3.706E-21 (<0.00001)
18 3.945 1.086E-07 (<0.00001) 1.391E-28 (<0.00001)
19 4.604 4.399E-10 (<0.00001) 3.746E-38 (<0.00001)
20 5.387 2.229E-13 (<0.00001) 2.470E-51 (<0.00001)

Table 2.2: Sample of the Vehicle Data Set

Question ID Choice Price Operating cost Range Electric Gas Hybrid Perf1 Perf2

1

1 0 4.676 47.43 0 0 0 1 0 0
1 1 5.721 27.43 1.3 1 0 0 1 1
1 0 8.796 32.41 1.2 1 0 0 0 1

2

1 1 3.377 4.89 1.3 1 0 0 1 1
1 0 9.034 30.19 0 0 0 1 0 1
1 0 5.71 27.16 1.8 1 0 0 1 1
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Table 2.3: Summary Statistics of the Vehicle Data Set

Continuous
Variables

Variable N Mean Std Dev Minimum Maximum

Price (in $10,000) 3000 3.57 1.75 0.70 9.72
Range (in 100 miles) 3000 0.42 0.65 0.00 2.00
Operating cost (in $) 3000 33.23 15.58 2.59 72.29

Categorical
Variables

Variable Level Frequency Percent (%)

Engine Type
Electric 974 32.47
Gas 1008 33.60
Hybrid 1018 33.93

Perfomance
High Perf 990 33.00
Middle and low Perf 2010 67.00

Table 2.4: Sample of the Electricity Data Set

Question ID Choice Alternative Fixed
price

Contract
Length

Local
Company

Wellknown
Company

Time of
Day Rate

Seasonal
Rate

1

1 0 1 7 5 0 1 0 0
1 0 2 9 1 1 0 0 0
1 0 3 0 0 0 0 0 1
1 1 4 0 5 0 1 1 0

2

1 0 1 7 0 0 1 0 0
1 0 2 9 5 0 1 0 0
1 1 3 0 1 1 0 1 0
1 0 4 0 5 0 0 0 1
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Table 2.5: Summary Statistics of the Electricity Data Set

Variable Levels Frequency Percent(%)

Fixed Price
7 cents per kWh 3863 24.39
9 cents per kWh 3975 25.09
no fixed price 8002 50.52

Contract Length
1-year contact length 4999 31.56
5-year contract length 5539 34.97
no contract length 5302 33.47

Company Type
local company 3228 20.38
unfamilar company 6285 39.68
wellknown company 6327 39.94

Time of Day Rate
no 11882 75.01
yes 3958 24.99

Seasonal Rate
no 11796 74.47
yes 4044 25.53

Table 2.6: (Almost) Exact Maximum Likelihood Estimation for the Vehicle Data Set
(Correlated Random Coefficients)

(Gauss-Hermite Quadrature with 156,816 Points)

Parameter Coefficient Std. Error Z-value

Pricelog -0.7955*** 0.1951 -4.0774
Rangelog -0.3128 0.3925 -0.7969
EV -1.7627*** 0.4395 -4.0107
Hybrid 1.1203*** 0.2208 5.0738
Performance 0.6308*** 0.1081 5.8353
SE-Price 1.2248*** 0.1848 6.6277
SE-Range 0.8768*** 0.252 3.4794
SE-EV 1.2163*** 0.4737 2.5677
SE-Hybrid 1.4175*** 0.2489 5.6951
CorPr-Range 0.6834** 0.3269 2.0905
CorPr-EV -0.2757 0.4642 -0.5939
CorPr-Hybrid 0.6397*** 0.1524 4.1975
CorRange-EV 0.0981 0.6016 0.1631
CorRange-Hyb 0.838** 0.4218 1.9867
CorEV-Hybrid 0.3348 0.3555 0.9418
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Table 2.7: Estimated Means for the Vehicle Data Set

Gauss-Hermite Estimated Means

Coefficient GH64-156,816 GH24-10,416 GH32-21,312 GH48-55,440 GH52-66,512 GH56-75,712

Price -0.794 -0.787 -0.796 -0.794 -0.793 -0.793
Range -0.313 -0.301 -0.313 -0.314 -0.314 -0.313
EV -1.760 -1.754 -1.765 -1.758 -1.759 -1.760
Hybrid 1.123 1.128 1.119 1.125 1.125 1.124
Performance 0.631 0.632 0.631 0.631 0.631 0.631
SE-Price 1.225 1.226 1.223 1.232 1.231 1.228
SE-Range 0.877 0.855 0.880 0.878 0.879 0.877
SE-EV 1.216 1.236 1.204 1.216 1.214 1.215
SE-Hybrid 1.419 1.420 1.416 1.422 1.420 1.419
Cor:Pr&Range 0.682 0.669 0.697 0.680 0.682 0.682
Cor:Pr&EV -0.272 -0.243 -0.294 -0.268 -0.272 -0.272
Cor:Pr&Hybrid 0.641 0.642 0.637 0.643 0.642 0.641
Cor:Range&EV 0.100 0.097 0.113 0.100 0.101 0.101
Cor:Range&Hyb 0.837 0.806 0.859 0.837 0.838 0.838
Cor:EV&Hybrid 0.336 0.366 0.321 0.338 0.336 0.336

Sobol Estimated Means

Coefficient GH64-156,816 Sobol 10,000 Sobol 20,000 Sobol 40,000 Sobol 80,000 Sobol 160,000

Price -0.794 -0.791 -0.794 -0.794 -0.794 -0.794
Range -0.313 -0.316 -0.319 -0.314 -0.311 -0.311
EV -1.760 -1.756 -1.760 -1.760 -1.761 -1.760
Hybrid 1.123 1.122 1.123 1.124 1.124 1.123
Performance 0.631 0.630 0.631 0.631 0.631 0.631
SE-Price 1.225 1.220 1.226 1.228 1.228 1.228
SE-Range 0.877 0.884 0.886 0.877 0.874 0.874
SE-EV 1.216 1.181 1.221 1.219 1.226 1.218
SE-Hybrid 1.419 1.414 1.423 1.418 1.419 1.419
Cor:Pr&Range 0.682 0.703 0.685 0.677 0.674 0.681
Cor:Pr&EV -0.272 -0.304 -0.274 -0.268 -0.263 -0.269
Cor:Pr&Hybrid 0.641 0.637 0.642 0.642 0.642 0.642
Cor:Range&EV 0.100 0.142 0.089 0.091 0.088 0.099
Cor:Range&Hyb 0.837 0.880 0.835 0.831 0.823 0.835
Cor:EV&Hybrid 0.336 0.313 0.336 0.338 0.344 0.339

Halton Estimated Means

Coefficient GH64-156,816 Halton 10,000 Halton 20,000 Halton 40,000 Halton 80,000 Halton 160,000

Price -0.794 -0.797 -0.794 -0.794 -0.794 -0.794
Range -0.313 -0.315 -0.321 -0.315 -0.313 -0.311
EV -1.760 -1.761 -1.756 -1.760 -1.759 -1.760
Hybrid 1.123 1.122 1.124 1.123 1.123 1.123
Performance 0.631 0.631 0.631 0.631 0.631 0.631
SE-Price 1.225 1.232 1.225 1.226 1.227 1.227
SE-Range 0.877 0.880 0.889 0.880 0.876 0.874
SE-EV 1.216 1.221 1.197 1.223 1.213 1.219
SE-Hybrid 1.419 1.424 1.424 1.421 1.419 1.419
Cor:Pr&Range 0.682 0.682 0.692 0.681 0.681 0.678
Cor:Pr&EV -0.272 -0.269 -0.290 -0.269 -0.272 -0.267
Cor:Pr&Hybrid 0.641 0.645 0.639 0.642 0.641 0.642
Cor:Range&EV 0.100 0.088 0.117 0.088 0.104 0.097
Cor:Range&Hyb 0.837 0.827 0.852 0.830 0.839 0.832
Cor:EV&Hybrid 0.336 0.340 0.328 0.340 0.335 0.340
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Table 2.8: Estimated Standard Errors for the Vehicle Data Set

Gauss-Hermite Estimated Standard Errors

Coefficient GH64-156,816 GH24-10,416 GH32-21,312 GH48-55,440 GH52-66,512 GH56-75,712

Price 0.195 0.195 0.197 0.195 0.194 0.194
Range 0.392 0.385 0.399 0.391 0.393 0.393
EV 0.439 0.440 0.439 0.439 0.439 0.439
Hybrid 0.221 0.226 0.221 0.221 0.222 0.222
Performance 0.108 0.108 0.108 0.108 0.108 0.108
SE-Price 0.185 0.196 0.185 0.187 0.190 0.189
SE-Range 0.252 0.245 0.269 0.242 0.252 0.254
SE-EV 0.473 0.472 0.470 0.471 0.471 0.472
SE-Hybrid 0.249 0.251 0.248 0.250 0.250 0.249
Cor:Pr&Range 0.327 0.309 0.327 0.323 0.322 0.324
Cor:Pr&EV 0.463 0.439 0.475 0.455 0.458 0.461
Cor:Pr&Hybrid 0.152 0.154 0.152 0.152 0.153 0.153
Cor:Range&EV 0.602 0.599 0.607 0.604 0.605 0.603
Cor:Range&Hyb 0.421 0.406 0.428 0.413 0.415 0.418
Cor:EV&Hybrid 0.355 0.331 0.369 0.347 0.351 0.353

Sobol Estimated Standard Errors

Coefficient GH64-156,816 Sobol 10,000 Sobol 20,000 Sobol 40,000 Sobol 80,000 Sobol 160,000

Price 0.195 0.195 0.194 0.195 0.195 0.195
Range 0.392 0.396 0.392 0.397 0.395 0.395
EV 0.439 0.441 0.439 0.440 0.440 0.440
Hybrid 0.221 0.222 0.221 0.221 0.221 0.221
Performance 0.108 0.108 0.108 0.108 0.108 0.108
SE-Price 0.185 0.202 0.184 0.183 0.187 0.188
SE-Range 0.252 0.262 0.238 0.258 0.261 0.262
SE-EV 0.473 0.703 0.429 0.468 0.484 0.478
SE-Hybrid 0.249 0.257 0.249 0.249 0.249 0.250
Cor:Pr&Range 0.327 0.541 0.292 0.311 0.333 0.332
Cor:Pr&EV 0.463 0.723 0.427 0.449 0.468 0.469
Cor:Pr&Hybrid 0.152 0.172 0.150 0.151 0.152 0.153
Cor:Range&EV 0.602 0.997 0.543 0.597 0.609 0.609
Cor:Range&Hyb 0.421 0.793 0.352 0.409 0.433 0.431
Cor:EV&Hybrid 0.355 0.479 0.334 0.350 0.355 0.360

Halton Estimated Standard Errors

Coefficient GH64-156,816 Halton 10,000 Halton 20,000 Halton 40,000 Halton 80,000 Halton 160,000

Price 0.195 0.197 0.194 0.195 0.195 0.195
Range 0.392 0.408 0.395 0.395 0.394 0.391
EV 0.439 0.444 0.438 0.440 0.439 0.439
Hybrid 0.221 0.221 0.221 0.221 0.221 0.221
Performance 0.108 0.108 0.108 0.108 0.108 0.108
SE-Price 0.185 0.199 0.180 0.188 0.186 0.186
SE-Range 0.252 0.297 0.249 0.258 0.258 0.250
SE-EV 0.473 0.546 0.442 0.461 0.475 0.469
SE-Hybrid 0.249 0.252 0.248 0.248 0.249 0.249
Cor:Pr&Range 0.327 0.363 0.297 0.310 0.326 0.324
Cor:Pr&EV 0.463 0.540 0.440 0.448 0.469 0.455
Cor:Pr&Hybrid 0.152 0.155 0.149 0.151 0.152 0.152
Cor:Range&EV 0.602 0.663 0.576 0.578 0.602 0.595
Cor:Range&Hyb 0.421 0.506 0.348 0.395 0.420 0.410
Cor:EV&Hybrid 0.355 0.389 0.338 0.346 0.357 0.349
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Table 2.9: Estimated Means for the Electricity Data Set
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Table 2.10: Estimated Standard Errors for the Electricity Data Set
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Figure 2.1: Estimated Means of the Vehicle Data Set
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Figure 2.2: Estimated Standard Errors of the Vehicle Data Set
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Figure 2.3: Estimated Means of the Electricity Data Set (G-H vs. Sparse Grid)
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Figure 2.4: Estimated Means of the Electricity Data Set (MSL with Halton Sequence)
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Figure 2.5: Estimated Standard Errors of the Vehicle Data Set (G-H vs. Sparse Grid)
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Figure 2.6: Estimated Standard Errors of the Electricity Data Set (MSL with Halton
Sequence)
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Chapter 3

The Distribution of Mean Willingness to Pay in Mixed Logit Models:

Classical, Bayesian and Resampling Approaches

* Ying J. and Shonkwiler J. S.. To be submitted to American Journal of Agricultural Economics.

47



Abstract

Representation of Willingness to Pay (WTP) in the mixed logit model has long been debated

given the non-zero probability of a zero-denominator when unbounded distributions are

applied to the cost coefficient. However, economic theory indicates the marginal utility of

income for normal goods is always positive if the consumption is non-zero. With this assump-

tion, a well-defined approximation of the moments in WTP, which is a ratio of two normal

variables, is available. This paper explores the distribution of mean WTP with three methods:

the classical Delta method, the Bayesian approach with individual-level WTP, and a resam-

pling method using the block delete jackknife. The empirical analysis shows the drawback of

the Delta method, reveals the skewness introduced by a log-normally distributed cost coef-

ficient, and validates the virtues of the Bayesian approach and the block delete jackknife.

The potential of applying a normally distributed cost coefficient and the accuracy of the

Bayesian approach is further validated by a synthetic data set with 2000 respondents.

Keywords: Mean Willingness to Pay, Mixed Logit Model, Bayesian Individual-level WTP,

Block Delete Jackknife, Delta Method
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3.1 Introduction

As one of the most popular methods in discrete choice modeling, the mixed logit model has

been widely applied to derive consumers’ willingness to pay (WTP) for goods and services

in the field of non-market valuation, transportation, health economics, etc. WTP is the

maximum price at or below which a consumer will definitely buy one unit of a product –

that is – the marginal rate of substitution (MRS) between income and the quantity expressed

by the attribute given the utility level is fixed (Small and Rosen, 1981). For a linear utility

function, the point estimation of WTP could be simply expressed as the ratio between the

coefficient for the attribute of interest and the coefficient for the cost (price) variable. For

the traditional multinomial logit model, WTP is a fixed value given both coefficients in the

WTP ratio are fixed under the assumption of “the same preference for all respondents”.

In contrast, WTP in the mixed logit model is represented by a random distribution as the

coefficients in the utility function could be random. To this end, mixed logit models are more

flexible and realistic by allowing more variation in consumers’ taste, unrestricted substitution

patterns and correlations in unobserved factors over time (Train, 2009).

However, adding more flexibility also brings more complexities in the calculation of will-

ingness to pay. A common concern with the mixed logit model is the non-zero probability of

a zero denominator in the WTP ratio when the cost coefficient follows a distribution that

spans over zero. For example, the normal distribution is one of the most popular distributions

for coefficients in the utility function when no prior information is available on the shape of

individuals’ marginal utility. However, the range of the normal distribution overlaps zero so

that a random draw from a normally distributed cost coefficient could be extremely close

to zero. In that case, an extremely large WTP might be observed and severely plague the

welfare analysis. Due to this concern, traditional simulation approaches like the Krinsky and

Robb (K&R) procedure proposed by Hensher and Greene (2003) could be biased given the

the first two moments may not exist for a WTP defined as the ratio of normal variables.
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More specifically, Daly et al. (2012) demonstrate that some popular parameterizations for

the cost coefficient, such as normal, truncated normal, uniform, and triangular, can imply

infinite moments for WTP if the probability density is positive when the cost coefficient

equals to zero. They also point out that simulation can serve to mask the non-existence of

the moments in WTP ratio by providing finite simulated moments.

To avoid the non-existance of moments in the WTP ratio, most existing studies advocate

using bounded and sign restricted distributions to shift the distribution away from zero.

Distributions like log-normal, censored normal, and the Johnson SB distribution (Train and

Sonnier, 2005) are widely applied. However, imposing bounds or specific shapes on the cost

coefficient could be arbitrary (Daly et al., 2012). It may also fail to reflect the shape of the

real data (Hensher and Greene, 2003; Cirillo and Hetrakul, 2010; Hess et al., 2005). Empir-

ical studies have found that applying the log-normal distribution may introduce biased cost

coefficients due to the heavy tails and consequently over-estimate the WTP ratio (Balcombe

et al., 2009; Rigby et al., 2009; Hole and Kolstad, 2012). Additionally, the sampling vari-

ability of WTP measures under a lognormal distribution may be extreme and, in fact, this

phenomenon has caused investigations into welfare measures derived from mixed logit models

specified in willingness to pay space.

Another approach is to divide the attribute coefficient by the mean of cost coefficient to

avoid extreme measures in WTP ratio. A main draw back of this method is it sacrifices the

variability in WTP measures, and the ratio may not be interpreted as the mean of WTP

but a WTP derived from the coefficients of the “average individual” for each parameter

(Sillano and de Dios Ortúzar, 2005). Also, for most empirical analyses, simply fixing the

price parameter could be flawed due to the unrealistic assumption of the same marginal

utility of income for every respondent – no heterogeneity exists (Meijer and Rouwendal,

2006; Scarpa and Rose, 2008; Daly et al., 2012).

Then, what is the analyst to do if a normally distributed (unbounded, no sign restricted)

price parameter empirically fits the data much better than a log-normally distributed one? To
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answer this question, the most important pre-condition is to ensure the stable performance

of the moments for WTP ratio. The ratio of two correlated normal random variables has long

been discussed in the statistics literature (Geary, 1930; Fieller, 1932; Box, 1958; Marsaglia,

1965; Hinkley, 1969). The ratio z of two centred normal variables is a Cauchy variable, and

the ratio z of two arbitrary normal variables lead to a Cauchy-like distribution (Cedilnik

et al., 2004). It is well recognized that either the Cauchy or the Cauchy-like distribution

does not have finite moments of order greater than or equal to one. This property is also

addressed by Daly et al. (2012) to show the inappropriateness of a normally distributed cost

coefficient.

However, Marsaglia (2006) points out a fact that is frequently observed but rarely inves-

tigated: when handling general ratios, in theory, none of the moments exist yet practical

considerations suggest there should be approximations whose adequacy can be verified. Fur-

ther, his research suggests many of the ratios of normal variables encountered in practice

can themselves be taken as normally distributed. Further, if the denominator is always pos-

itive, the ratio of two joint normal variables is approximately normally distributed with a

well-defined mean and variance.

Then, do we have the basis to motivate a non-zero cost-coefficient in consumers’ indirect

utility functions? The answer is yes, if we focus on normal goods and ignore the possibility

of zero consumption for a respondent for all survey questions. In microeconomic theory, the

partial derivative of indirect utility to the ith price or cost variable is
∂U∗

∂costi
= −λx∗i , where

λ is the marginal utility of income
∂U

∂M
, and x∗i is the compensated or Hicksian demand for

the good. For a normal good and for the representative population (ignoring the extremely

wealthy whose marginal utility from income may be negligible), the marginal utility of income

is positive. If we also exclude the extreme situation where a respondent chooses the opt-out

alternative “none of the above” for all choice experiment questions in a survey, which means

the respondent is either not serious with the survey or cares nothing about the topic surveyed,

we will have a non-zero Hicksian demand x∗ so that the marginal indirect utility with respect
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to price or cost is non-zero. In fact, only when respondents make some choices can we extract

information about their underlying utility function.

With the justification of stable approximated moments for the WTP ratio, this paper

advocates examining the distribution of the most important statistic – the mean – of WTP

in mixed logit models under different distributions for the cost coefficient, like the normal

and log-normal distribution. From the central limit theorem, the normal distribution is the

most appropriate for a random variable with no prior information. It also has the attribute of

equivalent mean and median. The log-normal distribution, on the other hand, is advantageous

in ensuring the sign of the cost coefficient, while the potential drawback is the shape with

heavy tails and difference between the mean and the median.

In calculating the distribution of mean WTP, we apply the following three approaches.

The first approach is the Delta method, what we also label as the “classical method” given its

wide application in measuring the distribution of a function of variables. Bliemer and Rose

(2013) derived the formula of the Delta method in random coefficient models. However, their

empirical application confuses the standard error of the sample mean with the standard error

of the sample. In our application, we distinguish confidence intervals of the mean WTP from

confidence intervals of the general WTP. Taking the mean WTP as a statistic of interest,

the standard error of the estimator would be
std(WTP )√

n
. Beside, the credible interval of the

mean WTP can also be achieved by posterior draws of individual-level coefficients from the

Bayesian approach. Thirdly, resampling methods are explored in describing the variations

of mean WTP. The block-delete jackknife is suggested considering the potential correlations

among questions answered by the same respondent in the survey data.

As a criteria to examine the estimators of mean WTP, the conditional logit model has

the valuable property that under proper specification of the conditional mean, it yields

consistent estimators even with distributional misspecification (Gourieroux et al.,1984). Also,

the variances of the multinomial logit estimators can be consistently estimated using robust

methods (White, 1982). Further, since the Independence of Irrelevant Alternatives (IIA)
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holds at individual level in both the mixed logit model (Hahn et al., 2017) and the conditional

logit model, the welfare measures from the conditional logit model (which is averages of the

individuals in the sample – but the individuals follow IIA) could be treated as a counterpart

to the “mean WTP” from the mixed logit model. Thus, WTP estimators derived from

the conditional logit model should provide a reasonable approximation to the true value.

Furthermore, a synthetic data set is generated and evaluated to further test the validity of

our conclusion. Given the real utility function is known, the theoretical true moment of WTP

can be calculated and serve as the criterion to examine the performance of our estimators.

The rest of the paper is organized as follows. The next section introduces the three

methods of evaluating mean WTP. Section three introduces the data we apply in the empir-

ical analysis. Section four presents the empirical results with a discussion. Section five applies

a robustness check with a synthetic data set, and the conclusion section summarizes key find-

ings of this paper.

3.2 Methodology

3.2.1 Mixed Logit Model and the Classical Approach (Delta Method)

Let’s define the utility that decision maker i obtains from alternative j to be Uij, i =

1, 2, . . . , n; j = 1, 2, . . . , J. Uij includes an observed part Vij and an unobserved part εij,

so that Uij = Vij + εij. Vij is the systematic part of the utility function and is completely

deterministic to the decision maker and captured by the researcher. It is a linear or non-linear

function form of both the price and amenity attributes of interest. εij captures the factors

that affect utility but are not included in Vij, and is generally assumed to be distributed

independently and identically (iid) extreme value type 1 (EV 1 or Gumble) distributed.

Usually, Vij is defined in a linear form Vij =
∑K

k=1 βkxijk, where xijk is the attribute including

price with the total number of K. Under such specification, a closed-form expression of the

logit form probability in the multinomial logit model can be derived as below.
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Pij =
eVij∑J
j=1 e

Vij
=

e
∑K
k=1 βkxijk∑J

j=1 e
∑K
k=1 βlxijk

The mixed multinomial logit model extends the traditional multinomial logit by relaxing

the restriction of homogeneous preference, assuming the cost coefficient βk to follow a distri-

bution instead of being a single value to account for potential heterogeneity. Correspondingly,

the probability of respondent i choosing alternative j is

Pij =

∫
e
∑K
k=1 βkxijk∑J

j=1 e
∑K
k=1 βlxijk

f(β1, . . ., βK)dβ

Willingness to pay is defined as the monetary value of the population averaged maximum

utility associated with amenity changes. It is the ratio of the marginal utility of the attribute

to the marginal utility of its cost.

WTPk =
∂Uj/∂xjk
∂Uj/∂costj

=
βk
βprice

Where βk is the coefficient for amenity k, βprice is the coefficient for the price. In the

mixed logit model, both the numerator and denominator are random variables. Following

Severini (2005), the asymptotic distribution of a ratio of two possibly correlated random

means can be shown to be normally distributed with a well-defined variance. For example,

if βk and βprice are assumed to be normally distributed, we can write βk = µk + σkε and

βprice = µprice +σpriceε, where ε is standard normally distributed, and the mean of WTP can

be written as

θ = E (WTPK) =
E (µk + σkε)

E (µp + σpε)
=
E (µk + γk)

E (µp + γp)
, and E (γk, γp) = σap

To investigate the variance of E (WTPK), the Delta method is applied. Since σk (k = a, p)

is estimated by V (σk) = σ2
k+Σσk, where Σ is the variance-covariance matrix of the estimated

parameters, we have
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V (θ) ≈
{
V (µk + σkε) +

µ2
k

µ2
p

V (µp + σpε)−
2µk
µp

[cov (µk, µp) + cov (γk, γp)]

}
/nµ2

p

or with the variance-covariance matrix Σ,

V (θ) ≈
{

Σµk + σ2
k + Σσk +

µ2
k

µ2
p

(
Σµp+σ

2
p + Σσp

)
− 2µk

µp

[
Σµk,µp + σkp

]}
/nµ2

p

where n is the number of total respondents since each respondent′s parameters are

perfectly correlated over their responses. We treat such approach as the classical approach

to describe the distribution and the confidence interval of mean WTP in mixed logit models.

However, the Delta method can be badly biased (Efron, 1981 p.595) and it is equivalent to

the infinitesimal jackknife (Efron, 1981, p589-99). Given that the infinitesimal jackknife is a

limiting form of a delete-1 jackknife, we expect Delta methods standard errors to be biased

as a result of the unreasonable assumptions of the data structure.

3.2.2 Bayesian Approach with the Individual-level WTP

The Hierarchical Bayes model is applied to obtain posterior distributions of hyper-parameters

that shape the distribution of parameter βk in the utility function. Refer to Train (2002),

the funciton and corresponding probability (likelihood) of decision maker i (i = 1, 2, . . . , n)

to choose alternative j (j = 1, 2, . . . , J) in question t (t = 1, . . . T ) is:

uijt = β′ixijt + εijt; L (yi|βi) =
∏
t

(
eβ

′
ixijt∑

j β
′
ixijt

)
(normal)

uijt =
(
eβi
)′
xijt + εijt; L (yi|βi) =

∏
t

 e(e
βi)′xijt∑

j e
(eβi)′xijt

 (log − normal)

where βi is the vector of coefficients for respondent i. By assuming βi to be normally

distributed, the conjugate posterior distribution can be applied and thus simplifies the esti-

mation. Also, rewrite the likelihood using the hyper-parameters mean (b) and the variance
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covariance matrix (W ), the likelihood function is L (yi|b,W ) =
∫
L (yi|βi)φ (βi|b,W ) dβi.

Assuming the respondents have independent choices from each other, the joint posterior

distribution of b, W , can be written as the product of posterior distribution of all the n

respondents:

K(b,W |Y ) =
∏
n

L(yi|b,W )k(b,W )

Although direct draws from the posterior distribution are possible with the Metropolis-

Hastings algorithm, the calculation process is too time-consuming in simulating the likelihood

L (yi|b,W ) for each respondent i. At the same time, the property of simulated means of

the posterior draws would be affected given the probability cannot be captured without

simulation (Train, 2009). Instead, treating βi as a parameter along with b and W can largely

simplify the process by introducing the Gibbs sampling method. For all the n respondents,

the joint posterior distribution of b, W , and βi can be expressed as

K (b,W, βi|Y ) ∝
∏
n

L (yi|βi)φ (βi|b,W ) k (b,W )

Conditional posteriors on b|W,βi and W |b, βi can be derived conveniently when diffuse

priors are applied. Set the prior on b as normal with an unboundedly large variance, the

posterior on b is a N(β̄,W/N), where β̄ is the sample mean of the βi. With an inverted

Wishart prior for W , the posterior on W is inverted Wishart with K+N degrees of freedom

and an updated scale matrix that combines the information from βi and b. Then, the M-H

method can be used to draw the posterior βi for all the n respondent by comparing a random

draw of a uniform variable µ with the ratio F: If µ ≤ F , accept β̃1
i ; if µ > F , reject β̃1

i .

F =
L(yn|β̃1

i )φ(β̃1
i |b,W )

L(yn|β̃0
i )φ(β̃0

i |b,W )

With the Gibbs sampling for conditional posteriors for b and W , we avoid the simulation

of the likelihood in the M-H method.
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For each decision maker, m random posterior draws could be obtained for each coefficient

in the utility function (m is very large, like 5000). In each posterior draw, dividing the

coefficient on amenity k over the coefficient of the cost variable provides m draws of WTP

for each respondent, so that the mean WTP for each individual is known. Then the overall

sample distribution of mean WTP for all the n decision makers is also available.

Note that since the prior mean (b) of the cost coefficient is set to follow a diffuse normal

distribution, statistically, it is possible to obtain some posterior draws of the cost coefficient

that are extremely close to zero. However, economically, an extremely small cost coefficient

indicates the respondent places negligible or zero weight on the cost variable (Sillano and

de Dios Ortúzar, 2005), which means he or she has a zero marginal utility of income. This

is apparently unrepresentative in terms of the normal good we discuss in this paper. We

should distinguish the statistical assumptions from economic assumptions. Thus, we suggest

a criterion to drop those draws with extremely small cost coefficients to ensure the validity in

an economic sense. Further, the possible reason for negligible marginal income utility could

be the respondent’s lack of interest in the survey, survey fatigue, or the lack of a budget

constraint in the survey questions.

3.2.3 Resampling Approach with the Block Delete Jackknife

Resampling methods are another approach to obtain the variability of an estimator by using

subsamples from the original dataset. The Jackknife is one of the most commonly used resam-

pling methods that could be applied to construct reasonably reliable confidence intervals for

a wide variety of estimators.

Instead of applying the most widely used method, delete−1 Jackknife, which is typically

suitable for identical and independent data, we advocate to adopt the block delete jackknife

in estimating the confidence interval of mean WTP in mixed logit models. The reason is,

respondents are almost always given more than one choice question in a choice experiment

survey, so grouping the answers from the same respondent is natural as the preference of
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the same respondent is assumed to be constant for all questions he or she answered. In

other words, it is reasonable to assume the independence among answers from different

respondents, but not necessarily the same (independent) for the questions answered by the

same respondent. The delete-1 jackknife fails to recognize this and thus its limiting form, the

infinitesimal jackknife, which is equivalent to the Delta method that we mentioned before,

is also biased. Further, Shao and Wu (1989) show the block delete jackknife works properly

when the estimators are non-smooth. Thus, we will develop the delete-m Jackknife standard

deviation of mean WTP in the future to describe the confidence interval of the mean WTP.

For delete-m jackknife, suppose the sample is divided into g mutually exclusive and

independent groups of equal size at a time (extension to unequal group sizes is trivial),

then the jackknife bias corrected estimator is calculated g times by using all but one group

of observations. In a mixed logit model with balanced data, suppose we have n decision

makers and T questions for each decision maker (L = nT observations in all), then the

delete− T jackknife estimator of WTP is the mean of all pseudo-values estimators of block

delete jackknife

WTP Jackknife(T ) = mean
(
W̃TP (j)

)
=

1

n

n∑
j=1

W̃TP (j)

where W̃TP (j) = nŴTPL − (n− 1) ŴTP (j), j = 1, . . . , n

ŴTP (j) is the WTP calculated with the jth block of T questions removed (individual

j), ŴTPL is the WTP calculated with all L observations. The variance estimator of the

pseudo-value estimators of block delete jackknife is

var
(
W̃TP (j)

)
=

1

n− 1

n∑
j=i

(
W̃TP (j) −

1

n

n∑
j=1

W̃TP (j)

)2

It should be noted that, we will need
var
(
W̃TP (j)

)
n

instead of var(W̃TPj) to construct the

confidence interval of the mean WTP estimated from delete-T jackknife estimator as
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var
(
X̄
)

= var

(
Y1 + Y2 + . . .+ Yn

n

)
=
var (Y1) + . . .+ var (Yn)

n2
=
σ2
Y

n

Thus,

var
(
WTP Jackknife(T )

)
=

1

n

n∑
j=1

1

n− 1

(
W̃TP (j) −

1

n

n∑
k=1

W̃TP (k)

)2

=
n− 1

n

n∑
j=1

(
ŴTP (j)− ¯WTP (T )

)2

With the mean and sample variance of the block-delete jackknife estimator of WTP

known, the 95% confidence interval for WTP Jackknife(T ) can be constructed based on the

Central Limit Theorem that the distribution of the sample mean converges to the standard

normal distribution function as n→∞.

Similarly, the block delete jackknife variance of the maximum likelihood (ML) estimator

could be derived to compare with the variance from the classical Delta Method. Let WTP ∗

denote the ML estimator of WTP over the entire sample and let WTP ∗j denote the ML

estimator of WTP with the jth block deleted, a more direct form of the variance is

var (WTP ∗) =
(n− 1)

n

n∑
j=1

(
WTP ∗j −WTP ∗

)2

3.3 Data

For ease of replication, we choose a data set on consumers choice among different types of

vehicles (gas, electric and hybrid) under different combinations of price, operating cost, range,

and performance. The data was provided by Train and Sonnier (2005). This experiment is

a part of the survey that targeted vehicle owners in California. Californias Air Resources

Board has been interested in the promotion of vehicles with fewer pollutant emissions.

The survey contacted respondents randomly throughout the state by telephone and those

who planned to purchase a car within three years were invited to participate in this survey.100

participants are included in total. Each participant received a questionnaire with 15 ques-

tions of vehicle choice. To make the data set a balanced panel, we adopt the 10 first choice
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experiments for each respondent. Thus, there are 100× 10 choice situations with 3000 alter-

natives. For each question, three different vehicle types are listed, and the respondents are

asked to choose the one vehicle that they prefer the most given the attributes assigned to

the different vehicles. A sample of the data is shown in Table 3.1. Attributes assigned to

each alternative include,

1. Engine type: gasoline, electric, or hybrid

2. Purchase price (in $10, 000)

3. Operating cost in dollars per month

4. Performance:

(a) High performance: Top speed of 120 mph, and 8 seconds to reach 60 mph

(b) Middle performance: Top speed of 100 mph, and 12 seconds to reach 60 mph

(c) Low performance: Top speed of 80 mph, and 16 seconds to reach 60 mph

5. Range: miles between refueling/recharging

Considering the high correlation coefficient between the purchase price and the operation

cost (p-value < 0.001), we drop the operation cost variable in the following analysis. We also

combine the middle performance and the low performance as one group to simplify the

analysis.

The choice experiments were designed to provide wide variation in each attribute and as

little covariance among attributes as possible while maintaining plausibility. A summary of

the continuous variables is provided in Table 3.2. Other variables, including the dependent

variable Choice, the independent variables Range, Electric, Hybrid, and Performance 1 (high).
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3.4 Empirical Results

3.4.1 Multinomial Logit Model

Maximum likelihood estimation (MLE) results for the multinomial logit model are shown in

Table 3.3. As mentioned before, the conditional logit model should yield consistent estimators

even under distributional mis-specification if the conditional mean is properly specified.

Moreover, variance of estimators can be consistently estimated using robust methods. Thus,

the mean WTP from the basic logit model can be seen as a reasonable approximation to the

true value that can be used to compare with the estimators from the mixed logit model.

The Mean WTP premium for Hybrid vehicle (versus gas vehicle) is

E
(
ŴTPHybrid

)
= E

(
β̂Hybrid

β̂price

)
= 1.399

According to the Delta method, the variance of the mean WTP is

var
(
ŴTPHybrid

)
= var

(
β̂Hybrid

β̂price

)
=

(
− β̂Hybrid

β̂2
Price

,
1

β̂price

)
ΣPH

(
− β̂Hybrid

β̂2
Price

,
1

β̂price

)′

where ΣPH the robust variance covariance matrix of the price and hybrid coefficients, so

that the standard error is std(E(ŴTPHybrid)) = 0.2274.

We also estimate the standard error of mean WTP through the jackknife method. Delete-

1 jackknife results in a sample standard error of 0.2272, which is very close to the Delta

methods result. This is because the Delta method is equivalent to the infinitesimal jackknife

which is a limiting form of delete-1 jackknife. In contrast, the standard error estimated from

the block delete jackknife is 0.318. As we discussed before, the block delete jackknife is more

appropriate in terms of the survey data given the dependence among questions answered

by the same respondent. Thus, it is possible that the Delta method underestimates the

standard error of mean WTP in the basic logit model.
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3.4.2 Mixed Logit Model

As an alternative to the maximum simulated likelihood estimation (MSL), we employ the

Gauss-Hermite (G-H) quadrature approach in the estimation of the mixed logit model. In

this approach, we extend the Gauss-Hermite integration method that was first introduced

by Breffle et al. (2005) in the estimation of a Probit choice model. We briefly outline this

approach in the Appendix B. The distribution of mean WTP in mixed logit models is calcu-

lated with each of the three methods: the classical (Delta method) approach, the Bayesian

individual-level WTP approach, and the block delete jackknife approach. We estimated the

mixed logit model under both uncorrelated and correlated random parameter settings, with

both normal and log-normal distributed cost coefficient, respectively.

Case I: Uncorrelated Random Parameters

(1) Normal Distributed Cost Coefficient

We first set the coefficients for all the four attributes: price, range, electric, and hybrid

to be normally distributed. In this case, WTP for hybrid vehicle is a normal to normal

ratio. Maximum likelihood estimation results with Gauss-Hermite Quadrature is provided in

Table 3.4. With the maximum likelihood (ML) estimators, the mean WTP is calculated to be

1.3414 and the sample standard error of mean WTP from the Delta method is 0.1709, while

the sample standard error of mean WTP calculated by the block delete jackknife method is

0.2560, which is much larger than that from the Delta method.

The Bayesian posterior means and standard errors of the hyper-parameters b and W

are provided in Table 3.5. The Bayesian result is very close to the MLE result in both the

coefficient means and standard errors, validating the coherence between the two approaches.

At the same time, we calculate the the mean and standard error of the mean WTP for the

100 respondents through a sample of 5000 posterior draws on conditional posteriors for both

βhybrid and βprice. For each respondent, we average the βhybrid and βprice in the 5000 draws

to obtain their mean marginal utility on hybrid vehicle and their mean marginal utility of
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income. As shown in Table 3.6, we drop respondents whose mean price coefficient in the

5000 posterior draws is smaller than a criterion β̂price as they place negligible or zero weight

on the price variable. We suggest choosing β̂pricei = 0.1 given the standard error of mean

WTP tends to be stable in this region. In this case, respondents′ mean of WTP on hybrid

cars (versus gas cars) is 1.717, with the sample standard error of 0.2333. To give a more

comprehensive view, Figure 3.1 shows the distribution of mean WTP under different criteria

0.01 < β̂pricei < 0.2 in Table 6, with the dashed blue line marks the mean WTP with the

screen criterion β̂pricei = 0.1.

On the other hand, we can obtain the distribution of mean WTP by calculating the

mean WTP for all respondents in each draw first, then plot the mean WTP in the 5000

posterior draws. Figure 3.2 shows the histogram of mean WTP when we have β̂pricei = 0.1

as the criteria to screen respondents in each posterior draw. The mean WTP is 1.7127, with

the standard error of 0.2332, which is very close to the result from the first approach that

averages each respondent’s mean marginal utility of attribute first.

(2) Log-normal Distributed Cost coefficient

Similarly, maximum likelihood estimation result for the mixed logit model with lognor-

mally distributed cost and range coefficients is provided in Table 3.7. The Bayesian posterior

means and standard errors of the hyperparameters are listed in Table 3.8. Again, the ML

estimators are quite close to the Bayesian results. With the ML estimators, the mean WTP

of hybrid is calculated to be 1.1417, the sample standard error of ML estimator from the

Delta method is 0.1717, and 0.2353 from the block delete jackknife method.

For the Bayesian approach, the mean WTP of hybrid (compare to gas) calculated from

individual-level WTP is listed in Table 3.9. Similarly, we take the criterion of β̂pricei = 0.1

and drop the respondents whose posterior mean of price coefficient is less than 0.1. But note

that no respondent is dropped in this case. The mean of WTP is 2.1147 with the sample

standard error of 0.195. From the second approach that average the mean WTP in each pos-
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terior draw first, we have the mean WTP 2.2547, with the standard error of 0.2993. Figure

3.3 and 3.4 provide the distribution of mean WTP with the criteria 0.01 < β̂pricei < 0.2 in

approach 1, and the histogram of mean WTP under the second approach with β̂pricei = 0.1,

respectively.

Case II: Correlated Random Parameters

(1) Normal Distributed Cost Coefficient

Assume that all the four random parameters are correlated and are normally distributed,

the MLE result is provided in Table 3.10, and the Bayesian posterior mean and variance

of hyperparameters are listed in Table 3.11. Still, the Bayesian result is quite close to that

of ML estimator (for both the mean and standard error), except for the standard errors of

parameters posterior variances. This may be caused by the diffuse prior we adopt with large

prior variance. With the ML estimator, the mean WTP is estimated to be 1.4158, and the

Delta method standard error of mean WTP is 0.1798, which is much smaller than the block

delete jackknife standard error of 0.2469.

Mean WTP calculated with individual-level WTP estimators is provided in Table 3.12.

With the criteria of β̂pricei = 0.1 and deleting respondents whose posterior mean of the price

parameter is less than 0.1, 92 respondents are retained and the mean of WTP is 1.5605 with

the sample standard error of 0.2258. The distribution of mean WTP under different criteria

is shown in Figure 3.5. For the second approach that averages the mean WTP within each

posterior draw first, we have the mean WTP of 1.6822 and the standard error of 0.2529.

The empirical distribution of mean WTP is presented in Figure 3.6.

(2) Log-normal Distributed Cost Coefficient

We also apply the lognormal distribution to both the price and range variables in the

case of correlated random coefficients. The MLE and Bayesian results are provided in Table

3.13 and Table 3.14, respectively. It can be found that mean estimator in MLE is very close
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to that from the Bayesian approach, except for the standard errors of parameters posterior

variances. With the ML estimator, the mean WTP of hybrid is 1.1693 (versus gas cars), with

the Delta method sample standard error of 0.1779, and the block delete jackknife sample

standard error of 0.2346.

Further, the mean WTP based on individual-level WTP is summarized in Table 3.15.

Note that with the criteria β̂pricei = 0.1, no respondent is dropped again, and the mean WTP

of all the 100 respondents is 1.6649 with sample standard error of 0.2423. The distribution

of mean WTP with criteria 0.01 < β̂pricei < 0.2 is provided in Figure 3.7. The second

approach that averages the mean WTP within each posterior draw provides mean WTP of

1.6822, with the standard error of 0.2529 The distribution of mean WTP shown in Figure 3.8.

Discussion

A brief comparison on the estimators of mean WTP from the logit and the mixed logit

model are provided in Table 3.16. Take the multinomial logit model estimator as a reasonable

approximation of the true value of mean WTP, we find applying the log-normal distribu-

tion to the cost coefficient will always underestimate the mean WTP from the maximum

likelihood estimation. This is not surprising considering the log-normal distribution has a

heavy tail compared to the normal distribution so that a lower mean WTP is derived with a

larger denominator. On the other hand, such a characteristic of the log-normal distribution

also weakens the performance of the Bayesian individual-level approach since the criteria

on β̂pricei can hardly screen out any respondent when all respondents’ marginal utility of

income is increased due to the shape of the distribution. In our empirical results, all the 100

respondents are retained when the cost coefficient is log-normally distributed, but some of

them may have β̂pricei that is only slightly larger than the criterion so that the inclusion of

them results in a larger mean WTP compared to the situation with a normally distributed

cost coefficient. It should be noted that, the choice of the screening criteria β̂pricei needs
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to be carefully evaluated. Instead of presenting a single value, a range of criteria and the

corresponding mean WTP would be preferred.

Second, the Delta method is found to be too conservative in estimating the standard

error of mean WTP. In both the multinomial logit and the mixed logit models, the standard

error from the Delta method is lower than that from the block delete jackknife. The Delta

method is equivalent to the infinitesimal jackknife, a limiting form of the delete-1 jackknife

that ignores the fact that not all choices in the data set are mutually independent. Instead,

the choices from the same respondent are also assumed to be perfectly correlated. To this

extent, the block delete jackknife method has a much more reasonable assumption on the

independence between groups (the questions of the same respondent) instead of questions,

and thus provides a closer estimated standard error to that from the basic logit model.

3.5 Robustness Check

Our empirical result shows the potential and merit of applying a normally distributed cost

coefficient in the mixed logit model: comparing with the sign-restricted distributions (like the

log-normal distribution), normal distribution has the merit of avoiding the skewness from the

strong assumption on the shape of cost coefficient. However, since we use the multinomial

logit result as the approximation of the true value of mean WTP, one may still be concerned

about the accuracy of such a criterion. In the robustness check, we will use a synthetic data

set that generated from a known utility function to examine the validity of our conclusion.

Instead of estimating the true distribution of mean WTP with the observed data, we can

apply the method introduced by Marsaglia (2006) to derive the theoretical approximation

of the moments for mean WTP given that the real distribution of both the numerator and

the denominator in the WTP ratio is known and actually, is set by us. Then, the theoretical

true value of mean WTP can be used to evaluate the performance of the estimators derived

from the mixed logit model. We will use the Bayesian approach to run the estimation given

its good performance in avoiding unrepresentative respondents.
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Assume the utility function is a linear form:

Uijt = βprice,iPriceijt + βattribute1,iAttribute1ijt + βattribute2,iAttribute2ijt + εijt

where ε ∼ EV (0, 1) to ensure the logit form of the probability function. To allow the

heterogeneity in respondents’ preference, we set all the three coefficient βprice, βattribute1, and

βattribute2 to be normally distributed. As defined, WTP for attribute 1 is calculated by the

ratio
βattribute1
βprice

. Refering to Marsaglia (2006), the ratio of two jointly distributed normal

variates z, w can be transformed into the form
a+ x

b+ y
, where x and y are independent standard

normal variates and a, b are non-negative constants. More specifically, for a given ratio
z

w
,

there are constants r and s such that

r(
z

w
− s) = r

z − sw
w

is distributed as
a+ x

b+ y
and

z

w
is distributed as

1

r
(
a+ x

b+ y
) + s

where

b =
µw
σw

; a = ±µz/σz − ρµw/σw√
1− ρ2

; r =
σw

±σz
√

1− ρ2
( a and b shall have the same sign)

Then, two practical rules are developed to ensure the existance of approximating moments

for the ratio: (1) if a < 2.256 and 4 < b, the ratio
a+ x

b+ y
is approximately normlaly distributed

with mean µ = a/(1.01b − 0.2713) and variance σ2 = (a2 + 1)/(b2 + 0.108b − 3.795) − µ2.

Correspondingly,
z

w
∼ N(

1

r
µ + s,

1

r2
σ2); (2) If one can ensure z is always positive, then

the ratio z/w approximates to a well defined normal distribution. To simplify the data

generating process, we use the rule (1) and assume the distribution of βp, β1 and β2 are

mutually independent:

βprice ∼ N(3, 0.25); βattribute1 ∼ N(2, 16); βattribute2 ∼ N(2, 1)

Then theoretically, the distribution of mean WTP for the attribute 1 could be derived:

a =
µβ1
σβ1

=
2

4
= 0.5; b =

µβp
σβp

=
3

0.5
= 6; r =

0.5

4
=

1

8

a+ x

b+ y
∼ N(a/(1.01b− 0.2713), (a2 + 1)/(b2 + 0.108b− 3.795)− µ2) = N(0.086, 0.0305)
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so that
βattribute1
βprice

∼ N(
1

r
0.086, (

1

r
)20.0305) = N(0.691, 1.958)

Thus, the distribution of sample mean of WTP is µ̂ ∼ N(0.691, 1.968/n) where n is the

number of respondent in the sample. If we set n=2000 in our synthetic data set, the true

mean WTP is 0.69, the true standard error of mean WTP is 0.0313.

To construct a synthetic data set, a choice experiment survey is first designed based on

the fractional factorial method provided by Kuhfeld (2010) to achieve the highest design

efficiency. Given the choice task design in Table 3.17, 100% design efficiency can be achieved

when total number of runs (all possible combinations of factor levels) n=8 or 16. To ensure

the highest design efficiency, we select n=16 and group them into 4 questions (the relative

D-efficiency=100). Table 3.18 shows the survey generated by SAS.

Then, a synthetic data set is generated by simulating each respondent’s choice based on

the fundamental assumption in random utility models: respondent will always choose the

alternative that provides the highest utility in each question. With n=2000, we have 2000

respondents’ answers simulated. Then, the Bayesian method is used to estimate the utility

function under the framework of the mixed logit model. The result is shown in Table 3.19.

The estimated mean and variance of the coefficients are very close to the true value we set,

and validates the efficiency of our survey design and the accuracy of the Bayesian estimation.

Then, we empirically calculate the distribution of mean WTP with 5000 draws of

conditional posteriors of individual-level coefficients. Similar with our analysis before, one

approach is to average each respondent’s βattribute1 and βprice through the 5000 posterior

draws first to have the mean WTP for all the 2000 respondents. Then the distribution of

mean WTP can be calculated. In this approach, the minimum β̂price,i is 1.94, which is far

from 0 so that we don’t need to drop any respondent. The mean WTP is calculated to be

0.6786, and the estimated standard error of mean WTP is 0.0256. The result is very close

to the theoretical true distribution we derived. The other approach is to calculate the mean

WTP in each of the 5000 posterior draws first, and then describe the distribution of the

5000 mean WTP. The 95% credible interval of mean WTP is shown in Figure 3.9, with the
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mean WTP of 0.6955, and stand error of mean WTP of 0.0285, almost the same with the

first approach and very close to the theoretical true value.

Note that, in Figure 3.9, although almost all the density of mean WTP concentrates on

the normal shape in the left-hand side, we still observe a very light spike in the region around

mean WTP = 1.33. This is obviously caused by a few draws whose βprice is very small and

definitely out of the 95% confidence interval. Since one would expect the mean WTP to

capture the preference for the most representative population, instead of the most wealthy,

we think it is reasonable to conclude the distribution of mean WTP has been very well

captured by the normal distribution on the left hand-side: the small spike on the right-hand

side is negligible and won’t influence the approximation of the normality in mean WTP.

Thus, the robustness check further validates the feasibility of a normally distributed cost

coefficient in the mixed logit model. Although the problem of non-existence of moments may

still exist in the view of statistics, we found both theoretical and empirical evidence that

the approximation distribution of the ratio performs well and follows a normal distribution.

The potential small spike should not influence the estimation of mean WTP as long as we

can ensure the coefficients satisfy either one of the two rules we defined before. Intuitively,

if the marginally utility has a mean far from zero and have a small standard error, or if

we can ensure it is always positive in an economic sense (which holds for normal good if

consumption is not zero), we can expect a stable performance of mean WTP when a normal

distribution is applied to the cost coefficient.

3.6 Conclusion

This paper explores the estimation of mean Willingness to Pay (WTP) in the mixed logit

model under various distributional assumptions and calculation approaches. Different than

most former studies which mainly focus on evaluating the statistical features of WTP, we

advocate carefully examining the performance of the WTP ratio with a full consideration of

the underneath economic assumptions. Our research with both empirical and synthetic data
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sets shows the potential and merit of applying a normally distributed cost coefficient in the

WTP ratio. We also validate the good performance of the Bayesian approach and the Block

delete jackknife approach in capturing the distribution of mean WTP.

By narrowing down the scope to the normal goods and ruling out the possibility of

zero consumption for all survey questions, we first validate the rationality of a positive

marginal utility of income in an economic sense – the condition to ensure stable moment

approximations of the WTP as a ratio of two normal variables. Further, we apply both the

normal and log-normal distributions to the cost coefficient in our estimation of the mixed

logit model. With an empirical survey data on consumers’ choices of hybrid vehicles, we

examine the performance of three methods in estimating the distribution of mean WTP –

the most important statistic. Also, we consider that it should be the standard error of sample

mean that used to construct the confidence interval of mean WTP, instead of the standard

error of the sample.

The empirical analysis first shows the limitation of the Delta method in determining the

standard error of mean WTP given it is equivalent to infinitesimal jackknife, a limiting form

of the delete-1 jackknife, which assumes the mutual independence between all observations.

We argue that the block delete jackknife has a more reasonable assumption of independence

among respondents rather than among questions (observations). The empirical result vali-

dates our expectation and underscores the difference between these two methods: the Delta

method tends to underestimate the standard error of mean WTP.

Further, our results reveal the skewness caused by applying the log-normal distribution

to the cost coefficient. Comparing the result from the basic multinomial logit model that

we treat as a reasonable approximation of the true value of mean WTP, the log-normal

distribution leads to a larger estimator of the price coefficient and thus lowers the value

of mean WTP in maximum likelihood estimation. Although the sign-restricted distributions

like the log-normal distribution can avoid negative or zero cost coefficient in statistical theory,
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the strong assumption on the shape of marginal utility of income may not fit the empirical

data well and thus should be carefully considered.

Finally, we validate the performance of the Bayesian individual-level WTP approach in

capturing the distribution of mean WTP. From the perspective of individual preference, it

is reasonable to set a criterion to drop respondents or posterior draws for which a negligible

or zero marginal utility of income is placed. Depending on the criteria assumed, a series of

distributions of mean WTP could be obtained, instead of just one distribution. We suggest

to select a range of criteria where the standard error of mean WTP tends to be stable in

stead of just selecting one value.

In addition to the empirical analysis with a real survey data set, a synthetic data set is

simulated to further examine the feasibility of a normally distributed cost coefficient with

the Bayesian individual-level WTP approach. We find that, if the marginal utility of income

has a mean far from zero and has relative a small standard error, or if we can ensure the

marginal utility of income is always positive in economic sense (which holds for normal good

if the consumption is not all zero), we can expect a stable performance of the mean WTP

when a normally distributed cost coefficient is applied. In our analysis with the synthetic

data set, the estimated mean WTP from the mixed logit model is very close to the theoretical

value we calculated with the practical rules developed by Marsaglia (2006). Although we do

observe a very slight spike that highly deviates from the majority density of mean WTP, it

is economically reasonable to ignore such small spike given the mean WTP should present a

general picture of the preference for the population, rather than the preference of the small

group of perhaps wealthy respondents. On the other hand, for most empirical survey data,

such a spike would be more likely due to respondents’ inattention to money: they do not face

with a real budget constraint given it is only a hypothetical choice instead of a real decision

in their life. In this sense, we should put even less concern on such a spike.
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Table 3.1: Sample of the Vehicle Data Set

Question ID choice price Operating cost Range Electric Gas Hybrid Perf1 Perf2

1

1 0 4.676 47.43 0 0 0 1 0 0
1 1 5.721 27.43 1.3 1 0 0 1 1
1 0 8.796 32.41 1.2 1 0 0 0 1

2

1 1 3.377 4.89 1.3 1 0 0 1 1
1 0 9.034 30.19 0 0 0 1 0 1
1 0 5.71 27.16 1.8 1 0 0 1 1

Table 3.2: Summary Statistics of the Vehicle Data Set

Continuous
Variables

Variable N Mean Std Dev Minimum Maximum

Price (in $10,000) 3000 3.57 1.75 0.70 9.72
Range (in 100 miles) 3000 0.42 0.65 0.00 2.00
Operating cost (in $) 3000 33.23 15.58 2.59 72.29

Categorical
Variables

Variable Level Frequency Percent (%)

Engine Type
Electric 974 32.47
Gas 1008 33.60
Hybrid 1018 33.93

Perfomance
High Perf 990 33.00
Middle and low Perf 2010 67.00

Table 3.3: MLE Estimation of the Conditional Logit Model

Parameter Estimate Std.Error Robust Est/SER

Price 0.4263*** 0.0444 10.278
Range 0.7033*** 0.2214 3.231
Electric -1.3285*** 0.3163 -4.18
hybrid 0.5965*** 0.123 4.983
Perf1 0.4634*** 0.0911 5.121

* Log likelihood at convergence: -946.3609
* Note we use negative of the price variable in the model
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Table 3.4: MLE with High Dimensioned Gauss-Hermite Quadrature of
the Mixed Logit Model (Case I and normal cost coefficient)

Parameter Estimate Std. Error Est/SER

Price 0.6454 0.082 7.868
Range 0.6661 0.3004 2.218
Electric -1.4472 0.426 -3.397
hybrid 0.8658 0.1653 5.236
Perf1 0.6248 0.1062 5.882
SE(Price) 0.5253 0.0798 6.582
SE(Range) 0.8648 0.2543 3.401
SE(Electric) 0.7396 0.5386 1.373
SE(Hybrid) 0.8044 0.1931 4.166

* Log likelihood at convergence: -898.9314
* Note we use negative of the price variable in the model

Table 3.5: Bayesian Posterior Mean and Variance of the Mixed
Logit Model (Case I and normal cost coefficient)

Parameter N Estimation/Mean SE/StDv Est/SE

Price 5000 0.6495 0.0851 7.6322
Range 5000 0.7761 0.2804 2.7678
Electric 5000 -1.6331 0.3945 -4.1397
hybrid 5000 0.8695 0.1644 5.2889
Perf1 5000 0.4428 0.1035 4.2783
Var(Price) 5000 0.3134 0.0868 3.6106
Var(Range) 5000 0.7438 0.335 2.2203
Var(Electric) 5000 0.8305 0.5487 1.5136
Var(Hybrid) 5000 0.6938 0.2997 2.315

76



Table 3.6: Mean WTP from the Bayesian Individual-level WTP
(Case I and normal cost coefficient)

Criteria of
β̂price

Number of remained
respondents

Mean WTP Std(mean WTP)

0.01 100 1.9652 0.7497
0.02 99 2.3101 0.6724
0.03 98 1.7794 0.4173
0.04 98 1.7794 0.4173
0.05 97 1.5308 0.3386
0.06 97 1.5308 0.3386
0.07 95 1.765 0.2316
0.08 94 1.7542 0.2338
0.09 93 1.717 0.2333
0.1 93 1.717 0.2333

0.11 93 1.717 0.2333
0.12 92 1.6258 0.2171
0.13 92 1.6258 0.2171
0.14 91 1.5912 0.2167
0.15 90 1.7308 0.1676

Table 3.7: MLE with High Dimensioned Gauss-Hermite Quadrature
of the Mixed Logit Model (Case I and lognormal cost coefficient)

Parameter Estimate Std. Error Est/SER

Price -0.7845 0.173 -4.535
Range -0.3096 0.3773 -0.82
Electric -1.6714 0.3927 -4.256
hybrid 0.898 0.164 5.476
Perf1 0.6286 0.1059 5.937
SE(Price) 1.0434 0.1583 6.59
SE(Range) 0.5815 0.2635 2.207
SE(Electric) 1.1173 0.2977 3.753
SE(Hybrid) 0.7722 0.1962 3.937

* Log likelihood at convergence: -896.1257
* Note we use negative of the price variable in the model
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Table 3.8: Bayesian Posterior Mean and Variance of the Mixed Logit
Model (Case I and lognormal cost coefficient)

Parameter N Est/Mean SE/StDv Est/SE

Price 5000 -0.8397 0.1807 -4.6469
Range 5000 -0.4999 0.4293 -1.1645
Electric 5000 -1.6365 0.3781 -4.3282
hybrid 5000 0.8686 0.1659 5.2357
Perf1 5000 0.4285 0.1017 4.2134
Var(Price) 5000 1.1734 0.3708 3.1645
Var(Range) 5000 0.5896 0.4289 1.3747
Var(Electric) 5000 1.1482 0.5908 1.9435
Var(Hybrid) 5000 0.6351 0.2825 2.2481

Table 3.9: Mean WTP from the Bayesian Individual-level WTP
(Case I and lognormal cost coefficient)

Criteria of
β̂price

Number of remained
respondents

Mean WTP Std(mean WTP)

0.01 100 2.1147 0.195
0.02 100 2.1147 0.195
0.03 100 2.1147 0.195
0.04 100 2.1147 0.195
0.05 100 2.1147 0.195
0.06 100 2.1147 0.195
0.07 100 2.1147 0.195
0.08 100 2.1147 0.195
0.09 100 2.1147 0.195
0.1 100 2.1147 0.195
0.11 100 2.1147 0.195
0.12 100 2.1147 0.195
0.13 100 2.1147 0.195
0.14 99 2.0799 0.1938
0.15 99 2.0799 0.1938
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Table 3.10: MLE with High Dimensioned Gauss-Hermite Quadrature
of the Mixed Logit Model (Case II and normal cost coefficient)

Parameter Estimate Std. Error Est/SER

Price 0.698 0.0957 7.296
Range 0.8578 0.3601 2.382
Electric -1.6556 0.5182 -3.195
hybrid 0.9881 0.2146 4.605
Perf1 0.6543 0.1097 5.963
SE(Price) 0.6527 0.0998 6.541
SE(Range) 1.3841 0.453 3.056
SE(Electric) 1.9382 0.7004 2.767
SE(Hybrid) 1.4416 0.2382 6.052
Corr(Price, Range) 0.4012 0.3006 1.335
Corr(Price, Electric) -0.0888 0.3217 -0.276
Corr(price, Hybrid) 0.5205 0.1418 3.672
Corr(Range, Electric) -0.4948 0.2956 -1.674
Corr(Range, Hybrid) 0.2334 0.3382 0.69
Corr(Electric, Hybrid) 0.5379 0.2754 1.953

* Log likelihood at convergence: -886.5121
* Note we use negative of the price variable in the model

Table 3.11: Bayesian Posterior Mean and Variance of the Mixed
Logit Model (Case II and normal cost coefficient)

Parameter N Est SE Est/SE

Price 5000 0.7219 0.1002 7.2046
Range 5000 0.8047 0.3323 2.4216
Electric 5000 -1.6097 0.4628 -3.4782
hybrid 5000 1.0066 0.2134 4.717
Perf1 5000 0.4776 0.1099 4.3458
Var(Price) 5000 0.5383 0.1382 3.8951
Var(Range) 5000 1.6826 0.9147 1.8395
Var(Electric) 5000 2.1601 1.411 1.5309
Var(Hybrid) 5000 2.0996 0.68 3.0876

Variance-Covariance Price Range Electric hybrid

Price 0.5383 0.2279 0.0724 0.4766
Range 0.2279 1.6826 -0.4521 0.838
Electric 0.0724 -0.4521 2.1601 0.8442
hybrid 0.4766 0.838 0.8442 2.0996
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Table 3.12: Mean WTP from the Bayesian Individual-level WTP
(Case II and normal cost coefficient)

Criteria of
β̂price

Number of remained
respondents

Mean WTP Std(mean WTP)

0.01 100 0.0772 1.8679
0.02 98 1.8299 0.7002
0.03 96 2.1938 0.6242
0.04 95 1.6265 0.2633
0.05 94 1.6217 0.266
0.06 94 1.6217 0.266
0.07 94 1.6217 0.266
0.08 94 1.6217 0.266
0.09 92 1.5605 0.2258
0.1 92 1.5605 0.2258
0.11 89 1.7314 0.179
0.12 88 1.7759 0.1753
0.13 88 1.7759 0.1753
0.14 88 1.7759 0.1753
0.15 88 1.7759 0.1753

Table 3.13: MLE with High Dimensioned Gauss-Hermite Quadrature
of the Mixed Logit Model (Case II and lognormal cost coefficient)

Parameter Estimate Std. Error Est/SER

Price -0.7871 0.1952 -4.032
Range -0.3012 0.3849 -0.783
Electric -1.7535 0.4396 -3.989
hybrid 1.1276 0.226 4.989
Perf1 0.6319 0.1082 5.839
SE(Price) 1.2255 0.1961 6.25
SE (Range) 0.8553 0.2453 3.487
SE (Electric) 1.2363 0.472 2.62
SE (Hybrid) 1.4204 0.2513 5.652
Corr(Price, Range) 0.669 0.3087 2.167
Corr (Price, Electric) -0.243 0.4391 -0.553
Corr (price, Hybrid) 0.6425 0.154 4.173
Corr (Range, Electric) 0.0973 0.5991 0.162
Corr (Range, Hybrid) 0.8056 0.4055 1.986
Corr (Electric, Hybrid) 0.3661 0.3312 1.105

* Log likelihood at convergence: -884.1523
* Note we use negative of the price variable in the model
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Table 3.14: Bayesian Posterior Mean and Variance of the Mixed
Logit Model (Case II and lognormal cost coefficient)

Parameter N Est/Mean SE/StDv Est/SE

Price 5000 -0.8505 0.1947 -4.36826
Range 5000 -0.8305 0.523 -1.58795
Electric 5000 -1.4722 0.4131 -3.56379
hybrid 5000 1.0476 0.2138 4.899906
Perf1 5000 0.4381 0.1061 4.129123
Var(Price) 5000 1.6132 0.4919 3.279528
Var(Range) 5000 1.2586 0.6834 1.841674
Var(Electric) 5000 1.7391 0.8575 2.028105
Var(Hybrid) 5000 1.8643 0.6609 2.82085

Variance-Covariance Price Range Electric Hybrid

Price 1.6132 0.4244 0.0097 0.9451
Range 0.4244 1.2586 0.0327 0.7175
Electric 0.0097 0.0327 1.7391 0.7448
Hybrid 0.9451 0.7175 0.7448 1.8643

Table 3.15: Mean WTP from the Bayesian Individual-level WTP
(Case II and lognormal cost coefficient)

Criteria of
β̂price

Number of remained
respondents

Mean WTP Std(mean WTP)

0.01 100 1.6649 0.2423
0.02 100 1.6649 0.2423
0.03 100 1.6649 0.2423
0.04 100 1.6649 0.2423
0.05 100 1.6649 0.2423
0.06 100 1.6649 0.2423
0.07 100 1.6649 0.2423
0.08 100 1.6649 0.2423
0.09 100 1.6649 0.2423
0.1 100 1.6649 0.2423
0.11 99 1.7583 0.2259
0.12 98 1.7397 0.2274
0.13 98 1.7397 0.2274
0.14 98 1.7397 0.2274
0.15 97 1.7611 0.2288
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Table 3.17: Product Attributes in the Synthetic Data Set

Factor Possible values of independent variable
Attribute 1 {0, 1}
Attribute 2 {0, 1}

Price {1.99, 2.99, 3.99, 4.99}

Table 3.18: Survey Designed for the Synthetic Data Set

Question Alternative Attribute1 Attribute2 Price

1

1 0 1 3.99
2 1 1 1.99
3 1 0 4.99
4 0 0 2.99

2

1 0 0 4.99
2 0 1 2.99
3 1 1 1.99
4 1 0 3.99

3

1 0 1 3.99
2 1 1 4.99
3 0 0 1.99
4 1 0 2.99

4

1 0 0 1.99
2 1 0 3.99
3 1 1 2.99
4 0 1 4.99

Table 3.19: Bayesian Posterior Mean and Variance of the Mixed
Logit Model (Synthetic Data with Uncorrelated and Normal

Coefficients)

Parameter N Estimate Std. Error Est/SER

Attribute1 5000 2.0167 0.1289 15.6455
Attribute2 5000 2.0238 0.1101 18.3815
Price 5000 2.9901 0.0913 32.7503
Var(attribute1) 5000 15.0529 1.3255 11.3564
Var(attribute2) 5000 0.7884 0.2873 2.7442
Var(price) 5000 0.347 0.0843 4.1163

Variance-Covariance Attribute1 Attribute2 Price

Attribute1 15.0529 -0.1702 0.0711
Attribute2 -0.1702 0.7884 0.0549
Price 0.0711 0.0549 0.347
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Figure 3.1: Distribution of Mean WTP with the Criterion
0.01 < β̂pricei < 0.20

(Uncorrelated Random Coefficients & Normal Cost Coefficient)
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Figure 3.2: Distribution of Mean WTP with β̂pricei = 0.1
(Uncorrelated Random Coefficients & Normal Cost Coefficient)
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Figure 3.3: Distribution of Mean WTP with the Criterion
0.01 < β̂pricei < 0.20

(Uncorrelated Random Coefficients & Log-normal Cost Coefficient)
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Figure 3.4: Distribution of Mean WTP with β̂pricei = 0.1
(Uncorrelated Random Coefficients & Log-normal Cost Coefficient)
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Figure 3.5: Distribution of Mean WTP with the Criterion
0.01 < β̂pricei < 0.20

(Correlated Random Coefficients & Normal Cost Coefficient)
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Figure 3.6: Distribution of Mean WTP with β̂pricei = 0.1
(Correlated Random Coefficients & Normal Cost Coefficient)
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Figure 3.7: Distribution of Mean WTP with the Criterion
0.01 < β̂pricei < 0.20

(Correlated Random Coefficients & Log-normal Cost Coefficient)
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Figure 3.8: Distribution of Mean WTP with β̂pricei = 0.1
(Correlated Random Coefficients & Log-normal Cost Coefficient)
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Figure 3.9: Distribution of Mean WTP from the Synthetic Data set
(Uncorrelated Random Coefficients & Normal Cost Coefficient)
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Chapter 4

Estimation of Brand Choice Using a Multivariate Poisson-log Normal

Incomplete Demand System

* Ying J. and Shonkwiler J. S.. To be submitted to Journal of Agricultural and Applied
Economics.
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Abstract

This paper provides a new approach which recognizes that quantities purchased are discrete

and over-dispersed and demands may be correlated. As a consequence we specify a multi-

variate Poisson-log normal distribution. To represent preferences in an utility-consistent way,

we consider the incomplete demand system specification as it allows log-linear and semi-log

forms – a necessary requirement given the exponential link in the Poisson-log normal count

data model. With the assumption that the prices of all other goods outside the system are

quasi-fixed, unconditional price elasticities and income elasticities can be computed from

the properly specified incomplete demand system. Using a facial tissue consumption data

of 1927 households in Eau Claire, Wisconsin in 2011 from the IRI Marketing Data Set, we

analyze amounts purchased of four major brands and provide insights on market structure

and consumer preferences.

Keywords: Multivariate Poisson-log Normal Distribution, Incomplete Demand System,

Over-dispersion, Scanner Data, Count Data Model
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4.1 Introduction

Consumer brand choice is of keen interest for academics and practitioners to understand

consumer preferences and market structures The typical information studied by most existing

demand analyses has concentrated on the estimation of elasticities and the prediction of

market shares using demand models in both the product space (Stone, 1954; Theil, 1965;

Barten and Turnovsky, 1966; Christensen et al., 1975; Deaton and Muellbauer, 1980, etc.)

and the characteristics space (Berry et al., 1995; Berry and Pakes, 2002, etc.). However, for

some important economic variables in the form of non-negative integers such as recreational

demand, health care demand, consumption of special goods like cigarettes, estimation of

household labor supplies, and analysis of market entry decisions among oligopolistic firms,

inference on the discrete quantity demanded – the count outcomes – is quite valuable.

Unlike the mature demand models constructed with market shares, demand systems with

count outcomes are much less developed. For count data models, the multivariate framework

is much less discussed compared to the univariate one. In terms of univariate count data,

in-depth studies have shed light on problems like the large portion of zero observations

with inflated-zero models and hurdle models based on distributions like Poisson or negative

binomial (Mullahy, 1986; Hellerstein and Mendelsohn, 1993; Englin and Shonkwiler, 1995;

Winkelmann, 2000; Hidayat and Pokhrel, 2010; Hidayat and Pokhrel, 2010; Bach et al.,

2018). In comparison, only a small portion studies have investigated correlated count models

that are applicable for cases like multiple related counted outcomes (like brand choices) or

a panel of individual choices over time.

So far, the major method to model multivariate count outcomes is a “mixing approach”

that allows flexible correlations among different counts by introducing randomness to the

parametrization of the mean of multivariate count distributions such as the multivariate

Poisson distribution. Aitchison and Ho (1989) first suggested the mathematical form of the

multivariate Poisson-Log normal distribution (MPLN), and later Shonkwiler (1995) noted
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that “...only the MPLN distribution can both reproduce any arbitrary correlation structure

and account for overdispersion”. After that, Chib and Winkelmann (2001) developed the

Bayesian approach with Markov Chain Monte Carlo to summarize the posterior distribu-

tion of the parameters and latent effects in the MPLN count data model. Further Egan and

Herriges (2006) extended the MPLN model to control for on-site sampling biases in survey

data; Haque et al. (2010) incorporated Bayesian inference and suggested the Hierarchical

Poisson-log Normal and Hierarchical Poisson Gamma model to study the number of motor-

cycle crashes. As noted, the advantage of this “mixing structure” model (like MPLN) is the

unrestricted correlation structure of the counts – the dependency could be either positive

or negative – in contrast of other restrictive forms like the seemingly uncorrelated negative

binomial (SUNB) models in which only positive correlations are permitted among the counts

(Winkelmann, 2000; Chib and Winkelmann, 2001; Egan and Herriges, 2006; Bach et al., 2018;

etc.). However, criticisms of this approach also arise from the cumbersome calculation of the

multidimensional integration in the likelihood function caused by the mixing components.

Existing approaches, either maximum simulated likelihood or Bayesian estimation, are found

to be less satisfactory given (1) possible flat areas are likely to occur in the likelihood func-

tion when the number of free parameters increases so that the maximum simulated likelihood

could perform poorly, and (2) multiple and time-consuming Metropolis-hasting steps needed

for the Bayesian estimation due to the lack of standard forms of conditional posterior distri-

butions, respectively.

Beside MPLN, another counterpart approach that developed in recent years is the

“ordered-response model” that maps the underlying continuous latent variables with a set

of count outcomes through a multivariate normal distribution and a bunch of thresholds.

Different from the mixing approach mentioned above, the ordered-response model first esti-

mates the conditional means of a vector of latent variables through a continuous distribution

(usually, the multivariate normal distribution), and then maps the estimators back into

discrete outcomes through a series of estimated cutoff points. As noted by Meyer (1998),
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efficiency losses due to the estimation of even a large number of thresholds in the ordered-

response model is small. Given this, applications like Scott and Kanaroglou (2002) and Bhat

and Srinivasan (2005) have extended the ordered-response model from a trivariate case to a

modeling system that can accommodate large numbers of count outcomes. The merit of this

approach is the flexible underlying probability function for the latent variables that can avoid

the concern of excess zeros in count outcomes. Also, the correlations among count outcomes

are flexible in general and the Bayesian method could be simplified if linear conditional

means are used (Herriges et al., 2008). However, econometric challenges still exist in the

estimation of the ordered-response system due to the convergence problem and imprecision

in estimates. For example, the Bayesian estimation approach proposed in this framework

is criticized to be “cumbersome, requires extensive simulation and is time-consuming – the

convergence assessment becomes very difficult as the number of dimension increase” (Fer-

dous et al., 2010). As an alternative, Ferdous et al. (2010) proposed the composite marginal

likelihood (CML) as an alternative estimation method.

A crucial problem of the existing multivariate count approaches, as pointed in Bhat

et al. (2015), is that the models are lacking of a consistent underlying framework that can

be derived from the well-developed consumer utility theories. In other words, the existing

approaches are more about an application of statistical theory rather than a demand model

derived from consumer theories – the lack of key economic information like the substitu-

tion effects, income effects and welfare analysis is a concern. To address this problem, two

approaches have been investigated in recent years to enhance the existing multivariate count

data models, especially the ordered response model. One approach is advocated by Her-

riges et al. (2008) that combined the ordered response models with a demand system that

consists of linear specified latent demand equations. This work is encouraging as it applies

multivariate count models in the framework of demand systems, which is much more com-

prehensive and informative in analyzing consumer behavior. However, although this model

is flexible in allowing own-price, cross-price, and non-price determinants of demand, it is
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still flawed in not satisfying the integrability conditions that required in utility-theoretic

demand systems. The other approach is a combination of discrete choice and count data

model that represented by Bhat et al. (2015), using the maximum composite marginal like-

lihood. Clearly, the first approach is under the scope of “product space” and the second is

under the “characteristics space”, counterpart to what has been developed in the conven-

tional demand analysis framework. Of these two approaches, we think the demand system

approach is in a more comprehensive and solid view. As indicated by von Haefen (2002),

compared to the discrete choice random utility maximization approach, demand system

approaches are appealing because they “fully integrate the extensive commodity selection

and intensive derived demand choices within a coherent and consistent model of consumer

behavior”. Following this, we think it is of great value to further extend the demand system

with count data outcomes.

In this paper, we are interested in developing a utility-consistent incomplete demand

system with count outcomes modeled with the MPLN distribution to understand consumer

preference from their brand choices using retail-level data. As a count data system in the

“product space”, our research can be seen as an extension of the work by Herriges et al.

(2008) but different in the selection of count distributions, the specification of the demand

function, as well as the estimation method. The merits of using the MPLN distribution to

model the expected count outcomes include: first, it allows flexible correlation structures

among different count outcomes – which is in our case – the purchase amount of different

brands; second, it can satisfy the integrability conditions required by utility theories under-

lying the incomplete demand system so that the welfare measures will be exact; third, it can

accommodate severe over-dispersion in consumer brand choices. In terms of the estimation

method, we adopt a numerical integration approach – Gauss-Hermite integration – rather

than the classical methods of either maximum simulated likelihood or Bayesian approach. As

mentioned before, the major concern of the mixing count data model with the MPLN distri-

bution is the cumbersome estimation that is caused by the lack of a closed-form integrated
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likelihood function. However, given that the conditional mean of the Poisson distribution

is assumed to be log-normally distributed, Gauss-Hermite integration is applicable. As we

found in the first chapter, Gauss-Hermite integration is always more accurate and efficient

compared to the quasi-Monte Carlo simulation when the dimension of integration is not too

high (≤ 6). Given this, we estimate the count system with Gauss-Hermite integration and

test its performance through empirical studies.

Further, different from most existing studies in count data analysis, this paper is unique

in applying the count data demand system with the real transaction data at the retail

level. Traditional data used in count data analysis are mostly survey data in topics like

recreational demand, car accidents, health care utilization, etc. (Chib and Winkelmann,

2001; Egan and Herriges, 2006; Herriges et al., 2008; Whitehead et al., 2010; Haque et al.,

2010; Bhat et al., 2015). Beyond that, we think the power of count data analysis should be

expanded to larger scale consumer data sets in a wider range of areas. With the emergence of

scanner technology from the 1970s, consumer purchase data has been disaggregated into the

household level and product level so that the analysis of differentiated products, especially

the estimation of demand systems and demand parameters is much more convenient and

powerful (Cotterill, 1994; Baron and Lock, 1995; Bronnenberg et al., 2008). Unlike the stated

preference data or the revealed preference data collected through survey, revealed preference

data from real market transactions has the advantage of avoiding biases caused by either

sample selection, contextual differences between the survey scenarios and actual purchase

sets, or the inconsistency between what people state and what people do (Ben-Akiva and

Morikawa, 1990; Brownstone et al., 2000; Swait and Andrews, 2003; Allenby et al., 2005;

Brooks and Lusk, 2010; Ellickson et al., 2017). With these merits, our study applies the

MPLN model with incomplete demand system into a retail-level panel data set of facial

tissue consumption in Eau Claire, Wisconsin from the IRI marketing data set.

In summary, our study contributes to several aspects of literature. First, we enhance the

mixing approach of the multivariate count data model by inserting it into a utility-consistent
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framework and estimate it through an innovative numerical method of of Gauss-Hermite

integration. Second, we enhance the existing demand system by contributing a more diverse

model specification with count outcomes. This would be especially important for researchers

interested in certain economic values in the form of non-negative integers. Third, we expand

the application of the count data model, or the demand system with count data, from survey

data to scanner data, providing a reasonable solution to accommodate the common problem

of over-dispersion in this high quality data.

The following sections are arranged as below: the second section describes our approach

in developing the incomplete demand system with Poisson-log Normal distribution; the third

section introduces the data we use for the empirical analysis; the forth section presents the

empirical result and the last section is the discussion and conclusion of our paper.

4.2 Methodology

4.2.1 Poisson-log Normal Distribution

The Poisson distribution has been widely applied in modeling the number of events occurring

in a fixed interval of time or space given that the frequency of each event is constant and

independent from the time since the last event happened (Haight, 1967). In our case, we use

the Poisson distribution to model the number of facial tissue boxes a household purchases

during a fixed interval of time. When the univariate Poisson is expanded to multivariate

space, the probability mass function was first developed by McKendrick (1916) and Wicksell

(1916), independently. However, such a multivariate extension, as shown statistically, can not

support a flexible correlation structure that is desired for brand choices. Take the bivariate

Poisson distribution as an example, let y1 = x1 + z and y2 = x2 + z so that we allow

correlations between y1 and y2. Then, the joint probability mass function, as noted by Inouye

et al. (2017), could be written as

P (y1, y2|x1, x2, z) = exp(−λ1 − λ2 − λ0)× λy11

y1!

λy21

y2!

min(y1,y2)∑
z=0

y1

z

y2

z

 z!

(
λ0

λ1λ2

)z
.
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Under this specification, the correlation coefficient resides in the following range

corr(y1, y2) ∈
(

0,min

{√
λ1 + λ0√
λ2 + λ0

,

√
λ2 + λ0√
λ1 + λ0

})
.

Given λ0, λ1, λ2 are all non-negative, y1 and y2 can only be either independent or positively

dependent. This is not reasonable as consumers who purchase a large amount of facial tissue

in brand A may reduce their consumption of brand B in the following period if they are

satisfied with their experience in brand A.

To allow a more flexible correlation structure among the count outcomes, a mixed Poisson

distribution is developed by allowing the location parameter in Poisson distribution to be a

random variable. Let the cumulative density function of the location parameter to be G(λ|ϕ),

the unconditional mass function of the observed count y is

P (Y = y) =

∫
f(y|λ)dG(λ|ϕ) =

∫
e−λλy

y!
dG(λ|ϕ)

Aitchison and Ho (1989) introduced the multivariate log normal distribution into the

mixing distribution G(λ|φ) to retain the rich covariance structures in the normal mixture

approach, and to accommodate the practical consideration of a positive range of λ. For the

univariate case, let ln(λ) ∼ N(µ, σ2), the Poisson-log normal probability mass function is a

integral over the probability density function of λ

P (Y = y) =

∫
R+

e−λλy

λy!

e0.5(ln(λ))−µ)2/σ2

σ
√

2π
dλ, y = 0, 1, 2, . . .

Evaluation of this integral is made difficult due to the requirement that λ > 0. Introducing

the reparameterization that ln(λ) = µ + σε, where ε ∼ N(0, 1). With the corresponding

Jacobian of transformation, exp(µ+ σε)× σ = λσ, the probability mass function is

P (Y = y)) =

∫ ∞
−∞

e−λλy

y!

e−.5ε
2

√
2π

dε, λ = eµ+σε

Extending the Poisson-log normal to the multivariate case, the mixing function follows a

multivariate log-normal distribution
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g(λ|µ,Σ) = (2π)
1
2
J(λ1λ2 . . . λJ)−1|Σ|

1
2 exp{−1

2
ln(λ− µ)′Σ−1(ln(λ− µ)}

Again, reparameterazing with ln(λ) = µ + Σε, where ε ∼ NJ(0,Σ), we have the joint

probability of consumer’s choice of J brands expressed as

P (Y = y) =

∫
. . .

∫ +∞

−∞

J∏
j=1

e−λjλj
yj

yj!

exp
[
−1

2
εΣ−1ε

]
(2π)J/2 |Σ|1/2

dε1 . . . dεJ

=

∫
. . .

∫ +∞

−∞

J∏
j=1

eexp(µj+σjjεj)exp(µj + σjjεj)
yj

yj!

exp
[
−1

2
εΣ−1ε

]
(2π)J/2 |Σ|1/2

dε1 . . . dεJ

As noted by Aitchison and Ho (1989), under such specification, we have

E(yj) = exp(µj +
1

2
σjj) = λj

var(yj) = λj + λ2
j{exp(σjj)− 1}

corr(yi, yj) =
exp(σij)− 1

[{exp(σii)− 1 + λ−1
i }{exp(σjj)− 1 + λ−1

j }]
1
2

Apparently, the variance of the MPLN distribution converges to its mean when σjj → 0,

which means the variation on the location parameter is very low, or, there is no heterogeneity

in the brand consumption counts for households. Otherwise, when σjj 6= 0, we will always

have var(yj) > E(yj) so that the marginal distribution of the purchase amount for brand j

(yj) has overdispersion relative to the pure Poisson. Also, the correlation coefficient between

the purchase amount of different brands could be either positive, 0, or negative, depending

on the sign of the covariance of the underlying multivariate normal distribution σij. These

properties make the MPLN distribution very desirable in fitting retail level purchase data

with severe overdispersion.

4.2.2 Incomplete Demand System

To further ensure our model to be utility consist, we incorporate the incomplete demand

system in specifying the vector of expected counts in the MPLN distributions. The incomplete
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demand system, which was proposed by Epstein (1982) and further developed by LaFrance

and Hanemann (1989) and von Haefen (2002), is a less restrictive demand system that

focuses on a group of goods that form a subset of the household budget, assuming the price

of other goods to be quasi-fixed. The incomplete demand system specification is an attractive

alternative to continuous models since it permits log-linear and semi-log models, which is

a necessary requirement given the exponential link in the Poisson-log normal count data

model.

In the incomplete demand system, the Marshallian demand functions are defined in the

following form

yi = yi (p, q, I,β) , i = 1, . . . , n,

where yi is the Marshallian demand for good (brand) i, p is a vector of prices for the

goods (brands) of our interest, q is a vector of prices (assumed to be quasi-fixed) for the other

goods in the economy, I is the consumer’s income, and β is the vector of the parameters in

the demand functions.

Since we are interested in estimating the expected counts (the means) of the MPLN

model, the demand (as opposed to share) with count outcomes is preferred. Among the

twenty four available demand specifications derived by LaFrance and Hanemann (1985, 1986,

1990) and von Haefen (2002), the following specification is chosen because its in a log-linear

form that consistent with the link funciton in the MPLN distribution.

yj = αj (q)

{
J∏
j=1

pj
βjk

}
Incomeγj , ∀ j = 1, 2, . . . , J

To ensure a consistent Hicksian welfare measure from the incomplete demand system,

integrability problems need to be addressed to ensure the system is consistent with the

rational preference ordering and that a rational individual always maximizes the utility

given a linear budget constraint. Refering to the weak integrability concept from LaFrance

and Hanemann (1986), an incomplete demand system shall satisfy the four conditions of (a)

the demand functions are zero homogeneous in price and income; (b) nonnegative purchase
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amount x ≥ 0; (c) total expenditure of the individual demand on the subset of goods is

strictly less than total income; (d) the Slutsky substitution matrix is symmetric (the change

in Marshallian demand xi with respect to a price change in pj equals to the change in

Marshallian demand xj with respect to the same level of price change in pi ⇒Sij = Sij) and

negative semidefinite (the eigenvalues of the Skustky matrix are nonpositive).

Applying the four integrability conditions to the log-linear demand function we choose,

von Haefen (2002) derived the four parameter restrictions as below

αj(q) > 0

βj < 0

βjk = 0 ∀ j 6= k

γj = γ ∀ j

These restrictions ensure the exact welfare measures in the incomplete demand system,

but also add a high cost of assuming no cross-price effect among different brands and

assuming the income effect to be the same for all brands. As suggested by Herriges et al.

(2008), the unrestricted demand systems that does not satisfying the integrability conditions

may still be considered for the merit of flexibility in price and income effects. For the unre-

stricted form, it should be noted that the welfare measures are based on consumer surplus

approximations instead of the Hicksian indirect utility function. With this consideration, we

will estimate our model for both with- and without- the integrability restrictions.

For the specification of household demand for facial tissue, the expected purchase count

is defined in a log-linear form of the prices of the J brands, the household income, and three

important demographic factors that we think will influence households’ demand on facial

tissue: household size, whether the household have kids in house, and whether the household

belongs to the elder group. Note that since the expected count of the MPLN distribution is

reparameterized as ln(λ) = µ+Σε, where ε ∼ NJ(0,Σ), we will give specifications for both

the µ and Σ.
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Define the expected household purchase amount of household i on brand j as

λij = E (xij) =

[(
J∏
k=1

Pricek
βjk

)
exp(αj + τjHouseholdSizei + ψjKidStatusi + δjElderi)

]
Incomei

γj

i = 1, . . . , N ; j = 1, . . . , J

The mean (µ) of the log-normal distribution of λ can be written as:

E(ln(λj)) = µij = αj+τjHouseholdSizei+ψjKidStatusi+δjElderi+
J
k=iβjkln(Pricek)+γjln(Incomei)

where the effect between the independent variables price, income and the dependent variable

of expected household demand is in a log-log form. In this way,

βjk =
∂ln(λj)

∂ln(Pricek)
=

∂λj
∂Pricek

Pricek
λj

= εj,k

γj =
∂ln(λj)

∂ln(Incomei)
=

∂λj
∂Incomei

Incomei
λj

= εw,j

Thus, coefficient βjk is the price elasticity between brand k and j, and γj is the income

elasticity of brand j. Note that this is different with the conventional Poisson count data

model in which the price/income coefficients are marginal effects instead of elasticities.

For the diagonal elements in the variance-covariance matrix (Σ) of λ, define

σ2
ijj = exp(η1jHouseholdSizei + η2jIncomei)

for each household. For off-diagonal elements in Σ, we will treat each of σij as a single

parameter. In this way, we can account for heteroskedasticities in expected purchase counts.

Also, since the household income in real data sets may not be available or accurate, we use

household total expenditures on all goods as an indicator to approximate household income

in each period.

4.2.3 Gauss-Hermite Integration

As an alternative to the classical estimation methods like the maximum simulated likelihood

(MSL) and the Bayesian approach, we employ the Gauss-Hermite quadrature in the esti-

mation of the incomplete demand system. As mentioned before, the estimation of MPLN
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count data model is criticized to be cumbersome due to the convergence problem in the

MSL method and the inconvenience in posterior sampling in the Bayesian approach. The

merit of Gauss-Hermite integration is the careful selection of evaluation nodes that is helpful

in delivering a more accurate and efficient estimation. More details about Gauss-Hermite

integration can be found in chapter 1.

4.3 Data

For the empirical analysis, we use the scanner data provided by the IRI (Information

Resources, Inc.) marketing data set. The IRI marketing data set is a weekly transaction

data in both the grocery and drug chain with the Universal Product Codes (UPC), the price,

transaction time, purchase unit, and other information like advertising features and displays,

etc. It includes a broad array of markets (50 cities) across the United States from 2001 to

2012, covering 30 categories of food and daily necessities that account for approximately

25% - 30% of the consumer packaged goods sales in a grocery store (Bronnenberg et al.,

2008; Kruger, 2017). Among the 50 markets, 48 are standard markets and 2 are Behavior

Scan markets with household ID: one is Eau Claire, Wisconsin, and the other is Pittsfield,

Massachusetts. Given the high quality and wide coverage of the data, the IRI marketing data

set has been intensively adopted in existing research that over 100 publications have been

generated from it by 2016.

To select a product with high homogeneity in packaging so that the purchase quantities

among different brands are more comparable, we choose the facial tissue market in which

the product size is more uniform. Also, considering the high dimensioned summation and

tremendous possible outcomes for the joint probability, we decide to take the lastest year

(2011) as an example for our analysis. To obtain the household demographic information, we

choose Eau Claire, Wisonsin from the two panel Behavior Scan markets given this city has

a bigger population compared to the other city. Further, out of the three available outlets in
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the data set: grocery, drug store, and mass, we focus on the grocery store as it accounts for

the majority of transactions (89.85% in 2011) in the facial tissue market .

To construct the data for the estimation of the incomplete demand system, we merge the

grocery store transaction data, the product attribute data, and the household demographic

data together and make the purchase amount (the number of boxes) of facial tissue uniform

by the volume equivalence for each transaction. Given the purchase cycle of facial tissue

market is pretty long – 70 months according to Bronnenberg et al. (2008) – we aggregate the

facial tissue purchase amounts by 6 months to avoid too many zero observations. In this way,

we have two purchase periods, January to June and July to December, for each household

in 2011.

For the brand in facial tissue market, we have three major brands and a “private label”

brand that is a collection of a series of grocery store owned brands in the data set. Other

than these four, there are still some brands with very small market shares. To protect the

information of the specific brand, we name the four major brand as “A”, “B”, “C”, and

“D”, in which brand C is the private brand owned by grocery stores. The market share of

the facial tissue market in the three most recent years (2009-2011) is shown in Figure 4.1.

As seen, the largest four facial tissue brands accounts for more than 97.13% of the market

share in Eau Claire. Thus, analysis of the four major brands could be seen as complete for

the whole market.

In terms of the households included in our estimation, we only retain the “static” cus-

tomers who satisfy the minimal reporting requirement defined in the IRI marketing data

set. Also, we drop the households whose facial tissue purchase amount is 0 for all the four

brands over the two periods in 2011 as no information could be derived in such cases. We also

drop two extreme households whose total facial tissue purchase amount is over 140 in 2011.

This leaves us 1927 households in total. The demographic information of these households

is provided in Table 4.1 - 4.2 and Figure 4.2 - 4.5. The income of the households distributes

relative evenly instead of in a normal shape. A spike is observed in the high income range
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from $75, 000 to $99, 999 per year. For family size, 47.47% of households have two people,

followed by the case with one people and bigger families with three or more people. For race,

97.24% of the households are white, followed by black-African American and Asian. This

is somewhat consistent with the population structure in Eau, Claire that 91.40% are white

in the 2010 census. In terms of the house type, most households (86.16%) rent their house

instead of own a house. For age, households head whose age is 65+ accounts for 40.05 percent

in our sample. For education, we have a nearly normal distribution with the mode in “some

high school” that accounts for 32.69%, followed by “graduated high school” (27.13%) and

“technical school” (20.64%). Also, the occupation of 31.25% of the households is “private

household worker”, followed by “professional or technical” (21.20%). In addition, most of

the households (83.03%) do not have children under 18 years old in the house. In summary,

we have a sample of households with more elderly people who may have a potentially high

demand for facial tissue.

For the facial tissue purchase quantity, severe over-dispersion is observed for all the four

major brands. As shown in Figure 4.6, the histogram of facial tissue purchase amount (the

number of uniform boxes) has a long tail for each brand in both periods. More specifically,

Table 34.3 shows that, although the 95th percentile of purchase quantity concentrates around

only 10 uniform boxes for all the four brands, the maximum purchase amount is as high as

59 uniform boxes. Such an over-dispersion is especially severe for brand A and C.

For the prices of the four brands, the summary statistics are listed in Table 4.4. The

retailing price for brand B is the highest among the four, and brand C is the cheapest one

– the private brand owned by grocery store always offers a lower price in the market. Also,

price variations are the biggest for brand B. This is reasonable given more price fluctuation

is available for this most expensive brand to allow promotions and discounts. In contrast,

standard deviations for price is the smallest for brand C, whose average price is the lowest

among the four. Private brand facial tissue has the most stable pricing performance.
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In summary, the structure of the data shows the need of special care for over-dispersion.

With rich information in product, transaction, and household level, it is appropriate to apply

the incomplete demand system with the MPLN distribution.

4.4 Empirical Results

4.4.1 Case 1. Unrestricted Incomplete Demand System

We first fit the incomplete demand system for household purchase amount of the four major

brands of facial tissue without any parameter restrictions. As mentioned, we have 1927

households and two purchase periods in 2011. Also, since the household income in the IRI

marketing data set is reported in category groups instead of continuous numbers, we use

the household total expenditure on all the 30 categories of food and daily necessities in

the data set as an indicator for household income. Gauss Hermite quadrature with 20th

degree of polynomial and adjusted weight is used to numerically approximate the likelihood

that includes a four-dimensional integral. The estimation is conducted in MATLAB and the

results are shown in Table 4.5 to Table 4.7.

For the mean (µ) of the log-normally distributed expectations of household facial tissue

demand (λ), the estimators are shown in Table 4.5 and 4.6. The result in Table 4.5 shows that

the Marshallian own price elasticity for the four brands is always negative (-0.899 to -0.926)

and highly significant, except for brand C (the private label owned by grocery stores) whose

own price elasticity is negative but small in absolute value (-0.251) and is not significant.

This is reasonable as from the summary statistics, brand C always has the lowest price and

the smallest price fluctuations. In other words, the pricing strategy of brand C is very stable

and consistent. The income elasticity for all the four brands is positive and highly significant.

The magnitude of income elasticity is similar for brand B, C, and D (0.421 to 0.456), but a

little bit larger for brand A (0.671). This means brand A has a stronger response to income

change so that when people improve their economic situation, they tend to consume more

facial tissue in brand A. Furthermore, we find elderly people whose age is 55 or more have
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a higher demand for brand C and brand D. The kids status, which indicates whether the

household has children under 18 years old in house, does not have a significant influence on

household demand for facial tissue. However, this finding may not be representative given

83.03% of households in our sample have no children in house. Also, we did not find a

significant effect of household size on the mean of expectation of facial tissue demand.

In terms of the cross-price elasticity, the result is combined with the own-price elasticity

and listed in Table 4.6. Among the twelve pairs of cross-price elasticities, four are statistically

significant and negative (βAB, βBA, βCD, and βCB), indicating that brand A and B are more

likely to be complement goods to each other. It is possible that the marketing strategies of

these two brands – such as promotions– are always following each other, or one of these two

brands is the price leader and the other is the follower so that customers may face lower

prices for both brands at the same time, resulting in higher purchase volumes simultaneously.

Also, a price increase in brand B and D (especially brand D) leads to a significant decrease of

Marshallian Demand in brand C. The remaining cross price elasticities are all insignificant.

For the variance-covariance matrix (Σ) of the log-normally distributed expectations of

household demand (λ), Table 4.7 presents the estimation result. As mentioned in the method-

ology section, diagonal elements in the matrix are defined for each household i as

σ2
ijj = exp(η1jHouseholdSizei + η2jIncomei).

In the result, income has a significant positive effect on the variations of expected demand

for all of the four brands. Further, household size has a negative but small (<0.1) effect on

the variance of expected demand for facial tissue of brand C. The off-diagonal elements are

all significant, validating the necessity of controlling for correlations and heteroskedasticities.

For the two pairs of brands, brand A and D, brand C and D, the correlations of the expected

demand are positive, meaning the two pairs of brands have the same direction of changes

in expected demand. For the remaining brand pairs, the correlations of expected demand

changes are negative.
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4.4.2 Case 2. Restricted Incomplete Demand System

To satisfy the integrability conditions of the log-linear demand specification, we estimated

the restricted incomplete demand system with the results presented in Table 4.8 to 4.10.

In the restricted system, the income elasticity on expected facial tissue demand is the same

among the four brands, and the cross-price elasticities are set to zero.

Table 4.8 provides the estimators for the the mean (µ) of the log-normally distributed

expectations of household facial tissue demand (λ). Similar to the unrestricted case, the

own-price elasticity in the restricted system is negative and highly significant for most of the

four brands, except for brand C whose own-price elasticity is negative, but not significant

(-0.244). For the income elasticity, the shared income elasticity is estimated to be 0.557

and is highly significant, meaning the demand for facial tissue is significantly higher when

household income is increased. Also, we find elderly people whose age is 55 or more prefer

brand C and D. In contrast, the effects of household size and kids status are both very small

and insignificant. Since the cross-price elasticities are restricted to be zero, the Marshallian

price elasticity matrix in Table 4.9 only has diagonal elements. However, the compensated

(Hicksian) price elasticities can still be derived given the integrability conditions are satisfied

in the restricted system. From the Slutsky equation with elasticity, the Hicksian cross-price

elasticity is defined as

εHp,ij = εMp,ij + εw,ibj,

where εMp,ij is the uncompensated cross price elasticity between brand i and j, εw,i is the

income elasticity of brand i, and bj is the market share of brand j. Since εMp,ij = 0, we have

εHp,ij = εw,ibj so that Hicksian cross-price elasticities are very small in value given the budget

share of facial tissue is very low in household total expenditures.

For the variance-covariance matrix (Σ) of household expected demand λ, the estimated

result for the restricted system is provided in Table 4.10. Again, for the diagonal elements

in the matrix, income has a positive and highly significant effect that ranges from 0.162 to
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0.297, indicating higher variance of purchase amount is observed for all the four brands when

household income is increased. The other factor that is influencing the diagonal element, the

household size, is significant for brand A, B, and C in the restricted case and has a negative

sign for all brands. This means the households with more people have a more stable demand

over facial tissue. However, the magnitude to such effect is still relatively small for brand A

and B (<0.1). For brand C, the effect is estimated to be -0.131. In terms of the off-diagonal

elements in the matrix, all correlations are significant, with the signs exactly the same as

the unrestricted case.

4.4.3 Summary

Using Gauss-Hermite integration, we estimated both the unrestricted and restricted incom-

plete demand system for household consumption of facial tissue with the MPLN distribution.

Comparing the result in the two cases, we find a high consistency in both the sign and mag-

nitude of the estimated parameters in brand demand.

First, all the own-price elasticities are found to be significantly negative (expect for brand

C with insignificant negative own-price effect) and all the income elasticities are significantly

positive for all the four brands in both cases. Second, we find brand C and D are more

welcomed for the elder group whose age is 55 or more. One reason could be the low price of

brand C that is more affordable for the elder group, the other reasons could related to tissue

quality that is more friendly to the elderly. Further, we find the demand of brand A and B to

be more sensitive to household income changes. The income elasticity of expected demand

is the highest for brand A in the unrestricted case, while the the income effect affecting

the variance of expected demand of brand B is the highest among the four in the restricted

case. In contrast, we found brand C to be a stable brand whose demand does not respond

actively toward price changes in both cases. As the cheapest brand owned by grocery stores,

we believe this finding is reasonable as the effect of marketing strategies like discounts are

expected to be less feasible (since the original price is already low) and less impressive.
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For the relationship among the four brands, we find four pairs of significant negative cross-

price elasticities in the unrestricted system. The means the expected demand for brand A and

B respond negatively toward the price change in each other brand, making these two brands

a complement pair. Similarly, a price increase in brand B and D leads to negative response

in the Marshallian demand of brand C. For the restricted case, we set the Marshallian cross-

price elasticities to be zero. But still, the compensated (Hicksian) cross-price elasticities

are not zero, although they are very small in positive values given the low budget share

of facial tissue in household total expenditures. Thus all brands are Hicksian substitutes.

Also, from the variance-covariance matrix of the expected demand in both the unrestricted

and restricted systems, we find positive and significant correlations between brand A and D,

brand C and D, while other pairs have negative correlations in demand. These findings are

very helpful to understand the structure of facial tissue market and consumer habits toward

different brands.

At the same time, we find a significant difference in the model fit between the restricted

and unrestricted systems. The likelihood ratio (LR) test shows the unrestricted system

fits the data significantly better than the restrictive case (p-value <0.001). In other words,

although the integrability conditions can enable a consistent Hicksian welfare measure, it

brings the cost of reducing the model fit. This trade off is also observed in Herriges et al.

(2008) that suggesting the high cost of exact welfare analysis in count systems. We think

the choice of system specifications should be in accordance with specific research questions.

If one is more interested in consistent welfare measures, then it is still worthy to apply the

integrability conditions although it may reduce the model fit.

4.5 Conclusion

In this paper, we develop an innovative approach analyzing consumer brand choice through

an incomplete demand system with count outcomes following the multivariate Poisson-Log

normal (MPLN) distribution. Different than most existing demand models using market
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shares as the dependent variable, our approach targets the purchase amount – the non-

negative integers. To fit the count outcomes, we choose the MPLN distribution given its

merit in allowing flexible covariance structures among counts, its good performance in fitting

over-dispersion, and its advantage in accommodating both zero and non-zero consumption.

Specifically, we emphasize the importance of utility consistency when developing multivariate

count data models for consumer demand. Thus, we specify the mean of consumer purchase

counts under a log-linear demand form in the incomplete demand system that introduced

by von Haefen (2002). Further, we apply the Gauss-Hermite quadrature to approximate the

multidimensional integration in the likelihood constructed by the MPLN density. Different

than the traditional estimation methods like maximum simulated likelihood and Bayesian

approach, Gauss-Hermite integration is shown to be more effective as it uses the information

of parameter distributions in the selection of evaluation nodes.

In the empirical analysis, we extend the application area of the count data demand model

to the real transaction (scanner) data set at retail level. This extension helps to provide

more insights on consumer preferences and market structure. Using a panel of scanner data

provided by the IRI marketing data set, we analyze the brand choice of 1927 static consumers

on facial tissue market in Eau Claire, Wisconsin in 2011. Our model accommodates well the

over-dispersed purchase count, and provides informative insights on the market structure

and consumer preferences. Among the four major brands that accounts for more than 97%

of the market share, we find the demand of the cheapest brand to be quite stable and

does not significantly respond to price changes. Also, households with higher incomes have

higher probabilities of switching brands. Besides, our model is helpful in identifying the

most promising consumers for a specific brand. For example, we find two brands that are

significantly more welcomed by the elder group, while household size and kids status does

not have significant influence on the expected demand of facial tissue.

In summary, our study contributes to the literature by enhancing the applicability and

power of the multivariate count data model in a utility-consistent framework. It also enriches
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existing demand system analysis by further developing models with more types of outcomes.

Besides, with the more detailed, accurate, and big transaction data available in today’s

market, we advocate the use of scanner data in count data models with a utility consistent

framework.

For future work, we think the comparison between the demand system approach and

discrete choice approach would be valuable in developing utility-consistent multivariate count

data models. For discrete choice models (like the mixed logit model), scanner data provides a

good source of real “choice experiment” observations in which a household choose one brand

(one response) among all available brands (all alternatives) in the market in each transaction

(each question). By summing up the quantities purchased by the household, the multinomial

brand choice in each transaction (each choice experiment question) is aggregated into count

outcomes – the household demand for different brands. Comparing these two approaches,

a demand system is under the “product space” and has the advantages of 1) providing

multiple (own and cross) price effects, income effects to different brands, and 2) revealing

the effect of demographic factors in consumer demand. But it cannot picture how the product

attributes contribute to consumer choices. In contrast, the discrete choice approach is under

the “characteristic space”. It has the merit in 1) enabling the individual-specific price effect

(although only one same price effect for all brands) that can account for heterogeneities in

household level, and 2) presenting the consumer willingness to pay toward specific product

attributes. But it cannot reveal the role of demographic factors in consumer preferences.

Clearly, these two approaches can complement each other by providing the information that

is limited in the other approach. Comparisons and combinations of these two approaches

would contribute to a comprehensive view of consumer preferences with their choices in the

form of multivariate count outcomes.
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Table 4.1: Demographic Characteristics of the Sample Household

Indicator Level Percentage

Income $00,000 to $ 9,999 per yr 6.29
$10,000 to $11,999 per yr 3.48
$12,000 to $14,999 per yr 2.75
$15,000 to $19,999 per yr 6.29
$20,000 to $24,999 per yr 7.58
$25,000 to $34,999 per yr 14.08
$35,000 to $44,999 per yr 13.45
$45,000 to $54,999 per yr 6.13
$55,000 to $64,999 per yr 10.08
$65,000 to $74,999 per yr 5.35
$75,000 to $99,999 per yr 14.23
$100,000 and greater per year 10.29

Family Size One people 21.57
Two people 47.47
Three people 14.54
Four people 10.27
Five people 5
Six or more people 1.15

Race White 97.24
Black-African American 1.51
Asian 0.88
hispanic 0.36

House Type Ownder 13.84
Renter 86.16

Age 18-24 0.16
25-34 1.61
35-44 7.97
45-54 22.81
55-64 27.4
65+ 40.05

Education Some grade school or less 0.58
Completed grade school 3.46
Some high school 32.69
Graduated high school 27.13
Technical school 20.64
Some college 10.06
Graduated from college 4.09
Post graduate work 1.36
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Table 4.2: Demographic Characteristics of the Sample Household
(Continued)

Indicator Level Percentage

Occupation Cleaning, food, health service worker 9.08
Clerical 5.38
Craftsman 1.36
Laborer 1.58
Manager or administrator 8.91
Operative (machine operator) 2.23
Private household worker 31.25
Professional or technical 21.2
Retired 8.15
Sales 10.87

Children Child in [0-5) 1.04
Child in [6-11) 2.59
Child in [12-17) 8.93
Children in [0-5) & [6-11) 0.78
Children in [0-5) & [12-17) 0.16
Children in [6-11) & [12-17) 3.22
Children in [0-5),[6-11) & [12-17) 0.26
Family size>0 yet no children 83.03

Table 4.3: Summary Statistics of Purchase Quantity by Brand

Period Brand N Purchaser Mean Std Dev
Min Percentile Max

25th 75th 90th 95th 99th

Period 1

A 704 3.439 4.335 1 1 4 7 11 23 55
B 450 3.642 4.064 1 1 4 8 12 23 32
C 668 3.377 5.07 1 1 3 7 11 28 52
D 637 2.664 2.502 1 1 3 6 8 12 19

Period 2

A 540 3.198 3.949 1 1 4 7 11.5 20 37
B 496 3.002 3.317 1 1 4 6 8 22 24
C 723 3.231 4.779 1 1 3 6 9 24 59
D 566 2.466 2.303 1 1 3 5 7 13 21
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Table 4.4: Summary Statistics of Purchase Price by Brand

Period Brand N Purchaser Mean Median Std Dev Minimum Maximum

Period 1

A 704 0.928 0.944 0.339 0.445 4.271
B 450 1.629 1.605 1.083 0.368 3.729
C 668 0.713 0.675 0.300 0.491 2.355
D 637 0.951 0.850 0.587 0.500 2.837

Period 2

A 540 1.012 1.000 0.279 0.571 4.271
B 496 1.646 1.622 1.081 0.478 3.554
C 723 0.714 0.655 0.287 0.537 2.500
D 566 1.029 0.864 0.725 0.561 3.595

Table 4.5: Estimated Mean of the Log-normally Distributed
Household Demand in the Incomplete Demand System

(Unrestricted)

Brand Parameter Estimate Standard Error (R) Standard Error (H) Z-value

Brand A

Constant -4.674*** 0.287 0.269 -17.371
Price -0.899*** 0.236 0.161 -5.572
Income 0.671*** 0.05 0.047 14.26
HH Size -0.038 0.056 0.05 -0.749
Kids -0.09 0.139 0.117 -0.775
>54 0.073 0.08 0.064 1.138

Brand B

Constant -3.682*** 0.674 0.476 -7.742
Price -0.926*** 0.179 0.099 -9.356
Income 0.421*** 0.158 0.096 4.375
HH Size 0.064 0.148 0.09 0.707
Kids -0.105 0.384 0.224 -0.47
>54 -0.068 0.16 0.124 -0.55

Brand C

Constant -3.452*** 0.318 0.336 -10.289
Price -0.251 0.213 0.163 -1.545
Income 0.418*** 0.062 0.063 6.659
HH Size -0.006 0.048 0.051 -0.108
Kids 0.155 0.125 0.138 1.122
>54 0.238** 0.101 0.106 2.245

Brand D

Constant -4.015*** 0.369 0.366 -10.977
Price -0.904*** 0.214 0.119 -7.59
Income 0.456*** 0.07 0.067 6.802
HH Size 0.022 0.054 0.054 0.409
Kids -0.155 0.132 0.147 -1.059
>54 0.306*** 0.103 0.103 2.975

* Log likelihood at converge: -17672.9
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Table 4.6: Price Effects among the Four Brands (Unrestricted)

Brand A Brand B Brand C Brand D

Brand A
-0.899*** -0.3321*** 0.131 -0.125
(0.161) (0.113) (0.205) (0.108)

Brand B
-0.483* -0.926*** 0.254 0.026
(0.279) (0.099) (0.214) (0.195)

Brand C
-0.086 -0.197* -0.251 -0.385***
(0.190) (0.118) (0.163) (0.108)

Branc D
0.051 -0.082 -0.152 -0.904***

(0.184) (0.130) (0.187) (0.119)

Table 4.7: Estimated Variance-Covariance of the Log-normally
Distributed Household Demand in the Incomplete Demand System

(Unrestricted)

Parameter Estimate Standard Error (R) Standard Error (H) Z-value

Household Size A -0.04 0.035 0.035 -1.165
Household Size B 0.034 0.061 0.045 0.765
Household Size C -0.089* 0.042 0.046 -1.946
Household Size D -0.066 0.043 0.049 -1.338
Income A 0.152*** 0.015 0.015 10.342
Income B 0.211*** 0.020 0.020 10.741
Income C 0.223*** 0.018 0.020 10.952
Income D 0.167*** 0.021 0.023 7.192
COR AB -0.221*** 0.035 0.025 -8.965
COR AC -0.084*** 0.023 0.026 -3.253
COR AD 0.177*** 0.041 0.035 5.004
COR BC -0.274*** 0.020 0.022 -12.526
COR BD -0.159*** 0.038 0.035 -4.527
COR CD 0.339*** 0.043 0.037 9.185
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Table 4.8: Estimated Mean of the Log-normally Distribute
Household Demand in the Incompleted Demand System (Restricted)

Brand Parameter Estimate Standard Error (R) Standard Error (H) Z-value

Shared Income 0.557*** 0.036 0.031 17.745

Brand A

Constant -4.312*** 0.226 0.201 -21.489
Price -0.914*** 0.257 0.168 -5.430
HH Size -0.006 0.049 0.046 -0.134
Kids -0.132 0.120 0.108 -1.215
Age > 54 0.050 0.085 0.068 0.729

Brand B

Constant -4.582*** 0.304 0.260 -17.619
Price -0.859*** 0.176 0.098 -8.786
HH Size 0.073 0.074 0.069 1.058
Kids -0.008 0.169 0.162 -0.047
Age > 54 -0.097 0.116 0.115 -0.850

Brand C

Constant -4.280*** 0.287 0.240 -17.866
Price -0.244 0.215 0.163 -1.502
HH Size -0.008 0.059 0.054 -0.154
Kids 0.088 0.122 0.137 0.644
Age > 54 0.214** 0.109 0.108 1.977

Brand D

Constant -4.508*** 0.236 0.222 -20.339
Price -0.873*** 0.177 0.109 -8.035
HH Size 0.005 0.052 0.053 0.090
Kids -0.154 0.127 0.145 -1.062
Age > 54 0.309*** 0.097 0.101 3.050

* Log likelihood at converge: -17700.5

Table 4.9: Price Effects among the Four Brands (Restricted)

Brand A Brand B Brand C Brand D

Brand A
-0.914***
(0.168)

Brand B
-0.859***
(0.098)

Brand C
-0.244
(0.163)

Branc D
-0.873***
(0.109)
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Table 4.10: Estimated Variance-Covariance of the Log-normally
Distributed Household Demand in the Incomplete Demand System

(Restricted)

Parameter Estimate Standard Error (R) Standard Error (H) Z-value

Household Size A -0.055* 0.031 0.032 -1.749
Household Size B -0.088** 0.041 0.042 -2.114
Household Size C -0.131*** 0.049 0.045 -2.902
Household Size D -0.071 0.045 0.050 -1.427
Income A 0.162*** 0.014 0.013 12.144
Income B 0.297*** 0.021 0.020 15.065
Income C 0.249*** 0.028 0.021 11.634
Income D 0.169*** 0.021 0.023 7.258
COR AB -0.227*** 0.020 0.018 -12.440
COR AC -0.129*** 0.024 0.022 -5.739
COR AD 0.157*** 0.037 0.033 4.715
COR BC -0.249*** 0.033 0.028 -8.907
COR BD -0.148*** 0.035 0.035 -4.278
COR CD 0.347*** 0.042 0.036 9.576
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Figure 4.1: Market Share of Facial Tissue Market at Grocery Stores
in Eau Claire, Wisconsin (2009 - 2011)
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Figure 4.2: Household Demographic Factors
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Figure 4.3: Household Demographic Factors (continued)
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Figure 4.4: Household Demographic Factors (continued)
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Figure 4.5: Household Demographic Factors (continued)
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Figure 4.6: Histogram of Facial Tissue Purchase Quantity by Brand
(2011)
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Chapter 5

Conclusion

This dissertation investigates several innovative methods to improve the estimation and

explanation of discrete choice models from the view of multivariate probability distributions.

For consumers’ decisions in a single discrete choice observation, the first two chapters explore

the approximation of the choice probabilities and the distribution of mean willingness to pay

in one of the most flexible models – the mixed logit model. For the aggregation of consumer

choice in repeated discrete choices, the third chapter builds up an incomplete demand system

with count outcome to analyze consumer brand choice in a utility consistent framework.

In the first chapter, we explore the potential of the quadrature approach in the estimation

of mixed logit models, validates the feasibility and the satisfactory performance of Gauss-

Hermite quadrature in approximating the choice probabilities especially when the number of

random parameters is relatively small (≤ 6). We draw our conclusions from empirically com-

paring the estimation accuracy and efficiency among three candidate methods: quasi-Monte

Carlo simulation, Gauss-Hermite quadrature, and spare grid integration. For the most com-

monly adopted estimation method, quasi-Monte Carlo simulation, we find that the problems

of slow convergence rates and unstable accuracy are not negligible – the ultimate question

becomes how much simulation error is acceptable, and which (quasi-) random sequence will

work the best. Further, replicability is compromised for quasi-Monte Carlo unless the ana-

lyst has the identical, scrambled draws. These issues can be avoided completely by instead

adopting almost exact ML estimation using Gauss-Hermite quadrature. Given its ease of

application and replication, it is a powerful alternative to maximum simulated likelihood as

it avoids simulation bias and simulation noise and only incurs controllable approximation
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error – certainly this is a desirable trade off. In terms of the other numerical integration

method, sparse grid, estimation accuracy appears questionable plus the integrated choice

probability is not always positive. In conclusion, for typical problems in environmental and

natural resources economics with a relatively small number of random coefficients and modest

sample sizes, we recommend Gauss-Hermite quadrature as worthy of consideration.

In the second chapter, we discuss the estimation of mean Willingness to Pay (WTP) in

the mixed logit model under various distributional assumptions and calculation approaches.

Different than most former studies which mainly focus on the statistical features of WTP,

we advocate carefully examining the WTP ratio with a full consideration of the underneath

economic assumptions. By narrowing down the scope to the normal goods and ruling out the

possibility of zero consumption for all discrete choice questions, we first validate the ratio-

nality of a positive marginal utility of income in an economic sense – the condition to ensure

stable moment approximations of the WTP as a ratio of two normally distributed variables.

Further, we apply both the normal and log-normal distributions to the cost coefficient in our

estimation of the mixed logit model.

The empirical analysis in the second chapter first shows the limitation of the Delta

method in determining the standard error of mean WTP given it is equivalent to infinitesimal

jackknife, a limiting form of the delete-1 jackknife, which assumes the mutual independence

between all observations. We argue that the block delete jackknife has a more reasonable

assumption of independence among respondents rather than among questions (observations).

Further, our results reveal the skewness caused by applying the log-normal distribution to

the cost coefficient. Although the sign-restricted distributions like the log-normal distribution

can avoid negative or zero cost coefficient in statistical theory, the strong assumption on the

shape of marginal utility of income may not fit the empirical data well and thus should be

carefully considered. Finally, we validate the performance of the Bayesian individual-level

WTP approach in capturing the distribution of mean WTP.
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In addition to the empirical analysis with real survey data sets, a synthetic data set with

2000 respondent is simulated and further validates the feasibility of a normally distributed

cost coefficient. Although the problem of non-existence of moments may still exist in the

view of statistics, we found both theoretical and empirical evidence that the approximation

distribution of the ratio performs well and follows a normal distribution.

In the third chapter, we analyze consumer brand choice through an incomplete demand

system with count outcomes following the multivariate Poisson-Log normal (MPLN) distri-

bution. Different than most existing demand models using market shares as the dependent

variable, our approach targets the purchase amount – the non-negative integers – with the

MPLN distribution given 1) its merit in allowing flexible covariance structures among counts,

2) the good performance in fitting over-dispersion, and 3) its advantage in accommodating

both zero and non-zero consumption. Specifically, we emphasize the importance of utility

consistency by specifying the mean of purchase counts under a log-linear demand form in the

incomplete demand system. Further, Gauss-Hermite quadrature is applied to approximate

the likelihood with multidimensional integration.

In the empirical analysis, we extend the application area of the count data demand model

to the real transaction (scanner) data set at retail level. This extension helps to provide

more insights on consumer preferences and market structure. Using a panel of scanner data

provided by the IRI marketing data set, we analyze the brand choice of 1927 static consumers

on facial tissue market in Eau Claire, Wisconsin in 2011. Our model accommodates well the

over-dispersed purchase count, and provides informative insights on the market structure

and consumer preferences. Among the four major brands that accounts for more than 97%

of the market share, we find the demand of the cheapest brand to be quite stable and

does not significantly respond to price changes. Also, households with higher incomes have

higher probabilities of switching brands. Besides, our model is helpful in identifying the

most promising consumers for a specific brand. For example, we find two brands that are

significantly more welcomed by the elder group, while household size and kids status does
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not have significant influence on the expected demand of facial tissue. In summary, the

third chapter contributes to the literature by enhancing the applicability of the multivariate

count data model in a utility-consistent framework. It also enriches existing demand system

analysis by further developing models with more types of outcomes.
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Appendix A

Details in Sparse Grid Integration

The key idea of Sparse Grid integration is to carefully choose and re-weight the evaluation

nodes to avoid the “curse of dimensionality” in multivariate quadrature. First, the most

common approach to approximate a multi-dimensional integral is to combine the univariate

quadrature rules in a tensor product approach. For a D dimensional integration with variable

x = [x1, x2, . . . , xD],

Q(g) : = Q1 ⊗Q2 ⊗ · · · ⊗QD[g] =
∑
x1∈Xi1

∑
x2∈Xi2

· · ·
∑

xD∈XiD

g(x1 · x2 · xD)(w1w2 . . . wD)

With this approach, the total number of nodes is the product of the number of nodes

in each dimension. For example, for a 10-dimensional integral with 20-quadrature nodes in

each dimension, 2010 = 1.024e + 13 nodes will be needed under the tensor production rule.

That is, the total number of grid-points would be Dn for a D-dimensional integration with n

nodes in each dimension. This is known as the “curse of dimension” where the computational

complexity grows exponentially with the dimension. Researchers (Mysovskikh, 1968) have

shown that not all the nodes in the tensor rule are necessary for the numerical integration.

One method to identify the essential evaluations nodes is called sparse grid integration.

We consider a D-dimensional polynomial with total degree d as the sum of all exponents:

p
(d)
D ∈ PdD := span{xj11 · x

j2
2 · · · · · x

jD
D |j1 + j2 + · · · + jD = d}. Also, it is defined that the

cubature rule Q[·] is exact for the polynomial pdD if
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Q[p
(d)
D ] =

∫
Ω1

· · ·
∫

ΩD

pdn(x1, . . . , xD)φ(x)dx

=
∑
x1∈Xi1

∑
x1∈Xi2

· · ·
∑

xD∈XiD

(w1 · w2 · · · · · wD)× p(d)
n (x1 · x2 · · · · · xD)

⇒ Q[p
(d)
D ] = I[p

(d)
D ]

Further, define that quadrature or cubature formula has polynomial exactness (or degree

of precision) of d if it is exact for all polynomials whose (total) degree are less or equal to

d. Mysovskikh (1968) found that the number of grid-points (nodes) required to achieve the

polynomial exactness of d for a cubature formula Q[·] is [
(
D+[d/2]

[d/2]

)
,
(
D+d
d

)
]. More specifically,

the tensor product rule with Dn nodes would achieve the degree of exactness of max
1≤i≤n

{2Ni−

1}, which is much higher than the true degree of the integrand we have. For example,

consider a 2 dimensional integration with the degree of the polynomial equal to 3 (like

x1x
2
2), the tensor product rule is not only exact for polynomials whose degree less or equal

to 3 (x1, x2, x
2
1x2, x1x

2
2, x

3
1, x

3
2,), but also exact for those with higher degress of exactness

(x3
1x2, x

3
1x2, x

2
1x

2
2, x

2
1x

3
2, x

3
1x

2
2, x

3
1x

3
2). If we have node n = 10 for each dimension, the tensor

produce rule has a polynomial exactness 2 × 10 − 1=19 with the 102 = 100 nodes, while

the minimum number of nodes to achieve the same exactness is
(

2+[19/2]
[19/2]

)
=55. Expand the

dimension to 3, the minimum number of nodes is
(

3+[19/2]
[19/2]

)
=220 so that 103−220 = 780 nodes

are not necessary. With the dimension increase, tensor product rules generate exponentially

unnecessary nodes.

To “smartly” select the nodes, Smolyak (1963) provides a general method for the mul-

tivariate extensions of univariate operators. Wasilkowski and Wozniakowski (1995) further

develop the integration rule as below. With a given accuracy level k ∈ N for a D−dimensional

integration, the sparse-grid integration rule can be expressed as:
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SD,k[g] =
k−1∑

q=k−D

(−1)k−1−q
(

D − 1

k − 1− q

)∑
i∈NDq

(Qi1 ⊗ · · · ⊗QiD)[g]

=
k−1∑

q=k−D

∑
i∈NDq

∑
x1∈Xi1

· · ·
∑

xD∈XiD

g(x1, . . . , xD)(−1)k−1−q
(

D − 1

k − 1− q

)
ΠD
d=1wid(xd)

where

ND
q = {x ∈ ND :

D∑
d=1

id = D + q}

which means that we allocate the accuracy level of the quadrature to the exponent of

each variable to select the nodes. For example, let’s set accuracy level k = 5 for an integration

with dimension D = 2, we have q ∈ {3, 4}. Then for q = 3, N2
3 = {(i1 = 1, i2 = 4), (i1 =

2, i2 = 3), (i1 = 3, i2 = 2), (i1 = 4, i2 = 1)}, for q = 4, N2
4 = {(i1 = 1, i2 = 5), (i1 = 2, i2 =

4), (i1 = 3, i2 = 3), (i1 = 4, i2 = 2), (i1 = 5, i2 = 1)}. Thus, the nodes with the accuracy level

id for each variable xd was adopted and combined to each other as nodes for the integration.

Also, the part (−1)k−1−q( D−1
k−1−q

)
ΠD
d=1wid(xd) is the weight assigned to each combination of

nodes. Note that the weight could be negative, so that theoretically it is possible to have

a negative approximate integral although the integrand is positive everywhere (Heiss and

Winschel, 2008). We address this question in the analysis of mixed logit models with real

survey data.

139



Appendix B

Application of Gauss-Hermite Integration

With the Gauss-Hermite integration, we can approximate any integral with the form∫ +∞

−∞
g(ε)dεh =

∫ +∞

−∞
e−ε

2

h(ε)dε

as the weighted average of the evaluation point wh, that is∫ +∞

−∞
e−ε

2

f (ε) dε ≈
d∑

h=1

whf(εh).

Here the approximation is defined by a Hermite orthogonal polynomial of degree d,

Hd(ε), with associated weights wh (h = 1, 2, . . . , d). For a standard normal random variable,

a change of variable results in

(2π)−1/2

∫ +∞

−∞
e−ε

2/2f (ε) dε ≈
d∑

h=1

w∗hf(ε∗h)

where ε∗h =
√

2εh and w∗h = wh/
√
π. Note that Σw∗h = 1.

For the mixed logit model defined in the text, we have four possibly corelated parameters:

βprice, βrange, βelectric, and βhybrid within the indirect utility function:

Vijt =βpricePriceijt + βRangeRangeijt + βElectricIElectricijt + βHybridIHybridijt + βPerf1IPerf1ijt + εijt

=f1(µprice + σpriceεprice)Priceijt + f2(µRange + σRangeεRange)Rangeijt

+ f3(µElectric + σElectricεElectric)IElectricijt + f4(µHybrid + σHybridεHybrid)IHybridijt

+ βPerf1IPerf1ijt + εijt

Given the εijt ∼ EV (0, 1), the probability for respondent i to choose alternative T in

question j is a 4-dimensional integration towards the logit form probability

140



Pij(T ) =

∫
R4

exp(Vij(T ))∑3
t=1 exp(Vijt)

exp(−1/2EΣ−1E ′)

(2π)4/2|Σ|1/2
dpricedRangedElectricdHybrid

where E = [εprice εRange εElectric εHybrid] and Σ is the variance-covariance matrix of E.

To extend the Gauss-Hermite integration for the mixed logit model, we first define the

set H as the Cartesian product H = ε∗price × ε∗Range × ε∗Electric × ε∗Hybrid (H is of dimension

d4 by 4), and define the set W = w∗h × w∗h × w∗h × w∗h. Also, we let w4 be the product of

the columns of W such that it is now a d4 by 1 vector whose sum is one. Finally, we define

E∗ = HS where S is the (upper triangular) Cholesky decomposition of Σ.

We now define

V ∗ijt =f1(µprice + E∗price)Priceijt + f2(µRange + E∗Range)Rangeijt + f3(µElectric + E∗Electric)IElectric

+ f4(µHybrid + E∗Hybrid)IHybrid + βPerf1IPerf1 + εijt

where E∗price, E
∗
Range,E

∗
Electric, E

∗
Hybrid are the corresponding columns of E∗. Then the proba-

bility that respondent i obtained from choosing alternative T in question j could be rewrote

as:

Pij(T ) ≈ w′4

exp
(
V ∗ij(T )

)
∑3

t=1 exp
(
V ∗ijt
)

By assuming the ten questions answered by the same respondent are independent from

each other, the joint probability of respondent i′s choices for the ten questions is the product

of the probability for each questions chosen alternative.

Pij(T ) ≈ w′4

 10∏
j=1

exp
(
V ∗ij(T )

)
∑3

t=1 exp
(
V ∗ijt
)


Under the assumption that each respondents choices are independent of each other,

the joint probability of all respondents choice sets is the product of all the 100 respondents

probability on the ten questions, and thus the maximum likelihood estimation could be

applied.

For the estimation, we choose Hermite orthogonal polynomial of degree 24, with the

corresponding abscissas and weights listed in Table B.1 of the appendix. The largest weight
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(w∗i )
4 for abscissas is 0.033 while the smallest weight is only 7.67E − 64(< 0.000001) and

quite close to 0. Note that the weight w∗i decreases rapidly as the absolute value of abscissas

increasing. Considering the probability in mixed logit model would always be less than 1

for any given abscissas, we trimmed those abscissas whose weight is less than one-tenth

of the mean weight of all evaluation points. That is, abscissas with weight is less than

3.01408E − 07 (= 1/(244 × 10)) are dropped. In this way, we greatly reduce the estimation

point from 331776 to 10416, and only paying a very small cost in losing a total weight

that is smaller than 0.09686 (= (331776 − 10416) × 3.01408E − 07)), which is a negligible

proportion compared to the sum of all weight as 1. At the same time, we rescale the weights

for remaining abscissas to assure they sum to one. Such an approach contributes significantly

to reduce evaluation points and to increase the estimation efficiency. At the same time, we

are able to ensure the 10416 evaluation points is a good representative of the shape of the

multivariate normal/lognormal distribution.
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Table B.1: 24th Degree Abscissas and Weights

i ±ε∗i w∗i (w∗i )
4

1 -6.0159 1.66E-16 7.67E-64 (<0.000001)
2 -5.2594 6.58E-13 1.88E-49 (<0.000001)
3 -4.6257 3.05E-10 8.61E-39 (<0.000001)
4 -4.0537 4.02E-08 2.61E-30 (<0.000001)
5 -3.5200 2.16E-06 2.17E-23 (<0.000001)
6 -3.0125 5.69E-05 1.05E-17 (<0.000001)
7 -2.5239 8.24E-04 4.60E-13 (<0.000001)
8 -2.0490 0.0070 2.47E-09 (<0.000001)
9 -1.5843 0.0374 1.97E-06 (0.000002)
10 -1.1268 0.1277 2.66E-04 (0.00027
11 -0.6742 0.2862 6.71E-03 (0.0067)
12 -0.2244 0.4269 3.32E-02 (0.033)
13 0.2244 0.4269 3.32E-02 (0.033)
14 0.6742 0.2862 6.71E-03 (0.0067)
15 1.1268 0.1277 2.66E-04 (0.00027
16 1.5843 0.0374 1.97E-06 (0.000002)
17 2.0490 0.0070 2.47E-09 (<0.000001)
18 2.5239 8.24E-04 4.60E-13 (<0.000001)
19 3.0125 5.69E-05 1.05E-17 (<0.000001)
20 3.5200 2.16E-06 2.17E-23 (<0.000001)
21 4.0537 4.02E-08 2.61E-30 (<0.000001)
22 4.6257 3.05E-10 8.61E-39 (<0.000001)
23 5.2594 6.58E-13 1.88E-49 (<0.000001)
24 6.0159 1.66E-16 7.67E-64 (<0.000001)
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