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ABSTRACT 

Hemorrhagic disease (HD) is a common disease transmitted by Culicoides midges in 

white-tailed deer that has caused significant mortality, mobidity and economic impact on 

recreational hunting throughout the United States. This dissertation provides a statistical analysis 

of the county-based spatial-temporal prediction and cluster detection of HD in white-tailed deer 

in southeast USA.  

A spatial-temporal prediction model was constructed to predict HD occurrence from 

1982 to 2000. Eleven principal factors which were reduced from 42 climatic and environmental 

factors derived from ground-based weather stations and remotely-sensed data were used as 

predictor variables and HD presence/absence data for each county in the study area as the 

dependent variable. A generalized linear mixed logistic model was used to consider the within-

subject effect of the longitudinal data. A spatial dependency term was added to the model 

accounting for the influence of HD occurrence of adjacent counties on a particular county. The 

results show that wind speed, rainfall, land surface temperature and normalized difference 

vegetation index (NDVI) are significant factors in predicting HD occurrence. The total 

prediction accuracy is 65 percent when all four factors are considered for a five state area. The 



 

prediction accuracy for individual years ranges from 27 percent to 96 percent. Remotely-sensed 

data prove to be informative and results in a higher prediction power than some climatic data. 

Kulldorff’s space-time scan statistic was applied to detect the spatial and space-time 

clusters in HD from 1980 to 2003. The results indicate that western and southern portions of 

Alabama, south of Alabama, central South Carolina, and the boundary between South Carolina 

and North Carolina are areas where high rate clusters of HD outbreaks occur. A maximum 

spatial window of 10 percent of the total population and a maximum temporal window of 25 

percent of the study period are believed to be appropriate windows that include most of the 

clusters without leaving out subclusters. NDVI, wind speed and spatial dependency were found 

to be related to the HD clustering. 

Future study with the integration of statistical, biological, geographical information 

system, and remote sensing information is expected to result in a more thorough understanding 

of this wide spread and economically influential wildlife disease. 
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CHAPTER 1 

INTRODUCTION 
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1.1  Background 

In epidemiology, understanding the distribution of disease is paramount. It allows 

researchers to investigate hot spots of the disease outbreaks, identify possible causes and predict 

future trends of the disease. A subdiscpline in epidemiology, spatial epidemiology, has emerged 

to geographically describe and analyze indexed health data with respect to demographic, 

environmental, behavioral, socioeconomic, genetic, and infectious risk factors (Elliott and 

Wartenberg, 2004). Disease mapping is the prototype of spatial epidemiology, which dates back 

to the 1800s when maps of disease rates were drawn to visually demonstrate the distribution and 

possible causes of outbreaks of some infectious diseases such as yellow fever and cholera. Since 

then, spatial epidemiology has grown in sophistication, complexity, and utility (Walter, 2000).  

Recently, with the advance of computer science, remote sensing technology, and 

geographic information science (GISci), a substantial amount of georeferenced data can be easily 

accessed and manipulated, which has greatly accelerated the development of spatial 

epidemiology. A number of spatial statistical models are proposed for the analysis of the spatial 

distribution of diseases such as heterogeneous Poisson process model (HEPP), Hybrid models, 

Bayesian models, hierarchical models, etc. (Lawson, 2001). A newer trend is to incorporate the 

time dimension into the spatial framework to explore the spatial-temporal distribution of disease. 

There are numerous examples of the use of spatial modeling and disease mapping in 

human disease studies, however; in veterinary epidemiology, there has been less use of these 

techniques. Although some work has been done, since the 1980s, in a spatial frame, most of this 

work has centered on the distribution of disease vectors, and environmental factors, relate to 
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parasitic diseases (Durr, 2004). There have been few studies on the distribution of animal 

diseases, let alone the relationship between the distribution of animal disease and environmental 

factors. 

Hemorrhagic disease (HD) is a common disease in white-tailed deer (Odocoileus 

virginianus). The first outbreak of HD in the USA dates back to the 1890s (Trainer, 1964; Hoff 

and Trainer, 1981). Since then, outbreaks of HD have been documented often, and can result in 

significant deaths among white-tailed deer. Veterinary researchers have done much work to 

identify vectors that transmit the disease. Previous research has shown that climate and 

environmental factors such as altitude, humidity, rainfall, and temperature affect the distribution 

of vectors and HD outbreaks (Nevill, 1971; Walker and Davies, 1971; Erasmus, 1975). 

Furthermore, there is seasonal and annual variation in HD occurrence (Couvillion et al., 1981). 

However, little research has been done to quantitatively investigate the distribution of HD in 

white-tailed deer in terms of spatial and temporal patterns and its relationship with various 

potential causal factors such as climate or environment. In the mean time, remotely-sensed data 

can be used for predicting vector-born disease in that remotely-sensed data can surrogate climatic 

variables which affect the survival and reproduction of vectors. 

1.2  Research objectives and study area 

This research is designed to investigate the spatial-temporal clustering or hot spots of the 

HD outbreaks in white-tailed deer ern USA, and construct a prediction model which relates the 

distribution of HD to the climatic factors and environmental factors derived from 

remotely-sensed data. The underlying hypothesis is a combination of climatic and environmental 



 4

factors such as temperature, precipitation, elevation, land use/land cover, etc. influences the 

spatial and temporal patterns of HD outbreaks in white-tailed deer through possible biological 

controls of the disease vector population dynamics, and/or herd health and immunity. This 

research will focus on the geographic and statistical correlation of the environment and HD 

distributions that may lead to a better understanding of the biological processes during the HD 

outbreaks. The hypotheses and expected results are: 

1)    There are spatial and temporal clusters in the distribution of HD in white-tailed deer. 

2)   There are spatial and temporal relationships between HD occurrence and climatic factors 

and environmental factors derived from remotely-sensed data. 

3)    A statistical prediction model can accurately predict the HD occurrence within the limits 

of available data and accuracy. 

The objectives of this research are as follows: 

1) Develop a 20-year spatial-temporal database of HD outbreaks/causal factors and a 

statistical model predicting HD distributions based on critical climate and environmental 

variables.  

2) Use statistical methods to describe significant spatial and temporal clusters of HD 

outbreaks and areas of no outbreaks in white-tailed deer over a 20-year time period. 

3) Assess possible causal factors affecting spatial and temporal patterns of HD distribution. 

The study area in this research is the southeastern region of the USA including five states: 

Alabama, Georgia, South Carolina, North Carolina, and Tennessee where the HD in white-tailed 

deer is traditionally reported and considered endemic (Hoff and Trainer, 1981) (Figure 1.1). The 
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white-tailed deer can be found in wooded areas on the fringes of urban areas in southern Canada 

and most of the United States, except for the Southwest of USA, Alaska and Hawaii. Before the 

settlement of Europeans, there were between 23 and 40 million white-tailed deer in North 

America. After that, the population greatly decreased in USA due to habitat loss and unrestricted 

hunting. But by the 1950s, North America experienced an increase in white-tailed deer. At the 

end of the 20th century, the estimated population in USA alone was 14 to 20 million. 

(http://www.desertusa.com/mag99/june/papr/wtdeer.html). White-tailed deer have a number of 

negative economic impacts— they damage crops, vegetable gardens, fruit trees and personal 

property where their ranges overlap with human habitation. However, they also have invaluable 

positive values. For Native Americans and early European settlers, deer meat provided one of the 

most important sources of protein. White-tailed deer remain the most popular large game animals 

throughout most of the USA. Sport hunters harvest about 2 million white-tailed deer annually. 

The economic value of deer through license fees, meat, and hunter expenditures for equipment, 

food, and transportation can be measured in hundreds of millions of dollars 

(http://www.extension.org/pages/Deer). Thus deer population control and deer disease control are 

equally important.  

The five states in southeast USA boasts a variety of physiographic regions including 

plateau, ridge and valley, hilly coastal plain, lower coastal plain, and piedmont (Miller and 

Robinson, 1995). These physiographic regions together with the mild winter, hot summer, 

plentiful rainfall, and large areas of forests provides various habitats to white-tailed deer as well 

as the vectors that transmit HD.  
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Figure 1.1: Study area: five states in southeast USA 

The outbreaks of HD in white-tailed deer in southeastern states have a long history. In the 

1940s, Ruff (1949) pointed out that extensive mortality of an unexplained fatal disease occurred 

at irregular intervals for many years in this region which was later believed to be similar to 

epizootic hemorrhagic disease (EHD). In 1954 and 1955, epizootics similar to HD appeared 

among the white-tailed deer population in southeast USA (Prestwood, et al., 1974). During the 

summer of 1971, the first documented HD outbreak in white-tailed deer in southeastern USA 

was reported, which caused significant die-offs (Thomas et al., 1974). The disease first occurred 

in South Carolina and then erupted almost simultaneously in Virginia, Tennessee, North Carolina, 

Kentucky, Georgia, and Florida. A widespread HD outbreak also occurred in 1980, whereby deer 

in 156 counties in 8 states had clinical evidence of exposure to HD (Couvillion et al., 1981). 

According to the Southeastern Cooperative Wildlife Disease Study (SCWDS) in the College of 

Veterinary Medicine, University of Georgia data from 1980 to 1989, contiguous instances of HD 
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were reported throughout the Southeast (Nettles et al., 1992). In 1998, Considerable die-offs 

appeared among white-tailed deer, marking a peak year of HD (Nettles and Stallknecht, 1992).  

1.3  HD Data sources 

The hemorrhagic disease data was collected on a county basis by SCWDS annually 

starting in 1980 and is the most comprehensive database for HD-related deer morbidity and 

mortality. For nearly 30 years, the researchers have mailed HD questionnaires to the state fish 

and wildlife agency in each state, and most of the state veterinary diagnostic laboratories. The 

surveillance also includes personnel in the U.S. Fish and Wildlife Service and the Animal and 

Plant Health Inspection Service, USDA. For 1980 and 1981, only the 16 southeastern states were 

polled. All states except Hawaii have been surveyed from 1982 to present. The researchers set 

four criteria for the surveillance reporting as follows: 

1)    Sudden, unexplained, high deer mortality reported during the late summer and early fall. 

2)    Necropsy diagnosis of HD as rendered by a trained wildlife biologist, a diagnostician at a 

State Diagnostic Laboratory or Veterinary College, or by SCWDS personnel. 

3)    Isolation of EHD or Bluetongue virus from a deer. 

4)    Observation of hunter-killed deer that showed sloughing hooves, ulcers in the mouth, or 

scars on the rumen lining as indirect evident of chronic HD occurrence. 

Among them, criteria 1, 2, and 3 collectively reflect deer mortality, and criterion 4 

indicates deer morbidity.   
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1.4  Dissertation structure 

The dissertation structure is organized into five chapters. Chapter 1 is a brief introduction 

of the background, objectives, study area, mechanism, data sources and hypotheses. Chapter 2 

gives a detailed literature review of the topics covered in this dissertation, including history, 

transmission, spatial and temporal distribution of HD, veterinary spatial epidemiology, 

geographic information systems and remote sensing in veterinary epidemiology, space-time 

clustering, and spatial-temporal modeling in veterinary epidemiology. The following two 

chapters are separate papers to be submitted to journals. In Chapter 3, a statistical 

spatial-temporal model is developed to predict the HD occurrence based on its relationship with 

the climatic factors measured by weather stations and environmental factors derived from 

remotely-sensed data. Chapter 4 describes the statistical detection of the spatial and space-time 

clusters of HD across the study area during a 20-year study period. Chapter 5 provides 

conclusions, limitations, and contributions of this dissertation. 
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2.1  HD in white-tailed deer 

2.1.1  History and clinical signs   

Hemorrhagic disease is caused by both the bluetongue (BLU) and epizootic hemorrhagic 

disease (EHD) viruses, which are in the genus Orbivirus in the family Reoviridae (Hoff and 

Trainer, 1978). Hemorrhagic disease is transmitted by Culicoides midges (Nettles and 

Stallknecht, 1992) having life cycles composed of egg, four larval instars, pupa and adult stages. 

The immatures requires moisture and organic matter in damp or saturated soils, bogs, marshes, 

swamps, tree holes, and animal dung (Meiswinkel et al., 1994; Mellor, 1996). The life cycle 

ranges from 7 days in the tropics to 7 months in temperate areas. After Culicoides feed on a 

viremic white-tailed deer, the viruses are deposited into the posterior region of the vector’s 

midgut. Then the virus attaches to the luminal surface of the gut cells, infects these cells and 

replicate in them. The salivary glands are infected when progeny virions are released through the 

basement membrane to the hemocoel. The viruses replicated in the salivary glands are 

transmitted to another deer by subsequent bite (Wittmann and Baylis, 2000). In the USA, two 

serotypes of EHD virus (serotypes 1 and 2) and five serotypes of BLU virus (serotypes 2, 10, 11, 

13 and 17) have been isolated (Wieser-Schimpf et al., 1993; Stallknetht et al., 1996).  

Because of their clinical and epidemiologic similarity, BLU and EHD field cases are 

generic diagnosed as HD (Hoff and Trainer, 1972; Hoff and Trainer, 1974; Nettles and 

Stallknecht, 1992). The HD is characterized by sudden onset, and the first sign is pyrexia which 

is a rise of temperature of the body. Clinical signs typically progress from hyperemia (an unusual 

high level of blood in some part of the body) to facial and cervical swelling, then lameness 
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followed by hemorrhage, sometimes sloughing of hooves, and finally ulceration (Hoff and 

Trainer, 1978) (Figure 2.1, 2.2 and 2.3). The infected deer often avoid and appear hypersensitive 

to sunlight (Hoff and Trainer, 1981). Figure 2.1, 2.2 and 2.3 shows the typical sings of HD in 

white-tailed deer. 

2.1.2   Transmission 

Culicoides were suspected to vector BLU virus in the early 1900s, and this was 

demonstrated in 1944 when BLU virus was isolated from wild-caught Culicoides pallidepennis 

in South Africa (DuToit, 1944; Hoff and Trainer, 1981). Subsequent research found BLU virus in 

C.variipennis in Texas (Price and Hardy, 1954), C.milnei, C.tororoensis, and C.pallidepennis in 

Kenya (Walker and Davies, 1971), Culicoides spp. in Australia (St.George et al, 1978), and 

C.insignis, C.pusillus and C.filarifer/C.ocumarensis in Central America and the Caribbean (Mo 

et al, 1994; Greiner et al., 1993). Experimental studies have shown that C.variipennis can serve 

as a biological vector of BLU virus (Foster et al., 1963; Jones and Foster, 1974; Hoff and Trainer, 

1981). 

The EHD virus was first isolated from C.schultzei in Nigeria in 1967 (Hoff and Trainer, 

1981). In 1971, the virus was isolated from naturally infected C.variipennis during an epizootic 

of EHD involving white-tailed deer in Kentucky, USA (Jones et al., 1977; Hoff and Trainer, 

1981). Foster et al (1977) demonstrated the biological transmission of this virus among deer by 

C.variipennis in their research. 
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Figure 2.1: Acutely ill fawn with characteristic signs of HD: lowered head, protruding 

tongue, and excessive salivation 
(http://www.ag.auburn.edu/aaes/communications/highlightsonline/winter99/white-tail.html) 

 
Figure 2.2: Deer exhibiting laid-back ears, depression, and reluctance to stand 

(http://www.ag.auburn.edu/aaes/communications/highlightsonline/winter99/white-tail.html) 

 
Figure 2.3: Deer in late-stage of HD, with frothy saliva due to congested lungs and 

labored breathing 
(http://www.ag.auburn.edu/aaes/communications/highlightsonline/winter99/white-tail.html) 
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C.variipennis is considered the primary vector of BLU and EHD viruses in the USA 

(Osburn et al., 1981), and C.insignis is the other confirmed vector of BLU in the USA (Greiner et 

al., 1985). However, these two midges are not collected during outbreaks of HD in white-tailed 

deer (Smith et al., 1996). Based on the seasonality and relative abundance, C.lahillei and C. 

stellifer represent the two most possible vectors of EHD and BLU viruses for white-tailed deer 

ern USA (Mullen et al., 1985; Smith et al., 1996). 

2.1.3  Spatial and temporal distribution  

In the USA, outbreaks of HD among white-tailed deer have occurred since the 1890s 

(Trainer, 1964; Hoff and Trainer, 1981). However, significant die-offs were not documented until 

1971 ern USA. Bluetongue was first reported in sheep in the USA in 1953, and then recognized 

in white-tailed deer in 1968. Epizootic hemorrhagic disease virus was first isolated from 

white-tailed deer in 1955 (Couvillion et al., 1981). Although BLU usually does not cause 

mortality in white-tailed deer, mortality due to EHD among white-tailed deer can be very severe. 

Experimental and field studies show that the mortality rate for EHD in white-tailed deer 

epizootics reaches 90 percent (Trainer, 1964; Hoff and Trainer, 1981).  

Hemorrhagic disease has been documented throughout the southeast USA, extending to 

Texas in the west and New Jersey in the north (Stallknecht et al., 2002). The SCWDS data shows 

two contiguous geographic bands of HD occurrence in deer from 1980 to 1990 (Figure 2.4). The 

first one (1) is a transverse band from the southeast along the Missouri River northwestward until 

the Great Plains. The other band (2) is in coastal and northern California spreading to central 

Oregon and western Washington (Nettles et al., 1992).  
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Figure 2.4: Reports of hemorrhagic disease in deer from 1980-1990 in the USA (Nettles et al., 

1992, p140) 
 

In their studies on HD among white-tailed deer from 1971 through 1980, Couvillion et al. 

(1981) found that 83 percent of all the HD cases examined were observed during August, 

September, and October. All peracute or acute cases occurred between June and November. The 

frequency of peracute or acute cases increased from July and to a peak in September, followed 

by a sharp decline in November. They concluded that there has been a biennial rise and fall as to 

the yearly pattern of reported HD cases, which also demonstrates the enzootic nature of this 

disease in Southeast USA. An eight- to ten-year cycle transmission is observed in epidemic 

regions. These temporal trends are probably related to the combined effects of herd immunity 

and climate and environment that influence vector populations (Stallknecht et al., 2002). 

 

(2) 
(1) 
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Erasmus (1975) pointed out that the factors that affect insect breeding and distribution 

such as altitude, humidity and temperature, will also influence the epizootiology of the disease. 

The geographic ranges of Culicoides are influenced by temperature, especially low temperatures 

which determine the distribution of the insects, whereas high temperatures adversely affect 

Culicoides adult survivorship and size (Wittmann and Baylis, 2000). Some previous studies have 

proved that temperature has been associated with bluetongue virus infection of ruminants. 

Rainfall strongly influences the increase of Culicoides numbers in spring and summer in South 

Africa +(Nevill, 1971). Walker and Davies (1971), in their survey of epidemiology of bluetongue 

in Kenya, postulated that there is a causal relationship between peak rainfall in April-May, peak 

numbers of Culicoides in May-June and peak bluetongue incidence in June-July. Because peak 

rainfall in April-May facilitates high larval survival and consequent rapid expansion of adult 

numbers that reaches a peak in May, June and July, thus a peak of BLU outbreaks occurs in the 

latter half of this peak. However, the relationship between rainfall and the abundance of 

Culicoides varies depending on the different sub-species of the vector. Some sub-species favor 

drier climate than humid climate. Wind speed and direction can also influence Culicoides 

distribution through their affect on the passive dispersal of the adults. For example, Culicoides 

can be carried as aerial plankton to a place up to 700 km away in winds at speeds of 10-40 km/h, 

at heights up to 1.5 km (Wittmann and Baylis, 2000). 

2.2  Veterinary spatial epidemiology 

Epidemiology is the study of disease in populations of humans or other animals. It 

attempts to discover the factors that are associated with or can protect humans or other animals 
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from disease. Recently, with the availability of geographically indexed health and population 

data, the increasing growth of computing and GIS, and the advances in statistical methodology 

(Elliott et al, 2000), a new subdiscipline in epidemiology – spatial epidemiology has emerged. 

The primary purpose of this subdiscipline is to describe and explain the spatial pattern of disease. 

It uses GIS, spatial statistical packages and remotely sensed images (Durr, 2004) to fulfill the 

following four tasks: disease mapping, geographical correlation studies, assessment of risk in 

relation to a point or line-source, and cluster detection and disease clustering (Elliott et al, 2000). 

There are some other terms regarding this aspect, such as environmental epidemiology, 

geographical epidemiology, and landscape epidemiology. Each of these focuses on a different 

research and methodology in spatial epidemiology. The concept of spatial epidemiology can be 

described as the following model (Figure 2.5).  

 

Figure 2.5: A conceptual model for spatial epidemiology: (a) its relationship to some other 
epidemiological disciplines that can be similarly defined as having a distinct viewpoint or 

approach; and (b) the source origins of its methodologies. Note that the list in (a) is not 
exhaustive (Durr and Gatrell, 2004). 
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Spatial epidemiology studies on human diseases and public health have been progressing 

rapidly due to the readily available health event data and socio-economic factors data. Numerous 

disease mapping and prediction methods have been advanced and applied. For examples, Xia 

and Carlin (1998) utilize Hierarchical Bayes model to map Ohio lung cancer mortality. 

Kleinschmidt et al. (2000) proposed a two-stage procedure to produce maps of predicted risk of 

malaria in Mali. Clements et al. (2006) develop a Bayesian geostatistical prediction model for the 

distribution of Schistosoma baematobium and S. mansoni in Tanzania in order to assist planning 

the implementation of mass distribution of the preventative medicine praziquantel. Waller et al 

(1997) propose a spatial-temporal model by extending existing Hierarchical Bayes methods to 

account for temporal effects and spatial-temporal interactions, and then illustrate the approach 

using the lung cancer rates data set in the state of Ohio. In addition to the above examples, a 

multitude of applications and methods have been conducted or proposed in human diseases in the 

past (see for examples, Clayton and Kaldor, 1987; Doll and Wakeford, 1997; Ghosh et al., 1998; 

Best and Wakefield, 1999; Pickle et al, 1999; Lawson, 2000; Sun et al, 2000; Lawson, 2001; 

Sheehan et al., 2001; Chaput et al., 2002; Mugglin et al., 2002; Ghebreyesus et al., 2003). 

Veterinary spatial epidemiology, as the name indicates, is the spatial analysis of disease 

occurrence in veterinary science. Classic veterinary epidemiological analysis typically focuses 

on the animal dimension with experiments on the host and vectors, whereas temporal and spatial 

distributions are often explored with fairly basic methods. Veterinary spatial epidemiology is 

relatively much newer and few studies have been completed. Until the 1980s, there are few 

examples in the veterinary literature where much recognizable spatial analysis is evident. The 
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possible reason is that veterinary science focused on experiments rather than field observations 

during that period. One exception is the work by parasitologists whose interest is to explore the 

interaction between climate and disease via its effect on vectors and intermediate hosts (Durr, 

2004). Until now, most studies are still emphasized in this area. Ollerenshaw (1966), for example, 

developed one of the earliest climate forecast systems for predicting acute outbreaks of Fasciola 

hepatica in Wales and England. Later, other researchers did even more impressive work in this 

scope. The real impetuses to the growth of spatial epidemiology, however, were the technical 

breakthroughs in computing and the availability of satellite imagery in the 1980s. Researchers, 

especially parasitologists, began using GIS packages and satellite images to map disease and 

relate them to environmental factors. Lessard et al. (1990) established landmark research by 

collating a large amount of data to visualize and investigate the spatial pattern of theileriosis 

across the whole continent of Africa.  

The most popular use of satellite images in veterinary spatial epidemiology is to extract 

the normalized difference vegetation index (NDVI), which is closely correlated to the green 

vegetation biomass and thus indirectly to rainfall, and relate this index to vector habitat and 

vector abundance. Since the 1990s, with the emergence of user-friendly GIS and image 

processing packages, such as Arcview (ESRI), Mapinfo (Pitney Bowes MapInfo Corporation), 

Idrisi (Clark University), and ERDAS Imagine (Leica Geosystems), there is less need for the 

epidemiologists to get extensive GIS training and they can use the software easily to achieve 

certain goals. This trend has transferred spatial epidemiology into part of mainstream veterinary 

epidemiology and has been well illustrated by the number of papers presented in the successive 
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International Symposia on Veterinary Epidemiology and Economics (ISVEE) conferences during 

the 1990s (Durr, 2004). Pfeiffer (2000) also presented an overview of spatial analysis 

applications in veterinary epidemiology. 

2.3  GIS and remote sensing in spatial epidemiology 

A GIS is a system of hardware, software, and procedures designed to support the 

collection, manipulation, analysis, modeling, and display of geographically indexed data for 

solving complex problems (Burrough, 1986; Lo and Yeong, 2002). It is an essential and integral 

part of spatial epidemiology and provides a powerful tool for data visualization and exploration. 

For spatial epidemiological modeling, GIS has been used to provide input variables and display 

model output. A GIS also has the potential ability to be an integral component of a model, 

deriving information from other sources, feeding it into the model and storing the output. 

The need to obtain information about the Earth’s surface over space and time is the 

motivation for the use of remote sensing in epidemiological studies. Satellite images can provide 

regular, systematic and synoptic vegetation indices over the entire globe with image archives 

dating back to the early 1970s. They also can give high temporal data on a daily basis for time 

pattern recognition research.  

Considering the climate factors, the collection and analysis of weather station data from a 

large number of sites involves considerable expense, time and effort. It has been demonstrated 

that remotely sensed images are correlated to a greater or lesser degree with certain climatic 

variables recorded on the Earth’s surface (Hay et al., 1996; Baylis and Rawlings, 1998). Baylis et 

al.(1999) demonstrated that variables derived from satellite images performed better than the 
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climatic variables in their predictive modeling. They concluded that the reason may be that the 

remotely sensed data recorded more biologically relevant data than the weather stations, which 

also affected the distribution and abundance of vectors, in turn influencing the status of disease 

occurrence.  

It is shown that easily available remotely sensed data set combined with GIS could be 

used to explain the observed patterns not only more efficiently, but also more effectively (Baylis 

et al., 1998; Baylis and Rawlings 1998; Baylis et al., 1999; Baylis et al., 2001). Recently there 

have been several studies on predicting vector distribution using remotely sensed data as 

surrogates for climatic data such as NDVI for vegetation, channels 4 and 5 of the Advanced Very 

High Resolution Radiometer (AVHRR) for temperature, cold-cloud duration (CCD) for rainfall, 

etc. (Linthicum et al., 1987; Rogers and Randolph, 1991; Wood  et al., 1991; Rogers and 

Williams, 1993; Cross et al., 1996; Hay et al., 1996; Rogers et al., 1996; Estrada-Peña, 1997; 

Baylis and Rawlings, 1998; Baylis et al., 1999; Glass et al., 2000; Hay, 2000; Thomson and 

Conner, 2000; Baylis et al., 2001; Boone et al., 2000). The basis for the supposition that remotely 

sensed data can be used for vector-borne disease prediction is that pathogen transmission is 

facilitated by arthropods, whose survival and reproduction are affected by climate variables such 

as temperature and humidity, while the remotely sensed images are correlated with climate 

variables. 

While there are a large number of Earth observation satellites, very few have found 

applications in epidemiology. The most important satellites used in epidemiology are the Landsat 

and the National Oceanic and Atmospheric Administration (NOAA), USA satellites (Durr and 
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Gatrell, 2004). Generally, remotely sensed images tend to have either high-spatial or 

high-temporal resolution, but not both. The Landsat satellite program has provided medium 

spatial resolution optical data of 80-m pixel sizes (1972-1983) and images of 30-m pixels 

(1982-present) This resolution may let researchers identify common land covers such as 

individual agricultural fields and make it ideal for comparing different types of vegetation, but it 

has a revisit period of 16 days, which means it gives few cloud-clear images of the Earth’s 

surface each year (Hay et al., 1996). Advanced Very High Resolution Radiometer (AVHRR) 

sensors on-board the NOAA series, on the other hand, provide low-resolution 1000-m pixel 

images at a much greater temporal resolution (daily), which is most suitable for obtaining the 

cloud-free images. Other moderate resolution sensors include the USA Terra Sensors 

Moderate-resolution Imaging Spectroradiometer (MODIS) (up to 250-m resolution) and 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (15-m resolution). 

Satellite programs in other countries such as the European SPOT1-5 (up to 10-m resolution), 

Indian IRS-1 (up to 5.8-m resolution), Russian RESURS (170-m resolution), Japanese JERS-1 

(18-m resolution), and CBERS (20-m resolution) cooperated by China and Brazil all give Earth 

resource observations in different perspective (Lillesand and Kiefer, 1999). 

Now with the advent of higher and higher spatial and temporal resolution satellite such as 

Ikonos (with revisit time of 11 days and spatial resolution of 1-m panchromatic and 4-m 

multispectral), QuickBird (with revisit time of 1 to 5 days and spatial resolution of 0.6-m 

panchromatic and 4-m multispectral), OrbView-3 (with revisit time of less than 3 days and 

spatial resolution of 1-m panchromatic and 4-m multispectral), and Worldview-1 (with revisit 
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time of 1.7 days and spatial resolution of 0.5-m panchromatic. There will be wider applications 

of remote sensing techniques in spatial epidemiology. Another option is the pointable sensors of 

constellations of small satellites that are increasingly being launched by multi-national coalitions. 

It requires a number of duplicate satellites in blocks constituting a constellation that provide 

adequate temporal, spatial and radiometric sampling (Huh, 2008, 

http://hurricane.lsu.edu/_unzipped/huh_paper1/huh_paper1.PDF) 

2.4   Spatial-temporal modeling in veterinary spatial epidemiology 

The increasing availability of high resolution (spatial, spectral and temporal) satellite 

image data provide information on Earth surface processes that can be linked to disease 

outbreaks via spatial-temporal models. In veterinary spatial epidemiology, the most often used 

models are logistic regression and discriminant analysis because the independent variables are 

usually binary data (used in logistic regression) or categorical data (used in discriminant 

analysis). During the last 10 years, a number of spatial modeling applications directly related to 

animal disease have been conducted. McKenzie et al. (2002) used a logistic regression model to 

predict the risk of Mycobacteriumbovis infection in wildlife using remotely sensed images, and 

revealed the presence of hotspots of tuberculosis infection on the basis of vegetation and slope 

information. Duchateau et al. (1997) produced a risk map of theileriosis outbreaks in Zimbabwe. 

They first applied principle components analysis (PCA) to climate factors to control for the 

multicollinearity between the variables, and the selected components were included in the 

logistic regression analysis. Baylis et al. (2001) applied discriminant models to the disease vector 

to detect areas of bluetongue infection risk in the Mediterranean. The model predicted three 
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abundance categories of Culicoides imicola on the basis of the temporal and spatial data of 

various remotely sensed climate variables. Estrada-Peña (1999) used ‘Cokriging’ to predict 

habitat suitability for Boophilus microplus ticks in South America by associating tick 

presence/absence data for selected locations with remotely sensed temperature and vegetation 

information. In his research, spatial dependence was taken into account. Pfeiffer et al. (1997) 

refined the work of Duchateau et al. (1997) with consideration of spatial dependence by utilizing 

generalized linear mixed logistic regression. The model included environmental and land-use 

risk variables, as well as a random effect to account for the local dependence between 

neighboring observations. Regarding HD, Ward (1994) tested 18 climatic variables for their 

association with the prevalence of bluetongue virus infection in the cattle herds in Queensland, 

Australia using logistic regression and concluded that the average daily maximum temperature 

and the average annual rainfall could explain most variability in the disease prevalence. All of 

the above models only consider spatial distribution of the disease, ignoring the time affect on the 

disease distribution and its temporal relations with explanatory factors. Thus a more realistic and 

comprehensive spatial-temporal model should be proposed for spatial epidemiology. 

The initial methods proposed for spatial-temporal models were extensions of moving 

average methods for time series to include spatial patterns (Pickle, 2000). Later, log-linear 

regression methods were developed for mortality rates, assuming asymptotic normality and extra 

variation for the underlying Poisson or binomial data (Congdon, 1994). Afterwards, more 

methods were proposed, such as random fields (Handcock and Wallis, 1994), thin plate splines 

(Van der et al., 1995) and difference equations (Solna and Switzer, 1996). A number of the above 
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approaches assumed spatial stationarity (no variation across space) and isotropy (same in 

different directions), which generally do not hold for disease rate data. More recently, less 

restrictive Hierarchical Bayesian models and generalized linear mixed models have been 

proposed. 

2.4.1  Bayesian models 

Bernardinelli and Montomoli (1992) proposed a fully Baysian model in which both 

area-specific intercept and trend are modeled as random effects which allow for correlation 

among them, and perform an analysis of variation of risk for a given disease in space and time.  

Hierarchical Bayes methods are increasingly popular tools for disease mapping because 

they permit smoothing of the fitted rates toward spatially local mean values, with more 

unreliable estimates receiving more smoothing. Zhu and Carlin (2000) developed a Hierarchical 

Bayesian model to analyze spatial-temporally misaligned data wherein the covariate is available 

on a grid that is a refinement of the regional grid for which the response variable is available, and 

where the regional boundaries may also evolve over time (Zhu and Carlin, 2000). Waller et al. 

(1997) extended the Hierarchical Bayesian model to incorporate general temporal effects and 

space-time interactions, giving a hierarchical framework for modeling regional disease rates over 

space and time. This method requires careful implementation using Markov Chain Monte Carlo 

(MCMC) methods. Knorr-Held and Besag (1998) developed a dynamic model in hierarchical 

Bayesian framework to generate smoothness in time trends, so that estimates for any specific 

time can “borrow strength” from data at adjacent times. Parameter estimation from the above 

Bayes models has been by either a normal approximation or a MCMC resampling procedure 
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with an assumption of normal prior distributions (Pickle, 2000). The Bayesian models require 

continuous or count data as the dependent variable, which is not suitable for our research. 

2.4.2  Generalized linear mixed models (GLMM) 

Generalized linear mixed models (GLMM) are generalized linear models (GLM) with 

added random cluster and /or subject effects to account for the correlation of the data. In GLMM, 

the response distribution is defined conditionally depending on the random effects (Hartzel et al., 

2001). It is a well-known tool in statistics for modeling non-normal data such as dichotomous, 

ordinal, nominal, and count data. For dichotomous data, a logistic or probit regression model is 

usually adopted with various methods for incorporating and estimating the influence of the 

random effects. The mixed-effects logistic regression model is arguably the most popular 

GLMM for analysis of multilevel dichotomous data. McCullagh (1980) proposed the 

proportional odds model based on the logistic regression formulation for the analysis of ordinal 

data in 1980. Since then, many of the GLMMs for ordinal data have been generalized from this 

model. As to nominal data, the mixed logistic model is also extended to fit nominal data (Hartzel 

et al., 2001). For count data, various types of Possion mixed models have been proposed. A 

review of some of these methods applied to longitudinal Possion data is given by Stukel (1993). 

The GLMM permits various spatial and temporal covariance structures, and does not require the 

assumption of stationarity or isotropy (Pickle, 2000). 
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2.5  Space-time clustering analysis 

2.5.1   Space-time clustering techniques 

Space-time clustering is a new branch in cluster detection. It is argued that disease cases 

occur close to each other in time as well as in space. Investigation of clustering of disease 

occurrence can provide valuable information on possible causes of the disease, and appropriate 

methods for disease control and prevention (Ward and Carpenter, 2000). Since the identification 

of space-time clustering based on visual inspection alone appears more difficult with the 

additional dimension of time, the statistical methods become urgent (Norström et al. 2000). The 

statistical methods can be divided into those based on the description of the space-time 

interaction and those based on the detection of cluster locations. The former one only gives a 

global statistical index indicating whether there are space-time clusters or not in the study area 

during the study period. This method is also called space-time interaction. The latter method can 

identify clusters with both a spatial and a temporal dimension, and is called a space-time cluster 

detection test (Kulldorff et al., 1998). Several techniques have been proposed and applied for 

space-time clustering analysis. The Knox test (Knox, 1964), the Barton’s method (Barton and 

David, 1966), the Mantel regression (Mantel, 1967), and the k nearest neighbor test (Jacquez, 

1996) are four popular methods to describe the space-time interaction. Kulldorff’s space-time 

scan statistic is the one of the few methods for space-time cluster detection. 

The Knox’s test, proposed by Knox in 1964, quantifies space-time interaction based on 

defined space and time distances. The test statistic is a count of the number of pairs of cases that 

are separated by less than the critical space and time distances, and compared to the number of 
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events expected under a Possion model with a χ2 test (Knox, 1964; Mantel, 1967). Critics of the 

Knox’s test mainly focus on the following two aspects: 1) subjective selection of critical space 

and time distance, and 2) invariant critical distance with changing population density, which is 

unreasonable because when population density increases, the distance from case to case will 

decrease (Jacquez, 1996).  

Barton and David (1966) accept Knox’s criterion of the number of close pairs but 

question the validity of the Possion test. The Barton’s statistic is defined as the ratio of the 

squared distances among all temporal clusters to the mean squared distance between all cases. A 

statistic less than 1 indicates that there is a time-space interaction. The temporal clusters are 

those cases for which the time interval between clusters is smaller than the average interval range 

(Barton and David, 1966; Ward and Carpenter, 20000a). It partially solves the subjective 

selection of critical distances in Knox’s test by using the actual location of events. However, in 

this method, small distances have less influence on the test statistic than do large distances do 

(Mantel, 1967). 

Mantel’s regression is the sum of the time distances multiplied by the spatial distances 

for all case pairs, and then standardized by the number of paired cases (Mantel, 1967). Mantel’s 

regression is criticized for not being sensitive to non-linear dependence of time on space because 

it is based on a linear model. Although different data transformations are applied to investigate 

the non-linearities, the selection of an appropriate data transformation method is subjective 

(Jacquez, 1996; Ward and Carpenter, 2000a).  
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Jacquez (1996) extended the nearest-neighbor test for spatial clustering to a k 

nearest-neighbor test for space-time interaction. The test statistic is the count of the number of 

case pairs that are k nearest-neighbors both in time and space. It avoids the introduction of 

subjectivity because it does not need to specify critical time and space distances. Like Mantel’s 

regression, it is also sensitive to both linear and non-linear dependencies between the space and 

time of occurrence of cases (Ward and Carpenter, 2000a). 

Modifications of the above methods were also proposed and applied to practice, but they 

did not gain wide attention (Pinkel and Nefzger, 1959; Pinkel et al., 1963; Smith et al., 1976; 

Klauber, 1971). All of the above space-time interaction tests are designed for point locations of 

cases, and none of them take into account the dynamic change of the underlying population at 

risk. Kulldorff’s space-time scan statistic not only allows the detection of actual geographical 

location and temporal period of clusters, but also incorporates data on the distribution of the 

population at risk (Norström et al. 2000). This is a great contribution because epidemiologists are 

usually interested in disease clusters only after the spatial variations of at-risk population density 

are adjusted. Otherwise, the results may be misleading. Another advantage of Kulldorff’s 

space-time scan statistic is that it can be applied to point data as well as area data for the 

detection of spatial-temporal clusters (Kulldorff, 2006). 

Kulldorff’s space-time scan statistic is an extension of Kulldorff’s spatial scan statistic 

and uses either a Possion-based model or a Bernoulli model (Norström et al. 2000). It imposes a 

cylindrical window in the three dimensions of space and time, with its base indicating space and 

height denoting time. The window is moved in space and time so that the base is centered on 
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each possible geographic position throughout the study area. For any given geographic position, 

the radius of the base varies continuously in size up to a specified upper limit, and the height of 

the cylinder also varies across all the possible time intervals up to a specified upper limit 

(Kulldorff et al., 1998; Song and Kulldorff, 2003). For each window, a likelihood value is 

computed based on the number of observed and expected cases within and outside the window. 

The window with the highest likelihood value is identified as the potential space-time cluster, 

and its likelihood value is compared with the likelihood under the null hypothesis to obtain the 

likelihood ratio. A p-value is also computed for this cluster (Kulldorff et al., 1998; Aamodt, 

2006).  

 
Figure 2.6: Schematic illustration of Kulldorff’s space-time scan statistic method. (a): varying 

spatial windows for a target location; (b) varying temporal windows for a particular spatial 
window at a target location. 

2.5.2  Space-time clustering applications 

There are several applications of the investigation of space-time interaction in veterinary 

literature. White et al. (1989) applied the Knox’s test and Mantel regression method to 

(a) (b) 
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investigate the space-time clustering of outbreaks of winter dysentery in cattle herds in Ithaca, 

New York. Paré et al. (1996) utilized Knox’s test to analyze the space-time clustering of horses 

with Salmonella krefeld in their feces during hospitalization. In another research example 

conducted by Carpenter et al. (1996), Knox’s test was adopted in the spatial-temporal analysis of 

fowl cholera outbreaks in turkeys between August 1985 and July 1986 in California. Singer et al. 

(1998) applied Barton’s test to assess the space-time clustering of ampicillin- and 

tetracycline-resistant isolates of Pasteurella multocida and P. haemolytica from California cattle 

with pneumonia. Norström et al. (2000) used Kulldorff’s space-time scan statistic, Knox’s test, 

and Jacquez’s k nearest-neighbor test to assess the presence of space-time clustering and 

interaction during an outbreak of acute respiratory disease in Norwegian cattle. Fuchs et al. 

(2000) investigated the space-time clustering of scabies in chamois in Austria using Knox’s test 

and Mantel’s regression. Ward and Carpenter (2000a) made use of blowfly capture data to 

demonstrate the use of various space-time clustering methods including Knox’s test, Mantel’s 

regression, Barton’s test and Kulldorff’s space-time scan statistic. They recommended the use of 

several methods together to increase the statistical power of the analysis. In Ward and 

Armstrong’s (2000) study, the reported occurrence of blowfly strike in 57 sheep flocks in 

Queensland, Australia, was investigated for time-space clustering using Knox's method. Despite 

the above applications, space-time clustering investigations in veterinary science are not 

common possibly due to the following three reasons: 1) there is a general lack of information on 

the location of disease outbreaks and their timing; 2) it is not easy to explain and visualize the  
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concept of space-time interaction and cluster analysis; and 3) there are few readily available 

space-time clustering software packages. 

In the spatial data mining field, several software packages that integrate visualization for 

exploring patterns hidden in the data set have been developed. These software packages are 

designed for interactive visual and/or statistical analysis of spatially and temporally referenced 

data, including clustering analysis. Some examples are CommonGIS, spatial mining for data of 

public interest (SPIN!), cubeview visualization system, and TerraSeer space-time information 

system (STIS). However, the clustering analysis in these software packages mainly focus on 

qualitative visualization aspects. Furthermore, the spatial and temporal distributions are analyzed 

separately with only simple statistical analysis on spatial clustering. Some other software 

packages that specialize in statistical space-time clustering analysis include CLUSTER, Stat!, 

and SaTScanTM. CLUSTER and Stat! are designed for space-time interaction analysis, and 

SaTScanTM is used for space-time cluster detection. 
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CHAPTER 3 

 SPATIAL-TEMPORAL PREDICTION MODEL OF HEMORRHAGIC DISEASE IN 

WHITE-TAILED DEER IN SOUTHEAST USA: 1982 – 2000 1  
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1 Xu, B., Stallknecht, D. E., Madden, M., Hodler, T. W. and Parker, K. C. To be submitted to 
International Journal of Remote Sensing. 
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Abstract: Spatial and temporal patterns of outbreaks of hemorrhagic disease (HD) in 

white-tailed deer in the USA may be related to spatial and temporal variance in environmental 

and climatic conditions. This paper proposes the development of a spatial-temporal database and 

statistic model to predict the geographic and temporal distribution of HD in white-tailed deer in 

southeast USA. The HD occurrence data available from the Southeastern Cooperative Wildlife 

Disease Study (SCWDS) dates back to the early 1980s. From this unique nation-wide and 

county-based HD survey data set, binary data on presence and absence of HD for individual 

counties in Alabama, Georgia, South Carolina, North Carolina, and Tennessee were extracted for 

the years 1982 to 2000. These dates coincide with available historical climatic data including 

temperature, rainfall, wind speed, and dew point for the five southeast states available from 1982 

to 2000. In addition, archived remotely-sensed Advanced Very High Resolution Radiometer 

(AVHRR) satellite data were used to derive normalized difference vegetation index (NDVI) and 

land surface temperature data set. Other predictor variables included spatial dependency of HD 

in adjacent counties, time, and elevation. This study first applied principal component factor 

analysis to reduce the data volume and eliminate covariance between variables. Next a 

generalized linear mixed logistic model was used to develop a spatial-temporal statistical model, 

taking HD data as the dependent variable and the principal factors derived from the principal 

component factor analysis as predictor variables. The spatial dependency was considered by 

incorporating a spatial association term which evaluates the effect of HD occurrence in 

surrounding counties on a particular county. The results show that wind speed, rainfall, land 

surface temperature and NDVI were useful factors in predicting HD occurrence, with total 
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prediction accuracy of 65 percent when all four factors were considered for a five state area. The 

prediction accuracy for individual year ranges from 27 percent to 96 percent. Remotely-sensed 

data proved to be informative and resulted in a higher prediction power than some ground-based 

weather station climatic data. 

Keywords: Hemorrhagic disease, Remote sensing, Spatial-temporal, Generalized linear mixed 

logistic model 
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3.1  Introduction 

Hemorrhagic disease (HD) causes significant mortality in white-tailed deer and has been 

documented in the USA since 1890s (Trainer, 1964; Hoff and Trainer, 1981). The disease 

pathology, viruses causing the disease (bluetongue and epizootic hemorrhagic disease viruses), 

and the transmitting vectors (Culicoides midges) have been studied extensively by veterinary 

researchers (Hoff and Trainer, 1978; Nettles and Stallknecht, 1992). However, to date, few 

investigators to date have focused on the distribution of HD in white-tailed deer in relation to 

environmental factors that may be used to predict outbreaks of the disease. Such studies have 

been done with bluetongue virus in cattle by Ward (1994). Testing 18 climatic variables for their 

association with the prevalence of bluetongue virus infection in the cattle herds of Queensland, 

Australia, Ward concluded that ground-based measures of average daily maximum temperature 

and the average annual rainfall could explain the most variability in HD prevalence. Even in this 

study, Ward only applied simple ordinary linear regression without considering the spatial and 

temporal effects. Furthermore, it has been demonstrated that remotely-sensed images are 

correlated with certain climatic variables recorded on the Earth’s surface (Hay et al., 1996; 

Baylis and Rawlings, 1998). Given the 30-year archive of global remote sensing data, it is now 

possible to correlate variance in climatic and environmental conditions with spatial and temporal 

distributions of HD outbreaks 

The objective of this research is to develop a spatial-temporal statistical prediction model 

to investigate the relationship between occurrence of HD in white-tailed deer and various 

climatic/environmental factors derived from a combination of ground-based remotely-sensed 
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data. Section 3.2 provides a brief introduction to the use of remote sensing and GIS techniques in 

veterinary epidemiology and spatial-temporal modeling. Section 3.3 describes the study area and 

the mechanism for the project. Section 3.4 describes the HD, climatic, and remotely-sensed data 

that are utilized to construct the statistical model. In Section 3.5, the proposed spatial-temporal 

model is detailed, while Section 3.6 discusses the results and findings from the proposed model. 

Finally, Section 3.7 presents a summary and conclusion. 

3.2  Background  

3.2.1  Remote sensing and GIS in epidemiology 

Remote sensing and geographic information system (GIS) techniques have been finding 

their way into epidemiological studies because of their value for obtaining and processing 

information about the Earth’s surface over extensive areas and long time periods. Baylis et 

al.(1999), for example, demonstrated that variables derived from satellite images performed 

better than climatic variables measured by weather stations in their predictive modeling of the 

distribution of Culicoides imicila in southern Africa. They concluded the reason might be that 

remotely-sensed data recorded more biologically relevant data that affected the distribution and 

abundance of vectors influencing the status of disease occurrence. Further studies demonstrated 

easily available remotely-sensed data combined with GIS could be used to explain the observed 

patterns not only more efficiently, but also more effectively (Baylis et al., 1998; Baylis and 

Rawlings 1998; Baylis et al., 1999; Baylis et al., 2001).  
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Recently there have been several studies on predicting vector distributions using 

remotely-sensed data as surrogates for climatic data. Some examples are normalized difference 

vegetation index (NDVI) representing vegetation conditions, land surface temperature derived 

from channel 4 and channel 5 of the Advanced Very High Resolution Radiometer (AVHRR) 

substituting temperature, and cold-cloud duration (CCD) indicating rainfall (Linthicum et al., 

1987; Wood et al., 1991; Rogers and Williams, 1993; Cross et al., 1996; Hay et al., 1996; Rogers 

et al., 1996; Estrada-Peña, 1997; Baylis et al., 1999; Boone et al., 2000; Glass et al., 2000; Hay, 

2000; Thomson and Conner, 2000). However, almost all the previous studies concentrate on the 

relationship between the distribution of vectors of the disease and remotely-sensed (Durr, 2004). 

Few studies are conducted directly on the relationships between the distribution of the hosts of 

the disease, environmental factors and remotely-sensed data. 

3.2.2  Spatial-temporal model 

Modeling is a necessary technique for the explanation and prediction of the relationship 

between disease and affecting factors, usually environmental and social in origin. Some work has 

been done to predict disease occurrence with climatic or remotely-sensed data using modeling 

(Rogers and Randolph, 1993; Roberts et al., 1996; Rogers et al., 1996; Beck et al., 1997; Snow et 

al., 1998; Glass et al., 2000; Lindsay and Thomas, 2000; Baylis et al., 2001; Hales et al., 2002). 

In these studies, simple linear discriminant analysis, logistic regression, and ordinal linear 

regression were applied assuming that the occurrence of disease and transmission of viruses are 

spatially and temporally independent, which violates both the mechanism behind disease 
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distribution and the spatial and temporal dependency. Some studies did consider the spatial 

dependency using essentially two methods (Augustin et al., 1996; Thomson et al., 1999; 

Kleinschmidt et al., 2000). One assumes that the spatial covariance between points is a function 

of distance between them, and by analyzing the variogram of the residuals from the fitted model, 

the spatial correlation in the data can be estimated. The other method explicitly adds an 

additional spatial covariate term into the model. The additional term is a distance or 

proximity-weighted average of values for each point or area. These studies take spatial 

dependency into account, but none of them incorporate temporal aspects. 

Traditional longitudinal statistical analyses such as marginal models and generalized 

linear mixed models (GLMM) have been applied in epidemiology to consider the covariance 

between repeated measurements for one subject at different times (Fienberg et al., 1985; Van 

Marter et al., 1990; Lauer et al., 1997; Rogan et al, 2001; Hedeker, 2003). These models, on the 

contrary, consider time effects, but not the spatial correlation. Many more complex Bayesian 

hierarchical models and GLMM have been proposed over the years and have gained wide 

acceptance for application in spatial-temporal disease mapping (Waller et al., 1997; Knorr-Held 

and Besag, 1998; Xia and Carlin, 1998; Bohning et al., 2000; Pickle, 2000; Zhu and Carlin, 

2000). However, they are not extensively applied to prediction models in epidemiology. 
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3.3  Study area and mechanism 

3.3.1  Study area 

The southeast USA has a long history of HD occurrence in white-tailed deer. As early as 

1949, Ruff (1949) pointed out that extensive mortality of an unexplained fatal disease in 

white-tailed deer occurred at irregular intervals for many years in this region which was later 

believed to be similar to HD. Since then, occurrences of HD were traditionally reported and 

caused significant die-offs, such as the outbreaks in 1971 (Thomas et al., 1974), 1980 

(Couvillion et al., 1981), and 1998 (Nettles and Stallknecht, 1992). Furthermore, precipitating 

antibodies to bluetongue virus (BLU) and Epizootic Hemorrhagic disease (EHD) are consistently 

detected in white-tailed deer annually in this region (Stallknecht et al., 1991). Annual data 

collected by the Southeastern Cooperative Wildlife Disease Study (SCWDS) in the College of 

Veterinary Medicine, University of Georgia indicates that contiguous instances of HD have been 

reported throughout the Southeast since 1980 to present (Nettles et al., 1992). Thus, our study 

focuses on five states in the southeastern region of the USA: Alabama, Georgia, South Carolina, 

North Carolina, and Tennessee (Figure 3.1).  
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Figure 3.1: Study area: Alabama, Georgia, South Carolina, North Carolina, and Tennessee 
 

3.3.2  Mechanism 

Given the importance of many aspects of vector behavior and biology to the transmission 

of vector-borne diseases, it is apparent that the distribution and intensity of such diseases is 

usually dependent upon the abundance and distribution of the vectors, which in turn depend on 

climate and environment (Hay et al., 1996). Hemorrhagic disease is a vector-borne disease 

transmitted by species of the genus Culicoides. As a result, environmental factors affect the 

epidemiology of the disease through their effects on the distribution, size and abundance of the 

vector population, which, in turn, is thought to account for the seasonal occurrence of HD 

discovered by previous investigators (Walker and Davies, 1971; Ward, 1994; Hay et al., 1996; 

Wittmann and Baylis, 2000). Environmental factors also directly influence the epidemiology of 

the disease by affecting the distribution and growth of the herds. There is, therefore, a causal 

relationship between the occurrence of HD and environmental factors. Furthermore, studies also 
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show that climatic data can be surrogated by remotely-sensed data (Hay et al., 1996; Baylis and 

Rawlings, 1998; Baylis et al., 1999). These conditions constitute the theoretical basis that I use to 

construct a prediction model depicting the relationship between the presence/absence of HD and 

the climatic and remotely-sensed data (Figure 3.2). 

 

 

 

 

 

 

 

Figure 3.2: Mechanism of the model 

 

3.4  Data sources  

 To construct a statistical prediction model for HD distributions, HD occurrence data for 

each county in the five states are needed as the response variable, and various climatic data and 

remotely-sensed data are used as predictor variables. 

3.4.1  HD data 

The HD occurrence data are collected on a county basis through the surveillance project 

conducted by SCWDS. This surveillance project has been performed annually beginning in 1980 

and is the most comprehensive database for white-tailed deer morbidity and mortality anywhere. 

Remotely-sensed data Climatic factors 

Distribution, abundance, and 
size of Culicoides 

Distribution and abundance of 
white-tailed deer 

Distribution of HD 

surrogate 
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The researchers mail questionnaires to the state fish and wildlife agency in each state, plus most 

of the state veterinary diagnostic laboratories. The surveillance also includes personnel in the U.S. 

Fish and Wildlife Service and the Animal and Plant Health Inspection Service, USDA. All states, 

except Hawaii, were surveyed from 1982 to present. The researchers set four criteria for the 

surveillance reporting as follows: 

1)    Sudden, unexplained, high deer mortality reported during the late summer and early fall. 

2)    Necropsy diagnosis of HD as rendered by a trained wildlife biologist, a diagnostician at a 

State Diagnostic Laboratory or Veterinary College, or by SCWDS personnel. 

3)    Isolation of EHD or bluetongue virus from a deer. 

4)    Observation of hunter-killed deer that showed sloughing hooves, ulcers in the mouth, or 

scars on the rumen lining as indirect evident of chronic HD occurrence. 

Among them, criteria 1, 2, and 3 are collectively called deer mortality, and criterion 4 is 

deer morbidity. From the original report of each state, a file reporting the HD occurrence by 

years and counties from 1982 to 2000 was created for this study. The data are binary, if there is 

HD occurrence in the county in the specific year, it is represented as 1, otherwise, it is 0 (Table 

3.1). Those counties that do not report any occurrence in any year are discarded from the 

research.  
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Table 3.1: HD data explanation 

Value Explanation 

0 No HD exists in the county in the year 

1 HD exists in the county in the year 

 

3.4.2  Climatic data  

 The climatic data were obtained from the national climatic data center (NCDC). The 

original data are hourly measures of temperature, rainfall, dew point, and wind speed at 161 

weather stations located throughout the study area. These hourly measures were processed to 

obtain the daily maximum, minimum, and mean data. After that, the daily data were aggregated 

to monthly average maximum, monthly average minimum, monthly average mean, monthly 

highest, and monthly lowest data. The monthly data were then aggregated to corresponding 

yearly data and period data from April to October when HD is mostly likely to occur. Since these 

data were attached to the 161 weather stations, an interpolation technique (kriging) with a cell 

size of 30 meters was applied in ArcGIS to create a continuous surface of values across the study 

area for each year and each period. Finally, the interpolated data were subject to zonal statistics 

using counties as zonal areas to produce the zonal average value of the corresponding climatic 

variables for each county in ArcGIS. Figure 3.3 gives the weather stations, interpolation results 

and zonal statistics results for mean temperature in 1980. All together, there are 30 climatic 

variables with 15 yearly-based variables and corresponding 15 period-based variables(Table 3.2).  
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Figure 3.3: Data processing for mean temperature in 1980: (a) Weather stations in study area; (b) 

Temperature interpolation results for entire study area; and (c) Zonal statistics results for each 
county 

 

(a) 

(c) 

(b) 
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Table 3.2: Climatic variables 

Variable Description Variables 
for the year 

variables for the period 
from April to October 

Mean dew point  Davg D'avg 
Mean average maximum dew point  Dmax D'max 
Mean average minimum dew point Dmin D'min 
Mean rainfall Ravg R'avg 
Mean average maximum rainfall Rmax R'max 
Mean average minimum rainfall Rmin R'min 
Mean temperature Tavg T'avg 
Highest temperature  Thigh T'high 
Lowest temperature  Tlow T'low 
Mean average maximum temperatures  Tmax T'max 
Mean average minimum temperatures  Tmin T'min 
Mean wind speed  Wavg W'avg 
Highest wind speed Whigh W'high 
Mean average maximum wind speed  Wmax W'max 
Mean average minimum wind speed Wmin W'min 

 

3.4.3  Remotely-sensed data 

As mentioned above, some remotely-sensed data can be surrogates of environmental 

indices. It is also argued that remotely-sensed data may produce better results because they 

not only capture measures over a larger area rather than a point measurement recorded by a 

weather station, but also the data may reflect the biophysical characteristics which contribute 

to the occurrence of disease and transmission of viruses. In this research, I use NDVI index 

and land surface temperature derived from channels 4 and 5 of the AVHRR as predictor 

variables to see whether remotely-sensed data can be used to predict HD occurrence.  

 NDVI index is calculated as follows: 

NDVI = (Ch2-Ch1)/(Ch2+Ch1)                                Equation 3.1 
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Where  Ch1 is the channel 1 reflectance (visible red, 0.58 – 0.68μm) in AVHRR 

Ch2 is the channel 2 reflectance (near infra-red, 0.72 – 1.10μm) in AVHRR 

This vegetation index is theoretically a specific measure of chlorophyll abundance and 

energy absorption (sometimes described as greenness), and now is extended to cover vegetation 

biomass (Tucker et al., 1983), coverage (Tucker et al., 1985), seasonal rainfall (Linthicum et al. 

1987), and phenology (Justice et al., 1985) in a range of ecosystems.  

The relationship between land surface temperature (Ts) and thermal infrared channel 4 

(10.3 – 11.30μm) and channel 5 (11.5 – 12.50μm) brightness temperatures in AVHRR (Ch4 and 

Ch5, respectively) is provided in Equation 3.2.       

Ts = Ch4 + 3.33*(Ch4-Ch5)                                 Equation 3.2 

Ch4 gives a brightness temperature based on Planck’s law which quantifies the spectral 

radiance of electromagnetic radiation from a black body as a function of wavelength. The second 

part of the equation modifies the estimate to allow for attenuation of the signal by the atmosphere 

(Price, 1984; Sugita and Brutasaert, 1993; Cooper and Asrar, 1989; Baylis et al., 1999). 

The NDVI index and Channel 4 and Channel 5 were obtained from the NOAA/NASA 

Pathfinder AVHRR Land program (ftp://disc1.gsfc.nasa.gov/data/avhrr/). The Pathfinder 

Program produces data set derived from the observations made by AVHRR on the "afternoon" 

NOAA operational meteorological satellites (NOAA-7, -9, 11) from 1982 to 2000. In this 

research, the 10-day composite of NDVI, AVHRR channel 4 brightness temperature, AVHRR 

channel 5 brightness temperature with spatial resolution of 8km x 8km were used to obtain the 

final remotely-sensed variables for each year and period in the study area. The NDVI index is 
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already provided by the Pathfinder AVHRR Land program and can be directly downloaded from 

the NASA data center. Surface temperature is calculated from Channel 4 and Channel 5 of 

AVHRR using Equation 3.2. The original data are compressed binary files scaled to 8 bit (.NDVI) 

and 16 bit (Channel 4 and Channel 5). After downloading, these files were decompressed in the 

linux system, and imported to PCI Geomatics software as .pix file format. The imported files 

were then exported to ERDAS Imagine software and rescaled to original 32 bit data. Land 

surface temperatures were calculated according to Equation 3.2. Subsequently, maximum, 

minimum, mean values were extracted for each year and each period in ERDAS Imagine. In 

ArcGIS, the above images were subset to the study area and subject to zonal statistics to obtain 

the final data for each county. 

The final remotely-sensed variables are listed in Table 3.3. Combined with the 

availability of HD data and explanatory data, all together, 366 of the 467 counties in the five 

states were included in the study, and 101 counties with no HD occurrence reported were 

excluded. 

3.4.4  Elevation data 

The elevation data were used as a predictor variable in the model because it is thought the 

elevation can influence the distribution of Culicoides. Since the analysis is based on the county 

level, the mean elevation of each county is calculated for the input. The original 30-meter 

resolution elevation data were downloaded from the National Map Seamless Server run by the U. 

S. Geological Survey (USGS) which offers seamless USGS National Elevation Dataset (NED) 

(http://ned.usgs.gov/). After downloading, the mean elevation of each county was calculated 
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using zonal statistic function of Spatial Analyst Extension in ArcGIS with county map as the 

zone base.  

Table 3.3: Remotely-sensed variables 

  Remotely-sensed Variable 
description 

Variables for 
the year 

Variables for the 
period from April to 

October 

Lmax Mean land surface 
temperature Lmax L'max 

Lmean Mean average maximum 
land surface temperature Lmean L'mean 

Lmin Mean average minimum land 
surface temperature Lmin L'min 

Nmax Mean NDVI Nmax N'max 

Nmean Mean average maximum 
NDVI Nmean N'mean 

Nmin Mean average minimum 
NDVI Nmin N'min 

 

3.5  Spatial-temporal model  

 In this study, each of the 366 counties in the study area is measured repeatedly from 

1982 to 2000 on a yearly basis (19 years). All together, there are 6954 observations for response 

variable and predictor variables. The response variable is 1 if HD is present and 0 if HD is not 

present. The hypothesis is that the probability that HD is present in a county is dependent on the 

climatic factors, remotely-sensed data, elevation, time, as well as spatial dependency (whether or 

not the disease occurs in its neighboring counties).  
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3.5.1  Principal component factor analysis 

The original data contain 30 climatic variables, 12 remotely-sensed variables, one 

elevation variable, one time variable, and one spatial dependency variable, or 45 total variables. 

Furthermore, it is argued that correlation exists between and within climatic variables and 

remotely-sensed variables, which violates the assumption of independency between predictor 

variables for linear regression. Thus, before constructing the spatial-temporal model, the climatic 

and remotely-sensed variables were subject to principal component factor analysis for data 

reduction and correlation elimination. Principal components factor analysis combines traditional 

factor analysis and principal components analysis together. Although it applies the same methods 

used in traditional common factor analysis, it does not analyze the common variance as in factor 

analysis. Instead, it considers the total variance as in principle components analysis. On the other 

hand, different from principle components analysis, it yields a component loading matrix that can 

be rotated for ease of interpretation. 

Table 3.4 shows the principal component factors after performing the principal 

component factor analysis. Two criteria are commonly used to help choose the optimal number 

of factors for later analysis. The first is the Kaiser criterion proposed by Kaiser (1960). 

According to this criterion, I can retain only factors with eigenvalues greater than 1. The second 

criterion is the graphical scree test proposed by Cattell (1966), which plots the eigenvalues in a 

line plot. It is suggested to find the place where the smooth decrease of eigenvalues appears to 

level off to the right of the plot (Cattell, 1966). Those factors with engenvalues greater than the 

eigenvalue corresponding to leveling off of the plot were retained. It is argued that the Kaiser 
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criterion sometimes retains too many factors, while the scree test retains too few (Linn, 1968; 

Tucker et al., 1969).  

Figure 3.4 shows the scree plot with a line indicating eigenvalue = 1. From the scree plot, 

I can see that the eigenvalues level off at a value of 1.2, and the factors to the left of this point 

should be retained. That is, the first 8 factors should be used to express the total variance in the 

data set. Whereas based on Kaiser’s criterion, 11 factors should be chosen. By examining the 

cumulative percentage in Table 3.4, the first 8 factors only explain 78.28 percent of the total 

variance, while the first 11  

Table 3.4: Principal component factors 

Factor Eigenvalue Proportion Cumulative 
1 10.37224 0.247 0.247 
2 5.11598 0.1218 0.3688 
3 4.69331 0.1117 0.4805 
4 3.51211 0.0836 0.5641 
5 3.01552 0.0718 0.6359 
6 2.62788 0.0626 0.6985 
7 1.88508 0.0449 0.7434 
8 1.65531 0.0394 0.7828 
9 1.18764 0.0283 0.8111 

10 1.14059 0.0272 0.8382 
11 1.10147 0.0262 0.8645 
12 0.72896 0.0174 0.8818 
13 0.64036 0.0152 0.8971 
14 0.58059 0.0138 0.9109 
15 0.47861 0.0114 0.9223 
16 0.43482 0.0104 0.9326 
17 0.40559 0.0097 0.9423 
18 0.38336 0.0091 0.9514 
19 0.34532 0.0082 0.9596 
20 0.3159 0.0075 0.9672 
21 0.22062 0.0053 0.9724 
22 0.15841 0.0038 0.9762 
23 0.12246 0.0029 0.9791 
24 0.11002 0.0026 0.9817 
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25 0.09528 0.0023 0.984 
26 0.0885 0.0021 0.9861 
27 0.08295 0.002 0.9881 
28 0.07209 0.0017 0.9898 
29 0.06153 0.0015 0.9912 
30 0.05561 0.0013 0.9926 
31 0.05247 0.0012 0.9938 
32 0.04381 0.001 0.9949 
33 0.03741 0.0009 0.9958 
34 0.03366 0.0008 0.9966 
35 0.03187 0.0008 0.9973 
36 0.02502 0.0006 0.9979 
37 0.02308 0.0005 0.9985 
38 0.01709 0.0004 0.9989 
39 0.01466 0.0003 0.9992 
40 0.0122 0.0003 0.9995 
41 0.0112 0.0003 0.9998 
42 0.00944 0.0002 1 

factors can explain 86.45 percent. So in our analysis, I choose the first 11 factors for input as 

predictor variables in the spatial-temporal model. 

 

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number

Ei
ge

nv
al

ue
s

 
           Figure 3.4: Scree-test for principle component factor analysis 
 

Eigenvalue = 1 
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Table 3.5 shows the rotated factor loadings for each of the 11 factors. As mentioned 

above, rotated factor loadings make it easier to interpret the correlation between factors and 

original variables. The underlying premise is that by rotating the axes of the scatterplot of factor 

loadings, a much clearer pattern of loadings can be obtained without changing the relative 

correlations between factors and original variables. Various rotation strategies are proposed such 

as varimax, quartimax, and equamax (Hill and Lewicki, 2007). In our research, the most popular 

varimax rotation strategy was used. The factors and its interpretation are listed in Table 3.6. 

3.5.2  Spatial dependency 

 Statistical prediction modeling of disease is often complicated by spatial association, which 

typically gives positive correlations between observations spatially close to each other. This 

dependency violates the basic assumptions underlying standard linear regression (Thomson et al., 

1999). If the modeling does not take spatial dependency into account, the resulting estimates may 

be inaccurate. In this research, an additional spatial dependency term (SA) is calculated from the 

original data and added into the model to account for spatial association. The computation of SA 

is shown in Equation 3.3. 
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Table 3.5: Factor loadings and corresponding variables 

Factor 1 Factor 2 Factor 3 Factor 4 
Variable Loading Variable Loading Variable Loading Variable Loading
dminp 0.906 nmeany 0.959 wavgy 0.943 lmeanp 0.923
davgp 0.905 nmeanp 0.929 wavgp 0.902 lmaxp 0.848
dmaxp 0.896 nmaxp 0.9 wminy 0.861 lminp 0.797
tavgp 0.889 nmaxy 0.885 wminp 0.828 lmeany 0.747
tmaxp 0.865 nminp 0.658 wmaxy 0.782 lmaxy 0.306
tlowp 0.832 nminy 0.649 wmaxp 0.746 tmaxy 0.266
tminp 0.62 lmaxy 0.157 lmaxy 0.257 nminp 0.21
davgy 0.358 lmeany 0.138 rminy 0.199 tavgy 0.189

Factor 5 Factor 6 Factor 7 Factor 8 
Variable loading Variable loading Variable loading Variable loading 
whighp 0.917 thighp 0.226 ravgp 0.923 rminp 0.959
whighy 0.906 tmaxp 0.156 thighp 0.895 nminp 0.147
wmaxp 0.468 tminp 0.139 rmaxp 0.714 rmaxp 0.103
tminp 0.317 tavgp 0.096 tlowy 0.206 davgp 0.086
wmaxy 0.315 lmaxp 0.073 whighy 0.095 dminp 0.083
tlowy 0.292 wavgp 0.067 whighp 0.083 dmaxp 0.079
rmaxy 0.28 tmaxy 0.066 lmeanp 0.072 lminy 0.077
nminp 0.185 rminp 0.06 lmaxp 0.061 tavgp 0.072

Factor 9 Factor 10 Factor 11 
Variable loading Variable loading Variable loading 
dminy 0.336 nmaxp 0.302 lminy 0.911
rminy 0.308 nmeanp 0.255 lmeany 0.386
nminp 0.291 wmaxy 0.244 nmaxy 0.151
lminp 0.169 nmaxy 0.211 dminy 0.082
wminy 0.143 rmaxp 0.154 davgy 0.072
wminp 0.109 wavgy 0.111 tminy 0.07
ravgp 0.076 rminp 0.046 lminp 0.069
lminy 0.058 wmaxp 0.039 tavgy 0.064
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                                           Equation 3.3 

Where  SAi is the spatial dependency term for county i 

wik is the spatial weight of county k on county i 
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   n is the number of counties that are adjacent to county i 

  yk is the HD response value for county k 

Table 3.6: Factor and interpretation 

Factor  Climatic and remotely-sensed variable 

1  period temperature, period dew point 

2  period NDVI, yearly NDVI 

3  yearly wind speed, period wind speed 

4  yearly land surface temperature, period land surface temperature 

5  period and yearly wind speed, period and yearly temperature 

6  period temperature 

7  period rainfall 

8  period minimum rainfall, period minimum NDVI 

9  Yearly minimum dew point, yearly minimum rainfall 

10  period NDVI, yearly maximum wind speed 

11  yearly land surface temperature 

For polygons such as counties, wik can be calculated as distance between centroids of polygons, 

or as binary output with 1 denoting adjacency between two polygons and 0 denoting 

non-adjacency, or based on the length of shared borders between two polygons. In this research, 

the length of shared borders is used to calculate wik because it makes sense that if two counties 

have a long shared border, the deer and the vectors are more likely to move from one county to 

the other. Thus the surrounding county k that has a longer shared border with county i carries  

more weight in county i. wik is computed in The TerraSeer Space-Time Intelligence System 

(STIS) software. The output from STIS is a spatial weight matrix between each county and every 

other county. The weights are then multiplied by the corresponding HD occurrence and summed 

to determine the spatial dependency (SA) for each county.  



 55

Besides the 11 principal factors (f1 to f11) resulting from the principal component factor 

analysis, SA, elevation (E) and time (T) variables are also integrated into the statistical model. 

Table 3.7 is the correlation matrix between all the 14 predictor variables. 

Table 3.7: Correlations between predictor variables 

  f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 SA E T 
f1 1.00                            
f2 0.00  1.00                          
f3 0.00  0.00  1.00                        
f4 0.00  0.00  0.00  1.00                      
f5 0.00  0.00  0.00  0.00  1.00                   
f6 0.00  0.00  0.00  0.00  0.00 1.00                 
f7 0.00  0.00  0.00  0.00  0.00 0.00 1.00               
f8 0.00  0.00  0.00  0.00  0.00 0.00 0.00 1.00             
f9 0.00  0.00  0.00  0.00  0.00 0.00 0.00 0.00 1.00           
f10 0.00  0.00  0.00  0.00  0.00 0.00 0.00 0.00 0.00 1.00         
f11 0.00  0.00  0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00 1.00        
SA 0.09  0.01  -0.11  0.03  0.04 0.04 -0.14 0.26 0.04 -0.07 0.01  1.00      
E -0.32  0.35  -0.25  -0.26  -0.06 -0.03 -0.01 -0.06 -0.03 0.40 -0.04  -0.06  1.00   
T 0.21  0.32  0.00  -0.07  0.53 -0.16 -0.01 -0.14 -0.33 0.06 -0.24  0.04  0.00 1.00 

 

As is expected, there is no correlation between the 11 factors. However, correlation exists 

between the other three variables and the 11 factors as well as within the three variables. There 

are varying opinions in the literature concerning what level of correlation constitutes 

multicollinearity. Jensen (1967) advanced the conservative and liberal views. The conservative 

view is to assume multicollinearity if two variables have a correlation coefficient greater than 0.5, 

whereas the multicollinearity in the liberal view is with a correlation greater than 0.9. Even if I 

adopt Jensen’s conservative view, only the correlation between f5 and time (highlighted in brown) 

can be regarded as causing multicollinearity. Thus when building the model, I should be careful 
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if these two variables are included at the same time. Other variables that have correlations greater 

than 0.2 (highlighted in yellow) also should also be paid attention to for the sake of 

interpretation. 

3.5.3  Model construction 

The data are typical longitudinal data which means measurements of the same subject 

or individual (in this case county) are taken repeatedly through time, thereby allowing the direct 

study of change over time (Rabe-Hesketh and Skrondal, 2005). The purpose of longitudinal 

analysis is to capture the within-subject changes in response over time because it is believed that 

the repeated measurements for the same subject or individual over time are correlated with each 

other. For binary response data, GLMM which has been increasingly popular in applied 

epidemiology, is an extension of the generalized linear model (GLM) by the inclusion of random 

effects in the predictor.  

The underlying premise of GLMM is that individuals in the population are assumed to 

have their own subject-specific mean response trajectories over time and a subset of the 

regression predictors vary randomly from one individual to another. Thus, the mean response is 

modeled as a combination of population-averaged effects which is regarded to be shared by all 

individuals and subject-specific effects that are unique to a particular individual. The 

population-averaged effects are called fixed-effects, and the subject-specific effects are referred 

as random effects (Fitzmaurice et al., 2004). In this research, since the response variable is 

dichotomous, I will use generalized linear mixed logistic model, in which logit link is utilized in 

the model, namely,  
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 g(Pij) = logit (Pij) = log ⎟
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⎞
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⎛

− ji

ij

P1
P

 =α+ β* X’ij + bi + eij                  Equation 3.4 

where   Pij is the probability of presence for subject i at occasion j 

1- Pij is the probability of absence for subject i at occasion j  

α is the population-averaged intercept 

β is the vector of population-averaged coefficients for predictors 

X’ij is the vector of predictor variables for subject i at occasion j 

bi is the subject-specific random effect for subject i 

eij is the measurement or sampling errors for subject i at occasion j 

The outcome from the above linear regression is the log odds of presence. One should make the 

following transformation (Equation 3.5) (Twisk, 2003) to get the final probability of presence Pij.  

      ( )[ ]iji ij
ij e bX'*exp1

1  P
+++−+

=
βα

                           Equation 3.5 

However, common GLMM used in epidemiology assumes that the subjects or individuals are 

independent of each other, which does not hold in this research because there is spatial 

dependency between counties. The common GLMM only considers temporal change, but not 

spatial covariates.  

In this study, based on the generalized linear mixed logistic model, I develop an approach 

that allows the incorporation of spatial dependency by adding a spatial association term (SA). 

Thus the final model can predict the spatial-temporal distribution for HD in white-tailed deer. Let 

i denote the county, and j denote the repeated HD observations nested in each county. Therefore, 

i = 1, …..366, and j = 1, ……19. The proposed spatial-temporal model is constructed as follows: 
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= α+ β* X’ij +α1*SAij +α2*T +γ*IR’ +bi + eij               Equation 3.6 

Where   Pij is the probability of HD occurrence in county i in year j 

α is the population-averaged intercept 

X’ij is the vector of f1 to f11 for county i in year j 

β is the vector of population-averaged coefficients for f1 to f11 

SAij is the spatial dependency for county i in year j 

α1 is the population-averaged coefficients for spatial dependency 

T is time in years 

α2 is the population-averaged coefficients for time 

IT’ is the vector of interactions between predictor variables 

γ is the population-averaged coefficient for interactions  

bi is the subject-specific random effect for county i 

eij is the measurement or sampling errors for county i in year j 

3.6  Results and discussion  

Twenty percent of the county-based data were randomly selected as testing data for 

validating the model. The remaining 80 percent were used to estimate the model. That is, from 

the total 6954 observations for 366 counties during the 19 years, 292 counties during the 19 

years (5548 observations) were utilized for estimation of the model. Among them, there are 730 

HD presence observations and 4818 HD absence observations. In the reserved testing data, the 

total 1406 observations are composed of 272 HD presence observations and 1134 HD absence 
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observations. The dependent variable is HD occurrence, and the predictor variables are f1-f9, SA, 

E, T, and possible interactions between them.  

There are 14 predictor variables all together, which can result in numerous alternative 

models. The goal of this study was to find the optimal prediction model. The information 

criterion statistic: Akaike Information Criterion (AIC) and the Bayesian Information Criterion 

(BIC) were adopted to select the best model. They choose the best model by compromising 

model fit and model complexity. Lower AIC and BIC values imply either fewer explanatory 

variables, better fit, or both. The models with lower AIC and BIC are, therefore, better models 

than those with higher AIC and BIC. 

First, the model was performed using all the predictor variables without interaction 

(model1). The output is shown in Table 3.8.  

The Wald test in Table 3.8 is a generalized Wald test for all predictor variables and 

follows a χ2 distribution with 14 degrees of freedom. In other words, the Wald test is to evaluate 

the importance of all the regression coefficients. Its ρ-value (Prob > chi2 = 0.0000) indicates that 

Wald test in model1 is highly significant. By closely examining the output, I can conclude that 

variables f1, f5, f6, f11 and elevation are not significant at ρ =0.05, and should be dropped from 

the model. The standard deviation of the random effect is denoted as sigma_u. I can calculate the 

square of sigma_u to obtain the variance of the random effect which is 0.7874 in model1. The 

underlying idea is that the overall unexplained variance is divided into two parts, one is the 

variance of the random effect, and the other is related to the remaining ‘errors’ such as 

measurement or sampling error. The rho value is an estimation of the intraclass correlation 
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coefficient (ICC) which is computed as the variance of the random effect divided by the total 

unexplained variance. So rho is an indication of within-subject dependency. In model1, the 

variance of the random effect accounts for 19 percent of the total remaining variance. The 

Likelihood-ratio test of rho provides information on the importance of allowing the random 

effect. The difference between this model and a similar model without a random effect is 171.46, 

which follows a χ2 distribution with one degree of freedom, and which is highly significant (Prob 

>= chibar2 = 0.000). Thus, it is necessary to include a random effect in this particular model. 

Table 3.8: Output of model1 

Wald chi2(14) =336.38 
Log likelihood = -1886.4728                 Prob > chi2 = 0.0000 
hd Coef. Std. Err. z P>z 
f1 0.0683802 0.061432 1.11 0.266 
f2 -0.176547 0.0829118 -2.13 0.033 
f3 -0.2267664 0.0554919 -4.09 0 
f4 0.2426384 0.066439 3.65 0 
f5 -0.0564875 0.0578344 -0.98 0.329 
f6 0.0896043 0.0514959 1.74 0.082 
f7 -0.244984 0.038012 -6.44 0 
f8 0.4420369 0.0408429 10.82 0 
f9 0.3944866 0.0639763 6.17 0 
f10 -0.1815679 0.0655136 -2.77 0.006 
f11 0.1081336 0.0631405 1.71 0.087 
SA 1.403131 0.1779767 7.88 0 
dem 0.00028 0.0005537 0.51 0.613 
time 0.089485 0.0158888 5.63 0 
Intercept -3.542563 0.2328271 -15.22 0 
/lnsig2u -0.2389647 0.1544118     
sigma_u 0.8873797 0.0685109     
Likelihood-ratio test of rho=0: chibar2(01) =171.46              
Prob >= chibar2 = 0.0000 
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The t-test in model1 indicates that some insignificant predictor variables should be 

excluded. Theoretically, if the predictor variables are independent of each other, the drop of one 

or more variables will not affect the significance of another variable. However, in this research, 

although the value is relative low, correlations do exist between some predictor variables. The 

study proceeded by dropping the insignificant variables one at a time, each time dropping the 

most insignificant variable from the previous model, until all predictor variables are significant. 

The final model includes f3, f4, f7, f8, f9, f10, SA, and T, the same as the significant variables in 

model1. This proves that the low correlations in the data have little influence on the significance 

of predictor variables. Note that the two variables with their correlation greater than 0.5 (f5 and T) 

do not appear together in model2, which saves the efforts of identifying the true source of the 

two variables in interpreting the model. The output of model2 is shown in Table 3.9. 

Table 3.9: Output of model2 

Log likelihood = -1891.3665                 Prob > chi2 = 0.0000 
hd Coef. Std. Err. z P>z 
f3 -0.2550442 0.0536297 -4.76 0 
f4 0.238649 0.0650699 3.67 0 
f7 -0.2317267 0.0368216 -6.29 0 
f8 0.4268687 0.0385337 11.08 0 
f9 0.3706288 0.0609242 6.08 0 
f10 -0.1376361 0.0553749 -2.49 0.013 
SA 1.45695 0.1774919 8.21 0 
time 0.0656585 0.0093733 7 0 
intercept -3.25705 0.1372925 -23.72 0 
/lnsig2u -0.2433885 0.1542304     
sigma_u 0.885419 0.0682793     
rho 0.1924395 0.0239684     
Likelihood-ratio test of rho=0: chibar2(01) =171.46              
Prob >= chibar2 = 0.0000 
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Next, various combinations of interactions between predictor variables were added to 

model2 to see whether the interactions can contribute to the dependent variable. The AIC and 

BIC for some of the models with significant interaction terms as well as the AIC and BIC for 

model1 and model2 are shown in Table 3.10. 

Table 3.10: AIC and BIC for selected models 

Model Interaction term 
Degree of 
freedom 

AIC BIC 

model1 None 16 3804.95  3910.88  

modelf11sw None 12 3794.41  3873.87  

modelf3f10 None 11 3800.91  3873.74  

mode_f3f8 None 11 3800.82  3873.65  

modelf7sw None 11 3800.74  3873.57  

modelf3ft None 11 3800.06  3872.89  

modelf9f10 None 11 3799.89  3872.72  

modelf8sw None 11 3797.20  3870.04  

model2 None 10 3802.73  3868.94  

modelf7t None 11 3793.56  3866.39  

model_f4T f4*T 11 3792.83  3865.66  

model_f9SA f9*SA 11 3792.80  3865.63  

model_f8T_f9SA_f3T f8*T, f9*SA, f3*T 13 3778.22  3864.29  

modelf8T_f7T_f4T f8*T, f7*T, f4*T 13 3774.51  3860.58  

model_f8T f8*T 11 3787.27  3860.11  

model_f8T_f8SA f8*T, f8*SA 12 3780.41  3859.86  

model_f4T_f9SA_f4T f4*T, f9*SA, f4*T 13 3772.87  3858.94  

model_f8T_f9SA f8*T,f9*SA 12 3777.58  3857.03  

modelf8T_f7T f8*T, f7*T 12 3776.90  3856.35  

model_f8T_f7T_f9SA  f8*T, f7*T,f9*SA 13 3766.60  3852.67  
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It turns out that AIC and BIC generally decrease with the addition of interaction terms. 

The full model with all predictor variables (model1) has the highest AIC and BIC. However, 

there are some minor inconsistencies between AIC and BIC. In this research, BIC was chosen as 

the primary criterion because BIC is preferred by many applications because it is a Bayesian 

procedure (Burnham and Anderson, 2004). Furthermore, it imposes a greater penalty for 

additional parameters than does AIC. The model with the smallest BIC is the model with three 

interaction terms: f8*T, f7*T, and f 9*SA (model_f8T_f7T_f9SA). See Table 3.11 for the output 

of model_f8T_f7T_f9SA. 

Table 3.11: Output of model_f8T_f7T_f9SA 

Wald chi2(11) = 358.28 
Log likelihood  = -1870.2998            Prob > chi2 = 0.0000 
 hd  Coef  Std. Err  z P>z 
f3 -0.13 0.06 -2.31 0.02  
f4 0.22 0.07 3.33 0.00  
f7 -0.92 0.18 -5.07 0.00  
f8 1.20 0.17 6.92 0.00  
f9 0.29 0.07 3.89 0.00  
f10 -0.23 0.06 -3.84 0.00  
SA 1.22 0.19 6.54 0.00  
T 0.05 0.01 4.62 0.00  
f8t -0.10 0.02 -4.33 0.00  
f7t 0.05 0.01 3.63 0.00  
f9SA 0.73 0.21 3.39 0.00  
intercept -3.15 0.14 -22.36 0.00  
/lnsig2u -0.23 0.15     
sigma_u 0.89 0.07     
rho 0.20 0.02     
Likelihood-ratio test of rho=0: chibar2(01) =174.2   
Prob >= chibar2 = 0.0000 
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The likelihood-ratio test of rho is significant for all the three models: model1, model2 

and model_f8T_f7T_f9SA, which means the random effect should be considered in all three 

models. The Wald tests are also significant for each model, thus all the coefficients are 

significant as a whole to each model. By further examination, I see that the difference of AIC and 

BIC between model2 and model_f8T_f7T_f9SA is only 36.13 and 16.27, respectively, but the 

latter model is much more complicated with three interaction terms between continuous variables. 

Interactions between continuous variables are rarely analyzed in practical analysis, as Jaccard 

and Turrisi (2003), and Aiken and West (1991) argue that there is little work done to include 

interactions between continuous variables in the model because of the difficulty of interpretation. 

To determine which of the two models should be chosen as the optimal model, testing data were 

applied to validate the models. If one model predicts the presence and absence of HD more 

successfully than the other, it should be chosen as the optimal model. 

Since the result of the model is the probability of HD presence for a particular county in a 

particular year, before validation, a cut-off probability must be determined where the 

probabilities above this value indicate presence and probabilities below the value indicate 

absence (Hinely, 2006). With the training data, a graph of cut-off probability vs. the percentage 

correctly predicted for both HD presence and absence is produced. See Figure 3.5 and Figure 3.6 

for the graphs of model2 and model_f8T_f7T_f9SA, respectively. 
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Figure 3.5: Cut-off analysis for model2 
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Figure 3.6: Cut-off analysis for model_f8T_f7T_f9SA 

 

Both graphs show a decreasing tendency of the prediction accuracy for HD presence and 

an increasing trend of the prediction accuracy for HD absence. The place where two lines cross is 

the cut-off point that maximizes both the presence accuracy and absence accuracy. The cut-off 
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Absence 

Absence 

Presence 
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points for both models are approximately the same, which is at the probability of 0.1. This 

cut-off probability is then used for testing data in both models. The prediction results are shown 

in Table 3.12 and Table 3.13. 

 

Table 3.12: Prediction results for model2 

  Predicted 
  Presence Absence Total Accuracy 
Presence 174 98 272 0.64  Observed 
Absence 395 739 1134 0.65  

  Total 569 837 1406 0.65  

 

 

Table 3.13: Prediction results for model_f8T_f7T_f9SA 

  Predicted 
  Presence Absence Total Accuracy 
Presence 165 107 272 0.61  
Absence 387 747 1134 0.66  

Observed 

Total 552 854 1406 0.65  

 

For the total 272 observed HD presence observations in the testing data, 172 observations 

are correctly predicted in model2, and 165 observations are correctly predicted in 

model_f8T_f7T_f9SA. The predicted presence accuracy is 0.64 and 0.61 for model2 and 

model_f8T_f7T_f9SA, respectively. For the total 1134 observed HD absence observations, 739 

observations are correctly predicted by model2, and 854 observations are correctly predicted by 

model_f8T_f7T_f9SA, which results in predicted absence accuracy of 0.65 and 0.66, 
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respectively. The overall accuracy for both models is exactly the same. The predicted presence 

accuracy in model2 is 3 percent greater than that in model_f8T_f7T_f9SA, whereas the predicted 

absence accuracy in model_f8T_f7T_f9SA is only 1 percent higher than that in model2. It can be 

concluded that model2 is better than model_f8T_f7T_f9SA. Furthermore, as I have discussed, 

model2 is much simpler than model_f8T_f7T_f9SA, and is easier to interpret, model2 was 

chosen as the optimal model for this study. Figure 3.7 to Figure 3.25 give map comparisons of 

observed and predicted HD presence and absence across the study area from 1982 to 2000 using 

model2. The prediction accuracy for individual year ranges from 27 percent to 96 percent. The 

years with over-predictions of HD presence are 1982, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 

1992, 1994, 1996, 1997, 1998, 1999, and 2000. Among them, the years of 1989, 1994, 1997, 

1998, 1999, and 2000 have considerable over prediction of HD presence ( 2 times higher than 

observed HD presence). The predicted HD presence shows a strong spatial contiguity over the 

study area which is the result of the strong relationship between spatial dependency and response 

variable in model2. 

The output of model2 shows that f3, f7 and f10 are negatively related to the log odds of 

HD occurrence, while f4, f8, f9, time and SA are positively related to the log odds of HD 

occurrence. Since the logit form in model2 made it difficult to interpret the regression 

coefficients directly, the coefficients are first transformed into odds ratios (exp(β)). The odds 

ratios (exp(β)) always range from zero to infinity, with 1 being the center. For a negative 

coefficient, its odds ratio varies between 0 and 1. For a positive coefficient, its odds ratio is from 

1 to infinity. This causes confusion when interpreting the negative and positive coefficients in the 



 68

usual way as ordinary regressions. Thus, for those coefficients with negative values (i.e., 

coefficients for f3, f7, f10, and the intercept), I further divide their odds ratios with 1 to obtain 

their reciprocals. Table 3.14 gives the transformation results. 

Table 3.14: Model coefficient transformation 

Variable Coefficient (β)  Odds Ratio (exp (β) 1/Odds Ratio 

f3 -0.255 0.7749 1.2905  

f4 0.2386 1.2695 NA 

f7 -0.2317 0.7932 1.2607  

f8 0.4269 1.5325 NA 

f9 0.3706 1.4486 NA 

f10 -0.1376 0.8714 1.1476  

SA 1.457 4.2928 NA 

time 0.0657 1.0679 NA 

intercept -3.2571 0.0385 25.9740  

The final interpretation of the model is as follows: with regards to those variables with 

positive coefficient (f4, f8, f9, SA, and time), the coefficient odds ratio for a particular variable is 

interpreted by assuming that if all other variables remain unchanged, a one-unit increase of this 

variable will cause the odds of the dependent variable being in the higher group by the 

corresponding odds ratio. As to those variables with negative coefficient (f3, f7, f10), it was 

interpreted by assuming that if all other variables remain constant, a one-unit decrease of a 

particular variable will cause the odds of dependent variable being in the higher group by the 

reciprocal of the corresponding odds ratio. From Table 3.14, it was found that the odds ratio of 

spatial dependency (SA) is the highest among all the variables with positive coefficients. With 

one-unit increase of spatial dependency, a county has a 4.3 times higher odds of being present of 

HD, which shows a strong spatial effect on HD occurrence and distribution. F3 has the highest 
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reciprocal of odds ratio among the variables negatively related to HD, with one-unit decrease of 

f3 where a county has a 1.3 times higher odds of being present of HD. 

With reference to Table 3.6, it can be concluded that wind speed, rainfall, land surface 

temperature and NDVI were the most important factors for the prediction of HD occurrence. 

Here it should be noted that the climatic temperature is not included in the prediction model. 

Instead, land surface temperature calculated from AVHRR channel 4 and channel 5 is 

incorporated, which reinforces the arguments that remotely-sensed data have higher prediction 

power than climatic data in some occasions. 

3.7  Conclusion 

In this study, a spatial-temporal statistical model is proposed to predict the HD 

occurrence of white-tailed deer in southeast USA on the basis of individual counties using 

climatic data and remotely-sensed data from 1982 to 2000. The model is based on generalized 

linear mixed logistic model which can deal with longitudinal data taking the within-subject effect 

into account. The spatial dependency is considered by incorporating a spatial association term 

that indicates the influence of surrounding counties on a particular county. Principal component 

factor analysis is first applied to reduce data volume and remove correlations between predictor 

variables. The results show that wind speed, rainfall, land surface temperature, and NDVI are 

valuable explanatory factors to predict HD occurrence, with total prediction accuracy of 65 

percent. Remotely-sensed data prove to be useful and give a higher prediction power than some 

ground-based climatic data. 

This conclusion is consistent with previous studies that humidity and temperature affect 
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the epizootiology of HD (Erasmus, 1975). Temperature greatly influences the geographic ranges 

of Culicoides. Low temperature determines the distribution of the insets, while high temperature 

adversely affect Culicoides adult survivorship and size (Wittmann and Baylis, 2000). Rainfall 

strongly influences the increase of Culicoides numbers in spring and summer (Nevill, 1971). 

Walker and Davies (1971) postulated that there is a causal relationship between peak rainfall in 

April-May, peak numbers of Culicoides in May-June and peak bluetongue incidence in June-July. 

Wind speed can also affect Culicoides distribution through their influence on the passive 

dispersal of the adults. For example, Culicoides can be carried as aerial plankton to a place up to 

700 km away in winds at speeds of 10-40 km/h, and at heights up to 1.5 km (Wittmann and 

Baylis, 2000). NDVI represents the vegetation biomass on the ground which is indicative of 

Culicoides habitat. All these factors are related to the distribution and occurrence of HD through 

their influence on the vectors. 

Given the overall prediction accuracy of 65 percent, there should be other factors that 

contribute to the HD occurrence, but are not included in the model. Furthermore, in the statistics 

field, there are some debates on whether it is appropriate to first apply principal component 

analysis, and then use the resulted principal factors as later input. However, despite its difficulty 

in interpreting the principal factors, the principal component factor analysis is an ideal method to 

reduce data volume and remove correlations. It can substantially simplify the analysis without 

greatly decreasing the model’s prediction power.  
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1982 Predicted 
  Presence Absence Total Accuracy 

Presence 68 16 84 0.81  
Absence 146 136 282 0.48  

Observed 

Total 214 152 366 0.56  

 

Figure 3.7: Observed and predicted HD cases (1982) 
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1983 Predicted 

  Presence Absence Total Accuracy 
Presence 0 19 19 0.00  
Absence 1 346 347 1.00  

Observed 

Total 1 365 366 0.95  

 

Figure 3.8: Observed and predicted HD cases (1983) 
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1984 Predicted 

  Presence Absence Total Accuracy 
Presence 0 12 12 0.00  
Absence 2 352 354 0.99  

Observed 

Total 2 364 366 0.96  

 

Figure 3.9: Observed and predicted HD cases (1984) 
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1985 Predicted 

  Presence Absence Total Accuracy 
Presence 38 30 68 0.56  
Absence 106 192 298 0.64  

Observed 

Total 144 222 366 0.63  

 

Figure 3.10: Observed and predicted HD cases (1985) 
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1986 Predicted 

  Presence Absence Total Accuracy 
Presence 16 26 42 0.38  
Absence 63 261 324 0.81  

Observed 

Total 79 287 366 0.76  

 

Figure 3.11: Observed and predicted HD cases (1986) 
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1987 Predicted 

  Presence Absence Total Accuracy 
Presence 4 15 19 0.21  
Absence 25 322 347 0.93  

Observed 

Total 29 337 366 0.89  

 

Figure 3.12: Observed and predicted HD cases (1987) 
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1988 Predicted 
  Presence Absence Total Accuracy 

Presence 144 2 146 0.99  
Absence 218 2 220 0.01  

Observed 

Total 362 4 366 0.40  

 

Figure 3.13: Observed and predicted HD cases (1988) 
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1989 Predicted 

  Presence Absence Total Accuracy 
Presence 16 12 28 0.57  
Absence 75 263 338 0.78  

Observed 

Total 91 275 366 0.76  

 

Figure 3.14: Observed and predicted HD cases (1989) 
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1990 Predicted 

  Presence Absence Total Accuracy 
Presence 38 24 62 0.61  
Absence 135 169 304 0.56  

Observed 

Total 173 193 366 0.57  

 

Figure 3.15: Observed and predicted HD cases (1990) 
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1991 Predicted 

  Presence Absence Total Accuracy 
Presence 24 30 54 0.44  
Absence 93 219 312 0.70  

Observed 

Total 117 249 366 0.66  

 

Figure 3.16: Observed and predicted HD cases (1991) 
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1992 Predicted 
  Presence Absence Total Accuracy 

Presence 13 15 28 0.46  
Absence 64 274 338 0.81  

Observed 

Total 77 289 366 0.78  

 

Figure 3.17: Observed and predicted HD cases (1992) 
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1993 Predicted 

  Presence Absence Total Accuracy 
Presence 0 28 28 0.00  
Absence 0 338 338 1.00  

Observed 

Total 0 366 366 0.92  

 

Figure 3.18: Observed and predicted HD cases (1993) 
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1994 Predicted 

  Presence Absence Total Accuracy 
Presence 93 5 98 0.95  
Absence 262 6 268 0.02  

Observed 

Total 355 11 366 0.27  

 

Figure 3.19: Observed and predicted HD cases (1994) 
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1995 Predicted 

  Presence Absence Total Accuracy 
Presence 0 24 24 0.00  
Absence 12 330 342 0.96  

Observed 

Total 12 354 366 0.90  

 

Figure 3.20: Observed and predicted HD cases (1995) 
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1996 Predicted 
  Presence Absence Total Accuracy 

Presence 22 30 52 0.42  
Absence 124 190 314 0.61  

Observed 

Total 146 220 366 0.58  

 

Figure 3.21: Observed and predicted HD cases (1996) 
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1997 Predicted 

  Presence Absence Total Accuracy 
Presence 18 11 29 0.62  
Absence 102 235 337 0.70  

Observed 

Total 120 246 366 0.69  

 

Figure 3.22: Observed and predicted HD cases (1997) 
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1998 Predicted 
  Presence Absence Total Accuracy 

Presence 56 3 59 0.95  
Absence 226 81 307 0.26  

Observed 

Total 282 84 366 0.37  

 

Figure 3.23: Observed and predicted HD cases (1998) 
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1999 Predicted 

  Presence Absence Total Accuracy 
Presence 70 10 80 0.88  
Absence 239 47 286 0.16  

Observed 

Total 309 57 366 0.32  

 

Figure 3.24: Observed and predicted HD cases (1999) 
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2000 Predicted 

  Presence Absence Total Accuracy 
Presence 50 21 71 0.70  
Absence 163 132 295 0.45  

Observed 

Total 213 153 366 0.50  

 

Figure 3.25: Observed and predicted HD cases (2000) 
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Abstract: Clustering analysis can provide valuable information for spatial epidemiology on 

possible causes of disease as well as its distribution. Although previous studies have revealed 

some spatial and temporal patterns of hemorrhagic disease (HD) in white-tailed deer, no 

statistical methods have been applied to detect its spatial and temporal clusters. This research 

uses the Kulldorff’s space-time scan statistic to analyze whether there are any clusters in the 

distribution of HD in white-tailed deer in five southeastern states, and if yes, where and when do 

the clusters occur. The HD occurrence data are binary presence/absence data acquired annually 

on a county basis from 1980 to 2003. Purely spatial clustering analysis for the whole study area, 

space-time clustering analysis, and purely spatial clustering analysis by years were applied to the 

counties in Alabama, Georgia, South Carolina, North Carolina, and Tennessee. The results show 

that there are statistically significant spatial clusters and space-time clusters in the study area 

during the study period. Some clusters reoccur every several years. Almost all the clusters are 

restricted to 10 percent of the total population and 25 percent of the study period. The most 

evident high rate clusters are located along the west boundary of Alabama, southern Alabama, 

central South Carolina, and along the boundary between South Carolina and North Carolina. 

These detected clusters can be used to identify possible causes and future prevention of HD 

outbreaks. 

Keywords: Hemorrhagic disease, Kulldorff’s space-time scan statistic, Clustering analysis 
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4.1  Introduction 

Hemorrhagic disease (HD) is a common disease in white-tailed deer (Odocoileus 

virginianus) which results in significant mortality and subsequent economic impacts on 

recreational hunting. The first documented outbreak of HD in USA dates back to the 1890s 

(Trainer, 1964; Hoff and Trainer, 1981). Since then, extensive work has been done in veterinary 

science to study the clinical signs and the mechanisms of the disease. Now it has been clear that 

HD is caused by the bluetongue (BLU) and epizootic hemorrhagic disease (EHD) viruses (Hoff 

and Trainer, 1978) and transmitted by arthropod Culicoides midges (Nettles and Stallknecht, 

1992). Clinical signs and lesions of HD in white-tailed deer can include hyperemia, facial and 

cervical swelling, lameness, hemorrhage, sloughing of hooves, and ulceration (Hoff and Trainer, 

1978). The infected deer often avoid and appear hypersensitive to sunlight (Hoff and Trainer, 

1981). 

In addition to pathologic studies, the spatial and temporal distributions of HD in 

white-tailed deer have been explored. According to a long-term and national surveillance 

conducted by the Southeastern Cooperative Wildlife Disease Study (SCWDS) in the College of 

Veterinary Medicine, University of Georgia, two contiguous bands of HD occurrence are found 

in the USA. The first one is a transverse band from the southeast along the Missouri River 

northwestward to the Great Plains. The other band is in coastal and northern California spreading 

to central Oregon and western Washington (Nettles et al., 1992). As to the temporal distribution, 

Couvillion et al. (1981), in their studies on HD among white-tailed deer from 1971 through 1980, 

found that all peracute or acute cases occurred between June and November. The frequency of 
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peracute or acute cases increased in July, peaked in September, and declined sharply in 

November. Approximately 83 percent of all the HD cases examined were observed during 

August, September, and October. They also concluded that there is a biennial rise and fall as to 

the yearly pattern of reported HD cases. 

Although these previous analyses provided overall trends in the spatial and temporal 

distribution of HD outbreaks, the space and time dimensions were studied separately, and did not 

consider the interaction between space and time on the clusters of HD distribution. The objective 

of this study is thus to statistically test whether HD in white-tailed deer in the southeastern USA 

exhibit clusters in space and in space-time. If yes, then where and when do the clusters occur and 

how have the geographical clusters evolved with time?  

In Section 2, some background information on spatial and space-time clustering 

techniques are introduced. Section 3 describes the HD data from 1980 to 2003 and the study area 

consisting of five states in southeast USA: Alabama, Georgia, South Carolina, North Carolina, 

and Tennessee. Section 4 shows the Kulldorff’s space-time scan statistic that is used in the study, 

and based on that, Section 5 gives the spatial and space-time clustering results of HD in 

white-tailed deer in the study area during the 24-year study period. The paper ends with a short 

conclusion in Section 6. 

4.2  Clustering analysis 

Cluster detection is one of the four tasks in spatial epidemiology (i.e., disease mapping, 

geographical correlation studies, the assessment of risk in relation to a point or line-source, and 

cluster detection) (Elliott et al., 2000). Investigation of clusters of disease occurrence can provide 
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valuable information on possible causes of the disease, and appropriate methods for disease 

control and prevention (Ward and Carpenter, 2000). It is argued that disease cases occur close to 

each other in time as well as in space. Statistical methods for space-time clustering can be 

divided into two categories: space-time interaction and space-time cluster detection. The former 

gives only a global statistical index indicating whether there are space-time clusters or not in the 

study area during the study period. Space-time interaction such as the Knox’s test (Knox, 1964), 

the Barton’s method (Barton and David, 1966), Mantel’s regression (Mantel, 1967), and the k 

nearest neighbor test (Jacquez, 1996), all are designed for point locations of cases. None of them, 

however, take into account the dynamic change of the underlying population at risk, which is 

important because when population density increases, the spatial distance from case to case will 

decrease (Jacquez, 1996).  

Space-time cluster detection methods identify clusters together and test their significance. 

Kulldorff’s space-time scan statistic is one of the few methods for space-time cluster detection. It 

not only allows the detection of actual geographical location and temporal period of clusters, but 

it also considers the distribution of the at-risk population density (Norström et al. 2000). 

Meanwhile, Kulldorff’s space-time scan statistic can be applied to point data as well as area data 

for clustering analysis (Kulldorff, 2006). 

Researchers in veterinary science have been adopting the above methods to explore 

space-time clusters in practical applications of disease investigations (White et al., 1989; 

Carpenter et al., 1996; Paré et al., 1996; Ekstrand and Carpenter, 1998; Singer et al., 1998; Fuchs 

et al., 2000; Ward and Carpenter, 2000a; Ward and Armstrong, 2000; Norström et al.,2000). 
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However, there is still much work to be done. The relative lack of space-time clustering in 

veterinary science is possibly due to the following three reasons: a) it is usually difficult to 

acquire data for the locations of the disease and the corresponding time; b) interactions among 

space-time phenomena are often complex and difficult to analyze and visualize the clusters; and 

c) there are few readily available and mature space-time clustering analysis software packages. 

This study will utilize a unique data set of HD outbreaks in conjunction with a recent software 

package to analyze the spatial and space-time clusters in southeast USA from 1980 to 2003. 

4.3  Study area and data sources 

4.3.1  Study area 

The study area in this research is the southeastern region of the USA, where the HD in 

white-tailed deer has been long reported and considered endemic (Hoff and Trainer, 1981). As 

early as 1949, Ruff (1949) pointed out that extensive mortality of an unexplained fatal 

hemorrhagic disease occurred at irregular intervals for many years in this region which was later 

believed to be similar to HD. In 1954 and 1955, epizootics similar to HD appeared among 

white-tailed deer population in the southeastern USA (Prestwood, et al., 1974). During the 

summer of 1971, the first documented HD outbreak of white-tailed deer, which caused 

significant die-offs, was reported. The disease first occurred in South Carolina and then erupted 

almost simultaneously in Virginia, Tennessee, North Carolina, Kentucky, Georgia, and Florida 

(Thomas et al., 1974). A widespread HD outbreak occurred in 1980, whereby deer in 156 

counties in 8 states had clinical evidence of exposure to HD (Couvillion et al., 1981). In 1998, 

substantial die-offs appeared among white-tailed deer, marking a peak year of HD (Nettles and 
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Stallknecht, 1992). Furthermore, precipitating antibodies to BLU and EHD are consistently 

detected annually in white-tailed deer in this region (Stallknecht et al., 1991). According to 

SCWDS from 1980 to 1989, contiguous instances of HD were reported throughout the Southeast 

(Nettles et al., 1992). It is, therefore, paramount to explore the distribution trends and detect 

clusters of HD in this area for future prediction and prevention.  

Although the HD occurrence data set acquired by SCWDS is nation-wide, the focus of 

this research only includes five states: Alabama, Georgia, South Carolina, North Carolina, and 

Tennessee (Figure 4.1). These five states cover large areas of forest and open fields that 

constitute the habitat of white-tailed deer. In addition, the mild winter, hot summer, and plentiful 

rainfall, together with various physiographical regions such as ridges and valleys, piedmont and 

plains, all provide favorable living conditions for white-tailed deer and Culicoides midges. 

 
Figure 4.1: HD cluster analysis study area 
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4.3.2  HD data sources 

The HD occurrence data are collected on a county basis through the USDA funded 

surveillance project conducted by SCWDS that has been performed annually since 1980. It is 

believed to be the most comprehensive database for white-tailed deer morbidity and mortality 

anywhere. The researchers mail questionnaires to the state fish and wildlife agency in each state, 

as well as most of the state veterinary diagnostic laboratories. The surveillance also includes 

personnel in the U.S. Fish and Wildlife Service and the Animal and Plant Health Inspection 

Service, USDA. For 1980 and 1981, only the 16 southeastern states were polled. In 1982, the 

surveillance was expanded to include all states except Hawaii. From the report of each state, a 

file is created to compile the reported HD occurrence by year and county. A subset of the data set 

was obtained for this study that included HD occurrence from 1980 to 2003 within the five state 

study area. The data are binomial, which means there are only 1s and 0s. If there is HD 

occurrence in the county in the specific year, it is represented as 1, otherwise, it is 0 (Table 4.1). 

Those counties that do not report any HD occurrence in any year were discarded from this 

research. All together, 371 counties in the five states are included in the study and 96 counties are 

excluded. 

Table 4.1: HD data explanation 

Value Explanation 

0 No HD exists in the county in the year 

1 HD exists in the county in the year 
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Although the statistical space-time methods used in this paper allow point or area data, 

the HD data set is based on administrative counties. The reported presence or absence of HD for 

each county carries equal weight regardless of the varying sizes of the counties. Therefore, the 

county area data were converted to point data by utilizing the centroid of each county as the 

location of the HD presence or absence. The longitude and latitude of the centroid were 

calculated in a geographic information system (GIS) software package ArcGIS (ESRI, Redlands, 

California).  

4.4  Methods  

Kulldorff’s space-time scan statistic is an extension of the Kulldorf’s spatial scan statistic. 

In the spatial scan statistic, a theoretical circular window is placed on the map of the study area. 

This window is sequentially centered on a target location for which the surrounding area or 

neighborhood will be assessed. At each target location, the window radius varies continuously 

from zero to an upper limit specified by the user (at most 50 percent of the study area) (Figure 

4.2a). For each location and size of the scanning window, a likelihood value is calculated using a 

likelihood function based on the number of observed and expected cases within and outside the 

window (Kulldorff et al., 1998; Aamodt, 2006). The null-hypothesis is there is no cluster of 

occurrence within the window, and the alternative hypothesis is that there is an elevated risk 

within the window as compared to outside. The window with the maximum likelihood value 

constitutes the most likely cluster. A likelihood ratio is calculated by comparing the maximum 

likelihood with the likelihood under the null hypothesis. The distribution under the 

null-hypothesis and the corresponding p value are obtained by repeating the same analytic 
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exercise on a large number of random replications of the data set generated under the null 

hypothesis in a Monte Carlo simulation (repeated random replications of the data set) (Smith et 

al., 2000).  

Kulldorff’s space-time scan statistic adds an additional time dimension to the window, 

which constitutes a cylindrical window in the three dimensions of geographic space (longitude 

and latitude) and time, with its base indicating space and height denoting time. The window is 

moved in space and time so that the circular base is centered on each possible geographic 

position throughout the study area (Figure 4.2b). For any given geographic position, the radius of 

the base varies continuously in size from zero to an upper limit (at most 50 percent of the total 

population), and the height of the cylinder also varies across all the possible time intervals from 

zero to an upper limit (at most 90 percent of the study period) (Kulldorff et al., 1998; Song and 

Kulldorff, 2003). Like the spatial scan statistic, finally I get the cylindrical window with the 

highest likelihood value is determined and its likelihood ratio and the corresponding p value are 

then calculated. 
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Figure 4.2: Schematic illustration of Kulldorff’s space-time scan statistic method. (a): varying 
spatial windows for a target location; (b) varying temporal windows for a particular spatial 

window at a target location. 

 

SaTScanTM version 7.0 is a free software package for spatial, temporal, and space-time 

clustering analysis (National Cancer Institute, Bethesda, Maryland, 2006). Kulldorf’s space-time 

scan statistic is the theoretical core of SaTScanTM. Different models also are incorporated in this 

software including the Bernoulli model, Poisson model, space-time permutation model, ordinal 

model, exponential model, and normal model. The ideal model for this study is the Bernoulli 

model which only requires information on the location of a set of cases and controls, while no 

underlying at-risk population distribution is needed. Each HD presence is represented by 1 as a 

case, and each HD absence is represented by 0 as a control. The location of each case or control 

is represented by the centroid of the county, thereby, converting broad-scale county level by 

viewing each county as a point in a large geographic area. The likelihood function for the 

Bernoulli model is as follows (Kulldorff, 2006): 
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Where    L is likelihood value 

C is total number of cases  

         c is observed number of cases within the window 

 I( ) is indicator function 

 n is total number of cases and controls within the window 

 N is total number of cases and controls in the data set 

There are all together 8904 observations across the study area during the 24-year study 

period, with 1435 cases and 7469 controls. The SaTScanTM software can detect purely spatial, 

purely temporal and space-time clusters. In this analysis, the first step was to apply the purely 

spatial scan statistic to all the observations during the 24-year study period without considering 

the time aspect. The upper limit of the spatial window (radius) was set to 50 percent, 25 percent 

and 10 percent of the total population, respectively, to look for possible subclusters.  

Second, the space-time scan statistic was performed to detect space-time clusters, 

allowing the spatial variations over the entire time period to be analyzed in a single model. The 

time aggregation was set to a one-year interval so that the space-time clusters could be detected 

for consecutive years as well as for one year. The maximum temporal scan window was set to 90 

percent, 50 percent, and 25 percent of the study period, respectively. 

The final step was to apply the purely spatial scan statistic to the cases and controls in the 

study area for each year to see whether there were spatial clusters in a particular year and how 
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these clusters vary across years. In this step, the spatial scan window was set to a maximum size 

of 10 percent of the total population. 

For each of the three steps, both high and low rates of the clusters were tested, which 

means the output consists of clusters where the number of cases are higher than expected (high 

rates) as well as clusters where the number of cases are lower than expected (low rates). Thus I() 

in Equation 1 is equal to 1 for all windows since both high and low rates are tested. For statistical 

inference, 999 Monte Carlo replications were conducted to balance the accuracy and the 

processing time. In addition to the most likely cluster, SaTScanTM also identifies secondary 

clusters in the data set, and orders them according to their likelihood ratio. In this study, I define 

primary clusters as those clusters with p-value less than or equal to 0.05, and secondary clusters 

as those clusters with p-value less than or equal to 0.1. 

4.5  Results and discussion 

4.5.1  Purely spatial clustering analysis during entire study period 

The purely spatial clustering analyses with the maximum spatial window of 50 percent, 

25 percent and 10 percent of the total population were performed for all the 24-year study period. 

The results are the same for the analyses with maximum spatial window of 50 percent and 25 

percent, indicating that the detected clusters are robust when the radius exceeding 25 percent of 

the total population. The results for maximum spatial window of 50 percent and 25 percent 

(Situation 1) and 10 percent (Situation 2) of the total population are shown in Table 4.2 and Table 

4.3 which list the cluster ID(Cl), latitude of the central location (Lat), longitude of the central 

location (Lon), radius (km), number of counties (Co), p-value (p), observed cases (Obs), 
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expected cases (Exp), and relative risk (RR) ( the ratio of observed cases and expected cases) for 

high (HR) and low (LR) rate clusters. The primary (Pr) or secondary (Se) cluster is defined by its 

p value, <=0.05 and <=0.1, respectively. The results displayed in Figure 4.3 and 4.4 depict 

primary and secondary high rate clusters of HD presence as shades of red and orange, 

respectively, while primary and secondary low rate clusters indicating clusters of HD absence are 

depicted as bright and pale yellow, respectively. Individual counties identified as belonging to 

clusters listed in Table 2 and Table 3 are labeled as numbers for high rate (presence) and letters 

for low rate (absence) clusters.  

For both Situations (i.e., spatial windows of 50 percent and 25 percent), the detected high 

rate clusters are exactly the same. That is, there are five high rate clusters, 4 primary and 1 

secondary. The most statistically significant high rate cluster (Cluster 1) consists of 10 counties 

of Alabama bordering Georgia, with 103 observed HD cases over the 24-year study period. The 

relative risk is 2.79, which indicates 179 percent more cases than would have been expected 

under the null hypothesis. The second high rate cluster (Cluster 2) is found in the northwest of 

Alabama adjacent to Tennessee including 15 counties. It has 108 observed HD cases compared to 

the 58.02 expected cases, with a relative risk of 1.93. The third high rate cluster (Cluster 3) is 

located at the center of South Carolina, with only a single county, 17 HD cases and a relative risk 

of 4.44. The fourth high rate cluster (Cluster 4) is at the north boundary of Georgia and South 

Carolina, covering three counties in South Carolina, and two counties in Georgia with 40 HD 

cases occurring in Cluster 4 during the 24 years, compared to 19.34 expected cases. There is one 

secondary high rate cluster in South Carolina approximately midway between Cluster 3 and 
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Table 4.2: Results of purely spatial clustering analysis of HD in white-tailed deer during 
 entire study period (spatial window <= 50 percent or 25 percent of total population):  

Situation 1 
 

  Cl οLat οLon 
Radius
(km)  Co (No.) p-value  Obs Exp RR 

1 31.40 -85.99 76.61 10 0.001 103 38.68 2.79
2 33.80 -87.30 114.79 15 0.001 108 58.02 1.93
3 33.67 -80.78 0.00 1 0.001 17 3.87 4.44

Pr 

4 34.89 -82.73 63.48 5 0.013 40 19.34 2.10
HR 

Se 5 34.01 -81.73 33.62 2 0.077 20 7.74 2.61
A 36.55 -85.54 260.30 57 0.001 120 220.47 0.50LR Pr 
B 36.36 -78.41 151.07 29 0.005 70 112.17 0.60

 
 
 
 

Table 4.3: Results of purely spatial clustering analysis of HD in white-tailed deer during  
entire study period (spatial window <= 10 percent of total population): Situation 2 

 

  Cl οLat οLon 
Radius 
(km)  Co( No.) p-value  Obs Exp RR 

1 31.40 -85.99 76.61 10 0.001 103 38.68 2.79
2 33.80 -87.30 114.79 15 0.001 108 58.02 1.93
3 33.67 -80.78 0.00 1 0.001 17 3.87 4.44

Pr 

4 34.89 -82.73 63.48 5 0.009 40 19.34 2.10
HR 

Se 5 34.01 -81.73 33.62 2 0.059 20 7.74 2.61
A 36.47 -86.46 189.79 31 0.001 48 119.91 0.38
B 36.36 -78.41 151.07 29 0.003 70 112.17 0.60LR Pr 
C 36.18 -82.85 119.31 14 0.009 26 54.15 0.47
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Figure 4.3: Purely spatial clustering analysis of HD in white-tailed deer during entire study 

period (spatial window <=50 percent or 25 percent of total population): Situation 1, numbers 
indicating high rate clusters, letters indicating low rate clusters. 

 
 
 
 

 
Figure 4.4: Purely spatial clustering analysis of HD in white-tailed deer during entire study 

period (spatial window <=10 percent of total population): Situation 2, numbers indicating high 
rate clusters, letters indicating low rate clusters. 
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Cluster 4 including 2 counties with 2.61 times more cases than are expected, and the significant 

level is 0.077. 

With regard to the low rate clusters, there are some differences between the two 

Situations. For Situation 1 (spatial window <=50 percent or 25 percent of the total population), 

two primary clusters are found. Cluster A is situated at the boundary of Alabama, Tennessee, 

Georgia, and North Carolina, covering 57 counties. Most of the counties come from Tennessee 

(39 counties), 12 counties are from Georgia, and counties are in North Carolina, and 3 lie in 

Alabama. This Cluster extends over a large spatial area, with 120 cases observed, compared to 

the 220.47 expected cases. The second low rate cluster is located in the north of North Carolina, 

where 70 cases occurred during the whole study period in these 29 counties, whereas 112.17 

cases should have been expected under the null hypothesis. For Situation 2 (spatial window <=10 

percent of the total population), three low rate clusters are specified. Cluster A is essentially a 

subcluster of the Cluster A in Situation 1, consisting of 30 counties in Tennessee, and 1 county in 

Georgia. Within this Cluster, 48 HD cases actually occurred compared to the 119.91 expected 

cases under null hypothesis. Cluster B is exactly the same as the Cluster B in Situation 1. Cluster 

C is approximately another subcluster of Cluster A in Situation 1, concentrating on the boundary 

between Tennessee and North Carolina, with 7 counties in North Carolina included and 7 

counties in Tennessee. It should be noted that the counties detected as part of Cluster A in north 

Georgia in Situation 1 are not identified as low rate cluster any more in Situation 2. However, 

more counties in North Carolina near Tennessee are detected as low rate cluster in Situation 2 

than in Situation 1.  
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The purely spatial clustering analysis over the entire study period shows that there are 

high rate spatial clusters as well as low rate clusters in the study area during the years between 

1980 and 2003. The clusters are relatively robust with varying maximum spatial windows (50 

percent, 25 percent and 10 percent of the total population), and they are essentially located at the 

boundaries between two or three states. Alabama has the largest area of high rate clusters during 

the study period, whereas Tennessee and North Carolina both have large areas of low rate 

clusters. For both Situations, high rate clusters range from 1 to 15 counties. In Situation 1, low 

rate clusters range from 29 to 57 counties, while low rate clusters in Situation 2 range from 14 to 

31 counties. 

4.5.2  Space-time clustering analysis 

Section 4.5.1 reveals that if the maximum spatial window is set to 10 percent of the total 

population, I can identify subclusters of those clusters resulting from 50 percent of the total 

population setting. However, there is no large difference in the results for the different window 

settings, which means the clusters are relatively robust. In the space-time clustering analysis, 

therefore, only 10 percent of the total population was used for the maximum spatial window 

setting. For the maximum temporal window setting, the 90 percent (Situation 3), 50 percent 

(Situation 4), and 25 percent (Situation 5) of the study period were used, respectively, to see the 

space-time clusters at different time scales. Table 4.4, Table 4.5, and Table 4.6 list the Cluster ID 

(Cl), latitude of the central location (Lat), longitude of the central location (Lon), radius (km), 

number of counties (Co), p-value (p), observed cases (Obs), expected cases (Exp), relative risk 

(RR), and cluster period (period) for high (HR) and low rate (LR) spatial-time clusters grouped 
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by primary (Pr) and secondary (Se) clusters of the three Situations. Figure 4.5, Figure 4.6, and 

Figure 4.7 provide a visual examination and comparison of these clusters. There are 3 low rate 

primary clusters in Situation 3. Cluster A consists of 35 counties that mostly lie in Tennessee, 

with a relative risk of 0.31 for the period from 1980 to 1997. Cluster B finds itself in the west of 

Georgia bordering Alabama with 12 observed cases compared to 43.51 expected cases in the 27 

counties from 1989 to 1998. Cluster C includes 35 counties of Georgia and 2 counties in the 

southwest of South Carolina. It is significant from 1992 to 2001 with a relative risk of 0.38. 

Figure 4.8, Figure 4.9, and Figure 4.10 illustrate the relative risk of each space-time clusters with 

their corresponding temporal periods. 

 
Table 4.4: Results of space-time clustering analysis of HD in white-tailed deer 

(temporal window <= 90 percent of the study period; 
spatial window <=10 percent of total population) : Situation 3 

 

  Cl οLat οLon 
Radius 
(km) 

Co 
(No.) 

p-value Obs Exp RR Period 

1 31.40 -85.99 76.61 10 0.001 93 30.62 3.18 1985-2003 

2 34.23 -77.88 193.20 36 0.001 33 5.80 5.80 2002 
3 36.43 -81.50 164.73 33 0.001 28 5.32 5.35 2002 
4 33.28 -88.09 178.89 26 0.001 124 67.04 1.93 1988-2003 

Pr 

5 34.22 -82.46 113.22 32 0.001 23 5.16 4.52 1980 

HR 

Se 6 34.78 -86.00 0.00 1 0.100 9 1.61 5.61 1992-2001 
A 36.53 -86.87 204.50 35 0.001 33 101.53 0.31 1980-1997 
B 32.88 -84.30 95.70 27 0.002 12 43.51 0.27 1989-1998 LR Pr 
C 31.55 -81.92 150.29 37 0.003 23 59.63 0.38 1992-2001 
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Table 4.5: Results of space-time clustering analysis of HD in white-tailed deer 
(temporal window <= 50 percent of the study period; 

spatial window <=10 percent of total population): Situation 4 
 

    Cl οLat οLon 
Radius 
(km)  

Co 
(No.) p-value Obs Exp RR Period 

1 34.23 -77.88 193.20 36 0.001 33 5.80 5.80 2002 
2 31.40 -85.99 81.75 11 0.001 65 21.27 3.15 1988-1999 
3 36.43 -81.50 164.73 33 0.001 28 5.32 5.35 2002 
4 34.22 -82.46 113.22 32 0.001 23 5.16 4.52 1980 

HR Pr 

5 33.72 -87.74 166.69 26 0.001 85 41.90 2.09 1994-2003 
A 36.36 -85.67 188.02 30 0.001 0 29.01 0.00 1982-1987 
B 36.00 -88.93 104.46 15 0.002 4 29.01 0.14 1982-1993 
C 32.88 -84.30 95.70 27 0.002 12 43.51 0.27 1989-1998 

LR Pr 

D 31.55 -81.92 150.29 37 0.003 23 59.63 0.38 1992-2001 

 
 
 
 

Table 4.6: Results of space-time clustering analysis of HD in white-tailed deer 
(temporal window <= 25 percent of the study period; 

spatial window <=10 percent of total population): Situation 5 
 

  Cl οLat οLon Radius Co p  Obs Exp RR Period 
1 34.23 -77.88 193.20 36 0.001 33 5.80 5.80 2002 
2 36.43 -81.50 164.73 33 0.001 28 5.32 5.35 2002 
3 31.73 -86.31 55.21 5 0.001 24 4.83 5.03 1986-1991 
4 34.22 -82.46 113.22 32 0.001 23 5.16 4.52 1980 
5 32.46 -83.67 104.90 34 0.003 21 5.48 3.87 1980 
6 33.00 -87.13 98.89 15 0.003 38 14.50 2.66 1994-1999 

HR Pr 

7 31.87 -85.39 41.98 3 0.003 11 1.93 5.72 1996-1999 
LR Pr A 36.36 -85.67 188.02 30 0.001 0 29.01 0.00 1982-1987 
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Figure 4.5: Space-time clustering analysis of HD in white-tailed deer 

(temporal window <= 90 percent of the study period; spatial window <=10 percent of total 
population): Situation 3, numbers indicating high rate clusters, letters indicating low rate 

clusters. 
 
 
 
 

 
Figure 4.6: Space-time clustering analysis of HD in white-tailed deer 

(temporal window <= 50 percent of the study period; spatial window <=10 percent of total 
population): Situation 4, numbers indicating high rate clusters, letters indicating low rate 

clusters. 
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Figure 4.7: Space-time clustering analysis of HD in white-tailed deer 

(temporal window <= 25 percent of the study period; spatial window <=10 percent of total 
population): Situation 5, numbers indicating high rate clusters, letters indicating low rate 

clusters. 
 
 

 
Figure 4.8: Relative risk and temporal periods for space-time clusters  

(temporal window <= 90 percent of the study period; 
spatial window <=10 percent of total population) 

Note: brown color indicates primary high rate cluster, purple indicates secondary high 
rate cluster, and blue indicates primary low rate. 
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Figure 4.9: Relative risk and temporal periods for space-time clusters  

(temporal window <= 50 percent of the study period; 
spatial window <=10 percent of total population) 

Note: brown color indicates primary high rate cluster, and yellow indicates primary low 
rate. 

 

 
Figure 4.10: Relative risk and temporal period for space-time clusters  

(temporal window <= 25 percent of the study period; 
spatial window <=10 percent of total population) 

Note: brown color indicates primary high rate cluster, and blue indicates primary low 
rate. 
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In Situation 3, 6 high rate clusters are identified, among which 5 are primary clusters and 

1 is a secondary cluster. The most statistically significant primary cluster (Cluster 1) is located in 

southeast Alabama with 93 cases in the 10 counties contrasted to the 30.62 expected cases. The 

temporal period is from 1985 to 2003. Cluster 2 is found at the boundary of South Carolina and 

North Carolina along the coast. This cluster is significant in 2002 and is 480 percent higher than 

expected with 33 observed HD cases when 5.8 cases were expected. Cluster 3 is detected at the 

boundary of North Carolina, South Carolina, and Tennessee. Among the 33 counties, 2 are from 

South Carolina, 4 are from Tennessee, and the remaining 27 counties are in North Carolina. The 

significant period is year 2002 with a risk rate of 5.35. Cluster 4 situates at the northwest of 

Alabama including 26 counties, and is elevated 93 percent from 1988 to 2003. Cluster 5 is next 

to Cluster 3 around the north boundary of Georgia and South Carolina, covering 32 counties 

from both States with a relative risk of 4.52 in year 1980. In addition to the above 5 primary high 

rate clusters, there is another secondary high rate cluster (Cluster 6) comprised of a single county 

in Alabama bordering Tennessee. This cluster is significant from 1992 to 2001 with a p-value 

equal to 0.1 and 9 HD cases observed when 1.61 cases are expected during this period.  

In Situation 4, Cluster 1 is the same as Cluster 2 in Situation 3. That means the 33 

counties at the boundary between South Carolina and North Carolina along the coast in year 

2002 became the statistically most significant high rate cluster in Situation 4. Cluster 2 in 

Situation 4 is approximately the same as Cluster 1 in Situation 3, with one more counties 

included and the significant period is from 1988 to 1999, which is a sub-period of Cluster 1 in 

Situation 3 (1985 – 2003). Cluster 3 in both Situations identifies exactly the same spatial area, 
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the same temporal period, and the same relative risk. Cluster 4 in Situation 4 is identical to 

Cluster 3 in Situation 3. Cluster 5 in Situation 4 reveals almost the same spatial area for Cluster 4 

in Situation 3, but with shorter temporal period (1994 – 2003). There is no secondary high rate 

cluster discovered in Situation 4.  

Regarding low rate clusters, there are 4 primary low rate clusters in Situation 4 

compared with 3 in Situation 3. By closely examination, I can conclude that Cluster A and 

Cluster B in Situation 4 are approximately subclusters of Cluster A in Situation 3 both in spatial 

area and temporal period. Cluster C and Cluster D in Situation 4 are identical to Cluster B and 

Cluster C in Situation 3.  

In Situation 5, the pattern is a little bit different. Because of the similarity of Situation 3 

and Situation 4, the results of Situation 5 and Situation 4 are only compared. There are 7 primary 

high rate clusters and only one primary low rate cluster detected in Situation 5. Cluster 3 and 

Cluster 7 in Situation 5 are subclusters of Cluster 2 in Situation 4 both in space and in time. 

Spatially, there seems to be contradiction for Cluster 5 in Situation 5 compared with the same 

area in Situation 4. It is identified as a primary high rate cluster in Situation 5, but it covers some 

counties of Cluster C and Cluster D in Situation 4, which are low rate clusters. However, by 

examining the temporal period, I see there is no temporal overlap between Cluster 5 in Situation 

5 and Cluster C and Cluster D in Situation 4, so no conflicts exist between these two analyses. 

The rest of the clusters are almost similar in both Situations.  

In space-time clustering analysis, Situation 3 and Situation 4 discover almost the same 

pattern, with two low rate clusters in Situation 4 being the subclusters in Situation 3 both in 
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space and in time. The same clusters may have different significant level orders in the two 

Situations. The analysis reveals that the clusters are relatively robust for maximum temporal scan 

window set as 90 percent of the total study period and 50 percent of the total study period. For 

the temporal scan window less than and equal to 25 percent of the total study period, more high 

rate clusters are identified, whereas fewer low rate clusters are detected. Some clusters in 

Situation 5 are subclusters of those in Situation 3 and Situation 4. Despite the difference, most of 

the clusters have similar patterns for the three Situations. That is, the space-time clusters were 

mainly restricted to the temporal period of less than 25 percent of the study period. 

Comparing the results of the space-time clustering analysis with the results of purely 

spatial clustering analysis in section 4.5.1, it can be concluded that, spatially, there are some 

similar clusters in both analyses. For convenience, here only Situation 1 in purely spatial 

clustering analysis and Situation 3 in space-time clustering analysis are examined. Cluster 1, 

Cluster 2, and Cluster A in Situation 1 almost cover the same area of Cluster 1, Cluster 4 and 

Cluster A in Situation 3. By examining the temporal periods of Cluster 1, Cluster 4 and Cluster A 

in Situation 3, three clusters were all found to extend long temporal periods of 1985-2003, 1988 

– 2003, and 1980 – 1997, respectively. The convergence of the two analyses makes sense 

because the clusters extending along temporal periods in space-time clustering analysis should 

also be detected as clusters in purely spatial clustering analysis which takes the whole study 

period as a single time frame. Space-time clustering analysis detects more clusters than purely 

spatial analysis because some clusters only exist across short temporal periods, and cannot be 

identified as clusters when considering the study period as a whole. For example, Cluster 2 
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(temporal period: 2002) and Cluster 3 (temporal period: 2002) in Situation 3 are not detected as 

clusters in Situation 1. In a word, the purely spatial analysis essentially identifies the same 

clusters in space-time analysis that extends along temporal periods. However, there is an 

exception: Cluster 4 in Situation 1 is a subcluster of Cluster 5 in Situation 3 spatially, whereas 

temporally, the latter is a subcluster of the former one (temporal period of 1980 for Cluster 5 in 

Situation 3).  

4.5.3  Purely spatial clustering analysis by individual year 

The purely spatial clustering analysis was conducted across the study area by individual 

year to examine whether there are spatial clusters in particular years, whether spatial clusters 

exist in continuous years, and if yes, how the clusters evolve during those years. Table 4.7 lists 

the statistical results for maximum spatial window equal to 10 percent of the total population. 

Figure 4.11 and Figure 4.12 illustrate the number of clusters and the number of counties that 

were identified as clusters for each individual year, respectively. Figure 4.13 to Figure 4.27 show 

the visual results. Note, years where there are no statistically significant clusters are not depicted. 

Spatial clusters exist for 15 years of the total study period of 24 years. There are more 

counties identified as clusters in 1980, 1982, 1993, 1998, 1999, and 2002, whereas fewer 

counties in 1986, 1989, and 1991. The largest number of counties that are detected as primary 

high rate clusters occurs in 1998 (63 counties), and 1980 is the year when primary low rate 

clusters cover maximum number of counties (65 counties). The number of clusters in each year 

ranges from 1 to 4, which is less than the number of clusters detected in previous analyses, 

possibly due to the reduced number of observed cases when analyzed by individual year. Most of 
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the clusters are high rate clusters. It seems some clusters do reoccur every several years. For 

examples: there is a high rate cluster in the west of Alabama in 1983, 1993, 1997, 1998 and 2001, 

the high rate cluster in the south of Alabama in 1986, 1987, 1994, and 1997, a high rate cluster 

along the boundary between South Carolina and North Carolina  

Table 4.7: Results of purely spatial clustering analysis of HD in white-tailed deer by 
individual year (spatial window <= 10 percent of the total population) 

 

Year   Cl οLat οLon 
Radius 
(km) 

Co 
(No.) 

p-value Obs Exp RR 

HR Pr 1 33.67 -80.78 144.14 36 0.001 27 11.26 2.82 
Pr A 36.07 -88.07 215.45 37 0.001 0 11.57 0.00 1980 

LR 
Pr B 32.94 -86.25 130.40 28 0.009 0 8.75 0.00 

HR Pr 1 34.52 -82.64 110.63 31 0.001 20 7.10 3.37 
Pr A 36.53 -86.01 215.16 37 0.021 0 8.48 0.00 
Se B 36.49 -81.13 162.38 32 0.098 0 7.33 0.00 

1982 
LR 

Se C 35.49 -77.68 135.40 32 0.098 0 7.33 0.00 
1983 HR Se 1 33.00 -87.13 160.15 31 0.067 8 1.67 7.31 

Pr 1 31.73 -86.31 55.21 5 0.014 5 0.57 9.89 
1986 HR 

Se 2 34.34 -80.59 130.66 29 0.094 11 3.28 4.18 
1987 HR Se 1 31.73 -86.31 36.06 3 0.055 3 0.16 21.65 
1989 HR Pr 1 31.73 -86.31 55.24 6 0.007 5 0.45 13.22 
1991 HR Pr 1 34.44 -87.84 53.94 5 0.029 5 0.75 7.18 

Pr 1 33.92 -80.38 122.94 24 0.017 9 1.81 6.85 
1993 HR 

Se 2 32.85 -87.95 205.73 35 0.067 10 2.64 5.33 
1994 HR Pr 1 31.15 -85.30 112.31 21 0.027 15 5.60 2.98 
1997 HR Pr 1 32.25 -87.79 197.50 35 0.001 14 2.83 8.40 

Pr 1 36.53 -86.87 193.91 29 0.001 20 4.92 5.49 
1998 HR 

Pr 2 32.85 -86.72 156.51 34 0.003 17 5.77 3.66 
HR Pr 1 34.61 -78.56 153.91 34 0.001 20 7.33 3.30 

1999 
LR Pr A 36.50 -87.38 219.66 37 0.035 0 7.98 0.00 

2001 HR Se 1 32.59 -88.20 201.45 29 0.068 9 2.19 5.59 
Pr 1 34.52 -77.91 176.54 33 0.001 31 14.23 2.46 

HR 
Pr 2 36.16 -80.67 90.28 18 0.001 18 7.76 2.49 2002 

LR Pr A 36.53 -86.01 215.16 37 0.001 0 15.96 0.00 
2003 HR Pr 1 33.29 -87.53 188.25 35 0.001 21 7.08 3.73 
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Figure 4.11: Number of clusters for individual year 
 
 
 
 
 
 

 
Figure 4.12: Number of counties identified as clusters for individual year 
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Figure 4.13: Purely spatial clustering analysis of HD in white-tailed deer (1980), numbers 

indicating high rate clusters, letters indicating low rate clusters. 
 
 
 
 
 

 
Figure 4.14: Purely spatial clustering analysis of HD in white-tailed deer (1982), numbers 

indicating high rate clusters, letters indicating low rate clusters. 
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Figure 4.15: Purely spatial clustering analysis of HD in white-tailed deer (1983), numbers 

indicating high rate clusters, letters indicating low rate clusters. 
 
 
 
 
 

 
Figure 4.16: Purely spatial clustering analysis of HD in white-tailed deer (1986), numbers 

indicating high rate clusters, letters indicating low rate clusters. 
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Figure 4.17: Purely spatial clustering analysis of HD in white-tailed deer (1987), numbers 

indicating high rate clusters, letters indicating low rate clusters. ), numbers indicating high rate 
clusters, letters indicating low rate clusters. 

 
 
 
 

 

 
Figure 4.18: Purely spatial clustering analysis of HD in white-tailed deer (1989), numbers 

indicating high rate clusters, letters indicating low rate clusters. 
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Figure 4.19: Purely spatial clustering analysis of HD in white-tailed deer (1991), numbers 

indicating high rate clusters, letters indicating low rate clusters. 
 

 
 

 
 

 
Figure 4.20: Purely spatial clustering analysis of HD in white-tailed deer (1993), numbers 

indicating high rate clusters, letters indicating low rate clusters. 
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Figure 4.21: Purely spatial clustering analysis of HD in white-tailed deer (1994), numbers 

indicating high rate clusters, letters indicating low rate clusters. 
 

 
 
 
 

 
Figure 4.22: Purely spatial clustering analysis of HD in white-tailed deer (1997), numbers 

indicating high rate clusters, letters indicating low rate clusters. 
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Figure 4.23: Purely spatial clustering analysis of HD in white-tailed deer (1998), numbers 

indicating high rate clusters, letters indicating low rate clusters. 
 
 
 
 
 

 
Figure 4.24: Purely spatial clustering analysis of HD in white-tailed deer (1999), numbers 

indicating high rate clusters, letters indicating low rate clusters. 
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Figure 4.25: Purely spatial clustering analysis of HD in white-tailed deer (2001), numbers 

indicating high rate clusters, letters indicating low rate clusters. 
 
 
 
 
 
 

 
Figure 4.26: Purely spatial clustering analysis of HD in white-tailed deer (2002), numbers 

indicating high rate clusters, letters indicating low rate clusters. 
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Figure 4.27: Purely spatial clustering analysis of HD in white-tailed deer (2003), numbers 

indicating high rate clusters, letters indicating low rate clusters. 
 

along the coast in 1999, and 2002, and a high rate cluster in central South Carolina in 1980, 1986 

and 1993. The low rate cluster in Tennessee also repeatedly appears in 1980, 1982, 1999, and 

2002. I should be aware that for the first two high rate clusters which occur most often during the 

study period, their frequencies of reoccurring become higher in the last 10 years. These clusters 

are also identified in the previous purely spatial clustering analysis and space-time clustering 

analysis. By examining Situation 3 in space-time clustering analysis and the analysis in this 

subsection, I expect that Cluster 3 and Cluster 5 in Situation 3 should also be high rate clusters in 

2002 and 1980, respectively, in the purely spatial clustering analysis by years. However, this is 

not the case, the reason is that in space-time clustering analysis, the detection of clusters is 

conditioned on all observations across the study area and during the study period. A cluster with 

a single year as its temporal period is the result of comparing the observed number of cases in 

that year with the number of the cases throughout the temporal period. In purely spatial cluster 
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analysis by individual year, the detection is only conditioned on the observations across the study 

area for each specific year. A space-time cluster with a single year as its temporal period, 

therefore, may not be reflected by the purely spatial cluster analysis in that year.  

The three steps of cluster analysis: 1) purely spatial clustering analysis during the entire 

study area; 2) space-time clustering analysis; and 3) purely spatial clustering analysis by 

individual year, give a robust statistical analysis of cluster detection for HD in white-tailed deer 

in southeast USA from 1980-2003. The detection of clusters provides an initial understanding of 

the distribution of HD. After exploring when and where the clusters occur, further research is 

needed to investigate why the cluster exists in space and time. Although this issue is not within 

the scope of this study, some speculation will be made to discuss possible explanations for the 

spatial and temporal patterns of observed clusters.  

In Chapter 3 of this dissertation, a statistical prediction model was constructed to predict 

HD occurrence, which identifies wind speed, rainfall, normalized difference vegetation index 

(NDVI), and land surface temperature calculated from channel 4 and channel 5 of the Advanced 

Very High Resolution Radiometer (AVHRR) to be useful to predict HD occurrence. The study 

applies principal component factor analysis to original explanatory data and used the resulting 

factor components as input to a later prediction model. The optimal prediction model includes 

Factor 3, Factor 4, Factor 7, Factor 8, Factor 9, Factor 10, spatial dependency and time as 

predictor variables (see Table 4.8 for the interpretation of the Factors). It may be hypothesized 

that the clusters detected in the current study may be related to those predictor variables. To 

roughly test this hypothesis, a purely spatial clustering analysis for the entire study period was 
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performed for each of theses variables to determine whether or not the resulting clusters coincide 

with HD clusters.  

Due to the availability of predictive variables, the clustering analysis for predictive 

variables was conducted for 366 counties from 1982 to 2000. The spatial window was set to less 

than and equal to 10 percent of the total population. Figure 4.28 to Figure 4.34 show the results. 

Table 4.8: Interpretation of factors 

Factor Climatic and remotely-sensed variable 

3  yearly wind speed, period wind speed 

4  yearly land surface temperature, period land surface temperature 

7  period rainfall 

8  period minimum rainfall, period minimum NDVI 

9  Yearly minimum dew point, yearly minimum rainfall 

10  period NDVI, yearly maximum wind speed 

 

 
Figure 4.28: Purely spatial clustering analysis of Factor 3 (wind speed) during entire study period, 

numbers indicating high rate clusters, letters indicating low rate clusters. 
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Figure 4.29: Purely spatial clustering analysis of Factor 4 (land surface temperature) during 
entire study period, numbers indicating high rate clusters, letters indicating low rate clusters. 

 

 

 
Figure 4.30: Purely spatial clustering analysis of Factor 7 (period rainfall) during entire study 

period, numbers indicating high rate clusters, letters indicating low rate clusters. 
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Figure 4.31: Purely spatial clustering analysis of Factor 8 (minimum rainfall) during entire study 

period, numbers indicating high rate clusters, letters indicating low rate clusters. 

 

 

 
Figure 4.32: Purely spatial clustering analysis of Factor 9 (minimum dew point and minimum 

rainfall) during entire study period, numbers indicating high rate clusters, letters indicating low 
rate clusters. 
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Figure 4.33: Purely spatial clustering analysis of Factor 10 (period NDVI and maximum wind 
speed) during entire study period, numbers indicating high rate clusters, letters indicating low 

rate clusters. 

 

 

 
Figure 4.34: Purely spatial clustering analysis of spatial dependency during entire study period, 

numbers indicating high rate clusters, letters indicating low rate clusters. 
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By comparing the clustering results of these factors with HD clusters resulting also from 

the maximum spatial window of 10 percent of total population (Figure 4.4), I see, the high rate 

clusters of HD occurrence in west of Alabama and southeast of Alabama are noted to coincide 

with low rate clusters of Factor 3 (wind speed) (Figure 4.28), whereas the low rate cluster of HD 

occurrence in northeast of North Carolina approximately coincides with the high rate cluster of 

Factor 3. For Factor 10 (period NDVI and maximum wind speed) (Figure 4.33), the whole study 

area is roughly divided into two parts by the north boundary of Alabama, Georgia, and South 

Carolina. The north part is covered by high rate clusters of Factor 10, while the south part mainly 

contains low rate clusters. This is the opposite of the general pattern of HD occurrence observed 

in Figure 4.4. There is a strong association between the high and low rate clusters of spatial 

dependency (Figure 4.34) and the corresponding high and low rate clusters of HD clusters 

(Figure 4.4). The above conclusion is consistent with the previous study that Factor 3 and Factor 

10 are negatively related to HD occurrence, while spatial dependency is positively related to HD 

occurrence. From visual examination, it seems the general trend of other predictive factors do not 

overlap with HD occurrence. Since Factor 3 mainly represents wind speed and Factor 10 is 

largely explained by NDVI, I can infer that wind speed, NDVI and spatial dependency may be 

related to the HD clustering. Although this is only a preliminary exploration, that should be 

followed by future detailed investigation on the reasons of HD clustering. These factors are 

expected to highly influence the distribution, abundance and availability of the Vector Culicoides 

midges and the spread of HD. 
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4.6  Conclusion 

This study explores geographical and temporal clusters of HD in white-tailed deer in the 

five states from 1980 to 2003, using three cluster analysis methods that identify similar general 

clusters from different aspects. In the mean time, each cluster analysis approach reveals some 

unique information as well. Western and southern portion of Alabama, and along the north 

boundary between Georgia and South Carolina were detected as areas of high rate HD clusters 

by both purely spatial clustering analysis during the entire study period and space-time clustering 

analysis. Purely spatial clustering analysis for the entire study period further revealed several 

counties in central South Carolina as high rate clusters, and space-time clustering analysis 

identified the area at the boundary of South Carolina and North Carolina along the coast and the 

area in the west of North Carolina bordering Tennessee as high rate clusters during short 

temporal periods. Among those clusters, western and southern Alabama, along the boundary 

between South Carolina and North Carolina, and central South Carolina were also detected as 

repeatedly HD occurrence areas by the purely spatial clustering analysis by individual year. 

Although researchers tend to be most interested in high rate clusters, this study also detected 

some low rate clusters that are associated with areas of lower than expected HD occurrence. The 

one low rate cluster that was discovered by all three clustering approaches lies in Tennessee. 

However, it should be noted that this might indicate a problem of reporting in this area.  

Space-time clustering analysis identifies more clusters than purely spatial clustering 

analysis in that the former can also detect clusters existing for a short period while the latter 

analysis only detect clusters for the entire study period. This research indicates that the spatial 
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and temporal clusters are restricted to 10 percent of the total population and 25 percent of the 

study period, respectively, which means clusters larger than these two thresholds rarely occur. 

This study also gives a rough investigation of possible reasons for HD clustering based on 

previous studies, and concludes that NDVI, wind speed and spatial dependency may be related to 

the HD clustering identified in this investigation. 
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CONCLUSION 
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Hemorrhagic disease (HD) has resulted in significant death in white-tailed deer since it 

was first documented in the United States in the 1890s. This disease is caused by both 

bluetongue virus (BLU) and epizootic hemorrhagic disease virus (EHD), which are transmitted 

by Culicoides midges. Extensive work has been accomplished in traditional epidemiology of HD, 

i.e., the isolation of BLU and EHD and studies on the vectors. However, analysis of long term 

survey data of HD occurrences such as the development of prediction models and cluster 

detection were not explored, especially spatially and temporally. Prediction modeling and cluster 

detection are two main tasks in spatial epidemiology. They are crucial for possible cause 

discovery and future prevention of diseases. With the survey conducted by Southeastern 

Cooperative Wildlife Disease Study (SCWDS) in the College of Veterinary Medicine, University 

of Georgia since 1980, a county-based longitudinal data set representing HD presence/absence 

were available to perform the above two analyses. This research attempts to investigate 

spatial-temporal aspects of HD occurrence in the southeastern USA where HD in white-tailed 

deer are traditionally reported. Accordingly, this study is divided into two parts. 

The first part of this dissertation (Chapter 3) constructs a spatial-temporal statistical 

model to predict HD occurrence based on the observed HD presence and absence for each 

county in Alabama, Georgia, South Carolina, North Carolina, and Tennessee from 1982 to 2000. 

The explanatory factors are climatic data including temperature, rainfall, dew point, wind speed 

and remotely-sensed data, including normalized difference vegetation index (NDVI) and land 

surface temperature. Principal component factor analysis was applied to 42 independent 

variables to reduce the data volume and remove correlations between variables. A subset of 11 
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principal factors were then used for later input as predictor variables. In this study, each county is 

repeatedly observed from 1982 to 2000, and these repeated measurements should not be 

considered independent of one another. Thus the generalized linear mixed logistic model forms 

the basis of the spatial-temporal model which considered the within-subject effects. The spatial 

dependency is incorporated by adding a spatial association term in the model which evaluates the 

effect of HD occurrence in surrounding counties on a particular county. The final results show 

that wind speed, rainfall, land surface temperature, spatial dependency, and NDVI can be used 

for the prediction of HD occurrence with an overall prediction accuracy of 65 percent. In this 

prediction model, remotely-sensed data proved to be useful and gives a higher prediction power 

than some continuous surface climatic data based on weather station point measurements 

interpolated by kriging. 

 The second part of this dissertation (Chapter 4) explores the spatial and space-time 

clusters of HD in the five states from 1980 to 2003. Kulldorff’s space-time scan statistic was 

adopted to detect where and when the clusters occur, as well as the level of their statistical 

significance. Purely spatial clustering analysis for the entire study period, space-time clustering 

analysis, and purely spatial clustering analysis by individual year were applied. By varying the 

settings for maximum spatial windows and temporal windows for neighborhood analysis when 

detecting clusters of high (presence) and low (absence) rates of HD to look for a more realistic 

spatial window and temporal window, the results showed that the three analyses methods 

revealed generally similar clusters. The most evident high rate clusters are located in the western 

and southern portions of Alabama, central South Carolina, and around the boundary along South 



 146

Carolina and North Carolina. A maximum spatial window of 10 percent of the total population 

and a maximum temporal window of 25 percent of the study period are believed to be 

appropriate parameters that identify most of the clusters without leaving out subclusters. Spatial 

clusters exist for 15 years from 1980 to 2003. There are more counties identified as clusters in 

1980, 1982, 1993, 1998, 1999, and 2002, whereas fewer counties in 1986, 1989, and 1991. Some 

clusters reoccur every several years, such as the high rate cluster in the west of Alabama which 

appears in 1983, 1993, 1997, 1998 and 2001, the high rate cluster in the south of Alabama in 

1986, 1987, 1994, and 1997, a high rate cluster around the boundary between South Carolina and 

North Carolina along the coast in 1999, and 2002, and a high rate cluster in central South 

Carolina in 1980, 1986 and 1993. The low rate cluster in Tennessee also repeatedly appears in 

1980, 1982, 1999, and 2002. It should be noted that the reoccurrence frequencies of the cluster in 

the west of Alabama and the cluster in the south of Alabama become higher in the last 10 years. 

By examining the clusters of those significant predictive factors in Chapter 3, NDVI, wind speed 

and spatial dependency are found to be related to the HD clustering.  

There are some limitations in this study. Firstly, the original HD data were collected by 

questionnaires, and there may be variation in observer skill and reporting effort among the 

survey participants, resulting in either under or over-reporting. However, these data do provide a 

sound overview of HD distribution in white-tailed deer. Secondly, the HD data used in this 

research are binary data based on individual counties. The exact number of HD cases and their 

exact locations are not available. Thus some useful and mature techniques that can only be 

applied to continuous data (local Moran’s I, local G-statistic, Moran scatterplot, some 
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visualization techniques such as time-plot, Parallel coordinate visualization, geographic weighted 

regression model, etc.) cannot be used to explore this unique 24-year national data set. Finally, 

statistical approaches were adopted to describe and predict the distribution of HD outbreaks as 

well as areas where HD occurrences in white-tailed deer are not common. Although total 

prediction accuracy was 65 percent when four environmental factors of wind speed, rainfall, land 

surface temperature, and NDVI were considered for a five-state area, prediction accuracies for 

individual years were quite variable ranging from 27 percent to 96 percent. It is hoped that future 

work building on the findings of this research will lead to a full, biologically and physically 

based understanding of the processes that underlie and cause the periodic outbreaks of HD and 

the morbidity/mortality of white-tailed deer. Prediction models and clustering analysis based on 

sound biological understanding of the epidemiological processes of HD combined with 

spatial-temporal statistical methods are expected to provide wildlife managers with critical 

information for management decisions.  

As mentioned before, previous analysis of HD in white-tailed deer mainly focus on the 

isolation of viruses and the distribution of vectors. This dissertation provides new directions in 

the study of HD: prediction modeling and clustering analysis, emphasizing on the 

spatial-temporal distribution, which expands the study scope of HD in white-tailed deer. The 

prediction model and cluster detection for HD in southeast USA also offer directions for future 

research on HD distributions, such as why those clusters occur, what other information can be 

obtained in order to improve the predictive power of the model, and how to prevent future HD 

outbreaks. Partnerships between veterinary scientists, wildlife managers, epidemiologists and 
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geospatial researchers will result in a more thorough understanding of this wide spread and 

economically influential wildlife disease. The inclusion of remote sensing demonstrates that 

readily available and relatively inexpensive remotely-sensed data can be used in epidemiology 

and can result in better disease prediction. More generally, this study contributes to the spatial 

epidemiology area in human diseases which continuously grows in importance with increasing 

human travel of globe. Contributions of this research are especially important in the veterinary 

spatial epidemiology area, which currently lacks attention on clustering detection and prediction 

models, let alone the more complicated spatial-temporal studies on these issues. The integration 

of GIS, remote sensing, and statistical methods provides entirely new information to traditional 

veterinary epidemiology that is spatially explicit, historical as well as current and readily 

available to all users via the internet and from various GIS data clearinghouses. The statistical 

methods used in geographic applications are often simple models including ordinary linear 

models, logistic models, and discriminant models. Recently, more models are proposed taking 

spatial dependency into consideration such as geographic weighted models. However, few 

spatial-temporal models are applied in geographic applications, especially for binary data. This 

dissertation provides some thoughts on this area, and the prediction results show that the 

generalized linear mixed logistic model proves to be useful in predicting the spatial-temporal HD 

occurrence in white-tailed deer in southeast USA.  
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