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Abstract

This dissertation undertakes the theory and methods of sufficient dimension folding

for matrix-/array-valued objects. Traditionally, researchers reduced the dimensions of

matrix-/array-valued data by collapsing the data into vectorization. Nonetheless, anal-

ysis based on the vectorized data loses the crucial structural information carried by the

data. Keeping the structure is critical in many fields. Dimension folding is a cutting-

edge technology for capturing the critical essence of those structured data, reducing their

dimensions as much as possible, yet preserving their intrinsic structure.

We first consider sufficient dimension folding for the regression mean function when

predictors are matrix- or array-valued. A new concept central mean folding subspace and

its two local estimation methods: folded outer product of gradients estimation (folded-

OPG) and folded minimum average variance estimation (folded-MAVE ) are proposed.

The asymptotic property for folded-MAVE is established. A modified BIC criterion is

used to determine the dimensions of the central mean folding subspace. Performances of

the two local estimation methods are evaluated by simulated examples and the efficacy



is demonstrated in finite samples. The folded-MAVE method is adopted to analyze a

primary biliary cirrhosis data set.

Second, we focus on sufficient dimension folding for regression on robustness for matrix-

or array-valued objects. The central functional folding subspace and a class of estimation

methods on robust estimators are introduced. Special attention is paid to the central

quantile dimension folding subspace, a widely interesting case of the central functional

folding subspace. The performances of the proposed estimation methods on estimating

the central quantile folding dimension subspace are evaluated by simulated models. We

also apply our method using quantile regression to the primary biliary cirrhosis data set.

Third, we introduce our future work. A class of dimension folding estimators based on

an ensemble of folded-MAVE is introduced to characterize the central folding subspace

(CFS). The ensemble estimators can exhaustively estimate the central folding subspace

without imposing restrictive conditions on the predictors. A cross validation criterion

is proposed to determine the dimensions of CFS. Theoretical properties and numerical

performance of the proposed method will be studied in the future.

Index words: Central Folding Subspace, Central Mean Folding Subspace, Central
Quantile Folding Subspace, Folded Minimum Average Variance
Estimation, Folded MAVE ensemble, Modified BIC criterion, Cross
Validation.
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Chapter 1

Sufficient Dimension Folding for

Regression Mean Function

1.1 Introduction

Modern data often have complex structures. For instance, matrix-valued predictors as

in pictures, and array-valued predictors as in videos. Those data sets are large and

structured, with each dimension representing different information in nature. Many tra-

ditional approaches are to vectorize matrix-/array-valued data so that methods that can

efficiently analyze vector-valued predictors can be directly used. However, Li, Kim and

Altman (2010) used electroencephalography (EEG) data to illustrate that vectorizing

matrix-valued/array-valued predictors may lose sufficient information, data structure

and related interpretation. In practice, treating the predictor as a matrix not only
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can preserve the original matrix structure of the predictor and important aspects of

interpretation, but also can reduce the number of parameters in dimension reduction

estimation, which enhances the estimation accuracy. Dimension folding aims to reduce

the matrix-/array-valued predictors as many as possible while preserving the structure

interpretation of the underlying predictors. The sufficient dimension reduction subspace

is a subset of dimension folding subspace. Except the information carried in dimension

reduction subspace, the folding subspace also covers the information on data structure.

Li, Kim and Altman (2010) introduced central dimension folding subspace for matrix-

or array-valued objects and proposed three estimation techniques: folded-SIR, folded-

SAVE and folded-DR. In this Chapter, we are interested in dimension folding for the

regression mean function.

Our motivation is a primary biliary cirrhosis data set, available at http://lib.stat.cmu.edu/d-

atasets/pbcseq. A group of predictors are repeatedly measured over time for 312 pa-

tients. If we view the group of predictors as one dimension of a matrix and the time line

as another, then we would have a matrix formed predictor and each patient is a sam-

ple. In dimension folding we are interested in reducing the dimensions of such a matrix

predictor along the row and column directions simultaneously. Thus, the correlations

between the multivariate predictors across time are protected naturally.

To attain a more accurate estimator when the conditional mean is our interest, we in-

troduce the central mean folding subspace (CMFS), which aims at the regression mean

function only. We propose two local estimation methods for dimension folding: folded

outer product of gradients estimation (folded-OPG) and folded minimum average vari-
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ance estimation (folded-MAVE ). The folded-MAVE does not require a strong assumption

on the distribution of predictor; it can exhaustively recover the central mean folding sub-

space, and the estimation procedure can be broken down into iterations between several

quadratic optimization steps, each of which has an explicit solution. A modified BIC

criterion is used to determine the dimensions of the central mean folding subspace.

The remainder of the Chapter is organized as follows. In Section 1.2,s we introduce

the central mean folding subspace along with its properties. In Section 1.3, we introduce

several estimation methods for the central mean folding subspace. In particular, we study

the folded-MAVE and its property. Simulations and application are included in Section

1.4 and Section 1.5, respectively. A brief remark on array-valued predictors is presented

in Section 1.6, followed by a short discussion in Section 1.7. We delay proofs to the

Appendix.

1.2 Central mean dimension folding subspace

Let S(M) denote a subspace spanned by the columns of a matrix M and let PM denote

the orthogonal projection onto S(M), that is, PM = M(MTM)−1MT. We consider the

regression of a univariate response Y on a p× q random matrix X and assume the data

{yi,xi}, i = 1, . . . , n are iid observations on (Y,X).
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1.2.1 Overview of central folding subspace

Suppose there are two matrices A ∈ Rp×d and B ∈ Rq×r, d ≤ p and r ≤ q, such that

Y X|ATXB. (1.2.1)

Then Y depends on X only through ATXB. The subspaces S(A) and S(B) are called a

left- and right- dimension folding subspace for Y |X, respectively (Li, Kim and Altman,

2010). Under mild regularity conditions, the intersection of two left- or two right-

dimension folding subspaces for Y |X is itself a left- or right- dimension folding subspace.

Let SY |◦X or SY |X◦ be the intersection of all left- or right– dimension folding subspaces

for Y |X. The subspace SY |X◦⊗SY |◦X is defined as the central dimension folding subspace

(CFS) denoted by SY |◦X◦, where “⊗” is the Kronecker product.

Let vec(·) be a vector operator defined by stacking the columns of a matrix “·” into a

vector, so that (1.2.1) is equivalent to Y vec(X)|(B⊗A)Tvec(X). Let SY |vec(X) be the

central subspace (CS; Cook, 1994, 1996) of Y with respect to the vector predictor vec(X),

so that SY |vec(X) ⊆ SY |◦X◦. However, the opposite relation usually does not hold. Li,

Kim and Altman (2010) claimed that SY |◦X◦ is the best way to reduce matrix-valued

predictors if one hopes to preserve the matrix structure of X.

Li, Kim and Altman (2010) proposed the concept of Kronecker envelope. That is, for a

random matrix U ∈ R(dRdL)×k, suppose there are subspaces S◦U ∈ RdR and SU◦ ∈ RdL
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satisfying

S(U) ⊆ SU◦ ⊗ S◦U almost surely. (1.2.2)

Then the smallest Kronecker product of the two subspaces that satisfy (1.2.2) is defined

as the Kronecker envelope of U (Li, Kim and Altman, 2010). The existence of a central

dimension folding subspace follows from the results on the Kronecker envelope (Li, Kim

and Altman, 2010; Theorems 1 and 2) and the existence of a central subspace (Cook,

1998; Yin, Li and Cook, 2008). Based on the Kronecker envelope, they constructed a

general objective function and evaluated it using three different methods: folded-SIR,

folded-SAVE and folded-DR, extending from the usual SIR (Li, 1991), SAVE (Cook and

Weisberg, 1991) and DR (Li and Wang, 2007).

1.2.2 Central mean dimension folding subspace

Consider a regression model for dimension folding with matrix-valued predictors X as

Y = f(ATXB) + ε, (1.2.3)

where f is an unknown link function, A and B are p× d and q × r orthogonal matrices

with d ≤ p and r ≤ q, and E(ε|X) = 0 almost surely. The idea of dimension folding for

a regression mean function can be briefly described as finding such matrices A and B

that all the information about Y carried in E(Y |X) is covered by ATXB. We formalize

the model as follows.
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Definition 1.1. Suppose there are matrices A ∈ Rp×d and B ∈ Rq×r, d ≤ p and r ≤ q,

such that

Y E(Y |X)|ATXB. (1.2.4)

Then the space S(A) or S(B) is called a left- or right- mean dimension folding subspace.

If the intersection of all left- or right- mean dimension folding subspaces is itself a left- or

right- mean dimension folding subspace, we can define the central mean folding subspace

(CMFS) as:

Definition 1.2. Let SE(Y |◦X) and SE(Y |X◦) be the intersection of all left- or right- mean

folding subspaces and itself is a left- or right- mean folding subspace for E(Y |X), then

SE(Y |◦X) and SE(Y |X◦) are defined as the central left- and right- mean dimension folding

subspace respectively. Let SE(Y |◦X◦) denote the sufficient central mean dimension folding

subspace. Then

SE(Y |◦X◦) = SE(Y |X◦) ⊗ SE(Y |◦X). (1.2.5)

The central mean folding subspace does not always exist, as the intersection of two

left- or right- mean dimension folding subspaces is not always a left- or right- mean

dimension folding subspace. Based on the conditions developed by Cook (1998), or Yin,

Li and Cook (2008), together with Theorems 1 and 2 of Li, Kim and Altman (2010),

one can show that the existence conditions of CMFS are the same as those of central

mean subspace (CMS; Cook and Li, 2002). For instance, if the domain of vec(X) is

open and convex, then the CMFS exists and is unique. Since Y X|ATXB implies
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Y E(Y |X)|ATXB, a dimension folding subspace is necessarily a mean dimension fold-

ing subspace. Once the CMFS exists, SE(Y |◦X◦) ⊆ SY |◦X◦ and SE(Y |vec(X)) ⊆ SE(Y |◦X◦),

where SE(Y |vec(X)) is the CMS for vec(X). From here on, we assume A ∈ Rp×d, d ≤ p,

is a basis matrix of SE(Y |◦X) or SY |◦X and B ∈ Rq×r, r ≤ q, is a basis matrix of SE(Y |X◦)

or SY |X◦ distinguished by whether the regression mean function is in focus or not.

The following proposition gives equivalent conditions for the conditional independence

using Definition 1.1. We delay its proof to the Appendix.
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Proposition 1.1. The following statements are equivalent:

1. Y E(Y |X)|ATXB

2. Cov[(Y,E(Y |X))|ATXB] = 0

3. E(Y |X) is a function of ATXB

The central mean folding subspace is not invariant under one-to-one transformation of

the response variable, because SE(Y |◦X◦) does not equal SE(T (Y )|◦X◦) in general. However,

the following proposition shows that under affine linear transformation of the predictors,

the central mean dimension folding subspace is invariant. Its proof is also delayed to

the Appendix.

Proposition 1.2. Let Z = AT
0XB0 where A0 and B0 are full rank, p × p and q × q

matrices respectively. Then SE(Y |◦Z◦) = (B-1
0 ⊗ A-1

0 )SE(Y |◦X◦).

1.3 Estimation of SE(Y |◦X◦)

In this section, we propose two main local estimation methods for the CMFS: folded-

OPG and folded-MAVE. Before doing so, we introduce a technique to obtain a Kronecker

product from a semi-orthogonal matrix, which will help us to obtain either an alterna-

tive solution if SE(Y |vec(X)) = SE(Y |◦X◦), or better initial estimates in iterative folding

approaches used later.
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1.3.1 Matrix decomposition to a Kronecker product

Let Ik be the k-dimensional identity matrix. Suppose η ∈ Rpq×dr is a semi-orthogonal

matrix (that is, ηTη = Idr) such that η = B* ⊗ A*, where A* ∈ Rp×d and B* ∈ Rq×r

with B*TB* = Ir for identifiability. We will establish a decomposition method to obtain

matrices A* ∈ Rp×d and B* ∈ Rq×r. This decomposition technique bridges a way to

estimate SY |◦X and SY |X◦ or SE(Y |◦X) and SE(Y |X◦) through SY |vec(X) or SE(Y |vec(X)).

Suppose such η is a basis matrix for SY |vec(X), or SE(Y |vec(X)). In the first step, we

estimate η of SY |vec(X) or SE(Y |vec(X)); in the second step, we use the decomposition

technique to estimate A* and B*. When SY |vec(X) = SY |◦X◦ and SE(Y |vec(X)) = SE(Y |◦X◦),

our algorithm can provide a solution of SY |◦X◦ or SE(Y |◦X◦).

Let || · || be the Frobenius norm, so that the objective functions below are equivalent to

ordinary least squares. Let hij be the i-dimensional vector whose j-th element equals 1

and otherwise 0. Our procedure is as follow.

1. Generate the initial value of A*

(0) ∈ Rp×d from a sample of the N(0, 1) variables.

2. Given A*

(k), the estimate of A* in the k-th iteration, the ij-th element of B*

(k) in

k-th iteration is the minimizer, b̂, of the matrix norm

||(hT

qi ⊗ Ip)η(hrj ⊗ Id)− bA*

(k)||.

Then normalize b̂ so that B*T

(k)B
*
(k) = Ir.
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3. Given B*

(k), the minimizer â of the objective function,

||(hT

pi ⊗ Iq)(Kp,qηKr,d)(hdj ⊗ Ir)− aB*

(k)||,

is the ij-th element of A*

(k+1) in the (k+1)-th iteration, where K is a commutation

matrix. Its explicit form and the properties can be found in Magnus and Neudecker

(1999). Here we use the property that: if A* ∈ Rp×d and B* ∈ Rq×r, then A*⊗B* =

Kp,q(B
* ⊗ A*)Kr,d.

4. Check the convergence. Let τ(k) = B*

(k) ⊗ A*

(k), τ(k−1) = B*

(k−1) ⊗ A*

(k−1) be the

estimates in the k-th and the (k − 1)-th iteration. If the discrepancy, ||τ(k)τ
T

(k) −

τ(k−1)τ
T

(k−1)||, is smaller than some pre-specified tolerance value, such as 10−6, then

stop the iteration and set Â* = A*

(k), B̂
* = B*

(k); Otherwise, set k = k + 1 and

proceed Step 2.

1.3.2 Local estimation methods of CMFS

At this stage, we assume that d and r are known. The key idea underlying the subsequent

development of folded-OPG and folded-MAVE is as follows. Let u = ATXB. Then,

based on elementary calculations (Schott 1997), we have:

∂E(Y |X = x)

∂X
=
∂vec(u)T

∂vec(X)
· ∂E(Y |ATXB = u)

∂vec(u)

= (B ⊗ A) · ∂E(Y |ATXB = u)

∂vec(u)
.
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From the above, we know that ∂E(Y |X=x)
∂X

∈ S(B ⊗ A) = SE(Y |◦X◦). Thus, SE(Y |◦X◦) can

be recovered by estimating the gradient of E(Y |X = x).

folded-OPG

The local polynomial smoothing (Fan and Gijbels, 1996) can be used to estimate the

gradients. Here, for each j = 1, . . . n, we consider the local linear fitting by minimizing

the objective function,

n∑
i=1

[yi − cj − aT

j (xi − xj)bj}]2wij, (1.3.1)

over (cj, aj, bj) ∈ R1 × Rp × Rq, subject to bTjbj = 1 where wij ≥ 0 is the kernel weight

centered at xi − xj with
∑n

i=1 wij = 1. We use the usual kernel weight:

wij(h) = Kh(vec(xi − xj))/
n∑
j=1

Kh(vec(xi − xj)).

For any v ∈ Rp, Kh(v) = h−pK(||v||/h), where K(·) is the chosen kernel function. In

this chapter, we use the Gaussian kernel.

The folded-OPG based on minimizing (1.3.1) can be viewed as “weighted least squares”

approach. For each j = 1, . . . n, we can iteratively estimate aj, bj and cj. We suggest

the following folded-OPG algorithm:

1. Generate the initial values of aj ∈ Rp for j = 1, · · · , n from a sample of N(0, 1)

variables.

11



2. For fixed aj ∈ Rp, minimize (1.3.1) over cj and bj for j = 1, . . . , n. The solution is

ĉj
b̂j

 =

[
n∑
i=1

wij(h)∆ij(aj)∆
T

ij(aj)

]-1 [ n∑
i=1

wij(h)∆ij(aj)yi

]
,

where ∆ij(aj) = (1, (vec(xi − xj))
T(Iq ⊗ aj))T. Normalize b̂j: b̂

T
j b̂j = 1.

3. For fixed cj and bj, let:

âj =

[
n∑
i=1

wij(h)∆ij(bj)∆
T

ij(bj)

]-1 [ n∑
i=1

wij(h)∆ij(bj)(yi − cj)

]
,

where ∆ij(bj) = (bj ⊗ Ip)Tvec(xi − xj).

4. Check convergence. Let A(k), B(k) be the first d or r eigenvectors according to the d

or r largest eigenvalues of
∑n

j=1 âj â
T
j or

∑n
j=1 b̂j b̂

T
j obtained in the k-th iteration re-

spectively. Let τ(k) = B(k)⊗A(k), τ(k−1) = B(k−1)⊗A(k−1). If ||τ(k)τ
T

(k)−τ(k−1)τ
T

(k−1)||

is smaller than some pre-specified tolerance value, such as 10−6, stop the iteration

and set A = A(k), B = B(k); Otherwise, set k = k + 1 and proceed Step 2.

folded-MAVE method

The matrices A ∈ Rp×d and B ∈ Rq×r satisfying (1.2.3) are the minimizers of

E[Y − E(Y |ATXB)]2, (1.3.2)
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over A and B, subject to ATA = Id and BTB = Ir. The conditional variance given

ATXB is

σ2
A,B(ATXB) = E[{Y − E(Y |ATXB)}2|ATXB]. (1.3.3)

Thus,

min
A, B

E[Y − E(Y |ATXB)]2 = min
A, B

E{σ2
A,B(ATXB)}. (1.3.4)

At the sample level, for any given x0, σ2
A,B(ATx0B) can be approximated using local

linear smoothing as

σ2
A,B(ATx0B) ≈

n∑
i=1

{yi − E(yi|ATxiB)}2wi0

≈
n∑
i=1

[yi − c0 − aT

0A
T(xi − x0)Bb0]2wi0,

where c0 + aT
0A

T(xi − x0)Bb0 is the local linear expansion of E(yi|ATxiB) at the point

x0. Finding A and B is equivalent to solving the quadratic minimization

n∑
j=1

n∑
i=1

ρj[yi − cj − aT

jA
T(xi − xj)Bbj]

2wij, (1.3.5)

over (cj, aj, bj, A,B) ∈ R1×Rd×Rr×Rp×Rq, subject to bTjbj = 1, ATA = Id, B
TB = Ir,

for i = 1, . . . , n and j = 1, . . . , n. We adopt coefficients {ρj : j = 1, . . . , n} to exclude

unreliable samples with too few observations around ρ(v) > 0 if v > v0 and ρ(v) = 0 if

13



v ≤ v0 for some small v0 > 0. We take ρj = ρ(n−1
∑n

i=1Kh(d,r)
(vec(xi − xj)). Formula

(1.3.5) is equivalent to

n∑
j=1

n∑
i=1

ρj[yi − cj − (bj ⊗ aj)T(B ⊗ A)Tvec(xi − xj)]
2wij. (1.3.6)

Minimizing the objective function (1.3.5) can be broken down into the following six-step

iterative algorithm. And each minimization step is a quadratic optimization problem

having an explicit solution. The Â and B̂ estimated by folded-OPG method can be used

as the initial value for folded-MAVE. We set the kernel weights as

wij = Kh(d,r)
(vec(ÂT(xi − xj)B̂))/

n∑
j=1

Kh(d,r)
(vec(ÂT(xi − xj)B̂)). (1.3.7)

The bandwidth h(d,r) is set to be proportional to n−1/(dr+4) (Silverman, 1986). Once an

estimate of A or B is known, we use the existing estimate to update the bandwidth by

formula (1.3.7) to reduce the dimension of the kernel function, which helps to carry out

the smoothing over a lower dimension. That is, our folded-MAVE method is similar to

the refined MAVE (rMAVE; Xia, et al. 2002). More specifically, we define the folded-

MAVE algorithm as follows.

1. Generate the initial values of aj ∈ Rd for j = 1, · · · , n from a sample of N(0, 1)

variables. Set the estimates Â and B̂ from folded-OPG procedure as the initial

values of A and B.
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2. For fixed aj ∈ Rd, A ∈ Rp×d, B ∈ Rq×r, minimize (1.3.5) over cj, bj for j = 1, . . . , n

subject to bTjbj = 1. The solution is

ĉj
b̂j

 =

[
n∑
i=1

ρjwij(h)∆ij(aj, A,B)∆T

ij(aj, A,B)

]-1 [ n∑
i=1

ρjwij(h)∆ij(aj, A,B)yi

]
,

where ∆ij(aj, A,B) = (1, (vec(xi − xj))
T(B ⊗ A)(Ir ⊗ aj))T.

3. For fixed cj ∈ R1, bj ∈ Rr, A ∈ Rp×d, B ∈ Rq×r, minimize (1.3.5) over aj for

j = 1, . . . , n. Then,

âj =

[
n∑
i=1

ρjwij(h)∆ij(bj, A,B)∆T

ij(bj, A,B)

]-1 [ n∑
i=1

ρjwij(h)∆ij(bj, A,B)(yi − cj)

]
,

where ∆ij(bj, A,B) = ((vec(xi − xj))
T(B ⊗ A)(bj ⊗ Id))T.

4. For fixed cj, aj, bj and A, the B̂ that minimizes (1.3.5) is

vec(B̂) =

[
n∑

i,j=1

ρjwij(h)∆ij(aj, bj, A)∆T

ij(aj, bj, A)

]-1 [ n∑
i,j=1

ρjwij(h)∆ij(aj, bj, A)(yi − cj)

]
,

where ∆ij(aj, bj, A) = [Ir⊗ ((xi−xj)
TA)](bj⊗aj). Normalize B̂ so that B̂TB̂ = Ir.

5. For fixed cj, aj, bj and B, the Â that minimizes (1.3.5) is

vec(ÂT) =

[
n∑

i,j=1

ρjwij(h)∆ij(aj, bj, B)∆T

ij(aj, bj, B)

]-1 [ n∑
i,j=1

ρjwij(h)∆ij(aj, bj, B)(yi − cj)

]
,

where ∆ij(aj, bj, B) = [((xi−xj)B)⊗ Id](bj ⊗ aj). Normalize Â so that ÂTÂ = Id.
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6. Check convergence. Let A(k), B(k) be the estimator of A and B obtained in the

k-th iteration, respectively. Let τ(k) = B(k) ⊗ A(k), τ(k−1) = B(k−1) ⊗ A(k−1). If

||τ(k)τ
T

(k) − τ(k−1)τ
T

(k−1)|| is smaller than some pre-specified tolerance value, such as

10−6, stop the iteration and set A = A(k), B = B(k); Otherwise, set k = k + 1 and

proceed Step 2.

1.3.3 Sampling property

In this section, we will investigate the sampling property of our estimator, similar to

those made in Xia (2007), and Wang and Xia (2008). In particular, we follow the proofs

in Yin and Li (2011).

Let g(·) be a generic density. Let A and B be the corresponding semi-orthogonal bases

for the cental left- and right- mean folding subspace. Suppose that A* and B* are generic

p-row and q-row matrices, respectively. We assume the following conditions:

(C1) [Marginal distribution of vec(X)] The covariate vec(X) is bounded; its density

function g(vec(X)) has bounded second order derivatives; functions

µB*⊗A*
(u) = E(vec(X)|(B* ⊗ A*)

Tvec(X) = u),

ωB*⊗A*
(u) = E(vec(X)vec(X)T|(B* ⊗ A*)

Tvec(X) = u)

have bounded derivatives with respect to u, and B* ⊗A* for B* ⊗A* ∈ {B* ⊗A* :

||(B* ⊗ A*)(B* ⊗ A*)
T − (B ⊗ A)(B ⊗ A)T|| ≤ c*} for some c* > 0.
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(C2) [Conditional distribution function of Y given (B* ⊗ A*)
Tvec(X)] The conditional

density function g(Y |u) has bounded fourth order derivatives with respect to

vec(X), u and B* ⊗ A* as B* ⊗ A* is in a small neighbor of B ⊗ A.

(C3) [Central mean folding subspace] For any semi-orthogonal p × d* matrix A* and

semi-orthogonal q× r* matrix B* and constant c* > 0, if B*⊗A* : ||(B*⊗A*)(B*⊗

A*)
T − (B ⊗ A)(B ⊗ A)T|| ≥ c*, then

inf
B*⊗A*

E[E(Y |AT

*XB*)− E(Y |ATXB)]2 > 0.

(C4) [Kernel function] Function K0(·) is a symmetric univariate density function with

bounded second order derivative and compact supports.

(C5) [Bandwidths] For working dimension d* and r*, the bandwidths {hk : k = 0, 1, . . .}

satisfy h0 ∝ n−1/(pq+4), ht = max{ςht−1, ~} with 1/2 < ς < 1, and ~ ∝ n−1/(d*r*+4).

The general idea of the proof is the following: Note that (1.3.5) is equivalent to

n∑
j=1

n∑
i=1

ρj[yi − cj − (bj ⊗ aj)T(B ⊗ A)Tvec(xi − xj)]
2wij. (1.3.8)

Defining B = B ⊗ A , dj = bj ⊗ aj, X = vec(X), Xi = vec(xi) and Xij = vec(xi − xj),

(1.3.8) transforms to

n∑
j=1

n∑
i=1

ρj[yi − cj − dT

jB
TXij]

2wij. (1.3.9)
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Note that formulation (1.3.9) is exactly what Yin and Li (2011) had for the objective

function, if we set, f(yi) = yi and m = 1. In such a case, when the central mean

subspace of vec(X) is the same as that of the folding subspace, estimate B̂ is the weighted

least squares solution as in Yin and Li (2011). Hence, the asymptotic results follow

immediately. However, when the central mean subspace of vec(X) is not the same as

that of the folding subspace, estimating B directly by the weighted least squares method

will return basis matrix for other subspaces rather than the central mean folding subspace,

generally a subspace of folding space if dimensions are assumed correctly to the ones for

the central mean subspace. To prevent the latter, we notice that the Kronecker product

structure of B can be recovered by using the iteration methods we proposed previously.

Thus the final estimate, B̂ = B̂⊗Â, is then the weighted least squares solution of (1.3.9)

with such a structure. Therefore, we can prove the asymptotic result exactly following

proof in Yin and Li (2011). Suppose Â* and B̂* are the corresponding estimates of A*

and B*. Then the following theorem gives the convergence rate of folded-MAVE when

d* = d and r* = r, whose proof will be provided upon request.

Theorem 1.1. Suppose conditions (C1)−(C5) hold, d* = d, r* = r and the final band-

width is ~, then the folded-MAVE estimator B̂ ⊗ Â is consistent with,

||(B̂ ⊗ Â)(B̂ ⊗ Â)T − (B ⊗ A)(B ⊗ A)T||

= OP{~4 + log n/(n~dr) + n−1/2}.
(1.3.10)
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1.3.4 Estimation of the CMFS dimension

Previously, we assumed that d and r are known, but typically we don’t know either d

or r. Thus, an estimation method for d and r is needed. In this section, we propose a

modified BIC criterion to estimate d and r for folded-MAVE.

For vector predictors, Xia et al. (2002) proposed a Cross Validation (CV) criterion. Zhu,

Miao and Peng (2006) proposed several BIC criteria to determine the dimension of CS.

Wang and Yin (2008) suggested a modified BIC criterion for Sparse MAVE. Following

Wang and Yin (2008), we propose our modified BIC criterion to estimate d and r as

follows:

BIC(d*,r*) = log(
RSS(d*,r*)

n
) +

Cn × d*r*

nhd*r*(d*,r*)

, (1.3.11)

where 1 ≤ d* ≤ p, 1 ≤ r* ≤ q, Cn > 0, and RSS(d*,r*) is the residual sum of squares from

the local linear smoothing using semi-orthogonal p× d* matrix Âd* and semi-orthogonal

q × r* matrix B̂r* . That is, let xij = xi − xj, then

RSS(d*,r*) =
n∑
j=1

n∑
i=1

(yi − ĉj − âT

j Â
T

d*
xijB̂r* b̂j)

2Kh(d*,r*)
(vec(ÂT

d*
xijB̂r*)). (1.3.12)

The estimated dimensions are then

(d̂, r̂) = min{(d*, r*) : (d*, r*) = arg min
1≤d*≤p,
1≤r*≤q

{BIC(d*,r*)}}.

We have the following result, and its proof is in the Appendix.
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Proposition 1.3. Under the assumptions in the Appendix, (d̂, r̂)→ (d, r), in probability.

We use the bandwidth, h(d*,r*) = n−1/(4+d*r*), similar to that of Wang and Yin (2008).

For the BIC criterion, we used Cn = Wn = (.5 log(n) + .1n1/3)/2 (Zhu, Miao and Peng,

2006). In such a case if dr < 8, Proposition 1.3 holds, so that (d̂, r̂) → (d, r), in

probability. Indeed, in our simulated models, dr = 4 or dr = 2, so results showed what

we expected.

1.3.5 The standardization of X

When the scales of the elements of X are different, estimates using the original scales

may not be accurate. To eliminate such an effect, we may need to standardize X before

estimating its central folding subspace or central mean folding subspace. However, since

X is a matrix, the standardization encounters some difficulties. It involves the estimation

of the Kronecker product structure of the covariance matrix, Σ = Cov(vec(X)). That

is, Σ is said to be (q, p)−separable (Lu and Zimmerman, 2005) if Σ = Σr ⊗ Σl, where

Σr is q × q and positive definite, and Σl is p× p and positive definite. If vec(X) follows

a multivariate normal distribution with mean vec(U), where U is the mean of X, and

the covariance matrix Σ = Σr ⊗ Σl, we use the notation

X ∼ Np,q(U,Σl,Σr)
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to stand for the distribution of the random matrix X (Srivastava, von Rosen and von

Rosen, 2008).

Under the matrix normal distribution model Np,q(U,Σl,Σr), Dutilleul (1999), Lu and

Zimmerman (2005) and Roy and Khattree (2005) proposed the maximum likelihood

estimation (MLE) for U, Σl and Σr using an iterative “flip-flop” scheme (Mardia and

Goodall, 1993; Dutilleul, 1999; Brown, Kenward and Bassett, 2001), alternating between

the estimates of Σl and Σr. However, since Σ = (cΣr)⊗ (c-1Σl) for any non-zero constant

c, the estimates of Σl and Σr are not unique if there is no restriction on Σl or Σr except

for positive definiteness (Lee, Dutilleul and Roy, 2010).

Suppose x1, . . . ,xn are n iid sample from Np,q(U,Σl,Σr) with n > max(p, q). Let x(·i)j

be the i-th column vector and x(k·)j be the k-th row for the j-th sample xj. Then

we can rewrite xj into xj = (x(·1)j, . . . , x(·q)j), where x(·1)j . . . , x(·q)j are p × 1 column

vectors, or xj = (xT

(1·)j, . . . , x
T

(p·)j)
T, where x(1·)j, . . . , x(p·)j are 1 × q row vectors, for

j = 1, . . . , n. Let X̄ = 1
n

∑n
j=1 xj then X̄ = (x̄(·1), . . . , x̄(·q)) or X̄ = (x̄T

(1·), . . . , x̄
T

(p·))
T.

By constraining the on-diagonal elements in Σr to be 1, Srivastava, von Rosen and von

Rosen (2008) constructed the unique MLE of U, Σl, and Σr as: Û = X̄, Σ̂l = S =

1
nq

∑n
j=1(xj − X̄)(xj − X̄)T. For the (i, k)-th entry, σi,k, in Σr, where i 6= k:

σ̂i,k =
1

nq

n∑
j=1

tr(S -1(x(·i)j − x̄(·i))(x(·i)j − x̄(·i))
T),

where tr(·) stands for the trace of a matrix. Note that n
n−1

S is an unbiased and consistent

estimator of Σl, and σ̂i,k is a consistent estimator of σi,k.
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Pfeiffer, Forzani and Bura (2011) provided different estimators for Σl and Σr. Assuming

there are no missing value, in X, then their estimators are:

Σ̂lt =
1

n

n∑
j=1

(x(·t)j − x̄(·t))(x(·t)j − x̄(·t))
T, Σ̂l =

1

q

q∑
t=1

Σ̂lt.

and

Σ̂rk =
1

n

n∑
j=1

(x(k·)j − x̄(k·))
T(x(k·)j − x̄(k·)), Σ̂r =

1

p

p∑
k=1

Σ̂lk.

Likelihood ratio tests for the separability of Σ can be found in Lu and Zimmerman

(2005), Roy and Khattree (2005) and Srivastava, von Rosen and von Rosen (2008,

2009). Our simulations show that the above two methods for estimating the Kro-

nekcer product of the covariance matrix are equivalent, and we adopt Pfeiffer’s method.

Without confusion, let Z be the standardization of X and zi be the i-th sample of

Z. We normalize the i-th sample of vec(X) as vec(zi) = Σ̂−1/2(vec(xi) − vec(x̄)) =

(Σ̂r ⊗ Σ̂l)
−1/2(vec(xi) − vec(x̄)). Thus zi = Σ̂

−1/2
l (xi − x̄)Σ̂

−1/2
r . Suppose the bases for

the corresponding central left- and right- mean dimension folding subspaces of Z are AZ

and BZ, then we transform the bases back to the X scale as Σ̂
−1/2
l AZ and Σ̂

−1/2
r BZ for

the central left- and central right mean dimension folding subspaces, respectively.

22



1.4 Numerical Study

To evaluate the accuracy of estimates of our methods, we use the distance proposed by

Li, Zha and Chiaromonte (2005),

∆(B ⊗ A, B̂ ⊗ Â) = ||PB⊗A − PB̂⊗Â||.

We use the Frobenius norm || · || and denote it by ∆f . The smaller the ∆f is, the better

the estimate is. In addition, we also use the benchmark distance provided by Li, Wen

and Zhu (2008) to understand the accuracy of the estimates. Let α and β be s × t

random matrices whose entries are independent random variables each with a standard

normal distribution, satisfying α β. Let Pα and Pβ be the projections onto the column

space of α and β separately. The benchmark distance, E(||Pα − Pβ||), is determined

only by the values of s and t. We estimate the benchmark distance by running 10,000

simulations and denote it by ∆B.

We use p = q = 5 in the simulated examples. The error ε is independent of X and

follows a standard normal distribution. In order to compare with the fold-SIR, folded-

SAVE and folded-DR, all the models we construct satisfy SY |◦X◦ = SE(Y |◦X◦). In the

first four examples, the predictor vec(X) ∼ Npq(0, Ipq). In Example 1.5, we consider a

correlated predictor model, where vec(X) ∼ Npq(0,Σvec(X)) and Σvec(X) is a pq × pq

positive definite matrix with (j1, j2)-th entry 0.5|j1−j2|. We run 100 replicates for each

model and compute the average of ∆f and its standard error, and report the accuracy

23



as: mean ± standard deviation. Let e1 = (1, 0, 0, 0, 0)T and e2 = (0, 1, 0, 0, 0)T. Further,

we write Xij as the random predictor in the ij-th position of X.

Example 1.1. : Y = X11 × (X12 +X21 + 1) + 0.2× ε.

In this example, SY |◦X◦ = SE(Y |◦X◦) = S(e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2) with

d = r = 2; while SY |vec(X) = SE(Y |vec(X)) = S(e1 ⊗ e1, e1 ⊗ e2 + e2 ⊗ e1). Obvi-

ously, SY |vec(X) = SE(Y |vec(X)) ⊂ SY |◦X◦ = SE(Y |◦X◦). For this example, the two-step

decomposition method in Section 1.3.1 can not exhaustively recover the CMFS. To

demonstrate the performance of the two-step method in estimating CMFS of X, we

first apply the OPG method to vec(X) and then decompose the estimated base into a

Kronecker product of two matrices as described in Section 1.3.1. Table 1 shows that

the two-step decomposition method (“two-step”) fails in recovering the central mean

folding subspace. The rMAVE for vec(X) also fails to recover the CMFS as shown in

Table 1.1. The folded-OPG and folded-MAVE dominate the folded-SIR, folded-SAVE

and folded-DR, while folded-MAVE performs the best among all these methods. With

sample size increasing, the accuracy of estimating CMFS is improved. The benchmark

distance is ∆B = 2.586.
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Table 1.1: Example 1.1: Accuracy of estimates

n
∆f

two-step rMAVE folded-OPG folded-MAVE folded-SIR folded-SAVE folded-DR

200 1.8963 1.9269 0.9511 0.3980 1.6039 2.2181 1.3186

± 0.3324 ± 0.0580 ± 0.2979 ± 0.3403 ± 0.4439 ± 0.3263 ± 0.3762

400 1.8759 1.9160 0.5629 0.1789 1.0461 1.5495 0.7722

± 0.2584 ± 0.0615 ± 0.1272 ± 0.0805 ± 0.3765 ± 0.4716 ± 0.2188

600 1.8200 1.9133 0.4039 0.1087 0.7804 1.1168 0.5641

± 0.2630 ± 0.0519 ± 0.0931 ± 0.0330 ± 0.2203 ± 0.3783 ± 0.1680

Example 1.2. : Y = X11/{0.5 + (X21 + 1.5)2}+ 0.5× ε.

Example 1.2 is a model whose corresponding vector version is favored by SIR (Li, 1991;

Xia, et al. 2002). Here, SY |◦X◦ = SE(Y |◦X◦) = SE(Y |vec(X)) = SE(Y |vec(X)) = S(e1 ⊗

e1, e1 ⊗ e2) and d = 2, r = 1. Thus, unlike Example 1, estimating the CMFS through

the two-step decomposition method or CMS of the vec(X) by rMAVE can recover the

dimension folding subspace. And again, we use the two-step method based on OPG, and

rMAVE using vec(X). Since more parameters need to be estimated, the estimates of

“two-step” approach and rMAVE are less accurate than folded-OPG and folded-MAVE

shown in Table 1.2, as expected. The benchmark distance for this example is ∆B = 1.916.

And once again, folded-MAVE dominates other folded methods.
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Table 1.2: Example 1.2: Accuracy of estimates

n
∆f

two-step rMAVE folded-OPG folded-MAVE folded-SIR folded-SAVE folded-DR

200 0.7518 0.9477 0.6751 0.2938 0.6377 1.8523 0.8348

± 0.2165 ± 0.1805 ± 0.2092 ± 0.1059 ± 0.1602 ± 0.2088 ± 0.3018

400 0.4242 0.5093 0.4064 0.1747 0.4205 1.6929 0.5347

± 0.1020 ± 0.0989 ± 0.0947 ± 0.0379 ± 0.1129 ± 0.3299 ± 0.1537

600 0.3276 0.3639 0.3199 0.1375 0.3340 1.4734 0.4156

± 0.0683 ± 0.0600 ± 0.0836 ± 0.0330 ± 0.0854 ± 0.3440 ± 0.1156

Example 1.3. : Y = X11 + (X21 +X22)2 + 0.5× ε.

Let e12 = e1 + e2. In this example, SY |◦X◦ = SE(Y |◦X◦) = S(e1 ⊗ e1, e1 ⊗ e2, e12 ⊗

e1, e12 ⊗ e2) = S(e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2). This model contains both a linear

term and a quadratic term, d = r = 2 and ∆B = 2.586. Table 1.3 shows that folded-

MAVE is the best, followed by folded-OPG and folded-DR. It appears that folded-SIR

and folded-SAVE miss the folding subspace, which may be expected, as folded-SIR will

miss the quadratic term while folded-SAVE may miss the linear term.

Table 1.3: Example 1.3: Accuracy of estimates

n
∆f

folded-OPG folded-MAVE folded-SIR folded-SAVE folded-DR

200 1.2780 0.8492 2.2559 2.2327 1.5927

± 0.3763 ± 0.4659 ± 0.1856 ± 0.1646 ± 0.4533

400 0.8231 0.5526 2.2169 2.2159 1.1061

± 0.2708 ± 0.4058 ± 0.2004 ± 0.1881 ± 0.4423

600 0.6416 0.3674 2.1608 2.1930 0.8203

± 0.1878 ± 0.2441 ± 0.2879 ± 0.2120 ± 0.2692
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Example 1.4. : Y = X11 + 2×X2
21 + 3×X2

12 + 4×X2
22 + 0.2× ε.

This example is a modified model of Wang and Yin (2008). Here, d = r = 2 and

∆B = 2.586, and SY |◦X◦ = SE(Y |◦X◦) = S(e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2). Since there

are more quadratic terms in the model, it is expected that folded-SAVE’s performance

will be better than that of folded-SIR. In fact, as shown in Table 1.4, folded-SAVE and

folded-DR are better than that of the folded-OPG, but folded-MAVE is still the best.

Table 1.4: Example 1.4: Accuracy of estimates

n
∆f

folded-OPG folded-MAVE folded-SIR folded-SAVE folded-DR

200 1.4537 0.3849 2.4870 1.2641 1.1567

± 0.4121 ± 0.4027 ± 0.2177 ± 0.4013 ± 0.5869

400 0.9487 0.1277 2.3854 0.6262 0.5869

± 0.2819 ± 0.0507 ± 0.1976 ± 0.1648 ± 0.1615

600 0.7452 0.0781 2.2716 0.5090 0.4338

± 0.2742 ± 0.0270 ± 0.2676 ± 0.1344 ± 0.1158

Example 1.5. : Y = X11 × (X12 +X21 + 1) + 0.2× ε.

This is Example 1.1, but with vec(X) ∼ Npq(0,Σvec(X)), where Σvec(X) is a pq × pq

positive definite matrix with (j1, j2)-th entry 0.5|j1−j2|. Thus the predictor variables are

moderately correlated. Table 1.5 indicates that folded-OPG and folded-MAVE work

well, and both are better than the folded-SIR, folded-SAVE and folded-DR when SY |◦X◦

coincides SE(Y |◦X◦). The respective estimates, are as expected, found to be less accurate

than that of the model with independent variables shown in Example 1.1.
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Table 1.5: Example 1.5: Accuracy of estimates

n
∆f

folded-OPG folded-MAVE folded-SIR folded-SAVE folded-DR

200 1.3609 0.5792 1.8173 2.2927 1.6098

± 0.4006 ± 0.4455 ± 0.4242 ± 0.2464 ± 0.3927

400 0.8230 0.2512 1.2087 1.9869 1.0097

± 0.2622 ± 0.1196 ± 0.3780 ± 0.4146 ± 0.3381

600 0.6389 0.2191 0.9707 1.6963 0.7293

± 0.1773 ± 0.0733 ± 0.3002 ± 0.4638 ± 0.2676

Example 1.6. : Signal-ratio study

We check the changes of the performance of our folded-MAVE method based on the

signal-noise ratio for Example, 1.1, 1.2, 1.3 and 1.4. The error term ε follows a standard

normal distribution. We apply a series of signal-noise ratios to the first four models and

fit the change trend. We run Example 1.1 and 1.3 with the noise terms: 0.2ε, 0.5ε, ε,

1.5ε, 2ε, 2.5ε, 3ε, 4ε, 6ε, 8ε, 10ε. And for Example 1.2, we choose noise terms: 0.2ε,

0.5ε, ε, 1.5ε, 2ε, 2.5ε, 3ε, 4ε, 6ε, 8ε, 9ε. The estimation for Example 1.4 is more accurate

comparing to the other 3 models for large errors. Thus we apply noise terms 0.5ε, ε,

2ε, 4ε, 6ε, 8ε, 10ε, 12ε, 16ε, 20ε and 24ε to Example 1.4. Figure 1.1 shows as the error

increases, the average of ∆f increases, which indicates less accuracy. And lager sample

size n helps to enhance the estimation accuracy.
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Figure 1.1: Change of the average of ∆f as error increases
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Table 1.6 reports the percentage of the correctly estimated dimensions by our modified

BIC criterion. With sample size increasing, for each example, the accuracy of correctly

estimated (d, r) is improved. The performance of the modified BIC is also less accurate

for correlated data (Example 1.5) than that in the corresponding model with independent

variables (Example 1.1). Nevertheless, the modified BIC criterion works well in these

limited simulations.

Table 1.6: Percentage of correctly estimate d and r using the modified BIC criterion.

n
Example

1.1 1.2 1.3 1.4 1.5

200 88% 93% 54% 81% 62%

400 97% 100% 68% 92% 76%

600 100% 100% 69% 97% 88%

1.5 Application

In this section, we analyze part of the longitudinal data from the follow-up to a Mayo

Clinic trial on primary biliary cirrhosis (PBC). The follow-up was conducted between

1974 and 1984 and its description can be found in Fleming & Harrington (1991) and Mur-

taugh et al. (1994). The data we used are available at http://lib.stat.cmu.edu/datasets/pbcseq.

The data set contains multiple laboratory results for 312 patients. Primary biliary cir-

rhosis is a chronic, progressive cholesteric liver disease of adults that leads to liver failure

and the need of transplantation or death (Talwalkar and K. D Lindor, 2003). Several

biomarkers such as biliribin, albumin and prothrombin time are adopted to diagnose

PBC. Müller (2005) investigated the PBC data from the Mayo Clinic trail to predict
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the long-term survival as function of the repeated longitudinally recorded level of serum

bilirubin. Albert and Shih (2010) proposed an approach for jointly modeling multiple

longitudinal measurements and discrete time-to-event data. They applied their method

to verify whether the biomarkers are prognostic for the time to either liver transplanta-

tion needed or death. Those two papers worked on the log-transformed measurements

of the covariates. Kim et al. (2000) presented an abbreviated model to assess the PBC

disease risk score based on the measured level of bilirubin, albumin and other markers.

We work on the PBC data from the aspect of dimension folding. We treat the time

baseline as one fold of covariates, and the multivariate predictors repeatedly measured

over time as another fold of covariates and thus we have a matrix formed predictor.

folded-MAVE can reduce the dimensions on both folds at the same time as much as

possible without losing any information and protect the longitudinal structure of the

predictors as well. We concentrate our attention on the measurement of biliribin, albu-

min level and prothrombin time at time point: 6-month, 1-year, 2-year and 3-year so

that the predictor is a 3× 4 random matrix.

The response is the time in years between registration and the earlier of transplanting or

death. We treat visits between day 90 and day 270 from the enrollment as in the group

at time point 6-months. Visits between day 270 and day 550, between day 550 and day

910, between day 910 and day 1275 from the enrollment are identified as at time point

1-year, 2-year and 3-year, respectively. There are 187 patients who had full record at

those four time points. However, some patients whose transplant-free or survival time
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approximates but is less than 3 years are also considered in the analysis, as long as they

visited at the four time points.

Sufficient dimension reduction for the analysis of longitudinal data was first used by Li

and Yin (2009). They treated time as a discrete random variable. Conditioning on time,

they suggested a partial ordinary least squares method, which is an analogy of the partial

OLS method in Li, Cook and Chiaromonte (2003), to estimate the partial central mean

subspace and then combined all the partial central mean subspaces together. However,

their method missed the correlation structure among different time points. Pfeiffer,

Forzani and Bura (2011) proposed a longitudinal version of sliced inverse regression

(LSIR) to reduce the dimensions of longitudinally measured predictor by assuming that

the first and second moments of the predictors can be decomposed into a time and a

marker component via a Kronecker product structure. LSIR takes the correlation across

time into account, but it requires the assumption of a linearity condition and it can not

exhaustively estimate the directions for binary outcomes. The folded-MAVE method

considers the longitudinal data as a matrix, and the correlations among the structure.

By applying the modified BIC criterion to the data, we have d̂ = r̂ = 1. The esti-

mated bases for the left- and right- mean folding subspaces in the X-scale are AX =

(α1, α2, α3)T = (0.11029205,−0.99246655,−0.05334607)T and BX = (β1, β2, β3, β4)T =

(−0.2277369,−0.2320542,−0.1827723,−0.9278367)T. To test the significance of each

coefficient in AX and BX, we compute the 95% bootstrap confidence intervals of AX

and BX with 1000 bootstrap samples. Table 1.7 indicates the confidence intervals that
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show, at 0.05 level, serum biliribin and albumin level at year 3 significantly affect the

length of the time between registration and the earlier of transplanting or death.

The plot of the top panel in Figure 1.2 shows the summary plot. That is, the response

versus the reduced predictor. Taking the minus sign in BX into account, biliribin has a

negative relationship and albumin level has a positive relationship with the transplant-

free or survival time, which is consistent with the already known medical outcome

(Shapiro, Smith and Schaffner, 1979). Time point year 3 contributed significantly to

the time component, which shows the progressive nature of the disease.

The folded-MAVE allows us to assess longitudinal regression in a low-dimensional cir-

cumstance. Next we fit a regression model based on the reduced data using the smooth-

ing spline method with degree of freedom 4 and the smoothing parameter λ = 0.01842554

(Fan and Yao, 2003). The fitted smoothing spline is the imposed curve on the top panel

in Figure 1, while the residual against the fitted response is on the bottom panel in

Figure 1.2. The regression fit appears adequate and the residual plot shows the model

is very reasonable.
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Table 1.7: 95% bootstrap confidence interval

lower bound upper bound

α1 0.06994139 0.17586169

α2 -0.99700777 -0.97023943

α3 -0.18019987 0.09014473

β1 -0.4526979 0.11500118

β2 -0.6973135 0.02418339

β3 -0.6057525 0.15929250

β4 -0.9745220 -0.64108263
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1.6 Generalization to array-valued predictors

In this section, we briefly discuss how to extend the theory and methodology for the

matrix-valued predictors to array-valued predictors. Let X = {Xj1j2...jk : j1 = 1, . . . , p1, . . . , jk =

1, . . . , pk} be a k-way random array of dimension p1 × · · · × pk. Parallel to Definition

1.1, we define the following:

Definition 1.3. If there are pi × di matrices αi (di ≤ pi) for i = 1, . . . , k such that

Y E(Y |X)|(αk ⊗ · · · ⊗ α1)T vec(X), then the column space of αi is called the ith mean

dimension folding space. Hence, the column space of αk ⊗ · · · ⊗α1 is called a dimension

folding space for the conditional mean of Y |X, or a mean dimension folding space of

Y |X.

Similar to Definition 1.2, the intersection of all such spaces, if itself is a mean dimension

folding space, is called the Central Mean Folding Space for Y on the array-valued X.

We write this space as SE(Y |X◦k). Thus, similar theory on SE(Y |X◦k) and methods on the

estimation of SE(Y |X◦k) can be established straightforwardly from previous sections.

1.7 Discussion

In this chapter, we establish a theory of sufficient dimension folding for the regression

mean function with matrix-/array-valued predictors. We illustrate two algorithms for

reducing the dimension for matrix-valued predictor along the row and column direction

at the same time by using local weighted least squares and linear approximation. We
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introduce a modified BIC criterion to estimate the dimensionality of the proposed fold-

ing subspaces. We analyze a primary biliary cirrhosis data to show the efficacy of our

method, a novel approach for longitudinal data. A bootstrap method is used to evaluate

the significance of individual variables. However, variable selection integrating penalty

methods such LASSO penalty into the local estimation method is also a possible ap-

proach for variable selection. Thus reducing the dimension and variable selection may

be carried out simultaneously. Such an idea is currently under investigation.

1.8 Appendix

Proof of Proposition 1.1:

1. (3)⇒ (1) and (1)⇒ (2) are immediate.

2. (3) ⇒ (2) is also immediate. Since if E(Y |X) is a function of ATXB then, given

ATXB, E(Y |X) is a constant and hence independent of any other random variable.

3. For proof of (2)⇒ (3). By (2) we have

E[Y E(Y |X)|ATXB] = E[Y |ATXB]E[E(Y |X)|ATXB].

The left hand side is

E{E[Y E(Y |X)|X]|ATXB} = E{[E(Y |X)]2|ATXB}.
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The right hand side is

E[E(Y |X)|ATXB]E[E(Y |X)|ATXB] = {E[E(Y |X)|ATXB]}2.

Thus, V ar[E(Y |X)|ATXB] = 0 which means given ATXB, E(Y |X) is a constant.

E(Y |X) is a function of ATXB.

Proof of Proposition 1.2: Let A and B be basis matrices of SE(Y |◦X) and SE(Y |X◦),

respectively. Since Z and X are one to one correspondent, the following equivalences

are valid:

Y E(Y |X)|ATXB ⇔ Y E(Y |X)|ATA-T

0 A
T

0XB0B
-1

0B

⇔ Y E(Y |Z)|(A-1

0A)TZB-1

0B

Therefore, S(A-1
0A) = A-1

0SE(Y |◦X) is a left mean dimension folding space for E(Y |Z)

and S(B-1
0B) = B-1

0SE(Y |X◦) is a right mean dimension folding space for E(Y |Z). Conse-

quently,

SE(Y |◦Z) ⊆ A-1

0SE(Y |◦X), SE(Y |Z◦) ⊆ B-1

0SE(Y |X◦),

which means SE(Y |◦Z◦) ⊆ (B-1
0 ⊗ A-1

0 )SE(Y |◦X◦). By the same argument, SE(Y |◦X) ⊆

A0SE(Y |◦Z) and SE(Y |X◦) ⊆ B0SE(Y |Z◦) so that SE(Y |◦X◦) ⊆ (B0 ⊗ A0)SE(Y |◦Z◦). Thus

SE(Y |◦X◦) = (B0 ⊗ A0)SE(Y |◦Z◦).
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Proof of Proposition 1.3: We use the same assumption as Xia, et al. (2002) but on

vec(X). In addition, we assume that limn→∞
Cn

nhdr
(d,r)

= 0. The proof below follows from

Wang and Yin (2008). For simplicity, we assume that vec(X) has a compact support

over which its density is positive. For any (d*, r*), suppose that the semi-orthogonal

p× d* and q × r* matrices of Ad* and Br* minimizes E
[
Y − E(Y |AT

d*
XBr*)

]2
. That is,

Yi = E(Y |AT
d*

XiBr*)+εd*r*i, where E(εd*r*i|AT
d*

XiBr*) = 0. Suppose the semi-orthogonal

p×d* matrix Âd* and semi-orthogonal q×r* matrix B̂r* are the sample estimators of Ad*

and Br* , respectively. And suppose σ̂2
Âd* ,B̂r*

(ÂT
d*

XjB̂r*) =
∑n

i=1[yi− ĉj− âT
j Â

TxijB̂b̂j]
2ωij.

Using the notation in Section 2 and 3,

1

n
RSS(d*,r*) − E

[
Y − E(Y |AT

d*
XBr*)

]2
=

1

n

n∑
j=1

σ̂2
Âd* ,B̂r*

(ÂT

d*
XjB̂r*)−

1

n

n∑
j=1

σ2
Ad* ,Br*

(AT

d*
XjBr*) +

1

n

n∑
j=1

σ2
Ad* ,Br*

(AT

d*
XjBr*)

− E
[
Y − E(Y |AT

d*
XBr*)

]2
=

1

n

n∑
j=1

[
σ̂2
Âd* ,B̂r*

(ÂT

d*
XjB̂r*)−

1

n
σ2
Ad* ,Br*

(AT

d*
XjBr*)

]
+ op(1)

=
1

n

n∑
j=1

[
n∑
i

ε2d*r*iωij − σ
2
Ad* ,Br*

(AT

d*
XjBr*)

]
+ op(1)

=op(1).

The second and the last equations hold by the law of large numbers, and the third

equation is based on Lemma 1 of Xia, et al. (2002, the long version) and the law of large
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numbers. Note that E(Y |X) = E(Y |AT
dXBr).

1

n
[RSS(d*,r*) −RSS(d,r)] =E

[
Y − E(Y |AT

d*
XBr*)

]2 − E [Y − E(Y |AT

dXBr)]
2 + op(1)

=E
[
Y − E(Y |AT

dXBr) + E(Y |AT

dXBr)− E(Y |AT

d*
XBr*)

]2
− E [Y − E(Y |AT

dXBr)]
2 + op(1)

=2E
{

[Y − E(Y |AT

dXBr)] [E(Y |AT

dXBr)− E(Y |AT

d*
XBr*)]

}
+ E

[
E(Y |AT

dXBr)− E(Y |AT

d*
XBr*)

]2
+ op(1).

By the chain rule of conditional expectation, the cross-product is zero. We have

1

n
[RSS(d*,r*) −RSS(d,r)] = E

[
E(Y |AT

dXBr)− E(Y |AT

d*
XBr*)

]2
+ op(1).

Let us consider all possible combinations of (d*, r*): 1, d* > d and r* > r; 2, d* > d and

r* = r; 3, d* > d and r* < r; 4, d* = d and r* > r; 5, d* = d and r* = r; 6, d* = d and

r* < r; 7, d* < d and r* > r;8, d* < d and r* = r; 9, d* < d and r* < r.

For cases, 1, 2, 4 and 5, we have

lim
n→∞

1

n
(RSS(d*,r*) −RSS(d,r)) ≥ 0.
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This is true because in such cases, E(Y |AT
dXBr) − E(Y |AT

d*
XBr*) = 0 could happen.

For cases, 3, 6, 7, 8 and 9, we have

lim
n→∞

1

n
(RSS(d*,r*) −RSS(d,r)) > 0.

This is true because in such cases, E(Y |AT
dXBr) − E(Y |AT

d*
XBr*) = 0 never happens;

otherwise, it contradicts to the existence of central mean folding subspace. Then,

BIC(d*,r*) −BIC(d,r) = log
RSS(d*,r*)

RSS(d,r)

+
Cn

nhdr(d,r)

[d*r*n
4(d*r*−dr)

(4+d*r*)(4+dr) − dr]. (1.8.1)

If limn→∞
Cn

nhdr
(d,r)

= 0, then

A: For cases 1, 2, 4 and 5, because d*r* − dr ≥ 0, the second term in equation (1.8.1)

is greater than or equal to 0, while the first term is also greater than or equal to 0. We

have BIC(d*,r*) ≥ BIC(d,r), when n is large enough.

B: For cases 3, 6, 7, 8 and 9, because if d*r*−dr ≥ 0, the second term in equation (1.8.1)

is greater than or equal to 0; and if d*r* − dr < 0, the second term in equation (1.8.1)

tends to 0; while the first term is always greater than 0. We have BIC(d*,r*) > BIC(d,r),

when n is large enough.

Hence, we complete the proof.

Proof of Theorem 1.1: Here we explain how we prove the asymptotic result in Theo-

rem 1.1, assuming that the dimensions of the central right and left mean folding subspace
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are d and r. Part of the proofs can be referred in Wang and Xia (2008). In particular,

we follow the proofs in Yin and Li (2011). In order to be consistent with the sym-

bols we used in the chapter and for notation conciseness, without confusion, we define

B = B ⊗A, where A and B are the basis matrices for the central left- and right– mean

folding subspace respectively. Then B is the orthogonal basis for the central mean fold-

ing subspace. And define B* = B*⊗A*, dj = bj⊗aj, X = vec(X), Xi = vec(xi) and x is

a given value of X, where A* and B* are any p× d* and q× r* matrices. We work on the

proofs in the circumstance of B ⊗A and vec(X). Because, once we have an estimate B̂

of B and B̂ is Kronecker product structural between B̂ and Â, then we can iteratively

estimate Â and B̂ by the matrix decomposition method introduced in Section 3.1. We

can prove the asymptotic result following Yin and Li (2011) because

In the folded-MAVE method, we solve the quadratic minimization:

n∑
j=1

n∑
i=1

ρj[yi − cj − aT

jA
T(xi − xj)Bbj]

2wij, (1.8.2)

over (cj, aj, bj, A,B) ∈ R1×Rd×Rr×Rp×Rq, subject to bTjbj = 1, ATA = Id, B
TB = Ir,

for i = 1, . . . , n and j = 1, . . . , n. Note that (1.8.2) is equivalent to

n∑
j=1

n∑
i=1

ρj[yi − cj − (bj ⊗ aj)T(B ⊗ A)Tvec(xi − xj)]
2wij. (1.8.3)

42



Under our definitions that B = B ⊗ A , dj = bj ⊗ aj, X = vec(X), Xi = vec(xi) and

Xij = vec(xi − xj), (1.8.3) transforms to

n∑
j=1

n∑
i=1

ρj[yi − cj − dT

jB
TXij]

2wij. (1.8.4)

Note that the formulation (1.8.4) is exactly what Yin and Li (2011) had for the objective

function, if one sets f(yi) = yi and m = 1. In such a case, when the central mean

subspace of vec(X) is the same as that of the folding subspace, estimating B directly

by the weighted least squares method will suffice. Hence, the asymptotic results follow

immediately. However, when the central mean subspace of vec(X) is not the same as that

of the folding subspace, estimating B directly by the weighted least squares method will

return a basis matrix for other subspaces rather than the central mean folding subspace,

usually a subspace of folding space if dimensions are assumed correctly. To prevent the

latter case, we notice that the Kronecker product structure of B can be recovered by

using the local iterative methods we have proposed. Thus, the final estimate, B̂ = B̂⊗Â,

is then the weighted least squares solution of (1.8.4) with such a structure. Therefore,

we can prove the asymptotic result exactly following Yin and Li’s (2011) procedure.
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Chapter 2

Dimension folding for a functional

of conditional distribution of

matrix- or array-valued objects

2.1 Introduction

Sufficient dimension folding (Li, Kim and Altman, 2010; Chapter 1) is a technology

for reducing the dimensions of matrix-/array-valued objects as much as possible while

preserving the underlying structure interpretation of the predictor. Sufficient dimension

folding subspace (Li, Kim and Altman, 2010) focuses on reducing the dimensions of

the matrix-/array-valued predictor (X) as it appears in the conditional distribution of

a univariate response Y given X. Li, Kim and Altman (2010) proposed the concept
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of Kronecker envelope based on which they suggested folded-SIR, folded-SAVE and

folded-DR three estimation methods for the CFS. Sufficient mean dimension folding

subspace (Chapter 1) is only interested in the conditional mean of Y given X instead

of the full conditional distribution itself. To estimate the CMFS, Xue and Yin (2012)

constructed two local estimation methods: folded-OPG and folded-MAVE. However, if

the assumption of homoscedasticity is violated or outliers present, we need to consider

the robust regression relationship between a univariate response Y and a matrix-/array-

valued predictor X.

For a vector-valued predictor, there is a huge literature of research on robustness. For

instance, trimmed mean estimator, M-estimator and Huber estimator (Huber, 1964).

Quantile regression is an important robust statistics (Koenker, 2005; Wu, Yu and Yu,

2010; Yu and Jones, 1998; Zou and Yuan, 2008; Kai, Li and Zou, 2010). However, to our

knowledge, a robust approach of dimension folding for matrix-/array-valued predictor

has not been studied by any researcher yet. In this chapter, we reformulate dimension

folding and characterize specific aspects of the conditional distribution of Y given a

matrix-/array-valued predictor by adopting a general functional of the conditional dis-

tribution. By performing dimension folding in reference to a functional, the relation

between Y and the predictor reflected in that functional is preserved. For a general

functional T , we propose a concept of central T dimension folding subspace (CTFS).

The CFS and CMFS can be synthesized as two special cases of the CTFS. Besides, we

introduce several other special cases of the CTFS, such as the central variance dimension

folding subspace (CVFS), central k−th moment dimension folding subspace (CKMFS)
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and central quantile dimension folding subspace (CQFS). Further, we establish a class of

estimation methods for dimension folding on robust estimators. We focus on estimating

the CQFS as a special example to illustrate the proposed methods. A special case when

the predictor is vector-valued can be found in Yin and Li (2012).

The rest of this chapter is organized as follows. In Section 2.2, we define the central

folding space for a general functional of conditional distribution of matrix objects and

investigate its properties as well as several special cases. In Section 2.3, we introduce

a general approach to estimate the CTFS. We consider estimating the CQFS as an

illustration on how to apply the proposed algorithms to estimate a certain aspect of the

functional in Section 2.4. Simulations on estimating CQFS and application are included

in Section 2.5 and Section 2.6 respectively, followed by a brief extension to array-valued

predictors in Section 2.7. A short discussion is provided in Section 2.8.

2.2 Central folding space for a functional of condi-

tional distribution of matrix object

Without confusion, we will let S(A) denote a space spanned by the columns of a matrix

A. We use S(·) to denote a dimension-folding subspace, where the subscript indicates

what response and predictors are involved, and whether the whole conditional distri-

bution or only the conditional mean, variance or quantiles is of interest. And we use
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PA to denote the orthogonal projection onto S(A), that is, PA = A(ATA)†A, where “†”

denotes the Moore-Penrose inversion.

Throughout the chapter, we assume that X is a p × q-dimensional random matrix and

Y is a random variable and their sample points are (xi, yi), i = 1, . . . , n, where n is the

sample size. We assume that the support Ω of (X, Y ) is the Cartesian product ΩX×ΩY ,

where ΩX ⊆ Rp×q is the support of X and ΩY ⊆ R1 is the support of Y . Let F be the

joint distribution of (X, Y ), and FY |X be the conditional distribution of Y |X. For each

fixed x ∈ ΩX, FY |X(·|x) is a probability measure on ΩY and for each measurable set

AY ⊆ ΩY , FY |X(AY |x) is a measurable function of x. Then the set {FY |X(·|x) : x ∈ ΩX}

defines a family of probability measures on ΩY . Let T be a functional defined on this

family:

T : {FY |X(·|x) : x ∈ ΩX} → R1.

The functional T can be viewed as a parameter associated with the conditional distribu-

tion FY |X. From here on, we will abbreviate this functional T (FY |X(·|x)) as T (x). The

functional T , when considered as a mapping FY |X(·|x) → T (FY |X(·|x)), is a functional

of conditional distribution, when considered as a mapping x → T (FY |X(·|x)), is simply

a function of x.

In the sufficient dimension folding, one considers finding matrices A ∈ Rp×d and B ∈

Rq×r such that d and r are as small as possible and FY |X depends on X only through

ATXB, while preserving the matrix structure of X (Li, Kim and Altman, 2010). Spaces

spanned by the columns of A and B are called the left- and right- dimension folding sub-
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space, respectively. Let SY |◦X or SY |X◦ be the intersection of all left- or right- dimension

folding subspaces for Y |X. The subspace SY |X◦⊗SY |◦X is defined as the central dimen-

sion folding subspace (CFS) denoted by SY |◦X◦, where “⊗” is the Kronecker product. In

Chapter 1, we introduced the central mean dimension folding subspace (CMFS), which

particularly focuses on the conditional mean function of FY |X. We considered finding

matrices A ∈ Rp×d and B ∈ Rq×r, d ≤ p and r ≤ q, such that Y E(Y |X)|ATXB, where

“ ” stands for conditional independent. The subspaces S(A) and S(B) are called a

left- or right- mean dimension folding subspace, respectively. If the intersection of all

left- or right- mean folding subspace is itself a left- or right- mean folding subspace of

E(Y |X), we denoted the intersection subspace by SE(Y |◦X) or SE(Y |X◦). We also defined

SE(Y |◦X) and SE(Y |X◦) as the central left- and right- mean dimension folding subspace,

respectively. Then SE(Y |X◦) ⊗ SE(Y |◦X) is the sufficient central mean dimension folding

subspace.

CFS and CMFS are interested in a certain parameter, as described by the above func-

tional T , associate with FY |X and others not related to this functional are analogous to

the nuisance parameter in a classical setting. Targeting on different dimension folding

subspaces, we only need to fold the dimensions of predictors with respect to some spe-

cific parameter in the associated functional T (Li, Kim and Altman, 2010; Xue and Yin,

2012).

In this chapter, our goal is to derive a comprehensive method to estimate the dimension

folding subspace associated with a general functional T . We define the dimension folding
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spaces with respect to a functional T of the conditional distribution when X is a random

matrix as:

Definition 2.1. If there are matrices A ∈ Rp×d and B ∈ Rq×r (d ≤ p, r ≤ q) such that

T (x) depends on x only through ATxB, that is T (x) = T (x*) whenever ATxB = ATx*B,

then the column space of A or B are called a left- or right- dimension folding space for

the functional T , or T -left- or right- dimension folding space. Let SY |◦X(T ) or SY |X◦(T )

be the intersection of all T -left- or right- dimension folding space and itself is a left-

or right- T dimension folding space. Then SY |◦X(T ) and SY |X◦(T ) are defined as the

central left- and right- T dimension folding space. The space SY |X◦(T ) ⊗ SY |◦X(T ) is

called the central dimension folding space for functional T , or the central T dimension

folding subspace (CTFS) and is written as SY |◦X◦(T ).

That the intersection of two T -dimension folding spaces is again a T -dimension folding

space can be established under very mild conditions using the same argument recently

made by Yin, Li and Cook (2008); see also Proposition 6.4 of Cook (1998) and Theorems

1 and 2 of Li, Kim and Altman (2010). We state it here without proof. The following

corollary 2.1 states the condition when the CTFS exists and is the unique minimal T -

dimension folding space. We assume that this condition holds throughout the article

and denote the dimensionality of SY |◦X(T ) or SY |X◦(T ) by d or r.

Corollary 2.1. Suppose that Ai, Bi, i = 1, 2, are p× di, q × ri with di ≤ p and ri ≤ q

such that S(B1 ⊗ A1) and S(B2 ⊗ A2) are both T -dimension folding subspaces. Let A3,

B3 be p × d3 and q × r3 dimensional matrices whose columns span the intersection of
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S(B1 ⊗ A1) and S(B2 ⊗ A2). Suppose, in addition, that for each µ ∈ Rd3×r3 such that

AT
3xB3 = µ for some x ∈ ΩX, the set

{(AT

1xB1, A
T

2xB2) : AT

3xB3 = µ,x ∈ ΩX} (2.2.1)

is an M-set in Rd1×r1 × Rd2×r2 as defined by Yin, Li and Cook (2008). Then S(B1 ⊗

A1) ∩ S(B2 ⊗ A2) is also a T dimension folding subspace.

Lemma 2.1 below whose proof is detailed in the Appendix indicates that it is the space

spanned by the columns of A or B that we should care about rather than the specific

value of the matrices. The definition of central T folding subspace involves using the

point 3, but based on the equivalences of points 1 and 2, it is the subspace that uniquely

determines the sufficient dimensions.

Lemma 2.1. Suppose matrices A ∈ Rp×d and B ∈ Rq×r (d ≤ p, r ≤ q) and the

column vectors of each matrix are linearly independent, and let f(t) be a function of

t ∈ Rp×q. For any ΣA ∈ Rp×p
+ and ΣB ∈ Rq×q

+ , let P (ΣA) = A(ATΣAA)-1ATΣA and

P (ΣB) = B(BTΣBB)-1BTΣB be the projection onto S(A) and S(B) respectively with

respect to inner product 〈a, b〉 = aTΣb. Then the following statements are equivalent:

1. there are ΣA ∈ Rp×p
+ and ΣB ∈ Rq×q

+ such that f(t) = f(P T(ΣA)tP (ΣB)) for all t;

2. for every ΣA ∈ Rp×p
+ and ΣB ∈ Rq×q

+ , f(t) = f(P T(ΣA)tP (ΣB)) for all t;

3. f(t) depends on t only through ATtB; that is, whenever ATt1B = ATt2B, we have

f(t1) = f(t2).
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Like the CMFS, under affine linear transformation, the CTFS is invariant. We delay the

proof of the following proposition to the Appendix as well.

Proposition 2.1. Let Z = ATXB where A and B are full rank, p×p and q×q matrices

respectively. Then SY |◦Z◦(T ) = (B-1 ⊗ A-1)SY |◦X◦(T ).

The formulation of CTFS accommodates CFS and CMFS as its special cases, which

aims at estimating a certain aspect of the conditional distribution. We can link CFS

and CMFS to CTFS as in the following Example 2.1 and 2.2. Also, the formulation of

CTFS suggests some other examples as follows.

Example 2.1. For an a ∈ ΩY , let Ta be defined as the evaluation of FY |X(·|x) at y = a.

That is, Ta assigns to each function FY |X(·|x) the number FY |X(a|x). Then the union

of all SY |◦X◦(Ta) reduces to the Central Dimension Folding Space (Li, Kim and Altman,

2010).

Example 2.2. If T (x) =
∫
ydFY |X(y|x), then T (x) is the conditional mean E(Y |X =

x). Thus the CTFS reduces to the Central Mean Dimension Folding Space (Chapter 1).

Example 2.3. If T (x) =
∫
y2dFY |X(y|x) − (

∫
ydFY |X(y|x))2, then T (x) is the condi-

tional variance, Var(Y |X = x), given a matrix predictor X. We define this folding sub-

space as the central variance dimension folding subspace (CVFS) denoted by SV (Y |◦X◦).

Example 2.4. If T (x) = [M (1)(Y |X),M (2)(Y |X), . . . ,M (k)(Y |X)], where M (k)(Y |X) =∫
[y −

∫
ydFY |X(y|x)]kdFY |X(y|x) for k ≥ 2 and M (1)(Y |X) =

∫
ydFY |X(y|x), then we

define this special example of the CTFS as the central k-th moment dimension folding

subspace (CKMFS).
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The concept of linear functionals, the intrinsically linear functionals and the minimiza-

tion functionals discussed in Yin and Li (2012) can be easily extended to the domain

of dimension folding by replacing the vector-valued predictor X by the matrix-/array-

valued predictor X. Their properties also remain the same as for vector predictors.

Based on the definition of minimization functionals for the matrix predictor X, we illus-

trate the central quantile folding subspace as follows.

Example 2.5. Let ρ(θ, y) be a function of θ and y. Suppose, for each x ∈ ΩX, the

following function of θ ∫
ρ(θ, y)dFY |X(y|x) (2.2.2)

has a unique minimum. Then the functional T defined as the minimizer of the above

function is a minimization functional, or an M-functional. Suppose that 0 < τ < 1 and

I(·) is the indicator function and let

ρτ (θ, y) = τI(y − θ > 0)(y − θ) + (τ − 1)I(y − θ ≤ 0)(y − θ)

= (y − θ)[τ − I(y − θ ≤ 0)].

Then the CTFS of this type is the central quantile folding space (CQFS) denoted by

SQτ (Y |X). If τ = 0.5 or ρ(θ, y) = |y − θ|, SQ0.5(Y |X) is the central median folding

subspace, denoted by SM(Y |◦X◦).

Next, we propose a class of methods that can be used to estimate the central T dimen-

sion folding subspace for matrix predictors. We also establish a new theory for local
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central folding space for a functional of conditional distribution, from which we provide

a connection between local theory of sufficient dimension folding and sufficient dimen-

sion folding. In the population level, local method can be used as a class of estimation

method for sufficient dimension folding. As a special case, we use the proposed method

to estimate the CQFS for the consideration of robust regression.

2.3 General approach to estimate the CTFS

2.3.1 Measurement of accuracy

To evaluate the accuracy of estimates we use the matrix norm

∆(B ⊗ A, B̂ ⊗ Â) = ||PB⊗A − PB̂⊗Â||

(Li, Zha and Chiaromonte, 2005). Here, we use the Frobenius norm and denote it as ∆f .

A small value of ∆f means the two spaces are closed to each other. To understand how

accurate the estimates are, we adopt the benchmark distance in Li, Wen and Zhu (2008).

Benchmark distance measures the discrepancy between two spaces that are not related

at all. Li, Wen and Zhu (2008) defined the benchmark distance as follows. Let α and

β be s× t random matrices whose entries are independent standard normal distributed

random variables and satisfy α β. Let Pα and Pβ be the projections onto the column

space spanned by α and β respectively. Then E(||Pα−Pβ||) is the benchmark distance

59



determined only by the value of s and t. We estimate the benchmark distance by running

10,000 simulations and denote it by ∆B.

2.3.2 Local central folding space for a functional of conditional

distribution

Here, we define a local central folding space for a functional of conditional distribution.

We replace Ω by a local support ∆, where ∆ ⊆ Ω. For simplicity, ∆ = ∆x ×∆y, where

∆x ⊆ ΩX and ∆y ⊆ ΩY . For convenience, we denote a local CTFS as SY |◦X◦(T∆), where

T∆ is the same as T but with (X, Y ) ∈ ∆. Thus if ∆ = Ω, then SY |◦X◦(T∆) = SY |◦X◦(T ).

We use vec(·) as the operator that stacks a matrix into a vector, column by column. We

also use matt(·) to define the inverse operation of vec(·), which transforms a vector to a

matrix with t rows. For example, for any matrix M ∈ Rt×s and M = (m1, . . . ,ms), then

vec(M) = (mT
1, . . . ,m

T
s)

T. Suppose m = vec(M) be a vector in Rts, where ts = t × s,

then matt(m) = M. In short, matt[vec(M)] = M, and vec[matt(m)] = m.

Let A and B be the p × d and q × r basis matrices for SY |◦X(T∆) and SY |X◦(T∆),

respectively. Then B⊗A is a basis matrix of SY |◦X◦(T∆). Suppose s = ATXB, then the

key fact underlying the subsequent development is

∂T∆(x)

∂vec(x)
=
∂vec(s)T

∂vec(x)
· ∂T∆(s)

∂vec(s)
= (B ⊗ A) · ∂T∆(s)

∂vec(s)
, (2.3.1)
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or

matp[∂T∆(x)/∂vec(x)] = Amatd[∂T∆(s)/∂vec(s)]BT (2.3.2)

(Schott 1997).

Equation (2.3.1) implies ∂T∆(x)/∂vec(x) ∈ SY |◦X◦(T∆). We have the following two

propositions and their proofs are delayed to the Appendix as well.

Proposition 2.2. S{∂T∆(x)/∂vec(x) : (x, y) ∈ ∆} = SY |◦X◦(T∆)

Proposition 2.2 implies that the collection of ∂T∆(x)/∂vec(x) for all (x, y) ∈ ∆ spans

the local CTFS, regardless of the form of the functional T∆. If ∆ = Ω, then it char-

acterizes the CTFS. One can develop estimation methods based on Proposition 2.2.

For instance, let w(x, y) > 0 be a weight function for all (x, y) ∈ ∆, and define

η∆ = E
[
w(x, y) ∂T∆(x)

∂vec(x)
∂T∆(x)
∂vec(x)T

]
. Then S(η∆) = SY |◦X◦(T∆). One possible choice is

w(x, y) ≡ 1.

The next proposition indicates that it is enough to estimate the specific CTFS based on

a local support of X only. Based on the following proposition, we propose an approach

to estimate the CTFS through the M -functionals and the respective local CTFS.

Proposition 2.3. For any ∆ ⊆ Ω, it is always true that SY |◦X◦(T∆) ⊆ SY |◦X◦(T ) and

further, S{SY |◦X◦(T∆),∆ = ∆x × ΩY for all x ∈ ΩX} = SY |◦X◦(T ).
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2.3.3 Estimation methods of CTFS

An initial estimator

In this section, we assume d and r, the dimensions of SY |◦X(T ) and SY |X◦(T ), are known.

By using the local linear smoothing (Fan and Gijbels, 1996), for each j = 1, . . . , n, at

sample point xj we minimize the following objective function over aj ∈ Rp, bj ∈ Rq and

cj ∈ R1 subject to b-1j bj = 1. The general objective function is

1

n

n∑
i=1

ρ(yi, cj + aT

jxijbj)wij, (2.3.3)

where xij = xi − xj and wij ≥ 0 is the kernel weight centered at xij with
∑n

i=1 wij = 1.

We use the usual kernel weight

wij(h) = Kh(vec(xij))/
n∑
j=1

Kh(vec(xij)),

where Kh(·) is the chosen kernel function with the bandwidth h > 0. We set h =

n−1/(p×q+4) ×
√
p× q (Silverman, 1986).

In order to estimate aj, bj and cj, we propose the following iterative algorithm:

1. Generate the initial values of aj ∈ Rp from a sample of N(0, 1) random variables.

2. For each j = 1, . . . , n, given a fixed aj ∈ Rp, minimize (2.3.3) over cj ∈ R1, bj ∈ Rq

subject to b-1j bj = 1 . Suppose the minimizers are ĉj and b̂j.
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3. For each j = 1, . . . , n, given the estimate ĉj and b̂j from Step 1, minimize (2.3.3)

over aj ∈ Rp. And suppose the estimate is âj.

4. Let Â(k), B̂(k) be the first d or r leading eigenvectors of

Σ̂1 =
1

n

n∑
j=1

âj â
T

j or Σ̂2 =
1

n

n∑
j=1

b̂j b̂
T

j

obtained in the k-th iteration. Let η(k) = B̂(k) ⊗ Â0(k), η0(k−1) = B̂(k−1) ⊗ Â(k−1),

where Â(k−1) and B̂(k−1) are the estimators of A and B in the (k− 1)-th iteration.

If ||η(k)η
T

(k)−η(k−1)η
T

(k−1)|| is smaller than some pre-specified tolerance value, such

as 10−6, stop the iteration and set A = Â(k), B = B̂(k) as the estimates of SY |◦X(T )

and SY |X◦(T ) respectively; otherwise, set k := k + 1 and go to Step 2.

The refined estimator

In order to attain more accurate estimates of A and B, we can further refine the Aopg and

Bopg, the basis matrix for SY |◦X(T ) and SY |X◦(T ) obtained by the previous procedure.

We suggest the following algorithm: given A(k) and B(k), the estimates of A and B in

the k-th iteration, we can iteratively estimate A(k+1) and B(k+1) in the next iteration by

minimizing the global loss function:

n−2

n∑
j=1

n∑
i=1

ρ(yi, cj + aT

jA
TxijBbj)Kh(d,r)

(vec(AT

(k)xijB(k))), (2.3.4)
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subject to cj ∈ R1, aj ∈ Rd, bj ∈ Rr with bTjbj = 1, A ∈ Rp×d with ATA = Id and

B ∈ Rq×r with BTB = Ir. We will use the refined kernel weights and summarize the

algorithm as:

1. Generate the initial values of aj ∈ Rd from a sample of N(0, 1) random variables.

Set the initial estimates of A and B as Aopg and Bopg.

2. In the k-th iteration, for a fixed aj(k−1), A(k−1), and B(k−1), calculate b̂j(k) and ĉj(k),

the estimates of bj and cj, as the minimizers of

n∑
i=1

ρ(yi, cj + aT

j(k−1)A
T

(k−1)xijB(k−1)bj)Kh(d,r)
(vec(AT

(k−1)xijB(k−1))).

3. In the k-th iteration, given the fixed cj(k), bj(k), A(k−1), and B(k−1), âj(k), the

estimate of aj(k), is the minimizer of

n∑
i=1

ρ(yi, cj(k) + aT

jA
T

(k−1)xijB(k−1)bj(k))Kh(d,r)
(vec(AT

(k−1)xijB(k−1))).

4. Given the fixed aj(k), bj(k), cj(k) and B(k−1), minimizing the objective function

below over A with ATA = Id, in the k-th iteration.

n−2

n∑
j=1

n∑
i=1

ρ(yi, cj(k) + aT

j(k)A
TxijB(k−1)bj(k))Kh(d,r)

(vec(AT

(k−1)xijB(k−1))),

to obtain Â(k)
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5. Given the aj(k), bj(k), cj(k) and A(k), minimize the objective function:

n−2

n∑
j=1

n∑
i=1

ρ(yi, cj(k) + aT

j(k)A
T

(k)xijBbj(k))Kh(d,r)
(vec(AT

(k)xijB(k−1))),

over B subject to BTB = Ir, to obtain B̂(k).

6. Check the convergence. Let η(k) = B(k) ⊗ A(k), η(k−1) = B(k−1) ⊗ A(k−1). If

||η(k)η
T

(k) − η(k−1)η
T

(k−1)|| is smaller than some pre-specified tolerance value, such

as 10−6, stop the iteration and set Â = A(k), B̂ = B(k); Otherwise, set k := k + 1

and go to Step 2.

2.3.4 Estimation of the CTFS dimension

We can adopt the modified BIC criterion introduced in Chapter 1 to estimate d and r.

However, RSS(d*,r*), the residual sum of squares when d = d* and r = r* changes to

n∑
j=1

n∑
i=1

ρ(yi, ĉj + âT

j Â
TxijB̂b̂j)Kh(d*,r*)

(vec(ÂTxijB̂)). (2.3.5)

In this chapter, we also set Cn = (.5 log(n) + .1n1/3)/2 (Zhu, Miao and Peng, 2006). We

do not consider the asymptotic properties for the quantile dimension folding because

there exist no closed form formulas with explicit solutions for the quantile regression.

Kong and Xia (2012) and Wu, Yu and Yu (2010) investigated the asymptotic properties

of the quantile estimators for single index model. However, for multiple index model,

investigating the asymptotic properties poses a challenge.
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2.4 Estimation of the CQFS

In what follows, we work on estimation of the CQFS, a special case of the CTFS. From

the aspect of dimension folding, the absolute loss function ρ(·) in the objective functions

(2.3.3) and (2.3.4) will be u[τ − I(u < 0)], where u is the prediction error and 0 < τ < 1

is the τ -th quantile we are interested in. The selection of the bandwidth for estimating

the CQFS can be done as in Yu and Jones (1998). Yu and Jones (1998) suggested the

relationship between the optimal bandwidth for conditional mean regression and that

for conditional quantile as:

hτ = hmean[τ(1− τ)/φ(Φ-1(τ))]1/5,

where functions φ(·) and Φ(·) are the probability density function and the cumulative

distribution function of the standard normal distribution respectively. The bandwidth hτ

is the bandwidth for single-index quantile regression and hmean is the optimal bandwidth

for local linear smoothing estimator in single-index mean regression. For hmean, we can

choose hmean = g(d, r)n−1/(dr+4) (Silverman, 1986), where g(d, r) = 4
dr+2

1/(4+dr)
and

dr is the dimension of the refined kernel function. The bandwidth hτ is a function

of τ , d and r. In our simulations, we consider τ = 0.5 or τ = 0.75 thus the coefficient

[τ(1−τ)/φ(Φ-1(τ))]1/5 equals to 0.9107643 and 0.8998619 respectively. And g(d, r) equals

to 1.059224, 1 or 0.9505789. Since the g(d, r)[τ(1−τ)/φ(Φ-1(τ))]1/5 ranges from 0.8553906

to 0.9647034, we can simply set hd,r = n−1/(d×r+4).
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2.5 Numerical Study

In the following models, we assume the error ε is independent of the predictor matrix

X. For X, vec(X) ∼ Npq(0,Σvec(X)) and Σvec(X) is a pq × pq positive definite matrix

with (j1, j2)−th entry 0.5|j1−j2|. And suppose e1 = (1, 0, 0, 0)T, e2 = (0, 1, 0, 0)T and

e3 = (0, 0, 1, 0)T. Each simulation is run 100 replications. We report accuracy of esti-

mating CQFS as: mean ± standard deviation, and accuracy of dimensions estimation

in percentages. And we use the same standardization approach for X.

Example 2.6. We consider the following nonlinear model with p = q = 5, β1 =

(1, 1, 0, 0, 0)T and β2 = (0, 1, 0, 0, 0)T.

Y = (βT

1Xβ2)-1 + .2ε.

This model will produce extreme values around the origin. And SM(Y |◦X◦) = SQτ (Y |◦X◦) =

S(β2)⊗S(β1) with d = 1, r = 1. We consider three distributions for ε : standard normal,

and the heavy tailed distribution, t1, t-distribution with one-degree of freedom. Since the

expectation of t1 and the variance of t2 are not defined, we also consider t3, t-distribution

with three-degree of freedom for the error term ε. The respective results for ε ∼ t1 and

ε ∼ t3 are reported in the parenthesis and square bracket. We apply our method with

τ = 0.5 and τ = 0.75 and sample size of 200, 300, 400 and 600. The benchmark distance

is 1.384.
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From Table 2.1, we can see the accuracy increases as sample size increases and the

accuracy decreases when error distribution switches from normal distribution to t3 and

from t3 to t1 for all models. Since relatively τ = 0.75 calculates extreme tails, the

accuracy decreases from τ = 0.5 to τ = 0.75. The estimated percentage for correctly

identifying dimensionality seems reasonable, which also depends on the accuracy of the

estimation of the respective CTFS.
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Table 2.1: Example 2.6: Accuracy of estimates

Methods n ∆f OPG ∆f MAVE (d̂, r̂) = (d, r) Distribution of ε

τ = 0.5 200 0.8253± 0.1754 0.1530± 0.1501 84% z

(0.9650± 0.1878) (0.4084± 0.3435) (82%) t1

[0.8302± 0.1804] [0.1603± 0.0908] [82%] t3

300 0.6902± 0.1615 0.0781± 0.0330 86% z

(0.7729± 0.1780) (0.1497± 0.1213) (85%) t1

[0.6995± 0.1760] [0.0858± 0.0395] [86%] t3

400 0.6265± 0.1463 0.0587± 0.0243 90% z

(0.7390± 0.1875) (0.1019± 0.0627) (88%) t1

[0.6635± 0.1605] [0.0858± 0.0395] [89%] t3

600 0.5020± 0.1111 0.0432± 0.0169 94% z

(0.5843± 0.1569) (0.0676± 0.0338) (91%) t1

[0.5492± 0.1581] [0.0449± 0.0153] [93%] t3

τ = 0.75 200 1.0609± 0.1953 0.4723± 0.3883 80% z

(1.1861± 0.1498) (0.9894± 0.3494) (79%) t1

[1.0659± 0.2074] [0.5787± 0.4246] [78%] t3

300 0.9088± 0.2019 0.2046± 0.1992 83% z

(1.0506± 0.2031) (0.5844± 0.4161) (78%) t1

[0.9177± 0.2256] [0.2354± 0.2852] [81%] t3

400 0.8058± 0.1758 0.1051± 0.0552 86% z

(0.9652± 0.2156) (0.4164± 0.3324) (82%) t1

[0.8349± 0.1923] [0.1624± 0.1106] [85%] t3

600 0.6876± 0.1730 0.0680± 0.0278 90% z

(0.8069± 0.2018) (0.1551± 0.1003) (85%) t1

[0.7118± 0.1758] [0.0903± 0.0389] [88%] t3
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Example 2.7. This example shows that for different quantiles, the bases of CQFS may

be different. Let p = q = 4,

Y = 1 +X11 + (1 + 1.5X21)ε,

where the distribution of ε is standard normal or student’s t distribution with degrees of

freedom 1 or 3. For this example, the quantile folding subspaces are different from the

central folding subspace. Define β(τ) = (1, 1.5F -1(τ), 0, 0)T, for 0 < τ < 1, where F is

the CDF for standard normal, t1 or t3 random variable. Note that, if ε is a t1 random

variable, the expected value of ε is undefined and thus the corresponding cental mean

folding subspace is undefined as well. If ε is a standard normal or t3 random variable,

SY |◦X◦ = S(e1) ⊗ S(β(.5), e2) with d = 2, r = 1. In contrast, SE(Y |◦X◦) = SM(Y |◦X◦) =

S(e1) ⊗ S(β(.5)) and SQτ (Y |◦X◦) = S(e1) ⊗ S(β(τ)) with d = 1, r = 1. If ε is a t1

random variable, then SY |◦X◦ = S(e1) ⊗ S(β(.5), e2) with d = 2 and r = 1. However,

SM(Y |◦X◦) = S(e1) ⊗ S(β(.5)) and SQτ (Y |◦X◦) = S(e1) ⊗ S(β(τ)) with d = 1 and r = 1.

The benchmark distance for SM(Y |◦X◦) or SQτ (Y |◦X◦) is 1.367.

The accuracy in Table 2.2 increases as sample size increases and the accuracy decreases

when error distribution switches from normal distribution to t3 and from t3 to t1 or

switches from τ = 0.5 to τ = 0.75 same as in Example 2.1. The estimated percentage for

correctly identifying dimensions is in the same change pattern as in the CQFS estimation

accuracy for all the models.
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Table 2.2: Example 2.7: Accuracy of estimates

Methods n ∆f OPG ∆f MAVE (d̂, r̂) = (d, r) Distribution of ε

τ = 0.5 200 0.3229± 0.1147 0.3211± 0.1159 96% z

(0.4636± 0.1534) (0.4623± 0.1849) (88%) t1

[0.3577± 0.1426] [0.3623± 0.1402] [95%] t3

300 0.2428± 0.0975 0.2388± 0.0976 98% z

(0.3539± 0.1341) (0.3503± 0.1439) (89%) t1

[0.2770± 0.1286] [0.2813± 0.1323] [94%] t3

400 0.2172± 0.0884 0.2155± 0.0904 99% z

(0.2190± 0.0795) (0.2177± 0.0802) (91%) t1

[0.2102± 0.0787] [0.2074± 0.0811] [98%] t3

600 0.1657± 0.0711 0.1636± 0.0702 100% z

(0.2080± 0.0790) (0.2071± 0.0724) (92%) t1

[0.1827± 0.0766] [0.1825± 0.0749] [98%] t3

τ = 0.75 200 0.4427± 0.1627 0.4398± 0.1785 84% z

(0.7245± 0.2637) (0.7183± 0.2540) (73%) t1

[0.6019± 0.2270] [0.5968± 0.2201] [84%] t3

300 0.3591± 0.1303 0.3512± 0.1331 85% z

(0.5750± 0.2097) (0.5740± 0.2228) (75%) t1

[0.5843± 0.2094] [0.5575± 0.2116] [84%] t3

400 0.3131± 0.1209 0.3003± 0.1144 88% z

(0.5665± 0.2044) (0.5590± 0.2070) (80%) t1

[0.5191± 0.1856] [0.5053± 0.1777] [86%] t3

600 0.2934± 0.1115 0.2742± 0.1135 90% z

(0.4881± 0.1922) (0.4757± 0.2004) (84%) t1

[0.4670± 0.1645] [0.4473± 0.1659] [89%] t3
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Example 2.8. . We also consider the Example 2 in Xue and Yin (2012),

Y = X11/(0.5 + (X21 + 1.5)2) + 0.2× ε, (2.5.1)

whose corresponding vector-valued model can be found in Li (1991) and Xia et. al (2002).

We set p = q = 5. Here, SY |vec(X) = SE(Y |vec(X)) = SY |◦X◦ = SE(Y |◦X◦) = SM(Y |◦X◦) =

SQτ (Y |◦X◦) = S(e1) ⊗ S(e1, e2). Thus, d = 2 and r = 1 and the benchmark distance is

1.916.

As shown in Table 2.3, for Example 2.8, the accuracy of estimating CQFS and percentage

for correctly estimating the dimensions follow the same pattern as in the two examples

before. As sample size increase, the accuracy and correct percentage increase as we

expect.
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Table 2.3: Example 2.8: Accuracy of estimates

Methods n ∆f OPG ∆f MAVE (d̂, r̂) = (d, r) Distribution of ε

τ = 0.5 200 0.8293± 0.3068 0.4353± 0.3139 74% z

(1.0489± 0.2712) (0.8380± 0.3633) (13%) t1

[0.9168± 0.3116] [0.4829± 0.3192] [62%] t3

300 0.6466± 0.2808 0.2413± 0.1986 90% z

(0.8573± 0.3322) (0.5828± 0.3860) (15%) t1

[0.7142± 0.2772] [0.3239± 0.2695] [89%] t3

400 0.5964± 0.2211 0.1844± 0.0658 92% z

(0.7756± 0.2819) (0.4390± 0.3401) (24%) t1

[0.6532± 0.2203] [0.2421± 0.1596] [91%] t3

600 0.4907± 0.1891 0.1271± 0.0396 100% z

(0.5931± 0.2303) (0.2831± 0.1768) (33%) t1

[0.5087± 0.2203] [0.1598± 0.0621] [100%] t3

800 0.3991± 0.1281 0.1107± 0.0335 100% z

(0.5377± 0.2152) (0.2060± 0.0805) (54%) t1

[0.4271± 0.1537] [0.1426± 0.0677] [100%] t3

τ = 0.75 200 0.8602± 0.3271 0.4971± 0.3130 79% z

(1.1154± 0.2764) (1.0203± 0.3197) (12%) t1

[0.8600± 0.3541] [0.6095± 0.3768] [56%] t3

300 0.6462± 0.2752 0.2960± 0.1977 94% z

(0.9678± 0.3072) (0.8156± 0.3603) (13%) t1

[0.7640± 0.3043] [0.4277± 0.2545] [68%] t3

400 0.5505± 0.2305 0.2160± 0.0682 100% z

(0.8690± 0.3009) (0.6728± 0.3461) (14%) t1

[0.6604± 0.2692] [0.3374± 0.2155] [75%] t3

600 0.4333± 0.1601 0.1619± 0.0528 100% z

(0.7177± 0.2840) (0.4724± 0.2878) (27%) t1

[0.5269± 0.2323] [0.2338± 0.1672] [90%] t3

800 0.3528± 0.1200 0.1370± 0.0330 100% z

(0.6759± 0.2727) (0.3303± 0.1035) (48%) t1

[0.4509± 0.1872] [0.1870± 0.1175] [100%] t3
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2.6 Application

In this section, we apply the estimation methods to the primary biliary cirrhosis (PBC)

data set used in Chapter 1. We consider forging the central median dimension folding

space of the repeatedly measured longitudinal data. Concentrating on the median arises

that the median often has higher efficiency than the mean for skewed data and always

has an easy interpretation. We adopt the primary biliary cirrhosis (PBC) data set used

in Xue and Yin (2012) to illustrate our method. Same as in Xue and Yin (2012), we

have a univariate response Y and a 3×4 matrix-valued predictor X. The measurements

of biliribin, albumin level and prothrombin time are recorded at time point 6 month, 1

year, 2 year and 3 year. And the sample size n is 187.

Literature that comments on quantile regression for longitudinal data includes Koenker

(2004), Geraci and Bottai (2007) and Fu and Wang (2012), Koenker (2004) proposed a

weighted composite quantile regression (Zou and Yuan, 2008 and Kai, Li and Zou, 2010)

model with fixed effects and by combining L1 shrinkage (Tibshirani, 1996). Koenker

(2004) considered the penalized quantile regression model for longitudinal data. How-

ever, we consider the quantile regression for repeated measured longitudinal data from

the aspect of dimension folding.

We firstly standardize X and apply the modified BIC criterion to estimate d and r of

the central median folding space. We have that d̂ = r̂ = 1 same as for the central

mean folding space. Applying the refined estimation method and transforming the

estimated bases in Z-scale back to the X-scale, the estimated bases in X-scale are
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A = (α1, α2, α3)T = (0.12369641,−0.9905826,−0.05869675)T and B = (β1, β2, β3, β4)T =

(−0.2740056,−0.1680333,−0.2602606,−0.910467)T. The estimated bases are quite close

to those of the central mean folding subspace. The Frobenius norm between the two

spaces is 0.1594707 comparing to the benchmark distance 1.349.

In order to test the significance of each coefficient in A and B, we compute their 95%

bootstrap confidence intervals respectively with 1000 bootstrap samples. The confidence

intervals in Table 2.4 indicate albumin level and time point year 3 are significant at 0.05

level. The positive relationship between albumin level and the transplant-free or survival

time is consistent to the medical outcome (Shapiro, Smith and Schaffner 1979). In the

contrast, for the central mean dimension folding subspace, Xue and Yin (2012) found

biliribin, albumin level and time year 3 are significant variables. Because the albumin

levels can suggest liver disease and albumin testing is used in a variety of settings to

help diagnose liver disease, to monitor disease progression, and time point year 3 reflects

the progressive nature of the disease, the result for the central median dimension folding

subspace is plausible. A summary plot of the response versus the reduced predictor and

predicted model based on 50% quantile smoothing spline (Koenker, Ng and Portnoy,

1994) is shown in Figure 2.1. To fit the median quantile prediction model, we implement

the “R” function “qsreg” from package “fields” (Oh et al., 2004; Lee and Cox, 2010).

The fitted smoothing spline for the central median folding space looks pretty good and

is quite similar to the spline plot in Xue and Yin (2012).
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Table 2.4: 95% bootstrap confidential interval

lower bound upper bound

α1 -0.5319895 0.55129965

α2 -0.9986458 -0.06310098

α3 -0.9469642 0.96603348

β1 -0.8437331 0.90092703

β2 -0.8148785 0.89193525

β3 -0.8299503 0.89907690

β4 -0.8509049 -0.01474479
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Figure 2.1: Summary plot and predicted model
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2.7 Generalization to array-valued predictors

In this section, we briefly discuss how to extend the theory of dimension folding for a

functional of conditional distribution of matrix-valued objects to array-valued predic-

tors. Let X = {Xj1j2...jk : j1 = 1, . . . , p1, . . . , jk = 1, . . . , pk} be a k-way random array

of dimension p1×, · · · ,×pk. Parallel the definition of central T dimension folding for

matrix-valued predictor we generalize the definition to the array-valued predictor as

follow:

Definition 2.2. If there are matrices αi ∈ Rpi×di (di ≤ pi) for i = 1, . . . , k such that

T (x) depends on x only through (αk ⊗ · · · ⊗α1)Tvec(x), that is T (x) = T (x*) whenever

(αk⊗· · ·⊗α1)Tvec(x) = (αk⊗· · ·⊗α1)Tvec(x*), then the column space of αk⊗· · ·⊗α1

is called a k-way dimension folding space for the functional T , or a k-way T dimension

folding space.

Definition 2.3. If the intersection of all the k-way T dimension folding spaces as defined

in Definition 2.2 itself is a k-way T dimension folding space then it is called the k-way

central T dimension folding space for Y on the array-valued predictor X. We write this

space as SY |◦X◦k(T ).

When k = 1, SY |◦X◦1(T ) usually written as SY |◦X◦(T ) for conciseness is the central T

dimension folding space defined in Definition 2.1. Similar theory on SY |◦X◦k(T ) and

estimation methods on SY |◦X◦k(T ) can be established straightforwardly from previous

sections.
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2.8 Conclusion

In this chapter, we establish the theory of sufficient dimension folding for a general func-

tional, T , of the conditional distribution of matrix-/array-valued objects. We generalize

the sufficient dimension folding and sufficient mean dimension folding spaces into the

frame of sufficient functional T dimension folding space and propose the central vari-

ance and central k-th moment dimension folding spaces. We construct the relationship

between local central T folding space and the central T folding space based on which we

propose a class of local estimation methods. We also introduce a modified BIC criterion

to estimate the dimensions of the proposed central T folding space. Besides, we consider

the dimension folding for the quantile regression for the repeated measured longitudinal

data. We illustrate our method by analyzing the primary biliary cirrhosis data used in

Xue and Yin (2012). To evaluate the significance of individual variable, we adopt the

bootstrap method to calculate the 95% confidential interval for each coefficient in the

directions of the central T folding space. However, there is a challenge to investigate the

asymptotic properties of the quantile dimension folding and we propose it as our further

research.
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2.9 Appendix

Proof of Lemma 2.1:

That 2⇒ 1 is obviously. Only need to show 1⇒ 3 and 3⇒ 2.

1 ⇒ 3. Let t1 and t2 be any two matrices in Rp×q such that ATt1B = ATt2B and

ΣA ∈ Rp×p
+ , ΣB ∈ Rq×q

+ such that 1 holds. Then we have

f(t1) = f [P T(ΣA)t1P (ΣB)]

= f [ΣAA(ATΣAA)-1(ATt1B)(BTΣBB)-1BTΣB]

= f [ΣAA(ATΣAA)-1(ATt2B)(BTΣBB)-1BTΣB]

= f [P T(ΣA)t2P (ΣB)]

which tells us that f depends on t only through ATtB.

3⇒ 2. Let ΣA be any element ∈ Rp×p
+ and ΣB be any element ∈ Rq×q

+ . Take t1 = t

and t2 = P T(ΣA)tP (ΣB). Since P (ΣA) and P (ΣB) are projections onto S(A) and
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S(B) accordingly, then A = P (ΣA)A and B = P (ΣB)B. And further

ATt1B = ATtB = [P (ΣA)A]TtP (ΣB)B

= ATP T(ΣA)tP (ΣB)B

= ATt2B

Since f is a function of ATtB, f(t) = f(P T(ΣA)tP (ΣB)).

Proof of Proposition 2.1: Suppose αL is a p×d matrix whose columns form a basis

of SY |◦Z(T ) and βR is a q × r matrix whose columns form a basis of SY |Z◦(T ).

Since Z = ATXB and A and B are full rank, by lemma 2.1

TX(X) = TZ(Z) = TZ(P T(ΣαL
)ZP (ΣβR

))

= TX(P T(ΣαL
)ATXBP (ΣβR

))

= TX([AP (ΣαL
)]TX[BP (ΣβR

)])

⇒ AP (ΣαL
) is a T-left dimension folding space for Y |X and BP (ΣβR

) is a T-right

dimension folding space for Y |X.

⇒ S(A0) ⊆ S(AP (ΣαL
)) = AS(P (ΣαL

)) and S(B0) ⊆ S(BP (ΣβR
)) = BS(P (ΣβR

))

⇒ SY |◦X◦(T ) ⊆ (B ⊗ A)SY |◦Z◦(T ).
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And,

TZ(Z) = TX(X) = TZ(P T(ΣA0)XP (ΣB0))

= TZ(P T(ΣA0)A-TATXBB-1P (ΣB0))

= TZ([A-1P (ΣA0)]TZ[B-1P (ΣB0)])

⇒ A-1P (ΣA0) and B-1P (ΣB0) are a T-left- or right– dimension folding space for Y |Z.

⇒ S(αL) ⊆ S(A-1P (ΣA0)) = A-1S(P (ΣA0)) and S(β) ⊆ S(B-1P (ΣB0)) = B-1S(P (ΣB0))

⇒ SY |◦X◦(T ) ⊆ (B ⊗ A)SY |◦Z◦(T )

⇒ SY |◦Z◦(T ) = (B-1 ⊗ A-1)SY |◦X◦(T ).

Proof of Proposition 2.2: We follow the proof of Proposition 2 in Yin and Li (2012).

However, we work on a matrix predictor instead of a vector. We write a general form

of T∆(x) = T∆(y|x) and T∆(x) may or may not depend on Y . For example, the local

density p∆(y|x) depends on y but the local mean function E∆(y|x) does not depend on

y. We use y in the form of T∆ without confusion.

Define β = B ⊗ A and it is sufficient to show for any α ∈ Rpq×1, αTβ = 0 iff

αT ∂
∂vec(x)

T∆(y|x) = 0 for all (x, y) ∈ ∆. By the chain rule of differentiation, ∂
∂vec(x)

T∆(y|x) =

β ∂
∂vec(s)

T∆(y|s). Thus, αTβ = 0 implies that αT ∂
∂vec(x)

T∆(y|x) = 0 for all (x, y) ∈ ∆.
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The other way can be showed by contradiction. Assume that there exists α0 ∈ Rpq such

that αT
0

∂
∂vec(x)

T∆(y|x) = 0 for all (x, y) ∈ ∆, but αT
0β 6= 0. Then ξ1 = βTα0/||βTα0||

is a nonzero dr × 1 vector. Therefore, αT
0

∂
∂vec(x)

T∆(y|x) = β ∂
∂vec(s)

T∆(y|s) = 0 implies

that ξT
1

∂
∂vec(s)

T∆(y|s) = 0. Then the directional derivative of T∆ as a function of vec(s)

along ξ1 is always 0. Thus, T∆(y|s) = T∆(y; s) is a constant along ξ1, which means

T∆(y; s + tξ) = T∆(y; s) for all t ∈ R.

We can expand ξ1 to form an orthogonal basis for Rdr, say, Aξ = (ξ1, . . . , ξdr). De-

fine v = AT
ξvec(s) = (v1, . . . vdr)

T, then T∆(y; s) = T∆(y;Aξv), and ∂
∂v1
T∆(y;Aξv) =

ξT
1

∂
∂vec(s)

T∆(y|s) = 0. Therefore, T∆(y;Aξv) does not depend on v1. And thus T∆(y|s) =

T∆(y; s) = T∆(y;Aξv) can be written as a function g(y; v2, . . . , vdr) = g(y; ξT
2β

Tx, . . . ξT
drβ

Tx).

Then βξ2, . . . ,βξdr is a local CTFS with structural dimension dr−1, which is contradicts

to the local CTFS has dimension dr. The proof is completed.

Proof of Proposition 2.3: The proof can be easily extended from the proof of

Proposition 3 in Yin and Li (2012). Here, we work on a matrix predictor instead of a

vector predictor.

For (x, y) ∈ ∆, we have

f∆(x, y) := f((x, y)|(X, Y ) ∈ ∆) =
f(x, y)

P∆

, (2.9.1)
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where P∆ is the probability (X, Y ) ∈ ∆ =
∫ ∫

∆
f(x, y)dxdy. Let f∆y(x) =

∫
∆y
f(x, y)dy,

then

f∆(x) := f(x|(X, Y ) ∈ ∆) =
f∆y(x, y)

P∆

. (2.9.2)

Define w = w(y) = 1 if y ∈ ∆y, and 0, otherwise. We then have

f(w = 1|x) := E(Y |X=x)w(Y ) = P(w(y) = 1|x),

which means that

f(w = 1|x) =

∫
ΩY

w(y)f(y|x)dy =

∫
∆y

f(y|x)dy = f∆y(x)/f(x). (2.9.3)

Combining (2.9.1),(2.9.2) and (2.9.3), we have

f∆(y|x) =
f∆(x, y)

f∆(x)
=
f(x, y)

f∆y(x)
=

f(y|x)

f(w = 1|x)
,

or,

f(y|x) = f∆(y|x)f(w = 1|x). (2.9.4)

Suppose A0 and B0 is a basis matrix of SY |◦X and SY |X◦, respectively. Then FY |X(·|x) =

FY |X(AT
0xB0) by the definition of CFS. Thus, f(y|x) = f(y|AT

0xB0), and f(w = 1|x) =

f(w = 1|AT
0xB0), since w = 1 is a function of y. By (2.9.4), we have for any (x, y) ∈ ∆,
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f∆(y|x) = f∆(y|AT
0xB0). Therefore, F∆(Y |X)(·|x) = F∆(Y |X)(·|AT

0xB0). By the definition

of T∆(x), the subspace spanned by the columns of A0 forms a central T-left dimension

folding subspace, and B0 forms a central T-right dimension folding subspace. And by

the definition of local CTFS, we have that SY |X(T∆) ⊆ SY |X.

If ∆y = Ωy, then w = 1 for all y. For any x ∈ Ωx, there exist ∆x such that x ∈ ∆x ⊂ Ωx.

By (2.9.4), we have f∆(y|x) = f(y|x), and we have T∆(x) = T (x). From Proposition

2.2, we have:

S{SY |◦X◦(T∆),∆ = ∆x × ΩY for all x ∈ ΩX} = SY |◦X◦(T ).
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Chapter 3

Sufficient dimension folding based

on an ensemble of minimum average

variance estimators

3.1 Introduction

To remedy the defect that folded-MAVE method can not recover directions outside the

CMFS, we adopt the idea of ensemble (Yin and Li, 2011) to cover the CFS by the unison

of several central mean dimension folding subspaces. We consider a general family F of

functions of Y and, for each f ∈ F, SE[f(Y )|◦X◦] is the CMFS for the conditional mean

E[f(Y )|X]. If the subspace spanned by the collection of subspaces {SE[f(Y )|◦X◦] : f ∈ F}

equals to the CFS, F is said to be characterizing the CFS. The functions f1, . . . , fm can
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be randomly sampled from F according to a probability measure on F and the assembly

of the CMFS SE[fl(Y )|◦X◦], l = 1, . . . ,m recovers the CFS.

In this chapter, we construct iterative algorithms named as folded-OPG ensemble and

folded-MAVE ensemble and show the ensemble estimators can exhaustively recover the

CFS. The properties of folded ensemble methods can be investigated based on the re-

sult in Yin and Li (2011) since Y X|ATXB or Y E(Y |X)|ATXB are equivalent to

Y vec(X)|(B ⊗ A)Tvec(X) or Y E[Y |vec(X))|(B ⊗ A)Tvec(X), where vec(·) is an

operation that stacks a matrix into a vector column by column. Nevertheless, to exhaus-

tively estimate the CFS, an iterative procedure is indispensable in the folded ensemble

methods. We mainly focus on the ensemble algorithms on matrix-valued predictor and

a brief extension of the ensemble idea to the array-valued predictor is followed.

In Section 3.2, we extend the theory on characterizing central subspace to the central

folding subspace. In Section 3.3, we introduce the algorithms of folded-MAVE ensem-

ble and its variation, folded-OPG ensemble, to estimate the central folding subspace.

In Section 3.4, we introduce a cross validation criterion for estimating the number of

directions in CFS. We then summarize our future work.

3.2 Estimating the CFS through CMFS

Characterizing the central folding subspace is carried out by combining the dimension

folding subspaces for E[f(Y )|X] in unity, as long as the samplings of function f are
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sufficiently dense. Suppose X ∈ Rp×q is a p× q random matrix with its support ΩX and

Y is a s-dimensional random vector with its support ΩY . A transformation f can project

a vector-valued Y to the scalar field F. Let F be a family of functions f : ΩY → F, where

F can be the set of complex numbers C or real numbers R. And let PS be the projection

onto a space S. Then for the SE[f(Y )|◦X◦], the CMFS of conditional mean E[f(Y )| ◦X◦],

we have

E[f(Y )| ◦X◦] = E[f(Y )|PSE[f(Y )|◦X◦]vec(X)]. (3.2.1)

And for the CFS, SY |◦X◦, we have

Y X|PSY |◦X◦vec(X). (3.2.2)

Definition 3.1. Let F be a family of measurable F-valued functions defined on ΩY . If

{SE[f(Y )|◦X◦] : f ∈ F} = SY |◦X◦, (3.2.3)

the family F is said to characterize the central folding subspace.

Let FY denote the distribution of Y , and let L1(FY ) be the class of functions f(Y ) such

that E|f(Y )| < ∞, together with the norm E|f(Y )|. If f ∈ L1(FY ), E[f(Y )|X] is

finite. Let L2(FY ) be the class of functions f(Y ) with finite variances, together with the

inner product 〈f1, f2〉 = E[f1(Y )f2(Y )]. We denote the subspace on the left hand side
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of (3.2.3) by S(F). We have the following lemma which can be proved similarly to that

of Yin and Li (2011).

Lemma 3.1. Suppose that F ⊆ L1(FY ), then,

1. S(F) ⊆ SY |◦X◦.

2. If (3.2.1) being satisfied for all f ∈ F implies (3.2.2), then SY |◦X◦ ⊆ S(F).

Let B be the family of measurable indicator functions of Y . That is, B = {IB :

B is a Borel set in ΩY }. Then B ⊆ L2(FY ). The following theorem grantees that

several families can be adopt to characterize the CFS.

Theorem 3.1. If F is a subset of L2(FY ) that is dense in B, then F characterizes the

central dimension folding subspace.

Example 3.1. (Polynomials) Let F = {Y t : t = 1, 2, . . .}. Then SE[f(Y )|◦X◦] =

SE(Y t|◦X◦). If the conditional moment generating function E(etY |X) is finite in an open

interval that contains 0, then F is dense in L2(FY ), and hence characterizes SY |◦X◦.

Example 3.2. (Kernel density) Let b > 0 and H be a symmetric probability density

function defined on R. Let F = {b−1H[(y − t)/b] : t ∈ R, b ∈ R+}, which is dense in

L2(FY ) when H is the Normal density and thus SY |◦X◦ can be recovered by estimating

SE[f(Y )|◦X◦] for f ∈ F.

Example 3.3. (Slices) Let F = {I(−∞,t)(y) : t ∈ R}. Then F is dense in B and can be

used to characterize SE[f(Y )|◦X◦].
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Example 3.4. (Box-Cox transformations (Box and Cox, 1964)) Let Y be a nonneg-

ative random variable, and consider the family of transformations

ft(y) =


yt−1
t

t 6= 0

log(y) t = 0

, (3.2.4)

which contains the family in Example 3.1 and thus it characterizes the CFS.

Example 3.5. (Characteristic function) Let F = {eιty : t ∈ R}, where ι =
√
−1.

Note that E(eιtY |X) is simply the conditional characteristic function of Y |X and this

family is dense in L2(FY ).

Theorem 3.2 below whose proof follow the proof of Theorem 2.2 in Yin and Li (2011),

demonstrates that, with probability 1, the CFS can be characterized by a finite number

of functions in a characterizing family.

Let B = (β1, ..., βdr) be an orthogonal basis for the central folding subspace, SY |◦X◦,

whose dimensions are d and r. We will randomly sample T1, . . . , Tm from ΩT and assume

that these random elements are defined on a measurable space (Ω,A). Then ΩT is

interpreted as the range of the mapping Ti : Ω → ΩT and we denote a generic member

of Ω by ω.

Theorem 3.2. Suppose that F characterizes the central folding subspace, T1, T2, . . .

is an i.i.d. sequence of random variables supported on ΩT and, for each integer m,

B0(T1, ..., Tm) is an orthogonal basis matrix of {SE[fTi (Y )|◦X◦] : i = 1, . . . ,m}. Then the
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following event has probability 1:

{ω ∈ Ω : there is an integer m0(ω) such that,

for all m ≥ m0(ω), Span(B0(T1(ω), . . . , Tm(ω)) = Span(B)}.

3.3 Estimate the CFS through folded-MAVE : Algo-

rithm

The folded-MAVE can exhaustively estimate directions in the CMFS only. To remedy

this deficiency, we can adopt the idea of sliced regression (SR, Wang and Xia, 2008) to

enable the folded-MAVE to recover directions in the CFS. Let −∞ = s0 < s1, . . . , <

sH = +∞ be the pre-selected grid point to slice the response, and let vk = I(s(k−1) <

Y < sk), where I(·) is the indicator function, then the CMFS of (v1, . . . , vH)T coincides

with the CFS of Y .

We can synthesize the folded-MAVE ensemble which extends the estimation of CMFS

to the estimation of CFS in more general conditions. We call it folded-MAVE ensemble.

folded-OPG ensemble as a variation of folded-MAVE ensemble is also considered.
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3.3.1 Folded MAVE ensemble

Suppose X ∈ Rp×q defined on ΩX, Y ∈ Rs defined on ΩY . We only consider the

parametric characterizing family F in this chapter. That is F is of the form {ft : t ∈ ΩT}

where ΩT is a subset of a Euclidean space. Let F = {I(−∞,t)(Y ) : t ∈ R}, then for f ∈ F,

the unison of estimations of SE(f(Y )|◦X◦) is SY |◦X◦. Thus, our previous modification of

folded-MAVE based on SR is indeed a special case of the folded-MAVE ensemble.

Let ft(y) = ft(y, 1)+ift(y, 2), where ft(y, 1) and ft(y, 2) are the real and imaginary parts

of ft(y), and let T be a random vector defined on ΩT with distribution FT . The popula-

tion level objective function can be constructed by applying the folded-MAVE procedure

to the transformed response ft(Y ) and integrating with respect to the distribution FT .

It is formularized as:

2∑
l=1

∫
ΩT×ΩX

E{[ft(Y, l)−cl(x)−aT

l (x)AT(X−x)Bbl(x)]2Kh[(B⊗A)Tvec(X−x)]}dFX(x)dFT (t).

(3.3.1)

We minimize the function (3.3.1) over all cl(·) ∈ R, all al(·) ∈ Rd, bl(·) ∈ Rr, all p × d

constant matrices A and all q × r constant matrices B, l = 1, 2.

At the sample level, let T1, . . . , Tm be an independent sample from FT , we minimize the

objective function

2∑
l=1

m∑
k=1

n∑
j=1

n∑
i=1

ρjwij(h)[fTk(Yi, l)− cjk(l)− ajk(l)TAT(xi − xj)Bbjk(l)]
2 (3.3.2)
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over scalars {cjk(l) : j = 1, . . . , n, k = 1, . . . ,m, l = 1, 2}, {ajk(l) ∈ Rd : j = 1, . . . , n, k =

1, . . . ,m, l = 1, 2}, {bjk(l) ∈ Rr : j = 1, . . . , n, k = 1, . . . ,m, l = 1, 2}, p × d matrices A

and q × r matrices B. The coefficient ρj is the same as defined in (1.3.5).

For fixed ajk(l) ∈ Rd, A ∈ Rp×d, B ∈ Rq×r, minimizing (3.3.2) jointly over cjk(l), bjk(l)

for j = 1, . . . , n, k = 1, . . . ,m, l = 1, 2, is equivalent to minimizing

n∑
i=1

ρjwij(h)[fTk(Yi, l)− cjk(l)− ajk(l)TAT(xi − xj)Bbjk(l)]
2 (3.3.3)

individually. More specifically, we suggest the following folded-MAVE ensemble proce-

dures.

1. Generate ajk(l) ∈ Rd from N(0, 1). A ∈ Rp×d, B ∈ Rq×r can be obtained from the

folded OPG ensemble introduced later or generated from N(0, 1).

2. For fixed ajk(l) ∈ Rd, A ∈ Rp×d, B ∈ Rq×r, the least-squares solution of (3.3.3),

for each triplet (j, k, l), is

ĉjk(l)
b̂jk(l)

 =

[
n∑
i=1

ρjwij(h)∆ij(ajk(l), A,B)∆T

ij(ajk(l), A,B)

]-1

×

[
n∑
i=1

ρjwij(h)∆ij(ajk(l), A,B)fTk(Yi, l)

]
,

where ∆ij(ajk(l), A,B) = [1, (vec(xi − xj))
T(B ⊗ A)(Ir ⊗ ajk(l))]T.
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3. For fixed cjk(l), bjk(l) ∈ Rr, A ∈ Rp×d, B ∈ Rq×r, the least-squares solution of

(3.3.3), for each triplet (j, k, l), is then

âjk(l) =

[
n∑
i=1

ρjwij(h)∆ij(bjk(l), A,B)∆T

ij(bjk(l), A,B)

]-1

×

[
n∑
i=1

ρjwij(h)∆ij(bjk(l), A,B)(fTk(Yi, l)− cjk(l))

]
,

where ∆ij(bjk(l), A,B) = [(vec(xi − xj))
T(B ⊗ A)(bjk(l)⊗ Id)]T.

4. For fixed cjk(l), ajk(l), bjk(l) and A, j = 1, . . . , n, k = 1, . . . ,m, l = 1, 2, the

minimization of (3.3.2) is also a least-squares problem. The solution is

vec(B̂) =
[∑

ρjwij(h)∆ij(ajk(l), bjk(l), A)∆T

ij(ajk(l), bjk(l), A)
]-1

×
[∑

ρjwij(h)∆ij(ajk(l), bjk(l), A)(fTkl(yi, l)− cjk(l))
]
,

where ∆ij(ajk(l), bjk(l), A) = [Ir⊗((xi−xj)
TA)](bjk(l)⊗ajk(l)) and the summation

is over

(i, j, k, l) ∈ {1, . . . , n} × {1, . . . , n} × {1, . . . ,m} × {1, 2}.

5. For fixed cjk(l), ajk(l), bjk(l) and A, j = 1, . . . , n, k = 1, . . . ,m, l = 1, 2,

vec(ÂT) =
[∑

ρjwij(h)∆ij(ajk(l), bjk(l), B)∆T

ij(ajk(l), bjk(l), B)
]-1

×
[∑

ρjwij(h)∆ij(ajk(l), bjk(l), B)(fTkl(yi, l)− cjk(l))
]
,
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where ∆ij(ajk(l), bjk(l), B) = [((xi−xj)B)⊗Id](bjk(l)⊗ajk(l)) and the summation

is also over

(i, j, k, l) ∈ {1, . . . , n} × {1, . . . , n} × {1, . . . ,m} × {1, 2}.

We iteratively estimate the parameters between the above five steps until convergence.

3.3.2 Folded OPG Ensemble

Let F, FT , T1, . . . , Tm and wij(h) be as defined in the previous section. For folded OPG

ensemble, we minimize the objective function for each j, k, l,

n∑
i=1

wij(h)[fTk(yi, l)− c− aT(xi − xj)b]
2 (3.3.4)

over (c, a, b) ∈ R× Rp × Rq for each j = 1, . . . , n, k = 1, . . . ,m and l = 1, 2.

The folded-OPG ensemble is summarized as

1. Generate ajk(l) ∈ Rp from N(0, 1).

2. For fixed ajk(l), ĉjk(l) and b̂jk(l) that minimize (3.3.4) are

ĉjk(l)
b̂jk(l)

 =

[
n∑
i=1

wij(h)∆ij(ajk(l))∆
T

ij(ajk(l))

]-1 [ n∑
i=1

wij(h)∆ij(ajk(l))fTk(yi, l)

]
,

where ∆ij(ajk(l)) = (1, (vec(xi − xj))
T(Iq ⊗ ajk(l)))T.
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3. For fixed cjk(l) and bjk(l), âjk(l) that minimizes (3.3.4) is

âjk(l) =

[
n∑
i=1

wij(h)∆ij(bjk(l))∆
T

ij(bjk(l))

]-1 [ n∑
i=1

wij(h)∆ij(bjk(l))(fTk(Yi, l)− cjk(l))

]
,

where ∆ij(bjk(l)) = ((vec(xi − xj))
T(bjk(l)⊗ Ip))T.

4. Compute the OPG matrices as:

2∑
l=1

m∑
k=1

n∑
j=1

ρj âjk(l)â
T

jk(l), (3.3.5)

and

2∑
l=1

m∑
k=1

n∑
j=1

ρj b̂jk(l)b̂
T

jk(l). (3.3.6)

The folded-OPG ensemble also involves iteratively estimating the cjk(l), ajk(l) and

bjk(l). After convergence, A and B are the first d and r eigenvectors according to

the d and r largest eigenvalues of (3.3.5) or (3.3.6) respectively.

3.4 Estimations of d, r and choices of F

In describing the foregoing algorithms we have assumed d and r, the dimension of the

SY |◦X and SY |X◦ respectively to be known. In practice those dimensions must also be

estimated. We now propose a cross validation method to estimate d and r. Let Â and B̂

be the estimated bases of SY |◦X and SY |X◦ respectively for a fixed working dimension d0
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and r0. Then the leave-one-out fitted value of fTk(Yj, `), for j = 1, . . . , n, k = 1, . . . ,m,

and ` = 1, 2, is

µ̂kj(d0, r0, `) =
∑
i 6=j

Kh[(B̂ ⊗ Â)Tvec(Xi −Xj)]fTk(Yi, `)/
∑
i 6=j

Kh[(B̂ ⊗ Â)Tvec(Xi −Xj)].

The corresponding cross validation value is

CV(d0, r0) =
1

2mn

2∑
`=1

m∑
k=1

n∑
j=1

[fTk(Yj, `)− µ̂kj(d0, r0, `)]
2.

To include the trivial case of d0 = 0 or r0 = 0, we define µ̂kj(0, r0, `), µ̂kj(d0, 0, `) and

µ̂kj(0, 0, `) to be (n−1)−1
∑

i 6=j fTk(Yj, `), so that CV(d0, r0) is defined for all d0 = 0, . . . , p

and r0 = 0, . . . , q. The structural dimensions d and r are estimated by

(d̂, r̂) = argmin{CV(d0, r0) : d0 = 0, . . . , p; r0 = 0, . . . , q}.

In this chapter we pay special attention to the family determined by the characteristic

function, as discussed in Example 3.5. That is,

FC = {eιtTy : t ∈ R}.

And we named the folded-OPG and folded-MAVE ensemble based on FC as folded-

OPG-FC and folded-MAVE-FC. An advantage of the family FC is that its members are

bounded functions, and as such are relatively robust against the outliers in Y . Moreover,
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it requires virtually no condition on the distribution of Y . Also note that when t ranges

over Rs, the function eιt
Ty fully recovers the joint information of the random vector Y .

Having prepared the basics above, we will investigate asymptotic properties and run

simulations for the performance of the proposed methods, and apply them to some data

sets in the future.
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