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Software systems that employ concurrency (e.g. online reservation, e-commerce, banking,

brokerage, social networking, and medical systems) are becoming more and more prevalent.

For such systems, the safe use of concurrency and synchronization and its optimization are

key to success. However, practitioners often find multi-threaded concurrent software systems

difficult to design, verify and maintain. Common difficulties inherent in concurrent software

include safety, liveness, and non-determinism issues.

Our research aims to investigate which aspects of learning about and employing concur-

rency and synchronization are most difficult and what methods and tools can be used to

effectively ameliorate the difficulties. Specifically, this research (1) empirically investigates

the challenges encountered by novices engaged in learning about concurrency; (2) empiri-

cally evaluates the usability of existing notations, tools, and methods intended to address

those challenges; (3) proposes, develops and empirically evaluates new notations and tools;

(4) generates a body of reproducible, empirical knowledge that informs improvements in

teaching proper use of concurrency and synchronization.
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Chapter 1

INTRODUCTION

Software systems that employ concurrency (e.g., online reservation, e-commerce, banking,

brokerage, social networking, and medical systems) are becoming more and more prevalent.

For such systems, the safe use of concurrency and synchronization and its optimization are

key to success. However, practitioners often find multi-threaded concurrent software systems

difficult to design, verify and maintain. Common difficulties inherent in concurrent software

include safety, liveness, and non-determinism issues. It stands to reason that many of the

difficulties related to concurrency may derive from the challenges that make concurrency and

synchronization difficult to learn in the first place.

Moreover, research in computer-science education suggests that concurrency and synchro-

nization concepts are generally difficult to master [7, 8, 14, 26, 37, 50]. The comprehension

of concurrency is complicated by many factors, including:

1. the delocalized nature of synchronization logic, which is often tangled with the “busi-

ness logic” of the program,

2. the nondeterministic nature of thread scheduling, which gives rise to a large space of

potential execution traces, and

3. the need to understand how one thread synchronizes with another in terms of low-level

synchronization primitives, which synchronize threads indirectly by modifying unseen

operating-system-level data structures such as condition queues and mutex locks.

1
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In a typical pedagogical setting, instructors usually introduce these concepts using small

model problems—e.g., producers and consumers and dining philosophers—where the solu-

tions employ operating-system-level synchronization primitives, such as lock acquire, lock

release, wait, and signal. Following instruction, a student should: (1) understand how each

synchronization primitive affects the state of operating-system-level resources, e.g., lock own-

ership, and the contents of condition and ready queues; and (2) be able to reason about

higher-level thread interactions and synchronization behavior. This standard approach for

teaching concurrency generally suffices for the first objective; however, many students find

it difficult to achieve the second.

Clearly, this second objective represents a higher level of skill than the first (e.g., applica-

tion vs. mere comprehension [4]). The ability to reason about the synchronization behaviors

of threads requires the student to understand much more than just the operating-system-

level semantics of synchronization primitives. She must also reason about thread interleavings

and about how one thread’s use of a synchronization primitive affects the scheduling of other

threads, i.e., indirectly through the operating-system-level resources and states upon which

these schedules are derived.

We intend to improve student learning with respect to the aforementioned objectives

by evaluating and adapting the external representations used by experts in problem-solving

tasks. That external representations can interact with internal representations to improve

problem-solving is well-supported by work in distributed cognition [63]. Pancake states that

purely textual representations may be inadequate to express complex concurrent program-

ming situations [44]. Thus, visual representations are needed.

In a summary, the main goal of this research is to apply empirical methods to understand

the difficulties novices commonly encounter in the comprehension of concurrent software, and

to devise and evaluate versions of modeling notations that better support the comprehension

tasks that deal with concurrency and synchronization. Specifically, this research:
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1. empirically investigates the challenges encountered by students and novice practitioners

engaged in learning about concurrency and synchronization;

2. empirically evaluates usability of existing notations, tools, and methods intended to

address those challenges;

3. proposes, develops and empirically evaluates new notations and tools;

4. generates a body of reproducible, empirical knowledge that informs improvements in

teaching proper use of concurrency and synchronization.

The remainder of the dissertation is structured as follows. By way of background

(Chapter 2), we briefly survey the related work in empirical evaluation of the challenges

dealing with concurrency and synchronization, several prior attempts to solve the challenges,

and various graphical representations to support reasoning about concurrency and synchro-

nization. Chapter 3 describes three empirical user studies, among which one study evaluated

the usability of three existing graphical representations in dealing with the comprehension of

concurrency and the other two studies aimed to investigate the fundamental problems that

novices face when learning about concurrency and synchronization. Chapter 4 introduces

our synchronization-adorned UML (saUML) sequence diagram notation and describes one

subjective user study and three objective user studies that evaluated the usability of these

diagrams when used as an aid in reasoning about concurrency and synchronization. Among

the three objective studies, one compared the saUML sequence diagram notation with purely

textual representations and the other two studies compared the saUML sequence diagram

notation with the standard UML sequence diagram notation. Chapter 5 introduces how to

use the UML 2.0 state machine diagram notation to model concurrent software systems and

describes two empirical studies to evaluate its usability when used as an aid in reasoning

about concurrency and synchronization—one compared it with purely textual representa-

tions and the other compared it with the standard UML sequence diagram notation. The
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final chapter(Chapter 6) summarizes the contributions of our research to date and discusses

future research plans.



Chapter 2

Background

2.1 Challenges dealing with concurrency

Several studies have looked at how students learn about concurrency and the kinds of prob-

lems that attend to this learning. Choi and Lewis [8] conducted a detailed study of student

programs involving concurrency and synchronization and found that over 30% contained

serious design flaws (e.g., data races, deadlocks, and inappropriate locking regimes) even

though the programs produced correct output when tested against sample test cases.

A controlled experiment conducted by Kolikant [26] showed that novice students often

develop pattern-based techniques to successfully solve synchronization problems, and avoid

dealing with the dynamics of the synchronization mechanisms. However, the experiment also

shows that these novice students, perhaps as a result of their reliance on those pattern-based

approaches, have trouble in solving non-familiar-pattern synchronization problems. It seems

that students cannot reason about thread interaction in novel situations (i.e., situations that

do not conform to a standard pattern) without a deep understanding of how the effects of

low-level primitives on operating-system states and data structures indirectly affect thread

synchronization.

A few teaching tools have been developed to facilitate the teaching of concurrency at a

higher level of abstraction [7, 21]. For example, Higginbotham and Morelli [21] designed a

concurrent programming interface based on the use of semaphores to correspond closely to

some of the classical semaphore programming examples. Carr et al [7] designed a system,

ThreadMentor, to visualize thread activities on-the-fly.

5
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These visualization tools and representations, while useful in providing a high-level view

of how synchronization primitives (locks, semaphores and monitors) can be applied in con-

current programming, are not capable of revealing the underlying mechanisms of those syn-

chronization primitives. That is, they are not helpful in explaining why and how those

synchronization primitives achieve their goals, nor in providing students with insight that

will allow them to apply their knowledge in novel situations that deal with thread synchro-

nization through the synchronization primitives. For example, when a thread invokes the

wait primitive on a condition variable, the thread releases the mutex lock associated with

that condition variable before suspending. Novices often fail to absorb this subtlety because

the details are hidden in the implementation of wait, and the afore-mentioned tools have no

way to expose this subtlety.

Kramer [27] observes that the ability to think abstractly is critical for a number of

activities in computer science, including program analysis and comprehension of concurrent

computations. He notes that only 30-35% of adults reach the formal operations stage of

cognitive development at which such abstract thinking is supported. The prospects for success

in these activities would seem dismal for the remaining 65-70%. He also advocates further

studies to evaluate the effect of individual differences in abstract thinking capability on their

performance.

However, studies of distributed cognition [63] provide some hope. Distributed cognition

involves the interaction between internal representations and external representations in the

performance of problem-solving tasks. Internal representations are described as existing “in

the mind” as propositions, productions, schemas, mental images, connectionist networks, or

other forms, while external representations exist “in the world” both as physical symbols

(e.g., written symbols or the beads on an abacus) and the rules, constraints, or relations

that pertain to those symbols (e.g., the relations among the symbols in a diagram or the

physical constraints on the behavior of the abacus) [63]. Norman and Zhang showed that

the choice of external representation affects the speed and accuracy of users engaged in such
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problem-solving tasks. Thus, the choice of representation is important. The extent to which

good choices of external representation can expand the population capable of successfully

performing these tasks is an open question.

2.2 Representations dealing with concurrency

We believe that working with external representations can help novices to achieve a level

of mastery that will permit them to better comprehend the dynamically evolving nature of

concurrent programs, to more successfully engage in design, verification, and maintenance

tasks for concurrent systems, and to retain the knowledge gained through use of these dia-

grams. In this section, we review a number of representations and modeling notations that

deal with concurrency.

2.2.1 Representations based on formal methods

A Petri net [45], a mathematical modeling representation for the concurrent behavior of

distributed systems, is well suited for describing and analyzing the synchronization and

communication between concurrent processes. As a modeling language, it depicts the struc-

ture of a distributed system as a directed bipartite graph with annotations. Graphically, a

Petri net comprises directed arcs that connect places (ellipses) and transitions (rectangles).

In practice, standard Petri nets have two major drawbacks: no data concept and no

hierarchy concept [22]. Due to the lack of a data concept, each data manipulation has to be

explicitly represented as places and transitions and hence the resulting model often becomes

excessively large. On the other hand, the absence of hierarchy concepts makes it infeasible

to build a big model that consists of individual sub-models.

However, those two drawbacks have been overcome by the development of the extensions

to the standard Petri Net. CP-nets (Coloured Petri Nets) [22], one of the most well-known

high-level Petri nets, is such an extension. CP-nets incorporate into standard Petri nets
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the characteristics of a high-level programming language, which provides the primitives for

defining data types and manipulating data values.

Another popular formal language that has adequate capabilities to model concurrency is

FSP (Finite State Processes) [35]. A concurrent software system consists of multiple sequen-

tial processes, each of which can be described as a sequence of actions using a simple textual,

algebraic FSP notation. For instance, if P and Q denote two FSP processes and x denotes an

action, then “P=x→Q” defines that the process P engages in the action x and then behaves

the same as the process Q. The interactions between processes are solely modeled through

message-passing communications. Corresponding to each FSP definition, there is a graph-

ical representation called LTS (Labeled Transition System), which displays and analyzes the

behavior of the same models that are textually described by FSP.

Figure 2.1 presents a non-deterministic FSP, accompanied by its LTS, that models a

coin in toss1. The “mid” symbol is a choice operator that represent a choice of multiple

actions. If P, Q, and S denote three FSP processes, and x and y denote two actions, then

“P=(x→Q|y→S)” indicates the process P may engage in either action x and behave as process

Q or action y and behave as process S. When x and y denote the same action, then the choice

is non-deterministic. The example shows that after the process COIN engages in the action

toss, the subsequent action may be either heads or tails.

COIN=(toss→HEAD|toss→TAIL),
HEAD=(heads→COIN),
TAIL=(tails→COIN).

0 1 2

toss

heads

toss

tails
Figure 2.1: FSP and LTS that describe a process modeling a coin in toss.

These two formal methods and many others (e.g. the Z notation [51], VDM [1], etc.)

share two major advantages. First of all, they are unambiguous. The rigor of their semantics

1This example is borrowed from [35].
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often ensures the clarity of the specifications of a system design, which narrows the chances

of fault injection during the system development. Secondly, the systems built upon formal

specifications are open to correctness proof. The correctness of the system can be verified

not only by human-directed mathematic proof, but also by model checkers, which exhaus-

tively verify all the reachable states. However, both proof approaches require substantial

human effort in the current state of practice. It may require much more effort to verify

other important properties such as safety and liveness properties, as those properties are

very problem-specific and sometimes require deep domain knowledge. This expectation is

consistent with our experience [11]. Besides, writing precise specifications for even a small

concurrent software system is not a trivial task to handle.

Despite their distinctive benefits and their extensive research development over the past

decades, formal methods are still not applied widely. The biggest problem with formal

methods is that they are very abstract, and thus difficult to learn and comprehend. Fur-

ther, the mastery of such formal methods often needs a relatively high level of mathematical

expertise and sophistication. Rather than using formal method representations as the instru-

ments under research, we intend to investigate the representations that are more acceptable

to novices and easier for novices to grasp. Meanwhile, we apply formal methods as effective

utilities to facilitate our research projects. For example, we have applied FSP and LTSA to

objectively assess the quality of the code snippets collected from one of our studies [11].

2.2.2 Unified Modeling Language

As opposed to the aforementioned representations, UML (The Unified Modeling Lan-

guage) [47], the de facto industry standard for modeling object-oriented software systems, is

an informal modeling language with ambiguous semantics [18]. We select the UML notations

as our research target for their widespread acceptance in both academia and industry. Most

entry-level computer science curricula have already adopted UML as the major object-

oriented modeling language to teach and its learning curve is not as formidable as formal
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methods. After a brief training, novice students can be good human subjects in empirical

studies. This fact is particularly appealing, since our studies are mostly done in academic

settings. Moreover, the educational benefit of the targeted external representations dealing

with concurrency is also a focus of our research. From the collection of the UML notations,

the sequence diagram notation and the state machine diagram notation have raised our

special attention.

The UML sequence diagram notation

In this section, we briefly introduce the UML sequence diagram notation. More detailed

specifications can be found in [47]. The UML sequence diagram is one of the two interaction

views among the collection of UML diagrams. The other interaction view is the communi-

cation diagram2. A UML sequence diagram describes an execution scenario of a modeled

system by revealing the interactions between objects in time order.

The UML 2.0 defines two kinds of objects—active objects and passive objects. An active

object owns a thread of control while a passive object does not [47]. In UML sequence

diagrams, each object is an individual participant in the interaction, represented graphically

as a “lifeline”. Notationally, the lifeline of an active object is a rectangle with doubled vertical

lines on both its left and right sides and a vertical bar descending from its bottom edge, as

seen on the left in Figure 2.2. The vertical bar represents the execution of a method call or an

operation, referred to as an “execution specification” 3 in UML 2.0. The lifeline of a passive

object is simply a rectangle with a dashed, vertical line descending from its bottom edge,

as seen on the right in Figure 2.2. Execution specifications may be labeled on the lifeline of

a passive object when its operations are called within the execution specifications of some

active object. For both lifeline notations, the name and type of the object is placed within

the rectangle in the form of name:Type. A lifeline may also be adorned with “object states”

(also called “lifeline states”) [47, pg 589], i.e, rounded rectangles containing the name of a

2formerly collaboration diagrams in UML 1.x.
3formerly activations in UML 1.x.



11

target state, to indicate the change of a “state” of the object, which is defined as a situation

during the life of an object during which some invariant condition holds.

UML sequence diagrams represent the interactions between objects as sequences of mes-

sage exchanges between lifelines over time. The call of an operation is often modeled by

a pair of messages in UML sequence diagrams—a call message (a solid arrow line labeled

with the message name and parameters, if any) and a return message (a dashed arrow line).

Figure 2.2 presents a sample UML sequence diagram in which an active object a calls an

operation op with a parameter x on a passive object p, during the execution of which the

state of p changes from state1 to state2. The call returns upon the completion of op.

a : Active p : Passive

op(x)
state1

state2

Figure 2.2: Sample UML sequence diagram.

We focused on UML sequence diagrams for several reasons. First, analysts often construct

concrete scenarios of interaction when diagnosing faults in multi-threaded programs [17]. Of

the many different notations for behavioral modeling in UML, the sequence and communi-

cation diagrams are best suited for depicting such scenarios. Swan and colleagues found that

sequence diagrams are easier to learn than are communication diagrams and found signifi-

cant benefit of one over the other among participants who were familiar with both [54]. In

addition, we opted for sequence diagrams because object lifelines and activations are easily

adorned with state information, which is awkward to depict in a communication diagram.

Moreover, while a given sequence diagram depicts only a single scenario, a small collection
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of distinct sequence diagrams often suffices to explain the essence of a concurrent design.

Lastly, UML is commonly used to model object-oriented systems; in particular, the sequence

diagram has been widely adopted in practice. The UML sequence diagram also provides

several features that are useful in modeling interactions among concurrent agents—e.g., the

ability to designate active objects and provisions for asynchronous message passing among

active objects. By modeling threads as active objects and shared resources as passive objects,

a sequence diagram visualizes the dynamics of synchronization, showing the time ordering

of interactions between threads in a single program trace.

The UML state machine diagram notation

A single UML sequence diagram depicts only one execution trace of the modeled system; it

does not cover all possible execution sequences. Another component of the UML diagram

family, the UML state machine diagram, covers all potential life histories of an object and is

better suited for the verification tasks of a program. In this section, we introduce the basic

concepts of the UML state machine diagram notation.

In UML 2.0, a state machine diagram, a directed graph of states connected by transitions,

models the lifetime behavior of an object [47]. Each state machine is an isolated entity that

interacts with other state machines via events, which are occurrences that affect an object,

such as the receipt of an operation invocation, a change in values, the passage of time, etc.

The general notation for a state is a rounded rectangle enclosing the name of the state, such

as the state S1 in Figure 2.3. The notation differs for two special states—the “initial” state,

shown as a filled circle as in Figure 2.3, which is the default starting state when the object

is created and the optional “final” state, shown as a filled circle inside of a hollow circle as

in Figure 2.3, which indicates the termination of the object4. The state notation may also

include strings that label activities that the modeled object performs when it is in the state.

4The initial state and the final state have other semantics when enclosed in a “composite” state.
More detailed descriptions can be found in [47].
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A horizontal line separates the state name from these activity labels. For example, the state

S2 in Figure 2.3 contain a non-atomic activity op (e.g. counter++).

A “transition” is represented as a directed arc with an arrow head between a source

state and a target state. A transition in general has an “event trigger”, specified “guard

conditions”, and some “actions”. The event trigger is the event whose occurrence makes the

associated transition eligible to fire (e.g. buttonClicked). A guard condition, represented as

a boolean expression enclosed in a pair of square brackets (e.g. [counter>0]), is a condition

that must be satisfied to fire the associated transition. An action is a primitive, atomic

computation that is executed when the associated transition fires (e.g. resetCounter()).

Figure 2.3 presents a sample state diagram that depicts a lifecyle of a simple object.

Upon creation, the object enters the initial state. Then, being a triggerless transition, the

transition from the initial state to state S1 automatically fires and transforms the object to

state S1. When the object receives an event trigger e and the associated guard condition g

is satisfied, it executes the action a and enters the target state S2. While the object is in the

state S2, it performs the activity op. The outgoing transition of the state S2, without being

labeled with an explicit event trigger, is triggered by the completion of op and transforms

the object into the final state.

op
e [g] / a()

do /
S2

S1

Figure 2.3: Sample UML state diagram.

Other related work of UML

Although UML does not have a systematic way to tackle the issues of concurrency, many

concurrency features exist in its semantic specifications [42]. Stevens [52] surveyed the various



14

concurrency concerns illustrated in the UML specifications. There also have been a few

attempts to model Java threads in UML notations. For example, Schader and Korthaus [48]

examined the possibilities of modeling Java threads using UML and Mehner and Wagner [38]

extended the UML to visualize the run-time mechanisms of the Java language constructs

for synchronization. One group [32] specifically addresses concurrency and UML. This group

has developed a tool, Jacot [33], to support the visualization of thread interactions in Java

programs. The tool, however, is limited to the visualization of Java threads and, as with the

other tools mentioned, provides only a high-level visualization of thread interactions.

A number of researchers have studied the usability of UML diagrams of one type or

another. Swan, et al. studied a group of 40 senior-level computer science undergraduates,

graduate students, and university staff with prior UML experience to compare sequence

diagrams and collaboration diagrams [54]. They performed surveys of preferences and famil-

iarity. They also evaluated performance and found that sequence diagrams were easier to use

by those who were unfamiliar with either type of diagram, but that the diagrams were equally

efficient for participants who were familiar with both types of diagrams. Kutar, et al. [29] also

compared the impact of collaboration diagrams and sequence diagrams on comprehension,

but found no significant difference.

Torchiano [57] compared the use of class diagrams alone to the use of class diagrams plus

object diagrams as aids in answering questions about simple programs. In his study with 17

graduate software engineering students, he found that object diagrams provided benefits in

some cases and were neutral in others.

Purchase, et al. [46] evaluated the effect of various aesthetic attributes (edge length, node

distribution, and other layout characteristics) on viewers’ comprehension of UML diagrams.

Another group studied the effects of UML stereotypes (graphical icons) on program com-

prehension, as measured by performance and time to completion [30]. They found that use

of the stereotypes both increased the rate of correct responses and decreased the time to

completion.
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Tilley and Huang [56] looked at the efficacy of UML diagrams in aiding program under-

standing. Subjects, UML experts, were given a series of UML diagrams and asked to answer

questions about the depicted software system. They identified problems with layout, lack of

support for representation of domain knowledge, and unclear specifications of syntax and

semantics of some advanced UML features as limitations on support for program under-

standing.

Arisholm et al. [3] recently evaluated the impact of using UML modeling on the cor-

rectness and effort of certain software maintenance tasks. In particular, the authors were

interested in evaluating the cost effectiveness of model-driven development with UML. They

performed two experiments with students proficient in object-oriented programming and

UML modeling. They found that the use of UML reduced the time required to make code

changes. However, they found also that this savings is largely negated by the time required

to modify the UML diagrams.

Known as an informal modeling language, the UML 2.0 specifications only define the

abstract syntax of the UML diagrams without strict formal semantics. This is in particular

the case for the UML state machine diagrams [34]. Fecher et al. listed twenty-nine newly

detected unclarities in the semantics of the UML 2.0 state machine diagram notation [15].

In the absence of formal semantics of state machine diagrams in the UML 2.0 specifications,

several researchers have attempted to define such a semantics [28, 34, 39, 58, 62]. For instance,

Kuske provided a formalization of the UML state machine semantics based on structured

graph transformation [28]. Yeung et al. [62] and Ng and Butler [39] formalized the UML

state machine diagrams in terms of Communicating Sequential Processes (CSP) [5].
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Pilot study, Instructor interview and observational study

This research intends to optimize the efficiency of program comprehension in the context

of concurrency and synchronization by designing and empirically evaluating external repre-

sentations that are customized to address the factors that most programmers and analysts

encounter. We began by conducting a comparative study to empirically evaluate the usability

of the existing variations of UML sequence diagram notations in solving comprehension tasks

involving multiple thread interactions. The results imply that a deliberately designed variant

of the UML sequence diagram notation may provide better support towards the comprehen-

sion of concurrency concepts than the existing notations. We then focused on the investi-

gation of the factors that complicate learning, with the idea that these same complexities

would also complicate comprehension tasks. To do so, we conducted an instructor interview

and an observational study [59] to understand the practical difficulties novices encounter

in learning about concurrency. Such an investigation also guided us in the selection of the

desirable properties of our new notation.

3.1 Comparative study of variations of UML sequence diagrams

This study was conducted at the University of Georgia from May 1st, 2006 to May 12th, 2006.

The purpose was to evaluate the comparative ability of three variations of UML sequence

diagram notations to help users evaluate concurrency concerns in those diagrams.

In detail, the three notations of interest were: Standard UML notation [47], Mehner’s

notation [38] and Stirewalt’s notation, all seen in Figure 3.1. For all three variations, thick

gray bars were used to indicate an activation of the object by some invoking thread. Mehner’s

16
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notation (Figure 3.1(c)) uses unshaded (white) execution specifications at any point when the

activation is suspended, either because the thread that was executing within this activation

is computing in some other activation (due to the invocation of a method in some other

object) or because the thread is blocked waiting to acquire a lock on some object. Stirewalt’s

notation (Figure 3.1(b)) uses unshaded execution specifications only when the thread is

blocked waiting to acquire a lock on some object. Meanwhile, we introduced an oval notation

for object state, seen in Figure 3.1(d). Using this notation, execution specifications may be

annotated to indicate the entry of the object into a distinguished object state, of which we

were interested in two: lock and unlock. These represented entry of the object into the locked

and unlocked states respectively.

s1 : Stylus : Widget : Widget s2 : Stylus

resizeAll( k )

resizeOne( i/4 )

resizeOne( 4k )

resizeAll( i )

(a) Standard UML notation

s1 : Stylus : Widget : Widget s2 : Stylus

resizeAll( k )

resizeOne( i/4 )

resizeOne( 4k )

resizeAll( i )

(b) Stirewalt’s notation

s1 : Stylus : Widget : Widget s2 : Stylus

resizeAll( k )

resizeOne( i/4 )

resizeOne( 4k )

resizeAll( i )

(c) Mehner’s notation

s1 : Stylus : Widget : Widget

lock

lock

s2 : Stylus

resizeAll( k )

resizeOne( i/4 )

resizeOne( 4k )

resizeAll( i )

(d) Mehner’s notation adorned with object
states

Figure 3.1: Variations of UML sequence diagram notation depicting a deadlock scenario in
which two users concurrently manipulate a multi-user editor.
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Twenty-four students, including eight undergraduate students and sixteen graduate stu-

dents in the Computer Science department at the University of Georgia, were recruited to

participate in this pilot study. We randomly divided all participants into six groups with

each group consisting of four participants. Table 3.1 shows the grouping design.

Table 3.1: 3×2 Factorial Experimental Design - Number of subjects per group
standard UML notation Mehner’s notation Stirewalt’s notation

With object states 4 4 4
Without object states 4 4 4

The study was carried out using a questionnaire, which was produced in six versions. Each

version included three sequence diagrams that depicted three different runs of a program:

• The first diagram depicted a non-blocking, non-deadlock interaction among a collection

of objects.

• The second diagram depicted a blocking but non-deadlock interaction among the same

collection of objects.

• The third diagram depicted a blocking and deadlock interaction among the same col-

lection of objects.

In our experiment, we presented subjects with the three variations of sequence diagrams

that model the behavior of a multi-user editor, which comprises a window that contained

a rectangular widget. When one user used stylus S1 to resize the widget, a resize of the

containing window was triggered. Likewise, when another user used stylus S2 to resize the

window, a resize of the contained widget was triggered. Figure 3.1 presents examples of

the three existing variations of UML sequence diagram depicting a program execution of

the multi-user editor that runs into deadlock, which occurs when the two threads (repre-

sented by S1 and S2) are each holding a lock on a shared resource (widget or window)and

waiting for another to release the lock. Note that Figure 3.1(d) presents an example in
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which Mehner’s notation is adorned with object states. The standard UML sequence dia-

gram notation and Stirewalt’s notation can also be adorned similarly with object states. All

subjects anonymously answered fourteen questions after reading each diagram.

Our collected empirical results showed no significant differences in user performance

across those notations except when considering only questions related to lock acquisition

and release (p=0.024). Users from groups dealing with diagrams with ovals labeling the lock

state were much more accurate in extracting information than others.

Lessons about experimental procedure and methodology learned from this pilot study

include:

• The source code should not be presented in such studies. The source code was presented

to all users, which made it easy for them to understand the interactions without trying

to interpret the system through the notations.

• Questions with more gradations of difficulty should be used. In this pilot study, users

scored high for easy questions but low for difficult questions. More intermediate-

difficulty questions should be presented to better differentiate user performance.

• More complex scenarios should be presented. The presented software system was rela-

tively simple. More complex scenarios can be used to better differentiate user perfor-

mance.

• A training session should be introduced in the future studies. It might be that the sub-

jects are most familiar with the standard UML diagram notation and thus performed

somewhat better on it, which would indicate that we need to do a training session in

future studies.

3.2 Instructor interview and observational study

We conducted an instructor interviews and an observational study to identify the common

difficulties and misconceptions that students experience when learning about concurrency.
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Three instructors of graduate and undergraduate-level courses that deal with concurrency

concepts were individually interviewed. To stimulate discussion, the professors were given a

list of key concurrency concepts and related example problems. They were asked to identify

and describe the concepts students found difficult and how the instructors attempt to deal

with these difficulties.

Next, to confirm the common problems pointed out by the instructors and to search

for additional student difficulties, we conducted an unobtrusive observational study in an

Operating Systems class. During the five weeks of class sessions that dealt with concur-

rency and synchronization, we observed student behavior in the class and took notes about

the instructor’s presentation, the students’ questions and the student responses to the

instructor’s questions. Common problems we identified include:

1. It is common for instructors to use ad-hoc sketches to describe concurrent program exe-

cutions. However, students often find it difficult to record the details and explanations

for later review of the reasoning behind the sketches.

2. The large space of potential execution sequences, each arising from a different thread

interleaving, is difficult for a student to envision and comprehend.

3. Students often conflate the concepts critical region and scheduling policy to the point

that they fail to consider execution sequences in which a thread executing within a

critical region is interrupted due to context switching.

4. Students often become confused when answering what-if type questions in which the

standard solution or primitive implementation is somewhat modified. That is, students

have trouble reasoning about why the implementations of synchronization primitives

lead to correct synchronization behavior.

5. Students often find it difficult to choose appropriate synchronization mechanisms and

primitives to meet certain synchronization goals. This is consistent with the findings
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by Shene and Carr [50], who claimed: “it is common for new MT (Multi-threaded)

programmers to use very complex synchronization logic”.

Having identified the major difficulties that novices encounter when learning how to use

concurrency and synchronization primitives, we then were ready to design and implement

new representations that aim to help in addressing these difficulties.
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Design and evaluation of saUML

We designed the synchronization-adorned UML (saUML) sequence diagram notation to

extend UML sequence diagrams with features to address the aforementioned difficulties com-

monly experienced by novices in learning about concurrency and synchronization [59, 61].

In the following sections, we introduce our saUML sequence diagram notation and describe

four empirical studies that evaluated its usability.

4.1 saUML

Despite several attempts in earlier versions of UML sequence diagrams to model thread-level

synchronization [48, 38], the current notation provides little support for modeling the various

yet complex synchronization behaviors of concurrent threads [42, 52]1. saUML was designed

to support the design and understanding of programs written in an architectural style in

which multiple threads vie for exclusive access to one or more shared objects.

Following the conventions and terminology of Magee and Kramer [35], we assume a shared

object can behave as a monitor, i.e., an object that guarantees mutually exclusive access to its

critical data. Monitors are usually implemented by means of a mutex lock, which is acquired

prior to executing the body of an operation and released on return. Moreover, in real designs,

an object may not be a strict monitor, which is the case if some but not all of its operations

guarantee mutual exclusion.2 From now on, we use the term monitor to include such objects

1While these papers were published prior to the drafting of UML 2.0, their conclusions remain
largely true today. One caveat is that UML 2.0 now provides a means for marking a sequence
diagram as a critical region [47].

2For instance, the database object in the readers–writer example is not a strict monitor because
it allows concurrent reads.

22
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and refer to operations that guarantee mutual exclusion as monitor operations and to others

as non-monitor operations. Thus, a saUML diagram depicts a scenario of interaction among a

collection of threads and monitors in this sense. In the following sections, we briefly describe

the characteristics of our notation and discuss its utility through a running example—a

monitor-based solution to a simplified readers–writer problem [10].

4.1.1 Readers-writers: monitor solution

The readers-writers problem is a classic synchronization problem in which two distinct classes

of threads exist, reader and writer. Multiple reader threads can enter the database simul-

taneously. However, no other writer thread, nor any reader thread, may be present in the

database while a given writer thread is present. This policy is implemented using a pro-

tocol by which readers and writers request authorization prior to accessing the database by

invoking startRead and startWrite, respectively. When readers or writers relinquish their

access authorization, they need to call endRead or endWrite. Figure 4.1 presents C++–like

pseudocode of a monitor solution to the readers-writers problem.

Figure 4.2 presents the implementations of the wait, signal and broadcast operations on

condition variables. Note: (1) each condition variable maintains a wait set onto which threads

may be placed to await resumption when some other thread invokes signal or broadcast for

this condition variable; (2) wait, signal and broadcast are operations of class Object; thus

the release lock statement releases the lock on the monitor object and does not affect the

condition variable passed in as a parameter; (3) Thread.currentThread() returns the currently

executing thread and suspend() causes the target thread to suspend execution until it is

explicitly resumed by another thread.

4.1.2 saUML notational specifics

Our saUML sequence diagram notation extends the standard UML 2.0 sequence diagram

notation [13] to explicitly represent phenomena related to synchronization. Figure 4.3 depicts
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#include <ace/Thread_Mutex.h>

#include <ace/Condition_Thread_Mutex.h>

class Database{

public:

...

void startRead(){

lock.acquire();

while (numWriters > 0)

okToRead.wait();

++numReaders;

lock.release();

}

void endRead(){

lock.acquire();

--numReaders;

if (numReaders==0)

okToWrite.signal();

lock.release();

}

void startWrite(){

lock.acquire();

while (numReaders > 0 || numWriters > 0)

okToWrite.wait();

++numWriters;

lock.release();

}

void endWrite(){

lock.acquire();

--numWriters;

okToWrite.signal();

okToRead.broadcast();

lock.release();

}

private:

...

unsigned int numReaders, numWriters;

ACE_Thread_Mutex lock;

ACE_Condition_Thread_Mutex okToRead, okToWrite;

}

Figure 4.1: A monitor-based solution to the readers-writers problem.
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wait(ConditionVariable cond) {

put the calling thread on the "wait set" of cond;

release lock;

Thread.currentThread().suspend();

acquire lock;

}

signal(ConditionVariable cond){

choose t from wait set of cond;

t.resume();

}

broadcast(ConditionVariable cond){

for all t in wait set of cond;

t.resume()

}

Figure 4.2: The pseudocode for wait, signal and broadcast.

a simple example. The diagram illustrates one possible scenario of interaction among three

objects—r, d, and w. Our notation assumes that every class depicted in one of these diagrams

must bear one of two stereotypes—thread or monitor3.

We distinguish thread objects (e.g., r and w) using UML’s double-bar convention for

depicting active objects. Passive objects (e.g., d) are assumed to be monitors. Thus, the

interaction depicted in Figure 4.3 involves a reader thread r, a writer thread w, and a monitor

d.

Threads may be in one of three scheduling states: running, ready, or suspended. Our

notation depicts the current scheduling state of a thread using colored execution specifica-

tions. By convention, the thread is running if its most deeply nested execution specification

is shaded green, ready if this specification is shaded yellow, and suspended if it shaded red

3Not shown in this diagram, but would be apparent in the class diagram that defines classes
Reader, Writer and Database.
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d : Database
startRead()

startWrite()

r : Reader w : Writer

numReaders=1;

locked

Figure 4.3: Sample saUML sequence diagram.

(varying intensities produce shades of gray that are distinguishable in monochrome displays

or by color-blind users). Moreover, at any point in time, only the most deeply nested execu-

tion specification is shaded. In Figure 4.3, for instance, thread r is initially running, while

thread w is initially ready.

In designing saUML, we chose to depict the states of operating system resources

(e.g., thread and lock states), application synchronization conditions, and details regarding

how invocations of primitives affect those states and conditions. When assigning features to

visual representations, we opted for combinations that support “at a glance” detection of

global synchronization properties (e.g. deadlocks, safety violations).

saUML depicts synchronization-relevant behavior using an idiomatic combination of UML

features and nonstandard extensions to represent the synchronization state of a monitor and

the scheduling state of a thread. Every monitor can be in one of two synchronization states—

locked or unlocked—to represent whether a thread is currently executing within it. Changes

to synchronization state are depicted using UML lifeline states. For instance, in Figure 4.3,

the database d transitions to a state in which d is locked as a result of thread r executing
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operation startRead(). At this point, any other thread that invokes a monitor operation on

d will block until such time as the executing thread unlocks d.

Additionally, saUML uses comments to show the state changes of the counter variables

numReaders and numWriters, which record the number of reader threads and writer threads,

respectively, that are currently “in” (i.e., authorized to access) the database. Figure 4.3

shows that the reader thread increments the counter variable numReaders to one when it is

executing within the monitor.

With these conventions in hand, a programmer would read the scenario depicted in

Figure 4.3 as follows. A reader thread and a writer thread are both active when the program

starts. The reader thread is scheduled first. It invokes a monitor operation startRead and

obtains the monitor lock on d. After the reader thread sets the counter numReaders to one,

a context switch occurs. The writer thread is then scheduled. It invokes a monitor operation

startWrite and tries to obtain the monitor lock. However, because the lock is held by the

reader thread, the writer thread suspends and the reader thread resumes. The rest of the

scenario is omitted for brevity.

Our extensions are most closely related to the sequence-diagram extensions proposed

by Mehner and Wagner [38]. They color execution specifications to distinguish when an

execution specification is active (dark) or suspended (white). These fine distinctions made

by saUML address many of the knowledge gaps upon which novices often stumble. Mehner

and Wagner also code wait and signal operations as primitives of the monitor. Such a coding

is consistent with Java’s model of synchronization, but it does not easily scale to represent

monitors with multiple condition variables. saUML addresses this issue by modeling condition

variables as distinct objects.

4.1.3 A walk-through of a program execution depicting by saUML

Figure 4.4 uses our saUML sequence diagram notation to present a complex interaction

between a reader thread and a writer thread attempting to access a shared database. We
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assume that only those two threads are running and that they are executing on a single

physical processor. The numbers 1-11 shown to the left of the diagram are keyed to the

following description:

r : Reader w : Writerd : Database

startWrite()

signal(okToWrite)

wait(okToWrite)

startRead()

endRead()

endWrite()

signal(okToWrite)

1
2

3
4

5

6

7

8

9

10
11

broadcast(okToRead)

numReaders=1

locked

unlocked

unlocked

numReaders=0

locked

locked

locked

numWriters=0

unlocked

unlocked

unlocked

numWriters=1
locked

Figure 4.4: saUML diagram for the readers-writer example.

1. Initially, a reader thread r and a writer thread w are created “simultaneously”. r

is scheduled first; thus its execution specification is colored green (darkest gray). w
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is ready (but not running) thus its execution specification is colored yellow (lightest

gray).

2. r invokes startRead() on the monitor and is able to obtain the lock, as indicated by

the appearance of the locked object state in the diagram.

3. A context switch occurs while r is executing startRead. w now runs (w ’s execution

specification changes from yellow to green as r ’s execution specification changes from

green to yellow).

4. w invokes startWrite and attempts to enter the monitor. However, the monitor lock

is held by r and w suspends (execution specification changes from green to red). r

resumes (execution specification changes from yellow to green). r sets numReaders to

1 (comment bubble), releases the lock (unlocked state) and returns from startRead.

Notice that when r releases the lock, w ’s state changes from suspended to ready (red

to yellow).

5. When another context switch occurs, w is able to run (green execution specification)

and is able to obtain the monitor lock (locked state).

6. Because numReaders is non-zero, w invokes wait(OKtoWrite). w then adds itself to

the wait set of OKtoWrite (not depicted in diagram), releases the lock (unlocked state)

and suspends itself (execution specification changes to red).

7. r now resumes its execution (green execution specification), invokes the monitor’s

endRead operation and acquires the lock (locked state).

8. r sets numReaders back to 0 (comment bubble) and invokes the monitor’s signal oper-

ation on the condition variable OKtoWrite.

9. As a result of r ’s invocation of signal(OKtoWrite), w, which is suspended and in

the wait set of OKtoWrite, now resumes (execution specification changes from red

to yellow).
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10. r returns from the signal operation, releases the lock (unlocked state) and returns from

its invocation of endRead.

11. Another context switch occurs, w is then scheduled (green execution specification). It

obtains the monitor (locked state), and eventually completes its operation invocations.

We claim that our saUML diagram can help users to overcome several of the difficulties

identified through our previous instructor interview and observation study. Using saUML

diagrams rather than ad-hoc sketches during class should facilitate student note-taking and

later review. Moreover, thread interleaving and context switching are depicted explicitly in

saUML diagrams. Viewers can see from the diagrams that context switches can occur even

when the thread is in a monitor or critical region.

saUML diagrams illustrate higher-level thread synchronization in a manner that is trace-

able to the use of low-level synchronization primitives. Thus, students can more easily answer

a question such as, “What is the impact of the invocation of signal by the reader on the

writer?” saUML diagram explicitly illustrates (in step 9) that the status of the writer changes

from suspended to ready (the execution specification changes from red to yellow).

saUML can reveal the underlying dynamics of the synchronization primitives that are

typically hidden from programmers. For instance, at step 5, when a context switch occurs, w

enters the monitor (obtains the lock). What prevents w from writing while r is still reading?

w sees that numReaders is 1, and suspends on wait(OKtoWrite). Why does not this cause a

deadlock? w releases the monitor lock (the unlocked state) before it suspends.

It is also possible to use saUML diagrams to ask why a thread is suspended. Can it not

enter the monitor, or is it waiting on some condition variable? If it is waiting on a condition

variable, the suspension will have begun during an activation of wait and should involve a

transition from green to red that coincides with transition into the unlocked state.
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4.2 Subjective study

We conducted a subjective user study of our diagram using five graduate students in the

Computer Science Department at the University of Georgia who had recently been taught

about semaphores and monitors. We first presented the code (Figure 4.1) and the saUML

diagram (Figure 4.4) for the monitor solution to the readers-writers problem. We then walked

the students through the event sequence described in the previous section and asked them

to fill out a short survey (Appendix A). The first question surveyed familiarity with the

standard UML 2.0 sequence- diagram notation. Of the participants, one had previously used

the notation, one was familiar with but had not actually used it, and three were completely

unfamiliar with it.

Questions 2-5 asked participants to use a rating scale from 1 (strongly disagree) to 5

(strongly agree) to evaluate how well the saUML diagram:

2. clarifies a thread’s entering and exiting a monitor routine—average rating: 4.4;

3. clarifies when and which threads are actively running on the processor at any given

time, assuming threads share a single processor—average rating: 4.2;

4. illustrates the interactions between threads in a single program trace—average rating:

4.3;

5. facilitates my understanding of the inherent mechanisms of monitors—average rating:

4.0;

Question 6 asked participants if they could think of any other aspects of concurrency

or synchronization behavior that this diagram might clarify or any ways in which it might

aid in design, understanding or verification tasks. One participant suggested the diagrams

could help distinguish when a thread is interrupted because it needs to synchronize with

another thread vs. a “normal” context switch. Others suggested refinements to the saUML

notation that included additional labels that record the values of condition variables, texture
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to indicate execution specifications by a particular thread, and identification of the queue

upon which a thread is blocked.

Question 7 asked participants to identify any aspects of concurrency or synchronization

that this diagram might obfuscate or that might complicate design, verification, or under-

standing activities. One participant pointed out that the lengths of the sections of execution

specifications could be misleading and perhaps should be scaled according to the amount of

time that the depicted portion of the execution would actually consume. Another pointed

out that it can be difficult to determine which execution specification is associated with

which thread and that context switches could be difficult to detect. Perhaps these events

could be more explicitly labeled.

Overall, the collected results are encouraging in that that all participants agreed or

strongly agreed that this refinement of the sequence diagram is helpful.

4.3 More refined saUML

Based on the feedback collected from the subjective survey, we refined the saUML notation.

We notice that when considering synchronizing multiple threads competing for access to some

monitor objects, two major categories of synchronization states manifest: mutual exclusion

synchronization states and condition synchronization states. While our initial saUML nota-

tion specifics employs two mutual exclusion synchronization states—locked and unlocked—to

indicate whether the mutex lock used to guard access to monitor operations has been acquired

or released, it does not deal with condition synchronization thoroughly. Recall that the early

verions of saUML diagrams used comment bubbles to show the state changes of the counter

variables. For instance, Figure 4.3 includes a comment bubble showing that numReaders has

been set to one. However, such a representation appears to be informal and complicates the

already-cluttered diagrams. It would be nice if we could use the existing, more formal UML

features to represent condition synchronization states.
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Moreover, condition synchronization states often associate values to problem-specific

counter variables and conditions. When threads are synchronizing using condition variables,

a condition change—a change of the counter variables—can be shown explicitly as a change

of synchronization state on the lifeline of the monitor. Thus, both mutual exclusion syn-

chronization states and condition synchronization states can be explicitly shown as UML

lifeline states (i.e. object states) in parallel. Our more refined saUML notation allows for

the depiction of zero or more problem-specific condition synchronization states, which are

orthogonal to mutual exclusion synchronization states.

Figure 4.5 presents a more refined saUML sequence diagram that shows the same inter-

action as depicted in Figure 4.3. Notice that an orthogonal state appears in the lifeline of the

monitor whenever a change to any of the mutual synchronization states and the condition

synchronization states occurs. For example, the first orthogonal state corresponds to the

event that r obtains the mutex lock on the monitor and the second orthogonal state corre-

sponds to the event the r sets numReaders to one. Although the value of numWriters does

not change in the presented diagram, its states are still included in the orthogonal states.

d : Database
startRead()

startWrite()

r : Reader w : Writer

locked;
numReaders = 1;
numWriters = 0;

locked;

numWriters = 0;
numReaders = 0;

Figure 4.5: A more refined saUML sequence diagram.
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4.4 Objective study: saUML vs. text-only

We designed the saUML diagram notation to address the obstacles to student learning uncov-

ered by our instructor interview and observational study. The saUML extensions should help

students in comprehension tasks involving the essentials of thread interleavings and context

switches. The diagrams explicitly illustrate thread interactions and the effects of the execu-

tion of synchronization primitives by one thread on other threads. Consequently, they reveal

more of the underlying dynamics of synchronization, information that is typically hidden

from programmers. We expect that this external representation, designed to address some

of the difficulties that users encounter in comprehending concurrent programs, will lead to

improved performance on comprehension tasks.

We conducted an empirical study to examine the benefits of using our saUML sequence

diagram notation in conjunction with source code in comprehension tasks for programs that

employ concurrency. The data collected from the study showed a statistically significant

benefit to the use of our notation.

4.4.1 Study design

We hypothesized that our notation, in combination with a careful selection of motivating

examples, has the potential to increase students’ performance when answering questions

that require them to reason about synchronization behaviors. To evaluate the hypothesis, we

adopted a between-subjects, pre-test/post-test design to compare the performance of a text-

only group with that of a text-plus-diagram group in answering questions about concurrency.

The user study consisted of a teaching session that reviewed concurrency concepts and

introduced the monitor construct, a pre-test, another teaching session that reviewed the

monitor construct, and a post-test.

Questions included in both the pre-test and the post-test were segregated into knowledge-,

comprehension- and application-level questions. Bloom’s taxonomy [4] categorizes the levels

of abstraction of questions that commonly occur in educational settings. Knowledge-level
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questions are the least abstract, and are characterized by recall of terminology of con-

cepts. Comprehension is defined as “the ability to grasp the meaning of material,” and

may be demonstrated by translating material from one form to another, by explaining or

summarizing material, or by predicting consequences or effects. Application-level questions

require participants to use learned methods, concepts or theories in new situations or to

solve problems. Obviously, application-level questions require a higher level of skills than

both comprehesion- and knowledge-level questions. In the context of our study, knowledge-

and comprehension-level questions evaluated participants’ understanding of the concurrency

and synchronization concepts presented in the lectures; application-level questions evaluated

the ability to apply those concepts to solve model problems.

This study was conducted in an undergraduate operating systems class at the University

of Georgia and comprised two 75 minute class sessions. Participants were mostly juniors or

seniors who had learned Java in their first two years of study and had recently been taught

some basic concurrency concepts in this class. Students were informed that both the pre-test

and post-test would be counted as class quizzes. For purposes of class grade reporting, the

post-test scores were normalized across groups to ensure fairness.

Two classic model synchronization problems—the shared bank account problem and the

readers and writers problem [10] —were used in our study. The bank account problem, in

which two or more threads concurrently access shared bank-account objects, is stated more

formally as follows. Threads represent individual customers, some of whom may share bank

accounts. Each customer may deposit or withdraw money from an account; however, to avoid

a data race, only one customer may access any account at a time. A customer may execute

a deposit at any time, provided that no other thread is currently accessing the account. A

withdrawal requires both exclusive access and the condition that the balance be sufficient

to permit withdrawal of the requested amount. Figure 4.6 depicts a Java-like pseudo-code
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solution to this problem4. Notice that the synchronized Java directive indicates the implicit

acquire and release of the monitor mutex lock upon entering and exiting the operations.

class BankAccount extends Object{

private double balance = 0;

private CondVar okToWithdraw = new CondVar;

public synchronized void deposit(double amount) {

balance = balance+amount;

notifyAll(OKtoWithdraw);

}

public synchronized void withdraw(double amount) {

while (amount > balance)

wait(okToWithdraw);

balance = balance-amount;

}

}

Figure 4.6: Java-like pseudo-code solution to the bank account problem.

While the reader-writers problem has been introduced in previous sections, we now

presents the Java version of its monitor solution (see Figure 4.7), as our study participants

are mostly Java proficient.

4.4.2 First session

In the first 75 minute class session, the experimenter reviewed with the students the basic con-

cepts and terminology in concurrency, including definitions and discussion of threads, context

switches, race conditions, atomic operations, critical sections, deadlock, mutual exclusion,

etc. A joint bank account example (with no synchronization mechanism) was used to illus-

trate race conditions. Condition variables and the monitor construct were then introduced,

and a monitor solution to a simple rendezvous problem was presented. No diagrams were

used.

4the notify operation and the notifyAll operation are equivalent to the signal operation and the
broadcast operation, respectively.
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class Database extends Object {

private int numReaders = 0;

private int numWriters = 0;

private CondVar okToRead = new CondVar();

private CondVar okToWrite = new CondVar();

public synchronized void startRead() {

while (numWriters > 0)

wait(okToRead);

numReaders++;

}

public synchronized void endRead() {

numReaders--;

if (numReaders > 0)

notify(okToWrite);

}

public synchronized void startWrite() {

while (numReaders > 0 || numWriters > 0)

wait(okToWrite);

numWriters++;

}

public synchronized void endWrite() {

numWriters--;

notify(okToWrite);

notifyAll(okToRead);

}

}

Figure 4.7: Java-like pseudo-code solution to the readers-writers problem.
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The pre-test was conducted at the end of the first class session. In the pre-test, we

asked both comprehension-level questions about concurrency concepts and application-level

questions that required students to apply those concepts in interpreting the interactions

between two concurrent threads (c1 and c2 ) in a single problem. The eight knowledge-level

questions were presented to refresh students’ memory about the basic concurrency concepts

and to make sure that the participants had the fundamental knowledge to understand the

terminology used in the tests. Of the participants, 83% scored 100% on these eight knowledge-

level questions and 100% scored 75% or higher, indicating that students had sufficient grasp

of the terminology and concepts of interest.

Seven application-level questions were presented and served as the basis for evaluating

student comprehension of the essential synchronization primitives and the behavior of con-

current programs. Figure 4.8 presents a sample scenario description and question from the

pre-test. The question refers to the monitor solution to the bank account solution seen in

Figure 4.6. Please see Appendix B.1 for all the pre-test questions.

Assume c1 is running within the invocation of deposit(100) and c2 is in the

suspended state (it was suspended on the monitor lock).

Question: If c1 releases the monitor lock and leaves the monitor, then:

a. c1 changes to ready and c2 changes to running;

b. c1 changes to suspended and c2 changes to running;

c. c1 remains running and c2 remains suspended;

d. c1 remains running and c2 changes to ready;

e. Deadlock occurs.

Figure 4.8: A sample pre-test scenario and question.

Based on their scores on these application-level questions, we divided the students evenly

into two groups—a control group and a treatment (diagram) group—for the post-test. The

division was designed to produce two groups with equal means and standard deviations of

pre-test scores. However, only twelve students in the class attended both the pre-test and the

post-test sessions. Due to drop-outs between the pre-test and post-test, the actual groups
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did not have the same mean score on the pre-test. The treatment group received a mean of

3.833 out of 7 with a standard deviation of 0.983 on the pre-test while the control group

received a mean score of 4.667 out of 7 with a standard deviation of 1.366. Our analysis

methodology took this difference in variances between groups into account.

4.4.3 Second session

During the next phase of the experiment, the groups attended parallel lecture sessions in

different classrooms. Each lecture covered the basic features of monitors and a monitor

solution to the bank account problem. Moreover, the PowerPoint slides used to cover this

material were exactly the same for both the control and the treatment group. Following this

initial lecture, the treatment group was then introduced to our saUML notation and the

diagram depicted in Figure 4.9, which presents a complex interaction between two customer

threads— c1 and c2—attempting to access a shared bank account with an initial balance

of $0. We assume that only those two threads are running and that they are executing on a

single physical processor. These students were then led to “walk through” the event sequence

conveyed in Figure 4.9:

1. Initially, c1 is scheduled, as indicated by the green shading (darkest shade of gray on

a monochrome display) of its execution specification. Thread c2 is ready, as indicated

by the yellow (lightest gray) shading of its execution specification.

2. c1 invokes the deposit(100) operation and is able to obtain the lock, as indicated by

the change in a’s synchronization state to locked. The orthogonal condition balance=0

is also depicted.

3. c1 increases a’s account balance by $100, as indicated by the change in synchronization

state with the condition balance=100 (monitor remains locked).

4. A context switch occurs. c2 now runs (the shading of c2 ’s execution specification

changes from yellow to green as that of c1 ’s changes from green to yellow). c2 invokes
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withdraw(150) and attempts to enter the monitor. However, the monitor lock is held

by c1, so c2 suspends (the shading of its execution specification changes to red).

5. c1 then resumes (shading changes from yellow to green) and calls notifyAll(okToWithdraw).

Because no thread is suspended on the condition variable okToWithdraw, this opera-

tion does not trigger any changes in scheduling state but releases the lock (unlocked

state) and returns from deposit( 100). Notice, at the point at which c1 releases the

lock, c2 ’s scheduling state changes from suspended to ready (red to yellow).

6. When another context switch occurs, c2 is able to run (green shading) and is able

to obtain the lock (locked state). Because the withdrawal amount ($150) exceeds the

balance ($100), wait(okToWithdraw) is invoked. c2 then adds itself to the wait set of

okToWithdraw(not depicted in diagram), releases the lock (unlocked state) and sus-

pends itself (shading changes to red).

7. c1 now resumes execution (green shading). It invokes the deposit(100) operation,

acquires the lock (locked state), and increases the balance by $100.

8. c1 invokes notifyAll(okToWithdraw). As a consequence, c2 (suspended and in the wait

set of okToWithdraw), now resumes to the ready scheduling state (shading changes

from red to yellow).

9. c1 returns from the notifyAll operation, releases the lock (unlocked state) and eventu-

ally returns from the invocation of deposit(100).

10. A context switch occurs again. c2 is then scheduled (green shading). It obtains the

monitor lock (locked state), and because the current balance ($200) is now greater than

the withdrawal amount ($150), c2 eventually completes its transaction and finishes it

execution, leaving the account balance at $50 (indicated in the orthogonal state).

The control group went through the same event sequence as the treatment group, as well

as some additional examples to ensure that both groups spent the same amount of time
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in this second teaching session; however the control group used only the program text (no

diagrams).

Afterward, the two groups were brought together and received a brief introduction to

the readers-writers problem and one of its monitor solutions (see Figure 4.7). This problem

served as the basis for the majority of the questions and answers involved in the post-tests.

The post-test comprised seven scenarios of program execution traces, each followed by an

application-level question. These questions were similar to those in the pre-test, except the

pre-test questions addressed the simpler bank account problem rather than the more complex

readers-writers problem. Figure 4.10 depicts a sample scenario and its associated question.

In addition to these application-level questions, the post-test included three comprehension-

level questions. All the post-test questions are presented in Appendix B.2.

All students then took the post-test. The control group received only textual mate-

rials while the treatment group received both the textual materials and saUML diagrams

(Appendix B.3). The saUML diagram in Figure 4.11 corresponds to the scenario described

in Figure 4.10.

4.4.4 Results and analysis

Table 4.1 summarizes the results of the study. The mean score of the control group dropped

from 4.667 (67%) on the pre-test to 3.667 (52%) on the post-test, while the mean score of the

treatment group rose from 3.833 (55%) to 4.833 (69%). We believe the drop in performance

on the part of the control group was due to the use of a more complex problem (readers-

writers) on the post-test than what was used on the pre-test. Structurally, the pre-test and

post-tests were equivalent, as each contained only seven application-level questions with sce-

nario descriptions of comparable length. To measure the effect that our notation had on the

subjects’ ability to perform problem-solving tasks, we compared the changes in scores from

pre-test to post-test (post-test scores minus pre-test scores). By applying a two-tailed het-

eroscedastic (does not assume equal variance) t-test to the improvement matrix, we obtained
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c1 : Customer a : BankAccount c2 : Customer
deposit(100)

notifyAll(okToWrthdraw)

wait(okToWithdraw)

notifyAll(okToWithdraw)

withdraw(150)

deposit(100)

1
2

3

4
5

6

7

8

9

10

locked;
balance=0

balance=100
locked;

unlocked;
balance=100

unlocked;
balance=100

locked;
balance=100

locked;

locked;

locked;

locked;

balance=100

balance=200

balance=200
unlocked;

balance=200

balance=50

balance=50
unlocked;

Figure 4.9: saUML diagram for the shared bank account example.
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Assume the reader thread r is in the running state and the writer thread w

is in the suspended state (previously suspended on wait(okToWrite)). r

invokes endRead() and enters the monitor. It sets numReaders to 0 and issues

notify(okToWrite). Assume only the two threads are running on the processor.

Question: As a result:

a. r changes to ready; w changes to running.

b. r changes to suspended; w changes to running.

c. r remains running; w remains suspended.

d. r remains running; w changes to ready.

e. Deadlock occurs.

Figure 4.10: A sample post-test scenario and question.

a p-value of 0.027. This result indicates a statistically significant difference between the two

groups, with the treatment group outperforming the control group.

Table 4.1: Statistical results - Mean/Standard Deviation
Control Group Treatment Group

Pre-test score 4.667/1.366 3.833/0.983
Post-test score 3.667/1.265 4.833/0.753

Improvement(Post-test - Pre-test) -1/1.265 1/1.414

The post-test also included three comprehension-level questions. In contrast to the

application-level questions, these questions were more general in nature and did not have a

corresponding diagram. Nevertheless, the treatment group outperformed the control group

in that the mean score of the treatment group was 2.667 out of 3 while the mean score

of the control group was 2.167. We postulate that our notation, which also visualizes the

low-level implementation details of some of the synchronization primitives, may aid students

in achieving the comprehension-level objectives in learning about concurrency. However, due

perhaps to the limited group size and the limited number of comprehension-level questions

presented in the study, the result was not statistically significant.
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r : Reader w :Writerd: Database
startRead()

startWrite()

notify(okToWrite)

endRead()

wait(okToWrite)

locked;

numWriters=0

numWriters=0

locked;

numWriters=0

numWriters=0

locked;

numWriters=0

numReaders=0;
numWriters=0

locked;
numReaders=0;
numWriters=0

locked;
numReaders=0;
numWriters=0

numReaders=1;

numReaders=1;
unlocked;

numReaders=1;

numReaders=1;
unlocked;

numReaders=1;

unlocked;

Figure 4.11: Sample saUML diagram appeared in the post-test.
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In summary, our saUML sequence diagram notation resulted in a statistically signifi-

cant benefit in answering application-level questions. A beneficial trend was observed for

comprehension-level questions.

4.5 Two Objective studies: saUML vs. standard UML

In the prior section, we reported how saUML sequence diagrams aid novice programmers in

understanding tasks when compared with purely textual representations [61]. Whereas the

positive effects of diagrammatic over purely textual representations are well documented [44],

one question left open by our prior work was whether the positive effect of saUML diagrams

owes to our extensions. Said another way, is there anything special about saUML diagrams

or would the same benefits be observed from another, less feature-rich, graphical notation?

Conceivably, the added adornments might actually detract from understanding by producing

busier diagrams. We intends to investigate this question by comparing saUML with a simpler

notation—standard UML 2.0 sequence diagrams.

To understand whether the benefits we measured in the previous study were due to

saUML’s specific extensions or merely to the use of a diagrammatic notation to accompany

the text, we ran two user studies comparing saUML to standard UML. The first study

involved programs that use relatively simple synchronization, whereas the second involved

programs that use condition synchronization. The participants in both studies were junior-

level computer science students. For each study, students were partitioned into two equivalent

groups as measured by scores on a pre-test. The treatment group referred to the program’s

source code and to a collection of saUML diagrams depicting the interactions of interest

to the particular question. The control group referred to the code and to standard UML

sequence diagrams depicting the same phenomena.

In the first study, the treatment group was more successful than the control group at

answering questions regarding programs with simple synchronization. However, this improve-

ment did not rise to the level of statistical significance. In contrast, the second study demon-
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strated a statistically significant improvement of the treatment group at answering questions

regarding programs with condition synchronization (p < 0.05). These results suggest that the

saUML extensions play a role in improving performance in programs that employ condition

synchronization. A benefit for programs with simple synchronization may or may not exist.

Our study of the simple synchronization case involved 24 subjects. However, an a posteriori

power analysis using the effect size and sample variance observed in this study indicates the

need for a larger study, of 60-70 participants.

4.5.1 Study Design

We conducted two experiments to compare the effectiveness of saUML diagrams with that

of standard UML sequence diagrams, when used as aids to the comprehension of concurrent

systems. Effectiveness was measured in terms of the number of correct responses to questions

about scenarios of concurrent program execution.

Both experiments employed a between-subjects, pre-test/post-test study design to com-

pare the ability of novices to understand and answer questions about computer programs

involving concurrency and synchronization using either (1) the traditional UML sequence

diagram notation (control group) or (2) the saUML sequence diagram notation (treatment

group). Participants were students in an undergraduate software design class at Michigan

State University. The first experiment was conducted with 24 students during the fall

semester of 2006; the second experiment was conducted with 38 students in the spring

semester of 2007. Students received extra credit for their participation in the study. For both

experiments, course material prior to the study session covered standard UML notation and

basic concurrency concepts. Students in the second study had been taught about condition

synchronization, while participants in the first experiment had not. Thus, the second exper-

iment was able to assess the use of the diagrams with more complex problems, involving

condition synchronization.
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Both experiments involved two eighty-minute sessions. Each session began with a lecture

and ended with a test.

4.5.2 Experiment I

We performed the first experiment to compare saUML with standard UML on problems with

relatively simple synchronization complexity, i.e., threads and monitors with no condition

synchronization. We conducted this experiment in two sessions. The first session began with

a review of concurrency concepts followed by the pre-test. The second session began with a

detailed introduction and a series of in-class demonstrations on the notation of interest (i.e.,

UML or saUML) followed by the post-test.

Session i

In the first session of the experiment, all of the participants attended a lecture given by the

experimenter and then completed the pre-test. Results of the pre-test were used to partition

the students into equivalent groups based on prior knowledge. During the lecture component,

the experimenter reviewed basic concurrency concepts and used standard UML sequence

diagrams to demonstrate scenarios of interaction in systems where threads synchronize with

one another using monitors. The running example involved two threads sharing access to

a queue. The discussion involved pointing out several instances of data-access anomalies

and also legal but often unexpected behaviors, focusing on how scenarios involving these

anomalies/behaviors are depicted using sequence diagrams. The choice of anomalies and

unexpected behaviors was informed by our earlier instructor survey of topics that students

often miss or find difficult to envision [59].

Figure 4.12 depicts an example diagram, which we used to illustrate and probe student

understanding of monitor semantics. Here, two threads—actor1 and actor2—attempt to pull

an item off of a shared queue, and the threads are scheduled in such a way that their

activations of the pull operation overlap in time. The experimenter would display such a
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sd queue1

actor1 : ... : Queue actor2 : ...

empty()

back()

pop()

empty()

back()

pop()

pull()

pull()

Figure 4.12: One sample scenario used in probing students’ understanding of monitors.

diagram and then ask whether (1) the scenario is feasible in general and (2) it remains feasible

if the queue is implemented as a monitor. In this instance, the answer to both questions is

“yes”5. Figure 4.13 depicts a scenario that is feasible in general but not feasible if the queue

is implemented as a monitor.

Following this lecture, the experimenter then administered the pre-test. The pre-test

contained nine application-level questions, which required participants to apply their knowl-

edge of thread interleaving and synchronization in interpreting the interactions between two

concurrent threads in a single program execution scenario, and two comprehension-level

questions, designed to gauge mastery of the notion of a “race condition” and knowledge

of the major functions of a monitor. Each application-level question presented participants

with a standard UML sequence diagram and up to five different candidate descriptions of

5Students often fail to understand that a thread may invoke an operation on a monitor, as
depicted by the execution specification activated by actor2 in the middle of the activation by
actor1. Of course, the former activation will immediately block until the monitor lock is released
by actor1.
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sd queue2

actor1 : ... : Queue actor2 : ...

empty()

empty()

back()

pop()

back()

pop()

pull()

pull()

Figure 4.13: A second sample scenario used in probing students’ understanding of monitors.

the interaction depicted. Students were asked to select the candidate that best described

the depicted behavior. All of the scenarios were based on one of two different versions of a

shared queue example mentioned previously. In one version, the shared queue is assumed

to have been implemented with monitor semantics; whereas in the other version, the shared

queue is implemented as an unprotected queue that can be accessed by any thread at any

time. Figure 4.14 lists one of the questions we asked on the pre-test. Notice that it refers

to a specific diagram and asks what could happen next, i.e., how the scenario could play

out following what is depicted in the diagram. For instance, this sample question targets the

thread interactions depicted in Figure 4.12. Appendix C.1 presents all the pre-test questions.

Based on the participants’ scores on the application-level questions on the pre-test, we

divided them into a control group and a treatment group with equal means and standard devi-

ations of score. Table 4.2 summarizes the results of participants’ scores on the application-

level questions of the pre-tests, normalized to the range 0.0 to 1.0. Some drop-outs occurred



50

Q1. Assume the Queue initially contains only Object A. What happens as a

result of actors 1 and 2 executing the pull method?

a. actor1 gets a copy of Object A; actor2 gets nothing; the Queue

becomes empty.

b. actor1 gets a copy of Object A; actor2 gets a copy of Object A;

the Queue becomes corrupted.

c. actor1 gets a copy of Object A; actor2 gets a copy of Object A;

the Queue becomes empty.

d. actor1 gets a copy of Object A; actor2 gets nothing; the Queue

becomes corrupted.

e. actor1 gets a copy of Object A; actor2 gets a copy of Object A;

the Queue still contains Object A.

Figure 4.14: Sample question probing students’ understanding of monitors.

between the pre-test and post-test sessions. Thus, the means of the two groups reported vary

slightly, but with no detrimental effect on the our ability to perform subsequent analysis.

Table 4.2: Experiment I pre-test results, normalized
Mean Standard deviation

Treatment Group 0.694 0.207
Control Group 0.741 0.191

Session ii

The second session also consisted of a lecture and a post-test. The treatment and control

groups attended parallel lectures, in two different classrooms. The two lectures reviewed

the same concurrency and synchronization concepts and covered the same examples using

the same textual descriptions. The two lectures differed only in that the control group was

presented with standard UML sequence diagrams, while the treatment group was presented

with saUML diagrams.
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class IBA {
public:
...
void deposit(double amount) // amount in GBP
{ double balance(db->getBalance(acctID);
balance += currencyConv->toDollars(amount);
db->setBalance(acctID, balance);

}
double withdrawHalf() // amount in GBP
{ double balance(db->getBalance(acctID);
balance /= 2.0;
db->setBalance(acctID, balance);
return currencyConv->toPounds(balance);

}
private:
unsigned acctID; // customer acct #
Database* db; // acct balances in USD
Converter* currencyConv; // converts USD to/from GBP

};
class MonitorIBA : public IBA {
public:
...
void deposit(double amount) // amount in GBP
{ pthread mutex lock(&lock);
IBA::deposit(amount);
pthread mutex unlock(&lock);

}
double withdrawHalf() // amount in GBP
{ pthread mutex lock(&lock);
double amount=IBA::withdrawHalf();
pthread mutex unlock(&lock);
return amount;

}
private:
pthread mutex t lock;

};

Figure 4.15: A monitor implementation of a shared bank account.
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client1 : ... d : Database : MonitorIBA : Converter

sd joint account

client2 : ...

getBalance()

toDollars()

toPounds()

withdrawHalf()

setBalance()

deposit(100)

setBalance()

getBalance()

bal = $180 unlocked

locked

unlocked

locked

bal = $180

bal = $360

Figure 4.16: A saUML diagram used in the post-test of the first experiment.
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client1 : ... d : Database : MonitorIBA : Converter

sd joint account

client2 : ...

getBalance()

toDollars()

toPounds()

withdrawHalf()

setBalance()

deposit(100)

setBalance()

getBalance()

Figure 4.17: A standard UML sequence diagram used in the post-test of the first experiment.
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What happens as a result of the execution depicted in Scenario 6?

a. withdrawHalf returns 50 GBP and the account now contains $90

b. withdrawHalf returns 100 GBP and the account now contains $270

c. withdrawHalf returns 50 GBP and the account now contains $270

d. withdrawHalf returns 100 GBP and the account now contains $180

Figure 4.18: Sample question from the post-test of the first experiment.

After the lecture, the groups were brought into one classroom to take the post-test,

which included nine application-level questions and five comprehension-level questions

(Appendix C.2.1). In modeling the scenarios in the application-level questions, the treat-

ment group was supplied with saUML sequence diagrams (Appendix C.2.2) while the

control group was supplied with standard UML sequence diagrams (Appendix C.2.3). The

nine application-level questions of the post-test were based on program execution scenarios

involving a monitor implementation of a shared international bank account upon which two

concurrent client threads invoked deposit and withdrawal operations.

Figure 4.15 lists the source code for class IBA, whose instances represent international

bank accounts. These objects store balances in US Dollars but allow deposits and withdrawals

in British Pounds. Class MonitorIBA extends class IBA by extending each of its operations

into a monitor operation. Instances of this class are international bank accounts that execute

as monitors.

Figure 4.16 presents a sample saUML sequence diagram in which thread client2 invokes

the monitor operation withdrawHalf. Because this invocation occurs while another thread

(client1) is executing a monitor operation, deposit(100)6, client2 suspends, waiting to enter

the monitor. As indicated in the diagram, client2 remains suspended (red execution speci-

6Recall that the IBA::deposit takes its argument in British Pounds rather than US Dollars.
This deposit is converted internally into 180 US Dollars. At the time we ran this study, the exchange
rate was much more favorable to the Dollar than it is now.
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fication) until client1 unlocks the monitor, after which the thread state of client2 changes

from suspended to ready (yellow). Notice that a context switch occurs shortly after client1

unlocks the monitor but before it can actually return from its invocation of deposit(100).

Because of this context switch, client2 was able to enter the monitor and complete his invo-

cation of withdrawHalf before client1 is again scheduled to run and thus able to return.

This example illustrates the kinds of unexpected timing phenomena that saUML diagrams

clearly explain but that are more difficult to understand using only standard UML (Figure

4.17). Figure 4.18 presents a sample post-test question that targets the program execution

scenario depicted in these diagrams.

Results and Analysis

Table 4.3: Experiment I post-test results, normalized
Application-level Comprehension-level

Mean Standard deviation Mean Standard deviation
Treatment 0.880 0.152 0.616 0.248
Control 0.806 0.171 0.666 0.246

Table 4.3 summarizes the post-test means and standard deviations of participants’ scores

on the application-level questions and the comprehension-level questions, normalized to the

range 0.0 to 1.0. On the application-level questions of the first experiment, the treatment

group (mean: 0.880 ) slightly outperformed the control group (mean: 0.806) despite the

treatment group’s lower mean score on the pre-test (0.694 < 0.741). However, this difference

was not statistically significant, nor was the difference on the comprehension questions.

Analysis was performed using both parametric (t-test with assumption on unequal variance)

and non-parametric (Wilcoxon rank-sum) methods.
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4.5.3 Experiment II

We conducted the second experiment in two sessions, using essentially the same protocol as

in the first experiment. The first session consisted of a lecture attended by all participants

followed by a pre-test. The second session began with a detailed introduction and a series

of in-class demonstrations on the treatment or control notation followed by a post-test. In

contrast to the first experiment, this one included a greater number of participants (38 vs.

24) and evaluated the diagrams in the context of more complex synchronization constructs

(i.e., condition synchronization).

Session i

As in the first experiment, the first session of this experiment began with a lecture that

covered thread synchronization, mutual exclusion, and monitor constructs. In addition, con-

dition synchronization was reviewed. The pre-test materials of the second experiment were

similar to those of the first experiment, containing the same two comprehension-level ques-

tions, very similar application-level questions, and targeting the same shared-queue problem

(Appendix C.3). Based on pre-test scores, we divided the participants into two equivalent

groups.

Due to drop outs, the treatment group had 18 participants versus 20 in the control group.

Table 4.4 summarizes the means and standard deviations of the participants’ scores on the

eleven application-level questions of the pre-test, normalized to the range 0.0 to 1.0. The two

groups had similar means and standard deviations of scores.

Table 4.4: Experiment II pre-test results, normalized

Mean Standard deviation
Treatment Group 0.672 0.202
Control Group 0.650 0.207
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Session ii

The second session consisted of a lecture and a post-test. As in the first experiment, the

treatment and control groups attended parallel lectures in different classrooms. Each lecture

involved a review of the same concurrency and synchronization concepts, but diagrams used

for the control group were standard UML whereas diagrams used for the treatment group

were saUML.

Following the lecture, the two groups were brought into the same classroom to take

the post-test, which comprised three comprehension-level questions and eleven application-

level questions (Appendix C.4.1). The application-level questions were based on execution

scenarios involving a solution to the readers-writers problem [31], which involves condition

synchronization and is more complex than the international bank account problem of the

first study. In modeling these scenarios, the treatment group was supplied with saUML

diagrams (Appendix C.4.2) and the control group with standard UML sequence diagrams

(Appendix C.4.3).

Each scenario describes a collaboration between two threads, which are attempting to

simultaneously access a shared database of account information. Threads in this experiment

could play one of two distinct roles, reader or writer, where readers may access the database

concurrently, but writer accesses must execute exclusive of any other reader or writer. Reader

threads interact with the database by bracketing accesses with calls to two, potentially

blocking, operations—startRead and stopRead. Writer threads bracket their accesses in a

similar fashion using calls to startWrite and stopWrite. Condition synchronization is imple-

mented by means of a mutex lock, two counter variables numReaders and numWriters,

and two condition-variable objects okToRead and okToWrite. These entities are declared as

private data members of class Database.

The post-test questions refer to scenarios involving either two readers, one reader and one

writer, or two writers. As an example, Figure 4.19 depicts the UML and saUML diagrams

representing a scenario in which a writer invokes startWrite after a reader has been granted
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r : Reader d : Database okToWrite: ... w : Writer

sd scenario2

startRead()

startWrite()

wait()

signal()

stopRead()

r : Reader d : Database okToWrite: ... w : Writer

sd scenario2

startWrite()

stopRead()

startRead()

signal()

wait()

locked;
numReaders = 0;

numWriters = 0

locked;
numReaders = 0;

numWriters = 0

locked;

numWriters = 0

numWriters = 0

locked;

numWriters = 0

numWriters = 0

locked;

numWriters = 0
numReaders = 1;

unlocked;
numReaders = 1;

numReaders = 1;

numReaders = 1;
unlocked;

numReaders = 1;

numReaders = 0;
numWriters = 0

unlocked;

Figure 4.19: Sample post-test scenario depicted by UML and saUML renderings.
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read access to the database. Immediately following the invocation of startRead, the counter

variable numReaders is non-zero; thus when the writer invokes startWrite, it is able to acquire

the mutex lock but must suspend itself until such time as both counter variables are 0. This

is accomplished by invoking wait on the condition-variable object okToWrite.

sd scenario6

startWrite()

startRead()

d : Databaser : Reader w : Writer

r : Reader d : Database w : Writer

sd scenario6

startWrite()

startRead()

locked;

nWriters = 0;
nReaders = 1;

nWriters = 0;
nReaders = 1;

unlocked;

locked;

nWriters = 0;
nReaders = 0;

Figure 4.20: Another sample post-test scenario depicted by UML and saUML renderings.

Figure 4.20 depicts another scenario involving reader-writer synchronization. Both dia-

grams indicate that the writer thread blocks waiting to acquire the mutex lock needed to
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enter the monitor. This property is clearly evident in the saUML diagram because the execu-

tion specification for startWrite turns red. The same property can be inferred from the UML

diagram, because, had the writer acquired the lock first, startWrite would have returned

prior to the return of startRead. Thus, while all of the information needed to check this

property is “in” the standard UML representation, it is more clearly shown in the saUML

representation.

Results and Analysis

Table 4.5 summarizes the results of the post-test. As expected, the participants of both the

control group and the treatment group found the post-test of this second experiment to be

more difficult than the first. No significant difference was found for the comprehension-level

questions. A one-tailed, heteroscedastic t-test (assumes unequal variance) of the score matrix

of the post-test for this second experiment showed a statistically significant benefit to the

use of the saUML diagrams (p < 0.05). These data were also analyzed with the Wilcoxon

rank-sum test, a non-parametric alternative to the two-sample t-test. Again, a significant

result was found (p < 0.05).

Table 4.5: Experiment II post-test results, normalized
Application-level Comprehension-level

Mean Standard deviation Mean Standard deviation
Treatment 0.642 0.237 0.593 0.25
Control 0.482 0.259 0.683 0.33

On a per-question basis, our data revealed a trend toward better performance using the

saUML diagrams, particularly for the more difficult questions. For example, on the question

associated with Figure 4.19, only 20% of the UML users were able to answer correctly,

while 39% of the saUML were able to do so. Similarly, only 25% of UML users answered the

question associated with Figure 4.20 correctly, while 50% of saUML users did so, a significant

difference (p < 0.05).
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That questions involving such scenarios would be difficult to answer is not surprising:

Threads transition among several synchronization states and many operations are invoked

in a short span of time. That said, both groups had access to the source code and to a textual

description of the scenario, which included details such as that “Only one reader thread and

one writer thread are running on the processor”, that “The writer thread is in the suspended

state (suspended on wait(okToWrite))”, and that when the reader invokes stopRead it “sets

numReaders to 0 and issues a notify(okToWrite)”. That the participants using the saUML

diagram fared better on questions involving such a scenario suggests that the way in which

the information is depicted and conveyed in the saUML diagram allows a larger number of

participants to correctly reason about the behavior.

In summary, the saUML sequence diagram notation provides significant benefits over

the standard UML sequence diagram notation when used by novices as an aid in answering

application-level questions involving complex synchronization constructs (mutual exclusion,

monitors, and condition synchronization).

Clearly, something about explicitly depicting thread states and synchronization mech-

anisms in the sequence-diagram format makes concurrent software easier for novice pro-

grammers to comprehend than when such information is left implicit. Moreover, our findings

suggest that saUML may provide some benefit, although less pronounced, for reasoning about

programs with relatively simple synchronization logic—that is, logic that involves mutexes

but not condition variables. These results could inform the design of new tools and notations

for visualizing concurrent software, especially software that uses condition synchronization.

Further, it stands to reason that if saUML helps students to learn about concurrent pro-

gramming, it could potentially help practitioners with program-comprehension tasks.



Chapter 5

Evaluation of UML state machine diagrams as aids in the comprehension of

concurrency concepts

In the object-oriented design idiom, a software system is seen as a collection of cooperating

objects [2, 40, 55]. By applying the UML state machine diagram notation to model a running

system, each object may be modeled by a distinct, isolated state machine, which commu-

nicates with other objects by detecting and responding to events [47]. Thus, each object

appears to be acting as an active object that executes within its own thread of control.

However, this interpretation is non-intuitive for passive objects, which do not initiate any

control activity.

To address this issue, a commonly-used technique is to treat each state machine as a

“sequential process” [35, 39, 62], which synchronizes with other processes by sending and

receiving messages. Following this approach, we may appropriately differentiate the state

machine representing a passive object from the state machine representing an active object

by treating a passive object as a server process and an active object as a client process in

the client-server style of interaction [53]. In the following section, we introduce how to follow

this approach to model the synchronization behaviors of concurrent software systems.

5.1 client-server style state machines

In the client-server style of interaction, client processes and server processes communicate via

a message-passing protocol—rendezvous, in which a client process sends requests in messages

to a server process and blocks until the receiving server process replies. A server process

62
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accepts a single client request from its associated entry, where client requests are queued up,

and sends a reply message back to the sender upon completion of serving the request.

In UML 2.0, three actions call, accept call, and reply, described in [47, pg. 137-140],

can be used to depict the interactions between client processes and server processes. However,

these action types are not given any special visual syntax in UML. We adopt variants of the

three primitive operations call, accept and reply, which are defined by Magee and Kramer [35,

ch. 10] to express the rendezvous style of communication, in UML state machine diagrams

as follows:

• /call(op(x ))1

An active object (i.e. a thread) invokes the operation op, which takes an argument x,

of a passive object(i.e. a monitor). This is modeled by the client process sending the

request to invoke op as a message to the entry of the receiving server process, then

blocking until it receives a reply message.

• /accept-call(op(x ))

The server process receives a request from its entry. When the entry is empty, the

server process blocks.

• /reply(op)

A server process sends a reply message to the sender of op upon completion of the

execution of op.

The correct use of the above notations requires several conventions. First, each named

operation of a class is associated with an entry. However, no corresponding visual notation

of an entry is presented in our diagrams. Second, we forbid event triggers when adorning a

transition of the state machine diagram of a server object with accept-call actions. In this

way, we avoid the scenario in which an event trigger fires a transition and then the server

object executes an action that blocks indefinitely2. Third, we still allow guard conditions to

1The forward slash indicates that this expression is an action.
2Indefinite blocking is better modeled as an activity rather than as an action.
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accompany the accept-call action, which may be enabled or disabled based on whether the

corresponding guard condition is satisfied or not. Fourth, if any of the outgoing transitions

of a state is labeled with an accept-call action, then all other outgoing transitions from the

same state must be so labeled. Thus, the server object would not block waiting on a single

accept-call action when other accept-call actions are ready to be executed.

In Figure 5.1, we present sample UML 2.0 state machine diagrams that model the

synchronization behavior of a monitor-based implementation of the classic bounded-buffer

problem, in which two processes—the producer and the consumer—share a limited-capacity

buffer, using rendezvous semantics to specify both monitor and condition synchronization.

Figure 5.1(b) and Figure 5.1(c) model two client processes that execute the call actions

while Figure 5.1(a) models the monitor server process that executes the accept-call actions

and the reply actions. Here is a sample interaction between the producer and the bounded-

buffer. The producer calling the push operation of BoundedBuffer is modeled by it sending

the push request to the bounded-buffer. After sending out the request, the producer then

blocks until the bounded-buffer replies. Client requests are queued up at the entry of the

bounded-buffer. The bounded-buffer accepts one request at time. When the bounded-buffer

accepts the push request, and if the buffer is not full, it transforms to the Pushing state.

Upon completion of serving the push request, the bounded-buffer sends a reply message to

the producer, returns to the Idle state, and is ready to accept another request from the

entry.

Figure 5.2 presents the C++ implementation code of two monitor operations—push and

pull—of the BoundedBuffer class. It is worthwhile to notice that the traceability between

this state model (Figure 5.1(a)) and the C++ code (Figure 5.2) is not obvious. That is, the

state machine diagram does not reflect a subtle error in the synchronization logic, such as

placing a wait on a condition variable in an if block rather than a while loop or forgetting

a signal.
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Idle

do/ q.pushBack(x)

BoundedBuffer

do/ res = q.pullFront
Pulling

/ accept−call(pull())
[q.size > 0]

[q.size < MAX]
/ accept−call(push(x))

Pushing

/ reply(pull)

/ reply(push)

(a) BoundedBuffer

Producer

authorizedtoPush
do / call(push(x))

Idle

(b) Producer

Idle

Consumer

authorizedtoPull
do / call(pull())

(c) Consumer

Figure 5.1: UML state machine diagrams depicting a producer, a consumer and a bounded
buffer, using rendezvous semantics to specify both monitor and condition synchronization.
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void BoundedBuffer::push(int x)

{

lock.acquire();

while(q.size() == MAX) // MAX stores the capacity of the finite buffer;

okToPush.wait(); // okToPush is a condition variable;

q.pushBack(x);

okToPull.signal(); // okToPull is a condition variable;

lock.release();

}

int BoundedBuffer::pull()

{

lock.acquire();

while (q.size() == 0)

okToPull.wait();

int res = q.pullFront();

okToPush.signal();

lock.release();

return res;

}

Figure 5.2: A monitor-based implementation of a bounded buffer.
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A major goal of our research is to empirically evaluate the usability of the UML 2.0

state machine diagram notation when used as an aid in the comprehension of concurrency

and synchronization. We recognize a mismatch between the UML state machine model of

a concurrent software system and the underlying computational model employed by the

same system. In the former, referred to as the message-passing model, state machines act

as independent sequential processes which synchronize via message passing. In the latter,

referred to as the thread-monitor model, the synchronization of concurrent threads is done

by invoking operations on shared objects (the monitors). Such a mismatch is seemingly an

obstacle to the usability of the UML 2.0 state machine diagram notation when it is used

to model multi-threaded programs. In the following section, we describe an empirical study

that we conducted to evaluate if UML state machines help users to understand concurrent

executions and concurrency concepts or if their deviation from the thread-monitor model

adversely impacts such an understanding.

5.2 Objective study: UML state machine modeling vs. non-modeling

In the fall of 2007, we conducted an empirical study to evaluate whether and to what extent

UML state machine diagrams support novices in the comprehension, debugging, and imple-

mentation of code that employs concurrency. The study employed a between-subjects design

with a pre-test and a post-test. The results suggest a beneficial trend towards the use of the

UML state machine modeling.

As with our previous objective experiments on saUML, this experiment involved two

eighty-minute class sessions, with each session starting with a lecture and ending with a test.

Fifty-two undergraduate students from two Computer Science classes at Michigan State

University participated in both sessions. Most of the students were juniors or seniors who

had learned basic UML modeling and concurrency/synchronization concepts in either the

current or previous semesters of study in computer science at Michigan State University.
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5.2.1 Session i

All participants attended the first class session together. To help the participants prepare

for the study, the instructor spent the first fifty minutes in reviewing the fundamental con-

cepts, terminologies and representations of concurrency and synchronization, UML 2.0 state

machine models, and the rendezvous style message-passing models.

Participants spent the final thirty minutes taking the pre-test. The pre-test (Appendix D.1),

which consisted of seventeen multiple-choice questions, was designed to investigate subjects’

knowledge of concurrency and UML modeling. The seventeen multiple-choice questions

consisted of thirteen comprehension-level questions and four application-level questions.

The first nine comprehension-level questions covered basic concurrency and synchronization

concepts such as the monitor construct, race condition, critical section, condition variable,

deadlock, etc. The four comprehension-level questions concerned UML state machine dia-

grams and rendezvous style message-passing communication. The pre-test also included

Figure 5.1(a), which served as a basis for four application-level questions targeting the state

machine model of the bounded-buffer monitor object.

Based on participants’ scores on the pre-test, we divided them into a treatment group

and a control group so that the scores of the two groups conformed to approximately the

same distribution. Table 5.1 summarizes the key statistical results of the two groups’ scores

on the pre-test, normalized to the range 0.0 to 1.0.

Table 5.1: State modeling vs. non-modeling: pre-test results, normalized

Mean Standard deviation
Treatment Group 0.593 0.144
Control Group 0.599 0.154
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5.2.2 Session ii

The two groups attended the second session together. The lecture component of the session

introduced the use of UML state machine diagrams to model thread synchronization. The

modeling techniques of applying rendezvous style communication were demonstrated using

two examples—the bounded-buffer example (code presented in Figure 5.2 and state machine

model presented in Figure 5.1) and the shared bank account example (code presented in

Figure 4.6). Figure 5.3 represents the UML state machine model of the BankAccount monitor

object.

Idle

/ accept−call(deposit(amount))

/ accept−call(withdraw(amount))

/ reply(deposit)

/ reply(withdraw)

BankAccount

do/

do/

[amount<=balance]

balance += amount

Depositing

Withdrawing
balance −= amount

Figure 5.3: Abstract UML state machine model of the monitor BankAccount.

After the lecture, the two groups took the post-test. The post-test questions involved two

complex synchronization problems—the readers-writers problem (Figure 4.1 on page 24) and

the “match-maker” problem. Having discussed the readers-writers problem in Section 4.1.1,

we now briefly describe the matchmaker problem.
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The match-maker problem models the admission of (boy–girl) couples to a party. In detail,

the matchmaking service maintains three counters (numGirls, numBoys and numPairs)

and three monitor operations (addGirl, addBoy, and pair). Whenever a girl “arrives” (as

a result of a client thread invoking addGirl), numGirls is incremented, after which the

client may continue. Whenever a boy “arrives” (as a result of a client invoking addBoy),

numBoys is incremented, after which the client may continue. Whenever both a girl and a

boy are present, a match-maker client thread pairs them and decrements both numGirls and

numBoys. Figure 5.4 presents a monitor-based solution to this problem.

Although not shown in the code, the condition variables (goBoys and goGirls) are both

initialized with a reference to the monitor mutex (lock); thus, calls to wait on these enti-

ties will cause lock to be released. Figure 5.5 presents the UML state machine model of

MatchMaker.

The post-test presented all participants with English descriptions of both the readers-

writers problem and the match-maker problem, and prototype declarations of the monitor

member functions—startRead, endRead, startWrite, endWrite, addBoy, addGirl, and pair.

In addition to the textual materials, participants in the treatment group also received a

UML state machine diagram that models the monitor Database. This diagram is presented

in Figure 5.6.

Questions 1-3 in the post-test targeted the readers-writers problem. Question 1, referred

to as the true/false question, required the participants to judge the feasibility of eight

potential thread interaction executions of the monitor-based readers-writers implementa-

tion. Question 2, referred to as the error-correction question, presented erroneous implemen-

tations of the code for startWrite and endWrite (Figure 5.7) and required the participants

to fix the errors. The three seeded errors are (1) missing lock.release() in startWrite; (2)

missing lock.acquire() in endWrite; and (3) mistakenly using okToRead.signal() instead of

okToRead.broadcast() in endWrite. Question 3, referred to as the rw-coding question, required

the participants to fill the method bodies for startRead and endRead.
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class MatchMaker {

ACE Thread Mutex lock;

ACE Condition Thread Mutex goGirls, goBoys;

unsigned numGirls, numBoys, numPairs;

...

void addBoy(){

lock.acquire();

++numBoys;

goGirls.signal();

lock.release();

}

void addGirl(){

lock.acquire();

++numGirls;

goBoys.signal();

lock.release();

}

void pair(){

lock.acquire();

while (numBoys <= numPairs || numGirls <= numPairs) {

if (numBoys <= numPairs)

goGirls.wait();

if (numGirls <= numPairs)

goBoys.wait();

}

++numPairs;

lock.release();

}

};

Figure 5.4: Monitor-based implementation of MatchMaker.
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Idle

MatchMaker

/reply(addGirl)

/reply(addBoy)

/accept−call(addGirl())

/accept−call(addBoy())

/reply(pair)

[numBoys >numPairs  /\ numGirls>numPairs]

AddingBoys

AddingGirls

Pairing/ accept−call(pair())

++numGirlsdo/

++numBoysdo/

++numPairs do/

Figure 5.5: Abstract UML state machine model of the monitor MatchMaker.

do/
startWriting

++numWriters

Idle

do/
endWriting

−−numWriters

do/

endReading
−−numReaders

startReading
++numReadersdo/

[numWriters=0/\numReaders=0]
/accept−call(startWrite())

/accept−call(endRead())

/accept−call(endWrite())

[numWriters = 0]

Database

/accept−call(startRead())

/reply(startRead)

/reply(startWrite)

/reply(endRead)

/reply(endWrite)

Figure 5.6: Abstract UML state machine model of the monitor Database.



73

...

void Database::startWrite(){

lock.acquire();

while (numReaders > 0 || numWriters > 0)

okToWrite.wait();

++numWriters;

}

void Database::endWrite(){

--numWriters_;

okToWrite.signal();

okToRead.signal();

lock.release();

}

Figure 5.7: Erroneous implementations of the code for startWrite and endWrite.

Questions 4-5 targeted the match-maker problem. Participants in the treatment group

were first asked to draw a UML 2.0 state diagram depicting the intended behavior of the

shared match-maker object in question 4 and then asked to fill in the method bodies for the

three operations (addBoy, addGirl and pair) in question 5, while those in the control group

were first asked to fill in the method bodies in question 4 and then later asked to draw a

UML 2.0 state machine diagram in question 5. We will refer to the state-diagram-drawing

question as the mm-drawing question and the method-body-filling question as the mm-coding

question in our future discussion. Appendix D.2 presents the test materials provided to the

treatment group.

5.2.3 Results and analysis

We developed a set of correctness measures to grade participants’ solutions to the two coding

questions that required participants to fill in the method bodies. Table 5.2 summarizes those

correctness measures.
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Table 5.2: Correctness measures to participants’ coding solutions

No. Interpretation
1 Correct operations of lock acquiring and releasing
2 Correct operations on counters
3 Correct placement of wait on appropriate condition variables in while loops
4 Correct boolean conditions in while loops
5 Correct placement of signal or broadcast on appropriate condition variables

Measure 1 evaluates mutual exclusion synchronization criteria. In a monitor method

body, lock.acquire() should be placed before any operation and lock.release() should be placed

after any operation. Measure 2 evaluates whether the counter variables are updated correctly.

Measure 3 evaluates the correct use of while loops around condition variable wait operations,

in order to guarantee that the condition being waited for is still true after the thread returns

from wait. Measure 4 evaluates whether correct boolean conditions were used to guard the

wait operations within while loops. For instance, in the monitor operation startWrite, if the

while loop assesses the boolean condition numReaders > 0 instead of numReaders > 0 ||

numWriters > 0, then multiple writer threads can access the share database simultaneously.

Measure 5 evaluates correct use of condition variable signal and broadcast operations. For

instance, if we use okToRead.signal() instead of okToRead.broadcast() in endWrite, then only

one reader thread can be awakened. However, the desired synchronization behavior of the

readers-writers problem is that all waiting reader threads shall be resumed if the last writer

thread exits the database.

In assessing participants’ state machine diagrams modeling the shared match-maker

object, we defined the measures presented in Table 5.3. First, we expect a correct state

machine diagram to include five states: the initial state, an idle state, and three states each

indicating that the match-maker object is handling one of the three operation invocations—
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addBoy, addGirl and pair. Next, if applicable, activities of updating counters should be

present in the activity section of the state symbol. Last, a correct state machine diagram

should have correct accept-call actions, reply actions and guard conditions adorned to the

appropriate transitions.

Table 5.3: Measures to assess participants’ state machine diagrams

No. Interpretation
1 Correct number of states
2 Correct counter operations as activities
3 Correct accept-call actions depicted
4 Correct reply actions depicted
5 Correct guard conditions depicted

Table 5.4 summarizes the means and standard deviations of the two groups’ scores on

the selected post-test questions, normalized to the range 0.0 to 1.0. Overall, the treatment

group performed better than the control group, as evidenced by higher mean scores on a per-

question basis. However, with respect to the total scores on all five questions, the difference

between the two groups is not statistically significant.

Table 5.4: Post-test results, normalized mean/standard deviation

true/false error-correction rw-coding mm-drawing mm-coding
Treatment 0.665/0.186 0.640/0.229 0.520/0.227 0.520/0.330 0.432/0.249
Control 0.602/0.159 0.565/0.282 0.379/0.223 0.468/0.386 0.341/0.271

For the first two questions, the treatment group outperformed the control group, but

the differences are not statistically significant. On one hand, the given state model of the

shared database monitor object provided a concise overview of the underlying computational

thread-monitor model, which helped participants in the treatment group to better reason

about thread interactions. On the other hand, the poor traceability between the models

and the implementation code did not assist much with the understanding of the operational

mechanisms of low-level synchronization primitives such as lock, wait, signal. The first two
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questions deal heavily with those synchronization primitives, which are not conveyed in the

state models. For example, in the error-correction question, the seeded errors were related

to incorrect operations on the monitor lock and condition variables. Such implementation

details are implicit in the state models, but are not explicitly depicted. We believe this is the

reason that not many statistically significant differences in quality between the two groups

manifested for the first two questions.

A one-tailed, heteroscedastic t-test applied to the scores of participants’ answers to the

third question (the rw-coding question) shows a statistically significant benefit to the use

of the UML state machine diagram (p < 0.02). By scrutinizing the collected answers, we

found that while all participants of the treatment group included correct counter operations

in their answers, only 22 out of 27 participants in the control group were able to do so. The

difference is statistically significant (p < 0.02). We believe this difference can be attributed

to the fact that the UML state machine diagram explicitly shows the counter operations as

activities. This belief was confirmed by participants’ answers to the mm-coding question. 21

out of 25 participants in the treatment group had correct counter operations, and only 12

out of 27 in the control group accomplished the same thing (p < 0.01). Further, the guard

conditions depicted in the state models also helped participants to form correct boolean

conditions of while loops. While 16 participants of the treatment group earned credits on

this aspect, only 6 participants of the control group did so, resulting in another significant

difference (p < 0.01).

Taking the first three questions regarding the readers-writers problem together, the treat-

ment group significantly outperformed the control group (p < 0.03). However, when only

considering the last two questions regarding the match-maker problem, no significant dif-

ference was found. This inconsistency is probably due to the fact that participants in the

treatment group could rely on the provided correct state model for the reader-writer problem

to answer the first three questions while, when facing the last two questions, they had to

draw their own state models for the match-maker problem. The efficacy of their models was
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seriously undermined by the reality that only 2 participants in the treatment group were

able to draw correct state models for the match-maker problem.

In summary, correctly-developed UML state machine diagrams may provide significant

benefits in supporting novices dealing with the comprehension, correction, and code gener-

ation tasks that employ concurrency.

5.2.4 Applying FSP models to assess the quality of concurrent programs

A potential threat to validity raised in the previous study is the objectivity of the grading

scheme for measuring candidate solutions produced by subjects. We graded the collected code

according to multiple quality measures. The scores were then used to perform statistical data

analysis. Therefore, the soundness of our conclusions relies on the degree of objectivity of

our quality measures, which is difficult to gauge.

Others have encountered the need to judge source code according to multiple quality

measures in the context of an empirical study [13, 19]. Ideally, a distinct test case can be

developed to assess each measure in isolation. However, code solutions produced during an

empirical study may fail to compile or may take the form of code snippets rather than com-

plete programs. Moreover, many non-functional qualities (e.g., extensibility) are not testable

at all, and others are not reliably testable. Qualities related to correct use of synchronization

primitives are good examples of the latter. Some researchers resort to subjective measures

in these cases (e.g., [3, 24]); however, such measures may threaten validity and are difficult

to weight relative to one another and to more objective measures.

We conducted a pilot study [11] to explore the use of formal modeling for determining

the quality of candidate solutions collected from the UML state machine modeling study.

To do so, we faithfully modeled five representative collected solutions to the “mm-coding”

question and various synchronization-related properties in FSP [35] and used LTSA (Labeled

Transition System Analyzer) [36] to analyze the solution models against the formalized

properties.
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A synchronization model is faithful to the code if (1) it is structured so that elements

in the model correspond directly to code statements and structures and vice versa, and (2)

it explicitly models low-level synchronization primitives (e.g., mutex locks and condition

variables) and operations on shared data. By virtue of these properties, models are trivially

traceable to code. Thus, synchronization flaws in the code will be preserved in the model

rather than abstracted away, as may easily happen when constructing an ad hoc model of

a program with a subtle flaw. This concern is especially relevant given the large number of

such models that might need to be constructed.

Two questions we strove to answer through this pilot study are:

1. Given code that uses locks and condition synchronization to implement a shared

resource, can we systematically generate a model that exhibits the same synchroniza-

tion behavior as the code and that is compact enough to be feasibly analyzed?

2. Can we draw conclusions about the relative quality of the code through automated

analysis of such models?

Faithful models

We formalized the five solutions in FSP models that bear two features that distinguish

them from their more abstract counterparts—UML state machine models. First, they model

operating-system-level resources, such as mutex locks, semaphores, and condition variables,

as distinct behavioral entities. Our models borrow heavily on the conventions of Magee and

Kramer [35, ch. 13], especially their model of condition variables. Second, model components

are defined to correspond one-to- one to synchronization-relevant statements in the program

and to compose according to composition of statements in the program. FSP models are

nice in this regard: elementary program statements are modeled as sequential processes and

composed using sequential composition, thereby mimicking the composition of statements

in the program, and concurrency is modeled using parallel composition. These concepts are

best illustrated by example.
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||MATCH_MAKER_SHARED =

( LOCK_THREADS::MATCH_MAKER_LOCK ||

MATCH_MAKER GO_GIRLS_CVAR ||

MATCH_MAKER GO_BOYS_CVAR ||

NUM_GIRLS_THREADS::MATCH_MAKER_NUM_GIRLS ||

NUM_BOYS_THREADS::MATCH_MAKER_NUM_BOYS ||

NUM_PAIRS_THREADS::MATCH_MAKER_NUM_PAIRS

)

...

Figure 5.8: MatchMaker as a shared resource.

Figure 5.8 depicts the definition of an FSP process that models an instance of class Match-

Maker as a shared resource using the idiom described in [35, sect. 3.1.3]. Under this idiom,

operations in a shared resource manifest as actions, which are labeled by the set of threads

that invoke the operation. MATCH MAKER SHARED is a composite process whose components

correspond one-to-one with the data members of class MatchMaker, as depicted in Figure 5.4.

The primitive process components (e.g., MATCH MAKER LOCK, MATCH MAKER NUM GIRLS, etc.)

are simply instances of reusable and pre-defined MUTEX and COUNTER processes, which are

then labeled with the name of this resource (not shown). The xxx CVAR processes model

the condition variables okGirls and okBoys. These composite processes are instantiated in

another part of the model from predefined processes using the idiom from [35, ch. 13].

By convention, the sets labeled xxx THREADS, called accessor thread sets, contain the

names of threads that access resource (or invoke operation) xxx. For instance, LOCK THREADS

names those threads that acquire or release the mutex lock; whereas NUM GIRLS THREADS

names those threads that increment, decrement, or read the value of the counter variable

numGirls. We use accessor thread sets so as to abstract the names of the actual threads

out of the definition of the shared resource. This simplifies the assembly of analysis models,

which will employ different configurations of threads. We also use accessor thread sets to
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instantiate the condition variables (goGirls and goBoys). This instantiation (not shown) is

more involved, but is nonetheless mechanical. We also elide a renaming of actions (ellipsis

in the figure) needed to guarantee correct synchronization with client threads.

ACQUIRE_LOCK = (lock.acquire -> END).

INC_PAIRS = (numPairs.inc -> END).

PAIR_OP = ACQUIRE_LOCK; PAIR_OP_LOOP; INC_PAIRS; RELEASE_LOCK; END.

PAIR_OP_LOOP = (numBoys.read[nb:BRANGE] -> numPairs.read[np:PRANGE] ->

if (nb <= np)

then WHILE_BODY; PAIR_OP_LOOP

else . . .).

FIRST_IF = (numBoys.read[nb:BRANGE] -> numPairs.read[np:PRANGE] ->

if (nb <= np)

then WAIT_GO_BOYS; END

else END).

WAIT_GO_BOYS = (goBoys.wait -> lock.release ->

goBoys.endwait -> lock.acquire -> END).

Figure 5.9: Faithful model of the pair operation.

To model the operations of class MatchMaker, we first model each statement that directly

accesses or modifies a synchronization object or counter variable as a sequential process3in

FSP. We then use FSP’s sequential composition and branching primitives to compose these

primitive processes according to the control flow graph of a participant’s submitted code.

Figure 5.9 depicts some of the FSP processes we defined to model the pair operation

from Figure 5.4. The first three processes model statements that acquire the lock, release the

lock, and increment numPairs, respectively. Process PAIR OP is the sequential composition

of subprocesses, each of which models one of the top-level statements of the method. The

most interesting subprocess, PAIR OP LOOP models the while loop. It models checking the

while condition using actions that read the counters numBoys and numPairs. Based on

3i.e., a terminating process—one that ultimately evolves into the primitive process.
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the values read, it calculates the value of the first disjunct of the while condition. If true,

control transfers into the body of the loop and then the process repeats. Otherwise, the

second disjunct is checked (not shown in figure). Process WHILE BODY (elided for brevity) is

the sequential composition of two smaller processes—FIRST IF (shown) and SECOND IF (not

shown). Process FIRST IF models the first if statement inside the body of the loop. Process

WAIT GO BOYS models invocation of the wait statement inside this first if block according to

the idiom in [35, ch. 13].

These process definitions model the code to a high degree of fidelity. Process PAIR OP LOOP

models reading the values of the counter variables in the order these reads would actually

occur. Also, the process is structured to short-circuit evaluation of the second disjunct if

the first disjunct is true. These process definitions could be automatically assembled from

a sufficiently rich collection of primitive processes. Fortunately, in an empirical study, we

usually know the primitive resources available and all operations a priori. In practice, these

are often given as part of the problem statement.

Analysis models and properties

Prior to analysis, the FSP process created to model a shared resource must be composed

with a process that models clients that actively invoke operations on the resource. We refer

to the process modeling the shared resource as the resource model, the process modeling the

clients as the client model, and to the parallel composition of the resource model and the

client model as the analysis model. The Labeled Transition System Analyzer (LTSA) is used

to check an analysis model for properties which may reveal the presence (or demonstrate the

absence) of specific synchronization errors.

Of course, the properties satisfied by an analysis model depend not just on the resource

model, but also on the client model. This fact is important, especially when most of the

candidate solutions have synchronization errors, as it permits us to differentiate resource

models that exhibit the same synchronization error. Consider, for example, the 5 client
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models described in Figure 5.10 (bottom left and right), which are easily expressed in FSP

as processes. These client models form an ordered set of progressively more concurrent (less

restrictive) models, ranging from a strictly sequential client model (SRou) to a fully concur-

rent one (FCon). The more restrictive client models tend to mask certain concurrency errors.

Moreover,if the parallel composition a given resource model with a given client model does

not satisfy a given safety property, then the parallel composition of the given resource model

with any less restrictive client model also does not satisfy the given safety property. Thus, for

each safety property that expresses a desired quality of a solution, the ordering of the 5 client

models induces an ordering on the 5 analysis models obtained using a given resource model.

The analysis model in which a synchronization error first manifests provides a measure of

the quality of the resource model (and thus of the associated candidate solution). The results

of our pilot study illustrate this phenomenon more concretely.

LTSA automatically checks the analysis models for deadlocks. To assess other quality

measures with LTSA, we defined 3 problem-specific properties. The first checks that a

resource model conforms to the standard protocol for locking a shared resource—i.e., that

a thread holds the lock when it invokes an operation on the data members of the shared

resource and that it no longer holds the lock when it returns from an invocation of addBoy,

addGirl, or pair. The second property checks that boys and girls are paired correctly—i.e., it

tracks the number of times each counter has been incremented and checks that the number

of increments of numPairs never exceeds the number of increments of numBoys or of num-

Girls. The third process checks for excessive signaling. While not a correctness requirement,

this latter check provides insight into quality of a resource model. The definition of excessive

signaling is both problem- and client model-specific. For our problem and a client model that

calls each operations 3 times, the analysis model should generate a maximum of 6 signals

(one for each invocation of addBoy or addGirl).
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Deadlock
Solution SRou CRou TPMe CPai FCon
Correct 0 0 0 0 0
No.1 0 0 0 X X
No.2 0 0 0 0 0
No.3 0 X X X X
No.4 0 0 X X X
No.5 0 0 X X X

Lock protocol
Solution SRou CRou TPMe CPai FCon
Correct 0 0 0 0 0
No.1 0 0 0 – –
No.2 0 0 0 0 0
No.3 0 – – – –
No.4 0 0 – – –
No.5 0 0 – – –

Correct pairing
Solution SRou CRou TPMe CPai FCon
Correct 0 0 0 0 0
No.1 0 0 0 X X
No.2 0 0 0 X X
No.3 0 – X X X
No.4 0 0 X X X
No.5 0 0 – – –

Excessive signaling
Solution SRou CRou TPMe CPai FCon
Correct 0 0 0 0 0
No.1 X X X X X
No.2 0 0 0 0 0
No.3 0 X X – –
No.4 X X X X X
No.5 0 0 – – –

Client Models
SRou (Sequential Rounds) 1 thread calls

addBoy,
addGirl, & pair in sequence, 3
times

CRou (Concurrent Rounds) 3 threads,
each calls add-
Boy, addGirl, & pair in sequence,
once

TPMe (Thread Per Method) 1 thread per
method,
each calls its method 3 times

Client Models
CPai (Concurrent Pairs) 2 threads call

pair once,
1 thread calls addBoy twice, &
1 thread calls addGirl twice

FCon (Fully Concurrent) 2 threads call
addBoy once,
2 threads call addGirl once, &
2 threads call pair once

Figure 5.10: Results of analyzing resource models
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Preliminary findings

Figure 5.10 summarizes the results from our pilot study. We created resource models from

the correct solution depicted in Figure 5.4 (indicated as Correct) and from 5 representative

candidate solutions (indicated using participant numbers) submitted by participants the

larger empirical study. We also created 5 client models (SRou, CRou, TPMe, CPai,and FCon).

These represent different configurations of threads executing in client code, as described in

the tables titled ClientModels (bottom left and right). The 6 resource models and 5 client

models were composed, producing 30 analysis models. Each analysis model was checked for

deadlock (top left), conformance to the lock protocol (top right), correct pairing of boys

and girls (middle left), and excessive signaling (middle right). To show the results of safety

checks, we mark: “0”, if the model satisfies the property; “X”, if the model may violate the

property; and “–”, if analysis is inconclusive.

We consider analyses inconclusive for two reasons, only one of which we anticipated. An

analysis model composed from a faithful resource model can easily be too large for exhaustive

analysis to be feasible. However, we expected that the solutions submitted by participants

in our empirical study were simple enough that faithful models would also be analyzable,

and indeed, for the most part, this was the case. We had to reduce the number of times each

operation is invoked from 3 to 2 in the last 2 client models (CPai and FCon) in order not to

exceed the Java stack size when using LTSA with these models. Fortunately, the properties

checked in the pilot study did not depend on the precise number of operation invocations so

long as each operation was invoked at least twice and the same number of times.

The second reason that analysis might be inconclusive was not anticipated going into the

study. When checking safety of a composite FSP process, LTSA reports that the composite

process deadlocks if some trace leads to either Error or Stop4, and it returns a shortest such

trace. However, when the composite FSP process is the parallel composition of an analysis

4primitive FSP processes which have no successors, but serve different purposes: Stop represents
a deadlocked process, whereas Error serves as a trap state when checking properties.
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model and a safety property (as is the case for the tables LockProtocol, CorrectPairing

and ExcessiveSignalling), we can conclude that the analysis model does not satisfy the

safety property only if the composite model can reach Error. Thus, in cases where LTSA

returns a trace that leads to Stop rather than Error, we cannot conclude that the property

does not hold. In fact, none of the candidate solutions used in this study violated the standard

locking protocol; however, as shown in the table for LockProtocol, we could not verify this

fact for 12 of the analysis models (the 12 that could deadlock). Note that this problem is an

artifact of how LTSA checks safety properties, and is not intrinsic to model checking. This

source of inconclusive results can be eliminated by adding an option designating a search for

traces that lead to Error only.

Discussion

One question we strove to answer was whether the quality of candidate solutions can be

judged using automated analysis of faithful models. In our study, we used these analyses

to make a number of useful judgements. For instance, only participant No.3’s submission

can deadlock in a context in which a pair operation should never have to wait (client model

CRou). Moreover, the submissions of the other participants pair the boys and girls correctly

in this context. These observations provide an objective basis for ranking the quality of the

submission of participant No.3 lower than that of the others, at least with regard to pre-

venting deadlock, and possibly also with regard to correct pairing. Similarly, the submissions

of participants No.3 and No.4 rank lower with regard to these same 2 properties than those

submitted by No.1 and No.2 in the context where activations of different operations execute

concurrently but activations of the same operation execute sequentially (client model TPMe).

Regarding deadlock, the submission of participant No.1 ranks below that of participant No.2,

as the former can deadlock in a context (represented by CPai) that may invoke pair opera-

tions concurrently. Regarding correct pairing, however, these latter two submission rank the

same.
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The results of checking conformance to the locking protocol provide no basis for ranking

any candidate solution better than than any other. This is as it should be because every

submission correctly conformed to this protocol. Regarding excessive signaling, the results

indicate the submission of participant No.2 ranks higher than that of participant No.3, which

in turn ranks higher than those of No.1 and No.4, and that these latter 2 submissions rank

the same. We do not include the submission of participant No.5 in this ranking because of

the inconclusive results. In contrast, because the submission of participant No.3 can exhibit

excessive signaling in the context represented by CRou, it can also do so in the less restrictive

contexts (CPai and FCon). Thus, we include this participant in the ranking, in spite of the

dashed entries.

Another question we strove to answer was whether the generation of analysis models

and properties is sufficiently systematic. We produced the client models and resource models

manually, and then automatically assembled them into analysis models using the Noweb

literate programming tool [23]. The resource models were systematically assembled from a

library of reusable models of synchronization primitives and from simple models of program

statements. For the candidate solutions produced by participants in our larger empirical

study, this assembly process is certainly automatable. Additionally, given specifications of

the numbers of threads and of the operations each thread performs, the client models could

be automatically generated. To generate the analysis models for the pilot study, we manually

created a Noweb document containing the resource models, the client models, and specifica-

tions for assembling them into analysis models. The assembly specifications were produced

by instantiating a single template. Thus, we were able to systematically produce faithful

FSP models and it would be feasible to automatically generate them for a larger follow-up

study that uses the same problem.

That said, generating faithful FSP models of candidate solutions to general concurrent

programming problems is not fully automatic. Substantial effort is required to create the

problem-specific infrastructure needed to systematically generate the analysis models and
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properties. Regarding the properties: No additional work is required to check for deadlock,

but all the other checks require a property describing legal behaviors. The properties are

reusable across all resource models created from the candidate solutions to the match-maker

problem. This is to be expected, as a problem typically defines the properties that its solutions

must satisfy.

We used FSP/LTSA for the pilot study because we felt FSP models could be both faithful

to the code and suitably abstract. Faithfulness is important for ensuring the quality of the

analysis model accurately reflects the quality of the code. Abstractness is necessary in order

that exhaustive analysis is feasible. But abstractness can easily compromise faithfulness, so

a balance is needed. Using tools, such as Java PathFinder [20] or Bandera [12], that extract

models directly from source code, might save on effort needed to develop problem-specific

infrastructure. We could not use these tools for our pilot study because our participants

produced C++ code using synchronization primitives supplied by a library. In summary, we

felt that FSP provided an appropriate balance.

For a larger study, the generation of the analysis models will have to be automated.

Moreover, we will need to check properties of the models in batch mode and the results of

the checks will need to be output in a processable form. Although we did not see how to run

batch analyses or how to output traces or runs for subsequent processing with the version

of LTSA available at [36], it should be possible to obtain a version of the tool with these

capabilities.

5.3 Objective study: UML state machine modeling vs. UML sequence dia-

gram modeling

Our previous studies showed that both UML state machine diagrams and UML sequence

diagrams may help novices in the comprehension of concurrency and synchronization. We

recognize that UML state machine diagrams and sequence diagrams are intended to be used

in concert to depict the behavior of the modeling system. However, the question remains
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whether the two diagrams differ significantly in their effectiveness in assisting such compre-

hension. To investigate this question and to tease apart the relative contribution of each type

of diagram to the overall benefit derived from their use, we conducted a comparative, objec-

tive study of the benefits of each diagram when used by a group of student participants as

aids to solve questions involving concurrency and synchronization. The effectiveness of each

type of the diagram was measured by the corresponding group’s performance in answering

the questions.

Several challenges exist in conducting a fair comparison of UML state machine diagrams

with UML sequence diagrams. UML state machine diagrams and UML sequence diagrams

carry different information about the modeled system. A UML state machine diagram spec-

ifies the lifetime behavior of a single object. A set of UML state machine diagrams, each

of which models a component object of the system, may cover the entire execution space

of the modeled system. For example, to model all the behaviors of a readers-writer system,

we need only three UML state machine diagrams that model, respectively, the shared mon-

itor object Database (Figure 5.6 on page 72) and the two client objects Reader and Writer

(Figure 5.11). In contrast, a single UML sequence diagram depicts only the thread interac-

tions of one potential execution of the modeled system. A well-chosen collection of sequence

diagrams can provide insight into key facets of the run-time behavior of the modeled system.

However, due to the nondeterministic nature of thread scheduling, the number of potential

executions of a concurrent program can often be too large to be reasonably depicted by a

collection of UML sequence diagrams. Thus, the first challenge is how to choose a collection

of UML sequence diagrams that covers all the interesting interactions of a modeled system.

At the same time, we need to limit the number of UML sequence diagrams to a number that

participants can handle within the time constraints of our study.

While UML state machine diagrams show a high-level overall view of the modeled system,

UML sequence diagrams reveal the low-level implementation details of interactions between

system components. When dealing with scenario-based questions involving the implementa-
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authorizedtoRead
do / call(read())

releasingReadAuthorization
do / call(endRead())

awaitingReadAuthorization
Idle do / call(startRead())

Reader

Idle

Writer

awaitingWriteAuthorization
do / call(startWrite())

authorizedtoWrite
do / call(write())

releasingWriteAuthorization
do / call(endWrite())

Figure 5.11: UML state machine models of Reader and Writer.
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tion of synchronization logic, a user must make inferences based on the UML state machine

diagrams. However, if the scenarios are directly depicted by the given UML sequence dia-

grams, a user can easily “read” the answers without making any inferences. Thus, a second

challenge is how to present an appropriate collection of UML sequence diagrams so that

they avoid directly depicting the question scenarios but still show the fundamental synchro-

nization behaviors from which a user can infer the correct thread interactions of specific

execution scenarios. Those two challenges reduce to a common problem: picking the “right”

UML sequence diagrams. In the following section, we describe our approach to achieving this

goal.

5.3.1 Using FSP models to generate candidate UML sequence diagrams

In this section, we briefly describe a technique of using formal models to generate a collection

of UML sequence diagrams that cover all the key facets of the interaction space conveyed

by state machines. Figure 5.12 presents a class diagram that describes this technique. The

interaction space of a software system can be modeled in state machines, which may be

defined as either FSP models or UML state machine diagrams. Further, an FSP model may

be visualized by a flowchart, a graph of nodes connected by transitions. When each flowchart

is a directed acyclic graph (DAG), we may find a set of paths that cover all the nodes in

a flowchart. A path represents an execution of the system and can be depicted in a UML

sequence diagram. Thus, we can generate a set of UML sequence diagrams that cover all the

states defined in given FSP models. We consider this set of UML sequence diagrams to be

“comparable” to the corresponding UML state machine diagrams that target the same state

machines. We will illustrate this technique via the readers-writers example.

We recognize that without restricting the number of objects involved, the state space of a

concurrent program can grow exponentially. Thus, we constrain our readers-writers model to

allow only up to two Reader threads and two Writer threads competing for the access to the

shared Database. We define four representative configurations that are capable of revealing
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1..*

1

UMLSequenceDiagramdepicts
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Figure 5.12: A technique for generating a collection of UML sequence diagrams that are
comparable to a set of UML state machine diagrams, depicted in a class diagram
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the essence of the synchronization behavior of the readers-writers problem. Table 5.5 sum-

maries these four configurations.

Table 5.5: Four representative configurations

Name Interpretation
TwoReaders Interactions between two reader threads
TwoWriters Interactions between two writer threads
ReaderAndWriter Interactions between one reader thread and one writer thread
TwoReadersAndOneWriter Interactions between two reader threads and one writer thread

Corresponding to each configuration, we created a composite FSP process. Figure 5.13

presents the FSP process TWO WRITERS of the TwoWriters configuration. To limit state explo-

sion, we adopt the following conventions in our FSP processes:

1. To keep each thread finite, an FSP process modeling a client thread allows only one

visit to the shared Database. For instance, FSP process WRITER NR, the sequential

composition of the subprocess—STARTWRITE, WRITE, STOPWRITE, and DONE, models a

writer thread that eventually terminates after a visit to Database. In practice, a client

thread may visit the shared Database repeatedly.

2. We constrain the orderings of threads’ method calls to elide “symmetric” scenarios. In

Figure 5.13, the process PREFER W1 START defines that the writer thread w1 must call

startWrite before the writer thread w2. This is symmetric to the scenario of w2 calling

startWrite first.

3. We treat the execution of a monitor method body as an atomic action. Thus, thread

interleavings are prohibited inside of a monitor method body. Such optimization tech-

niques can effectively reduce the number of interleavings and many unnecessary transi-

tions and states in our FSP processes. For instance, in defining the process STARTWRITE,

which models the monitor method startWrite, the action incWrite includes several

operations—incrementation of the counter numWriters, release of the lock, and return



93

const NumReaders = 2

const NumWriters = 2

range ReaderRange = 0..NumReaders

range WriterRange = 0..NumWriters

DONE = ( done -> END ).

STARTWRITE = ( callStartWrite -> incWrite -> END ).

WRITE = ( write -> returnWrite -> END ).

STOPWRITE = ( callStopWrite -> decWrite -> END ).

WRITER_NR = STARTWRITE; WRITE; STOPWRITE; DONE; END+{incRead, decRead}.

PREFER_W1_START = ( w1.callStartWrite -> W1_STARTED ),

W1_STARTED = ({w1.callStartWrite,w2.callStartWrite}->W1_STARTED | done->END ).

PREFER_W1_LOCK = ( w1.incWrite -> W1_LOCKED ),

W1_LOCKED = ( {w1.incWrite,w2.incWrite} -> W1_LOCKED | done -> END ).

PREFER_W1_WRITE = ( w1.write -> W1_WRITE ),

W1_WRITE = (w2.write->BOTH_WRITE | w1.{write, callStopWrite}->W1_WRITE ),

BOTH_WRITE = ( {w1,w2}.{write,callStopWrite} -> BOTH_WRITE | done -> END ).

PREFER_W1_STOP = ( w1.callStopWrite -> W1_STOPPING ),

W1_STOPPING = ({w1.callStopWrite, w2.callStopWrite}->W1_STOPPING | done->END).

RWDB = RW[0][0],

RW[nr:ReaderRange][nw:WriterRange] = ( when ((nr == 0) && (nw == 0))

incWrite -> RW[nr][nw+1]

| when ((nw == 0) && (nr < NumReaders))

incRead -> RW[nr+1][nw]

| when (nr > 0)

decRead -> RW[nr-1][nw]

| when (nw > 0)

decWrite -> RW[nr][nw-1]

| done -> END ).

||TWO_WRITERS = ( w1:WRITER_NR/{done/w1.done} ||

w2:WRITER_NR/{done/w2.done} ||

{w1,w2}::RWDB/{done/w1.done,done/w2.done} ||

PREFER_W1_START ||

PREFER_W1_WRITE ||

PREFER_W1_STOP ||

PREFER_W1_LOCK )

\{ w1.incRead, w2.incRead, w1.decRead, w2.decRead }.

Figure 5.13: FSP process of the TwoWriters configuration.



94

from the monitor method startWrite. Thus, our model allows no context switch to

occur while a writer is executing incWrite. However, a potential context switch may

occur prior to the execution of incWrite but after the execution of callStateWrite,

which indicates the acquisition of the monitor mutex lock. In this case, the next running

writer thread would block on the monitor mutex lock, as it is being held by another

thread. Without this optimization, context switches may occur while a writer thread

is executing the method body of startWrite. However, the next running writer thread

would still block on the monitor mutex lock. That is, this optimization elides potential

context switches that lead to the same thread synchronization behavior as depicted by

the one context switch allowed in our model.

4. We elide the implementation details of synchronization primitives (lock, wait, etc.) to

reduce the complexity of our FSP processes for analysis purposes. Still, the invocations

of operations on the synchronization primitives are depicted in the UML sequence

diagrams.

An FSP process can also be translated into a “flowchart” that visualizes its finite machine.

In a flowchart, each node denotes a state of the modeled system and each transition is

caused by an atomic action. As our four composite FSP processes are finite processes that

include no loop, the corresponding flowcharts present as directed acyclic graphs. Figure 5.14

presents the flowchart of the FSP process TWO WRITERS. Node 0 denotes the initial state of

the system while node 13 denotes the ending state. Each path from node 0 to node 13 con-

veys a trace of actions, which represents a potential execution of the readers-writers system

involving two writer threads, that trigger the state transitions along the path. For instance,

Figure 5.15 presents the trace of actions conveyed in the path that travels though nodes

0–13 in Figure 5.14. Such an execution may also be visualized in a UML sequence diagram.

Figure 5.16 presents a UML sequence diagram that describe the interactions between the two

writer threads that conform to the trace depicted in Figure 5.15. Thus, if we find a collection

of paths that covers all the nodes in a given flowchart, then we can create a set of UML
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sequence diagrams, each depicting the execution represented by a path in that collection,

that covers all the states of the corresponding FSP process.

12 0  1  2  3  4  5  6  7  8  9 10 11

14 15 16 17 18

13

Figure 5.14: Flowchart representation of the state machine of TWO WRITERS.

w1.callStartWrite

w2.callStartWrite

w1.incWrite

w1.write

w1.returnWrite

w1.callStopWrite

w1.decWrite

w2.incWrite

w2.write

w2.returnWrite

w2.callStopWrite

w2.decWrite

(done)

Figure 5.15: The trace of actions conveyed in the path that travels through nodes 0–13 in
Figure 5.14.

By applying a Depth-First Search algorithm [9, sect. 22.3], all possible paths can be easily

generated. Although the full collection containing all the paths is an obvious solution, it may

contain many redundant paths. An ideal solution is a collection that contains the minimum

number of paths that still cover all the nodes.

The minimum number of paths needed to cover all the nodes in a single-source/single-sink

directed acyclic graph can be computed by the “minimum flow method” or the “maximum

matching method” [41]. However, those two methods do not specify the exact paths included

in the minimum path set.
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okToRead: ... okToWrite: ...
numReaders=0;
numWriters=0;

:RWDatabasew1:Writer

startWrite()

endWrite()

numReaders=0;
numWriters=1;

numWriters=0;
numReaders=0;

startWrite()

write(key, value)

endWrite()
numReaders=0;
numWriters=0;

signal()

broadcast()

signal()

write(key, value)
wait()

numReaders=0;
numWriters=1;

 w2:Writer

broadcast()

Figure 5.16: A UML sequence diagram for the TwoWriters configuration.
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When we consider that each path is a set that contains the nodes on the path, then

our question converts to determining the minimum number of sets so that every node is

covered in at least one of the selected sets. This “set-covering” problem is one of the classical

NP-complete problems confirmed by Richard M. Karp [25]. Such a problem can be solved

by applying a greedy algorithm that is described in Figure 5.17.

Let V be the set of all nodes; S1, S2, ..., Sn are subsets of V.

A = {S1, S2, ..., Sn}

B = V

C = NULL

while B is not NULL {

Select Si in A such that it has the largest number of nodes in B

A = A - Si

B = B - Si

C = C union Si

}

return C

Figure 5.17: A greedy algorithm for the “set-covering” problem.

The flowchart in Figure 5.14 contains six distinct execution paths from the source node 0

to the sink node 13. Applying the greedy algorithm described in Figure 5.17, we can obtain

the following two paths that together cover all the nodes:

• Path 1: 0→1→2→3→4→5→6→7→8→9→10→11→12→13

• Path 2: 0→1→14→15→16→17→18→7→8→9→10→11→12→13

Following this approach, we created nineteen UML sequence diagrams (see Appendix E.3)

to cover all the states in the four FSP processes: five UML sequence diagrams for TwoReaders,

two UML sequence diagrams for TwoWriters, four UML sequence diagrams for ReaderAnd-

Writer and eight UML sequence diagrams for TwoReadersAndOneWriter. We claim that

these nineteen UML sequence diagrams deliver equivalent information to that conveyed by

the complete set of UML state machine diagrams that models the monitor-based solution of

the readers-writers problem.
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5.3.2 study design

This study followed the same protocol—between subjects, pre-test/post-test—as used in our

previous studies. Forty students from an undergraduate software design class at Michigan

State University participated in the study in the spring of 2008. Students had studied the

UML sequence diagram notation and the UML state machine diagram notation as part of the

course material. Participants were considered novices to concurrency and synchronization.

They had recently learned about concurrency and synchronization and were in the midst of

implementing a small program that employed multiple threads using the ACE toolkit [49]

and involved the implementation of a monitor construct and the use of condition synchro-

nization. Their voluntary participation fulfilled a requirement for a homework grade, with

students earning 0.625 points toward their final grade for each of the pre-test and the post-

test. Students had the alternative option to complete a standard homework assignment. In

addition, the participants also took a survey of user preferences after the post-test.

In the study, participants were divided into two equivalent groups based on their per-

formance on the pre-test. Between the pre-test and the post-test, both groups attended a

lecture during which the instructor reviewed of the use of both UML state machine dia-

grams and UML sequence diagrams as aids to the comprehension of concurrent programs.

Then, in the post-test, one group, referred to as the state group, received the three UML

state machine diagrams presented in Figure 5.6 and Figure 5.11 to assist their problem

solving while the other group, referred to as the sequence group, received the nineteen UML

sequence diagrams generated using the FSP models described in Section 5.3.1. A sample

diagram from this set is seen in Figure 5.16. The effectiveness of the diagrams was measured

by participants’ performance on the post-test.

5.3.3 Session I

The first session of the study started with a lecture that briefly reviewed key concepts

and terminologies of the UML modeling notations and concurrency involved in our study.
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Examples of the use of UML lifeline states and concurrent composite states were introduced.

The pre-test included twenty-one multiple-choice questions, seventeen of which appeared in

the pre-test of the previous state modeling vs. non-modeling study. These seventeen questions

tested participants’ knowledge of concurrency and the UML state machine diagram notation.

In addition, we added four questions about the UML sequence diagram notation. Please see

Appendix E.1 for all the pre-test questions.

Based on participants’ scores on the pre-test, we divided them into the state group and the

sequence group with each group consisting of twenty participants, in an attempt to produce

equivalent groups. The means and standard deviations of the two groups are presented in

Table 5.6.

Table 5.6: State diagram vs. sequence diagram: pre-test results, normalized

Mean Standard deviation
The State Group 0.576 0.157
The Sequence Group 0.574 0.155

5.3.4 Session II

In the lecture component of the second session, the same instructor again reviewed the

semantics of the UML state machine diagrams and how to use them to model monitor

objects, using the bounded-buffer problem as an example (Figure 5.1). The instructor also

emphasized the variability in the time at which a context switch may occur, which leads to

the many different potential interactions between threads.

Following the lecture, participants took the post-test. The post-test consisted of twenty-

six True/False questions, each of which required them to judge the feasibility of an event

sequence involved in a given execution scenario. We deliberately designed those scenario-

based questions so that none of the scenarios was directly depicted by any of the presented

UML sequence diagrams. Thus, all of the True/False questions required inference for the
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participants in both groups. Figure 5.18 presents an execution scenario involving two writer

threads and the five True/False questions that appeared in the post-test. While the two

presented UML sequence diagrams for the TwoWriters configuration depict that w1 calls

startWrite first, the problem scenario assumes that w2 invokes startWrite first. Thus, par-

ticipants in the sequence group cannot “read” answers directly from the two presented UML

sequence diagrams.

Assume that only two threads exist in this system: w1 and w2. At the start

of the program writer thread w2 is running and has invoked the startWrite

method, followed by the write method. The write method call has returned.

A context switch occurs and the w1 thread begins to run.

Which of the following event sequences could happen next?

Circle YES if the event sequence is possible; otherwise, circle NO.

YES NO (a) w1 invokes startWrite and then blocks on the monitor lock.

YES NO (b) w1 invokes startWrite,followed by write,followed by endWrite.

YES NO (c) w1 invokes startWrite and then blocks because w2 has write

authorization.

YES NO (d) w1 invokes startWrite and then blocks because w2 has write

authorization. w2 calls endWrite, then startWrite, and write.

YES NO (e) w1 invokes startWrite and then blocks because w2 has write

authorization. w2 calls endWrite. When the call to endWrite

returns, w1 is in the ready state.

Figure 5.18: Sample questions appeared in the post-test.

In addition to the scenario-based questions, the post-test also included a coding question

that required participants to fill in the method bodies of four monitor methods—startRead,

endRead,startWrite and endWrite. The correct implementation of the four monitor methods

requires participants to (1) place lock acquisition and release operations correctly in the

code to ensure the monitor mutual exclusion; (2) use appropriate operations on the right

condition variables under the correct guard conditions; and (3) update counting variables

correctly. Appendix E.2 presents the post-test textual materials received by both groups.
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Table 5.7: Post-test scores on the True/False questions, normalized

Mean Standard deviation
The State Group 0.689 0.136
The Sequence Group 0.658 0.211

5.3.5 Results and analysis

Table 5.7 summarizes the means and standard deviations of the two groups’ scores on the

twenty-six scenario-based True/False questions. No significant difference exists between the

two groups based on the total scores of the twenty-six True/False questions. Although UML

sequence diagrams, each of which describes an execution scenario, seem to be more informa-

tive than UML state machine diagrams when used as aids in solving scenario-based questions,

the sequence group still slightly trailed the state group on the scores of the True/False ques-

tions. We suggest that this is due to the fact that none of the nineteen UML sequence dia-

grams received by the sequence group depicted a question scenario. The sequence group must

infer the synchronization logic of the monitor-based implementation of the readers-writers

problem from the nineteen UML sequence diagrams and then construct the behavior models

of the question scenarios by themselves. Meanwhile, the state group also must infer the same

synchronization logic from the three given UML state machine diagrams and construct the

behavior models of the same question scenarios.

On a per-question basis, we found that the sequence group significantly outperformed

the state group (p < 0.05) on a question that asked if, at the start of the program, a reader

thread could invoke read, followed by startRead, followed by endRead. The correct answer is

no, because a reader thread must invoke startRead to get the access authorization before it

can invoke read to access the Database. This result conforms to the fact that UML sequence

diagrams emphasize the time ordering of the operations while UML state diagrams do not.
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In assessing the quality of the collected solutions to the coding question, we applied

the formal modeling techniques discussed in Section 5.2.4. Each student solution was tran-

scribed to a resource model. We then defined eight client models as summarized in Table 5.8.

Each client model represents an FSP process modeling a distinct client configuration. These

eight client models have a gradual increase in concurrency, ranging from a sequential client

model (OneReader and OneWriter) to a representative concurrent client model (TwoRead-

ersAndTwoWriters). The parallel composition of a resource model and a client model forms

an analysis FSP model. Thus, each solution may generates eight analysis models.

We also defined four properties, summarized in Table 5.9, that are essential for the

readers-writers problem. Each analysis model was checked against these four properties. The

“lock-protocol” property checks if each access to shared objects is protected by correct lock

acquisition and release operations. The “deadlock” property checks if a deadlock occurs.

The “invariant” property checks if any of the three problem-specific invariant conditions are

verified: the first invariant asserts that at any time the shared database can accommodate

no thread, or only one writer thread, or one or multiple reader threads; the second invariant

asserts that when a reader thread calls read, numWriters must be zero; the third invariant

asserts that when a writer thread calls write, numReaders must be zero. The “excessive-

signaling” property checks whether an FSP model based on a participant’s solution generates

more signals or broadcasts than the FSP model based on the correct solution.

Table 5.10 summarizes the means and standard deviations of the scores that the col-

lected solutions obtained when they were verified against the four properties. No significant

difference was found based on these scores. Further, we noticed that ten invalid solutions

existed among the collected solutions. Four of the ten invalid solutions were collected from

the state group and the other six were collected from the sequence group. For these invalid

solutions, we found that several participants did not answer this question at all while the

others only provided partial, severely defective answers that failed all the tests. We postu-

late that the occurrence of invalid solutions was largely due to a lack of motivation. In this
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Table 5.8: Eight client models

Name Interpretation
OneReader one reader thread calls startRead, read and endRead in sequence
OneWriter one writer thread calls startWrite, write and endWrite in sequence
TwoReaders two reader threads, each calls its three methods in sequence
TwoWriters two writer threads, each calls its three methods in sequence
ReaderAndWriter one reader and one writer, each calls its three methods in sequence
ReaderAndTwoWriters one reader and two writers, each calls its three methods in sequence
TwoReadersAndWriter two readers and one writer, each calls its three methods in sequence
TwoReadersAndTwoWriters two readers and two writers, each calls its three methods in sequence

Table 5.9: Four properties for code verification

Name Interpretation
Lock-protocol check if solutions conform to correct locking protocol
Deadlock check if deadlock occurs
Invariants check if invariant conditions are violated
Excessive-signaling check if excessive signaling or broadcasting exists

study, participants could earn grade credits simply by attending the study. They understood

that their performance on the tests would not affect their grades. Consequently, some of the

participants did not answer the coding question, even though their good performance on the

scenario-based True/False questions showed that they had the knowledge to handle questions

related to concurrency and synchronization. The presence of solutions from participants who

were not making an honest effort introduced noise into our analysis.

In order to clean the noise, we performed a peer-to-peer analysis in which we analyzed

the scores of participants with top performance on the coding question in each group. Those

participants were more likely to make an honest effort on the post-test. Table 5.11 and
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Table 5.12 summarize the means and standard deviations of the scores of the participants

whose total scores on the coding question fall in the top 25% and 50% of their groups,

respectively. When considering the top 25% solutions, both a one-tailed, heteroscedastic t-

test and a Wilcoxon rank-sum test show that the sequence group significantly outperformed

the state group on the combination of the three total scores obtained for the coding question

(p < 0.02). When considering the top 50% solutions, a one-tailed, heteroscedastic t-test shows

the sequence group also significantly outperformed the state group on the combination of

the three properties: deadlock, invariant, and excessive-signaling (p < 0.04). A Wilcoxon

rank-sum test on those top 50% solutions also confirms this statistically significant result (p

< 0.03).

Meanwhile, we notice that the state group actually scored slightly better than the

sequence group on the lock-protocol property. This result is not surprising. While the UML

sequence diagrams received by the sequence group did not show the lock-related operations,

the UML state machine diagrams received by the state group conveyed the rendezvous

semantics of mutual exclusion.

Table 5.10: Post-test mean/stdev for all solutions, normalized

Lock protocol Deadlock Invariants Excessive signaling
The State Group 0.288/0.431 0.494/0.432 0.481/0.339 0.722/0.381
The Sequence Group 0.250/0.444 0.569/0.469 0.483/0.402 0.616/0.435

Table 5.11: Post-test mean/stdev for top 25% solutions only, normalized

Lock protocol Deadlock Invariants Excessive signaling
The State Group 0.850/0.335 0.600/0.454 0.733/0.273 0.888/0.103
The Sequence Group 0.800/0.447 1.000/0.00 0.900/0.224 0.950/0.112

The survey of participants’ preferences shows no strong correlation between participants’

performance on the post-test and their preferences. Among the eighteen participants in
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Table 5.12: Post-test mean/stdev for top 50% solutions only, normalized

Lock protocol Deadlock Invariants Excessive signaling
The State Group 0.525/0.506 0.750/0.373 0.629/0.281 0.888/0.097
The Sequence Group 0.500/0.527 0.838/0.354 0.800/0.258 0.938/0.102

the state group who took the survey, nine prefer the UML state machine diagram; eight

prefer the UML sequence diagrams; one did not provide his preference. Among the seventeen

participants in the sequence group who took the survey, nine prefer state machine diagrams;

five prefer sequence diagrams; one does not like either; two like both equally.

To summarize, our study shows that UML state machine diagrams and UML sequence

diagrams did not vary significantly in their effectiveness in assisting novices in solving

scenario-based questions. However, UML sequence diagrams may benefit participants sig-

nificantly over UML state machine diagrams when used as aids in coding concurrent pro-

grams. It is also possible that participants who have more experience with these types of

diagrams may benefit more from UML state machine diagrams. In future studies, we will

train participants so that they are more experienced with both diagrams prior to the studies.

We recognize several threats to validity in our study. A major threat is the lack of strong

incentives for participants to complete the test. This threat introduced substantial noise

into the analysis. In our future studies, we shall raise the incentives for participants to

succeed. Another potential threat to validity concerns how well our questions differentiate

participants’ performance in the study. Both the state group and the sequence group scored

around 67% on average on the True/False questions on the post-test. Considering that even

a participant who randomly guessed the answers could get a score of 50%, our True/False

questions may not be the ideal type of questions used in such an empirical study. Our future
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studies shall choose multiple-choice questions over True/False questions on the tests. Other

potential threats include the limited scale of questions and participants in our study.



Chapter 6

Conclusion and Future Work

6.1 Research contributions

Our long-term research goal is to develop external representations that aid developers in the

problem-solving tasks that attend to the design, verification, and maintenance of concurrent

software. Program comprehension plays a major role in each of these activities, especially

verification and maintenance. We believe that many of the problems that complicate learning

about the proper use of concurrency and synchronization also contribute to the complexity

of comprehension tasks in this domain. and external representations can both aid students

in mastering concurrency and synchronization concepts and enable practitioners to better

comprehend the dynamically evolving nature of concurrent programs. To this end, we have

begun to investigate the common problems novices encounter in learning about concurrency

and conduct empirical studies to assess the effectiveness of various representations on human

performance (and retention of knowledge) during comprehension, debugging and coding tasks

involving concurrent programs.

To summarize, the major up-to-date contributions of our research include the following:

1. Investigated some of the major difficulties students encounter when learning how to

use concurrency and synchronization primitives (Chapter 3).

2. Designed and evaluated the saUML sequence diagram notation to ease the identified

difficulties. Using a combination of color and textual adornments, saUML extends UML

2.0 sequence diagrams to depict the run-time states of threads, mutex locks, and (in

programs that employ condition synchronization) counter variables. By making these

107



108

concepts explicit, saUML diagrams expose many of the otherwise invisible details at

play during thread synchronization. Using empirical observation, we showed our saUML

notation to be beneficial as compared to both a text-only presentation and the standard

UML sequence diagram notation (Chapter 4).

3. Evaluated the usability of UML 2.0 state machine diagram notation when used as an

aid in novices’ comprehension of concurrency concepts. Our studies showed that the

UML 2.0 state machine diagram notation aids in the comprehension of concurrency.

4. Applied a new method of using FSP models to compare UML state diagrams with

UML sequence diagrams in a fair way (Chapter 5). An initial comparison between the

efficacy of using UML state machine diagram notation to support the comprehension

of currency and that of the UML sequence diagram notation showed UML sequence

diagrams better support the comprehension of the functional logic of a multi-threaded

program than UML state diagrams.

6.2 Future work

Several interesting research questions remain to be investigated. The most pressing of these

concern whether the benefits of saUML are limited to programs with complex condition

synchronization. In the first study that compared the saUML sequence diagram notation with

the standard UML sequence diagram notation, participants using saUML outperformed those

using standard UML, but the difference did not rise to the level of statistical significance.

This lack of statistical significance may be explained by the small sample size. An a posteriori

power analysis shows that the statistical power of the first study was only 0.283, which means

there is roughly a 70% chance we missed an effect. Assuming the effect size we observed holds,

we would need a sample size of 65 to show statistical significance. We will replicate this study

using participants from several universities to create a sufficiently large sample.
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The saUML notation comprises several UML extensions and idioms of use. Further studies

are needed to judge whether all of the extensions are needed or if a subset is sufficient.

Moreover, having now used saUML in several studies, we have identified several optimizations

that might improve its usability. For instance, complex synchronization states, such as that of

the database in the second experiment, comprise many orthogonal components (e.g., state of

the mutex lock and the value of each counter variable). Our current convention is to display

the entire synchronization state (i.e., every component) when any one of them changes.

Whether readability would improve if we depict only the components that change is an open

question.

Our saUML studies looked at tasks that involve reasoning about existing diagrams.

Whether saUML is beneficial for tasks that involve creating diagrams from scratch is an

open question. There are also questions regarding how well saUML scales for larger pro-

grams, especially compared with standard UML. For example, does saUML provide a sig-

nificant benefit over standard UML on programs that use only mutexes if the programs

are large, or utilize many, possibly nested, locks? Also, does saUML continue to provide a

significant benefit for programs with condition synchronization if the programs are large or

involve many condition variables?

Moreover, we plan to formalize our saUML sequence diagram notation in the forms of

UML 2.0 profiles [47]. Such profiles tailor our notation for modeling concurrent software and

make it possible to introduce tool support for our notation.

We also recognize that several parallel state machine models at different levels of abstrac-

tion and traceability to code may exist for the same concurrent software system. A more

abstract state machine model favors abstraction over traceability to code. It usually does

not depict many of the operational details of thread synchronization using libraries such as

ACE [49] or Pthreads [6]. For instance, in an abstract state machine model, a server object

may enforce mutual exclusion by refusing to accept operation invocations when it is in a state

that is part of a method body. Clients’ requests are queued up at an entry until the server
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object returns to a state that is not within the body of a method. In this case, the actual

implementation of mutual exclusion using mutex locks is hidden in such an abstract state

machine model. The state machine modeling BoundedBuffer in Figure 5.1(a) is an example

of a more abstract state machine model. In contrast, a more implementation-traceable state

machine model concedes abstraction to retain the ability to reveal the nuts and bolts of the

implementation details of the code. We would expect to see the depiction of the operations on

the monitor mutex and condition variables in such a model. However, a truly traceable state

machine model is quite complex, especially when condition synchronization is involved and

its learning curve is steep for novices. While a more abstract state machine model is needed

to enable feasible exhaustive analysis, a more implementation-traceable (i.e. less abstract)

state machine diagram may better reveal the dynamic mechanisms inherent within a concur-

rent software system. How to achieve balance between these competing concerns is also one

of our research topics. As a first step, we conducted two studies to evaluate the usability of

the more abstract UML state machine diagram notation (Chapter 5). In the future, we will

evaluate the usability of the more implementation-traceable variants of UML state machine

diagrams. A study comparing these two types of models may also be needed to reveal more

insights that help to better balance the trade-offs between abstraction and traceability.

All of our prior studies were conducted to improve educational benefit. Further study is

required to determine whether and how it generalizes to practitioners. The programs and

interaction scenarios used in our study may not be representative of those found in practice.

Also, student participants may not be representative of expert practitioners, who have years

of experience working on concurrent software. Finally, the questions we used may not be

representative of the sorts of questions that arise in practice. We will address these issues

in future work with case studies of professional programmers conducting real maintenance

tasks on production systems.
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Appendix A

Subjective survey questions

Question 1: Have you ever studied the UML sequence-diagram notation before?

Please respond to questions 2-5 by using the following rating scale: 1 strongly disagree; 2

moderately disagree; 3 undecided; 4 moderately agree; 5 strongly agree.

Question 2: this kind of sequence diagram is helpful in clarifying threads entering and

exiting a monitor routine.

Question 3: this kind of sequence diagram is helpful in clarifying when and which threads

are actively running on the processor at any given time (we assume multiple threads share

a single processor).

Question 4: this kind of sequence diagram is helpful in illustrating the interactions

between threads in a single program trace.

Question 5: this kind of sequence diagram is helpful in facilitating my understanding of

the inherent mechanisms of monitors.

Please provide your comments in questions 6-7:

Question 6: Can you think of any other aspects of concurrency and/or synchronization

behavior that this variant of the sequence-diagram notation might clarify or any ways in

which it might aid in design, understanding, or verification activities? Please list any such

aspects and briefly explain how/why diagrams in this notation might prove useful.

Question 7: Can you think of any aspects of concurrency and/or synchronization behavior

that this variant of the sequence-diagram notation might obfuscate or that might complicate

design, understanding, or verification activities? Please list any such aspects and briefly

explain what it is about this notation that might lead to these problems.
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Appendix B

Materials used in the saUML vs. text-only study

B.1 saUML vs. text-only: Pre-test questions
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Name:__________________ 

 

 

Q1. Link the correct descriptions to the terms: 

 

Thread  The current thread changes from running to ready while 

one thread from the ready queue changes from ready to 

running. 

 

 

Context switch 

 

 

Sequential stream of execution. 

Race condition                        

 

 

Section of code that must be executed atomically, i.e. by 

one thread at a time. 

 

 

Atomic operation 

  

 

 

A class-like programming language construct within 

which only one thread may execute concurrently. 

 

Critical section 

 

Computation depends on ordering of thread execution. 

 

 

 

Deadlock 

 

A situation where only one thread may access a resource 

at a time. 

 

 

Mutual exclusion 

 

Operation that must be performed entirely or not 

performed at all. 

 

 

Monitor 

 

A situation in which no progress can be made 

 

 

Q2. You implement monitors. Your friend writes a concurrent program that shows that 

while Thread t1 is in this monitor, it is context switched out and Thread t2 runs. Your 

friend says that your monitor implementation is wrong. Is your friend correct? 

1. Your friend is right. 

2. Your friend had a wrong observation. t1 can’t possibly context switch out while 

holding a monitor. 

3. Your friend is wrong. He must have designed a defective concurrent program. 

4. Your friend is wrong. Although t1 is switched out and t2 runs, t2 still can’t get 

into the monitor. 
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Bank Account Problem: 
 

class BankAccount extends Object { 

 

   private double balance = 0; 

   private ConditionVariable OKtoWithdraw = new 

ConditionVariable(); 

    

   public synchronized void deposit(double amount) { 

      balance = balance+amount; 

      notifyAll(OKtoWithdraw);  

   } 

 

   public synchronized void withdraw(double amount) { 

      while (amount > balance) 

         wait(OKtoWithdraw); 

      balance = balance-amount; 

       

   } 

 

} 
 

For the following scenarios, we assume that only two customer threads (c1 and c2) are 

running on the processor.    

 

Scenario 1:  

Assume the current balance is 0. c1 is running within the invocation of deposit(100) and 

c2 is in the ready state. A context switch occurs. c2 changes to running and c1 changes to 

ready. c2 invokes withdraw(150), but suspends afterwards. 
 

public synchronized void deposit(double amount) { 

      //context switch occurs here. 

      balance = balance+amount; 

      notifyAll(OKtoWithdraw);  

} 

 

Q3: Why does c2 suspend? 

1. c2 suspends on the conditional variable OKtoWithdraw, since it wants to 

withdraw more money (150) than the current balance (0); 

2. Deadlock occurs. Since c1 is in the monitor, c2 can’t possibly enter the monitor; 

3. c2 suspends on the monitor lock, since c1 is still holding the lock; 

 

Q4: As a result:  

1. c1 remains ready and c2 remains running and eventually finishes its withdraw 

transaction; 

2. c1 changes to suspended and c2 remains running and eventually finishes its 

withdraw transaction; 
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3. c1 changes to running and c2 changes to ready; 

4. c1 changes to running and c2 changes to suspended; 

5. Both c1 and c2 change to suspended, since deadlock occurs. 

 

Scenario 2:  

Assume c1 is running within the invocation of deposit(100) and c2 is in the suspended 

state (we assume c2 was previously suspended on the monitor lock). c1 issues a 

notifyAll(OKtoWithdraw). 
 

public synchronized void deposit(double amount) { 

      balance = balance+amount; 

      notifyAll(OKtoWithdraw); // c1 implements this 

} 

 

Q5: As a result: 

1. c1 changes to ready and c2 changes to running; 

2. c1 changes to suspended and c2 changes to running; 

3. c1 remains running and c2 remains suspended; 

4. c1 remains running and c2 changes to ready; 

5. Deadlock occurs. 

 

 

Scenario 3:  

Assume c1 is running within the invocation of deposit(100) and c2 is in the suspended 

state (it was suspended on the monitor lock).  

 

Q6: If c1 releases the monitor lock and leaves the monitor, then: 

1. c1 changes to ready and c2 changes to running; 

2. c1 changes to suspended and c2 changes to running; 

3. c1 remains running and c2 remains suspended; 

4. c1 remains running and c2 changes to ready; 

5. Deadlock occurs. 

 

Scenario 4:  

Assume the current balance is 100. c1 is in the ready state and c2 is running within the 

invocation of withdraw(150). Since c2 wants to withdraw 150 and the current balance is 

only 100, c2 issues a wait(OKtoWithdraw). 
 

public synchronized void withdraw(double amount) { 

      while (amount > balance) 

         wait(OKtoWithdraw); // c2 implements this 

      balance = balance-amount; 

} 

 

Q7. As a result: 

1. c1 remains ready and c2 remains running; 

2. c1 changes to suspended and c2 remains running; 
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3. c1 changes to running and c2 changes to suspended; 

4. c1 changes to running and c2 changes to ready; 

5. Deadlock occurs, since c2 suspends inside of the monitor. c1 will never be able to 

enter the monitor. 

 

Scenario 5:  

Assume the initial balance is 100. c1 is in the running state and c2 is in the suspended 

state (we assume c2 was previously suspended on OKtoWithdraw). c1 invokes 

deposit(100) and enters the monitor. It updates the balance to 200 and issues a 

notifyAll(OKtoWithdraw). 

 

Q8: As a result: 

1. c1 changes to ready and c2 changes to running; 

2. c1 changes to suspended and c2 changes to running; 

3. c1 remains running and c2 remains suspended; 

4. c1 remains running and c2 changes to ready; 

5. Deadlock occurs. 
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B.2 saUML vs. text-only: Post-test questions



 

NAME:______________________ 

Readers-Writers Problem: 
 

The readers-writers problem is a classic synchronization problem in which two 

distinct classes of threads exist, reader and writer. Multiple reader threads 

can be present in the Database simultaneously. However, the writer threads must 

have exclusive access. That is, no other writer thread, nor any reader thread, 

may be present in the Database while a given writer thread is present. Note: 

the reader/writer thread must call startRead()/startWrite() to enter the 

Database and it must call endRead()/endWrite() to exit the Database. 

 
class Database extends Object { 

   private int numReaders = 0; 

   private int numWriters = 0; 

   private ConditionVariable OKtoRead = new ConditionVariable(); 

   private ConditionVariable OKtoWrite = new ConditionVariable(); 

    

   public synchronized void startRead() { 

      while (numWriters > 0)  

   wait(OKtoRead); 

      numReaders++;  

   } 

   public synchronized void endRead() { 

      numReaders--; 

      notify(OKtoWrite); 

   } 

   public synchronized void startWrite() { 

      while (numReaders > 0 || numWriters > 0)  

   wait(OKtoWrite); 

      numWriters++; 

   } 

   public synchronized void endWrite() { 

      numWriters--; 

      notify(OKtoWrite);  

      notifyAll(OKtoRead); 

   } 

} 

class Reader extends Object implements Runnable { 

   private Monitor m = null; 

   public Reader(Monitor m) { 

      this.m = m; 

      new Thread(this).start(); 

   } 

   public void run() { 

      //do something; 

      m.startRead(); 

      //do some reading… 

      m.endRead(); 

      // do something else for a long time; 

   } 

} 

class Writer extends Object implements Runnable { 

   private Monitor m = null; 

   public Writer(Monitor m) { 

      this.m = m; 

      new Thread(this).start(); 

   } 

   public void run() { 

      //do something; 

      m.startWrite(); 

      //do some writing… 

      m.endWrite();  

      // do something else for a long time; 

 

   } 

} 
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wait(ConditionVariable cond) { 

    put the calling thread on the “wait set” of cond; 

    release lock; 

    Thread.currentThread.suspend(); 

    acquire lock; 

} 

notify(ConditionVariable cond){ 

    choose t from wait set of cond; 

    t.resume(); 

} 

notifyAll(ConditionVariable cond){ 

    forall t in wait set of cond; 

    t.resume() 

} 

 

For the following scenarios, we assume that only one reader thread and one writer 

thread are running on the processor.    

 

Scenario 1:  

Assume the reader thread is running within the invocation of startRead() and the writer 

thread is in the ready state. A context switch occurs just after the reader thread 

increments numReaders by one. The reader thread changes to ready and the writer 

thread changes to running. The writer thread invokes startWrite(). 
 
   public synchronized void startRead() { 

      while (numWriters > 0)  

   wait(OKtoRead); 

      numReaders++;  

     //context switch occurs here. 

   } 

 

Q1. What will happen next:  

A. The reader thread remains ready; the writer thread remains running and enters 

the monitor. 

B. The reader thread changes to suspended; the writer thread remains running. 

C. The reader thread changes to running; the writer thread changes to ready. 

D. The reader thread changes to running; the writer thread changes to suspended. 

E. Both the reader thread and the writer thread change to suspended and deadlock 

occurs. 

 

Scenario 2:  

Assume the reader thread is in the running state and the writer thread is in the 

suspended state (we assume the writer thread was previously suspended on 

wait(OKtoWrite). The reader thread invokes endRead() and enters the monitor. It sets the 

numReaders to 0 and issues a notify(OKtoWrite). 

 

Q2. As a result: 

A. The reader thread changes to ready; the writer thread changes to running. 

B. The reader thread changes to suspended; the writer thread changes to running. 

C. The reader thread remains running; the writer thread remains suspended. 

D. The reader thread remains running; the writer thread changes to ready. 

E. Deadlock occurs. 

Scenario 3:  
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Assume the reader thread is reading the Database and the writer thread is in the ready 

state. A context switch occurs.  The reader thread changes to ready and the writer thread 

changes to running. The writer thread issues a startWrite(). 

 

Q3. What will happen as a result of this invocation of startWrite()?  

A. The reader thread remains ready; the writer thread remains running until the 

invocation completes. 

B. The writer thread remains running; the reader thread changes to suspended. 

C. The writer thread changes to ready; the reader thread changes to running. 

D. The writer thread changes to suspended; the reader thread changes to running. 

E. Deadlock occurs, since the reader thread is in the Database and the writer thread 

suspends inside of the monitor. 

 

Scenario 4:  

Assume the writer thread is running within the invocation of startWrite() and the reader 

thread is in the ready state. A context switch occurs just after the writer thread 

increments numWriters by one. The Writer thread changes to ready and the reader 

thread changes to running. The reader thread invokes startRead(), but suspends 

afterwards. 
 
   public synchronized void startWrite() { 

      while (numReaders > 0 || numWriters > 0)  

   wait(OKtoWrite); 

      numWriters++; 

     //context switch occurs here. 

   } 

 

Q4. Why does the reader thread suspend? 

A. The reader thread suspends on wait(OKtoWrite), since numWriters is non-zero at 

the time; 

B. Deadlock occurs. Since the writer thread is in the monitor, the reader thread 

can’t possibly enter the monitor; 

C. The reader thread suspends on the monitor lock; 

D. The reader thread suspends on wait(OKtoRead), since numWriters is non-zero at 

the time. 

 

Scenario 5:  

Assume the reader thread is running within the invocation of startRead() and the writer 

thread is in the suspended state (it was suspended on the monitor lock).  

 

Q5. If the reader thread releases the monitor lock and leaves the monitor, then: 

A. The reader thread changes to ready; the writer thread changes to running. 

B. The reader thread changes to suspended; the writer thread changes to running. 

C. The reader thread remains running; the writer thread remains suspended. 

D. The reader thread remains running; the writer thread changes to ready. 

E. Deadlock occurs. 

 

 

Scenario 6:  
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Assume the writer thread is writing the Database and the reader thread is in the ready 

state. A context switch occurs.  The writer thread changes to ready and the reader thread 

changes to running. The reader thread issues a startRead(), but suspends afterwards. 

 

Q6. Why does the reader thread suspend? 

A. The reader thread suspends on wait(OKtoWrite). 

B. Deadlock occurs. 

C. The reader thread suspends on the monitor lock. 

D. The reader thread suspends on wait(OKtoRead). 

 

Scenario 7:  

Assume the reader thread is running within the invocation of endRead() and the writer 

thread is in the suspended state (the writer thread was previously suspended on the 

monitor lock). The reader thread invokes notify(OKtoWrite). 

 

Q7. As a result: 

A. The reader thread changes to ready; the writer thread changes to running. 

B. The reader thread changes to suspended; the writer thread changes to running. 

C. The reader thread remains running; the writer thread remains suspended. 

D. The reader thread remains running; the writer thread changes to ready. 

E. Deadlock occurs. 

 

 

Q8. What feature(s) of the monitor implementation prevent race conditions in updating 

counting variables (numReaders and numWriters) ? 

A. wait on condition variables. 

B. notify on condition variables. 

C. Lock is released before a thread suspends in wait. 

D. The implicit lock on the monitor. 

 

Q9. What feature(s) of the monitor implementation prevent a writer from entering the 

Database while reader(s) are present? 

A. wait on condition variables. 

B. notify on condition variables. 

C. Lock is released before a thread suspends in wait. 

D. The implicit lock on the monitor. 

 

 

Q10. Why does the wait method release the lock and then acquire it again? 

A. To “wake-up” a reader thread that was previously blocked on the wait. 

B. To “wake-up” a writer thread that was previously blocked on the wait. 

C. To promote efficiency. 

D. To prevent deadlock. 
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B.3 Post-test saUML diagrams provided to the treatment group



Scenario 1: 

 

 

:Database startRead() :Reader :Writer 

 
locked; 

numReaders=0; 

numWriters=0. 

 

startWrite() 

 
unlocked; 

numReaders=1; 

numWriters=0. 

 

 
locked; 

numReaders=1; 

numWriters=0. 

 

131



Scenario 2 

:Database startRead() :Reader :Writer 

 
locked; 

numReaders=0; 

numWriters=0. 

 

startWrite() 

wait(OKtoWrite) 
endRead() 

notify(OKtoWrite) 

 
unlocked; 

numReaders=1; 

numWriters=0. 

 

 
locked; 

numReaders=1; 

numWriters=0. 

 

 
unlocked; 

numReaders=1; 

numWriters=0. 

 

 
unlocked; 

numReaders=0; 

numWriters=0. 

 

 
locked; 

numReaders=1; 

numWriters=0. 

 

 
locked; 

numReaders=0; 

numWriters=0. 

 

 
locked; 

numReaders=1; 

numWriters=0. 
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Scenario 3 

:Database startRead() :Reader :Writer 

 
locked; 

numReaders=0; 

numWriters=0. 

 

startWrite() 

wait(OKtoWrite) 

 
unlocked; 

numReaders=1; 

numWriters=0. 

 

 
locked; 

numReaders=1; 

numWriters=0. 

 

 
unlocked; 

numReaders=1; 

numWriters=0. 

 

 
locked; 

numReaders=1; 

numWriters=0. 
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Scenario 4 

:Database 

startRead() 

:Reader :Writer 

 
locked; 

numReaders=0; 

numWriters=0. 

 

startWrite() 

 
locked; 

numReaders=0; 

numWriters=1. 

 

 
unlocked; 

numReaders=0; 

numWriters=1. 
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Scenario 5: 

 

 

:Database startRead() :Reader :Writer 

 
locked; 

numReaders=0; 

numWriters=0. 

 

startWrite() 

 
unlocked; 

numReaders=1; 

numWriters=0. 

 

 
locked; 

numReaders=1; 

numWriters=0. 
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Scenario 6 

:Database 

startRead() 

:Reader :Writer 

 
locked; 

numReaders=0; 

numWriters=0. 

 

startWrite() 

 
locked; 

numReaders=0; 

numWriters=1. 

 

 
unlocked; 

numReaders=0; 

numWriters=1. 

 

 
locked; 

numReaders=0; 

numWriters=1. 

 

wait(OKtoRead) 

 
unlocked; 

numReaders=0; 

numWriters=1. 
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Scenario 7 

:Database startRead() :Reader :Writer 

 
locked; 

numReaders=0; 

numWriters=0. 

 

startWrite() 

endRead() 

notify(OKtoWrite) 

 
unlocked; 

numReaders=1; 

numWriters=0. 

 

 
unlocked; 

numReaders=0; 

numWriters=0. 

 

 
locked; 

numReaders=1; 

numWriters=0. 

 

 
locked; 

numReaders=0; 

numWriters=0. 

 

 
locked; 

numReaders=1; 

numWriters=0. 
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Appendix C

Materials used in the two saUML vs. standard UML studies

C.1 saUML vs. standard UML experiment I: pre-test
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Name: _______________________________ 

 
I will participate in the experiment next Monday:  YES     NO 

 

 

 

 
Diagram 1  

 
______ Q1. Assume the Queue initially contains only Object A. What happens as a result of   

                    actors 1 and 2 executing the pull method as seen in Diagram 1? 

 

a. actor1 gets a copy of Object A; actor2 gets nothing; the Queue becomes empty. 

b. actor1 gets a copy of Object A; actor2 gets a copy of Object A; the Queue becomes 

corrupted. 

c. actor1 gets a copy of Object A; actor2 gets a copy of Object A; the Queue becomes 

empty. 

d. actor1 gets a copy of Object A; actor2 gets nothing; the Queue becomes corrupted. 

e. actor1 gets a copy of Object A; actor2 gets a copy of Object A; the Queue still 

contains Object A. 

 

_____ Q2. Assume the Queue initially contains three objects, which were inserted in the order   

                  of A, B and C. What happens as a result of actors 1 and 2 executing the pull 

                  method as seen in diagram 1? 

 

a. actor1 gets a copy of Object A; actor2 gets a copy of Object A; the Queue contains 

Object C only. 

b. actor1 gets a copy of Object A; actor2 gets a copy of Object A; the Queue contains 

Object B and Object C. 

c. actor1 gets a copy of Object A; actor2 gets a copy of Object B; the Queue contains 

Object C only. 

d. actor1 gets a copy of Object A; actor2 gets a copy of Object A; the Queue becomes 

corrupted. 

e. actor1 gets a copy of Object A; actor2 gets a copy of Object B; the Queue becomes 

corrupted. 

 

:Queue actor2 : … actor1 : … 

pull 

empty 

back 

pop 

pull 

empty 

back 

pop 
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Diagram 2 

 
_____  Q3. Assume the Queue initially contains only Object A. What happens as a result of     

                   actors 1 and 2 executing the pull method as seen in diagram 2? 

 

a. actor1 gets a copy of Object A; actor2 gets nothing; the Queue becomes empty. 

b. actor1 gets nothing; actor2 gets a copy of Object A; the Queue becomes empty. 

c. actor1 gets a copy of Object A; actor2 gets a copy of Object A; the Queue becomes 

empty. 

d. actor1 gets a copy of Object A; actor2 gets a copy of Object A; the Queue becomes 

corrupted. 

e. actor1 gets a copy of Object A; actor2 gets a copy of Object A; the Queue still 

contains Object A. 

 

 

_____  Q4. Assume the Queue initially contains three objects, which were inserted in the  

                   order of A, B and C. What happens as a result of actors 1 and 2 executing the pull  

                    method as seen in diagram 2? 

 

a. actor1 gets a copy of Object A; actor2 gets a copy of Object A; the Queue contains 

Object C only. 

b. actor1 gets a copy of Object A; actor2 gets a copy of Object A; the Queue contains 

Object B and Object C. 

c. actor1 gets a copy of Object A; actor2 gets a copy of Object B; the Queue contains 

Object C only. 

d. actor1 gets a copy of Object A; actor2 gets a copy of Object A; the Queue becomes 

corrupted. 

e. actor1 gets a copy of Object A; actor2 gets a copy of Object B; the Queue becomes 

corrupted. 

 

 

 

 

 

 

:Queue actor2 : … actor1 : … 

pull 

empty 

back 

pop 

pull 

empty 

back 

pop 
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Note: In the following scenarios, the shared queue is implemented using monitors. 

 

 
Diagram 3 

 
_____ Q5. Assume the Queue initially contains three objects, which were inserted in the order  

                  A, B and C. Which of the following statements concerning diagram 3 is correct? 

 

a. actor1 obtains the lock on the MonitorQueue after actor 2 obtains it. 

b. actor1 releases the lock on the MonitorQueue after actor 2 executes pop. 

c. The diagram is in error: actor 2 could not send the pull message to the monitor while 

actor1 is running in the MonitorQueue. 

d. actor1 releases the lock then is context switched out and actor 2 is able to obtain the 

lock and complete its invocation of pull before actor1 is context switched in again. 

e. The diagram is in error: actor1 must return from pull before actor 2 can proceed to 

execute empty, back and pop. 

 

 

 

: MonitorQueue actor2 : … actor1 : … 

pull 

empty 

back 

pop 

pull 

empty 

back 

pop 
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Diagram 4 

 
_____ Q6. Assume the Queue initially contains three objects, which were inserted in the order  

                  A, B and C. Which of the following statements concerning diagram 4 is correct? 

 

a. actor1 obtains the lock on the MonitorQueue after actor 2 obtains it.   

b. actor2 releases the lock on the MonitorQueue after actor1 executes empty. 

c. The diagram is in error: actor 2 could not send the pull message to the monitor while 

actor1 is running in the MonitorQueue. 

d. actor2 releases the lock then is context switched out and actor1 is able to obtain the 

lock and complete its invocation of pull before actor 2 is context switched in again. 

e. The diagram is in error: actor 2 must return from pull before actor1 can proceed to 

execute empty, back and pop. 

 

 

 

 

 

: MonitorQueue actor2 : … actor1 : … 

pull 

empty 

back 

pop 

pull 

empty 

back 

pop 
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Diagram 5 

 
_____ Q7. Assume the MonitorQueue initially contains three objects, which were inserted in  

                  the order  A, B and C. Which of the following statements concerning diagram 5 is  

                  correct? 

 

a. actor1 obtains the lock on the MonitorQueue after actor 2 obtains it.   

b. actor1 releases the lock on the MonitorQueue after it executes empty. 

c. The diagram is in error: actor 2 could not send the pull message to the monitor while 

actor1 is running in the MonitorQueue. 

d. actor1 finishes empty then is context switched out and actor 2 is able to obtain the 

lock and proceed to execute empty before actor1 is context switched in again. 

e. The diagram is in error: actor 2 could not proceed to execute empty while actor1 

holds the lock on the MonitorQueue. 

 

 

 

 

 

:MonitorQueue actor2 : … actor1 : … 

pull 

empty 

back 

pop 

pull 

empty 

back 

pop 

143



  

 
Diagram 6 

 
_____ Q8. Assume the Queue initially contains three objects, which were inserted in the order  

                  A, B and C. What happens as a result of actors 1 and 2 executing the pull method  

                  as seen in diagram 6? 

 

a. actor1 gets a copy of Object B; actor2 gets a copy of Object A; the Queue contains 

Object C only. 

b. actor1 gets a copy of Object A; actor2 gets a copy of Object A; the Queue contains 

Object B and Object C. 

c. actor1 gets a copy of Object A; actor2 gets a copy of Object B; the Queue contains 

Object C only. 

d. actor1 gets a copy of Object B; actor2 gets a copy of Object A; the Queue becomes 

corrupted. 

e. actor1 gets a copy of Object A; actor2 gets a copy of Object B; the Queue becomes 

corrupted. 

 

: MonitorQueue actor2 : … actor1 : … 

pull 

empty 

back 

pop 

pull 

empty 

back 

pop 

144



  

 
Diagram 7 

 
_____ Q9. Why does actor 2 delay after invoking the pull method and before invoking the  

                  empty method as seen in diagram 7? 

 

a. actor1 is in the monitor; thus no other thread may execute until actor1 leaves the 

monitor. 

b. actor2 was delayed because the thread running within actor1 was switched in to 

execute just prior to actor2’s invocation of empty. Had this not happened, actor 2 

could proceed to execute empty before actor1 completes its invocation of the pull 

method. 

c. The queue is empty and actor2 must wait until a new object is placed in the queue. 

d. The diagram is in error: actor2 could not send the pull message while actor1 is 

running in the monitor. 

e. Because actor1 holds the lock on the monitor, actor2 must wait for actor1 to release 

the lock. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

: MonitorQueue actor2 : … actor1 : … 

pull 

empty 

back 

pop 

pull 

empty 

back 

pop 
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Q10.  Briefly explain what can go wrong when multiple actors access shared data 

without synchronization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_____ Q11. Which of the following does a monitor guarantee? 

 

a. Only one thread at a time may execute within the monitor 

b. Once a thread T enters the monitor, no other thread may execute within any 

object until T  leaves the monitor 

c. Multiple threads may enter the monitor at the same time provided that none of 

these threads modifies any of the data in the monitor. 

d. All of the above 

e. None of the above 
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C.2 saUML vs. standard UML experiment I: post-test

C.2.1 Experiment I: post-test questions



Name: _______________________________ 
 
The following questions refer to the “Scenario” diagrams that you have received 
in a separate packet.  In answering the questions below, you should be sure to 
note which scenario the question is referring to.  Also, you may assume the 
following: 

• the initial Balance stored in the Database for our accountID of interest is 
$180 

• the accountID attribute is not in these scenarios; thus client1 and client2 
will always be referring to the same account 

• the conversion rate is $1.80 per £ 1 (GBP).  Thus: 
 

USD  GBP  

$   90 £   50 

$ 180 £ 100 

$ 270 £ 150 

$ 360 £ 200 

 
 
Questions 1 and 2 refer to Scenario 1. 
 
1. What happens as a result of the execution depicted in Scenario 1? 

a. withdrawHalf returns £50 and the account now contains $90 
b. withdrawHalf returns £100 and the account now contains $180 
c. withdrawHalf returns £50 and the account now contains $180 
d. withdrawHalf returns £100 and the account now contains $90 

 
2. The withdrawHalf activation experiences a delay between its invocations of 

getBalance and setBalance, because: 
a. the client2 thread must wait to obtain the lock for the IBA object 
b. the client2 thread was context-switched out while the client1 thread was 

context-switched in and executed 
c. the client2 thread must wait for the deposit activation to complete before it 

may modify the database 
d. none of the above 

 
 
Question 3 refers to Scenario 2. 
 
3. What happens as a result of the execution depicted in Scenario 2? 

a. withdrawHalf returns £50 and the account now contains $90 
b. withdrawHalf returns £100 and the account now contains $180 
c. withdrawHalf returns £50 and the account now contains $180 
d. withdrawHalf returns £100 and the account now contains $90 
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Note: Scenarios 3 through 7 use the MonitorIBA class rather than the IBA class. 
 
Questions 4 and 5 refer to Scenario 3. 
 
4. What happens as a result of the execution depicted in Scenario 3? 

a. withdrawHalf returns £50 and the account now contains $90 
b. withdrawHalf returns £100 and the account now contains $180 
c. the diagram is in error; the client2 thread must wait for the client1 thread 

to release the lock before it can proceed 
d. the diagram is in error; the client2 thread cannot invoke the withdrawHalf 

method until after the client1 thread returns from its invocation of deposit 
 
5. What must have happened after the deposit activation invokes setBalance and 

before the withdrawHalf activation invokes getBalance? 
a. a context-switch occurs: the client1 thread switches out, and the client2 

thread switches in 
b. the client1 thread releases the lock 
c. the client2 thread acquires the lock 
d. all of the above 

 
Question 6 refers to Scenario 4. 
 
6. Which of the following statements concerning the diagram for Scenario 4 is 

correct? 
a. withdrawHalf returns £50 and the account now contains $90 
b. withdrawHalf returns £100 and the account now contains $180 
c. the diagram is in error; the client2 thread must wait for the client1 thread 

to release the lock before it can proceed 
d. the diagram is in error; the client2 thread cannot invoke the withdrawHalf 

method until after the client1 thread returns from its invocation of deposit 
 
Question 7 refers to Scenario 5. 
 
7. Which of the following statements concerning the diagram for Scenario 5 is 

correct? 
a. withdrawHalf returns £50 and the account now contains $270 
b. withdrawHalf returns £100 and the account now contains $180 
c. the diagram is in error; the client1 thread must wait for the client2 thread 

to release the lock before it can proceed 
d. the diagram is in error; the client1 thread cannot invoke the deposit method 

until after the client2 thread returns from withdrawHalf 
 

Question 8 refers to Scenario 6. 
 
8. What happens as a result of the execution depicted in Scenario 6? 

a. withdrawHalf returns £50 and the account now contains $90 
b. withdrawHalf returns £100 and the account now contains $270 
c. withdrawHalf returns £50 and the account now contains $270 
d. withdrawHalf returns £100 and the account now contains $180 
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Question 9 refers to Scenario 7. 
 
 
9. Why does the withdrawHalf activation experience a delay before invoking the 

getBalance method as seen in Scenario 7? 
 

a. While a monitor permits multiple simultaneous activations, it allows only one 
of them to execute, and this executing activation must execute to completion 
before any of the other activations will be allowed to execute.  Thus the 
withdrawHalf activation cannot execute until the deposit activation completes 
by returning to client1. 

b. The activation was delayed because the client1 thread was switched in to 
execute just prior to the withdrawHalf activation’s invocation of getBalance. 
Had this not happened, the withdrawHalf activation could have proceeded to 
invoke getBalance before the deposit activation invoked setBalance. 

c. The diagram is in error: A monitor does not permit simultaneous activations; 
thus client2 could not have initiated the withdrawHalf  activation until after 
the deposit activation completed. 

d. Because the client1 thread holds the lock on the monitor, the client2 thread 
must wait for the client1 thread to release the lock. 

 
 
 
Questions 10 – 14 do not refer to any particular Scenario. 
 
 
10. When multiple clients access a shared database (either directly or indirectly) such 

as may happen given the example code for class IBA presented here, 
a. a deposit can be lost, and the client "loses" money 
b. a withdrawal can be lost, and the client "gains" money 
c. both a and b 
d. neither a nor b 

 
11. When multiple clients access a shared database (either directly or indirectly) such 

as may happen given the example code for class IBA presented here, 
a. a deposit can be double-counted, and the client "gains" money 
b. a withdrawal can be double-counted, and the client "loses" money 
c. both a and b 
d. neither a nor b 
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12.  Using the monitor version of the bank account, as in the example code presented 

here: 
a. ensures that when multiple threads concurrently activate methods on the 

MonitorIBA object, the result of the completion of these multiple 
activations is some non-interleaved sequence of  complete executions of 
these methods 

b. ensures that multiple concurrent activations of methods on the account 
object are performed in the order in which they are initiated 

c. gives priority to deposit activations over withdrawHalf activations 
d. none of the above 

 
13.   Context-switching, in which the running thread is interrupted and another thread 

begins to run 
a. happens only in the case of unprotected shared data structures 
b. happens only in the case of protected shared data structures, such as 

monitors 
c. is prevented in the case of protected shared data structures, such as 

monitors 
d. none of the above 

 
 
14.   The purpose of the lock that is associated with a monitor is to: 

a. serialize the execution of monitor methods 
b. ensure that monitor methods are invoked in some specified order 
c. to ensure fairness through context-switching 
d. none of the above 
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C.2.2 Experiment I: post-test saUML sequence diagrams



Scenario 1

client1 :… : Database : IBA : Converter client2 :…

deposit(100)

getBalance

setBalance

toDollars

withdrawHalf

getBalance

toPounds

setBalance

bal=$360

bal=$180

bal=$90

Scenario 2

client1 :… : Database : IBA : Converter client2 :…

deposit(100)

getBalance

setBalance

withdrawHalf

getBalance

toPounds

setBalance

toDollars

bal=$180

bal=$360

bal=$90
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Scenario 3
client1 :… : Database : MonitorIBA : Converter client2 :…

deposit(100)

getBalance

setBalance

toDollars

withdrawHalf

getBalance

toPounds

setBalance

bal=$180

locked

unlocked

bal=$360

unlocked

locked

bal=$180

unlocked

Scenario 4

client1 :… : Database : MonitorIBA : Converter client2 :…

deposit(100)

getBalance

setBalance

toDollars

withdrawHalf
getBalance

toPounds

setBalance

bal=$180

locked

unlocked

locked

bal=$360

unlocked

bal=$90

unlocked
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Scenario 5

client1 :… : Database : MonitorIBA : Converter client2 :…

deposit(100)

getBalance

setBalance

toDollars

withdrawHalf

getBalance

toPounds

setBalance

bal=$180 unlocked

bal=$90

bal=$270

locked

locked

unlocked

unlocked

Scenario 6

client1 :… : Database : MonitorIBA : Converter client2 :…

deposit(100)

getBalance

setBalance

toDollars

withdrawHalf
getBalance

toPounds

setBalance

bal=$180

locked

unlocked

bal=$90

unlocked

bal=$270

unlocked

locked
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Scenario 7

client1 :… : Database : MonitorIBA : Converter client2 :…

deposit(100)

getBalance

setBalance

toDollars

withdrawHalf

getBalance

toPounds

setBalance

bal=$180

locked

unlocked

bal=$360

unlocked

locked

bal=$180

unlocked
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C.2.3 Experiment I: post-test UML sequence diagrams



Scenario 1

client1 :… : Database : IBA : Converter client2 :…

deposit(100)

getBalance

setBalance

toDollars

withdrawHalf

getBalance

toPounds

setBalance

Scenario 2

client1 :… : Database : IBA : Converter client2 :…

deposit(100)

getBalance

setBalance

withdrawHalf

getBalance

toPounds

setBalance

toDollars
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Scenario 3

client1 :… : Database : MonitorIBA : Converter client2 :…

deposit(100)

getBalance

setBalance

toDollars

withdrawHalf

getBalance

toPounds

setBalance

Scenario 4

client1 :… : Database : MonitorIBA : Converter client2 :…

deposit(100)

getBalance

setBalance

toDollars

withdrawHalf
getBalance

toPounds

setBalance
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Scenario 5

client1 :… : Database : MonitorIBA : Converter client2 :…

deposit(100)

getBalance

setBalance

toDollars

withdrawHalf
getBalance

toPounds

setBalance

Scenario 6

client1 :… : Database : MonitorIBA : Converter client2 :…

deposit(100)

getBalance

setBalance

toDollars

withdrawHalf
getBalance

toPounds

setBalance
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Scenario 7

client1 :… : Database : MonitorIBA : Converter client2 :…

deposit(100)

getBalance

setBalance

toDollars

withdrawHalf

getBalance

toPounds

setBalance
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C.3 saUML vs. standard UML experiment II: pre-test



CSE 335 Extra Credit Option 1

Part I: Pre-test in conjunction with user study

Name:
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Questions 1 and 2 below refer to a system comprising two active objects—actor1 and actor2—

each hosted by a dedicated thread of control. Figure 1 depicts an interaction in which these actors attempt

(concurrently) to pull an element off a Queue object, which implements its pull operation by invoking a

sequence of operations on another object q of type deque<string>. Please note that the Queue object is

not implemented according to the monitor-object pattern.

actor2 : Actoractor1 : Actor : Queue q : deque<string>

size()

pull()

pull()

front()

pop_front()

front()

pop_front()

size()

Figure 1: Two actors concurrently accessing an unprotected queue.

1. Assume, at the beginning of the interaction depicted in Figure 1, that the queue (q) contains only the

string “a”. What happens as a result of this interaction?

(a) actor1 gets a copy of string “a”; actor2 gets nothing; q becomes empty.

(b) actor1 gets a copy of string “a”; actor2 gets nothing; q becomes corrupted.

(c) actor1 gets a copy of string “a”; actor2 gets a copy of string “a”; q becomes corrupted.

(d) actor1 gets a copy of string “a”; actor2 gets a copy of string “a”; q becomes empty.

(e) actor1 gets a copy of string “a”; actor2 gets a copy of string “a”; q contains the string “a” at

the end of the interaction.

2. Assume, at the beginning of the interaction depicted in Figure 1, that the queue (q) contains the strings

“a”, “b”, and “c” inserted in that order. What happens as a result of this interaction?

(a) actor1 gets a copy of “a”; actor2 gets a copy of “a”; q contains the string “c” only.

(b) actor1 gets a copy of “a”; actor2 gets a copy of “a”; q contains the strings “b” and “c”.

(c) actor1 gets a copy of “a”; actor2 gets a copy of “b”; q contains the string “c” only.

(d) actor1 gets a copy of “a”; actor2 gets a copy of “a”; q becomes corrupted.

(e) actor1 gets a copy of “a”; actor2 gets a copy of “b”; q becomes corrupted.

2
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As with Questions 1 and 2, Questions 3 and 4 refer to a system comprising two active objects—act-

or1 and actor2—each hosted by a dedicated thread of control. Figure 2 depicts another interaction in

which these actors attempt (concurrently) to pull an element off a Queue object, which implements its pull

operation by invoking a sequence of operations on another object q of type deque<string>. Again, the

Queue object is not implemented according to the monitor-object pattern.

actor2 : Actoractor1 : Actor : Queue q : deque<string>

size()

size()

pull()

front()

pull()

pop_front()

front()

pop_front()

Figure 2: Two actors concurrently accessing an unprotected queue

3. Assume, at the beginning of the interaction depicted in Figure 2, that the queue (q) contains only the

string “a”. What happens as a result of this interaction?

(a) actor1 gets a copy of string “a”; actor2 gets nothing; q becomes empty.

(b) actor1 gets nothing; actor2 gets a copy of string “a”; q becomes empty.

(c) actor1 gets a copy of string “a”; actor2 gets a copy of string “a”; q becomes empty.

(d) actor1 gets a copy of string “a”; actor2 gets a copy of string “a”; q becomes corrupted.

(e) actor1 gets a copy of string “a”; actor2 gets a copy of string “a”; q still contains string “a”.

4. Assume, at the beginning of the interaction depicted in Figure 2, that the queue (q) contains the strings

“a”, “b”, and “c” inserted in that order. What happens as a result of this interaction?

(a) actor1 gets a copy of string “a”; actor2 gets a copy of string “a”; q contains string “c” only.

(b) actor1 gets a copy of string “a”; actor2 gets a copy of string “a”; q contains strings “b” and

“c” only.

(c) actor1 gets a copy of string “a”; actor2 gets a copy of string “b”; q contains string “c” only.

(d) actor1 gets a copy of string “a”; actor2 gets a copy of string “a”; q becomes corrupted.

(e) actor1 gets a copy of string “a”; actor2 gets a copy of string “b”; q becomes corrupted.
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Question 5 below refers to a system comprising two active objects—actor1 and actor2—each hosted

by a dedicated thread of control. Figure 3 depicts an interaction in which these actors attempt (concurrently)

to pull an element off a MonitorQueue object, which implements its pull operation invoking a sequence

of operations on another object q of type deque<string>. As its name suggests, the MonitorQueue

object is implemented according to the monitor-object pattern.

actor2 : Actoractor1 : Actor :MonitorQueue q : deque<string>

front()

size()

pop_front()

pull()

size()

front()

pop_front()

pull()

Figure 3: Two actors accessing a queue implemented as a monitor

5. Assume, at the beginning of the interaction depicted in Figure 3, that the queue (q) contains three

elements “a”, “b”, and “c” inserted in that order. Which of the following statements is correct?

(a) actor1 obtains the lock on the MonitorQueue after actor2 obtains it.

(b) actor1 releases the lock on the MonitorQueue after the thread hosting actor2 executes

pop front.

(c) The diagram is in error; actor2 could not send the pullmessage to the monitor while actor1

is running in the MonitorQueue.

(d) actor1 releases the lock and is then context switched out, after which actor2 is able to obtain

the lock and complete its invocation of pull before actor1 is context switched in again.

(e) The diagram is in error; actorOnemust return from pull beforeactor2may proceed to execute

size, front, and pop front.

4
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Question 6 below refers to a system comprising two active objects—actor1 and actor2—each hosted

by a dedicated thread of control. Figure 4 depicts an interaction in which these actors attempt (concurrently)

to pull an element off a MonitorQueue object, which implements its pull operation invoking a sequence

of operations on another object q of type deque<string>. As its name suggests, the MonitorQueue

object is implemented according to the monitor-object pattern.

actor2 : Actoractor1 : Actor :MonitorQueue q : deque<string>

pop_front()

pull()

front()

size()

pop_front()

pull()

front()

size()

Figure 4: Two actors accessing a queue implemented as a monitor

6. Assume, at the beginning of the interaction depicted in Figure 4, that the queue (q) contains three

elements “a”, “b”, and “c” inserted in that order. Which of the following statements is correct?

(a) actor1 obtains the lock on the MonitorQueue after actor2 obtains it.

(b) actor2 releases the lock on MonitorQueue after actor1 executes size.

(c) The diagram is in error: actor2 could not send the pull message to the MonitorQueue

while actor1 is activated within it.

(d) actor2 releases the lock then is context switched out and actor1 is able to obtain the lock and

complete its invocation of pull before actor2 is context switched in again.

(e) The diagram is in error: actor2must return from pull beforeactor1may proceed to execute

size, front, and pop front.
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Question 7 below refers to a system comprising two active objects—actor1 and actor2—each hosted

by a dedicated thread of control. Figure 5 depicts an interaction in which these actors attempt (concurrently)

to pull an element off a MonitorQueue object, which implements its pull operation invoking a sequence

of operations on another object q of type deque<string>. As its name suggests, the MonitorQueue

object is implemented according to the monitor-object pattern.

actor2 : Actoractor1 : Actor :MonitorQueue q : deque<string>

pull()

front()

pull()

size()

size()

front()

pop_front()

pop_front()

Figure 5: Two actors accessing a queue implemented as a monitor

7. Assume, at the beginning of the interaction depicted in Figure 5, that the queue (q) contains three

elements “a”, “b”, and “c” inserted in that order. Which of the following statements is correct?

(a) actor1 obtains the lock on the MonitorQueue after actor2 obtains it.

(b) actor1 releases the lock on the MonitorQueue after it executes size.

(c) The diagram is in error: actor2 could not send the pullmessage to the monitor while actor1

is running inside the MonitorQueue.

(d) actor1 finishes size then is context switched out and actor2 is able to obtain the lock and

proceed to execute size before actor1 is context switched in again.

(e) The diagram is in error: actor2 could not proceed to execute size while actor1 holds the

lock on MonitorQueue.

6
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Question 8 below refers to a system comprising two active objects—actor1 and actor2—each hosted

by a dedicated thread of control. Figure 6 depicts an interaction in which these actors attempt (concurrently)

to pull an element off a MonitorQueue object, which implements its pull operation invoking a sequence

of operations on another object q of type deque<string>. As its name suggests, the MonitorQueue

object is implemented according to the monitor-object pattern.

actor2 : Actoractor1 : Actor :MonitorQueue q : deque<string>

pop_front()

pull()

size()

pull()

front()

pop_front()

front()

size()

Figure 6: Two actors accessing a queue implemented as a monitor

8. Assume, at the beginning of the interaction depicted in Figure 6, that the queue (q) contains three

elements “a”, “b”, and “c” inserted in that order. Which of the following statements is correct?

(a) actor1 gets a copy of string “b”; actor2 gets a copy of string “a”; q contains string “c” only.

(b) actor1 gets a copy of string “a”; actor2 gets a copy of string “a”; q contains strings “b” and

“c”.

(c) actor1 gets a copy of string “a”; actor2 gets a copy of string ”b”; q contains string “c” only.

(d) actor1 gets a copy of string “b”; actor2 gets a copy of string “a”; q becomes corrupted.

(e) actor1 gets a copy of string “a”; actor2 gets a copy of string ”b”; q becomes corrupted.

7
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Question 9 below refers to a system comprising two active objects—actor1 and actor2—each hosted

by a dedicated thread of control. Figure 7 depicts an interaction in which these actors attempt (concurrently)

to pull an element off a MonitorQueue object, which implements its pull operation invoking a sequence

of operations on another object q of type deque<string>. As its name suggests, the MonitorQueue

object is implemented according to the monitor-object pattern.

actor2 : Actoractor1 : Actor :MonitorQueue q : deque<string>

size()

pull()

pull()

size()

pop_front()

front()

pop_front()

front()

Figure 7: Two actors accessing a queue implemented as a monitor

9. Why does actor2 delay after invoking the pull method and before invoking size as depicted in

Figure 7?

(a) actor1 is in the monitor; thus no other thread may execute until actor1 leaves the monitor.

(b) actor2 was delayed because the thread running within actor1 was switched in to execute

just prior to actor2’s invocation of size. Had this not happened, actor2 could proceed to

execute size before actor1 completes its invocation of the pull method.

(c) q is empty and actor2must wait until a new object is placed onto q.

(d) The diagram is in error: actor2 could not send the pullmessage while actor1 is running in

MonitorQueue.

(e) Because actor1 holds the lock on MonitorQueue, actor2must wait for actor1 to release

the lock.

8
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Question 10 below refers to a system comprising two active objects—a LineProducer and a Line-

Consumer—each hosted by a dedicated thread of control. These actors synchronize with one another via a

bounded buffer object BoundedBuffer, which is a monitor object that implements its putLine and get-

Line operations by invoking a sequence of operations on another object buf of type deque<string>.

Moreover, BoundedBuffer was designed to hold at most 3 strings, and it uses condition variables full-

Cond and emptyCond to synchronize producers who should block if they execute putLine when buf is

full and consumers who should block if they execute getLine when buf is empty.

:LineConsumerfullCond : Condition :BoundedBuffer buf : deque<string>:LineProducer

wait()

putLine("d")

getLine()

isFull()

size()

push_back("d")

size()

front()

size()

isEmpty()

pop_front()

size()

signal()

isFull()

size()

Figure 8: LineProducer and LineConsumer sharing a bounded buffer.

10. Assume that buf contains the strings “a”, “b”, and “c” in that order at the beginning of this interaction.

Which of the following is true at the end?

(a) LineConsumer gets a copy of string “a”; buf contains the strings “b”, “c”, and ”d” in that

order.

(b) LineConsumer gets a copy of string “a”; buf becomes corrupted.

(c) The diagram is in error: One thread cannot invoke signal on a condition variable while that

object is actively servicing wait on behalf of another thread.

(d) The diagram is in error: The getLine activation could not have executed isEmpty, front,

pop front, or size as depicted because BoundedBufferis a monitor and, when the get-

Line activation begins, the thread hosting the putLine activation holds the lock on the monitor.

(e) The diagram is in error: Because buf is full, the putLine activation should block immediately,

unable to even enter the monitor.

9
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Question 11 below refers to a system comprising two active objects—a LineProducer and a Line-

Consumer—each hosted by a dedicated thread of control. These actors synchronize with one another via a

bounded buffer object BoundedBuffer, which is a monitor object that implements its putLine and get-

Line operations by invoking a sequence of operations on another object buf of type deque<string>.

Moreover, BoundedBuffer was designed to hold at most 3 strings, and it uses condition variables full-

Cond and emptyCond to synchronize producers who should block if they execute putLine when buf is

full and consumers who should block if they execute getLine when buf is empty.

:LineConsumer:BoundedBuffer buf : deque<string>:LineProducer

size()

size()

front()

size()

isEmpty()

getLine()

pop_front()

putLine("a")

isFull()

size()

push_back("a")

Figure 9: Buffer is initially empty; assumes SharedBuffer is a monitor

11. Assume that buf is empty at the beginning of the interaction depicted in Figure 9. Which of the

following is true?

(a) Because buf is initially empty, LineConsumer’s getLine message could not possibly have

arrived any earlier than is depicted in the diagram.

(b) The invocation of push back made by the activation of putLine implicitly signals Line-

Consumer that the buffer is now receptive to getLinemessages

(c) The diagram is in error: Because the activation of putLine changed the state of the buffer from

empty to non-empty, the emptyCond condition variable should have been signaled following

putLine’s call to size.

(d) The diagram is in error: LineProducer should have blocked because buf is empty and, when

putLine was invoked, there was no LineConsumer blocked waiting to receive the string that

LineProducer was attempting to share.

(e) None of the above.

10
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12. Briefly describe what can go wrong when multiple actors access shared data without synchronization.

13. Which of the following does a monitor guarantee?

(a) Only one thread at a time may execute within the monitor.

(b) Once a thread T enters the monitor, no other thread may execute within any object until T exits

the monitor.

(c) Multiple threads may enter a monitor concurrently provided that none of these threads modifies

any of the data associated with the monitor object.

(d) All of the above.

(e) None of the above.

11
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C.4 saUML vs. standard UML experiment II: post-test

C.4.1 Experiment II: post-test questions



CSE 335 Extra Credit Option 1
Part II: Post-test in conjunction with user study

Name:

Questions 1 through 11 reference ten different scenarios of interaction among concur-
rent actors that access a shared Database object. These actors in this example perform
transactions that invoke a a series of methods on the Database object, and we distin-
guish two different types of actors—readersandwriters. To illustrate, suppose that
the Database is storing bank-account information and provides methods for depositing
funds, withdrawing funds, and checking the balance of accounts given their account
numbers. A typical reader might be interested in computing the total balance of a list
of accounts and thus might execute the sequence of operations:

unsigned sum=0;
for(unsigned i=0; i < 10; i++) {

sum += db->getBalance(accounts[i]);
}

On the other hand, a writer will perform a transaction that modifies the contents of
the Database. For example, a writer client might perform a transaction that transfers
$50.00 between accountsacct1 andacct2 by executing the sequence of operations:

db->withdraw( acct1, 50);
db->deposit( acct2, 50);

Assuming the Database is implemented as a monitor, it should be safe for multi-
ple reader transactions to execute concurrently because reader clients do not modify
the contents of the Database object. However, a writer transaction should never ex-
ecute concurrently with any reader or any other writer transaction. Class database
supports thisreaders-writerstyle of synchronization by providing four methods—
startRead() , stopRead() , startWrite() , andstopWrite() —which reader
and writer threads use to signal the start and finish of one of these transactions.

The first attachment to this test contains the C++ code for classesReader , Writer ,
andDatabase . Notice that the “account management” operations for classDatabase
have been elided here for brevity. ClassDatabase :

• is implemented according to the monitor-object pattern, using the private vari-
ablelock as the monitor lock;

• defines two counting variables,nReaders andnWriters , which record the
number of concurrently executing reader and writer transactions respectively;
and
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• defines two condition variables,okToRead andokToWrite , which are used
to synchronize reader and writer threads as they begin and end their transactions.

Please take a moment to familiarize yourself with this code.
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Scenario 1 (an interaction involving one reader and one writer): Assume the reader
thread is running within the invocation ofstartRead() , and the writer thread
is in the ready state. A context switch occurs just after the reader thread incre-
mentsnReaders by one. The reader thread transitions to ready and the writer
thread transitions to running. The writer thread invokesstartWrite() .

1. Shortly thereafter:

A. The writer thread obtains the monitor lock.
B. The reader thread suspends but does not release the lock.
C. The writer thread suspends.
D. Both the reader thread and the writer suspend and deadlock occurs.
E. None of the above

Scenario 2 (an interaction involving one reader and one writer): Assume the reader
thread is in the running state and the writer thread is in the suspended state (we
assume the writer thread is suspended onokToWrite .wait() . The reader
thread invokes endRead() and enters the monitor. It sets thenReaders to 0
and issues a okToWrite.signal() .

2. As a result:

A. The writer thread remains suspended.
B. The writer thread transitions to ready and acquires the monitor lock.
C. The writer thread transitions to ready but does not yet acquire the mon-

itor lock.
D. The writer thread transitions to running and acquires the monitor lock.
E. The writer thread transitions to running and does not acquire the mon-

itor lock.

3. Upon completing the invocation okToWrite.signal() , the reader thread:

A. Must change state to ready and release the monitor lock
B. Must change state to ready and retain the monitor lock
C. May remain running and must retain the monitor lock
D. Must remain running and may release the monitor lock
E. Must suspend and release the monitor lock

Scenario 3 (an interaction involving one reader and one writer): Assume that, after
the reader thread has returned from its invocation ofstartRead() , a context
switch occurs, and the writer thread invokesstartWrite() .

4. Shortly after the writer thread issues thestartWrite() message:

A. The writer thread remains running until the invocation completes.
B. The writer thread suspends on the monitor lock.
C. The writer thread obtains the monitor lock but then suspends shortly

thereafter.
D. The reader thread suspends.
E. Deadlock occurs.
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Scenario 4 (an interaction involving one reader and one writer): Assume the writer
thread is running within the invocation ofstartWrite() and the reader thread
is in the ready state. A context switch occurs just after the writer thread incre-
mentsnWriters by one. The writer thread transitions to ready and the reader
thread transitions to running. The reader thread invokesstartRead() , but
suspends afterwards.

5. Why does the reader thread suspend?

A. The reader thread suspends onokToWrite .wait() , sincenWriters
is non-zero at the time.

B. Deadlock occurs. Since the writer thread is in the monitor, the reader
thread can’t possibly enter the monitor.

C. The reader thread suspends on the monitor lock.

D. The reader thread suspends onokToRead .wait() , sincenWriters
is non-zero at the time.

E. The reader thread suspends due to the occurrence of a context switch.

Scenario 5 (an interaction involving two readers): Assume the reader thread (r1) has
completed the invocation ofstartRead() and the other reader thread (r2) is in
the ready state. A context switch occurs. r1 transitions to ready and r2 transitions
to running. r2 issues astartRead() message.

6. What will happen as a result of this invocation ofstartRead() ?

A. r2 enters the monitor but suspends onokToRead .wait() , since
nReaders is non-zero at the time.

B. r2 enters the monitor but suspends onokToRead .wait() , since
nWriters is non-zero at the time.

C. r2 suspends on the monitor lock.

D. r2 enters the monitor and increasesnReaders to two.

E. r2 suspends due to the occurrence of a context switch.

Scenario 6 (an interaction involving one reader and one writer): Assume the reader
thread is running within the invocation ofstartRead() and that the writer
thread, having issued a call tostartWrite() is suspended on the monitor
lock.

7. When the reader thread returns fromstartRead() , thus releasing the
monitor lock:

A. The reader thread must transition to ready; the writer thread must tran-
sition to running.

B. The reader thread must transition to suspended; the writer thread must
transition to running.

C. The reader thread may remain running; the writer thread must remain
suspended.
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D. The reader thread may remain running; the writer thread must transi-
tion to ready.

E. Deadlock occurs.

Scenario 7 (an interaction involving one reader and one writer): Assume the writer
thread has completed its invocation ofstartWrite() and the reader thread
is in the ready state. A context switch occurs. The writer thread transitions to
ready and the reader thread transitions to running. The reader thread issues a
startRead() .

8. Shortly thereafter:

A. The reader thread completes the invocation ofstartRead() with-
out suspending.

B. The writer suspends because the reader has entered the monitor.

C. The reader thread suspends on the monitor lock.

D. The reader thread suspends onokToRead .wait() .

E. Both 8B and 8D are true; thus deadlock occurs.
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Scenario 8 (an interaction involving one reader and one writer): Assume the reader
thread is running within the invocation of endRead() and the writer thread, hav-
ing issued an invocation ofstartWrite() is now suspended on the monitor
lock. The reader thread invokes okToWrite.signal() .

9. As a result of the signal:

A. The reader thread releases the monitor lock; the writer thread transi-
tions to running.

B. The reader thread releases the monitor lock; the writer thread transition
to ready.

C. The reader thread retains the monitor lock; the writer thread remains
suspended.

D. The reader thread retains the monitor lock; the writer thread transitions
to ready.

E. Deadlock occurs.

Scenario 9 (an interaction involving two reader threads): Assume the reader thread
(r1) is running within the invocation ofstartRead() and the other reader
thread (r2) is in the ready state. A context switch occurs just after r1 increments
nReaders by one. r1 transitions to ready and r2 transitions to running. r2
thread invokesstartRead() .

10. Shortly thereafter:

A. r2 enters the monitor but suspends becausenReaders is non-zero
when r2 enters the monitor.

B. r2 enters the monitor and increasesnReaders to two.

C. r2 suspends on the monitor lock.

D. r2 completes its invocation ofstartRead() without suspending.

E. Deadlock occurs.

Scenario 10 (an interaction involving two writer threads): Assume the writer thread
(w1) has completed its invocation ofstartWrite() and the other writer
thread (w2) is in the ready state. A context switch occurs. w1 transitions to
ready and w2 transitions to running. w2 issues astartWrite() .

11. As a result of this invocation ofstartWrite() :

A. w2 enters the monitor and suspends onokToWrite .wait() , re-
taining the monitor lock.

B. w2 enters the monitor and suspends onokToWrite .wait() , re-
leasing the monitor lock.

C. w2 suspends on the monitor lock.

D. w2 enters the monitor and increasesnWriters to two.

E. Deadlock occurs.
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The following questions are not related to any scenario.

12. What feature(s) of the monitor implementation of classDatabase prevent
race conditions in updating counting variables (nReaders andnWriters )?

A. calls to wait on the condition variablesokToRead andokToWrite .

B. calls to signal or broadcast on the condition variablesokToRead and
okToWrite .

C. the fact that calls to wait implicitly release the lock before the calling
thread suspends.

D. the need for any thread to acquire the monitor lock before entering the
monitor.

13. What feature(s) of the monitor implementation prevent a writer from enter-
ing the Database while reader(s) are present?

A. calls to wait on the condition variablesokToRead andokToWrite .

B. calls to signal or broadcast on the condition variablesokToRead and
okToWrite .

C. the fact that calls to wait implicitly release the lock before the calling
thread suspends.

D. the need for any thread to acquire the monitor lock before entering the
monitor.

14. Why does the wait method release the lock and then acquire it again?

A. To “wake-up” a reader thread that was previously blocked on the wait.

B. To “wake-up” a writer thread that was previously blocked on the wait.

C. To promote efficiency.

D. To prevent deadlock.

181



182

C.4.2 Experiment II: post-test saUML sequence diagrams



d : Database

startRead()

r : Reader w : Writer

locked;

nReaders=0;

nWriters=0;

locked;

nReaders=1;

nWriters=0;
startWrite()

sd scenario1

d : Database w : Writerr : Reader

startRead()

locked;

nReaders=0;

nWriters=0;

startWrite()

wait()

stopRead()

locked;

nReaders=1;

nWriters=0;

unlocked;

nReaders=1;

nWriters=0;

locked;

nReaders=1;

nWriters=0;

unlocked;

nReaders=1;

nWriters=0;

locked;

nReaders=1;

nWriters=0;

locked;

nReaders=0;

nWriters=0;

signal()

locked;

nReaders=0;

nWriters=0;

sd scenario2

okToWrite : …
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d : Database w : Writerr : Reader

startRead()

locked;

nReaders=0;

nWriters=0;

locked;

nReaders=1;

nWriters=0;

unlocked;

nReaders=1;

nWriters=0;

locked;

nReaders=1;

nWriters=0;

startWrite()

wait()

unlocked;

nReaders=1;

nWriters=0;

sd scenario3

okToWrite : …

d : Database w : Writerr : Reader

startRead()

locked;

nReaders=0;

nWriters=0;

locked;

nReaders=0;

nWriters=1;

startWrite()

unlocked;

nReaders=0;

nWriters=1;

sd scenario4
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d : Database r2 : Readerr1 : Reader

startRead()

locked;

nReaders=0;

nWriters=0;

locked;

nReaders=1;

nWriters=0;

unlocked;

nReaders=1;

nWriters=0;

locked;

nReaders=1;

nWriters=0;

startRead()

locked;

nReaders=2;

nWriters=0;

sd scenario5

d : Database w : Writerr : Reader

startRead()

locked;

nReaders=0;

nWriters=0;

locked;

nReaders=1;

nWriters=0;

unlocked;

nReaders=1;

nWriters=0;

startWrite()

sd scenario6
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startRead()

locked;

nReaders=0;

nWriters=0;

locked;

nReaders=0;

nWriters=1;

unlocked;

nReaders=0;

nWriters=1;

locked;

nReaders=0;

nWriters=1;

startWrite()

wait()

unlocked;

nReaders=0;

nWriters=1;

sd scenario7

d : Database w : Writerr : Reader okToRead : …

startRead()

locked;

nReaders=0;

nWriters=0;

locked;

nReaders=1;

nWriters=0;

unlocked;

nReaders=1;

nWriters=0;

locked;

nReaders=1;

nWriters=0;
startWrite()

stopRead()

locked;

nReaders=0;

nWriters=0;

signal()

unlocked;

nReaders=0;

nWriters=0;

sd scenario8

d : Database w : Writerr : Reader okToWrite : …

186



d : Database r2 : Readerr1 : Reader

startRead()

locked;

nReaders=0;

nWriters=0;

locked;

nReaders=1;

nWriters=0;
startRead()

sd scenario9

startWrite()

locked;

nReaders=0;

nWriters=0;

locked;

nReaders=0;

nWriters=1;

unlocked;

nReaders=0;

nWriters=1;

locked;

nReaders=0;

nWriters=1;

startWrite()

wait()

unlocked;

nReaders=0;

nWriters=1;

sd scenario10

d : Database w2 : Writerw1 : Writer okToWrite : …
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d : Database w : Writerr : Reader

startRead()

startWrite()

sd scenario1

d : Database w : Writerr : Reader

startRead()

startWrite()

wait()

stopRead()

signal()

sd scenario2

okToWrite : …
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d : Database w : Writerr : Reader

startRead()

startWrite()

wait()

sd scenario3

okToWrite : …

d : Database w : Writerr : Reader

startRead()

startWrite()

sd scenario4
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d : Database r2 : Readerr1 : Reader

startRead()

startRead()

sd scenario5

d : Database w : Writerr : Reader

startRead()

startWrite()

sd scenario6
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startRead()

startWrite()

wait()

sd scenario7

d : Database w : Writerr : Reader okToRead : …

startRead()

startWrite()

stopRead()

signal()

sd scenario8

d : Database w : Writerr : Reader okToWrite : …
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d : Database r2 : Readerr1 : Reader

startRead()

startWrite()

sd scenario9

startWrite()

startWrite()

wait()

sd scenario10

d : Database w2 : Writerw1 : Writer okToWrite : …
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Appendix D

Materials used in the state machine modeling vs. non-modeling study

D.1 State machine modeling vs. non-modeling : Pre-test questions
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Evaluating UML 2.0 state diagrams: Pre-test

November 26, 2007

1. A monitor is:

(a) an operation that must be performed entirely or not performed at
all.

(b) a sequential stream of execution.

(c) a class-like programming language construct within which only one
thread may execute concurrently.

(d) a section of code that must be executed atomically.

(e) a section of code in which the result of computation depends on the
ordering of thread execution.

2. A race condition is:

(a) the situation in which multiple threads or processes read and write
a shared data item and the final result depends on the order of exe-
cution.

(b) the situation where no progress can be made because each thread or
process is waiting for an event that only another process or thread
in the set can cause.

(c) the condition in which only one thread at a time may access a shared
resource.

(d) an operation that must be performed entirely or not performed at
all.

(e) a section of code that must be executed atomically.

3. A critical section is:

(a) a section of code that may be accessed by only one thread at a time.

(b) a sequential stream of execution.

(c) a variable used to synchronize threads.

(d) an operation that suspends/blocks execution of the calling process if
a certain condition is true.

(e) an operation that resumes the execution of some suspended thread
or process by placing it in the processor ready queue.

1
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4. Which of the following is true of the typical use of condition variables in
a monitor?

(a) Invoking wait() on a condition variable suspends the invoking thread.

(b) Invoking signal() on a condition variable resumes a thread waiting
on that condition variable.

(c) If there is no waiting thread, a signal can be stored/delayed to resume
the next thread that waits on that condition variable.

(d) a and b only

(e) a, b, and c

5. Which of the following description(s) is true?

(a) Acquiring a mutex lock takes place before anything else in a monitor
method.

(b) Releasing a mutex lock takes place after everything else in a monitor
method.

(c) The monitor mutex lock must be both acquired and released in a
monitor method to ensure correct behavior.

(d) a and b only

(e) a, b, and c

6. What feature of the monitor implementation prevents race conditions in
updating counting variables?

(a) The evaluation of a condition.

(b) The wait() operation on condition variables.

(c) The lock on the monitor.

(d) The signal() operation on condition variables.

(e) That a thread releases the lock prior to suspending in the wait()
operation.

7. In a monitor implementation, the monitor lock serves the following pur-
pose:

(a) To prevent race conditions among threads which are sharing access
to the monitor.

(b) To prevent deadlock among threads which are sharing access to the
monitor.

(c) To ensure fairness among threads which are sharing access to the
monitor.

(d) All of the above.

(e) None of the above.
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8. In the implementation of a monitor that employs condition synchroniza-
tion, which of the following features contributes to deadlock avoidance
among threads that share the monitor?

(a) Threads resumed by signal() reacquire the monitor lock prior to
returning from wait().

(b) Threads release the monitor lock prior to suspending in the wait()

operation.

(c) Threads acquire the monitor lock upon entry into a method of the
monitor.

(d) A thread blocks while trying to acquire the monitor lock when an-
other thread holds the lock.

(e) None of the above.

9. Which of the following does a monitor guarantee?

(a) Once a thread T enters the monitor, no other thread may execute
any methods within the monitor until T returns from that method.

(b) Only one thread at a time may execute within the monitor.

(c) Multiple threads may enter a monitor concurrently provided that
none of these threads modifies any of the data associated with the
monitor object.

(d) a and c only

(e) a and b only

Figure 1: UML 2.0 state model of a Bounded Buffer monitor object

Questions 10 through ?? refer to a UML 2.0 state model of a Bounded-
Buffer monitor object, as depicted in Figure 1.

10. In the diagram of Figure 1, the label “[q.size < MAX]” is known as a(n):

(a) action

(b) activity

(c) call

(d) guard

(e) state label

11. The BoundedBuffer enters the “Idle” state

(a) upon creation

(b) upon exiting the Pushing state

(c) upon exiting the Pulling state
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(d) b and c

(e) a, b, and c

12. When a client process calls pull() on an instance of the BoundedBuffer
process,

(a) the BoundedBuffer process stops looping on q.pullFront(), exits the
Pulling state, and then replies with the result of q.pullFront().

(b) If (q.size > 0), the BoundedBuffer process accepts the pull() call
and enters the Pulling state, where it loops on q.pullFront() until a
response is generated. It then replies to the calling process with that
response.

(c) If (q.size > 0), the BoundedBuffer process accepts the pull() call
and enters the Pulling state, where it executes and obtains a reply
from q.pullFront(). It then replies to the calling process with that
response.

(d) The BoundedBuffer process accepts the call to pull() and then checks
the condition (q.size > 0). If the condition is true, the BoundedBuffer
process enters the Pulling state, where it loops on q.pullFront() until
a response is generated. It then replies to the calling process with
that response.

(e) The BoundedBuffer process accepts the call to pull() and then checks
the condition (q.size > 0). If the condition is true, the BoundedBuffer
process enters the Pulling state, where it executes and obtains a reply
from q.pullFront(). It then replies to the calling process with that
response.

13. Assume that this BoundedBuffer is shared by multiple client processes,
that MAX is 10 and the current queue size is 1. What will happen if three
client processes invoke push(x) calls on the BoundedBuffer at virtually the
same time?

(a) The BoundedBuffer process will enter the Pushing state with a count
of 3.

(b) One client process will enter the Pushing state and two client processs
will remain in the Idle state.

(c) The BoundedBuffer process will accept the push(x) call of the first
client process and enter the Pushing state. The other calls will be
queued up until the pushBack(x) call is performed.

(d) The BoundedBuffer process will accept the push(x) call of the first
client process and enter the Pushing state. The other calls will be
queued up until the BoundedBuffer has issued a reply and entered
the Idle state.
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(e) The BoundedBuffer will accept the push(x) call of the first client
process and enter the Pushing state. The other calls will be queued
up until the BoundedBuffer has accepted a call to pull(), entered the
Pulling state, and then issued a reply and entered the Idle state.

14. Assume that this BoundedBuffer is shared by multiple threads, that MAX
is 10 and the current queue size is 10. What will happen if a client process
invokes a push(x) call on the BoundedBuffer?

(a) The BoundedBuffer will reject the push(x) call.

(b) The BoundedBuffer will queue up the push(x) call until (q.size <

MAX), thus blocking the client process.

(c) The BoundedBuffer will queue up the push(x) call until (q.size <

MAX). The client process may continue.

(d) The BoundedBuffer will accept the push(x) call and then evaluate
the condition (q.size < MAX). The client process will block.

(e) The BoundedBuffer will accept the push(x) call and then evaluate
the condition (q.size < MAX). The client process will continue.
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15. In a rendezvous style communication, which of the following description(s)
is true?

(a) After sending a request to a server process, a client process blocks
until the server replies.

(b) Upon completion of serving a request from a client process, a server
process sends a reply to the client process.

(c) When replying to a request from a client process, a server process
blocks until the client receives the reply.

(d) a and b

(e) a and c

16. Which of the following description(s) is true?

(a) A transition’s source state and target state cannot be the same state.

(b) A guard is a condition that must be satisfied in order to enable an
associated transition to fire.

(c) A guard must be a Boolean expression.

(d) b and c

(e) a and c

17. Which of the following description(s) is true?

(a) Each sequential process or thread can be modelled as an independent
state machine.

(b) A state machine can have multiple active states concurrently.

(c) Each shared object in the system can be modelled as an independent
state machine.

(d) a and c

(e) a, b, and c
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18. Consider a bank account object, which maintains a balance and provides
two operations:

void deposit( float amount );

void withdraw( float amount );

which increment and decrement the balance by the given amounts. Mul-
tiple clients might access these operations concurrently. Further, requests
for withdrawal should not be allowed to cause the balance to become neg-
ative. Rather, such requests should block the client making the request,
delaying the operation until the balance is sufficient to permit the with-
drawal of the desired amount. Moreover, such blocking of one client on a
withdrawl should not prevent another client from making a deposit.
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19. One way to implement the behavior described in Question 18 is to im-
plement the bank account as a monitor, which encapsulates the account
balance and provides deposit and withdraw methods. Such a monitor
should be implemented to avoid race conditions among concurrent clients,
and withdrawals should not be allowed to cause the balance to become
negative. As described in Question 18, such withdrawal requests should
be delayed until the balance is sufficient to permit withdrawal of the de-
sired amount. Below, please find a skeleton implementation for such a
monitor. Please fill in the code for the deposit and withdraw methods.

class BankAccount{

private:

double balance;

ACE_Thread_Mutex lock; // the monitor lock

ACE_Condition_Thread_Mutex OKtoWithdraw; // condition variable

public:

BankAccount(): balance(0), lock(), OKtoWithdraw(lock) {}

void deposit(double amount) {

}

void withdraw(double amount) {

}

}
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D.2 State machine modeling vs. non-modeling : Post-test questions



Evaluating UML 2.0 state diagrams: Post-test

November 29, 2007

Please answer these questions in order. Do not go back to prior
questions.

Questions 1-3: The readers-writers problem is a classic synchro-
nization problem in which two distinct classes of threads, readers and
writers, share access to a database. Multiple reader threads can be
present in the database simultaneously. However, the writer threads
must have exclusive access. That is, no other writer thread, nor any
reader thread, may be present in the database while a given writer
thread is present. Note: the reader thread must call startRead() to
enter the database and it must call endRead() to exit the database.
Similarly, the writer thread must call startWrite() to enter the database
and it must call endWrite() to exit the database. Assume that state
variables numReaders and numWriters are used to keep track of the
number of client processes currently in the database.

IdleIdle

MonitorDatabase

do/

startReading

++numReaders_

do/

startWriting

++numWriters_

do/

endWriting

−−numWriters_

do/

endReading

−−numReaders_
[numWriters_ = 0]

/reply(startRead)

/reply(endRead)

/reply(endWrite)

/accept−call(startRead)

[numWriters_=0/\numReaders_=0]

/accept−call(startWrite)

/accept−call(endRead)

/accept−call(endWrite)

/reply(startWrite)

Figure 1: UML 2.0 state model of a MonitorDatabase object
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1. See the state model for the shared database, as shown in figure
1. Mark each of the following statements as true or false.

(a) A reader thread may enter the database when other
reader threads are present.

(b) A writer thread may enter the database when other
writer threads are present.

(c) Multiple reader threads may be in the startRead()
method at the same time.

(d) Multiple writer threads may be in the startWrite()
method at the same time.

(e) A reader has invoked startRead() and is reading
the database. Before it invokes endRead(), a writer thread
invokes startWrite() and a second reader thread invokes
startRead(). The order of access by the writer thread and
reader thread depends on thread scheduling.

(f) In a monitor-based implementation of this shared
database, when a reader thread invokes endRead(), it should
call wait() on a condition variable.

(g) In a monitor-based implementation of this shared
database, when a reader thread invokes endRead(), it should
call signal() to awaken a thread blocked on that condition
variable.

(h) In a monitor-based implementation of this shared
database, when a reader thread invokes endRead(), it should
call broadcast to awaken all threads blocked on that condi-
tion variable.

(i) In a monitor-based implementation of this shared
database, reader threads should acquire the lock only at
the beginning of startRead() and release the lock only at
the end of endRead().

2
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// -*- C++ -*-

#ifndef MONITOR_DATABASE_H

#define MONITOR_DATABASE_H

#include <ace/Thread_Mutex.h>

#include <ace/Condition_Thread_Mutex.h>

const unsigned MAX_KEY = 10;

class MonitorDatabase

{

public:

MonitorDatabase();

void startRead();

unsigned readData(unsigned key);

void endRead();

void startWrite();

void writeData(unsigned key, unsigned value);

void endWrite();

private:

unsigned data_[MAX_KEY];

// Number of readers reading in the database.

unsigned int numReaders_;

// Number of writers writing in the database.

unsigned int numWriters_;

// The monitor lock.

ACE_Thread_Mutex lock_;

// A condition variable synchronizing readers.

ACE_Condition_Thread_Mutex okToRead_;

// A condition variable synchronizing writers.

ACE_Condition_Thread_Mutex okToWrite_;

};

Figure 2 - header file for a C++/ACE implementation of the
MonitorDatabase.

3
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void

MonitorDatabase::startWrite()

{

lock_.acquire();

while (numReaders_ > 0 || numWriters_ > 0) {

okToWrite_.wait();

}

++numWriters_;

}

...

void

MonitorDatabase::endWrite()

{

--numWriters_;

okToWrite_.signal();

okToRead_.signal();

lock_.release();

}

Figure 3 - sample implementations of the startWrite() and end-
Write() methods for the MonitorDatabase.

2. Figure 2 contains the header file for the monitor implementation
of the shared database. Figure 3 contains sample implementa-
tions of the startWrite() and endWrite() methods of the monitor
implementation. Identify any elements of these methods that are
missing or incorrect, or write that they are correct. If any errors
exist, explain their effects and show how to correct them.

4
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3. In the space below, write the C++/ACE code to implement the
startRead() and endRead() methods for the MonitorDatabase
depicted in the model and for which the header file appears in
figure 2.

5
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Questions 4-5: Consider a variant of the “party” problem dis-
cussed in lecture, which we term the “matchmaker” problem.
The matchmaking service maintains two variables: numGirls
and numBoys. Whenever a girl “arrives” (as a result of a client
invoking addGirl()), numGirls is incremented, after which the
client may continue. Whenever a boy “arrives” (as a result of a
client invoking addBoy()), numBoys is incremented, after which
the client may continue. Whenever both a girl and a boy are
present, a “matchmaker” client pairs them and both numGirls
and numBoys are decremented.

4. Sketch a UML 2.0 state model of this shared matchmaking ob-
ject.

6
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5. Write the code for the addBoy(), addGirl() and pair() meth-
ods of this shared matchmaking object. The header file for the
implementation is seen below.

// -*- C++ -*-

#ifndef MATCHMAKER_H

#define MATCHMAKER_H

#include <ace/Thread_Mutex.h>

#include <ace/Condition_Thread_Mutex.h>

class MatchMaker

{

public:

MatchMaker();

void addBoy();

void addGirl();

void pair();

private:

unsigned numBoys_;

unsigned numGirls_;

ACE_Thread_Mutex lock_;

// A condition variable synchronizing boys.

ACE_Condition_Thread_Mutex okToGoForBoys_;

// A condition variable synchronizing girls.

ACE_Condition_Thread_Mutex okToGoForGirls_;

unsigned boyCounter_;

unsigned girlCounter_;

};

#endif /* not MATCHMAKER_H */

7
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Appendix E

Materials used in the state machine modeling vs. sequence diagram

modeling study

E.1 State machine modeling vs. sequence diagram modeling : Pre-test ques-

tions
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E.2 State machine modeling vs. sequence diagram modeling : Post-test

questions



Diagrams for Concurrency: Post-Test

ID Number:
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Figure 1 depicts the C++ declaration of a class RWDatabase, whose instances are databases that permit
concurrent access by multiple threads according to the readers-writers synchronization policy. This policy
allows multiple threads to simultaneously access a shared resource (the database) provided these accesses
do not modify the resource. The policy recognizes two distinct types of threads: readers, which only read
data, and writers, which may write into the database. Because readers only read data, it is safe for multiple
readers to access the database simultaneously. However, a writer must access the database exclusively—that
is, no threads of either type can access the database simultaneously with a writer.

This policy is implemented using a protocol by which readers and writers request authorization prior to
accessing any data and relinquish authorization when they are done with the data. A reader obtains and
relinquishes authorization by invoking startRead and endRead, respectively. The methods startRead and
endRead contain critical sections and are implemented as monitor methods. Once authorized, actual reading
is accomplished by invoking the read method. The read method is a non-monitor method.

Similarly, a writer obtains and relinquishes authorization by invoking startWrite and endWrite, respec-
tively. The methods startWrite and endWrite contain critical sections and are implemented as monitor

methods. Actual writing of data is accomplished by invoking the write method. The write method is a
non-monitor method.

You may assume that all threads adhere to these protocols when accessing the databases.

To implement this policy, class RWDatabase uses:

• a mutex lock, lock,

• two counter variables, numReaders and numWriters, which are used to track the number of client
threads of each type that are currently authorized to access (i.e., read or write) the database, and

• two condition variables, okToRead and okToWrite.

The attached figures represent a header file for a C++/ACE implementation of the database, and UML
2.0 sequence diagrams of the executions of a system containing reader clients (0-2) , writer clients (0-2), and
an instance of RWDatabase. Please refer to these figures in answering the questions that follow.

2
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1. Assume that only two threads exist in this system: reader1 and reader2. At the start of the program,
reader thread reader2 is running and has just invoked the startRead method and then the read

method. The invocation of read has not yet returned. A context switch occurs and the reader1 thread
begins to run.

Which of the following event sequences could happen next? Circle YES if the event sequence is

possible; otherwise, circle NO.

(a) reader1 invokes startRead and then blocks on the monitor lock.

YES NO

(b) reader1 invokes startRead, followed by read, followed by endRead.

YES NO

(c) reader1 invokes read, followed by startRead, followed by endRead.

YES NO

(d) reader1 invokes startRead and then blocks because reader2 has been granted read authorization.

YES NO

(e) reader1 invokes startRead and is then context-switched out before the call returns. reader2

completes its invocation of read.

YES NO

3

223



2. Assume that only two threads exist in this system: writer1 and reader1.

Reader thread reader1 is running and has just invoked the startRead method, followed by read, fol-
lowed by endRead. The endRead method has returned. A context switch occurs and writer thread
writer1 begins running and has invoked the startWrite method. The startWrite method has re-
turned. Another context switch occurs and the reader1 thread begins to run.

Which of the following event sequences could happen next? Circle YES if the event sequence is

possible; otherwise, circle NO.

(a) reader1 invokes startRead and then blocks on the monitor lock.

YES NO

(b) reader1 invokes startRead, followed by read, followed by endRead.

YES NO

(c) reader1 invokes startRead and then blocks because writer1 has been given write authorization.

YES NO

(d) reader1 invokes startRead and then blocks because writer1 has been given write authorization.
The writer thread then invokes write, followed by endWrite, followed by startWrite.

YES NO

(e) reader1 invokes startRead and then blocks because writer1 has been given write authorization.
writer1 then invokes write, followed by endWrite. When the call to endWrite returns, reader1

is in the ready state.

YES NO

4
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3. Assume that only two threads exist in this system: reader1 and writer1. At the start of the program
writer thread writer1 is running and has invoked the startWrite method, followed by the write

method, followed by the endWrite method. The endWrite method has returned. A context switch
occurs and Reader thread reader1 is now running and has invoked the startRead method, followed
by the read method. The read method call has not yet returned. Another context switch occurs and
the writer1 thread begins to run.

Which of the following event sequences could happen next? Circle YES if the event sequence is

possible; otherwise, circle NO.

(a) writer1 invokes startWrite and then blocks on the monitor lock.

YES NO

(b) writer1 invokes startWrite, followed by write, followed by endWrite.

YES NO

(c) writer1 invokes startWrite and then blocks because the reader has been granted read authoriza-
tion.

YES NO

(d) writer1 invokes startWrite and then blocks because the reader has been granted read authoriza-
tion. reader1 then completes the call to read, followed by endRead. The reader thread continues
to run.

YES NO

(e) The writer invokes startWrite and then blocks because the reader has been granted read autho-
rization. The reader thread then completes the call to read, followed by endRead. When the call
to endRead returns, writer1 is in the ready state.

YES NO

5
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4. Assume that only two threads exist in this system: writer1 and writer2. At the start of the program
writer thread writer2 is running and has invoked the startWrite method, followed by the write

method. The write method call has returned. A context switch occurs and the writer1 thread begins
to run.

Which of the following event sequences could happen next? Circle YES if the event sequence is

possible; otherwise, circle NO.

(a) writer1 invokes startWrite and then blocks on the monitor lock.

YES NO

(b) writer1 invokes startWrite, followed by write, followed by endWrite.

YES NO

(c) writer1 invokes startWrite and then blocks because writer2 has write authorization.

YES NO

(d) writer1 invokes startWrite and then blocks because writer2 has write authorization. writer2

calls endWrite, then startWrite, and then write.

YES NO

(e) writer1 invokes startWrite and then blocks because writer2 has write authorization. writer2

calls endWrite. When the call to endWrite returns, writer1 is in the ready state.

YES NO

6
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5. Assume that only three threads exist in this system: reader1, writer1, and reader2. At the start of
the program, reader thread reader2 is running and has invoked the startRead method. The call to
startRead has returned. A context switch occurs. Thread writer1 begins running and invokes the
startWrite method.

Which of the following event sequences could happen next? Circle YES if the event sequence is

possible; otherwise, circle NO.

(a) writer1 blocks on the monitor lock.

YES NO

(b) writer1 blocks because reader2 has been granted read authorization.

YES NO

(c) writer1 blocks because reader2 has been granted read authorization. A context switch occurs.
reader1 begins to run.

YES NO

(d) writer1 blocks because reader2 has been granted read authorization. A context switch occurs.
reader1 begins to run and invokes a startRead method.

YES NO

(e) writer1 blocks because reader2 has been granted read authorization. A context switch occurs.
reader1 begins to run and invokes a startRead method and then a read method.

YES NO

(f) writer1 blocks because reader2 has been granted read authorization. A context switch occurs.
reader1 begins to run and invokes a startRead method. reader1 blocks because writer1 has been
granted write authorization.

YES NO

7
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6. In the space below, implement methods for startRead, endRead, startWrite, and endWrite.

8
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const unsigned MAX_KEY = 10;

class RWDatabase

{

public:

RWDatabase();

void startRead(); // a monitor method

unsigned read(unsigned key); // a non-monitor method

void endRead(); // a monitor method

void startWrite(); // a monitor method

void write(unsigned key, unsigned value); // a non-monitor method

void endWrite(); // a monitor method

private:

unsigned data[MAX_KEY];

// Number of threads currently authorized to read.

unsigned int numReaders;

// Number of threads currently authorized to write.

unsigned int numWriters;

// The monitor lock.

ACE_Thread_Mutex lock;

// A condition variable used to signal readers.

ACE_Condition_Thread_Mutex okToRead;

// A condition variable used to signal writers.

ACE_Condition_Thread_Mutex okToWrite;

};

Figure 1: A C++/ACE implementation of the database with method definitions elided.
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E.3 The nineteen UML sequence diagrams modeling the monitor-based

readers-writer implementation

okToRead: ... r2:ReaderokToWrite: ...
numReaders=0;
numWriters=0;

startRead()

r1:Reader

startRead()

:RWDatabase

numWriters=0;
numReaders=2;

read(key)
read(key)

numReaders=1;
numWriters=0;

endRead()

numReaders=1;
numWriters=0;

endRead()
numReaders=0;
numWriters=0;

signal()

TwoReaders1
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okToRead: ... r2:Reader

numReaders=2;
numWriters=0;

numWriters=0;
numReaders=1;

numWriters=0;
numReaders=0;

okToWrite: ...
numReaders=0;
numWriters=0;

r1:Reader :RWDatabase

numReaders=1;
numWriters=0;

startRead()

read(key)
startRead()

read(key)

endRead()

signal()

endRead()

TwoReaders2
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okToRead: ... r2:Reader

numWriters=0;
numReaders=1;

signal()

numReaders=0;
numWriters=0;

okToWrite: ...
numReaders=0;
numWriters=0;

startRead()

read(key)

r1:Reader :RWDatabase

numReaders=1;
numWriters=0;

endRead()

startRead()

numWriters=0;
numReaders=2;

endRead()

read(key)

TwoReaders3
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okToRead: ... r2:Reader

numReaders=1;
numWriters=0;

okToWrite: ...
numReaders=0;

startRead()

read(key)

r1:Reader

endRead()

numReaders=0;
numWriters=0;

:RWDatabase

numWriters=0;

signal()

endRead()
startRead()

read(key)

numWriters=0;

numReaders=1;

numWriters=0;
numReaders=2;

TwoReaders4
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okToRead: ... r2:ReaderokToWrite: ...
numReaders=0;
numWriters=0;

startRead()

read(key)

r1:Reader

endRead()

numReaders=1;
numWriters=0;

numReaders=0;
numWriters=0;

endRead()

read(key)

:RWDatabase

numReaders=1;
numWriters=0;

numReaders=0;
numWriters=0;

signal()

startRead()

TwoReaders5
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okToRead: ... okToWrite: ...
numReaders=0;
numWriters=0;

:RWDatabasew1:Writer

startWrite()

endWrite()

numReaders=0;
numWriters=1;

numWriters=0;
numReaders=0;

startWrite()

write(key, value)

endWrite()
numReaders=0;
numWriters=0;

signal()

broadcast()

signal()

write(key, value)
wait()

numReaders=0;
numWriters=1;

 w2:Writer

broadcast()

 TwoWriters1
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okToRead: ... okToWrite: ...
numReaders=0;
numWriters=0;

:RWDatabasew1:Writer

startWrite()

endWrite()

numReaders=0;
numWriters=1;

numWriters=0;
numReaders=0;

write(key, value)

endWrite()
numReaders=0;
numWriters=0;

write(key, value)

signal()

broadcast()

signal()

broadcast()

numWriters=1;
numReaders=0;

 w2:Writer

startWrite()

TwoWriters2
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okToRead: ...

endWrite()

okToWrite: ...
numReaders=0;
numWriters=0;

startRead()

 w1:Writerr1:Reader

write(key, value)

numReaders=0;
numWriters=0;

:RWDatabase

read(key)

numWriters=1;
numReaders=0;

numReaders=1;
numWriters=0;

endRead()

signal()

signal()

broadcast()

numWriters=0;
numReaders=0;

startWrite()

OneReaderOneWriter1
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okToRead: ...

numWriters=0;
numReaders=1;

numReaders=0;
numWriters=0;

numWriters=0;
numReaders=0;

okToWrite: ...
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