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Abstract

Advances in data acquisition technology pose challenges in analyzing large vol-

umes of streaming data. Sampling is a natural yet powerful tool for analyzing such

data sets due to their competent estimation accuracy and low computational cost.

Unfortunately, sampling methods and their statistical properties for streaming data,

especially streaming time series data, are not well studied in the literature. Mean-

while, estimating the dependence structure of multidimensional streaming time series

data in real-time is challenging. With large volumes of streaming data, the problem

becomes more di�cult when the multidimensional data are collected asynchronously

across distributed nodes, which motivates us to sample representative data points

from streams. Here we propose a series of leverage score based sampling methods

for streaming time series data. The simulation studies and real data analysis are

conducted to validate the proposed methods. The theoretical analysis of the asymp-

totic behaviors of the least squares estimator is developed based on the subsamples.



We extended the proposed sampling methods to the application of learning velocity

model of Full-Waveform Inversion (FWI), which is a high-resolution seismic imaging

technique for geophysical site characterization.

Index words: Leverage score, Streaming data, Sampling, Stopping rule,
Online randomized algorithm, Time Series
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Chapter 1

Introduction and Motivation

1.1 Overview

With the recent advances of data acquisition technology, massive datasets are gen-

erated and collected by all �elds of science and engineering. As a standard represen-

tation of the data, we denote the data as a set of n data units in the p-dimensional

space. For massive data sets, either p or n or both are large, which may pose compu-

tational challenges to traditional methods. Subsampling of both or one of the rows

and columns of the n × p data matrix has been widely used to reduce the size or

dimension of the large data sets. Recently, in a linear regression model, an innovative

and e�ective importance sampling scheme based on leverage scores of the matrix has

been proposed, which concentrates more on select a set of observations (subsample)

that contains more information. The estimator based on such a subsample has been

demonstrated to give a reasonable approximation to the estimator based on the full
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data, and this subsampling approach yields a better performance than the simple

random sampling method. Even though a linear statistical model is applicable in

many statistical problems, the key limitation of it is that the observations are as-

sumed to be independent. In practice, complex data, such as time series and spatial

data, naturally arise from many areas, where the observations are dependent.

In modern massive data sets, the data size is either very large or it expands

continuously in a streaming fashion. In these instances, conventional methods face

computational challenges. For dependent data, the subsample could lead to improved

estimates, such as variance reduction. However, we need to overcome some major

challenges in order to develop leverage-based sampling methods for these data. Sam-

pling the time series or spatial data that ignores the dependence structure will lead

to a systematic biased estimation on the model parameter and inference. Therefore,

carelessly applying leveraging methods from linear regression by sampling individual

data points may destroy the dependence structure of the data. Developing theo-

retically justi�able and computationally scalable methods for large-sale streaming

dependent data is our primary motivation. This research focuses on developing

a series of sampling methods for temporally or spatially dependent data in the

streaming setting and the decentralized data acquisition environment.

Due to variations in real data, an essential statistical question is that whether the

leveraging sampling method has competitive statistical properties such as yielding

a better mean squared error (MSE) when compared to other estimators. To an-

swer this question in the context of streaming dependent data analysis, the proposal

develops statistical leverage sampling theory and methods for streaming dependent
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data such as autoregressive models in streaming time series data, and spatial data.

The motivation of the proposed research is to address the emerging computational

and analytical issues in big data analytics. The proposed methods produce innova-

tive methodologies as well as inspire new lines of quantitative investigations in many

disciplines.

One of the major challenges of the big data analytics is that we are still lacking

the statistical and computational methods considering the computational resource

constraints. One emerging method for dealing with large-scale data sets and heavy

computational burden problems is subsampling. In subsampling approach, one �rst

chooses a small portion of the full data, and then uses this sample as a surrogate

to carry out computations of interest for the full data. For example, one might

randomly sample a small number of rows from an input matrix and use those rows to

construct a low-rank approximation to the original matrix, or one might randomly

sample a small number of data points in a regression problem and then compute

estimates of regression parameters using the subsample. For many problems, it is

possible to construct the �worst-case� input for which the uniform random sampling

will perform very poorly. Motivated by this, there has been a great deal of work on

developing algorithms for matrix-based machine learning and data analysis problems

that construct the random sample in a nonuniform data-dependent fashion Mahoney

(2011).

Of particular interest is when that data-adaptive sampling process selects rows or

columns from the input matrix according to a probability distribution that depends

on the empirical statistical leverage scores of that matrix. In the regression set
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up, this recently-developed approach of statistical leveraging has been applied to

least squares approximation Drineas et al. (2006a, 2010), least absolute deviations

regression Clarkson et al. (2013); Meng and Mahoney (2013), and low-rank matrix

approximation Mahoney and Drineas (2009a); Clarkson and Woodru� (2013).

In spite of these impressive algorithmic results, works addressing statistical as-

pects of leveraging or leverage-based sampling are still lacking for dependent stream-

ing data. Ma et al. (2014, 2015) bridged that gap by providing the �rst statistical

analysis of the leveraging methods. They did so in the context of parameter estima-

tion in �tting linear regression models for large sample independent data. The main

theoretical contribution is that they provided an analytic framework for evaluating

the statistical properties of algorithmic leveraging. Based on these theoretical results,

they proposed and analyzed two new leveraging algorithms designed to improve upon

vanilla leveraging and uniform sampling algorithms in terms of bias and variance. In

both cases, they obtained the algorithmic bene�ts of leverage-based sampling, while

achieves improved statistical performance.

1.2 Leveraging Methods in Linear Regression

We brie�y review leveraging methods in linear models of the form

y = Xβ + ε, (1.1)

where y = (y1, . . . , yn)T is a response vector, X = (x1, . . . ,xn)T is an n × p design

matrix, and ε = (ε1, . . . , εn)T is an error vector with ε ∼ N(0, σ2I). The ordinary
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least squares (OLS) estimator β̂ols of β is

β̂ols = arg min
β
‖y −Xβ‖2 = (XTX)−1XTy, (1.2)

where ‖·‖ is the Euclidean norm. The OLS is a linear estimator, i.e, the ith predicted

response ŷi can be written as ŷi =
∑n

j=1 hijyj. In vector-matrix form, ŷ = Hy, where

the hat matrix H = X(XTX)−1XT . The ith diagonal element of the hat matrix H,

hii = xTi (XTX)−1xi, is called the leverage score of the ith observation. The β̂ols

can be calculated using the singular value decomposition (SVD) algorithm in Golub

and Van Loan (1996). By SVD for X, H is alternatively expressed as H = UUT ,

where U is the n × d left singular vector matrix of X and d = rank(X). Then, the

leverage score of the ith observation is expressed as

hii = ‖ui‖2, (1.3)

where ui is the ith row of U.

Algorithm 1: Statistical Leveraging Algorithm in Linear Regres-

sion

1: Subsampling. Draw a random subsample of size r � n, denoted as (X∗,y∗),
i.e., draw r rows from the original data (X,y) according to the probability
{πi}ni=1. Record the corresponding sampling probability matrix
Φ∗ = diag{π∗k}rk=1.

2: Least squares. Calculate the least squares estimate, β̃, on the subsample,

β̃ = arg minβ‖Φ∗−1/2y∗ −Φ∗−1/2X∗β‖2 = (X∗TΦ∗−1X∗)−1X∗TΦ∗−1y∗. (1.4)

One key component of Algorithm 1 is the sampling probability {πi}ni=1 in Step 1.
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The leveraging algorithm constructs sampling probabilities by giving preference to

�in�uential data points". Note that

hii =
∂ŷi
∂yi

,

which measures the oscillation amount of prediction ŷi by a small perturbation of yi.

Therefore, in linear regression, hii is used as �in�uential" index. Following this line of

thinking, one may draw the subsample according to a sampling distribution that is

proportional to the leverage scores i.e., πi = hii/
n∑
i=1

hii = hii/p. This is the rationale

of the leveraging method Drineas et al. (2006a, 2010). To reduce the computational

cost, one typically computes the leverage scores hii by random approximation Drineas

et al. (2012a); Clarkson et al. (2013), or otherwise a random projection Ailon and

Chazelle (2010); Clarkson et al. (2013) is used to precondition by approximately

uniformizing them Drineas et al. (2010); Avron et al. (2010); Meng et al. (2014).

A distinguishing feature of sampling is that it can improve the performance of

some estimates based on full sample complex data. For dependent data, the subsam-

ple could lead to a better estimate in terms of variance Näther (1985); Dette et al.

(2013).

In spite of the advantages, there are signi�cant challenges in developing leverage-

based sampling methods for dependent data. In time series and spatial data, statisti-

cal analysis ignoring dependence leads to systematic bias in estimation and inference.

Directly applying leveraging methods of linear regression by sampling individual data

points will destroy the dependence structure of the data. Thus, novel theory and

methods are needed to surmount these challenges. The central question that remains
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to be answered for the proposed methods is

• Under what conditions on data and the underlying model, is the resulting

leverage-based estimator a competitive estimator for statistical inference on a

big data?

Organization

The rest of the thesis is organized as follows. In Chapter 2, we propose an online

leverage-based sequential sampling algorithm for streaming time series data, which is

assumed to come from an autoregressive model of order p ≥ 1 (AR(p)). In Chapter 3,

we propose a leverage score sampling (LSS) method for e�cient online inference of the

streaming vector autoregressive (VAR) model. In Chapter 4, we combine randomized

subsampling techniques with a second-order optimization algorithm to propose the

Sub-Sampled Newton (SSN) method for learning velocity model of Full-Waveform

Inversion (FWI), which is a high-resolution seismic imaging technique for geophysical

site characterization.
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Chapter 2

Online Sequential Leveraging

Sampling Method for Univariate

Streaming Data1

In this chapter, we propose an online leverage-based sequential sampling algorithm

for streaming time series data, which is assumed to come from an autoregressive

model of order p ≥ 1 (AR(p)). The proposed sequential leveraging sampling (SLS)

method samples only one consecutively recorded block from the data stream for

inference. While the starting point of the SLS scheme is chosen using a random

mechanism based on leverage scores of the data, the subsample size is decided by a

sequential stopping rule. We show that an appropriately normalized least squares

1Xie, R, Sriram, T. N., Wu, W. B., and Ma, P. (2019) Online sequential leveraging sampling
method for streaming data, Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), under review.
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estimator based on the SLS block of the AR parameter vector is uniformly asymp-

totically normally distributed for non-explosive AR(p) model. Simulation studies

and real data examples are presented to evaluate the empirical performance of the

proposed SLS method.

2.1 Introduction

Advances in technology and discoveries in science have led to the rapid expansion

of demands on analyzing vast volumes of data. In the meantime, new challenges

have been posed for the modern data analysis tasks. First and foremost, as the data

size grows enormously, many fundamental statistical methods such as least squares

(LS) estimation and maximum likelihood estimation (MLE) become computation-

ally infeasible, especially in instances where the data are acquired continuously over

time in an online fashion or when computing devices are unable to load the entire

dataset into the working memory. In such cases, data may take the form of data

streams rather than �nite stored data set (Babu and Widom, 2001). Analyzing such

streaming data poses computational and e�ciency challenges, which calls for online

algorithms that can sequentially update or process data in batches.

We introduce a new method called Sequential Leveraging Sampling (SLS), an

online batch learning method, as a solution to the aforementioned computational

and e�ciency challenges. SLS is designed to extract important information from

the streaming data with three features: (1) sequential batch sampling for possibly

temporally correlated data, (2) capability of dealing with high-frequency streams,
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and (3) online estimation for the streaming data. With limited time and computing

resources, SLS compresses and down-sizes the data stream through a randomized

sampling technique, which keeps enough information for high precision estimation

and speeds up computation by only selecting in�uential data points or batches from

the stream. More speci�cally, the SLS, as a online random sampling method, aims to

provide a way to summarize data streams. The goal of SLS is to obtain a small-size

representation of the data streams by sampling important data points or batches.

The �rst feature of the SLS enables us to retain temporal dependence information

among data points in the sampling procedure. When the data stream follows an

autoregressive time series model, our SLS extracts important information from the

temporal correlated data streams through the sequential block sampling technique.

We use the Internet tra�c stream as a way to motivate the usefulness of the SLS.

It is well known that Internet tra�cs are autocorrelated (Cao et al., 2001; Cortez

et al., 2012; Leland et al., 1993). In Figure 2.1, we show how the SLS can sample a

block of data from an Internet tra�c stream.

Example 2.1.1. Internet Tra�c Data

Monitoring the Internet tra�c is vital for the network security and management.

Internet tra�c data measures the �ow of information across the network, such as the

volumes of data packets exchange at a certain Internet node. The volume of tra�c

�ow across a speci�c node is empirically used as an indicator of the Internet tra�c,

such as an Internet service provider (ISP), or a local network (Liang et al., 2006).

We use the SLS to sample and analyze an Internet tra�c data (details in Section

2.6), which measures the TCP/IP protocol packets (in bits per second) exchanged

10



in a given time interval. This data is from the United Kingdom Education and

Research Networking Association (UKERNA) and re�ects aggregated tra�c of the

UK academic network backbone (Cortez et al., 2012). The Internet tra�c stream

was observed from 19th November 2004, 9:30 AM, to 27th January 2005, 11:11 AM

every �ve minutes.

Figure 2.1: Scatter plot of the seasonal-di�erenced Internet tra�c data. Data were
observed in every �ve minutes from 19th November 2004, 9:30 AM, to 27th Jan-
uary 2005, 11:11 AM. As an example, the highlighted area indicates one of the 500
sequential leveraging subsamples that were sampled.

The second feature of the SLS distinguishes itself from the family of recursive

estimation methods including recursive least squares and Kalman �lter (Solo, 1981;

Ljung and Söderström, 1983; Harvey, 1990; Guo, 1994; Young, 2012). These recursive

methods obtain observations sequentially from the stream and update estimates with

each new observation. When data arrive at a high frequency, such an update demands

more computational resources to avoid a delayed update and catch up with the rate

of data arrival. Speci�cally, as an example, the computational complexity of the

recursive least square algorithm is O(p2) operations (�ops) per iteration with p as the

dimension of parameter vector (Haykin et al., 1996). Practically, the average running

11



time is 1.543×10−4 second per iteration from our simulation study, which is based on

recursive least square estimation of AR(1) time series with 512 observations with 1000

independent replicates. This simulation study was conducted using MATLAB build-

in function recursiveAR (The MathWorks, 2018) through a battery powered laptop

computer with 2.4 GHz Intel Core i5 CPU. If the data arrives much faster than the

speed of estimation update, e.g. data acquisition frequency (sample rate) in excess

of 7 kHz in our simulation, the recursive update methods becomes impracticable to

deal with such high-frequency stream. The real applications involving high frequency

data includes medical image analysis (15.7 kHz, Yun et al. (2003)), acoustic signal

monitoring (200 kHz, Wiggins and Hildebrand (2007)), seismic data acquisition (1000

MHz Davis and Annan (1989), 1500 MHz Hubbard et al. (2002)) etc. Moreover, in

many real applications such as Internet of Things (IoT), computing devices have

limited processing and energy resources that do not a�ord high frequency computing

operations (Botta et al., 2016).

The growing popularity of high-frequency data and the increasing importance

of the real time analysis make the computational e�ciency an inevitable aspect in

algorithm design. One possible remedy for the computational e�ciency issue is to

reduce the update frequency, which is equivalent to selecting data points or blocks

used to update the estimation from data streams (Christensen et al., 2017). How to

e�ciently select the data points then becomes a sampling problem that we study in

this paper. Sampling data points reduces the data frequency so that the data can

be processed fast enough before new data points arrive. By using a computational

e�cient online sampling approach, the SLS reduces the size of data points used for

12



analysis and thus speeds up the processing time.

Last but not the least, the SLS allows us to analyze the streaming data in real

time as the data arrives sequentially. The leverage-based online sampling approach

used in SLS provides an immediate criterion for selecting the underlying data point.

Along with the second feature of SLS, it makes the processing time per data point

satisfy the real time constraint in streaming analysis. Moreover, the sequential block

sampling technique in SLS is memory e�cient and does not require us to access the

past data in the stream. Based on these constraints, the SLS method produces a

real time summary of the data stream.

By using a leverage-based non-uniform importance sampling, we construct a small

�sketch� of the data stream, and use the sketch (SLS block) as a surrogate input to

establish the computational task and statistical inference. This novel approach is

introduced in detail in Section 2.3. In this article, we also establish theoretical

properties of SLS such as parameter estimation and construction of a con�dence

region.

Related work

The study of streaming data originally came from the �eld of computer science and

engineering. The ubiquitousness of streaming data is from the invention of smart

instruments and sensors in cyber physical systems, which can automatically collect

enormous volumes of data in real time. For example, in the weather station, medical

facility, �nancial industry, transportation industry, and online retail, tons of data

are collected in every second endlessly (Himberg et al., 2001; Zhu and Shasha, 2002;
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Gaber et al., 2005; Moreira-Matias et al., 2013; Chen et al., 2002; Hu et al., 2013).

There is intensive research in the �eld of computer science and engineering involving

streaming data acquisition, storage, visualization, and information query in the com-

munities of database, signal processing and pattern recognition of computer science

and engineering (Fu, 2011; Papadimitriou et al., 2005; Woodru�, 2014; Garofalakis

et al., 2016). There is also a proliferation of literature on the online analysis for

streaming data, which usually requires real time analysis without the entire input

data being available. Some representative examples are on methodology and software

development (Bifet et al., 2010; Ho�man et al., 2010; Elhamifar and Kaluza, 2017b),

on applications in di�erent �elds (Olivier et al., 2002; Mathioudakis and Koudas,

2010), and on online algorithms (Keogh et al., 2001; Kossmann et al., 2002).

Some of the recently developed family of randomized sampling methods aim to

overcome the computational challenges in analyzing super-large-scale data includ-

ing the streaming data. Sketching through random sampling is a popular tool in

large-scale data analysis that has drawn a lot of attention in algorithmic develop-

ment (Mahoney et al., 2011). There is a proliferation of literature in topics such

as matrix approximation (Drineas et al., 2006b, 2012b; Woodru� et al., 2014), gen-

eral least squares estimation (Ma et al., 2014; Raskutti and Mahoney, 2016), com-

pressed sensing in streaming setting (Gilbert et al., 2007), and streaming anomaly

detection (Huang and Kasiviswanathan, 2015), streaming network sampling (Ahmed

et al., 2014; Gama et al., 2016). More speci�cally, in the context of linear regression,

Drineas et al. (2006, 2012b) used the empirical statistical leverage scores as an im-

portance sampling distribution and introduced the algorithmic leveraging method,
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which samples and rescales full data to reduce the sample size before performing

computations on the subproblem. Ma et al. (2014, 2015a) showed that the leverage-

based sampling method is a viable alternative to the uniform sampling method in the

context of big data. Raskutti and Mahoney (2016) extended the statistical analysis

of randomized sketching to the general least squares problem.

It is important to note that randomized sketching methods cannot be directly

applied to streaming data because these methods are almost exclusively developed

for independent data. Whereas, most of the streaming data are inherently time-

dependent. Moreover, the non-uniform random sampling methods, such as the

leverage-based sampling method, rely on the calculation of sampling probabilities,

e.g. leverage scores, based on the full sample. However, sampling probabilities can-

not be calculated for streaming data as the observations are continuously evolving.

Finally, statistical inference for streaming data and the related sampling algorithm

are not readily available. To the best of our knowledge, the literature on statistical

inference for and associated analysis of online streaming data is still at an early stage

of development. For instance, Michalak et al. (2012) proposed a strategy for devel-

oping systems for real time streaming analysis; and Luts et al. (2014) developed real

time semiparametric regression algorithms in a Bayesian framework.

In terms of taking samples from dependent data, the general sampling approach

is to consider blocks of consecutive data rather than single data points (Politis et al.,

1999; Zhang et al., 2013; Hall et al., 1995). Traditional resampling and subsampling

methods are based on non-overlapping blocks or moving blocks as the sampling

units (Lahiri, 2003). However, those methods are computationally intensive since
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they usually need to go over the entire data set more than once.

To determine the sample (block) size for data stream sampling, a sequential

approach is preferred in the context of online analysis since the sample size should be

data dependent rather than prespeci�ed (Grambsch, 1983; Lai and Siegmund, 1983;

Barndor�-Nielsen and Cox, 1984). The SLS method keeps expanding the leveraging

sample until the accumulated information reaches the prespeci�ed level.

Organization

The rest of the article is organized as follows. In Section 2.2, we brie�y review the

autoregressive model for �xed sample size time series. In Section 2.3, we propose

the sequential leveraging sampling method for the streaming AR(p) series. The

theoretical results are established in Section 2.4. In Section 2.5, we present simulation

results to support the theorems presented in the previous section. Two real data

examples using sequential leveraging sampling method are discussed in Section 2.6.

A brief discussion on the potential directions is included in Section 2.7. Proofs of

our main results are included in the Appendix.

2.2 Overview of the Problem and Preliminaries

We consider a linear time series model for the streaming data {Xi}∞i=−∞, i.e. p (≥ 1)-

th order autoregressive model (AR(p)),

Xi = β1Xi−1 + β2Xi−2 + . . .+ βpXi−p + εi, (2.1)
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where β = (β1, . . . , βp)
T is the unknown parameter vector, the innovations {εi} are

assumed to be a sequence of independent and identically distributed (i.i.d.) ran-

dom variables. We assume that our observed data starts at X1, . . . , Xp, and the

innovations {εi}∞i=1 are independent of these starting values with E(εi) = 0 and

0 < Var(εi) = σ2 < ∞. For data observed up to time n, let zi = (Xi−1, . . . , Xi−p)
T

and de�ne the design matrix as

Γn =



zTp+1

zTp+2

...

zTn


. (2.2)

Using this notation, we can write the AR(p) model observed up to time n as

xn = Γnβ + εn, (2.3)

where xn = (Xp+1, . . . , Xn)T and εn = (εp+1, . . . , εn)T . The least square (LS)

method (Anderson and Taylor, 1976) �ts the AR(p) model by solving the optimiza-

tion problem:

min
β∈Rp
||xn − Γnβ||2, (2.4)

where || · || is the `2 norm. For continuously observed streaming data, the �sample

size� n is in�nite. Thus, the actual observe data can be arbitrarily large, making the

exact LS solution β̂n,LS = (ΓT
nΓn)†ΓT

nxn computationally challenging. Here (·)† is

the Moore-Penrose pseudoinverse (Ben-Israel and Greville, 2003).
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Random sampling is a popular approach to reduce the computational cost on large

scale problems. In the SLS, we carefully design a �sketch� operator S, the leverage-

based sequential block sampling, in the streaming setting and then implement the

LS estimation on a much smaller sub-problem on the sketched stream Sxn. That is,

instead of solving problem (4.4) on the data stream (xn,Γn), which is computational

challenging or even impractical, we construct a sketched data (Sxn, SΓn) and then

implement the LS estimation based on the sketched problem

β̂S = arg min
β∈Rp
||Sxn − SΓnβ||2, (2.5)

where β̂S can also be an accurate estimator of the true parameter and we can obtain

it in a computationally e�cient way.

Next, we give some well known details concerning autoregressive (AR) model and

statistical leverage scores (see, e.g., Box et al. (2011); Brockwell and Davis (2013)).

2.2.1 Fisher Information for an AR(p) Model

The observed Fisher information matrix, Jn, of β for a sample {X1, . . . , Xn} from

the AR(p) model is

Jn = ΓT
nΓn, (2.6)

and its trace is given by

tr(Jn) = tr(ΓT
nΓn) =

n∑
i=p+1

||zi||2. (2.7)
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For example, when p = 1, the observed Fisher information about β1 contained in

{X1, . . . , Xn} is

Jn = ΓT
nΓn = − d2

dβ2

(
β

n∑
i=2

Xi−1Xi −
1

2
β2

n∑
i=2

X2
i−1

)
=

n∑
i=2

X2
i−1. (2.8)

The observed Fisher information is crucial for the development of our Sequential

Leveraging Sampling method.

2.2.2 Statistical Leverage Scores for an AR(p) Model

For an AR(p) model, the �tted values are expressed as x̂n = Γnβ̂n = Hnxn, where

Hn = Γn(ΓT
nΓn)†ΓT

n is the so-called hat matrix (Hau and Tong, 1989). For zi de�ned

above, the ith diagonal element of Hn,

hii = zTi (ΓT
nΓn)†zi, (2.9)

is called the statistical leverage of the ith observation. Hau and Tong (1989) showed

that hii may be interpreted as the amount of leverage or in�uence exerted on X̂i

by Xi and nhii is interpreted as the Mahalanobis distance between zi and the zero

mean vector. Furthermore, they established various properties of the hat matrix

including that 0 ≤ hii ≤ 1. Motivated by the work of Drineas et al. (2006, 2012b)

and Ma et al. (2014, 2015a) mentioned earlier, in Section 2.3 we will introduce a

leverage-based sampling method for streaming time series.
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2.2.3 Known Results for AR(p) Models

Suppose we denote the characteristic polynomial of an AR(p) model as

φ(β, λ) = λp − β1λ
p−1 − . . .− βp, (2.10)

and, for β = (β1, β2, . . . , βp)
T , λi = λi(β), i = 1, . . . , p denote the roots of the

characteristic polynomial (2.10). If all the roots of the polynomial lie strictly inside

the unit circle, then the AR(p) series is said to be stable, where the stability region

Λp is de�ned as

Λp = {β ∈ Rp : |λi(β)| < 1, i = 1, . . . , p}. (2.11)

When the roots of the polynomial are inside the unit circle with at least one root on

the unit circle, the AR(p) series is said to be unstable. The unstable AR(p) series

thus contains at least one unit root (Dickey and Fuller, 1979, 1981). Finally, an

AR(p) series is said to be purely explosive if all roots of the polynomial lie outside

the unit circle.

In order to make inference about β, it is natural to consider the randomly nor-

malized quantity

Vn,β = (ΓT
nΓn)1/2(β̂n,LS − β). (2.12)

It is well known, however, that the limiting distribution of Vn,β is drastically dif-

ferent for the three cases: stable, unstable, and explosive (Mann and Wald, 1943;

Anderson, 1959; Anderson and Taylor, 1979; Chan and Wei, 1988; Jeganathan, 1988;
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Lai and Wei, 1983). Let us denote the cumulative distribution function (c.d.f) of

a p-dimensional random vector V = (V1, . . . , Vp) as function FV(v) : Rp → R such

that

FV(v) = P(V1 ≤ v1, . . . , Vp ≤ vp). (2.13)

When the parameter vector β = (β1, β2, . . . , βp)
T ∈ Λp de�ned in (2.11), then it can

be shown that the matrix

1

n
Jn =

1

n
ΓT
nΓn

a.s.−−→ F, n→∞, (2.14)

where
a.s.−−→ indicates almost surely convergence and F = F (β) is a positive de�nite

matrix (Anderson, 2011). Furthermore, for Vn,β de�ned in (2.12) and each x ∈ Rp,

we have

lim
n→∞

∣∣FVn,β
(x)−Φ(x/σ)

∣∣ = 0, (2.15)

which implies that

1

σ2
(β̂n − β)T (ΓT

nΓn)(β̂n − β)
L−→ χ2

p, as n→∞, (2.16)

where χ2
p is the χ

2 distribution with p degrees of freedom and
L−→ indicates convergence

in law.

Under the streaming data setting, it is essential to design an e�cient sampling

method that can handle large volumes of streaming time series data and provide an

accurate estimate of model parameters. That is, from the perspective of statistical

inference, we aim to obtain an approximation to the sampling distribution of Vn,β
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which would be valid regardless of whether the roots of φ(β, z) lie inside or on the

unit circle.

2.3 Sequential Leveraging Sampling Method for Stream-

ing AR(p) Series

In SLS, we propose to adaptively take only one block of consecutive data points,

named Sequential Leveraging Sampling block, as a sketch of the streaming data.

The SLS block consists of two key components: the starting point and sequential

block size. First, we use a leverage-based random sampling method to obtain a

starting point Xl at time l of the SLS block. Then, the starting point Xl is expanded

adaptively to form the SLS block xτc = {Xl, . . . , Xτc}, where the stopping time τc is

decided according to sequential stopping rule.

When designing the SLS method, we take into account several characteristics of

streaming time series. Streaming time series is an uninterrupted and in�nite collec-

tion of observations collected at discrete time points, where observed data points are

correlated and the sample size keeps on increasing. Consequently,

• Di�erent from sampling individual data points in independent data case, we

sample a block of consecutive data points as our subsample so that the corre-

lation information can be kept in the subsample.

• On the choice of subsample, we prefer to choose the block containing high

leverage score points as the SLS block. The leverage-based sampling tends to
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be more e�cient than the simple random (uniform) sampling on parameter

estimation (Ma et al., 2015a).

• We use the sequential stopping rule to decide the size of the SLS block, which

provides a �xed accuracy result for parameter estimation. In SLS, the sub-

sample size is not �xed in advance. Instead, after determining a starting time,

we evaluate each data point as it is collected and expand the SLS block until

the sampling is stopped. We stop the sequential sampling as soon as the accu-

mulated information contained in the active SLS block reaches a pre-speci�ed

signi�cant level.

The detailed procedure of the SLS can be described as following. Suppose we observe

a streaming time series {X1, X2, . . .}, where {Xi} follows a streaming AR(p) model

in (2.1). First, we take a pilot subsample {X1, . . . , Xn0} from the streaming data,

which can easily be stored in the working memory, and compute what we call the

�observed information", K =
∑n0

i=p+1 ||zi||2 with zi = (Xi−1, . . . , Xi−p)
T .

Along with the data streaming through the working memory, i.e. time j ≥ n0 +1,

we conduct independent Bernoulli trials as described in Step 1 of Algorithm 1 (see

below) in order to determine the starting value of the SLS block. More speci�cally,

we calculate the success probability of the independent Bernoulli trial at time j,

πj =
||zj ||2
γK

, which approximates the leverage score hjj de�ned in (2.9) for a pre-

speci�ed leveraging parameter γ ≥ 1.

We suppose that time l is the starting time determined by the independent

Bernoulli trials. Then starting with Xl, we keep collecting consecutive data points

to expand the SLS block until the sequential stopping rule is triggered at some time
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Algorithm 2: Sequential Leveraging Sampling Algorithm
Input: Collect a pilot subsample {X1, . . . , Xn0}, determine the

autoregressive order p, and calculate K =
∑n0

i=p+1 ||zi||2.
Information threshold c > 0 and leveraging parameter γ > 1.

Start the online algorithm for time j ≥ n0 + 1:

1: Starting value via independent Bernoulli trials: For the subsequent data
point Xj, draw an independent Bernoulli variable Bj with success probability

πj =
||zj ||2
γK
≈ hjj;

if Bj = 0 then j ← j + 1, go back to step 1;
else Bj = 1 return starting time l = j and start the sequential expansion;

2: Sequential expansion: Expand the input stream, starting with Xl−p, to form
a block of consecutive observations {Xl, . . . , Xτc}, collected according to the
sequential leveraging sampling rule τc = inf{t ≥ l :

∑t
i=l ||zi||2 ≥ c}.

3: Least Squares Estimation on subproblem: Calculate the LS estimator,
β̂τc = (ΓT

τcΓτc)
†ΓT

τcxτc , where Γτc is de�ned in (2.18) and xτc = {Xl, . . . , Xτc}.

τc:

τc = inf{t ≥ l :
t∑
i=l

||zi||2 ≥ c}, (2.17)

where c(> 0) is a pre-speci�ed constant called information threshold. Note that∑t
i=l ||zi||2 is the trace of the observed Fisher information matrix for the block

{Xl, . . . , Xt}, if the ε's are normally distributed. Accordingly, we de�ne the design

matrix of the SLS block as

Γτc =



zTl
...

zTs
...

zTτc


, (2.18)
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for the stopping time τc.

Finally, based on the SLS block xτc = {Xl, . . . , Xτc} and its design matrix Γτc ,

we get the least squares estimator of β on the subproblem, β̂τc = (ΓT
τcΓτc)

†ΓT
τcxτc .

Algorithm 2 and Figure 2.2 summarize the sequential leveraging sampling algorithm.

Remark 2.3.1. Pilot subsample.

The pilot subsample helps decide several hyper-parameters in the SLS. The size

of the pilot subsample n0 depends on the availability of working memory. It will not

in�uence the performance of the SLS if other hyper-parameters are properly chosen.

As long as the pilot subsample �ts in the working memory, the information contained

in the pilot subsample can be used to make immediate decision on the choice of the

hyper-parameters.

Once we have collected a pilot subsample, the value of model order p can be decided

through methods such as the autocorrelation and partial autocorrelation plots (Box

et al., 2011), minimum description length criterion (Rissanen, 2000) or information

criterion such as AIC (Akaike, 1998) or BIC (Schwarz et al., 1978). The pilot

subsample can also provide a good initial value for iterative optimization algorithms

such as the gradient descent or the Newton�Raphson methods in the estimation of β

(Step 3 of Algorithm 2).

Remark 2.3.2. Leverage score approximation and the choice of γ.

Sampling with probabilities proportional to leverage scores of data matrix yields

a high precision approximation to the original data matrix (Drineas et al., 2008).

However, leverage-based importance sampling is di�cult to adapt naturally to data

streams because the leverage scores themselves are not easy to compute in a streaming
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setting. The computation of exact leverage scores is not only expensive, but also

impossible in the streaming setting because the leverage scores depend on all data

points, including those that have not yet been observed in the data stream.

An important note is that we can approximate the leverage scores to achieve a

similar goal of importance sampling in a streaming setting. The key idea is to sample

data points according to their coarse overestimates of the true leverage scores with

respect to the stream observed so far. Using such overestimates of leverage scores in

sampling has been shown to be successful in a variety of sampling problems (Koutis

et al., 2010; Cohen et al., 2015, 2016; Calandriello et al., 2017a,b).

We specify the Bernoulli success probability πj to be proportional to the true lever-

age score hjj of the jth data point by choosing γ ≥ 1 so that πj =
||zj ||2
γK

, which is

an overestimate of the leverage score. Since K is related to the leverage scores of

pilot subsample through (ΓT
n0

Γn0)
†, a conservative choice of γ is 1. It will make the

πj's as overestimates of true leverage scores of pilot subsamples. The rationale for

matching πj with leverage hjj score of the jth data point is to exploit the fact that

observations with higher leverage score will have a higher probability of being selected

as the starting point of our SLS block.

Remark 2.3.3. Information threshold c.

The information threshold c is pre-speci�ed by the user. One guidance to the

choice of c is related to width of the con�dence region for β. As an example, in

AR(1) case, the (1 − 2α)-level con�dence interval for β is β̂τc ± c−1/2σΦ−1(1 − α),

where Φ(·) is the standard normal distribution function (Lai, 2001). In Theorem 2.4.4

and Proposition 2.4.5, we provide the construction of con�dence region for SLS esti-
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mator β̂τc for general AR(p) streams. The information threshold c is involved in the

construction of �xed width con�dence region based on the stopping rule (2.17).

Figure 2.2: An Illustration of SLS Algorithm 2. The sequence labeled with �Data
stream� is the streaming time series we are observing. The SLS block, as a subset of
the data points in the working memory, with starting point Xl, selected according to
leveraged-based independent Bernoulli trial (2.9), and stopping point Xτc according
to sequential stopping rule (2.17).

2.4 Theoretical Results

In this section, we demonstrate that our proposed SLS method is accurate in terms

of providing a uni�ed statistical inference for the parameters in an AR model. We

state two main theorems which establish a conditional uniform asymptotic normality

result for the normalized least squares estimator based on the SLS method introduced

in Section 2.3. We �rst present the main result for a streaming AR(1) series and

then the results for the general AR(p) model.

It is well known that, under the regular sampling setting, i.e., when the sample
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size is not random, the limit distribution of the least squares estimator of the AR

parameter vector drastically changes according to whether the AR(p) series is sta-

ble, unstable or explosive; see, for instance, Anderson (1959); Chan and Wei (1988);

Jeganathan (1988); Lai and Wei (1983). When the series is unstable, it requires a

more complex procedure to obtain a uni�ed asymptotic result, as discussed in Lahiri

(2003). For the AR(1) model, Lai and Siegmund (1983) established a uni�ed limiting

distribution for non-explosive AR(1) models, if the sample size is determined sequen-

tially using a stopping rule. Later, Galtchouk and Konev (2011) extended this result

to the unstable AR(p) series with p ≥ 1. In order to provide a uni�ed inference for

streaming time series data coming from a p-th order autoregressive model (AR(p))

with p ≥ 1, we study the theoretical properties of our SLS method along the lines

of Lai and Siegmund (1983) and Galtchouk and Konev (2011).

2.4.1 Sequential Leveraging for AR(1) Series

In the case of streaming �rst order autoregressive process AR(1), we have zi = Xi−1.

We follow the sequential leveraging algorithm in Section 2.3 to decide the starting

time l of the SLS block. This leads us to the sequential sampling rule

τc = inf{t ≥ l :
t∑
i=l

X2
i−1 ≥ c}, (2.19)

where c(> 0) is the information threshold. Note that if ε's are normally distributed,∑t
i=lX

2
i−1 is the observed Fisher information for the subsample {Xl, . . . , Xt}.

Before we state the main theorem, we state in Lemma 2.4.1 below a conditional
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martingale central limit theorem (Freedman, 1971, pp. 90− 92).

Lemma 2.4.1. Let Xj, εj, j = l−1, l, . . . be random variables adapted to the increas-

ing sequence of σ-algebras Fj, j = l − 1, l, · · · . Let {Pβ, β ∈ [−1, 1]} be a family of

conditional probability measures conditioned on Fl−1 such that, under every Pβ, we

have

εl, εl+1, . . . are i.i.d. with Eβεl = 0, Eβε
2
l = σ2; (2.20)

sup
β

Eβ[ε2
l ; |εl| > a]→ 0 as a→∞; (2.21)

εj is independent of Fj−1 for each j ≥ l; (2.22)

Pβ

(
∞∑
j=l

X2
j−1 =∞

)
= 1; (2.23)

sup
β

Pβ

(
X2
j > a

)
→ 0 as a→∞ for each j ≥ l − 1; (2.24)

and for each ζ > 0

sup
β

Pβ

(
X2
j ≥ ζ

j∑
i=l

X2
i−1 for some j ≥ m

)
< ε for any ε > 0 as m→∞. (2.25)
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Let

τc = inf{j :

j∑
i=l

X2
i−1 ≥ c}, c > 0. (2.26)

Then uniformly in β ∈ [−1, 1] and −∞ < t <∞, we have

lim
c→∞

sup
|β|≤1

sup
t∈R

∣∣∣∣∣Pβ

(
c−1/2

τc∑
j=l

Xj−1εj ≤ t

)
− Φ(t)

∣∣∣∣∣ = 0. (2.27)

Recall that the estimator of β based on the subsample {Xl, · · · , Xτc} is given by

β̂τc =
∑τc

j=lXj−1Xj/
∑τc

j=lX
2
j−1. We now state the main theorem.

Theorem 2.4.2. If εl, εl+1, . . . , are i.i.d. with mean 0 and variance σ2, and the

sequence {εi : i ≥ l} is independent of Xl−1 (de�ned in Algorithm 2), then

lim
c→∞

sup
|β|≤1

sup
x∈R

∣∣∣∣∣∣Pβ

√√√√ τc∑
i=l

X2
i−1

(
β̂τc − β

)
≤ x

− Φ(x/σ)

∣∣∣∣∣∣ = 0, (2.28)

where Pβ is the conditional probability measure de�ned in Lemma 2.4.1.

The proofs of Lemma 2.4.1 and Theorem 2.4.2 have been relegated to the Ap-

pendix. The proof of Theorem 2.4.2 is along the line of Theorem 2.1 of Lai and

Siegmund (1983) with appropriate conditional probability measures. Theorem 2.4.2

provides a uniform asymptotic normality result given the starting time l. That is,

based on the uniformity result of (2.28), the sequential leveraging sampling estab-

lishes a uni�ed approach for the estimation of β regardless of whether |β| < 1 or

|β| = 1, which provides a strong large sample result.
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2.4.2 Sequential Leveraging for AR(p) Series

In this section, we consider the uniform asymptotic normality properties of SLS least

square estimate that is eligible for both the stable and the unstable AR(p) processes.

We use the conditions proposed in Galtchouk and Konev (2011) to de�ne the unstable

region for the AR(p) processes.

Condition 1. Parameter β = (β1, β2, . . . , βp)
T satis�es that all roots λi = λi(β) of

the characteristic polynomial (2.10) lie inside or on the unit circle, which indicates

stable or unstable AR(p) processes.

Condition 2. The unit roots {λi = λi(β) : |λi(β)| = 1,β ∈ Rp, i = 1, . . . , p} are real

numbers.

Condition 3. The system of linear equations with respect to Y1, Y2, . . . , Yp−1


Y1 = β1 +

∑p
i=2 βiYi−1

Yj = βj +
∑j−1

k=1 βj−k +
∑p−j

k=1 βk+jYk, 2 ≤ j ≤ p− 1

(2.29)

has a unique solution (Y1, . . . , Yp−1) denoted as Yi = κi(β), 1 ≤ i ≤ p−1, so that the

transformation matrix is positive de�nite

L(β) =



1 κ1(β) κ2(β) · · · κp−1(β)

κ1(β) 1 κ1(β) · · · κp−2(β)

...
...

...
. . .

...

κp−1(β) κp−2(β) · · · κ1(β) 1


. (2.30)

We denote Λp as all β's satisfying Condition 1 as previously de�ned, which in-
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cludes the stable and unstable cases. We denote Λ̌p as all β's satisfying both Con-

ditions 1 and 2, which excludes the complex unit roots. Whereas the AR processes

with complex unit roots have a persistent cyclical behavior (Bierens, 2001). Lastly,

we denote Λ̃p as all β's satisfying Conditions 1,2 and 3, which further excludes the

some extreme cases such as the �rst lag coe�cient β1 = 0.

Now we establish the main result of this section, which provides the uniform

asymptotic normality of the SLS estimator βτc .

Theorem 2.4.3. Let β̂τc be the least squares estimate of β based on design ma-

trix (2.18), τc de�ned in (2.17) and Vτc,β = (ΓT
τcΓτc)

1/2(β̂τc − β). Assume that

β satis�es Conditions 1, 2 and 3. If εl, εl+1, . . . , are i.i.d. with mean 0 and vari-

ance σ2, and the sequence {εi : i ≥ l} is independent of the starting state zl =

(Xl−1, . . . , Xl−p)
T de�ned in Algorithm 2, then

lim
c→∞

sup
β∈K

sup
x∈Rp

∣∣FVτc,β
(x)−Φ(x/σ)

∣∣ = 0, (2.31)

for any compact set K ⊂ Λ̃p.

With the result of Theorem 2.4.3, the following theorem can be proved easily,

which is omitted.

Theorem 2.4.4. Let β̂τc be the least squares estimate of β based on design ma-

trix (2.18) and τc de�ned in (2.17). Assume that β satis�es Conditions 1, 2 and 3.

If εl, εl+1, . . . , are i.i.d. with mean 0 and variance σ2, and the sequence {εi : i ≥ l} is

32



independent of the starting state zl = (Xl−1, . . . , Xl−p)
T de�ned in Algorithm 2, then

1

σ2
(β̂τc − β)T (ΓT

τcΓτc)(β̂τc − β) −→ χ2
p, as c→∞, (2.32)

uniformly in β ∈ K for any compact set K ⊂ Λ̃p.

Based on Theorem 2.4.4, for any d > 0, let

Rn = {β : (β − β̂n)T (ΓT
nΓn)(β − β̂n) ≤ d2tr(ΓT

nΓn)}, (2.33)

where tr(ΓT
nΓn) is the trace of observed Fisher information matrix Jn = ΓT

nΓn. The

ellipsoid de�ned by Rn has length of the major axis of 2d, which is in the sense that

the size of the ellipsoid is �xed. Now, given any α ∈ (0, 1), we de�ne

n0(d) =
⌈
σ2a2/[d2tr(Eβ(ΓT

nΓn))]
⌉
, (2.34)

where d·e is the ceiling function, which maps a real number to the least succeeding

integer, and a2 satis�es P[χ2
2 ≤ a2] = 1− α, then we have

lim
d→0

P
(
β ∈ Rn0(d)

)
= 1− α. (2.35)

In practice, we use the sequential stopping rule in (2.17) to determine the stopping

time τc instead of n0(d) in (2.34) since n0(d) depends on the unknown parameters,

where c = σ2a2/d2.

The next proposition follows immediately from Theorem 2.4.4, which provides
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the con�dence region of our SLS estimators β̂τc .

Proposition 2.4.5. Let β̂τc be the least squares estimate of β ∈ Λp based on design

matrix (2.18) and τc de�ned in (2.17). If εl, εl+1, . . . , are i.i.d. with mean 0 and

variance σ2, and the sequence {εi : i ≥ l} is independent of the starting state zl =

(Xl−1, . . . , Xl−p)
T de�ned in Algorithm 2, then

lim
d→0

sup
β∈K

P
(
β ∈ Rτc(d)

)
= 1− α, (2.36)

where Rτc(d) = {β : (β − β̂τc(d))
T (ΓT

τc(d)Γτc(d))(β − β̂τc(d)) ≤ d2tr(ΓT
τc(d)Γτc(d))}.

Proposition 2.4.5 provides a �xed width con�dence region of the SLS estimate of

β ∈ Λp.

2.5 Simulation Studies

In this section, we demonstrate the empirical performance of the SLS method for the

streaming AR(1) and AR(2) data. To verify the asymptotic normality results from

Section 2.4, we present comprehensive simulation studies for the synthetic streaming

AR(1) and AR(2) time series with various parameter settings.

2.5.1 AR(1) Series

Model speci�cation. We present some simulation studies to illustrate the validity

of the asymptotic normality result stated in Theorem 2.4.2. We generate the data

stream from an AR(1) model with �ve di�erent values of β gradually changing from
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stable to unstable cases, i.e., β = 0.2, 0.5, 0.9, 0.99, 1. The innovations are generated

from t-distribution with 4 degrees of freedom. We collect a pilot subsample of size

n0 = 50, and compute K =
∑n0

i=1X
2
i−1. We choose the value of γ so that the

independent Bernoulli trial success probability πj = X2
j−1/γK is close to the leverage

score hjj computed using 100, 000 (additionally) simulated values from an AR(1)

series. For the AR(1) model, the leverage scores are hii = X2
i−1/

∑N
i=2X

2
i−1 ∈ [0, 1],

i = 2, . . . , N for a �xed sample size N . The values of information threshold c are

reported in Table 2.1. There are 1, 000 replications for each setting of the parameter,

i.e. nrep = 1000.

Figure 2.3: AR(1) synthetic data with β = 1. MSPE (left) and bias2 (right) of
AR(1) model on the test data for SLS (solid) and uniform subsample (dashed) at
di�erent information threshold c levels.

Assessment criteria. We follow Algorithm 2 and the stopping rule in (2.19) with

information threshold c to collect a SLS block {Xl, . . . , Xτc} from the respective

streaming time series. The assessment of the parameter estimation based on Theo-

rem 2.4.2 consists of computing frequency count of the number of times the normal-

ized estimator,
√∑τc

i=lX
2
i−1

(
β̂τc − β

)
/σ > z or

√∑τc
i=lX

2
i−1

(
β̂τc − β

)
/σ < −z

35



for standard normal quantiles z, where σ is the standard deviation of the inno-

vation ε. In Table 2.1, we set z = 1.28, for which the (one-tailed) probabilities

are nominally pr = pl = 0.10. We also carry out simulation studies for other

values of z but do not report it here. In addition, we assess the prediction er-

ror based on the parameter estimation using the mean squared prediction error,

MSPE = 1
nrep

∑nrep
i=1 ||Γtestβ̂i − xtest||2, and the corresponding squared prediction

bias, bias2 = || 1
nrep

∑nrep
i=1 (Γtestβ̂i−xtest)||2, on the additional test data xtest of length

2, 000.

Comparison of methods. Table 2.1 summarizes the simulation results. In Ta-

ble 2.1, �Uniform Sequential Sampling� refers to sequential sampling with starting

points chosen randomly with equal probability (Bernoulli trials with equal probabil-

ity), and �Fixed Length Sampling� refers to �xed subsample size sampling starting

at t = n0 + 1. By comparing with uniform sequential sampling, we demonstrate the

advantage of leverage-based independent Bernoulli trials for choosing the starting

points as an online algorithm; while by comparing with the �xed length sampling,

we illustrate the e�ciency of the SLS method.

Discussion. Table 2.1 shows that for each value of β, the SLS performs as well

or better than other methods, and the �xed length sampling is even worse especially

for |β| near 1. It is important to note from Table 2.1 we see that the average

sequential subsample size, EβNc, is signi�cantly smaller for the SLS block than that

of the uniform sequential sampling. It demonstrates the e�ciency of the SLS from

the perspective of subsample size. For each setting of β, the case that has smaller

average subsample size has been highlighted in column EβNc. Nevertheless, the SLS
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yields the same or more accurate right and left tail estimated probabilities (p̂r and

p̂l) than those of the uniform sequential sampling and the �xed length sampling.

In terms of prediction error, results of MSPE and bias2 also demonstrate that our

SLS method outperforms the uniform sequential sampling, where Figure 2.3 shows

a particular case when β = 1 with six increasing values of c.
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Table 2.1: Sequential Leveraging Sampling of AR(1) with Varying
Information Threshold c

No. β c p̂r p̂l EβNc sdβ(Nc)

SLS

(Online)

1 0.2 500 0.09 0.09 235.76 55.55

2 0.5 800 0.12 0.10 291.61 70.36

3 0.9 3500 0.12 0.08 328.68 98.52

4 0.99 20000 0.12 0.11 236.42 158.31

5 1 1.5×106 0.09 0.10 146.66 336.59

6 1 2.8×106 0.09 0.11 209.93 477.19

Uniform

Sequential

Sampling

(Online)

1 0.2 500 0.11 0.10 248.50 47.70

2 0.5 800 0.09 0.11 309.73 55.91

3 0.9 3500 0.09 0.10 348.39 89.15

4 0.99 20000 0.10 0.11 277.28 153.74

5 1 1.5×106 0.08 0.09 450.06 731.46

6 1 2.8×106 0.11 0.12 643.22 1018.08

No. β c p̂r p̂l N

Fixed

Length

Sampling

(O�ine)

1 0.2 500 0.09 0.11 236

2 0.5 800 0.10 0.10 292

3 0.9 3500 0.08 0.11 329

4 0.99 20000 0.04 0.15 236

5 1 1.5×106 0.08 0.11 146

6 1 2.8×106 0.08 0.13 210

NOTE: The columns p̂r and p̂l give the estimated percentage of excesses

in the right and left tails of the distributions. The columns EβNc and

sdβ(Nc) report the average and standard deviation of the subsample size,

respectively. The case that has smaller average subsample size in each

setting has been highlighted in column EβNc.
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2.5.2 AR(2) Series

Model speci�cation. The simulation studies for the AR(2) streaming data are re-

ported in Table 2.2 to check whether the asymptotic normality result proposed in

Theorem 2.4.3 and Theorem 2.4.4 are valid. We generate the data stream from

an AR(2) model with 14 di�erent values of β that cover various stable and un-

stable cases (See Figure 2.4, the Nos. 1, 4, 5, 8, 11 and 12 are stable cases, while

Nos. 2, 3, 6, 7, 9, 10, 13 and 14 are unstable cases). The innovations are generated

from t (df = 4) distribution. We collect the pilot subsample of size n0 = 50, and

compute K =
∑n0

i=1(X2
i−1 + X2

i−2). We choose the value of γ carefully so that the

independent Bernoulli trial success probability πj =
X2
j−1+X2

j−2

γK
is approximated to

the exact leverage scores hjj computed by simulating additionally 50, 000 values from

an AR(2) series. For the AR(2) model, it can be shown that the leverage scores are:

hii =
X2
i−1

∑
X2
i−2 − 2Xi−1Xi−2

∑
Xi−1Xi−2 +X2

i−2

∑
X2
i−1∑

X2
i−2

∑
X2
i−1 − (

∑
Xi−1Xi−2)2

≈
X2
i−1 +X2

i−2

γ
∑n0

i=1(X2
i−1 +X2

i−2)

(2.37)

with a scale parameter γ > 0 and i = 2, . . . , N for a �xed sample size N . There are

1, 000 replications for each β and c, i.e. nrep = 1000.

Table 2.2 summarizes the simulation results, where the notation is the same as

the AR(1) case. The parameter setting of β is denoted in column �No.� of Table 2.2

and Figure 2.4 correspondingly. The stable region of the AR(2) process is inside the

triangular area in Figure 2.4, and the boundary −2 < β1 < 2, β2 = −1 (the bottom

side (blue) of the triangle in Figure 2.4) de�nes the unstable region that satis�es

Condition 1 - 3.
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Figure 2.4: An Illustration of Simulation Cases in Table 2.2 on Di�erent Region for
the AR(2) process. The stable AR(2) process requires that the roots of (2.10) have
to be inside the triangle, while the unstable cases are on the boundary of the triangle.
Particularly, the Nos. 1, 4, 5, 8, 11 and 12 are stable cases, while Nos. 2, 3, 6, 7, 9, 10, 13
and 14 are unstable cases.

Assessment criteria. We follow Algorithm 2 and the stopping rule in (2.17) with

respective information threshold c to take a SLS block {Xl, . . . , Xτc} from the corre-

sponding streaming time series. Instead of measuring the multidimensional asymp-

totic normality of (ΓT
τcΓτc)

1/2(β̂τc − β), we transform the quantity of interest into

1
σ2 (β̂τc − β)T (ΓT

τcΓτc)(β̂τc − β), which converges to chi-squared distribution with 2

degrees of freedom (χ2(df = 2)) asymptotically. The closeness between distributions

of 1
σ2 (β̂τc − β)T (ΓT

τcΓτc)(β̂τc − β) and χ2(df = 2) distribution is measured through

Kullback-Leibler divergence and tail probability coverages. The Kullback-Leibler
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(KL) divergence of distribution Q from distribution P is de�ned as the integral∫∞
−∞ p(x) log p(x)

q(x)
dx, where p and q denote the densities of P and Q. In addition, we

assess the �tted error based on the parameter estimation using the MSPE and the

corresponding bias2 on an additional test data xtest of length 2, 000.
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Table 2.2: Sequential Leveraging Sampling of AR(2) with Varying Infor-
mation Threshold c

No. β1 β2 c KL EβNc sdβ(Nc)

SLS
(Online)

1 -0.50 -0.50 1000 0.96 165.79 44.07
2 -0.50 0.49 19000 0.98 112.22 107.43
3 -1.00 -0.01 30000 1.07 88.39 85.46
4 -1.00 -0.50 1000 1.07 105.41 33.76
5 -1.00 -0.99 35000 0.97 135.83 102.01
6 -1.00 -1.00 1500000 1.01 355.98 373.51
7 -1.49 -0.50 40000 0.99 86.07 71.26
8 0.50 -0.50 600 0.97 102.23 31.32
9 0.50 0.49 18000 0.98 137.94 126.94
10 1.00 -0.01 18000 1.08 69.90 72.16
11 1.00 -0.50 2900 1.05 298.38 67.30
12 1.00 -0.99 29000 1.06 108.92 85.93
13 1.00 -1.00 780000 0.97 321.35 314.85
14 1.49 -0.50 50000 1.03 140.37 92.25

Uniform
Sequential
Sampling
(Online)

1 -0.50 -0.50 1000 1.13 174.28 41.66
2 -0.50 0.49 19000 0.97 232.61 143.09
3 -1.00 -0.01 30000 1.08 219.89 139.61
4 -1.00 -0.50 1000 1.09 111.37 31.18
5 -1.00 -0.99 35000 1.06 192.68 116.93
6 -1.00 -1.00 1500000 1.19 105.66 297.47
7 -1.49 -0.50 40000 1.07 146.35 85.37
8 0.50 -0.50 600 1.09 105.56 29.62
9 0.50 0.49 18000 1.03 215.54 143.16
10 1.00 -0.01 18000 1.08 148.40 98.40
11 1.00 -0.50 2900 1.09 310.02 66.22
12 1.00 -0.99 29000 1.10 159.23 101.52
13 1.00 -1.00 780000 1.12 97.30 210.69
14 1.49 -0.50 50000 1.05 173.28 90.87
No. β1 β2 c KL N

Fixed
Length
Sampling
(O�ine)

1 -0.50 -0.50 1000 1.05 166
2 -0.50 0.49 19000 1.06 112
3 -1.00 -0.01 30000 1.14 88
4 -1.00 -0.50 1000 1.02 105
5 -1.00 -0.99 35000 1.09 136
6 -1.00 -1.00 1500000 1.02 356
7 -1.49 -0.50 40000 0.98 86
8 0.50 -0.50 600 0.94 102
9 0.50 0.49 18000 1.08 138
10 1.00 -0.01 18000 0.98 70
11 1.00 -0.50 2900 1.08 298
12 1.00 -0.99 29000 1.04 109
13 1.00 -1.00 780000 1.02 321
14 1.49 -0.50 50000 1.00 140

NOTE: The values of β for the AR(2) model that cover various stable and un-

stable cases (See Figure 2.4, the Nos. 1, 4, 5, 8, 11 and 12 are stable cases, while

Nos. 2, 3, 6, 7, 9, 10, 13 and 14 are unstable cases). The column KL reports the

Kullback-Leibler divergence of distributions of 1
σ2 (β̂τc −β)

T (ΓTτcΓτc)(β̂τc −β)
from the χ2(df = 2) distributions. The case that has smaller Kullback-Leibler

divergence has been highlighted in column KL. The columns EβNc and

sdβ(Nc) report average and standard deviation of sequential subsample size

Nc, respectively. The case that has smaller average subsample size in each

setting has been highlighted in column EβNc.
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Discussion. Table 2.2 shows that, for most of the settings of β, the SLS out-

performs uniform sequential sampling and �xed length sampling no matter β is

in the stable or unstable region. The KL divergence of our method is smaller

than or as good as other methods. In most settings of β, the distributions of

1
σ2 (β̂τc − β)T (ΓT

τcΓτc)(β̂τc − β) is closer to theoretical value of χ2(df = 2) distri-

butions than other two methods. It is important to note from Table 2.2 that the

average sequential subsample size, EβNc, is signi�cantly smaller for the SLS (as we

highlighted) than that of the uniform sequential sampling for most of the cases. The

saving of subsample size for the sequential leveraging sampling, i.e. the e�ciency of

SLS, is especially obvious when the processes come from the unstable region. The

standard deviation, sdβ(Nc), of subsample size is, in most cases, also smaller for the

SLS than that of the uniform sequential sampling. Similarly, results of MSPE and

bias2 shown in Figure 2.5 demonstrate that, as an example, when β1 = 1, β2 = −1

with 14 increasing values of c, our SLS method outperforms the uniform sequential

sampling in prediction error.

2.6 Real Data Analysis

In this section, we apply the SLS method to two real data sets, the Internet tra�c

data from Cortez et al. (2012) and the seismic data from Chen et al. (2016). We

treat the two datasets as if they are streaming time series data for demonstration

purpose even though all the observations are available. Such treatment is reasonable

because Internet tra�c and seismic wave are data streams in real world application
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Figure 2.5: AR(2) synthetic data with β1 = β2 = −1. MSPE (left) and bias2 (right)
of AR(2) model on the test data for SLS (solid) and uniform subsample (dashed) at
di�erent information threshold c levels.

and are usually analyzed in an online fashion.

2.6.1 Internet Tra�c Data

For data demonstrated in Example 2.1.1, detrending seasonality is needed so that

we have an unstable or stable streaming time series satisfying Conditions 1, 2 and

3 in Section 2.4.2. To get rid of possible complex unit roots speci�ed in Condition

2, we need to remove the possible cyclical part caused by seasonality. Based on the

information collected in the pilot subsample, seasonal di�erencing is applied in real

time to remove the daily and weekly seasonality, resulting in a time series of length

17, 584 (See Figure 2.1). Since the network tra�c appears unstable at multi-second
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time scales (Karagiannis et al., 2004), the uniformity of our SLS method is well suited

for the Internet tra�c stream. We focus on the estimation of the �rst order partial

autocorrelation. and thus �t the AR(1) model. We partition the Internet tra�c data

into training set and test set. The training set, which contains the �rst 15, 584 time

points, is used to estimate the model parameter β through our SLS method and the

uniform sequential sampling method. The test set, which contains the last 2, 000

time points, is used to evaluate the estimation accuracy via the prediction errors.

We perform the SLS method for the AR(1) model 200 times to get sketches of

the stream with γ = 2 and n0 = 100. We choose 11 di�erent values of information

threshold c ranging from 1.4 × 109 to 2 × 1010. The starting points of SLS blocks

spread out the stream due to the independent Bernoulli random starting mechanism.

The right panel of Figure 2.6 shows the histogram of the SLS estimates of the AR(1)

parameter. We observe that most of the estimates of the AR(1) parameter are

around the neighborhood of 1. This is consistent with fact of the nonstationarity of

the network tra�c (Cao et al., 2001; Cortez et al., 2012; Leland et al., 1993).

The prediction error on test data is used to evaluate the empirical performance of

the SLS method. In the Internet tra�c data, we focus on predicting the future value

based on observed data so that we can monitor the Internet tra�c and detect the

possible threat in real time. To evaluate the accuracy of our parameter estimation,

we calculate the MSPE and bias2 on the test data with nrep = 200 replicates.

As illustrated in Section 2.5, the MSPE and bias2 on test data have similar trends

as the parameter estimation, which can be used as a valid performance assessment of

sampling methods. In Figure 2.6, the MSPE and bias2 of SLS method are consistently
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lower than those of the uniform sequential sampling. The average subsample size

for SLS blocks is 518.3 with standard deviation 349.7, which is much smaller than

the corresponding average (standard deviation) subsample size 1616.1(1450.7) for

uniform sequential sampling. We see that our SLS method outperforms the uniform

sampling with higher prediction accuracy and smaller subsample size.

Figure 2.6: Internet Tra�c Data. MSPE (left) and bias2 (middle) of AR(1) model
on the test data for SLS (solid) and uniform subsample (dashed) at di�erent informa-
tion threshold c levels. Right: Histogram of the AR(1) model parameter estimation
for SLS method.

2.6.2 Seismic Data

Seismic data is the recording of earth motion as a function of time that provides

the �time snapshot� of subsurface structure. Seismic waves have been continuously

recorded since the early 20th century with high acquisition frequency. In exploration

geophysics, seismic data is usually continuously acquired every 1 to 4 milliseconds,

i.e. 1000 to 250 Hz frequency respectively, and is continuously recorded (Yilmaz,

2001), which results in a huge quantity of data. That amount of data is beyond
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the current storage capability for most of the mobile or personal computing devices.

Thus, seismic data is naturally treated as streaming time series data in the �eld

works, which needs to utilize the online algorithms for collecting and processing data

samples. An e�cient sampling algorithm that can automatically capture possible

seismic events or ambient vibrations is preferred over the simple uniform sampling.

The seismic data can be modeled as an AR(p) process and the model parameter

Figure 2.7: An illustration of streaming seismic data that has one seismic event. Top:
Scatter plot of the seismic data (solid line). Bottom: Corresponding leverage scores
for the AR(4) model (dash-dot line). As an example, the highlighted area indicates
one of the 100 SLS blocks.

β can help us understand the properties of earthquake source and seismic wave

prorogation. The model parameter β is mainly in�uenced by the earthquake focal

mechanisms and the seismic wave propagation (Isacks and Molnar, 1971; Gephart

and Forsyth, 1984). Thus the estimation of model parameter is essential in the
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analysis of seismic data. However, in the geophysics community, the AR model

and parameter estimation are rarely used under the current data acquisition system.

With large sample size, high acquisition frequency and possible high dimensionality

of the model, the computational cost of analyzing such seismic data is very high.

Especially in the �eld, the real time analysis is required but computing power of the

portable battery powered device is limited. The sampling method thus is needed to

reduce the sample size as well as keep the parameter estimation accuracy. Due to the

nature of seismic data, the �rst few autoregressive parameters is mainly determined

by the seismic events, such as the earthquakes and ambient vibrations. In order to

capture the seismic events in the subsamples, the leverage-based sampling approach

is preferred here.

The seismic data analyzed in this section was well-recorded earthquake sequences

(wave amplitude, mm/s) in Oklahoma that were collected on October 26, 2014. We

refer Chen et al. (2016) for details of the seismic data. The total sample size for the

earthquake sequence is 16, 000. The seismic data is modeled as an AR(p) process

with p chosen to be 4 (p = 4). From Figure 2.7 , the plot of leverage scores of the

seismic data (lower part, dash-dot line), we observe that the one seismic event is

clearly illustrated by the picks. The starting point sampling probability constructed

based on leverage scores will boost the sequential leveraging method to capture the

seismic events.

In our analysis, we treated the seismic data as streaming time series and divided

the data into training set and test set. The training set, which contains the �rst

14, 000 time points, is used to estimate the model parameters using our online se-
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quential leveraging sampling method and the uniform sequential sampling method.

The uniform sequential sampling refers to sequential sampling with starting points

chosen randomly with equal probability (Bernoulli trials with equal probability). The

test set, which contains the last 2000 time points, is used to evaluate the estimation

accuracy via the prediction errors.

We perform the SLS method for the AR(4) model 100 times to get sketches of

the seismic stream with γ = 50, 000 and n0 = 200. There are 11 di�erent values,

ranging from 1.2 × 103 to 2.5 × 103, of information threshold c evaluated, and each

setting of c is calculated with nrep = 100 independent replicates. The SLS results are

demonstrated in the Figure 2.8 comparing with uniform sequential sampling, where

the MSPE and bias2 are plotted.

The MSPE and bias2 (Figure 2.8) of the SLS method are consistently lower

than those of the uniform sequential sampling at all information threshold levels.

The average subsample size for SLS blocks is 328.5 with the standard deviation

156.5, which is much smaller than the corresponding average (standard deviation)

subsample size 1560.3 (1448.4) for uniform sequential sampling. We see that our

SLS method outperforms the uniform sampling with higher prediction accuracy and

smaller subsample size.

2.7 Summary

In this article, we present an online sampling method, the Sequential Leveraging

Sampling (SLS), for streaming time series data. The SLS takes one block of consec-
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Figure 2.8: Seismic Data. MSPE (left) and bias2 (right) of AR(4) model on the
test data for SLS (solid) and uniform subsample (dashed) at di�erent information
threshold c levels.

utive time points, called SLS block, as a subsample/snapshot of the streaming data,

which maintains the dependence structure of the subsampled data. The sampling

algorithm consists of choices of starting time and stopping time. The starting time

of the subsample is decided according to leverage scores of the streaming data, which

captures the in�uential time points of the data stream. The stopping time is chosen

according to the sequential stopping rule, which provides the theoretical guarantee of

estimate properties of the time series model base on the SLS block. The simulation

and real data analysis reveal that our method is capable of processing the streaming

times series data in real time.

The proposed SLS method establishes an example of using leverage scores as
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importance sampling distribution in dependent data. It provides an e�cient and

accuracy alternative to the simple uniform sampling for time series data. The algo-

rithm design of the SLS method and its empirical performance in saving sequential

subsample size also demonstrate the advantage of our method in an online analysis

for streaming data. As a natural generalization, the SLS can be applied to multi-

variate time series model and varying coe�cient AR model (Rao, 1970; Hallin, 1978;

Dahlhaus et al., 1997; Dahlhaus and Giraitis, 1998; Tiao and Tsay, 1989). The idea

of the leverage-based importance sampling can also be extended into the analysis of

massive dependent data, for example, spatial or spatio-temporal data. The leverage-

based method also has the potential to be incorporated into the study of complex

data including nonparametric regression, kernel learning or matrix approximation

problems.
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2.8 Proofs of Theorem

Lemma 2.8.1 states the martingale central limit theorem from (Freedman, 1971,

pages 90− 92) and (Lai and Siegmund, 1983, Lemma 2.1).

Lemma 2.8.1. Let {uj,Fj, j ≥ 0} be a martingale di�erence sequence, and for

0 < ζ < 1 and r > 0, if

|uj| ≤ ζ for all j (2.38)

and

P

(
∞∑
j=1

E(u2
j |Fj−1) > r

)
= 1, (2.39)

let

τ = inf{j :

j∑
i=1

E(u2
i |Fi−1) ≥ r}, (2.40)

then there exists a function ρ : (0,∞)→ [0, 2] that is independent on the distribution

of the martingale di�erence sequence, such that limx→0 ρ(x) = 0 and

sup
x
|P(

τ∑
i=1

ui ≤ x)− Φ(x/r1/2)| ≤ ρ(ζ/r1/2), (2.41)

where Φ is the standard normal distribution function.

Lemma 2.8.2 (Lai and Siegmund, 1983, Lemma 2.2) states that the martingale∑τc
j=lXj−1εj is bounded above, which provides a connection between Lemma 2.4.1

and Theorem 2.4.2.
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Lemma 2.8.2. Provided that the assumptions (2.20) and (2.22) hold, for every

κ > 1/2, δ > 0, and a sequence of increasing positive number cτ →∞, we have

sup
β

Pβ

(
|

τ∑
i=l

Xi−1εi| ≥ δmax(cτ , (
τ∑
i=l

X2
i−1)κ) for some τ ≥ m

)
→ 0, (2.42)

as m→∞.

2.8.1 Proof of Lemma 2.4.1

Proof

We prove the Lemma by reducing it to martingale central limit theorem as stated

in Lemma 2.8.1. Without loss of generality, we assume that Eβε2
l = 1. To construct

the bounded martingale di�erence sequence, we de�ne a bounded sequence {X̃t :

X̃2
t = min{X2

t , δ
2c}, 0 < δ < 1} and denote

Ωc = {Xt = X̃t for all l − 1 ≤ t < τc}, (2.43)

where τc is de�ned in (2.26). Then for all β,

Pβ

(
Xt 6= X̃t for some l − 1 ≤ t < τc

)
≤

m∑
i=l

Pβ(X2
i−1 > δ2c) + Pβ

{
τc > m,Xt 6= X̃t for some m ≤ t < τc

}
≤

m∑
i=l

Pβ(X2
i−1 > δ2c) + Pβ

{
X2
t ≥ δ2

t∑
i=l

X2
i for some m ≤ t

}
.

For arbitrary large number m, from condition (2.23), Pβ(τc <∞) = 1; given m large
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enough, by (2.25), choosing c large enough and use (2.24), we get, for all β ∈ [−1, 1],

Pβ(limc→∞ τc =∞) = 1 and

Pβ

(
Xt 6= X̃t for some l − 1 ≤ t < τc

)
< δ + δ = 2δ, (2.44)

or equivalently,

Pβ(Ωc) ≥ 1− 2δ. (2.45)

Now based on sequence {X̃t}, we de�ne ε̃t = εtI{|εt|≤δ−1/2} and further denote ε̄t =

εt− ε̃t, then by construction, c−1/2X̃t−1(ε̃t−Eβ ε̃t) is a bounded martingale di�erence

sequence for all t ≥ l

|c−1/2X̃t−1(ε̃t − Eβ ε̃t)| ≤ 2δ1/2. (2.46)

Moreover, by (2.23), we have

Pβ

(
∞∑
t=l

X̃2
t−1 =∞

∣∣∣Ft−1

)
= 1; (2.47)

and choosing δ small enough, by (2.21), we have

Varβ(ε̃t)→ 1 as δ → 0. (2.48)

Thus

Pβ

(
∞∑
t=l

Eβ
[
c−1/2X̃t−1(ε̃t − Eβ ε̃t)

∣∣∣Ft−1

]2

> Varβ(ε̃t)

)
= 1, (2.49)
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uniformly in β ∈ [−1, 1]. Now we are ready to apply Lemma 2.8.1, if

τc = inf{j ≥ l :

j∑
t=l

Eβ
[
c−1/2X̃t−1(ε̃t − Eβ ε̃t)

∣∣∣Ft−1

]2

≥ Varβ(ε̃t)}

= inf{j ≥ l :

j∑
t=l

X̃2
t−1 ≥ c},

then uniformly in β ∈ [−1, 1]

sup
β

sup
x∈R

∣∣∣∣∣Pβ

(
τc∑
t=l

c−1/2X̃t−1(ε̃t − Eβ ε̃t) ≤ x

)
− Φ

(
x/[Varβ(ε̃t)]

1/2
)∣∣∣∣∣

≤ ρ
(
2(δ/Varβ(ε̃t))

1/2
)
→ 0 as δ → 0.

(2.50)

Further more, by Wald's identity (Chow et al., 1971, page 23) and Equation (2.15)

of Lai and Siegmund (1983) , we can establish the relation between
∑τc

t=l c
−1/2X̃t−1(ε̃t−

Eβ ε̃t) and
∑τc

j=lXj−1εj on Ωc

c−1/2

∣∣∣∣∣
τc∑
t=l

X̃t−1(ε̃t − Eβ ε̃t)−
τc∑
j=l

Xj−1εj

∣∣∣∣∣ = c−1/2

∣∣∣∣∣
τc∑
t=l

X̃t−1(ε̄t − Eβ ε̄t)

∣∣∣∣∣→ 0 (2.51)

as δ → 0. Hence the Lemma follows. �

2.8.2 Proof of Theorem 2.4.2

Proof The proof of Theorem 2.4.2 follows from Lemma 2.4.1. Now we need to

verify the conditions (2.20)∼(2.25). Under the AR(1) model with β ∈ [−1, 1], it is

easy to verify all the conditions of Lemma 2.4.1 except (2.25). The condition (2.25)

provides a upper bound δ for the leverage score of the data point in the streaming
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AR(1) sereis. We start from the AR(1) model in sequential leveraging subsample

Xi = βXi−1 + εi, i = l, l + 1, · · · . Without loss of generality, we assume that

Eβε2
l = 1. By squaring and summing up to some time point j, we get

X2
j + (1− β2)

j∑
i=l

X2
i−1 −X2

l−1 =

j∑
i=l

ε2
i + 2β

j∑
i=l

Xi−1εi. (2.52)

Note that |β| ≤ 1 and let 0 < λ < σ2/4, then according to Lemma 2.8.2, we de�ne

Ωm,λ =

{∣∣∣∣∣
∑j

i=l ε
2
i

j − l
− σ2

∣∣∣∣∣ < λ,

∣∣∣∣∣
j∑
i=l

Xi−1εi

∣∣∣∣∣ < max
[
λ(j − l), (

j∑
i=l

X2
i−1)2/3

]
for all j ≥ m+ l

}
.

(2.53)

On Ωm,λ if j ≥ m+ l and X2
j ≤ λ(j − l), then (2.52) suggests

j∑
i=l

X2
i−1 ≥ (σ2 − λ)(j − l)− λ(j − l)− 2 max(λ(j − l), (

j∑
i=l

X2
i−1)2/3) (2.54)

and so for all m su�ciently large

2

j∑
i=l

X2
i−1 ≥ (σ2 − 4λ)(j − l) ≥ (σ2λ−1 − 4)X2

j . (2.55)

Note that |Xj−1| ≥ |βXj−1| ≥ |Xj| − |εj|, then

min
1≤t≤k−l+1

|Xj−t| ≥ |Xj| −
k−l∑
t=0

|εj−t| ≥ |Xj|{1−
k−l∑
t=0

|εj−t|/[λ(j − l)]1/2}; (2.56)
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if X2
j ≥ λ(j − l), then j ≥ k implies

j∑
i=l

X2
i−1/X

2
j ≥ (k − l)

[
1−

k−l∑
t=0

|εj−t|/(λ(j − l))1/2

]2

; (2.57)

note that
∑k−l

t=0 |εj−t|, j = k, k+1, . . . are identically distributed with �nite variance,

thus we have

lim
k→∞

P

∣∣∣∣∣∣(k − l)
[

1−
k−l∑
t=0

|εj−t|/[λ(j − l)]1/2
]2

− (k − l)

∣∣∣∣∣∣ < ε

 = 1, (2.58)

where the probability bound on the right hand side of (2.57) is free of the parameter β.

Now combine the results of (2.55) and (2.57) by choosing λ small so that 2/(σ2λ−4) <

ζ and k large so that k > 1/ζ + l, we have

sup
β

[
Pβ

(
X2
j ≥ ζ

j∑
i=l

X2
i−1 for some j ≥ m

)]
< sup

β

[
Pβ(Ωc

m,λ)
]
→ 0, (2.59)

as m→∞ based on the result of Lemma 2.8.2. Thus the condition (2.25) is veri�ed

and then Theorem 2.4.2 holds. �

2.8.3 Proof of Theorem 2.4.3

Proof

We have

Vτc = (ΓT
τcΓτc)

1/2(β̂τc − β) = (ΓT
τcΓτc)

−1/2ΓT
τcετc , (2.60)

where ετc = (εl, . . . , ετc)
T . Applying the transformation of coe�cients β using L(β)
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in (2.29) and de�ne

Yc =
1√
c
L−1/2(β)ΓTτcετc , (2.61)

and

Gτc = L−1/2(β)ΓT
τcΓτcL

−1/2(β). (2.62)

Then

Vτc =
√
c(ΓT

τcΓτc)
−1/2L1/2(β)Yc. (2.63)

The transformation has the property that

∣∣∣∣∣∣ 1√
c
L−1/2(β)(ΓT

τcΓτc)
1/2 − Ip

∣∣∣∣∣∣2 =
∣∣∣∣∣∣ 1√

c
G1/2
τc − Ip

∣∣∣∣∣∣2 ≤ ||c−1Gτc − Ip||2

≤ trL−1(β)||c−1ΓT
τcΓτc − L(β)||2, (2.64)

where Ip is the p× p identity matrix. Use Lemma 2.8.3, for any δ > 0, we get

lim
c→∞

sup
β∈K

Pβ
(
||
√
c(ΓT

τcΓτc)
−1/2L1/2(β)− Ip|| > δ

)
= 0, (2.65)

uniformly for β ∈ K for any compact set K ⊂ Λ̃p.

We shall �nd the limiting distribution of Vτc by showing that an arbitrary linear

combination of Yc, say vTYc has a limiting normal distribution for any v ∈ Rp with

||v|| = 1. Let

gi = vTL−1/2(β)zi,
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now we can de�ne an auxiliary sequential sampling rule similar to (2.19)

τ̃c = inf{t ≥ l :
t∑
i=l

g2
i ≥ c}. (2.66)

Then

vTYc =
1√
c
vTL−1/2(β)ΓTτcε =

1√
c

τc∑
i=l

giεi =
1√
c

τ̃c∑
i=l

giεi + ηc + ∆(c), (2.67)

where ∆(c) = 1√
c

(
glεlI{τc=l} − glεlI{τ̃c=l} + gτcετc + gτ̃cετ̃c

)
with ηc = 1√

c

∑τc−1
i=l giεi−

1√
c

∑τ̃c−1
i=l giεiI{τ̃c>l}. We need to show the uniform asymptotic normality

lim
c→∞

sup
β∈K

sup
x∈R
|Pβ(

1√
c

τ̃c∑
i=l

giεi ≤ x)− Φ(x)| = 0. (2.68)

and for any δ > 0 and any δ′ > 0

lim
c→∞

sup
β∈K

Pβ(|ηc| > δ) = 0, (2.69)

lim
c→∞

sup
β∈K

Pβ(|∆(c)| > δ′) = 0. (2.70)

The proof of (2.68) follows Lemma 2.4.1 through verifying conditions (2.20)

to (2.25). All conditions are trivially veri�ed except (2.25), that is, for each given

ζ > 0 and arbitrarily large number m > l

lim
m→∞

sup
β∈K

Pβ

(
g2
j+1 ≥ ζ

j∑
i=l

g2
i for some j ≥ m

)
= 0. (2.71)
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Since

j∑
i=l

g2
i =

j∑
i=l

vTL−1/2(β)ziz
T
i L
−1/2(β)v (2.72)

=

[
vTL−1/2(β)

(
1∑j

i=lX
2
i−1

ΓT
τcΓτc − L(β)

)
L−1/2(β)v + 1

]
j∑
i=l

X2
i−1,

(2.73)

we get

Pβ

(
g2
j+1 ≥ ζ

j∑
i=l

g2
i for some j ≥ m

)
≤ Pβ

(
||zj+1||2 ≥

ζ

ι

j∑
i=l

g2
i for some j ≥ m

)

= Pβ

(
||zj+1||2 ≥

ζ

ι

[
1 + vTL−1/2(β)

(
ΓT
j Γj∑j

i=lX
2
i−1

− L(β)

)
L−1/2(β)v

]
j∑
i=l

X2
i−1

for some j ≥ m

)

≤ Pβ

(
||zj+1||2 ≥

ζ

ι

[
1− ||vTL−1/2(β)||2

∣∣∣∣∣∣ ΓT
j Γj∑j

i=lX
2
i−1

− L(β)
∣∣∣∣∣∣] j∑

i=l

X2
i−1

for some j ≥ m

)

≤ Pβ

(
||zj+1||2 ≥

ζ

ι

[
1− ι

∣∣∣∣∣∣ ΓT
j Γj∑j

i=lX
2
i−1

− L(β)
∣∣∣∣∣∣] j∑

i=l

X2
i−1 for some j ≥ m

)

≤ Pβ

(∣∣∣∣∣∣ ΓT
j Γj∑j

i=lX
2
i−1

− L(β)
∣∣∣∣∣∣ ≥ 1

2ι
for some j ≥ m

)

+ Pβ

(
||zj+1||2 ≥

ζ

2ι

j∑
i=l

X2
i−1 for some j ≥ m

)
,

where ι = supβ∈K ||vTL−1/2(β)||2.
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By Lemma 4.1 of Galtchouk and Konev (2011), we have

lim
m→∞

sup
β∈K

Pβ

(
||zj+1||2 ≥

ζ

2ι

j∑
i=l

X2
i−1 for some j ≥ m

)
= 0; (2.74)

and by Lemma 4.3 of Galtchouk and Konev (2011), we have

lim
m→∞

sup
β∈K

Pβ

(∣∣∣∣∣∣ ΓT
j Γj∑j

i=lX
2
i−1

− L(β)
∣∣∣∣∣∣ ≥ 1

2ι
for some j ≥ m

)
= 0; (2.75)

thus the condition (2.71) holds.

With the result of (2.71) , we now show that based on stopping rule (2.66), for

any compact set K ⊂ Λ̃p and ∀ζ > 0

lim
m→∞

sup
β∈K

Pβ

(
g2
τ̃c ≥ ζ

τ̃c−1∑
i=l

g2
i

)
= 0. (2.76)

For arbitrarily large number m

sup
β∈K

Pβ

(
g2
τ̃c ≥ ζ

τ̃c−1∑
i=l

g2
i

)
≤ Pβ

(
g2
t ≥ ζ

t−1∑
i=l

g2
i for some t ≥ m

)
+ Pβ(τ̃c < m)

(2.77)

≤ Pβ

(
g2
t ≥ ζ

t−1∑
i=l

g2
i for some t ≥ m

)
+ I{(m−l)k>c} +

m∑
j=l

sup
β∈K

Pβ
(
||zj||2 ≥ k

)
.

(2.78)

The �rst term of the right hand side of (2.78) follows from (2.71), and the second

and the third terms hold for letting k → ∞ and c → ∞ (See details in proof of
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Lemma 2.8.3).

The proof of (2.69) starts from checking the variance of ηc, Eβη2
c . We now show

that η2
c is bounded from above uniformly for β ∈ K,

η2
c =

1

c

∣∣∣∣∣
τc−1∑
i=l

g2
i −

τ̃c−1∑
i=l

g2
i

∣∣∣∣∣ =
1

c

∣∣∣∣∣
τc−1∑
i=l

vTL−1/2(β)ziz
T
i L
−1/2(β)v −

τ̃c−1∑
i=l

g2
i

∣∣∣∣∣
=

1

c
vTL−1/2(β)

(
ΓT
τcΓτc∑τc−1

i=l X2
i−1

− L(β)

)
L−1/2(β)v

τc−1∑
i=l

X2
i−1 +

1

c

τc−1∑
i=l

X2
i−1 −

1

c

τ̃c−1∑
i=l

g2
i

≤ ι
∣∣∣∣∣∣ ΓT

τcΓτc∑τc−1
i=l X2

i−1

− L(β)
∣∣∣∣∣∣+

X2
τc−1∑τc−1

i=l X2
i−1

+
g2
τ̃c∑τ̃c−1

i=l g2
i

,

where ι = supβ∈K ||vTL−1/2(β)||2. By the result of (2.76) and Lemmas 2.8.3, 2.8.4,

we get the result of (2.69). Similarly, one can prove (2.70). With the results

of (2.68), (2.69) and (2.70), the Theorem 2.4.3 holds.�

2.8.4 More Lemmas

Lemma 2.8.3. Let {β̂τc , τc ≥ p+1} be the least squares estimate of β based on design

matrix (2.18), L(β) de�ned in (2.30) and τc de�ned in (2.17). Let Xt, εt be random

variables adapted to the increasing sequence of σ-algebras Ft, t = . . . , l−1, l, l+1, . . ..

If εl, εl+1, . . . , are i.i.d. with mean 0 and variance σ2, and the sequence {εi : i ≥ l} is

independent of the starting state zl = (Xl−1, . . . , Xl−p)
T de�ned in Algorithm 2, then

given Fl−1, uniformly in β ∈ K for any compact set K ⊂ Λ̌p de�ned in Section 2.4.2,

for any δ > 0, we have

lim
c→∞

sup
β∈K

Pβ

(∣∣∣∣∣∣ΓT
τcΓτc

c
− L(β)

∣∣∣∣∣∣ > δ

)
= 0. (2.79)
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Proof By rearranging the terms of interest, we build connection to Lemma 4.3

of Galtchouk and Konev (2011), since

∣∣∣∣∣∣ΓT
τcΓτc

c
− L(β)

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣ ΓT
τcΓτc∑τc
i=lX

2
i−1

− L(β)
∣∣∣∣∣∣+
||ΓT

τcΓτc ||
c

−
||ΓT

τcΓτc ||∑τc
i=lX

2
i−1

We have

Pβ

(∣∣∣∣∣∣ΓT
τcΓτc

c
− L(β)

∣∣∣∣∣∣ > δ

)
≤ Pβ

(∣∣∣∣∣∣ ΓT
τcΓτc∑τc
i=lX

2
i−1

− L(β)
∣∣∣∣∣∣ > δ

2

)

+ Pβ

(
1

c

||ΓT
τcΓτc||∑τc
i=lX

2
i−1

(
τc∑
i=l

X2
i−1 − c) >

δ

2

)
.

(2.80)

The �rst term of the right hand side of (2.80) can be decomposed as

Pβ

(∣∣∣∣∣∣ ΓT
τcΓτc∑τc
i=lX

2
i−1

− L(β)
∣∣∣∣∣∣ > δ

2

)

≤ Pβ(τc < m) + Pβ

(∣∣∣∣∣∣ ΓT
t Γt∑t

i=lX
2
i−1

− L(β)
∣∣∣∣∣∣ > δ

2
for some t ≥ m

)
,

similarly, the second term of the right hand side of (2.80) can be written as

Pβ

(
1

c

||ΓT
τcΓτc||∑τc
i=lX

2
i−1

(
τc∑
i=l

X2
i−1 − c) >

δ

2

)

≤ Pβ(τc < m) + Pβ

(
||ΓT

t Γt||∑t
i=lX

2
i−1

X2
i−1∑t

i=lX
2
i−1

>
δ

2
for some t ≥ m

)
.
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By the de�nition of τc (2.17), we have

Pβ(τc < m) = Pβ(
m∑
i=l

||zi||2 > c)

= Pβ(
m∑
i=l

||zi||2 > c, max
l≤j≤m

||zj||2 < k) + Pβ(
m∑
i=l

||zi||2 > c, max
l≤j≤m

||zj||2 ≥ k)

≤ Pβ[(m− l)k > c] +
m∑
i=l

Pβ(||zi||2 ≥ k).

By decomposition ||ΓT
t Γt||/

∑t
i=lX

2
i−1 ≤ ||ΓT

t Γt/
∑t

i=lX
2
i−1 − L(β)|| + ||L(β)||, we

have

Pβ

(
||ΓT

t Γt||∑t
i=lX

2
i−1

X2
i−1∑t

i=lX
2
i−1

>
δ

2
for some t ≥ m

)

≤ Pβ

(∣∣∣∣∣∣ ΓT
t Γt∑t

i=lX
2
i−1

− L(β)
∣∣∣∣∣∣ > (δ

4

)1/2

for some t ≥ m

)

+ Pβ

(
X2
i−1∑t

i=lX
2
i−1

sup
β∈K
||L(β)|| >

(
δ

4

)1/2

for some t ≥ m

)

+ Pβ

(
X2
i−1∑t

i=lX
2
i−1

sup
β∈K
||L(β)|| > δ

4
for some t ≥ m

)
.

Thus,

Pβ

(∣∣∣∣∣∣ΓT
τcΓτc

c
− L(β)

∣∣∣∣∣∣ > δ

)
≤ 2Pβ[(m− l)k > c] + 2

m∑
i=l

sup
β∈K

Pβ(||zi||2 ≥ k)

+ Pβ

(∣∣∣∣∣∣ ΓT
t Γt∑t

i=lX
2
i−1

− L(β)
∣∣∣∣∣∣ > δ′ for some t ≥ m

)

+ 2Pβ

(
X2
i−1∑t

i=lX
2
i−1

sup
β∈K
||L(β)|| > δ′ for some t ≥ m

)
,
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where δ′ ≤ 1
2

min (δ, δ1/2).

For given l, according to our construction limc→∞ (m− l)k/c = 0 as k → ∞,

m → ∞, c → ∞. Thus, letting k → ∞, m → ∞, and c → ∞, combined with

Lemma 4.3 of Galtchouk and Konev (2011), we have (2.79). �

Lemma 2.8.4. Let {β̂τc , τc ≥ p+1} be the least squares estimate of β based on design

matrix (2.18), L(β) de�ned in (2.30) and τc de�ned in (2.17). Let Xt, εt be random

variables adapted to the increasing sequence of σ-algebras Ft, t = . . . , l−1, l, l+1, . . ..

If εl, εl+1, . . . , are i.i.d. with mean 0 and variance σ2, and the sequence {εi : i ≥ l} is

independent of the starting state zl = (Xl−1, . . . , Xl−p)
T de�ned in Algorithm 2, then

given Fl−1, uniformly in β ∈ K for any compact set K ⊂ Λ̌p de�ned in Section 2.4.2,

for any δ > 0, we have

lim
c→∞

sup
β∈K

Pβ

(
X2
τc−1∑τc−1

i=l X2
i−1

> δ

)
= 0. (2.81)

Proof

sup
β∈K

Pβ

(
X2
τc−1∑τc−1

i=l X2
i−1

> δ

)
≤ Pβ[(m− l)k > c] +

m∑
j=l

sup
β∈K

Pβ
(
||zj||2 ≥ k

)
+ sup
β∈K

Pβ

(
X2
j ≥ δ

j∑
i=l

X2
i−1 for some j ≥ m

)
.

By the result of Theorem 2.4.2 and letting k → ∞, m → ∞ and c → ∞, we

have (2.81). Thus complete the proof. �
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Chapter 3

Online Decentralized Leverage Score

Sampling for Streaming

Multidimensional Time Series1

We propose a leverage score sampling (LSS) method for e�cient online inference of

the streaming vector autoregressive (VAR) model. We de�ne the leverage score for

the streaming VAR model so that the LSS method selects informative data points

in real-time with statistical guarantees of parameter estimation e�ciency. Moreover,

our LSS method can be directly deployed in an asynchronous decentralized envi-

ronment, e.g., a sensor network without a fusion center, and produce asynchronous

consensus online parameter estimation over time. By exploiting the temporal depen-

1Xie, R., Wang, Z., Bai, R., Zhong, W., and Ma, P.(2019) Online decentralized leverage score
sampling for streaming multidimensional time series, The 22nd International Conference on Arti�-
cial Intelligence and Statistics (AISTATS 2019), accepted.
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dence structure of the VAR model, the LSS method selects samples independently

on each dimension and thus is able to update the estimation asynchronously. We

illustrate the e�ectiveness of the LSS method in synthetic, gas sensor and seismic

datasets.

3.1 Introduction

Understanding the dependence structure of streaming multidimensional time series

in real-time is a �space-time� challenge due to (1) the temporal dependency and

in�nite sample size of data streams in time, and (2) cross-correlation among multi-

dimensional streams and information transition in the data acquisition network on

space. The multidimensional streaming data are commonly collected from a network

system with each node corresponding to one marginal dimension of the streams. The

multidimensional streams contain complex temporal and cross-sectional dependency,

usually along with a huge volume of data. Accurately and e�ciently estimating the

dependence structure is crucial, especially for real-time inference tasks, but the esti-

mating process is time-consuming. Sampling is a natural and e�cient way to reduce

the data size and speed up the computation. Meanwhile, when the multidimensional

streams are collected across distributed nodes asynchronously, it is not practical to

transfer all data to one computing node and process them with an increasing data

volume. One reasonable approach to retrieve dependence information is to perform

asynchronous consensus estimation on each node in the decentralized computing

framework Wu et al. (2018); Xiao and Wang (2008). Sampling can relief the storage
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pressure and minimize the communication cost in such decentralized network.

The vector autoregressive (VAR) model, one of the most popular and funda-

mental time series models, provides a mechanism for capturing complex temporal

dependency and cross-correlation among the multidimensional time series. Inferring

these dependencies requires both e�cient methodology and intensive computational

e�orts. Precisely understanding theses dependencies facilitates the interpretation of

the model and improves prediction accuracy.

In this work, we introduce a leverage score sampling (LSS) method that can

e�ciently estimate the dependence structure from asynchronous multidimensional

streaming time series. By exploiting the VAR model, we parameterize the temporal

dependence (auto/cross-correlation) structure and propose the streaming statistical

leverage scores for streaming sampling. We also seek to directly deploy this method

to an asynchronous decentralized network, which has limited energy, memory and

processing resource. In these cases, �nding the informative data points is highly

desired for accelerating the estimation process and boosting the transmission of the

streaming data in the decentralized network system.

Challenges: In this paper, we focus on designing a sampling strategy that can

improve the parameter estimation accuracy and maintain the computation e�ciency.

We address a few speci�c challenges in sampling streaming multidimensional time

series. First, how do we �nd a subset of samples that e�ciently capture the temporal

structure under a multidimensional setting? The proposed sampling method aims to

�nd in�uential data points, which are highly e�cient for estimating the parameter

matrix of the VAR model, in real-time to reduce evaluation times without losing too
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much accuracy. Second, how do we adapt the importance sampling method to the

streaming and decentralized environment? We utilize the VAR model to decompose

the dependence structure and distribute it to each node so that the sampling method

can be applied on each node independently.

Prior Work: Sampling is an important data reduction approach for reducing

the computational cost and memory usage, and it is widely used in matrix approxi-

mation or sketching Drineas et al. (2008, 2012b); Boutsidis et al. (2014); Zhang et al.

(2017), kernel approximation Musco and Musco (2017); Achlioptas et al. (2002),

graph sparsi�cation Spielman and Srivastava (2011); Kapralov et al. (2017), linear

regression Ma et al. (2014); Derezinski and Warmuth (2017); Raskutti and Mahoney

(2015), and etc. Especially, sampling method based on leverage score is one of the

most popular techniques Papailiopoulos et al. (2014); Cohen et al. (2017); Mahoney

and Drineas (2009b). Random sampling with probability proportional to exact or

approximated leverage scores can yield high accuracy on model parameter estima-

tion for linear regression Ma et al. (2015b); Raskutti and Mahoney (2015), logistic

regression Wang et al. (2017) and kernel ridge regression Alaoui and Mahoney (2015).

On the other hand, sampling as the subset selectionwhich optimizes a speci�ed

objective function leads to numerous applications in image, video, speech summa-

rization Elhamifar and Kaluza (2017a,b); Gong et al. (2014); Simon et al. (2007); Lin

and Bilmes (2012); Kulesza et al. (2012), and bioinformatics Wu and Wang (2016);

Jörnsten and Yu (2003). Most of the existing methods treat the samples indepen-

dently and ignore the dependence information among the samples, except the most

recent work of Elhamifar and Kaluza (2017b) that selects the sequential data based
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on Markov models.

Meanwhile, literatures on sampling for streaming data have focused on column

sampling Cohen et al. (2017), spectral sparsi�cation or subgraph sampling for graph

streams Kapralov et al. (2017); Chitnis et al. (2016), data management Cormode

et al. (2012); Efraimidis (2015), and clustering Song et al. (2018). To the best of our

knowledge, the study on sampling with an objective of recovering the dependence

information of streaming data is still lacking.

Paper Contributions: In this paper, we develop a novel sampling method for

estimating temporal dependence structure of multidimensional streaming multidi-

mensional time series. Our leverage score sampling (LSS) method is based on the

statistical leverage score of vector autoregressive model for online selecting repre-

sentative data points, which are later used to estimate the VAR model parameter

matrix.

1. The LSS di�ers substantially from other leverage-based sampling methods.

The LSS focuses on selecting informative data points that contribute to the estima-

tion e�ciency of the VAR model parameter matrix, which is a model-based surrogate

for temporal dependence structure of the multidimensional time series streams.

2. We provide a theoretical guarantee that the LSS method yields a better esti-

mation e�ciency for the VAR model parameter matrix than naive sampling methods.

3. Not only is the LSS method fast and accurate for estimating temporal de-

pendence structure, but it can also be applied in an asynchronous decentralized

environment where traditional leverage-based sampling methods cannot.

As an illustration, we present a single-pass streaming sampling algorithm on the
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asynchronous decentralized framework for consensus optimization. We demonstrate

the practical e�ectiveness with such asynchronous decentralized environment, both

in parameter estimation on K-dimensional VAR(p) synthetic data streams, as well

as in real large-scale sensor data prediction tasks.

3.2 Background

3.2.1 Notation

A curly capital letter A is used for set and collection of sets. The upper-case letters

A or A are used for matrices and operators. A lower-case bold letter a is used for

vector and a lower-case letter a is used for scalar. Speci�cally, we reserve E(·) to

denote the expectation operator. The integers are denoted by βZ, and real numbers

are denoted by βR. We denote the identity matrix of dimension n by In ∈ Rn×n.

We use 1{·} to denote the indicator function. We use Σ1 ≺ Σ2, for two non-negative-

de�nite matrices Σ1 and Σ2, to indicate that Σ2−Σ1 is positive de�nite. We denote

the transpose of a matrix A as A′, the determinant of a matrix A as det(A) and

vectorization operator as vec(·). The Kronecker product is denoted by ⊗. Finally,

d→ denotes the convergence in distribution, , means de�ned to be equal to, || · ||2

denotes the vector `2-norm, and || · ||F denotes the matrix Frobenius norm.

3.2.2 Vector Autoregressive Model

Time series data, one of the most representative classes of dependent data, which

contain temporal dependence structure among samples, are often modeled by the
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vector autoregressive (VAR) models Box et al. (2015); Harvey (1990); West et al.

(1985). VAR model represents a family of time series models that o�ers a broad

framework for capturing complex temporal and longitudinal interrelationship among

the multidimensional time series data. A centered time series yt ∈ RK follows a

K-dimensional vector autoregressive model of order p, i.e., VAR(p), if

yt =

p∑
i=1

Φiyt−i + et, t ∈ βZ, (3.1)

where Φi's are K ×K matrices, and et is a sequence of independent and identically

distributed (i.i.d.) random vectors with mean zero and and �nite non-singular co-

variance matrix E[ete
′
t] = Ψ. Let Φ(z) = IK −

∑p
j=1 Φjz

j be the the associated

characteristic matrix polynomial, where Ip is the p× p identity matrix. We assume

that det(Φ(z)) 6= 0 on the complex unit disk {z ∈ βC : |z| ≤ 1}. In this case, there

is a unique stationary solution yt of (3.1), which is expressed as a causal linear �lter

of (et) (Theorem 11.3.1 of Brockwell and Davis (2013)).

We rewrite the VAR(p) model as

y′t = x′tB + e′t, t ∈ βZ, (3.2)

where B = [Φ′1,Φ
′
2, · · · ,Φ′p]′ is the Kp × K model parameter matrix, and xt =

(y′t−1,y
′
t−2, · · · ,y′t−p)′ is a column vector of length m = Kp. We assume that the

covariance matrix Γ = E[xtx
′
t] is non-singular. The model parameter estimation

can be done through Ordinary Least-Squares (OLS) estimate Tsay (2013), which is

B̂OLS =
(∑T

t=1 xtx
′
t

)−1∑T
t=1 xty

′
t. The computational cost of estimating the model
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parameter matrix B is O(TK2p2).

3.3 Leverage Score Sampling for Time Series Data

The leverage score sampling (LSS) method for streaming time series data utilizes

the structure information of the underlying dynamic model to e�ciently select in-

formative samples. The information contained in multidimensional time series are

projected onto a one-dimensional space through the LSS procedure, which results in

an easy-to-implement and e�cient sampling criterion.

We use the VAR(p) model to characterize the temporal dependence structure

of K-dimensional time series, which keeps the interoperability, compatibility and

avoids the overparameterization. For a �xed-sample-size case, suppose we observe

the K-dimensional time series at T time points, {yt|t = 1, . . . , T}. The dependence

structure between data points can be modeled through a VAR(p) model. Our goal is

to select a subset S ⊂ {1, . . . , T} of samples over which the estimation of the model

can be e�ciently performed. The least square estimator of B based on the selected

sample then becomes Hamilton (1994)

B̂S =

(∑
t∈S

xtx
′
t

)−1(∑
t∈S

xty
′
t

)
.

The leverage score sampling method �nds subset S = Slev according to the sam-

pling rule

Slev = {t = 1, . . . , T | htt , x′tΓ
−1xt > r2} (3.3)
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for some threshold r > 0, where we recall that Γ = E[xtx
′
t] is the covariance matrix.

The choice of r is based on the quantile of a probability distribution of normalized

data points. In practice, the unknown Γ−1 in (3.3) is replaced by an estimate based

on a pilot sample, denoted as Ω, and the regressor vector xt is constructed based on

the VAR model. The quadratic form htt = x′tΩxt can be viewed as the (unscaled)

statistical leverage score.

The leverage score sampling can be summarized as, if for sample stretch (xt,yt),

the Mahalanobis distance satis�es
√

x′tΩxt > r, then we include t in subset Slev. As

illustrated in Fig. 3.1, the normalized data points outside the ellipse are selected into

Elev, where the normalization is based on their statistical leverage scores. The rate

of sampling, |Slev|/T , is determined by the quantile r that measures the proportion

of information selected rather than a prespeci�ed sample size.

LSS simultaneously achieves the following goals

1. Improving the estimation e�ciency of B̂Slev by reducing its estimation uncer-

tainty;

2. Selecting a small set of samples to improve the computational e�ciency;

3. Preserving the dependence structure in the sampling procedure since the data

stretch (xt,yt) = ((y′t−1,y
′
t−2, · · · ,y′t−p)′,yt) is the smallest sampling unit for

any t = 1, . . . , T ;

4. Leading to streaming and decentralized algorithms.
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3.3.1 Leverage Score Sampling for Streaming Time Series

The fundamental characteristic of a sampling method in the streaming setting, which

distinguishes itself from its o�-line version, is that streaming sampling requires a real-

time decision-making mechanism. The LSS method utilizes a single-pass streaming

procedure that calculates the leverage score in real-time so that one can make an

immediate decision on sampling the current data point or not. In the streaming

setting, we can �rst initialize Ω as an estimator of the precision matrix Γ−1 (see,

e.g., e.g. Chen et al. (2013); Cai et al. (2016)) based on a pilot sample, and then

periodically update it using new stream samples, so that Ω is a consistent estimator

for the model precision matrix Γ−1. For computational advantage, an infrequent

update of Ω is desired. Then the streaming leverage score and the corresponding

sampling criterion is given by

h̃tt , x′tΩxt > r2 (3.4)

to select the important data point in real time, which is a single-pass procedure and

only requires linear computation time with respect to the model dimension Kp.

Streaming time series also requires an online method to continuously aggregates

past data, updating the current estimate of parameter to incorporate the information

obtained from the new data. As the streaming data comes in sequentially, we would

like to update the estimate of the parameter B, sequentially as well. With a slight

abuse of notation, we use Bt to denote the estimate of the parameter B using LSS

method at time t. Hence, for each time point t in the selected subset Slev up to
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current time T , we �nd the estimate Bt through optimizing the `2 loss,

Bt = arg min
B

∑
i∈Slev∩{1,...,t}

||y′i − x′iB||22, (3.5)

which is in the form of dynamic linear model (DLM) Lai and Wei (1982); Pole et al.

(1994), where the observation vector at time t becomes, yt = B′txt + et and the

underlying state vector satis�es EBt = EBt−1 = B0 (unbiased).

There are plenty choices to solve the DLM in (3.5) , for example the classical

Kalman �lter. The Kalman �lter Kalman (1960); Grewal (2011) updates the state

vector vec(Bt) for ∀ t ∈ Slev. The updates of the parameter vec(Bt) depends on ac-

cumulating the corresponding values themselves while streaming, and do not require

accessing previous data points. It is important to note that, our LSS method is in-

dependent of the choice of the DLM solver in (3.5). The leverage score sampling for

streaming time series can, therefore, run in constant memory and at a computational

cost constant in time.

3.4 Decentralized Leverage Score Sampling

When the multidimensional streams are observed in a decentralized environment,

the LSS method can be e�ciently applied in parallel into asynchronous decentralized

optimization algorithm by exploiting to VAR model structure. The leverage score

and sampling criterion de�ned in (3.4) can be computed on each dimension in parallel

and asynchronously under the decentralized setting.

The decentralized architecture is needed as long as the streams dimension K is
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Algorithm 3: Online Asynchronous Decentralized Leverage Score Sampling
Require: Precision matrix Ω (updated periodically), quantile r.

Broadcast initial value of parameter B0 and covariance P0.
1: while t > 0 do
2: while node j ∈ [1, . . . , K] in parallel do
3: Receive the local data y(j)

t without delay, and the neighborhood data with
arbitrary delay

4: Send out the local data y(j)
t to neighbors

5: Wait until xτj is complete for some τj ≤ t

6: if h̃
(j)
tt = x′τjΩxτj > r2 then {. LSS}

7: Update β(j)
τj

and Pτj according to the local Kalman �lter (3.7) and (3.8)
8: else

9: β(j)
τj

= β
(j)
τj−1 and Pτj = Pτj−1

10: end if

11: Transmit the local estimate β(j) to neighbors and receive neighbors'
estimation

12: Set τj ← τj + 1

13: return Bτj = [β(1)
τj
, . . . ,β(j)

τj
, . . . ,β(K)

τj
]

14: end while nodes
15: end while t

large or distributed physically apart in a network that accessing the data streams

on a single machine is impossible. More speci�cally, a decentralized system lacks a

fusion center (a centralized computing node) and may be communication-restricted,

which requires a communication-e�cient information di�usion strategy in the design

of the decentralized algorithm. As illustrated in Fig. 3.2, we use neighborhood-based

communication strategy in our sampling method and parameter estimation.

Note that the problem of (3.5) can be decomposed into K subproblems by taking

advantage of the VAR model structure. We assume that, without loss of general-
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ity, each node in the network observes one dimension data of the multidimensional

streams. The selection criterion S(j)
lev for node j becomes,

h̃
(j)
tt = x′τjΩxτj > r2,

as long as the node j receives its local copy of data xτj at local time τj. We express

the parameter matrix B as a block matrix with column vectors

B = [β(1),β(2), . . . ,β(K)]

with β(j) being the jth column of B for j = 1, . . . , K. Hence for node j with its local

time τj, the j-th subproblem is

β(j)
τj

= arg min
β(j)

∑
τj∈S

(j)
lev∩{1,...,t}

||y(j)
τj
− x′τjβ

(j)||22, , (3.6)

where y(j)
τj is the jth element of yτj , β

(j)
τj

is the estimate of β(j) at time τj, for

j = 1, . . . , K. Those β(j) can be estimated at each corresponding node locally as soon

as xτj is completed at local time τj. From (3.6), we see that the sampling, parameter

estimation and communication of nodes are uncoordinated. Each node j has its

own local time τj and a global clock is not needed, resulting in an asynchronous

algorithm. The algorithm then is running over the ad hoc network topology Wu

and Stojmenovic (2004), i.e. decentralized network without fusion/data center to

aggregate data asynchronously, where the nodes communicate with their neighbors

and perform the local computation. The data from neighbors arrived sequentially
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with delay depends on the distance in the network due to the limited communication,

see Fig. 3.2.

Solving (3.6) can be done by various decentralized consensus optimization, e.g.

decentralized gradient descent Yuan et al. (2016), decentralized ADMM Shi, Ling,

Yuan, Wu, and Yin (Shi et al.), decentralized Kalman �lter Olfati-Saber (2005);

Cattivelli and Sayed (2010) and references therein, etc. We use di�usion strategies

in Cattivelli and Sayed (2010) as an illustration to handle the parameter estimation

and sampling, which allow asynchrony and delay in the decentralized consensus op-

timization. We use the local Kalman �lter to estimate the local parameter β(j)
τj

for

j-th node and τj ∈ Slev

Pτj = Pτj−1 − kτjx
′
τj

Pτj−1 (3.7)

β(j)
τj

= β
(j)
τj−1 + [y(j)

τj
− x′τjβ

(j)
τj−1]kτj , (3.8)

where kτj , γ−1
τj

Pτj−1xτj , and γτj , 1 + x′τjPτj−1xτj with Pτj as the j-th local

estimate of the precision matrix at local time τj. After getting the local estimate β(j)
τj
,

the node exchanges the local estimate with neighbors to form a complete estimate of

Bτj at time τj. The theoretical guarantee of the consensus result of the algorithm can

be found in Cattivelli and Sayed (2010). The algorithm is summarized in Algorithm 3.
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3.5 Theoretical Justi�cation of Leverage Score Sam-

pling

The goal of this section is to provide the theoretical justi�cation on the superiority of

the LSS method over the Bernoulli sampling method. In Bernoulli sampling, we take

the simple random sampling over time, i.e., conduct Bernoulli trail to with success

probability q at each time t to select samples.

For simplicity of theoretical discussions, we shall assume below that Ω = Γ−1

exactly, while careful examination of the uncertainty of the Ω estimate is left as a

future work.

The following theorem2 establishes the asymptotic normality of the estimate B̂Slev

based on the LSS-selected samples indexed by Slev.

Theorem 3.5.1. Let m = Kp and let K×K matrix Ψ = E[ete
′
t]. De�ne the m×m

matrix

Γ(r) = E
[
1{x′tΓ−1xt>r2}xtx

′
t

]
.

and suppose that it is non-singular. Then as T →∞,

√
T (vec(B̂S)− vec(B))

d→ N(0,Ψ⊗ Γ(r)−1). (3.9)

In view of Theorem 3.5.1, the asymptotic covariance matrix of vec(B̂S) dropping

the scaling T−1 is

Ψ⊗ Γ(r)−1. (3.10)

2The proofs of all theorems can be found in Supplementary Material.
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Our goal is to compare this covariance matrix with those arising from some naive sam-

pling approaches. One option is to directly use a consecutive sample (xt,yt)1≤t≤Tq,

q ∈ (0, 1). Another option is to employ an i.i.d. Bernoulli sampling: for each

t ∈ {1. . . . , T}, the sample (xt,yt) is selected for regression with probability q inde-

pendently. It turns out that these two options lead to the same asymptotic covariance

matrix:

Theorem 3.5.2. Under either the consecutive sampling or the i.i.d. Bernoulli sam-

pling described above, we have as T →∞,

√
T (vec(B̂)− vec(B))

d→ N(0, q−1Ψ⊗ Γ−1), (3.11)

where

Γ = E[xtx
′
t] = Γ(βRm). (3.12)

To have a fair comparison with a leveraged-based sampling approach, we shall

set

q = Q(m, r) = Pr(x′tΓ
−1xt > r2).

This ensures that the average sampling proportions across the di�erent approaches

are the same. Now the asymptotic covariance matrix (dropping scaling T−1) of the

consecutive or Bernoulli sampling approaches is

q−1Ψ⊗ Γ−1. (3.13)
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Comparing (3.10) with (3.13), we want to achieve

Ψ⊗ Γ(r)−1 ≺ Q(m, r)−1Ψ⊗ Γ−1. (3.14)

Relation (3.14) is equivalent to

Q(m, r)Γ ≺ Γ(r). (3.15)

See items 10.51(b) and 11.1(i) of Seber (2008).

Under the Gaussian assumption, the following theorem provides an expression for

the minimum eigenvalue of Q(m, r)Γ−Γ(r), which implies that (3.15) or equivalently

(3.14) holds.

Theorem 3.5.3. Suppose in (3.2) that et's are i.i.d. N(0,Ψ). Let m = Kp and let

Γ1/2 = P ′Λ1/2P be a square root of the covariance matrix Γ in (3.12), where P is an

orthogonal matrix and Λ = diag(λ1, . . . , λm) is a diagonal matrix of the eigenvalues

of Γ. Let Dr = {x ∈ βRm : ‖x‖ > r}, r ≥ 0. De�ne Er as the complement of an

ellipsoid:

Er = Γ1/2Dr.

(a) The (marginal) sampling probability is

Pr(xt ∈ Er) = Q(m, r) = Pr(χ2
m > r2), (3.16)

where χ2
m denotes a chi-squared random variable with m degrees of freedom.
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(b) The minimum eigenvalue of Q(m, r)Γ− Γ(r) is

λmin [T (m, r)−Q(m, r)] ,

where λmin = min(λ1, . . . , λm) > 0 and

T (m, r) =
1

m
E[χ2

m1{χ2
m>r

2}].

Some elementary calculus entails that T (m, r) > Q(m, r) for any r > 0. Hence

we have the following.

Corollary 3.5.4. Under the setup of Theorem 3.5.3, the relation (3.14), namely,

the asymptotic superiority of LSS over the Bernoulli sampling holds for any r > 0.

Remark 1. If et is non-Gaussian, then some symmetry explored in the proof of

Theorem 3.5.3 is unavailable. Nevertheless, (3.14) is expected hold under a moderate

departure from normality.

3.6 Experiments

In this section, we demonstrate the applicability of the LSS method on three ex-

periments: the synthetic data with various settings and two real multidimensional

streaming data. In all experiments, we compare our proposed LSS method against

Bernoulli sampling method (hereafter, Bernoulli) and vanilla Kalman �lter method

(hereafter, Vanilla) Cattivelli and Sayed (2010) in a decentralized setting with �xed
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network topology structure. The Vanilla method uses full observed data, while the

LSS and Bernoulli methods take samples accordingly with the same sampling rate

q. We assume that the current node can only access its own data in real time, and

the data transition from other nodes is delayed by the distance in the network con-

nectivity to the current node. The results show the distinguishing features of our

LSS method: accurate in parameter estimation with faster and better convergence

at di�erent sampling rate q, and computation e�ciency with shorter execution time.

3.6.1 Synthetic Data

To compare accuracy and e�ciency of parameter estimation in the streaming setting

at di�erent sampling rates q, dimensions K and lags p, we perform simulation study

on synthetic data and report the estimation error ||Bt−B||F . The simulation data is

generated by two settings: the �rst one (used in Fig. 3.3 (a)-(c)) is a 10-dimensional

stationary VAR(3) process for 10 nodes, i.e., K = 10, p = 3 and the second one

(used in Fig. 3.3 (d)-(f)) is a 30-dimensional stationary VAR(1) process for 30 nodes,

i.e., K = 30, p = 1. The topology structure and the connectivity of nodes is created

randomly at the beginning of the simulation and then applied to all methods Sayed

et al. (2014). The �rst 200 data points from all nodes are used as pilot samples to

obtain the estimate of Ω for each setting. In each subplot of Fig. 3.3, the result is

compared by the estimation error, ||Bt−B||F , against time T , with 100 independent

replicates, on di�erent sampling rate q ∈ [0.1, 0.2, 0.5] and two settings of K and p.

Fig. 3.3 shows that our method converges signi�cantly faster (high accuracy and

e�ciency) than Bernoulli method, and converge as fast or slightly faster than the
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Vanilla method that uses full data points in all test cases. In addition, LSS takes

fewer computational steps (require fewer samples) than the Bernoulli method to

achieve convergence. Fig. 3.5(d) shows the average elapsed time of 100 trials of the

three methods. It can be seen that the time consumption of LSS is much smaller than

vanilla Kalman �lter and similar to the Bernoulli, while LSS achieves better estima-

tion results than both of the other two methods, especially comparing to Bernoulli

sampling. From Fig. 3.3(a) and (c), the advantages of the LSS method are more

obvious when the sample size is small.

3.6.2 Real Data

The LSS, Bernoulli and Vanilla methods are implemented on two real datasets to

compare the prediction error, ||yt − ŷt||2, since the VAR model parameters are un-

known for real data. In both experiments, the �rst 2000 data points are used as pilot

samples.

Seismic Data: We consider the seismic data that records the wave amplitude

(mm/s) from earthquake sequences in Oklahoma collected on October 26, 2014 Chen

et al. (2016). The data contains 17 sensors with 17,698 time-steps. The VAR(3)

model was chosen based on the analysis of the pilot sample. Fig. 3.4 shows the pre-

diction error of the seismic data estimation. LSS outperforms the Bernoulli method,

and it can achieve comparable or better prediction than the Vanilla method. From

the �rst-order parameter matrices Φ1 shown in Fig. 3.5, we see that LSS (a) and

vanilla Kalman �lter (c) perform similar estimation, while Bernoulli method has

several o�-diagonal unusual patterns. Combine Fig. 3.5 and Fig. 3.4, we see that
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Bernoulli method failed to capture the correlation information in the seismogram so

that the prediction re�ects a severer bias and delay.

Gas Sensor Array: We do another experiment on the UCI dynamic gas mix-

tures dataset Fonollosa and Huerta (2015); Fonollosa et al. (2015). The data uses 16

chemical sensors at a sampling frequency of 100 Hz and records 4, 208, 261 time-steps

of Ethylene and CO mixture in air. For our experiments, we use data from 15 sensors

to build a VAR(3) model3. A snapshot of the prediction error is shown in Fig. 3.6.

It is clear that LSS captures the correct patterns in streams and performed superior

or comparable to the Vanilla method that using the full data points.

3.7 Conclusion

We develop a novel online leverage score sampling method for e�ciently estimat-

ing the temporal dependence of streaming multidimensional time series in an asyn-

chronous decentralized environment. We prove that leverage score sampling yields

a lower parameter estimation variance by selecting informative samples in in�nite-

sample streaming time series. Our future work includes, from the theoretical perspec-

tive, �nding an optimal selection criterion under a more general (such as nonlinear

or nonparametric) dynamic streaming model, and from the application perspective,

extending the sampling scope to irregular-sampled high-dimensional random �eld

streams, such as medical imaging real-time diagnosis, video and audio summariza-

tion, and environmental monitoring.

3We drop data from one sensor due to incomplete observation and low quality of the data.

86



3.8 Proofs

Proof of Theorem 3.5.1.

Let Ut = 1{Xt∈Er}Xt. By equation (3.2), we have

√
n(β̂ − β) =

(
1

n

n∑
t=1

UtU
′
t

)−1(
1√
n

n∑
t=1

Ute
′
t

)
, (3.17)

which is understood as −
√
nβ if the invertibility fails. Note that

E[vec(Ute
′
t) vec((Ute

′
t)
′] = Ω⊗ Γ(r). (3.18)

For any column vector a ∈ RK2p, the linear combination a′ vec(Ut)et forms a station-

ary martingale di�erence in t with respect to the �ltration Ft = σ(ei, i ≤ t) since Ut

is Ft−1-measurable and et is centered and independent of Ft−1. By (3.18) and the

Martingale Central Limit Theorem (Theorem 35.12 of [Billingsley 1995 Probability

and Measure 3rd ed.]), as n→∞,

1√
n

n∑
t=1

a′ vec(Ute
′
t)

d→ N(0, a′Ω⊗ Γ(r)a).

In view of the Cramer-Wold Device, we have thus shown that as n→∞,

1√
n

n∑
i=1

vec(Ute
′
t)

d→ N(0,Ω⊗ Γ(r)). (3.19)

On the other hand, each component of the Ut is a causal linear �lter of i.i.d. (thus

ergodic) et, and is hence an ergodic sequence by Lemma 10.5 of [Kallenberg 2002
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Foundations of Modern Probability 2nd ed]. Therefore, by the Birkho� Ergodic

Theorem (Theorem 10.6 of [Kallenberg]) applied to each entry, one has almost surely

as n→∞ that
1

n

n∑
i=1

UtU
′
t → Γ(r). (3.20)

At last, notice that the invertible matrices of a �xed size form an open subset under

the product topology. Hence 1
n

∑n
i=1 UtU

′
t is invertible with probability tending to

one as n→∞. Combining (3.17), (3.19) and (3.20) yields (3.9).

Proof of Theorem 3.5.2.

The case of consecutive sampling can be directly deduced from Theorem 3.5.1

by letting E = βRm and substituting n by nq. For the Bernoulli sampling, the

proof can be carried out similarly as the proof of Theorem 3.5.1. In particular, the

indicator 1{Xt∈E} is replaced by i.i.d. Bernoulli(q) variables independent of the time

series (Yt), which still retains the martingale property used in the proof of Theorem

3.5.1.

Proof of Theorem 3.5.3.

(a) Since et's are Gaussian, for each t ∈ βZ, Xt ∼ N(0,Γ). Let X = (X1, . . . , Xm) :
d
=

Xt, and let Z = Γ−1/2X ∼ N(0, Im). Then

Pr(X ∈ Er) = Pr(Z ∈ Dr) = Pr(χ2
m > r2) = Q(m, r).
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(b) For any column vector a ∈ βRm with ‖a‖ = 1, de�ne

F (a; Er) := a′(Γ(r)−Q(m, r)Γ)a

=E

( m∑
i=1

aiXi

)2

[1{X∈Er} −Q(m, r)]

 . (3.21)

Let φΓ denote the density of N(0,Γ). Then by a change of variable x = Γ1/2y,

F (a; Er) =

∫
(a′x)2[1Er(x)−Q(m, r)]φΓ(x)dx

=

∫
(a′P ′Λ1/2Py)2[1Dr(y)−Q(m, r)]φIm(y)dy.

Let b = (b1, . . . , bm)′ = Pa. By orthogonality of P , we have ‖b‖ = 1 as well. By a

change of variable z = (z1, . . . , zm)′ = Py, and using the invariance of dz, φI and Dr

with respect to an orthogonal transform, we have

F (a(b); Er)

=

∫ ( m∑
i=1

biλ
1/2
i zi

)2

[1Dr(z)−Q(m, r)]φIm(z)dz. (3.22)

By the symmetry of Dr and φIm , the �covariance�

∫
zizj[1Dr(z)−Q(m, r)]φIm(z)dz = 0, if i 6= j.
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Hence

F (a(b); Er) =

∫ m∑
i=1

b2
iλiz

2
i [1Dr(z)−Q(m, r)]φIm(z)dz

=

(∫
z2

1 [1Dr(z)−Q(m, r)]φIm(z)dz

)( m∑
i=1

b2
iλi

)
.

Note that

min
‖b‖=1

(
m∑
i=1

b2
iλi

)
= λmin,

which is positive since Γ is non-singular by assumption. On the other hand, we have

∫
Dr
z2

1φIm(z)dz =
1

m

∫
Dr
‖z‖2

φIm(z)dz =
1

m
E[χ2

m1{χ2
m>r

2}] = T (m, r).

and ∫
z2

1φIm(z)dz = 1.

Hence

min
‖b‖=1

F (a(b); Er) = λmin [T (m, r)−Q(m, r)] .
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Figure 3.1: Illustration of sampling criterion: One-dimensional AR(2) time series
{yt}t∈βZ are plotted with axes lag-2 values yt−2 vs. lag-1 values yt−1. Sampling
criterion r is the quantile of a desirable chi-squared sampling probability distribution.
The normalized data points outside the ellipses (orange: 90-th percentile; blue: 95-th
percentile) will be selected by the LSS.
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Figure 3.2: Di�usion strategy of the decentralized network. At every time t, node j
collects a measurement y(j)

t and neighborhood data.
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Figure 3.3: Each column shows the comparison of estimation error with di�erent
sampling rate (a): q = 0.1, (b): q = 0.2, and (c): q = 0.5. Fig.(a)-(c) show
the results with a 10-dimensional stationary VAR(3) process and Fig.(d)-(f) show
the results with a 30-dimensional stationary VAR(1) process. The estimation error,
||Bt − B||F of LSS (red), Bernoulli (blue) and Vanilla (green) methods are plotted
against time T with total time steps 5000.
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Figure 3.4: Prediction error from seismic data. The LSS (red) and Vanilla (green)
error are tangled together in bottom of the plot.
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Figure 3.5: Seismic Data: Fig.(a)-(c) show �rst-order estimated parameter matrices
Φ1 at time t = 8500. Fig.(d) is the average elapsed time (seconds) of LSS(red),
Bernoulli(blue) and Vanilla(green) methods over 100 replicates.
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Figure 3.6: Prediction error from gas sensor data.
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Chapter 4

Large Scale Randomized Learning

Guided by Physical Laws with

Applications in Full Waveform

Inversion1

The rapid convergence rate, high �delity learning outcome and low computational

cost are key targets in solving the learning problem of the complex physical system.

Guided by physical laws of wave propagation, in full waveform inversion (FWI),

we learn the subsurface images through optimizing the media velocity model in a

large scale non-linear problem. In this paper, we combine randomized subsampling

1R. Xie, F. Li, Z. Wang and W. Song, "LARGE SCALE RANDOMIZED LEARNING GUIDED
BY PHYSICAL LAWSWITH APPLICATIONS IN FULLWAVEFORM INVERSION," 2018 IEEE
Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 2018,
pp. 66-70. doi: 10.1109/GlobalSIP.2018.8646507
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techniques with a second-order optimization algorithm to propose the Sub-Sampled

Newton (SSN) method for learning velocity model of FWI. By incorporating the cur-

vature information, SSN preserves comparable convergence rate to Newton's method

and signi�cantly reduces the iteration cost by approximating the Hessian matrix

through a non-uniform subsampling scheme. The numerical experiments demon-

strate that the proposed SSN method has a faster convergence rate, and achieves a

more accurate velocity model in terms of mean squared error than commonly used

methods.

4.1 Introduction

The full waveform inversion (FWI) is a state-of-the-art method in subsurface imaging

for providing the high-resolution estimate of the complex subsurface structure Operto

et al. (2013); Virieux and Operto (2009). FWI uses measured wave-�eld data to learn

the media velocity model that wave propagated through to invert the subsurface

image. The learning procedure is through a nonlinear minimization of a penalized

error function, which is the normed discrepancy between observed wave-�eld data

and calculated data with the constraint of wave equation Tarantola (1984); Rao and

Wang (2017). The calculated data is formulated by the most appropriate physical

model for the system of wave propagation, which is mathematically described by

a certain type of partial di�erential equation (PDE), such as wave equation, with

unknown model coe�cients, such as the velocity model in FWI.

Due to the complexity and ultra large data size of tracking the wave propagation,
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the iterative optimization method is used to achieve the minimization of the error

function so that we can �nd the optimal velocity model for subsurface imaging Pratt

et al. (1998). The iterative optimization can be roughly divided into three part, for-

ward modeling (solving PDE given the velocity model), error calculation (including

gradient and Hessian) and velocity model update (�rst or second order iterative opti-

mization) Tarantola (1984); Virieux and Operto (2009). Even though the relatively

early introduction of the FWI technique, the intensive computation cost of these

three components retard the development of FWI until the recent advances in high

performance computing facilities along with the acquisition systems. As an exam-

ple, for frequency domain FWI, the discretization of the Helmholtz equation, solving

the forward modeling, calculating the error, and e�ectively updating the velocity, all

involve the huge amount of data calculation and storage. The high computational

burden calls for an e�cient algorithm to provide a fast and accurate solution to the

velocity model learning of FWI.

With the current development of FWI, the multiple-frequency or hierarchical data

acquisition design promote FWI to more and more multi-scale and various �eld real

data applications Plessix et al. (2010); Ernst et al. (2007). The development of data

quality also requires a more realistic forward modeling and a more accurate velocity

model learning method. Among the traditional methods for FWI, the �rst order

methods such as gradient based methods Pratt (1999) and quasi-Newton methods

such as the l-BFGS method Plessix and Mulder (2004); Pan et al. (2015) preserve the

stable numerical performance and low computational costs, but their convergence

rate are not satis�ed Hu et al. (2011). On the other hand, the family of second
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order method, the Newton-type methods Stakgold and Holst (2011); Métivier et al.

(2014), has the advantages of fast convergence, exact update to second order Taylor

approximation system, less geometric spreading and scattering artifacts Liu et al.

(2014). However, in term of explicit calculation, the naive Newton-type methods of

a large scale problem is impractical due to huge memory and storage cost and heavy

computational burden. In recent years, developing fast and nearly scalable second

order optimization methods is drawing more and more attentions on the optimizing

and learning of complex optimization system Erdogdu and Montanari (2015); Xu

et al. (2016); Pilanci and Wainwright (2017).

To conquer the high iteration computational cost of Newton-type method, ex-

tract the useful information from the highly correlated data and preserve the fast

convergence rate of the second order method, we propose a novel Sub-Sampled New-

ton (SSN) method with non-uniform/important sampling scheme to deliver the fast

and accurate subsurface imaging through FWI.

4.2 Algorithm Design

An accurate and fast optimization tool that can solve the complex subsurface imaging

problem through FWI is crucially needed. Heavy computational burden has always

been the bottleneck of the development in subsurface imaging, especially imaging

through FWI. To deliver a high-resolution learning outcome of velocity model, we

have to rely on the whole wave �eld information and accurate realization of the

physical properties of wave propagation. The process that making e�orts to get an
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accurate subsurface imaging comes along with huge quantity of data for processing

and storing. The e�cient use of these information will accelerate the learning proce-

dure of FWI. Relative to �rst-order methods, second-order methods enjoy plenty of

advantages in the nonlinear optimization problem, such as the superior convergence,

robustness to ill-conditioned problem, and global convergence guarantee under mild

assumptions Sra et al. (2012).

Subsurface imaging through FWI, from computation perspective, is a constraint

nonlinear learning problem. We consider the wave propagation as a multi-dimensional

dynamic process u(z, ω), where z = (z1, . . . , zp)
T ∈ Rp is a multi-dimensional covari-

ate and ω is the additional covariate, if exists, that is associated with the varying

model coe�cients. We assume that the dynamic process u(z, ω) follows an varying

coe�cients PDE,

F
{
z,
∂u(z, ω)

∂z1

, . . . ,
∂u(z, ω)

∂zp
,
∂2u(z, ω)

∂z2
1

,
∂2u(z, ω)

∂z1∂z2

, . . . ,

θ(z, ω), f(z)
}

= 0, (4.1)

where θ(x, ω) = (θ1(x, ω), . . . , θm(x, ω))T is the varying coe�cient vector depending

on x and ω, and f(x) is a known �forcing term� or �source". In the application

of FWI, the varying coe�cients PDE is speci�ed as the wave equation in the time

domain, or equivalently, the Helmholtz equation in the frequency domain. The PDE

in (4.1) then becomes the Helmholtz equation,

(
m(x, ω) +∇2

)
uω(x) = −fω(xs), (4.2)
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where m(x, ω) = ω2

v2(x)
, uω(x) = u(x, t)eiωt, and fω(xs) = f(xs, t)e

iωt correspond-

ingly with ω ∈ Ω and x,xs ∈ X ⊂ Rd given the frequency domain Ω and spatial

domain X . In the frequency domain Helmholtz equation, the varying coe�cient

m(x, ω) depends not only on the spatial covariate x, but also an additional covari-

ate ω that is free from the derivatives in PDE.

In practice, we do not observe the dynamic process uω(x) and source term fω(x)

on the whole domain. For the frequency domain FWI, instead we observe a surrogate

Y (x, ω) at the locations where the sources and sensors are placed (usually on the

surface of the ground) and within a certain frequency range. We assume that sources

are located at source positions xs with s = 1, . . . , ns, sensors are located at receiver

positions xr with r = 1, . . . , nr and the frequency is observed at ωw with w =

1, . . . , nw. The wave-�eld data we observed are denoted as

dobs,srw = uω(xr,xs, ωw,m) + εsrw, (4.3)

where εsrw's are assumed to be independent and identically distributed errors with

zero mean and �nite variance. Our goals are to estimate the varying model coe�cient

surface from the observed noisy data with the constraint of the PDE and to establish

the statistical inference of the estimates Tarantola (1984).

The recorded data are acquired from an array of seismic receivers and denoted

as dobs = {dobs,srw}srw. We track the wave propagation through PDE (4.2) given the

velocity m and solve it numerically using �nite-di�erence method Virieux (1986),

where the wave �elds are projected at the receiver positions xr. The velocity model

m , [m(x1), ...,m(xNzNx)], m(xi) indicates the squared-slowness value at the 2D
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coordinate xi, i = 1, ..., NzNx, where Nz and Nx are the vertical and lateral grid

number, respectively.

In velocity model learning, we estimate the varying model coe�cients m by min-

imizing the penalized squared errors of the estimated PDE solution dcal to the noisy

data in (4.3),

E(m) =
1

2
||dobs − dcal||22 + λJ (m)

=
1

2
||dobs − uω(x,m)||22 + λ

∫
F
{
x,
∂u(x, ω)

∂x1

, . . . ,

∂2u(x, ω)

∂x2
1

, . . . ,
∂2u(x, ω)

∂x1∂x2

, . . . ,m(x, ω), f(x)
}
dx, (4.4)

where the �rst term measures the goodness-of-�t of (4.3), and the second term mea-

sures the �delity of (4.3) to the physical system, i.e. PDE model, de�ned in (4.1).

The tuning parameter λ controls the trade-o� between �tting to the observed data

and �delity to the physical system.

4.2.1 Method for Learning Velocity Model

We learn the varying coe�cient vector θ(x, ω) in PDE model (4.1) in an alternating

way with two nested levels of optimization. On one hand, we solve the PDE (4.1)

given the current estimation of coe�cient vector θ(x, ω) through �nite-di�erence

method to generate the calculated data dcal, which is usually called forward modeling.

On the other hand, we update the estimation of the coe�cient vector θ(x, ω) by

minimizing the penalized squared errors of (4.4). This learning procedure is usually

called inverse problem.

103



More speci�cally, in the application of FWI, to minimize E(m), we search in an

iterative manner, mk+1 = mk+δmk, with δmk being the optimal model perturbation

at the k-th iteration step that minimizes E(m). The optimal model perturbation

comes from the expansion of E(mk) in a small vicinity δm of mk with a Taylor

polynomial of degree two:

E(m) = E(mk) + δmTgk +
1

2
δmTHkδm + o(‖δm‖3),

where gk , ∂E(mk)/∂m is the gradient of the error function E(m) at mk and

Hk , ∂2E(mk)/∂m2 denotes the corresponding Hessian matrix. The Newton-type

method is used to get the optimal model perturbation δmk through the normal

equation:

Hkδmk = −gk, (4.5)

and then update the velocity model according to

mk+1 = mk − αk[H(mk)]
−1gk, (4.6)

where αk is the learning rate.

104



4.2.2 Gradient and Hessian

The conventional computation of gradient gk and Hessian Hk can be speci�ed as

gk =
∂E(mk)

∂m
= −R

{[
∂F(mk)

∂m

]†
(dobs −F(mk))

}

= R
{

J†kδdk

}
, (4.7)

where δdk = dobs−F(mk), (·)† denotes the adjoint of operator (·), R{z} denotes the

real part of complex number z, and Jk = −∂F(mk)/∂m is the Jacobian of −F(·).

By taking the derivative of gk, we get Hessian of E(·)

Hk =
∂2E(mk)

∂m2
= R

{
J†kJk +

∂J†k
∂mT

[δd∗1 · · · δd∗k]

}
, (4.8)

where (·)∗ denotes the conjugate of a complex number. Note that the �rst part of the

Hessian matrix, R
{

J†kJk

}
, contains the most useful information of the curvature,

and the second-order part of the Hessian matrix is easy to be contaminated be the

noise since it usually presents numerous small or negative eigenvalues during the

evaluation Métivier et al. (2013).

4.2.3 Sub-Sampled Newton (SSN) Method

To update the velocity model, we need to solve the normal equation (4.5). The

computational bottleneck for solving equation (4.5) is the inverse of the Hessian

matrix Hk, which takes O((NzNx)
3) �ops and O((NzNx)

2) memories. To preserve the

quadratic convergence rate of the second order method, extract the useful information
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Algorithm 4: Sub-sampled Newton method with Non-uniform Sampling
Input: Initial velocity m0, frequency ω, number of iteration K, sampling

scheme S and solver A.
Output: mK

for k = 0, . . . , K − 1 do
Construct the sampling distribution {πi}Ni=1 according to sampling

scheme S: leveraging score of A(m) = [AT
1 · · ·AT

N ]T , say, πi =
‖Ai‖2F
‖A‖2F

Ma

et al. (2015), or the block partial leverage score Xu et al. (2016).
Draw the sample, i.e. STAA, according to an importance sampling
distribution {πi}Ni=1, where S

T
A is a random sampling matrix.

Calculate randomized Hessian sketch
H̃(mk) =

∑
l∈IAT

l (mk)Al(mk)/πl + Q(mk), where I is the subsampled
indices set with size s.
Calculate g(mk), and learning rate αk using line search.

Update velocity mk+1 = mk − αk[H̃(mk)]
−1

gk, using solver A to inverse
Hessian H̃(mk).

end

return mK

from the highly correlated data, and conquer such high per-iteration computational

cost in forming and inverting the Hessian matrix, along with the line of Erdogdu

and Montanari (2015); Xu et al. (2016); Pilanci and Wainwright (2017), we propose

a randomized second order learning method called Sub-Sampled Newton (SSN) for

FWI inverse problem.

We note that on realization of the Hessian of E(·) at certain receivers and fre-

quencies,

H(mk) =
N∑
s=1

AT
s (mk)As(mk) + Q(mk), (4.9)
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where
∑N

s=1 AT
s (mk)As(mk) = R

{
J†kJk

}
, Q(mk) = R

{
∂J†k
∂mT [δd∗1 · · · δd∗k]

}
, and

N = NsNrNω with Ns, Nr, and Nω are the source, receiver, and frequency numbers

respectively.

As second order methods have been demonstrated to be e�ective in �nding high

precision minimizer, we propose a randomized second order learning method, Sub-

Sample Newton, that exploit non-uniform sub-sampling of R{J†kJk} to reduce the

computational cost and achieve comparable convergence rate to Newton's method.

We construct the non-uniform sub-sampling πi over Ai(mk) with i = 1, . . . , N ac-

cording to πi =
‖Ai‖2F
‖A‖2F

Ma et al. (2015); Zhang et al. (2018), or the block partial

leverage score Xu et al. (2016) and take s sub-sample terms proportional to πi. The

details of the proposed method is summarized in Algorithm 4.

When the Hessian matrix dimension is large, the inexact solver, e.g. matrix

free optimization Martens (2010) or conjugate gradient method Wright and Nocedal

(1999), can be used to update the velocity model using a few iterations to produce

a high-quality approximated solution to the normal equation.

4.3 Numerical Experiments

A 2D SEG/EAGE overthrust model (Fig. 4.1a) is used to test the proposed algo-

rithm. The initial model is a smoothed version of the true model (Fig. 4.1b). The

original model consists of 801 × 187 grid cells in a 2-D section with 25 m horizon-

tal and vertical grid intervals. There are 100 sources and 100 receivers laid on the

surface, which are spread out with 25 m spatial interval. A multi-scale inversion
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approach is adopted in our numerical experiments in frequency bands 0.5− 4 Hz in

every 0.5 Hz.

Fig. 4.1c � Fig. 4.1e demonstrate the learning results of (c) gradient decent, (d)

l-BFGS and (e) Sub-Sampled Newton based on the data set of the lowest frequency

band (0.5−4Hz). Fig. 4.2 provides the convergence rate comparison among the three

methods, which shows the overall performances of them given the same number of

forward modelling evaluations.

From both Fig. 4.1 and Fig. 4.2, we see that the proposed SSN recover the best

velocity model among three methods. In Fig. 4.2, given the same numbers, 10 per

0.5 Hz, of forward modelling evaluations, SSN method converge faster than gradient

decent and l-BFGS by achieving smaller mean squared error (MSE) across almost all

frequencies. The gradient descent method has a large MSE, which implies that the

numbers of forward modelling evaluations may not be su�cient for e�ciently recover

the velocity model or even obtaining a correct search direction. l-BFGS shows a

better convergence performances as the frequency raise, but still signi�cantly slower

than SSN. Considering the expense of evaluating forward modeling, SSN outperforms

the �rst order method, gradient decent and l-BFGS, and save the high per-iteration

cost of vanilla Newton type method so that achieves the fast and accuracy learning

results.
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4.4 Conclusions

We present an e�cient Sub-Sampled Newton (SSN) method to solve complex non-

linear system guided by physical laws with application to FWI problem. SSN sig-

ni�cantly reduces the computational complexity while preserving a fast convergence

property, by using the non-uniform subsampling techniques. SSN captures the impor-

tant information in the second order term thus having a rapid rate of convergence. In

numerical experiments of the Overthrust velocity model, we demonstrate that SSN

signi�cantly outperformed gradient descent and l-BFGS, resulting in high-quality

inverted velocity model.
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Figure 4.1: (a) Overthrust model, (b) Initial velocity model, (c-e) The learning results
of (c) gradient decent, (d) l-BFGS and (e) Sub-Sampled Newton using the data set
of the lowest frequency band (0.5− 4Hz).

110



Figure 4.2: Convergence comparison of di�erent methods. The mean squared error
(MSE) of velocity model is plotted every 0.5 Hz with 10 forward modelling are
evaluated at each of the 0.5 Hz frequencies.
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