MODELING THE HEAT OF FORMATION OF ORGANIC COMPOUNDS USING SPARC
by
TAD S. WHITESIDE

(Under the direction of Lionel Carreira)

ABSTRACT

Typically, the interaction of chemicals with the environment is governed through physic-
ochemical properties. The Environmental Protection Agency has developed several models
to predict the fate of chemicals in the environment. SPARC (SPARC Performs Automated
Reasoning in Chemistry) has been developed as a method to predict the properties of envi-
ronmentally sensitive compounds.

SPARC uses computational algorithms based on chemical structure theory to calculate
chemical properties, including the heat of formation. Molecular structures are broken into
simple functional units (reactophores) with intrinsic properties. Each reactophore is analyzed
and the effects of appended molecular structures are quantified through perturbation theory.

Standard enthalpies of formation (AHy) were calculated with models developed using
the computer program SPARC. The AH; models have been completely developed using
all known data for saturated and unsaturated hydrocarbons and halogenated hydrocarbons.
Basic models have also been developed for alcohols, aldehydes, and ketones. The structures
of these compounds vary from chains and conjugated rings to poly-benzoic aromatic hydro-
carbons. The 587 hydrocarbons have a SPARC calculated RMS of 4.50 kJ mol™. Halogenated
hydrocarbons have a calculated RMS deviation of 5.18 kJ mol™ for 202 compounds.

The effect of stereochemistry on the standard enthalpy of formation was also modeled.

Chiral centers are found in a variety of molecules and help define the overall structure of

a compound. The local atomic environment determines the strain energy in each chiral
center. There are four local environments in which chiral centers are found: Linear, Single,
Bridge, and SideShare. These are modeled independently and the total contribution of stere-
ochemistry to the heat of formation is determined by summing the energy found in these
environments. The 169 experimentally determined compounds with chiral centers were used
to develop this model.

To provide a benchmark of SPARC’s capabilities, the heat of formation of the compounds
used to develop the models was also calculated using the semi-empirical PM3 method and the
group additivity method developed by Benson, as implemented by NIST in their chemical
webbook. SPARC outperforms both of these methods in terms of speed and accuracy.

INDEX WORDS: enthalpy of formation, heat of formation, hydrocarbons,
halohydrocarbons, SPARC, stereochemistry

MODELING THE HEAT OF FORMATION OF ORGANIC COMPOUNDS USING SPARC

by

TAD S. WHITESIDE

B.S., Erskine College, 2000
B.A., Erskine College, 2000

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment
of the

Requirements for the Degree

DocTOR OF PHILOSOPHY

ATHENS, GEORGIA

2004

© 2004
Tad S. Whiteside
All Rights Reserved

MODELING THE HEAT OF FORMATION OF ORGANIC COMPOUNDS USING SPARC

by

TAD S. WHITESIDE

Approved:

Major Professor: Lionel Carreira

Committee: Michael Duncan
Jonathan Amster

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School
The University of Georgia
December 2004

DEDICATION

To my family

v

ACKNOWLEDGMENTS

I would like to thank Dr. L. Carreira for his support and encouragement over the past four
years. I appreciate the time and effort he has expended on my behalf. I would also like to
thank the members of my committee, Dr. J. Amster and Dr. M. Duncan, for providing sound
advice.

I appreciate Dr. S. Hilal’s insight into the heat of formation models and SPARC in
general. I also give special thanks to Raj Ayyampalayam for allowing me to be impatient
and short-tempered.

This research was sponsored in part by the U.S. Environmental Protection Agency under

the cooperative agreement No. CR83138401 with the University of Georgia.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS . . . v v v v v e et e e e e e e e e e e e e e s e e v
LIST OF FIGURES e e e e e e e e e e e s e ix
LI1ST OF TABLES o e e e e e e e e e e e xi
CHAPTER

1 INTRODUCTION v i v v e e e e e e e e e e e e s e 1
1.1 INTRODUCTION v o i i i i e e e e d e e e e 1
1.2 SPARC e 2
1.3 THE HEAT OF FORMATION 3
1.4 CALCULATING THE HEAT OF FORMATION . 3
1.5 STRUCTURE OF DISSERTATION . 6
1.6 DATA 7

2 PREDICTION OF THE ENTHALPY OF FORMATION OF HYDROCARBONS
UsING SPARC e 8
2.1 INTRODUCTION v v v v e et it e e e e e e e 9
2.2 THEORETICAL METHODOLOGY v v v v v v v et oo 10
2.3 AH; ADJUSTMENT MODELS 19
2.4 RESULTS AND DISCUSSION v v v i it e 28
2.5 CONCLUSION o v i ittt i et e e s e e o4
2.6 REFERENCES« v o v i it i e e d e e 32

3 PREDICTION OF THE ENTHALPY OF FORMATION OF HALOGENATED
HYDROCARBONS UsiINgG SPARC 35

vi

3.1 INTRODUCTION v v v i et e e e e e e e e
3.2 THEORETICAL METHODOLOGY « v v v v vt i e i e e
3.3 RESULTS AND DISCUSSION o v ittt
3.4 CONCLUSION v v vttt e e e e e e e e s e
3.5 REFERENCES o o i i it i e e e
4 STEREOCHEMISTRY AND THE ENTHALPY OF FORMATION
4.1 INTRODUCTION v v v v i it e e e e d e e e
4.2 THEORETICAL METHODOLOGY« v v v v v e v
4.3 DATA . . . e e e e
4.4 RESULTS AND DISCUSSION v v i it i e e
4.5 CONCLUSION v v ot et e e e e e e e e e e e e
4.6 REFERENCES v i i i e it e e e e e e

5 OTHER MODELING

5.1
5.2
5.3
5.4
5.5

6 TooLs
6.1
6.2
6.3
6.4
6.5
6.6
6.7

INTRODUCTION o o .

ALCOHOLS

ALDEHYDES . .« o o v o o e e

KETONES

ASSORTED

PROJECTS o o o o o o o o0

INTRODUCTION o o o i e i e s s s s s .

THE SPARC DATABASE o o i v it it s

TRAINING FILE TOOLS oo e

SPARC DATA VIEWER / COMPARER

QuavriTy CONTROL OF SPARC

COMMON USER AREA« o« v v i i it d o s s s

SUMMARY

vii

36
37
49
50
52

54
%)
56
65
65
69
70

72
72
72
73
73
74

)
1)
75
7
78
78
79
80

Viil

7 CONCLUSIONS . . o v v e e e o e s s s s s s s s 81

7.1 REVIEW OF FINDINGS o o o oo s i st . 81

7.2 FUTURE STUDIES . . « v v v v e e e s s s s s s s s s 83

BIBLIOGRAPHY o o 85
APPENDIX

A SPARC TOOLS, 88

A.1 DATABASE MANAGEMENT TOOLS . . . « « v v v v v i e i s 88

A.2 QuALITY CONTROL PROGRAMS 122

A.3 COMMON AREA SCRIPT v o v v . 125

B ComMPOUNDS USED TO DEVELOP THE MODEL« 129

B.1 HYDROCARBONS o o o e i s s s s 129

B.2 HALOGENATED HYDROCARBONS v v v i i . 154

C THE HEAT OF FORMATION PROLOG CODE 163

C.1 HFE.PRO s 163

C.2 HF_RING2.PRO . .« o v e e e s s s s s s s s s s s s 232

C.3 OTHER_AROM.PRO . . « « v v oo e et s s s s 263

C.4 HF_CHIRAL.PRO . . .« v v v v it s s s s s s s s s s s s 268

C.5 HF_DATA.PRO o o o e s e s s s s s s s s s s 302

2.1
2.2
2.3
2.4

2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
3.1
3.2
3.3
3.4

3.5
3.6
3.7
4.1
4.2

Li1sT OF FIGURES

The ethylenic reaction center can experience interactions at four locations . . 13
trans- and cis- cyclooctene 14
Interactions in 1,2-dimethyl cyclohexane 14

Possible interactions between substituents and an n-membered ring in an exo-

ethylenic reaction center. 14
Interaction between two n-membered rings joined by an exo double bond. . . 15
Pyrene, which has examples of bridge and buried atoms. 16
The steric interaction sites on an aromatic reaction center. 19
The five possible connectivity locations in an aromatic reaction center. . . . 23
Ring strain versus ring size for cyclo-X-anes 24
The various ring structures SPARC identifies 26
The difference in the confirmations of cis- and trans- dimethylcyclohexane. . 27
SPARC versus Observed for 587 heats of formation 31
The five unique substituent locations in an aromatic reaction center. 40

Halogenated methyl, showing the Br-F, CI-F, and Br-Cl Halo interactions. . 42
The X7 interaction of halogens on the bonds of neighboring atoms. 44

A perfluorinated alkane showing the Per parameter(s) used for interactions

between reaction centers.o 45
The interactions affecting one atom in an ethylenic reaction center. 46
Outer and Inner substituents in an aromatic reaction center 48
SPARV vs Observed for 202 heats of formation of halohydrocarbons 51
The three ring environments with stereochemistry 57
Oxolane-3,4-diol dinitrate 59

1X

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Two bridge sections showing the three local environments of OtherCAs. Also
shown is a ChiralBridgeAtom (CBA) and a ChiralSideShareAtom (CSA). . .
The various interactions which occur between the three unique bridge envi-
ronments (X,X,X; V,X,¥5 X,Xo¥)e « v v v v e e e e e e e e e e e e
No stereochemistry specified in either a. Tetrahydroanthracene or b. Tri-
cyclo[4.2.0.02,5]octane ([3]-ladderane)
Linear Chiral Centers calculated versus observed values for 11 stereoisomers.
Calculated versus observed for 37 stereoisomers of chiral centers in single rings.

Bridge Rings Calculated versus observed for seven stereoisomers containing a

Calculated versus observed for the seventeen sideshare stereoisomers.

61

62

64

67

68
69

2.1
2.2

2.3

2.4

3.1

3.2

3.3

3.4

4.1

4.2
4.3

B.1
B.2

LisT oF TABLES

Calculating the heat of formation of pyrene using the SPARC parameters.

Comparison of experimental and calculated values of AH; (kJ mol!) for
PBAHs using SPARC, PM3, and Group Additivity.
Individual components of the SPARC calculated series methane, ethane,
propane, 2-methyl propane, and neopentane.
Comparison of the error in observed values with the SPARC, PM3, and Group
Additivity calculated RMS values. Also included is the R2 value.
The parameters, interactions, and energies associated with the Halo interac-
tion, grouped by reaction center. Combinations not explicitly listed have a
contribution of 0 kJ mol™*
The parameters and interaction energies, grouped by reaction center, of the Xi
interaction for which there is experimental data. Combinations not explicitly
listed have a contribution of 0 kJ mol™*.
The perfluorination parameters.
Aromatic reaction center steric parameters and values. If an interaction is not
defined, a multiplier of 1 is used instead.
The SS multiplier for CSA pairs with rings of various senses and lengths. For
all other combinations no correction is made.
The Middle correction for various configurations of rings
The RMS of the SPARC, PM3, and Group Additivity methods for the
observed AAH; between pairs of stereoisomers.
Observed and calculated values of hydrocarbons

Observed and calculated values of halogenated hydrocarbons

x1

17

18

45

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

As more countries enter the global marketplace, the potential for environmental damage
from unregulated dumping and industrial waste increases. While most countries have envi-
ronmental monitoring and regulating agencies, these are typically under-funded and under-
staffed. With minimal support, these agencies attempt to monitor the effects thousands of
various chemicals have on the environment. Typically, the interaction of chemicals with the
environment is governed through physicochemical properties. It has been common practice
for these agencies to determine these properties by analyzing waste and compounds using
traditional methods such as field monitoring, toxicological testing, and laboratory assess-
ments. A separate procedure is usually necessary to determine the value of each property
for a given chemical. In order to fully determine these values and because the chemicals of
interest are generally toxic, a large amount of time must be invested in analysis, disposal,
and safety. With the explosive growth of chemical usage in all industries and with over
70,000 chemicals listed in the U.S. EPA’s Office of Toxic Substances database[l] alone, for
these agencies to attempt to experimentally determine each property is an impractical, if
not impossible, undertaking.

In order to provide regulatory guidelines, several engineering models have been developed
which predict the fate of compounds in the environment.[1] While these models are able to
predict the fate of compounds in the environment, they depend on reactivity parameters:

values only obtained from the physical and chemical constants associated with kinetic and

thermodynamic descriptions of reactivity. Unfortunately, the properties of many environ-
mentally important chemicals are either unknown or incomplete. However, many of these
properties have been successfully modeled using computer programs. These property cal-
culators have been developed to the extent that accurate and rapid estimation for certain
classes of compounds is easily accomplished.[2, 3] The advantage of these calculators is that
the time spent on property determination is reduced to minutes instead of months and the
disposal and safety issues become moot.[1] SPARC is one such calculator, but differs from
the others because instead of modeling a class of compounds, SPARC attempts to model the

chemical effects which contribute to each property.

1.2 SPARC

SPARC (SPARC Performs Automated Reasoning in Chemistry) is a computer program
developed to analyze molecular properties and reactions by applying the reasoning process
of an expert organic chemist.[1] SPARC does not calculate chemical properties from “first
principles”. Instead, it acts as an intelligent agent that analyzes the chemical structure of
a compound and based on the structure and property being calculated, applies interaction
models developed for that property. The properties SPARC calculates are based on “real”
molecules found in “real environments”. The same basic method and general equations are
used for each property SPARC models. This includes using SPARC’s structural analysis
engine to factor molecules into individual functional groups (reaction centers and perturbers)
and then determining, for the property of interest, how each factored group affects the
others in contributing to the overall property. The reaction centers, or reactophores, are the
smallest subunits of the larger molecule with known chemical properties.[1] The perturbers
are molecular structures attached to the reactophore which affect its energy.

The basic quantity of each reaction center is a measured, unperturbed, value. If the
reaction center is the only group in the molecule, there are no perturbing structures; hence,

the value for the property is the value in SPARC’s database of measured values. Otherwise,

the reactophore’s value will differ from the measured value by the sum of the perturbations
caused by the appended structures. These perturbations are quantified into the various
interactions commonly occurring in physical organic chemistry such as steric, resonance,
connectivity, etc. While each reaction center is analyzed by a common method, the results
will differ depending on the reaction center, groups connected to the reaction center, and
the property being determined. After the value of each reactophore is determined, the entire
molecule is analyzed to account for any additional structural or resonance effects impacting
the property of interest. These values are summed together to produce the SPARC calculated
value for the property of interest. The SPARC method of calculating physical and chemical
properties is fast and accurate. For many of these properties, the calculated value deviates
from the experimentally accepted value by an amount on the order of the error range reported

for the experiment.[1]

1.3 THE HEAT OF FORMATION

The heat of formation or standard enthalpy of formation (AHy), is the standard reaction
enthalpy for the formation of a compound from its component elements in their reference
states.[4] The reference state is the most stable state at the specified temperature and 1
bar.[4] The enthalpy of formation is one of the basic thermodynamic properties of molecules.
One application of this property is in examining the reactivities of compounds to aid in the
prediction of equilibrium constants.[5] We are interested in using the heat of formation models
to aid in the development of reaction kinetics and reduction-oxidation models. These models
will improve the prediction of transition state energies and provide a better understanding

of reaction pathways.

1.4 CALCULATING THE HEAT OF FORMATION

Currently, heats of formation are calculated primarily through two methods, ab initio calcula-

tions and the group additivity method developed by Benson. While other methods, including

molecular mechanics and semi-empirical PM3 calculations, are also used, these are not as
prevalent as the ab initio or group additivity methods. The SPARC method for determining
the heat of formation is not an attempt to take away from these other methods but is a
stepping stone to the development of an improved kinetics model.

Ab initio methods calculate the heat of formation for a molecule from its component
atoms. One method first calculates the AFE at 0K using the optimized geometries of the
compound formed from its gas phase elements.[6] This energy change is then converted to
AH; at 298K by adding the translational, rotational, and vibrational contributions to the
energy through the ideal gas model, and finally applying the definition H = E + PV =
E + RT.[6] The calculation is refined by adding correction terms based on the known heats
of formation for a set of compounds varying in composition and structure.[6] This method
works well for many molecules; however, it is computationally expensive and the accuracy
rapidly deteriorates after a molecular size of approximately 10 atoms is exceeded. The error
reported for a typical calculation is 16 kJ mol™? and the time to complete a calculation is
measured in tens of hours.|[6]

The estimation method developed by Benson is both simple and accurate. Benson’s
approach is based on the premise that most properties of larger molecules can be considered
as the sum of the contributions from the individual atoms or bonds in the molecule.[5, 7]
Such a proposal is reasonable because it has been shown that forces between atoms are highly
dependant upon distance.[1, 5, 7] Benson extends this proposal from individual atoms to
groups of atoms. Using the component groups of a molecule, the property in question can
be calculated by summing the contributions from each group.[5, 7] Benson derives the group
data from the observed heats of formation of known compounds.[5, 7] This method does a
much better job of calculating the heats of formation in terms of both speed and accuracy
when compared with ab initio calculations. The usual estimation error is 8 kJ mol* and the

time to calculate is measured in minutes.[5, 7]

The SPARC method for calculating the heat of formation incorporates strategies from
both of these methods. The model also uses procedures developed for other SPARC models.
The heat of formation can be expressed as a function of the energy required to add an atom
to the free element state. It represents the energy difference between the free element state
and the whole molecule state. To model this energy difference, AH; is expressed in terms
of the summation of the contributions of all the components, perturber(s), and reaction

centers(s), in the molecule (Equation 1.1).

AHf - Z [(AHf)C + AC] + (AHf)Whole_molecule (11)
Cc=1

Using the standard SPARC procedure, molecules are first broken into C' reaction centers
(essential atoms/groups) and their perturber structures. In this equation, (AHy)c is the
intrinsic heat of formation of the reaction center, C', and is assumed to be unperturbed and
independent of any perturbing structures. Ac describes adjustments made to the (AH{)c
by the perturber structure(s); the (AHf)whote_motecute 1S any additional energy added (or
subtracted) due to the overall molecular structure, e.g. distribution of NBMO charge in
conjugated systems.

The reaction center perturbation, Ac, is further factored into mechanistic components
SPARC calculates for perturbations to the heat of formation of each reaction center, as

described by Equation 1.2.
AC - Asteric(AHf)C + Aresonance(AHf)C + Acannectivity(AHf)C (12)

Agteric(AH) o, Aresonance(AH), and Aconnectivity(AH) describe how the size, resonance,
and connectivity of the perturber(s) affect the reaction center’s value. The steric interac-
tion is the effect of a perturber’s size on the reaction center. The resonance interaction
is a description of the amount of stabilization a molecule undergoes due to charge being
distributed out of the reaction center and into the perturbing structures. The connectivity
adjustment describes the change in a reactophore’s energy when a hydrogen atom of a base

reactophore is replaced with another group.

The “whole molecule” correction, (AH f)w hote_molecute; 15 the sum of corrections applied to
the entire molecule; this includes corrections for rings, additional resonance, and additional

steric energy (Equation 1.3).

(AHf>Whole_molecule = (AHf)m'ngs + (AHf>:rres + (AHf)zstem'c (13)

The number, size, and connectivity of the rings in a molecule determine the amount of
correction for rings, (AHy)yings- There is an additional resonance correction, (AH) pes, for
homoaromaticity. (AHf)zsteric models the strain induced by various spatial environments.
All of the perturbations and adjustments are empirically trained against experimentally
determined values of the heat of formation.

SPARC’s method to calculate the AH has fewer parameters when compared to Benson’s
method. The Benson method models compounds by assigning every possible group a value;
e.g. both C-Cl and C(Cl)(Br) have separate values. This leads to large numbers of parameters
that must be determined before a calculation can be completed. With SPARC, instead of
modeling a complete group, such as a C-Cl group, just the methyl group is modeled and
the chlorine group is modeled. The steric, electrostatic, and other effects of that group are
modeled so when the two groups are combined, the correct contribution from each model is

added to the total and the answer is produced.

1.5 STRUCTURE OF DISSERTATION

The second, third, and fourth chapters have been published or submitted for publication
in the Journal of Theoretical and Computational Chemistry and the Journal of Chemical
Theory and Computation. The second and third chapters explain the heat of formation
model for hydrocarbons and halohydrocarbons, respectively. Chapter four describes how
stereochemistry affects the heat of formation. The fifth chapter includes the work done
on ketones, aldehydes, and alcohols and the sixth chapter explains the tools developed to

expedite model development.

1.6 DAtaA

The experimental values used in constructing the model come from References [8]-[10]. The
types of experiments used to produce the data are: static bomb calorimetry, rotating bomb
calorimetry, calorimetry of hydrogenation, heat of isomerization, heat of equilibrium, kinetic
measurements, and ion cycles.[8] When more than one method of obtaining the heat of
formation for the molecule of interest was reported, either the data reported from bomb
calorimetry or, lacking that, the best reported value was used as the basis for building the
model. Unfortunately, the NIST website[8] has inconsistencies and large errors with some
of the reported experimental values. Other problems in building the model occurred when
more than one experimental value was reported for a compound and these differed by a
significant amount. When discrepancies were discovered, the original publications as well as
values reported by other groups were examined to determine the validity of the data. The
value selected was the one reported by the researcher whose publication was most clearly

documented.

CHAPTER 2

PREDICTION OF THE ENTHALPY OF FORMATION OF HYDROCARBONS UsING SPARC!

"Whiteside, T.S. and L.A. Carreira. J. Theoretical and Computational Chemistry. World Scien-
tific: Singapore, 2004; 3:451-469. Reprinted here with permission of publisher.

8

2.1 INTRODUCTION

The enthalpy of formation (heat of formation or AHy) is one of the basic thermodynamic
properties of molecules. Scientists use this property in many diverse applications; however,
the most practical applications are in examining the reactivities of compounds and aiding in
the prediction of equilibrium constants.[1] We are interested in using the heat of formation
models to aid in the development of reaction kinetics and reduction-oxidation models to
improve the prediction of transition state energies. For a large number of compounds, the
heat of formation and other physicochemical properties are unknown. To experimentally
determine these properties for every substance would be prohibitively expensive in terms
of both time and effort. Fortunately, several methods have been developed to calculate the
enthalpy of formation and related physical properties. Previously this has been accomplished
through ab initio, semi-empirical, and group additivity methods. Recently, SPARC models
have been developed and used to calculate many physical properties of organic compounds
including the Henry’s constant, vapor pressure, boiling point, solubility, hydrolysis rates,
aqueous and nonaqueous pKa’s, reduction potential, index of refraction, and now, heats of
formation.[2, 3, 4, 5, 6]

SPARC (SPARC Performs Automated Reasoning in Chemistry) is a computer program
developed to analyze molecular properties and reactions in the same manner an expert
chemist would. For each chemical property SPARC uses the same basic method and gen-
eral equations. This includes using SPARC’s structural analysis engine to factor molecules
into individual functional groups (reaction centers and perturbers) and then determining,
for the property of interest, how each factored group affects the others in contributing to
the overall property. The reaction centers, or reactophores, are the smallest subunits of the
larger molecule with known chemical properties.[5] The perturbers are molecular structures
attached to the reactophore that affect the value of the reactophore. The basic quantity for
each reaction center is a measured, unperturbed, value. If the reaction center is the only

group in the molecule, there are no perturbing structures; hence, the value for the property

10

is the value in SPARC’s database of measured values. Otherwise, the reactophore’s value
will differ from the measured value by the sum of the perturbations caused by the appended
structures. These perturbations are quantified into the various interactions commonly occur-
ring in physical organic chemistry such as steric, resonance, connectivity, etc. Each reaction
center is analyzed by a common method; however, the results of the analysis will differ
depending on the reaction center, groups connected to the reaction center, and the property
being determined. After each reactophore’s value has been determined, the entire molecule
is analyzed to account for any additional structural or resonance effects that may impact the
property of interest. All of these values are summed together to produce the SPARC calcu-
lated value for the property of interest. For a complete description of the SPARC method
please see reference [5].

As stated in reference [1], at room temperature, a shift in the enthalpy of reaction by
1 kcal mol ™ (4.184 kJ mol ') will generally change the equilibrium constant by a factor of
five. This is the difference in a 90% and a 64% reaction yield; or, in terms of time, has the
effect of multiplying the reaction time by five.[1] This change applies equally to reactions
whether the total enthalpy of reaction is 20 kJ mol™* or 2000 kJ mol™.[1] Therefore, for any
calculation scheme to be accurate within a factor of ten, its uncertainty must be less than
9 kJ mol!. It was our goal to develop a heat of formation calculator that would meet or

exceed these requirements.

2.2 THEORETICAL METHODOLOGY

2.2.1 CALCULATION OF THE AH; USING SPARC

The calculation of the heat of formation uses procedures developed for other SPARC models.
As these have already been presented in previous publications|2, 3, 4, 5], only the methods
and models specifically developed for determining the heat of formation will be presented

here. Using standard SPARC procedure, molecules are first broken into C' reaction centers

11

(essential atoms/groups) and their perturber structures; the heat of formation is then calcu-
lated using Equation 2.1. In this equation, (AHy)¢ is the intrinsic heat of formation of the
reaction center, C, and is assumed to be unperturbed and independent of any perturbing
structures. Ac describes adjustments made to the (AHf)c by the perturber structure(s);
the (AHf)whote_molecule 18 any additional energy added (or subtracted) due to the overall

molecular structure, e.g. distribution of NBMO charge in conjugated systems.

AHf = Z [(AHf)C + AC] + (AHf>Whole_molecule (21)
Cc=1

The reaction center perturbation, Aq, is further factored into the mechanistic components
SPARC calculates for perturbations to the heat of formation of each reaction center, as
described by Equation 2.2. Here Ageric(AHf)o,Aresonance(AHf) e, and Aconnectivity (AH)
describe how the size, resonance, and connectivity of the perturber(s) affect the reaction
center’s value. The steric interactions are dependent on the size of the locally appended
structure(s). The resonance interaction is a description of the amount of stabilization a
molecule undergoes due to charge being distributed out of the reaction center and into the
perturbing structures. The connectivity adjustment describes the change in a reactophore’s

energy when a hydrogen atom of a base reactophore is replaced with another group.
AC’ = Asteric(AHf)C' + Aresonance(AHf)C + Aconnectivity(AHf)C (22)

The “whole molecule” correction, (AH ¢)whole_molecutes 1S the sum of corrections applied to
the entire molecule; this includes corrections for rings, additional resonance, and additional
steric energy (Equation 2.3). The number, size, and connectivity of the rings in a molecule
determines the amount of correction for rings. There is an additional resonance correction for
homoaromaticity. The additional steric correction is for the gauche interaction between two
reaction centers. All of the perturbations and adjustments are empirically trained against
experimentally determined values of the heat of formation. Other descriptors, e.g. hydrogen

bonding, sigma induction, etc. will become necessary when expanding these models beyond

12

the first step of creating a hydrocarbon AH calculator.
(AHf)Whole,molecule - (AHf)rings + (AHf>zres + (AHf)xste’ric (23)

2.2.2 MOLECULAR FUNCTIONAL GROUPS (REACTION CENTERS)

When given a compound, SPARC first determines the constituent pieces of the molecule.
For example, given the compound 3-amino-5-chloro-benzoic acid, SPARC would find four
functional groups: a benzene group, a carboxylic group, an amine group, and a chlorine
group. Depending on the property being modeled, the functional groups considered reaction
centers and how they are used, will vary. For the heat of formation, all functional groups
are considered reaction centers and each are analyzed for their contribution to the overall
energy.

For the hydrocarbon model, SPARC recognizes four types of functional groups: methyl,
ethylenic, acetylenic, and aromatic reaction centers. The (AH)¢ values of the methyl, ethyl-
enic, and acetylenic groups are the experimentally determined values of the heat of formation
for methane, ethylene, and acetylene respectively; these values are stored in the SPARC data-
base. The fourth type of reaction center, aromatic, is not a simple tabulated value, but is
calculated and depends on the exact type of reaction center. Each reaction center is possibly

perturbed through steric, connectivity, or resonance interactions.

METHYL REACTION CENTERS

Methyl reaction centers are carbon atoms connected to other atoms only through sp3 bonds.
Their (AH;)c value is simply the literature value of methane, -74.6 kJ mol ™. The methyl

reaction center’s value can be perturbed through both steric and connectivity effects.

ETHYLENIC REACTION CENTERS

Ethylenic reaction centers are two carbon atoms connected to each other by a double bond

and to other atoms by single bonds. Their (AH)¢ value is the literature value of ethylene,

13

N

neighbor 1 3

neighbor 2

4

Figure 2.1: The ethylenic reaction center can experience interactions at four locations

52.47 kJ mol!. Ethylenic reaction centers are difficult to model due to the possibility of
four steric interactions on each reaction center (Figure 2.1). Other perturbations include
connectivity, resonance, and overall molecular structure (e.g. if the reaction center is endo
or exo in a ring).

For ethylenic reaction centers inside a ring, it becomes necessary to analyze the reaction
center perturbations differently. The first perturbation to determine is the one describing how
the reaction center is affected by being inside a ring. This perturbation takes into account
the steric and connectivity perturbations the ring has on the reaction center. It includes
variables such as the size of the ring, the location of the reaction center inside the ring, and
in what other rings the reaction center is included. The location inside the ring is important
because this determines if the ring-atom substituents are cis or trans to each other (Figure
2.2). The other perturbations to account for are those between substituents not members of
the ring and the interaction of these with the ring and with each other (Figure 2.3).

Exo ring ethylenic reaction centers have a perturbation based on the size of the ring.
Also, substituents off of the sp2 carbon, which are not part of the ring, cause additional per-
turbations to the reaction center due to steric and connectivity effects. These perturbations

are dependant on the number and size of substituents (Figure 2.4). For two rings joined by

14

Figure 2.2: trans- and cis- cyclooctene

H3C b

|

HC'e—>

Figure 2.3: Interactions in 1,2-dimethyl cyclohexane

an exo double bond (Figure 2.5) the only perturbation to the ethylenic reaction center is

due to the size of each ring.

ACETYLENIC REACTION CENTERS

Acetylenic reaction centers are two carbon atoms connected to each other with a triple
bond, and to other atoms through a single bond. Their (AH)¢ value is the literature value

of acetylene, 227.40 kJ mol™!. Steric and connectivity perturbations also affect acetylenic

<—> CHj3

B CH3

Figure 2.4: Possible interactions between substituents and an n-membered ring in an exo-
ethylenic reaction center.

15

Figure 2.5: Interaction between two n-membered rings joined by an exo double bond.

reaction centers. For acetylenic reaction centers in a ring, a further perturbation is necessary
due to the additional strain of being bent from a linear geometry. Acetylenic reaction centers,
like ethylenic and aromatic centers, can have resonance perturbations, although to a lesser

extent.

AROMATIC REACTION CENTERS

Aromatic reaction centers are those composed entirely of benzene subgroups and are more
commonly known as poly-benzoic aromatic hydrocarbons (PBAHs). Initially, the values of
all known PBAH’s were tabulated and SPARC referenced them when necessary. However,
only a few (twelve) have been accurately measured and a method to calculate the AH from
structure, for any arbitrary PBAH, was needed. It was determined these values could be
calculated to within experimental accuracy from just five parameters, so this calculational
scheme replaced the tabulated values. The AH; of the aromatic reaction center can be
determined from these parameters and just three pieces of data: how the atoms in the
molecule are connected to each other, the total number of phenyl rings in the molecule, and
how these rings are connected to each other (Equation 2.4).
AHy =
n
Z sp2(AH) + Spridge(AH) + Opurica(AHf) o] +

Cc=1
(AHf)bent + (AHf)resonance + (AHf)helzaty (24)

The AHy of the reaction center is the sum of the contributions of each atom, C, and the

overall correction based on the structure of the molecule. The d,p2(AH)¢ is the basic amount

16

Bridge Atom

’

Figure 2.6: Pyrene, which has examples of bridge and buried atoms.

Buried Atom

of energy contributed by an sp2 carbon atom. The Gprigge(AHf)o and dpyriea(AHf)o are
additional perturbations necessary if C' is a ‘bridge’ or ‘buried’” carbon. A simple illustration
of ‘bridge’ and ‘buried’ carbons is given by pyrene (Figure 2.6). The (AH)pent correction is
necessary when a molecule has a bent structure, like phenanthrene. A “bend” occurs when
two benzenoids are “meta” to each other through a third benzenoid ring. On this third
benzenoid, there are two hydrogen (or other non-sp2) atoms on the outside edge compared
to none on the inside edge. This leads to a lowering of energy in the molecule. To find
the total number of bends in a molecule, all such combinations are found. For example, in
coronene, the system finds six bends; molecules like phenanthrene, where the outside edges
are not connected to additional sp2 atoms, have one bend. In molecules where the outside
edge of the bend is connected to additional sp2 atoms, one-half of a bend correction is
contributed. Triphenylene would have 3 x 0.5 or 1.5 bend contributions. The total number
of bends, calculated as described, are found and divided by the number of phenyl rings in
the molecule to determine the entire bend contribution.

The (AHf)resonance adjustment scales as the number of phenyl rings in the PBAH. As
the number of phenyl rings increases, the amount of resonance increases, lowering the overall

energy.

17

Table 2.1: Calculating the heat of formation of pyrene using the SPARC parameters.

AH ;= AromaticAtoms * Vall AHp=(10+4+2) * 13.82

+ BridgeAtoms * Val2 + 4 * 21.55

+ BuriedAtoms * Val3 + 2 *13.39

+ (NumBends/NumPhenylRings) * Val4 + (2/4) *-89.73
+ NumPhenylRings * Val5 + 4 *-15.89

+ NumHelical * Val6 +0* 33

Observed= 225.7 kJ mol™* Calculated= 225.68 kJ mol!

The (AHf)peticity correction is required for molecules, such as benzo[c]phenanthrene,
which are helical in overall structure. A molecule can be said to have helicity when there are
at least four phenyl rings connected such that only one bond separates every other phenyl ring
and these four phenyl rings do not share a common fifth phenyl ring as in benzo[ghi]perylene.
When this occurs, the heat of formation is raised by approximately 33 kJ mol! for each set
of four phenyl rings. This is most likely due to a reduction of the m-electron overlap in these
rings because the overall molecule is no longer planar. This non-planarity may be enhanced
by the repulsion of the atoms off of the 1 and 12 positions.

A sample calculation for determining the heat of formation of the reaction center pyrene
(Figure 2.6) is shown in Table 2.1. This is an accurate and useful approach to predicting
the heat of formation of aromatic groups. With this method, there are fewer parameters
in the database and PBAHs without measured AH values can still be used to predict the
heat of formation of the aromatic substructure. The RMS error using this scheme is within
experimental accuracy, 2.35 kJ mol™!. Table 2.2 has a complete listing of all the PBAHs for
which the heat of formation was calculated. It should be noted that only after this model
was developed it was discovered Benson had already described a similar mechanism for
calculating the heat of formation of PBAHs.[1, 7]

Steric and connectivity perturbations also affect aromatic reaction centers. Determining

the effect of each is somewhat more difficult than in the other reaction centers. This is

18

Table 2.2: Comparison of experimental' and calculated values of AHy (kJ mol ') for PBAHs
using SPARC, PM3? , and Group Additivity?.

Name CAS Observed SPARC PM3 Group
Number Value Additivity

Benzene 71-43-2 82.93 82.93 97.45 82.8
Naphthalene 91-20-3 150.6 150.00 169.13 151
Anthracene 120-12-7 230.8 22849 256.58 218
Pyrene 129-00-0 225.7 226.53 266.81 231
Phenanthrene 85-01-8 201.2 203.88 228.81 209
Chrysene 218-01-9 269.8 270.07 294.67 268
Benz[a]anthracene 56-55-3 293 288.52 309.77 277
Tetracene 92-24-0 302.5% 306.98 351.08 286
Triphenylene 217-59-4 278.2* 279.29 283.88 273
Perylene 198-55-0 3284 327.17 341.24 280
Benzo[c|phenanthrene ~ 195-19-7 291.2* 290.07 340.10 263
Coronene 191-07-1 348.56 363.83 324
Benzolg,h,i]perylene 191-24-2 339.98 346.96 302
Benzo[a]pyrene 50-32-8 305.02 339.81 290
Benzo[e|pyrene 192-97-2 305.02 318.40 280
Dibenz[a,clanthracene 215-58-7 363.32 361.48 326
Dibenz[a,h]anthracene 53-70-3 355.94 365.73 336
Ovalene 190-26-1 515.95 497.62 417
Anthanthrene 191-26-4 327.67 386.39 311
Pentacene 135-48-8 385.47 449.26 354
Dibenzo[a,,jlanthracene 224-41-9 355.94 365.79 336
dibenzo[a,l]pyrene 191-30-0 403.51 453.92 334
dibenzo[a,h|pyrene 189-64-0 383.51 418.54 348
dibenzola,i|pyrene 189-55-9 383.51 407.78 348
quaterrylene 188-73-8 678.82 683.06 539.7
dibenzo[a,e|pyrene 192-65-4 383.51 388.80 339
RMS 1.56 2.27 29.43 18.86

1 - all values from reference [19] unless otherwise noted

2 - PM3 values calculated using reference [15]

3 - Group Additivity method uses Benson’s parameters [16]
4 - Welsh, Tong,et al. Thermochimica Acta, 290 (1996) 55-64

19

perri perri
ortho-out l l

N
/ | N

ortho-in reg

ortho-out

Figure 2.7: The steric interaction sites on an aromatic reaction center.

because there are four unique steric interaction sites on these hydrocarbons (Figure 2.7). The

resonance perturbation between aromatic compounds is discussed in the resonance section.

2.3 AHj; ADJUSTMENT MODELS

The modeling of energy contributions can be broken into two sections: reaction center per-
turbations and whole molecule contributions. The reaction center perturbations are the sum
of the effects the perturber structures have on one reaction center; the whole molecule effects

are those that affect the energy of the entire molecule.

2.3.1 REACTION CENTER MODELS

Each reaction center has a basic value; this basic value can be perturbed by appended
structures. These perturbations include steric, resonance, and connectivity.

PERTURBER MODELS: STERIC

Steric perturbations can play a major role in affecting the energy of reaction centers. The
function of this interaction is dependant on the reaction center being perturbed as well as the

size of the appended structures. To determine the size of each structure, the conical volume

20

is determined.[5] The volume of methane is then subtracted from this volume to describe
the effective size of the structure. Structures with a volume smaller than methane will not

have a steric contribution.

Methyl Steric The methyl reactophore has one unique substituent location and is tetra-
hedral in geometry. Since each substituent can affect the others, the number (n) and size
(x,) of the substituents found determines the total steric adjustment (Equation 2.5). pgeric

quantifies the effect these substituents have on the reaction center and each other.

Astem’c<AHf>C - pstem'c(n)xn (25)

Ethylenic Steric The ethylenic reaction center has one unique substituent location with four
possible substituent interactions (Figure 2.1). Since each substituent can affect up to two
others, the interactions must be broken into two parts (Equation 2.6). pheighbor1 quantifies
the steric effects between n substituents on 1 and 4 and between substituents on 2 and 3 (see
Figure 2.1); these have total size x14 and x93. The ppeignbor2 Part quantifies the steric effect

between n substituents on 1 and 2 and between 3 and 4; these have total size x15 and x34.

Asteric(AHf)C - pneighborl(xM + I23) + pneighboﬂ(IIQ + ZE34) (26)

Acetylenic Steric The acetylenic reactophore also has one unique substituent location and
is linear in geometry; the substituents cannot affect each other so only the total size (x,,) of

the substituents is found and multiplied by the pgeric quantifier. (Equation 2.7).

Asteric(AHf)C = Psterictn (27)

Aromatic Steric The aromatic steric adjustment occurs in three parts. The regular steric
adjustment occurs for all substituents, then if a substituent is ortho or perri to another

substituent an additional correction must be made (Equation 2.8, see Figure 2.7).

Asteric(AHf)C - Aregular(AHf)C + Aortho(AHf)C + Aper’ri(AHf)C (28)

21

Aromatic Steric: Regular The A, cguar(AH{)c is the adjustment to the aromatic reac-
tophore for the all of the substituents, regardless of their location. pger quantifies what

effect n substituents, with total size x,,, have on the aromatic reactophore.

Aregular(AHf>C = Psterictn (29)

Aromatic Steric: Ortho The ortho steric adjustment determines if an ortho substituent
is next to one other substituent (ortho-out) or two substituents (ortho-in) and makes the
appropriate correction (Figure 2.7). In equation 2.10, pouter and pipner quantify the effect

substituents with total size £ have on each other.

Aortho(AHf)C = Pouter Louter + Pinner Linner (210)

Aromatic Steric: Perri The perri steric adjustment occurs if a substituent is perri to
other substituents (Figure 2.7). Equation 2.11 expresses this as the sum of all the perri pairs
on a reactophore, where p,..,; quantifies the effect perri substituents have on each other;

Tperri 15 the total size of these substituents.

Aperri(AHf)C - Z Pperrilperri (211)

PERTURBER MODELS: RESONANCE

The resonance models are fully described in references [2, 3, 4, 5|. Resonance is a pertur-
bation affecting the reaction center through m-electron delocalization. As more charge is
distributed out of the reaction center, the reaction center becomes stabilized; this stabiliza-
tion is expressed as an overall lowering of energy in the molecule (Equation 2.12). Ag is the
amount of charge distributed out of the reaction center and into the neighboring perturber
groups and Presonance 18 the susceptibility of a given reaction center to this delocalization and
quantifies the energy lowering.[2] This adjustment only occurs when there are m-electrons in

the system: for ethylenic, aromatic, and acetylenic reaction centers.

Aresonance (AHf) = Presonance (AQ)C’ (2 12)

22

PERTURBER MODELS: CONNECTIVITY

Connectivity in a molecule is defined as the bond energy change in the reaction center when
a hydrogen atom is removed and replaced with another group. For all reactophores except
aromatic ones, the connectivity perturbation is expressed as equation 2.13. In this equation,
the value of A onnectivity 18 sSimply dependant on the reactophore being perturbed (peonnectivity)

and the number of non-hydrogen substituents (x).

Aconnectivity (AHf)C = pconnectivity (33) (2 . 13)

The aromatic connectivity adjustment is unique because there are five distinct substituent
locations possible in an aromatic reaction center (Figure 2.8). These locations are designated:
end, br-end, mid, outer, and inner. The end location is simply on a terminating benzenoid
structure, which is not bent; the br-end is also on a final straight benzenoid, however, it is
next to a bridge atom; the mid location is between two bridge atoms; the outer location is
on the outside of a bend; the inner location is on the inside of a bend and next to a bridge
atom. The aromatic adjustment (Equation 2.14) is simply the number of substituents in a
specific location (x,) multiplied by the proper adjustment for that location. If a substituent
is in n locations simultaneously, each location contributes 1/n" of an adjustment to the total

adjustment.

Aconnectimty<AHf>C = PendLend + Por—endLbr—end + PinLin + LPoutLout + PmidTmid (214)

2.3.2 WHOLE MOLECULE MODELS

The whole molecule can experience effects not attributable to any single reaction center
or appended molecular structure. These effects include: adjustments due to the compound
being a ring or other type of constrained structure, extra steric corrections due to nearest
neighbor interactions, and additional resonance effects due to homoaromaticity. The whole

molecule adjustment can be expressed as Equation 2.15.

(AHf)Whole,molecule - (AHf)rings + (AHf)J?T‘CS + (AHf)a:ste’ric (215)

23

br-end mid outer

/

inner

end

Figure 2.8: The five possible connectivity locations in an aromatic reaction center.

WHOLE MOLECULE MODELS: RINGS

When atoms in a molecule are bonded in such a way to produce ring or cage structures,
additional corrections are necessary to account for the extra strain. These corrections include:
a basic correction for all the rings found in the system, having double or triple bonds as part

of the ring, and additional structural corrections (Equation 2.16).

(AHf)rings = Z[pring_size (n) + pethylenic<n> 6) + pacetylenic(n)] + Pstructure (216)

The ring size adjustment, pying_size(n), is simply based on the size of the ring being analyzed.
Figure 2.9 is a graph of ring strain (the difference in the measured AH; for cyclo-X-anes and
the calculated AH; without any ring strain correction) versus ring size. As ring size becomes
smaller than six atoms, the ring strain increases; the same is true for rings larger than six
until cyclodecane is reached, the ring strain then begins to decrease, approaching zero, with
the exception of cyclododecane and cyclotetradecane. These two deviations could be due to
poor measurement[8] or to some quirk of geometry that allows these compounds to have a
lower AH than predicted. The quantifier, p,ing size, is obtained as a functional fit of Figure

2.9’s ring size data.

24

140

120 -

100 -

00}
o

(o)}
o

AHf (ring strain)
N
o
4

N
o o
!

N,
o

IN
o

Ring Size

Figure 2.9: Ring strain versus ring size for cyclo-X-anes

The ethylenic adjustment, pethyienic(n, €), is necessary when a double bond is endo or exo
(e) in a ring; it is dependant on ring size (n), and is quantified by the multiplier petnyienic- If
the ethylenic in question is in more than one ring and could be considered both endo and
exo depending on which ring is being examined, only the endo correction is necessary. This
is due to the major strain being in the endo ring and to avoid “over-correcting” the reaction
center. If there are multiple double bonds in a ring, an additional size dependant correction
must be made. If multiple double bonds are endo and connected, a resonance correction is
subsumed into this correction.

An acetylenic adjustment, pacetyienic, i necessary when an acetylenic reaction center is in
a TiNg. Pacetyienic quantifies the strain that results from bending the normally linear acetylenic

substituents.

25

The ring structure adjustment, pgrucrure, consists of the additional structure adjust-
ments: Pgige aNd Pegge- The psige adjustment corrects for when a ring shares a side with
an aromatic reaction center, another ring, or with multiple rings. The amount of adjust-
ment necessary is based on the size of the connected rings and on the location of the
ring relative to the connected structure, i.e. is it connected along a side or at a single
atom. When there are multiple fused rings in a molecule, it becomes very difficult to pre-
dict their AH; from just local steric and connectivity models. Because of this difficulty,
SPARC uses the peuq4e adjustment to identify the type of structure present and quantify
the amount of energy present in the structure. If multiple structures are recognized, a
correction is applied for each structure found and the manner in which it is connected
to other structures in the molecule. There are thirteen basic structures SPARC searches
for identifies: bridge structures[9]; nortricyclene; adamantine; protoadamantane; tetrahe-
drane; cubane; bullvalene; Hexacyclo[5.4.1.02,6.03,10.05,9.08,11]dodecane; diadamantane;
Dicyclopropalcd,gh]pentalene,octahydro-; Tetracyclo[4.1.0.02,4.03,5]heptane; Prismane; and

azulene. A sample of each of these structures is located in Figure 2.10.

WHOLE MOLECULE MODELS: STERIC

The whole molecule steric adjustment is necessary to account for nearest neighbor steric
interactions. This adjustment only occurs in methyl reaction centers, which are designated

stereocenters, and is expressed as equation 2.17.

(AHf)xsteric = pnear_neighbor(m> n) (2 17)

Prear_neighbor (M, 1) quantifies the effect each pair of stereocenters (m,n) have on each other
and on the entire molecule. This adjustment is similar to the gauche interaction described
by Benson[10] and is used to describe the differences in the AH; between molecules with
different structural representations. For hydrocarbons, this difference is mainly found in ring
systems (Figure 2.11). Rules have been developed which are dependant on the size of the

ring the stereocenters are in; the size of the other ring the stereocenters are in, if both are

26

B
C

Figure 2.10: The various ring structures SPARC identifies (from left to right): bridge
structures; nortricyclene; Hexacyclo[5.4.1.02,6.03,10.05,9.08,11]dodecane; adamantine; pro-
toadamantane; Dicyclopropalcd,gh]pentalene,octahydro-; tetrahedrane; cubane; bullvalene;
diadamantane; Tetracyclo[4.1.0.02,4.03,5]heptane; Prismane; azulene

27

CHj

CHj

P CHj
CHj

Figure 2.11: The difference in the confirmations of cis- and trans- dimethylcyclohexane.

in different rings; the position of the stereocenters in the ring(s), relative to each other; and
the relative spatial orientation of each stereocenters substituents. After taking all of these
rules into account, the correction for each interaction is approximately 5.5 kJ mol™*. The only
exception to this rule is for trans-Bicyclo[3.3.0Joctane, which has a 25.2 kJ mol™ increase in

energy.

WHOLE MOLECULE MODELS: RESONANCE

An additional resonance correction is necessary when a molecule has homoaromaticity, such

as triquinacene. This is expressed as equation 2.18.

(AHf)xres = pharom(l) (218)

Homoaromaticty is a resonance correction that lowers the overall heat of formation because
the structure of the molecule is of three rings joined in such a way that m-electron delo-
calization occurs through space and not across bonds.[11] This creates extra stability and
an overall lowering of the enthalpy of formation. The stabilization for homoaromaticity is

approximately 19 kJ mol™.

28

2.4 RESULTS AND DISCUSSION

The SPARC method of calculating the heat of formation of hydrocarbons is based on struc-
ture query and analysis. It involves summing the value of each reaction center and its local
perturbations and then analyzing the entire molecule to ensure other steric or resonant
effects are taken into account. It is more successful in modeling this property than previous
attempts using ab initio, semi-empirical, and group additivity methods.

There are multiple ab initio approaches to calculate the heat of formation. However, the
results are nearly always the same: large basis sets lead to increased calculation time, and
generally, but not necessarily, correspond to an increase in accuracy; however, as molecular
size increases beyond 10 atoms the calculation time increases and the accuracy of the calcu-
lations rapidly deteriorates. For a typical small calculation (less than 10 atoms), the average
error reported is 16 kJ mol! and the time to complete a calculation is measured in tens of
hours.[12, 13]

There are many semi-empirical methods that have been employed in the calculation of
AHjy. One of the most common and accurate methods, especially for organic compounds is
PM3. PM3 was developed by Stewart as a reparametrization of the AM1 method specifically
for organic molecules.[14] This method handles most compounds; however, the structures
need to be optimized and even then theory occasionally breaks down, giving poor results.
PM3 calculations are much quicker than ab initio calculations; however, this method still
took over a week to calculate the AH; of 574 compounds with an average RMS of 57.8 kJ
mol.[13, 15]

The group additivity method developed by Benson is both simple and accurate. Benson’s
approach is based on the premise that most properties of larger molecules can be considered
as the sum of the contributions from the individual atoms or bonds in the molecule.[10]
Benson extends this proposal from individual atoms to groups of atoms. Using the com-
ponent groups of a molecule, the property in question can be calculated by summing the

contributions from each group.[1, 7, 10] Benson derives the group data from the observed

29

heats of formation of known compounds.[1, 7, 10] The Group Additivity method handles
most compounds; however, if a group collection is not defined it will fail. There are a large
number of parameters in this model[l, 7, 10], but it is extremely fast and accurate. An on-line
calculator is available via the NIST chemical webbook[16] and was used to determine the
AH; of 447 compounds in less than 12 hours, with an RMS deviation of 17.7 kJ mol™*.[13]
The SPARC method of calculating AH is similar to Benson’s group additivity (GA)
method. The major difference being that the GA method assigns every possible group sit-
uation a value, whereas the SPARC model infers the group constant by analyzing the local
environment of the group. As a simple example, consider the series methane, ethane, propane,
2-methyl propane and neopentane. All of the carbons in these compounds start with a base
(unperturbed) value of -74.87 kJ mol™!, the value of the heat of formation of methane. The
methane calculation finds this starting value and since there are no appended perturbing
structures, this is the final answer. When calculating the AH contribution for groups with
perturbing structures, a connectivity correction must be made. For methyl groups, this cor-
rection is expressed as: C,, = —4.23n%+35.53n where n is the number of non-hydrogen bonds
to the carbon. For ethane, each carbon starts with the unperturbed -74.87 kJ mol™ value and
is perturbed for connectivity using the formula, giving a connectivity of 31.29 kJ mol™* for
each carbon. The next step would be to calculate the steric contribution of each group. The
SPARC calculator sums the sizes (as described in reference [5]) of the n groups connected to
the carbon and subtracts n x Methylsize, where Methylsize is the size of a single methyl
group. This quantity is then multiplied by the steric susceptibility. For ethane, the steric con-
tribution is zero since each carbon is connected to a methyl group. For propane the middle
carbon would contribute -74.87 kJ mol™* with a C), of 54.12 kJ mol™!. Since the perturbing
structures connected to the central carbon are both of Methylsize the steric correction is
again zero. The end carbons are symmetry equivalent and each contributes a base of -74.87 kJ
mol ™, a connectivity of 31.29 kJ mol™! and a steric contribution of 7.17 x Stericdif f, where

Stericdif f is the size of ethyl minus methyl. The steric contribution is calculated to be 0.29

30

Table 2.3: Individual components of the SPARC calculated series methane, ethane, propane,
2-methyl propane, and neopentane.

Name Base Connectivity Steric Total Observed
Methane -74.87 0.00 0.00 -74.87 -74.87
Ethane -149.74 62.58 0.00 -87.16 -83.80
Propane -224.61 116.70 0.58 -107.33 -105.64
2-methyl propane -299.48 162.35 1.71 -135.42 -134.20
Neopentane -374.35 199.53 3.96 -170.86 -167.56

kJ mol™ for each end carbon, or 0.58 kJ mol™! for the entire compound. For 2-methyl propane
the three branched carbon contributes -74.87 kJ mol, C,, is 68.48 kJ mol™! and there is no
steric correction, as all of its substituents are of Methylsize. The other three methyl groups
are all equivalent and each has a steric contribution of 7.17 x Stericdif f, where in this case
Stericdif f is the difference in size between an isopropyl and methyl group. This leads to
each having a -74.87 kJ mol™ base value, a connectivity value of 31.29 kJ mol!, and a steric
contribution of 0.57 kJ mol?. Finally, for neopentane, the central group contributes -74.87
kJ mol?, C, is 74.37 kJ mol™ and the steric contribution is 0 kJ mol! (vide supra). The
four outer carbons are equivalent and each has a -74.87 kJ mol™! base value, a C, of 31.29
kJ mol!, and the steric contribution is 7.17 x Stericdif f, where Stericdif f is the difference
in size between a t-butyl group and methyl. This leads to a total steric contribution of 0.99
kJ mol?. These calculations are summarized in Table 2.3.

The experimental data used in this paper were obtained from NIST and literature
sources.[8, 17, 18, 19] Figure 2.12 shows the calculated versus observed values for all 587
compounds. For these 587 compounds, the RMS deviation is 4.50 kJ mol™ and the time to
calculate is less than 30 seconds for the entire set.[13] Table 2.4 contains the RMS and R2
values of the SPARC, PM3, and Group Additivity methods. For SPARC, the RMS includes

all 587 values, for PM3 it’s for 574 compounds, and for the Group Additivity method the

31

800

R? = 0.9995

600 -
RMS = 4.50 kJ mol

400 -
200 -

0,

Calculated

-200 -

-400 -

-600 -

'800 T T T T T T T
-800 -600 -400 -200 0 200 400 600 800

Observed

Figure 2.12: SPARC versus Observed for 587 heats of formation

RMS is for only 447 compounds.[13] The observed RMS value is included for the 587 mea-

sured compounds and is derived from the uncertainty reported in the measurement.

2.5 CONCLUSION

The extensive development of the hydrocarbon model is due to hydrocarbons having the
most reliably measured heats of formation and also because it provides the basic structural
framework for all other types of organic compounds. While at present SPARC only calculates
the heat of formation of hydrocarbons, work is in progress to extend the capability of these
models to calculate the AH; for molecules containing nitrogen, oxygen, phosphorus, sulfur,
and halogens. Once the heteroatom models are complete it will be possible to integrate

them into SPARC’s kinetic and redox rate models in order to better predict transition state

32

Table 2.4: Comparison of the error in observed values with the SPARC, PM3, and Group
Additivity calculated RMS values. Also included is the R2 value.

RMS R2
Observed Values 2.95
SPARC 4.50 0.9995
PM3 57.7% 0.9292

Group Additivity 17.67 0.9911

energies. The extrapolatability of models to other types of chemistry is one of SPARC’s

greatest strengths and is the impetus behind continued development of these models.

2.6

REFERENCES

Cohen, N.; Benson, S. W.; J. Chem. Rev. 1993, 93, 2419-2438.

Hilal, S. H.; Karickhoff, S. W.; Carreira, L. A.; Quant. Struct.-Act. Relat. 1995, 14,
348-355.

Hilal, S. H.; Karickhoff, S. W.; Carreira, L. A.; QSAR & Comb. Sci. 2003, 22, 565-573.

Hilal, S. H.; Karickhoff, S. W.; Carreira, L. A.; Quant. Struct.-Act. Relat. 1993, 12,
389-396.

Hilal, S. H.; Carreira, L. A.; and Karickhoff, S. W. in Theoretical and Computational
Chemistry, Quantitative Treatment of Solute/Solvent Interactions; Politzer, P.; Murray,
J. S., Eds.; Elsevier Publishers: New York, 1994; pp 291-353.

Carreira, L. A.; SPARC. http://ibmlc2.chem.uga.edu/sparc
Stein, S. E.; Golden, D. M.; Benson, S. W. J. Phys. Chem. 1977, 81, 314-317.

Cox, J. D. and Pilcher, G. Thermochemistry of Organic and Organometallic Compounds;
Academic Press: London, 1970.

[9]
[10]

[11]

[12]

[13]

[17]

[18]

33

Structures that intersect in at least three places and have only two atoms in common.
Benson, S. W. Thermochemical Kinetics, 2nd ed.; John Wiley & Sons: New York, 1976.

Liebman, J. F.; Paquette, L. A.; Peterson, J. R.; Rogers, D. W.; J. Am. Chem. Soc.
1986, 108, 8267-8268.

Irikura, K.; Frurip, D.; Computational Thermochemistry. American Chemical Society:

Washington DC, 1998.

The number of compounds for each method varies for the following reasons. HyperChem
“timed out” or otherwise generated an error for some compounds. The same is true for
the NIST webbook. For NIST if a compound didn’t work it was due to the group not
being present, for HyperChem the compound was usually too complicated to analyze.
We do not have results for ab inito calcuations because we do not have the facilities to

run these compounds at this time.
Stewart, J. J. P.; J. Comp. Chem. 1989, 10, 221-264.

HyperChem(TM) Student Edition 7.0; Hypercube, Inc.; 1115 NW 4th St, Gainesville,
Florida 32601.

Stein, S. E.; Brown, R. L.; “Structures and Propeties Group Additivity Model” in NIST
Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom, P. J.;
Mallard, W. G., Eds; March 2003, National Institute of Standards and Technology:
Gaithersburg MD, 20899 (http://webbook.nist.gov).

Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds,
2nd ed.; Chapman and Hall: London, 1986.

Roth, W. R.; Adamczak, O.; Breuckmann, R.; Lennartz, H. W.; Boese, R.; Chem. Ber.
1991, 124, 2499-2521.

34

[19] Afeefy, H. Y.; Liebman, J. F.; Stein, S. E.; “Neutral Thermochemical Data” in NIST
Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom, P. J.;
Mallard, W. G., Eds; March 2003, National Institute of Standards and Technology:
Gaithersburg MD, 20899 (http://webbook.nist.gov).

CHAPTER 3

PREDICTION OF THE ENTHALPY OF FORMATION OF HALOGENATED HYDROCARBONS

UsING SPARC!

"Whiteside, T.S. and L.A. Carreira. Submitted to J. Theoretical and Computational Chemistry,
10/28/2004

35

36

3.1 INTRODUCTION

Halogenated hydrocarbons are carbon-based compounds where one or more hydrogen atoms
have been replaced with a halogen. These compounds are widely used in industrial, com-
mercial, and medicinal applications.[1] They are used in the final and intermediate products
of manufacturing, in commercial applications as cooling agents and aerosol propellants, and
medicinally as drug delivery agents and effective anesthetics.[1] Organohalogens are also
found in the upper atmosphere and in local environments.[2] Because of their widespread
use and existence, an accurate assessment of the physicochemical properties of these com-
pounds is of great importance for both practical and theoretical uses.[1, 2]

The enthalpy of formation (heat of formation or AHy) is one of the basic thermodynamic
properties of molecules. Scientists use this property for many diverse applications; one prac-
tical application is in examining the reactivities of compounds to aid in the prediction of
equilibrium constants.[3] We are interested in using the heat of formation model to improve
the prediction of transition state energies. Improved transition state energies will be used in
SPARC’s reaction kinetics and reduction-oxidation models.

The heat of formation remains unknown for many halohydrocarbons; several methods,
including ab inito, semi-empirical[4, 5|, and group additivity[l, 3, 6, 7, 8, 9, 10], have been
used to predict this basic quantity. All of these methods, with the exception of Joshi’s[10],
were developed primarily for “small” molecules; e.g. halomethanes and haloethanes.

SPARC (SPARC Performs Automated Reasoning in Chemistry) is a computer program
developed to analyze molecular properties and reactions in the same manner as an expert
chemist. SPARC uses the same basic method and general equations for each chemical prop-
erty. This includes using SPARC’s structural analysis engine to factor molecules into indi-
vidual functional groups (reaction centers and perturbers) and then determining how each
factored group affects the others in contributing to the overall property. The reaction cen-
ters, or reactophores, are the smallest subunits of the larger molecule with known chemical

properties.[11] The basic quantity of each reaction center is a measured, unperturbed value.

37

Perturbers are molecular structures attached to a reactophore which affect its energy. If the
reaction center is the only group in the molecule, there are no perturbing structures; hence,
the value for the property is the value in SPARC’s database of measured values. Otherwise,
the reactophore’s value will differ from the measured value by the sum of the perturba-
tions. These perturbations are quantified into the various interactions commonly occurring
in physical organic chemistry such as steric, resonance, connectivity, etc. Each reaction center
is analyzed by a common method; however, the results of the analysis will differ depending
on the reaction center, groups connected to the reaction center, and the property being deter-
mined. Once the value of each reactophore is determined, the entire molecule is analyzed to
account for additional structural or resonance effects which impact the property of interest.
Summing these values produces the SPARC calculated value for the property of interest. A

complete description of the SPARC method can be found in references [11]-[14].

3.2 THEORETICAL METHODOLOGY

3.2.1 CALcULATION OF AH; UsING SPARC

Reference [14] discusses the calculation of the heat of formation of hydrocarbons using
SPARC. To calculate the AH; of halohydrocarbons several adjustments were made to the
model. Equation 3.1 describes how the AHy is calculated from reaction centers and their

perturber structures.

AHf - Z [(AHf)C + AC] + (AHf)Whole,molecule (31)
C=1

In this equation, (AHf)c is the intrinsic heat of formation of the reaction center, C,
and is assumed to be unperturbed and independent of any perturbing structures. Ag
describes the energy changes made to the reaction center by the perturber structure(s); the
(AH ¢)Whote_molecule Tepresents additional energy due to the overall molecular structure.
Equation 3.2 shows how the reaction center perturbation, Ac, is further factored into

the mechanistic components SPARC calculates for perturbations to the heat of formation of

38

each reaction center.
AC’ - Asteric(AHf)C + Aresonance(AHf)C + Acannectivity(AHf)C (32)

Ageric(AHf) o, Aresonance(AH), Aconnectivity(AH ¢)c describe how the size, resonance, and
connectivity of the perturber(s) affect the energy of the reaction center. A, csonance(AH¢)c
quantifies the effects of electron delocalization by a perturber on the reaction center.
Aconnectivity(AHf)o is the change in a reactophore’s energy when a hydrogen atom is
replaced with another group. Ageric(AH{)c is the effect of a perturbers size on the energy of
the reaction center. The connectivity and steric adjustments of reference [14] were modified
to properly model halogenated hydrocarbons.

The “whole molecule” correction, (AH f)whole_molecule, 18 the sum of corrections applied
to the entire molecule; it includes corrections for rings, additional resonance, and additional
steric energy (Equation 3.3). This model was not modified from that used in modeling

hydrocarbons.|[14]

(AHf)Whole_molecule = (AHf)rings + (AHf)CCTCS + (AHf)xsteric (33)

3.2.2 MOLECULAR FUNCTIONAL GROUPS

In the heat of formation model, all molecular functional groups are considered reaction
centers and each group is analyzed to determine its contribution to the overall energy. In
addition to the methyl, ethylenic, acetylenic, and aromatic reaction centers, the SPARC
AHj calculator has been extended to recognize the fluorine, chlorine, bromine, and iodine
functional groups. The values of the halogen reaction centers are determined based on the
type of reaction center (methyl, ethylenic, acetylenic, or aromatic) to which they are attached.
The (AHy)c value of each halogen-carbon reaction center is the difference in energy of
replacing a single hydrogen on a carbon-based reaction center with that halogen. The halogen
reaction centers are regarded as static; perturbations only affect the carbon-based reaction

center.

39

HALOGENATED METHYL REACTION CENTERS

Halogenated methyl reaction centers are carbon atoms connected to other atoms through
sp3 bonds where at least one of these bonds is to a halogen. When connected to a methyl
reaction center the (AH)¢ values of fluorine, chlorine, bromine, and iodine are -204.6, -48.1,

5.6, and 58.8 kJ mol!, respectively.

HALOGENATED ETHYLENIC REACTION CENTERS

Halogenated ethylenic reaction centers are two carbon atoms connected to each other by a
double bond and to four other atoms by single bonds where one of these must be a halogen.
Fluorine, chlorine, bromine, and iodine have (AH)¢ values of -197.4, -39.2, 16.7, and 66.4

kJ mol! when they are connected to an ethylenic reaction center.

HALOGENATED ACETYLENIC REACTION CENTERS

No accurate data is available for halogenated acetylenes. In order to have a complete model,
the value assigned is based on the energy found in the other types of carbon-based reaction
centers. The (AH)c values for fluorine, chlorine, bromine, and iodine are set to -200, -40,

10, and 60 kJ mol™.

HALOGENATED AROMATIC REACTION CENTERS

Aromatic reaction centers are those composed entirely of benzene subgroups and are more
commonly known as poly-benzoic aromatic hydrocarbons (PBAHs).[14] When an aromatic
reaction center is halogenated, a hydrogen is replaced with a halogen in one of five unique
locations (Figure 3.1). The basic (AH)¢ value is not affected by substituent location because
this effect is modeled by Aconnectivity, as explained in reference [14]. The (AHy)c values for
fluorine, chlorine, bromine, and iodine, when connected to an aromatic reaction center, are

-207.4, -38.3, 18.9, and 76.1 kJ mol'L.

40

br-end mid outer

/

inner

end

Figure 3.1: The five unique substituent locations in an aromatic reaction center.

3.2.3 AH; ADJUSTMENT MODELS

Energy contributions are modeled in two separate processes: reaction center perturbations
and whole molecule contributions. Reaction center perturbations are the sum of the effects
of the perturber structures on a single reaction center; the whole molecule contribution
models strain and resonance energy induced by the structure of the entire molecule. Only
the reaction center perturbations have been modified to model halohydrocarbons; the whole

molecule contributions are the same as for the hydrocarbon model.[14]

REAcTION CENTER MODELS

Every reaction center has a basic value. With the exception of reactophores which may
only bond to one other reaction center, this value is perturbed by any structure appended
to the reaction center. These perturbations include steric, resonance, and connectivity. By
extending the AH; model to include halogens, only the connectivity and steric perturbation

models were changed; the resonance perturbation remains as described in reference [14].

Perturber Models: Connectivity Connectivity in a molecule is defined as the bond energy

change in the reaction center when a hydrogen atom is removed and replaced with another

41

group. The bond energy change is considered to be local to the reactophore in pure carbon-
based reaction centers; substituents on neighboring reactophores do not affect it. For reaction
centers with halogens, the effect of those other substituents on the bond energy of the

reactophore must be modeled as well.[1, 6, 10]

Methyl Connectivity The original methyl connectivity model expresses Aconnectivity as

Equation 3.4 with x being the number of non-hydrogen substituents.

Aconnectivity(AHf)C - pconnectim’ty (27) = agjz + b$ +c (34)

In the original hydrocarbon model, a and b are parameters of the methyl reaction center and
c is 0 kJ molt. With halogens, ¢ is no longer zero; it represents the effects halogens have on

the methyl reaction center and on each other (Equation 3.5).
¢ = Halo+ Xi+ Per (3.5)

The Halo interaction is the amount of energy contributed by multiple halogens bonded
to a single atom (Figure 3.2). The energy of this interaction depends on the reaction center
as well as the number and types of halogens bonded to it. In methyl reaction centers the

Halo interaction is composed of two functions (Equation 3.6).
Halo = Typel(F,Cl, Br,I) + Type2(Halol, Halo2, Halo3, Halo4) (3.6)

As the number of halogens of the same type are added to the methyl reaction center, the
interaction of each pair changes quadratically. The T'ypel function represents this interaction
energy (Equation 3.7).
Typel = > Arype(NumType — 1)* + Brype(NumType — 1) (3.7)
Type=F,Cl,Br,T
The parameters A and B depend on the type of interacting halogens; NumType is the

number of halogens, of the specified Type, on the methyl reaction center. The T'ype2 function

42

Cl

/

Br H

\

F

Figure 3.2: Halogenated methyl, showing the Br-F, CI-F, and Br-Cl Halo interactions.

is the sum of the interactions between the halogens on the methyl reaction center (Equation
3.8).
Type2 = (Halol, Halo2) + (Halol, Halo3) + (Halol, Halo4) + . .. (3.8)

For the compound in Figure 3.2 the Typel interaction is 0 kJ mol™, the Halo contribution is
entirely from the T'ype2 function. The three interactions are: Br-F (1.3 kJ mol!), CI-F (4.2
kJ mol), and Br-Cl (5.4 kJ mol'!) or 10.9 kJ mol™. Table 3.1 contains a complete listing of
parameters, interactions, and the energies associated with them.

The electronegativity of a halogen affects the bond strength between adjacent non-
halogen atoms. The X7 correction quantifies the energy associated with this change and
is dependant on the local structure of the molecule. There are two local structures which
determine how the X7 interaction is calculated. One structure, Structl, is a halogenated
methyl reaction center which is bonded to a non-halogenated carbon-based reaction center.
The other structure, Struct2, is a halogenated methyl reaction center which is bonded to a
halogenated carbon-based reaction center. The Xi correction can be expressed as Equation
3.9.

Xi = Structl(Halogens, T'ype) + Struct2(Halosl, Halos2) (3.9)

The Structl correction is for reaction centers with the first type of structure and is simply a

value determined by the interactions between halogens on the reaction center and the type

43

Table 3.1: The parameters, interactions, and energies associated with the Halo interaction,
grouped by reaction center. Combinations not explicitly listed have a contribution of 0 kJ
mol!

Reaction Center Parameter Value
(kJ mol?)
Methyl - Typel Ap -6.4
Br -4.4
ACl 7.5
Bey -5.1
Ap, 0.4
Bpg, 12.4
Ar 24.5
By -42.8
Methyl - Type2 br-cl 5.4
cl-f 4.2
br-f 1.3
f-1 8.4
Ethylenic f-f -1.4
cl-cl 2.3

of carbon-based reaction center to which the reaction center is bonded. In Figure 3.3, the
reaction center 2 has this type of interaction with reaction center 3. The Structl correction
is (Br,Cl-methyl) and has a value of 0 kJ mol™. The Struct2 correction is for reaction centers
with the second type of structure and is determined by the interactions between each of the
pairs of halogens on the reaction centers. In Figure 3.3, the reaction center 2 has this type of
structure when paired with reaction center 1. The Struct2 correction is the sum of the (Bry
,Cl), (Bry,Fy), (Cly,Cly), and (Cly,F;) interacting pairs or 17.4 kJ mol ™. This correction was
developed solely for methyl-methyl pairs because there are no experimental data for methyl
reaction centers with halogens bonded to other types of reaction centers with halogens on
them. Table 3.2 lists the X7 interaction energies for which there is experimental data. If an

interaction has not been measured its energy is assumed to be 0 kJ mol™.

44

Br

WA
/N

Figure 3.3: The X interaction of halogens on the bonds of neighboring atoms.

Cl

Table 3.2: The parameters and interaction energies, grouped by reaction center, of the Xi
interaction for which there is experimental data. Combinations not explicitly listed have a
contribution of 0 kJ mol™.

Reaction Center Parameter Value
(kJ mol™?)
Methyl - Structl (f-methyl) -16.7
(cl-methyl) -1.7
(br-methyl) -5.7
(i-methyl) -2.7
(f,f-methyl) -15.7
(cl,cl-methyl) -4.4
(br,br-methyl) -17.1
(f,cl-methyl) -13.5
(cLf,f-methyl) 27
(br,f,f-methyl) -15.4
(i,f,f-methyl) -2
(f,f,f-methyl) -24.3
(cl,cl,cl-methyl) 5.6
(f.f f-ethylenic) 1.8
(f,f f-aromatic) -16.5
Methyl - Struct2 f-f -3.9
cl-f 1.9
br-f -1.2
f-i -1.5
cl-cl 1.6
br-cl 15.1
Ethylenic - cis f-f 24.7
cl-cl 7.5

Ethylenic - trans f-f 33

45

Table 3.3: The perfluorination parameters.

Reaction Type of Value
Center Perfluoro Interaction (kJ mol™)
Methyl perl -21.7
per2 -0.2
per3 36.2
F
er-3 er-1
F° H F H
per-1
F
per-3

F

Figure 3.4: A perfluorinated alkane showing the Per parameter(s) used for interactions
between reaction centers.

A perfluorinated compound is one in which all hydrogens have been substituted with
fluorine. The Per parameter is non-zero when a fully fluorinated methyl reaction center is
bonded to other fully fluorinated methyl reaction centers; the substituents on these other
reaction centers must either be fluorine or carbon-based (no hydrogens). Perfluorinated com-
pounds are unique because the AH is lower than would otherwise be predicted. The value
of this parameter (Table 3.3) depends on the number of fluorines appended to the reaction
center, which can be one, two, or three (Figure 3.4). For example, the total Per interaction
for the reaction center with one fluorine in Figure 3.4 is the simply the sum of the per3,

per3, and per2 parameters, or 72.2 kJ mol™.

46

Xi2
X X

Figure 3.5: The interactions affecting one atom in an ethylenic reaction center.

Ethylenic Connectivity The original ethylenic connectivity model expresses peonnectivity
as equation 3.10; where a is a parameter for the ethylenic reaction center, x is the number

of non-hydrogen substituents and c is 0.[14]

pconnectivity(l') =ax+c (310)

With halogens, ¢ represents the effects substituent halogens have on the reaction center as
well as on each other. Equation 3.5 applies in this case also, with each subsection being
determined slightly differently. Halo is the interaction between halogens bonded to the same
atom of the ethylenic reaction center. Xi is broken into two parts: Xi1 and Xi2 (Equation
3.11).

Xi= Xil + X2 (3.11)

X1l is the cis interaction and X2 is the trans interaction. Figure 3.5 shows the X7 and
Halo interactions in an ethylenic reaction center. There are only two measured perfluori-
nated ethylenics and the SPARC calculated heat of formation is in good agreement with the
measured values for these compounds. For these reasons no Per correction was necessary for

these types of molecules.

Acetylenic Connectivity In halogenated acetylenics, equation 3.10 also applies, a uses

the same values for halogens as for methyl substituents and ¢ is 0.[14] This is because no

47

accurate measurements have been made on halogenated acetylenics and the connectivity

adjustments are subsumed into the reaction center correction.

Aromatic Connectivity No modification to the connectivity adjustment[14] of aromatic
reaction centers is necessary; primarily because there are no halogenated aromatics larger

than naphthalene with measured data.

Perturber Models: Steric Steric perturbations can play a major role in affecting the energy
of reaction centers. The function of this interaction is dependant on the reaction center
being perturbed as well as the size and type of appended structures.[14] With the addition
of halogens to the model, the steric perturbation can also be described as an electrostatic

repulsion.

Aromatic Steric All reaction centers, except the aromatic reaction center, subsume the
steric effect into the Halo and X1 portions of the connectivity corrections. In aromatic reac-
tion centers every substituent is on a unique atom and steric interactions will occur between
substituents which are ortho to each other. There are two types of ortho substituents: “inner”
and “outer”. An “outer” substituent is next to only one other substituent; an “inner” sub-
stituent is between two substituents (Figure 3.6).[14] The “ortho” correction, Equation 3.12,
describes how ortho substituents 1 through n affect the energy of an aromatic reaction center
through electrostatic repulsion. The OT'ype, outer or inner, of each substituent determines
the correction for that substituent.

n
Aortno(AHp)e = porype() (3.12)
a=1
Pouter ANA Pinner quantify the electrostatic repulsion between ortho substituents and are fully

expressed in a generalized form as equation 3.13.

PoType () = Aorype X Type(x) + B x TotalSize(x) (3.13)

48

Figure 3.6: An aromatic reaction center where 1 and 3 are “outer” substituents and 2 is an
“inner” substituent.

Aotype 1s a multiplier which depends on whether the substituent is “outer” or “inner”. The
value the Type(z) function returns is dependant on the both the type of ortho substituent
(“outer” or “inner”) and on the reactophore type of the interacting substituents (methyl,
aromatic, fluorine, etc). If x is the “outer” substituent, 1 (Fig 3.6), T'ype(z) is expressed as
equation 3.14; if z is the “inner” substituent, 2 (Fig 3.6), T'ype(x) is expressed as equation
3.15.

Type(1) = outer(Subl, Sub2) (3.14)

Type(2) = inner(Subl, Sub2) + inner(Sub2, Sub3) (3.15)

The B parameter is constant for both types of ortho substituents. T'otalSize(z) is determined
as described in references [11] and [14] and is the total size of the substituents. For the “outer”
substituent, 1 (Fig 3.6), TotalSize(x) is expressed as Equation 3.16. The size function of

“Inner” substituent, 2 (Fig 3.6), is expressed as Equation 3.17.
TotalSize(1) = Size(1) + Size(2) (3.16)

TotalSize(2) = Size(1) 4+ Size(2) + Size(3) (3.17)

The values of the individual parameters are listed in Table 3.4.

49

Table 3.4: Aromatic reaction center steric parameters and values. If an interaction is not
defined, a multiplier of 1 is used instead.

Parameter Type Value
(kJ mol™?)
A Outer -1.5
Inner 2.5
B Inner_outer_size 66.8
Type(x) Outer-(cl,cl) 0.7
Outer-(f,f) -8.8
Outer-(aromatic,f) 8
Inner-(cl,cl) 2.5
Inner-(f,f) 8.9
Inner-(f,methyl) -3
Inner-(cl,methyl) -1.3
Inner-(f,i) 15.1
Inner-(methyl,f3) 35.9
inner-(aromatic,f) 26

3.3 RESuULTS AND DISCUSSION

Several methods have been developed to accurately predict the AH; for halogenated
hydrocarbons.[1, 3, 6, 9, 10] Unfortunately, most of these apply to a limited number of
systems and are highly parameterized. Joshi’s[10] generalized, bond-energy, group additivity
method works as well as the SPARC method but is complicated and not computerized.

The SPARC method of calculating the heat of formation is based on structure query and
analysis. It involves summing the value of each reaction center and its local perturbations
and then analyzing the entire molecule to ensure other global effects are taken into account.
It is more successful in modeling this property than either the semi-empirical PM3 method
or Benson’s group additivity method.

Many semi-empirical methods have been employed to calculate the AH; of halogenated
hydrocarbons.[4] One common method to calculate the AH; is PM3. This method handles

most compounds; however, the structures need to be optimized and even then theory occa-

50

sionally breaks down, giving poor results. PM3 calculations are quick with respect to ab
initio calculations; however, this method still took several days to calculate the AH of 196
compounds. The RMS of these halohydrocarbons was 41.8 kJ mol™.[15, 16]

The group additivity method developed by Benson is simple and accurate for a large
number of molecules. Benson’s approach is based on the premise that properties of molecules
can be considered the sum of the contributions from the individual atoms or bonds in the
molecule.[6] Benson derives the group data from the observed heats of formation of known
compounds.[3, 6, 7] The group additivity method handles most compounds; however, if a
group collection is not defined it will fail. An on-line calculator is available via the NIST
chemical webbook[8] and was used to determine the AH; of 169 compounds in less than
6 hours, with an RMS deviation of 39.1 kJ mol.[15] The SPARC method of calculating
AHj is similar to Benson’s group additivity method. The major difference being that the
Benson method assigns every possible group situation a value, whereas the SPARC model
infers the group constant by analyzing the local environment of the group. Figure 3.7 shows
the SPARC calculated versus the observed values for all 202 compounds. SPARC calculates
these 202 compounds with an RMS deviation of 5.18 kJ mol™" in less than 30 seconds.

The experimental data used in this paper were obtained from NIST and literature
sources.[1, 4, 9, 17, 18, 19] To ensure quality data, if data measured before 1985 were not
included in references [17] and [18], it was discarded. The observed RMS value is derived from

the uncertainty reported in the measurement and is 5.61 kJ mol™ for these 202 compounds.

3.4 (CONCLUSION

The SPARC AH{ model is nearly as accurate as most experimental measurements for hydro-
carbons and halogenated hydrocarbons. It has been tested on all reliably measured halohy-
drocarbons. The structures of these compounds range from highly branched perfluoroalkanes
to halogenated aromatics. SPARC provides a quick, reliable method for determining the AH ¢

of these compounds and an alternative to using other semi-empirical or group additivity

ol

1000
RMS =5.18 kJ/mol

O |
-1000 -

-2000 -

Calculated

-3000 -

-4000 -

-5000 ‘ ‘ ‘ ‘ ‘
-5000 -4000 -3000 -2000 -1000 0 1000

Observed

Figure 3.7: SPARV vs Observed for 202 heats of formation of halohydrocarbons

methods. While at present SPARC only calculates the heat of formation of hydrocarbons
and halohydrocarbons, work is in progress to extend the capability of these models to calcu-
late the AH for molecules containing nitrogen, oxygen, phosphorus, and sulfur. Once the
heteroatom models are complete it will be possible to integrate them into SPARC models
to better predict transition state energies. The extrapolatability of models to other types of
chemistry is one of SPARC’s greatest strengths and is the impetus behind continued devel-
opment of this method. A complete listing of the compounds used to develop this model can

be found in Appendix B.

3.5

52

REFERENCES

Kolesov, V. P.; Papina, T. S.; Russian Chemical Reviews 1983, 52, 425-439.
Paddison, S. J.; Tschuikow-Roux, E.; Int. J. Thermophysics 1998, 19, 719-730.
Cohen, N.; Benson, S. W.; J. Chem. Rev. 1993, 93, 2419-2438.

Smart, B. E. in Molecular Structure and Energetics Vol 3.; Liebman, J. F.; Greenberg,
A., Eds.; VCH Publishers: Deerfield Beach, FL, 1986; pp 141-191.

Stewart, J. J. P.; J. Comp. Chem. 1989, 10, 221-264.
Benson, S. W. Thermochemical Kinetics, 2nd ed.; John Wiley & Sons: New York, 1976.
Stein, S. E.; Golden, D. M.; Benson, S. W. J. Phys. Chem. 1977, 81, 314-317.

Stein, S. E.; Brown, R. L.; “Structures and Propeties Group Additivity Model” in NIST
Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom, P. J.;
Mallard, W. G., Eds; March 2003, National Institute of Standards and Technology:
Gaithersburg MD, 20899 (http://webbook.nist.gov).

Kolesov, V. P.; Kozina, M. P. Russian Chemical Reviews 1986, 55, 912-928.
Joshi, R. M. J Macromol Sci-Chem 1974, A8, 861-885

Hilal, S. H.; Carreira, L. A.; Karickhoff, S. W. in Theoretical and Computational Chem-
istry, Quantitative Treatment of Solute/Solvent Interactions; Politzer, P.; Murray, J. S.,

Eds.; Elsevier Publishers: New York, 1994; pp 291-353.

Hilal, S. H.; Karickhoff, S. W.; Carreira, L. A.; Quant. Struct.-Act. Relat. 1995, 14,
348-355.

Hilal, S. H.; Karickhoff, S. W.; Carreira, L. A.; QSAR & Comb. Sci. 2003, 22, 565-573.

[14]

[15]

53

Whiteside, T. S.; Carreira, L. A.; J. Theoretical and Computational Chemistry 2004, 3,
451-469.

The number of compounds for each method varies for the following reasons. HyperChem
“timed out” or otherwise generated an error for some compounds. The same is true for
the NIST webbook. For NIST, if a compound didn’t work it was due to the group not

being present, for HyperChem the compound was usually too complicated to analyze.

HyperChem(TM) Student Edition 7.0; Hypercube, Inc.; 1115 NW 4th St, Gainesville,
Florida 32601.

Cox, J. D. and Pilcher, G. Thermochemistry of Organic and Organometallic Compounds;
Academic Press: London, 1970.

Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds,
2nd ed.; Chapman and Hall: London, 1986.

Afeefy, H. Y.; Liebman, J. F.; Stein, S. E.; “Neutral Thermochemical Data” in NIST
Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom, P. J.;
Mallard, W. G., Eds; March 2003, National Institute of Standards and Technology:
Gaithersburg MD, 20899 (http://webbook.nist.gov).

CHAPTER 4

STEREOCHEMISTRY AND THE ENTHALPY OF FORMATION!

"Whiteside, T.S. and L.A. Carreira. To be submitted to J. Theoretical and Computational
Chemistry

o4

95

4.1 INTRODUCTION

SPARC (SPARC Performs Automated Reasoning in Chemistry) is a computer program
developed to analyze molecular properties and reactions. SPARC uses a structural analysis
engine to factor molecules into individual functional groups. It then determines how each
factored group affects the other groups in contributing to the overall property. A complete
description of the SPARC method is provided in references [2, 3, 4, 5, 6, 7].

The enthalpy of formation (heat of formation or AHy) is one of the basic thermodynamic
properties of molecules and finds uses in many applications. We are interested in using heat of
formation models to improve the prediction of transition state energies. Improved transition
state energies will aid in the development of reaction kinetics and reduction-oxidation models.

The heat of formation is a structurally dependant property. For many compounds it
can be successfully modeled using the interactions of neighboring groups. This method
incompletely describes the interactions occuring in some compounds and additional mod-
eling is required for these interacting, non-neighboring groups. Benson recognized this non-
neighboring interaction occurs between chiral centers and called it the gauche interaction.[1,
8, 9] He found it raises the AH; by approximately 3.3 kJ mol™ per interaction.

It was our goal to model the effect of stereochemistry on the heat of formation, of any
organic compound. We examined the difference in the heat of formation between stereoiso-
mers to quantify the effects different spatial environments have on the strain energy of each
chiral center. Modeling the strain as a function of environment allows a more specific and
robust model to be constructed. The advantage of this model can be clearly seen when
compared to PM3 and NIST/Benson calculations. SPARC calculates a AH; for all of the
compounds used to build this model and is able to differentiate between 58 of the 70 sets of
stereoisomers. The same set of molecules were calculated using PM3[10, 11] and the NIST
calculator[12]; however, PM3 failed to calculate a AH; for 3 of the compounds and the
NIST calculator could only calculate 35 of the 169 molecules in the model. PM3 could only

differentiate between 33 of the 70 stereoisomer sets and the NIST calculator, a group addi-

56

tivity calculator using Benson’s rules, could only differentiate between 2 of the 70 sets of

stereoisomers.

4.2 THEORETICAL METHODOLOGY

4.2.1 CALCULATION OF THE AH; USING SPARC

The calculation of the heat of formation using SPARC has been rigorously discussed in

references [6] and [7]. Equation 4.1 describes how the AH/ is calculated for a molecule.

AHf = Z [(AHf)C + AC] + (AHf)Whole_molecule (41)
C=1

In this equation, (AHf)c is the intrinsic heat of formation of the reaction center, C,
and is assumed to be unperturbed and independent of any perturbing structures. Ac
describes adjustments made to the reaction center by appended perturber structure(s); the
(AH ¢)whote_molecule 15 the additional energy due to the overall molecular structure.

The “whole molecule” correction, (AH) whote_molecule, 1S the sum of corrections applied to
the entire molecule; this includes corrections for rings, additional resonance, and additional
steric energy (Equation 4.2).[6] (AH)gsteric models the strain induced by various spatial

environments. A simplified version, to model hydrocarbons, was described in reference [6].

(AHf>Whole_molecule = (AHf)rings + (AHf>:m‘es + (AHf)zsteric (42)

4.2.2 WHOLE MOLECULE MODELS: XSTERIC

To model the effects of stereochemistry, all chiral centers in the molecule are identified as
one of two types of stereocenters. The first type is a linear chiral center; it is any chiral
center which is not a ring atom. The second type is a chiral center which is also a ring atom.
This second type of stereocenter is further sorted by the type of ring-structure in which it is
found. These structures are:

1. Single rings (Fig. 4.1a)

2. Sections of a molecule containing a bridge (Fig. 4.1b)

57

CH,4
a b C

Figure 4.1: Three ring environments with stereochemistry: a. cis-dimethyl-cyclohexane b.
exo-2-methyl-Bicyclo[2.2.1]heptane c. cis-octahydro-Pentalene

3. Sections of a molecule containing a ring sharing a side with another ring (Fig. 4.1¢)
The model determines the strain energy in each chiral center and sums it to get the total

steric energy (Equation 3).

(AH¢)ysteric = Linear + Single + Bridge + SideShare (4.3)

LINER CHIRAL CENTERS

In a linear chiral center, the senses are defined but can not be used to specify spatial orien-
tation because the molecule will rotate to relieve as much steric strain between substituents
as possible. Because the chain rotates, SPARC is unable to distinguish between the spatial

orientation of each substituent, therefore the Linear energy is set to 0 kJ mol™.

SINGLE RING CHIRAL CENTERS

In single rings, there are two energy contributions involving chiral centers. The energy of

chiral centers in a single ring is expressed using Equation 4.4.
SingleRing = Steric + Axial (4.4)

The steric interaction is the non-neighboring steric interaction, as described by Benson. 8]

The azxial function models the rotational strain energy of substituents in the axial position.

o8

To model chiral centers in a ring, information about the ring’s overall structure is nec-
essary. This includes the size, type, and position of the substituents found on each chiral
center. Each of the ring-atom’s substituents has a sense; the sense defines each substituent’s
spatial position, relative to the ring. If a ring is observed edge-on, there is a top half and
a bottom half. In order to determine the axial and equatorial positions of the substituents,
the largest substituent is considered to be connected to the “first” ring-atom. The sense of
this substituent is considered to be in the 1-direction and equatorial; the other substituents’
senses are then set relative to this one. If a ring atom has a substituent in one half of the
ring, its sense is 1; if this substituent is in the other half, its sense is 2. When there are two
substituents off of the “first” ring atom, the largest is in the 1-direction and the other is in
the 2-direction. If both substituents are the same size, their senses are not changed.

A steric interaction occurs between chiral centers bonded to each other, where both of
these are in a ring and where substituents of these chiral centers have the same sense. Six-
membered rings have a Steric interaction energy of 0 kJ mol! because the chair conformation
of the ring prevents these substituents from interacting. The Steric interaction is the sum
of the interactions between each pair of bonded chiral centers and depends on the size and

type of interacting substituents (Equation 4.5).
Steric =Y Size x Type X x (4.5)

Size is the total normalized size of the substituents in the interacting pair, T'ype is a multi-
plier based on the substituents off of the chiral centers, and x is the chiral interaction energy.
The chiral interaction energy, z, is 5.5 kJ mol! and quantifies the Size and T'ype multipliers
into an interaction energy. The size of each substituent in the interacting pair, using previous
SPARC models[3, 6], has been normalized versus the size of a methyl substituent (Equation

4.6 to determine the Size multiplier.

size(Subl) size(Sub2)
size(Methyl) = size(Methyl)

(4.6)

Size =

99

S N
O// ’ ’ \\O

Figure 4.2: Oxolane-3,4-diol dinitrate

Type is a special multiplier developed because of the AH; of cis- and trans- isomers of
Oxolane-3,4-diol dinitrate (Fig. 4.2), as measured by Eremenko, Korolev, et al.[13] Unlike
other single-ring compounds, the “steric” interaction occurs in the trans-isomer of this mole-
cule; also, this “non-interaction” is four times larger than the interaction in other systems.
The Type multiplier for these systems is 4, for all other systems it is 1.

Eremenko, et al. mention several possibilities as to why this anomaly could occur,
including: conformational energies, interaction of substituents, and the crystal packing char-
acteristics of these molecules. The first two possibilities do not occur in any other single-ring
compound and, as explained below, the crystal packing characteristics also are unlikely to
cause this difference.

According to Eremenko, the cis-isomer was a solid for the combustion measurement, but
the trans-isomer was a liquid.[13] Additionally, the cis-isomer’s boiling point is reported to
be only 1C higher than the trans-isomer. Since the boiling points are so similar, each isomer’s
enthalpy of vaporization should also be similar. An analysis of similar compounds shows that
the crystal packing should not contribute more than 5 kJ mol™. For these two reasons, the
only conclusion is either some force besides the crystal packing characteristics causes the
cis-isomer to be 20 kJ mol™! more stable than the trans-isomer or the reported values should

be reevaluated.

60

The axial energy term occurs only in four- and six-membered rings. These rings are
“puckered”, so substituents of these ring atoms are in either axial or equatorial positions.
The axial position is energetically unfavorable; substituents in this position want to rotate
into an equatorial position. The model analyzes the sense of each substituent and determines
which are axial. The amount of strain energy due to each axial substituent depends on its

size, Size, and the axial energy, y (Equation 4.7).
Azial =) Size x y (4.7)

Size is determined using the same method as for Steric chiral centers. The axial energy, v,

quantifies the strain of a substituent on the ring; this energy is 5.5 kJ mol™.

BRIDGE SECTION CHIRAL CENTERS

Calculating the energy of chiral centers in a bridge section of a molecule is a multi-step
process. First, the two smallest rings composing a bridge structure[6] are removed, leaving
the largest of the three. The relative sense of each substituent of this ring is determined and
set in the same manner as for a single ring. The chiral centers in the ring are classified as
ChiralBridgeAtoms (CBA) or as OtherCAs. A CBA is a bridge atom; an OtherCA is any
chiral center in the ring that is not a CBA. OtherCAs are found in three local environments.
Environment 1 is an chiral atom sharing a side between two bridge sections in a molecule,
Fig. 4.3, OtherCA1; Environment 2 is a chiral center with a substituent appended to it, Fig.
4.3, OtherCA2; and Environment 3 is a chiral center sharing a side between a bridge section
and a single ring, Fig. 4.3, OtherCA3.

The overall energy for chiral centers in a bridge molecule is obtained by summing the

energy of the OtherCAs in each environment (Equation 4.8).
Bridge = Envl + Env2 4+ Env3 (4.8)

The CBAs do not contribute to the strain energy because their energy is already accounted

for in the (AH{);ings adjustment. [6]

61

CBA CSA

H5;C

AN

OtherCA2 OtherCAl1 OtherCA3

Figure 4.3: Two bridge sections showing the three local environments of OtherCAs. Also
shown is a ChiralBridgeAtom (CBA) and a ChiralSideShareAtom (CSA).

The energy of each OtherCA in Environment 1 is determined by the senses of each set
of CBA-OtherCA-CBA. These sets have three unique combinations of senses: X-x-X, y-x-y,
or x-y-y (Figure 4.4). These three combinations describe all possible interactions between
adjacent bridge sections. If each member of the set has the same sense, x-x-x, there is one
interaction; if both CBAs have the same sense and the OtherCA has the opposite sense,
y-x-y, there are two interactions; if one CBA and the OtherCA have the same sense and
the other CBA has the opposite sense, x-y-y, there are zero interactions. The energy for
each OtherCA in Environment 1 is the number of interactions, NI, quantified by the chiral

interaction energy, = (Equation 4.9).
Envl =) NIxx (4.9)

For an OtherCA in Environment 2, the energy is determined using a similar method as
for a chiral center in a single ring. The difference in the two methods is that strain is placed
on the chiral center when the CBA and the OtherCA have opposite senses, as opposed to
the same sense. This is because the ring is not planar and when the senses are opposite, the

substituent is oriented similar to an axial position, with the same type of strain. Env2 is a

62

-
-

Figure 4.4: The various interactions which occur between the three unique bridge environ-
ments (X,X,X; ¥,X,y; X,X,y).

function of the size of the substituent, Size, and the axial interaction energy, y (Equation
4.10).
Env2 =Y Size xy (4.10)

The amount of strain on OtherCAs in Environment 3 is determined by the size and
sense of the ring. Like Environment 2, no strain is placed on the OtherCAs except when the
substituents and neighboring CBAs have opposing senses. Equation 4.11 is used to model

the strain energy on an OtherCA in Environment 3.
Env3 =Y Ring x y (4.11)

If there are more than four ring-atoms, Ring is 1; for smaller rings, Ring is 2.5. This reflects
the additional strain in the system due to the smaller bond angles. The strain on each

OtherCA is quantified by Ring and the axial interaction energy, v.

SIDESHARE CHIRAL CENTERS

To calculate the energy of chiral centers connecting two rings, each pair of connecting rings
must be examined. First, the chiral centers are sorted into Chiral SideShare Atoms (CSAs)
and OtherCAs. Chiral SideShare Atoms (Figure 4.3 and Figure 4.1c) are the chiral centers
which join two rings. If one of the rings is part of a bridge structure this correction does not
occur since it is already modeled in the Enwv3 function of a bridge section. The OtherCAs

are corrected based on their local environment, as described in the previous sections. Each

63

Table 4.1: The SS multiplier for CSA pairs with rings of various senses and lengths. For all
other combinations no correction is made.

Sense Length Ringl Length Ring2 SS

Cis <5 > 7 1
Trans <H <8 1
Trans 5 6 1
Trans 5 5 4.72
Cis 6 6 3.27

CSA is examined to determine both its sense and the other CSA to which it is bonded. The
size of each ring on either side of the CSA pair is also determined. Once this information is

known, the SideShare correction can be made (Equation 4.12).
SideShare =Y SS(sense,ringl, ring2) x x + Middle (4.12)

The total strain energy of a CSA pair is determined by the function SS(sense, ringl, ring2)
and the chiral interaction energy, x. S\S is a multiplier based on the senses of the two bonding
CSAs. If the senses are not identical, the CSAs are trans; if the senses are the same, the
CSAs are cis. The value of the SS multiplier for the various combinations of each pair of
CSAs is found in Table 4.1.

The Middle correction is made for rings which share a side with two other rings; it is
based on the size and configuration of these rings. In Middle rings, there will be at least two
CSA pairs. These pairs of atoms can either interact with each other, in the same manner
as the steric interaction, or with the just the ring, as an axial interaction. Stereoisomers of
both tetradecahydroanthracene (Fig. 4.5a.) and of three rings with the middle ring having
four ring-atoms (“middle-four”), such as [3]-ladderane (Fig. 4.5b) require explicit modeling
due to the unique configurations of these stereoisomers. Table 4.2 lists the interactions of

the various ring sizes and the Middle energies they produce.

64

a

Figure 4.5: No stereochemistry specified in either a. Tetrahydroanthracene or b. Tri-
cyclo[4.2.0.02,5]octane ([3]-ladderane)

Table 4.2: The M1iddle correction for various configurations of rings

Ring Ring Middle
Size Configuration Correction
/ Senses

6-6-6 boat boat boat 2y
chair boat chair 4x
chair chair boat T
chair chair chair 0

X-4-X XXXX 4x

X-X-X XXXX 2z

65

Table 4.3: The RMS of the SPARC, PM3, and Group Additivity methods for the observed
AAH; between pairs of stereoisomers.

Method RMS /

pairs of stereoisomers
SPARC 6.1 /70
PM3 134 / 67

NIST/Benson Group Additivity 13.7 / 35

4.3 DATA

The heat of formation of 169 compounds with chiral centers was used to develop this model.
These measurements came from NIST[14] and the literature[15, 16]. To ensure the data is

reliable, compounds measured before 1985 were obtained from references [15] and [16].

4.4 RESULTS AND DISCUSSION

SPARC calculates the heat of formation by summing the value of each reaction center and its
local perturbations and then analyzing the entire molecule for additional energy. It is more
successful in modeling this property than either the semi-empirical PM3 method or Benson’s
group additivity method. In order to compare the effects of stereochemistry on the AH, the
AAHy between stereoisomers is determined by taking the absolute value of the difference
between the AH; of the most stable stereoisomer and the AH of the other stereoisomer.
Table 4.3 shows the overall RMS of these methods for the observed AAH; between pairs of
stereoisomers.

The calculated versus observed values for compounds with linear chiral centers is shown
in Figure 4.6. The average measured difference between sets of stereoisomers of linear chiral

centers is 7.7 kJ mol™!. As described in previously, SPARC does not differentiate between

66

stereoisomers of linear chiral centers. Using no stereochemical modeling, the SPARC calcu-
lated AAH; RMS of molecules with linear chiral centers is 7.1 kJ mol™!. PM3 differentiates
between some stereoisomers with linear chiral centers and is unable to calculate a difference
for others. Since PM3 works from an energy minimum, the reason for this differentiation
is unclear. The RMS of the PM3 calculation for these molecules is 16 kJ mol™!. The NIST
version[12] of the Benson calculator produces surprising results for molecules with linear
chiral centers. It is unable to calculate the AH for four sets of stereoisomers and only
differentiates between two pairs of stereoisomers: 1) D-Arabinose and D-Ribose and 2) Beta-
D-Fructose and L-Sorbose. Since Benson originally devised the gauche interaction to explain
non-neighboring interactions this is unexpected. The other interesting result of the NIST
calculator is the calculated difference in D-Arabinose and D-Ribose is 41 kJ mol™ but the
measured difference is only 7.6 kJ mol . There are two gauche interactions in D-Arabinose
and only one in D-Ribose, therefore the difference in these isomers, as predicted by Benson,
should be only one gauche interaction or approximately 3.3 kJ mol. There is also a single
gauche interaction difference between Beta-D-Fructose and L-Sorbose but the calculated dif-
ference is also 41 kJ mol™? while the actual measured difference is 5.2 kJ mol. Why these
molecules, when calculated by NIST, have such a large difference is unknown. The RMS of
the NIST method for the calculation of seven sets of linear chiral center stereoisomers is 18.9
kJ mol™.

As shown in Figure 4.7, SPARC calculates a difference for thirty-five of the thirty-seven
sets of single ring stereoisomers with interacting substituents. PM3 does so for only seven,
and NIST does not calculate a difference for any sets of stereoisomers. The two sets of
stereoisomers for which SPARC does not calculate a difference do not actually have inter-
actions; their experimental difference is well within the reported measurement error of each
stereoisomer. The RMS of the SPARC calculations is 5.6 kJ mol?, for PM3 the RMS is 10.8
kJ mol™, and for NIST the RMS is 11.7 kJ mol™. The average measured difference between

stereoisomers in a single ring is 10.7 kJ mol™.

67

55 - ¢ SPARC
50 X PM3
45 - O Benson

0 @’@ H‘@ T T <
0 5 10 15 20

Observed (kJ mol™)

Figure 4.6: Linear Chiral Centers calculated versus observed values for 11 stereoisomers.

45
40 - .
35 -

¢ SPARC
X PM3
O Benson

25 30

Observed (kJ mol™)

Figure 4.7: Calculated versus observed for 37 stereoisomers of chiral centers in single rings.

68

20
¢ SPARC
X PM3
15 | O Benson
|5
<
=] V'S ‘0
(@)
<10 -
@)
T
3550 * X
X
0 *— ‘ & ‘
0 5 10 15 20

Observed (kJ mol™)

Figure 4.8: Bridge Rings Calculated versus observed for seven stereoisomers containing a
bridge.

Figure 4.8 shows the calculated versus the observed values for the AAH of the fourteen
stereoisomers containing a bridge. SPARC calculates a difference in energy for all seven sets
of stereoisomers; PM3 does so for only two sets and fails to calculate anything for one set
of stereoisomers. NIST fails to compute twelve of the fourteen compounds and there is no
difference in the one set of stereoisomers it was able to compute. The RMS of SPARC for
these compounds is 3.9 kJ molt. PM3 has a RMS of 18.4 kJ mol!, and the NIST RMS
is 12.3 kJ mol!. The average measured difference between stereoisomer sets in molecules
containing a bridge is 14.1 kJ mol™.

There are seventeen sets of stereoisomers containing sideshare chiral centers (Figure 4.9).
SPARC calculates a AAH; between all seventeen sets of stereoisomers; PM3 does so for only

two sets; NIST succeeds in calculating ten of the stereoisomers, but does not differentiate

69

30
¢ SPARC
o5 X PM3
O Benson
= * 0
220
©
o
<15 -
O
510] e *
5| ®e o x o L X .
0 — &K B KK KKKk

0 5 10 15 20 25 30
Observed (kJ mol™)

Figure 4.9: Calculated versus observed for the seventeen sideshare stereoisomers.

between any of them. For sideshare stereoisomers SPARC’s RMS is 6.9 kJ mol™?; the PM3
RMS is 13.8 kJ mol?; and NIST has an RMS of 13.5 kJ mol?. The average measured
difference between stereoisomer sets in molecules containing sideshare chiral centers is 12.3

kJ mol™.

4.5 CONCLUSION

The stereocenter model was developed because of its importance in determining the overall
heat of formation of an organic compound. The stereochemistry in a molecule can alter the
AH; by 5-25 kJ mol™. At room temperature, a shift in the enthalpy of reaction by 1 kcal
mol-1 (4.184 kJ mol™) will generally change the equilibrium constant by a factor of five.[1]

Therefore, for any calculation scheme to be accurate within a factor of ten, its uncertainty

70

must be less than 9 kJ mol?. To meet the future goals of SPARC and accurately predict

transition state energies, it is necessary to develop a heat of formation calculator to meet or

exceed this requirement.

4.6

REFERENCES

Cohen, N.; Benson, S. W. J. Chem. Rev. 1993, 93, 2419-2438.

Hilal, S. H.; Karickhoff, S. W.; Carreira, L. A.; Quant. Struct.-Act. Relat. 1993, 12,
389-396.

Hilal, S. H.; Carreira, L. A.; Karickhoff, S. W. in Theoretical and Computational Chem-
istry, Quantitative Treatment of Solute/Solvent Interactions; Politzer, P.; Murray, J. S.,

Eds.; Elsevier Publishers: New York, 1994; pp 291-353.

Hilal, S. H.; Karickhoff, S. W.; Carreira, L. A.; Quant. Struct.-Act. Relat. 1995, 14,
348-355.

Hilal, S. H.; Karickhoff, S. W.; Carreira, L. A.; QSAR & Comb. Sci. 2003, 22, 565-573.

Whiteside, T. S.; Carreira, L. A.; J. Theoretical and Computational Chemistry 2004, 3,

451-469.

Whiteside, T. S.; Carreira, L. A.; submitted to Journal of Chemical Theory and Com-

putation.

Benson, S. W. Thermochemical Kinetics, 2nd ed.; John Wiley & Sons: New York, 1976.
Stein, S. E.; Golden, D. M.; Benson, S. W. J. Phys. Chem. 1977, 81, 314-317.

Stewart, J. J. P.; J. Comp. Chem. 1989, 10, 221-264.

HyperChem(TM) Student Edition 7.0; Hypercube, Inc.; 1115 NW 4th St, Gainesville,
Florida 32601.

[12]

[13]

[14]

[15]

[16]

71

Stein, S. E.; Brown, R. L.; “Structures and Propeties Group Additivity Model” in NIST
Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom, P. J.;
Mallard, W. G., Eds; March 2003, National Institute of Standards and Technology:
Gaithersburg MD, 20899 (http://webbook.nist.gov).

Eremenko, L.T; Korolev, A.M; Berezina, L.1.; Kirpichev, E.P.; Rubtsov, Yu.l.; Sorokina,
T.V. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1985, 795-798.

Afeefy, H. Y.; Liebman, J. F.; Stein, S. E.; “Neutral Thermochemical Data” in NIST
Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom, P. J.;
Mallard, W. G., Eds; March 2003, National Institute of Standards and Technology:
Gaithersburg MD, 20899 (http://webbook.nist.gov).

Cox, J. D. and Pilcher, G. Thermochemistry of Organic and Organometallic Com-

pounds; Academic Press: London, 1970.

Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds,
2nd ed.; Chapman and Hall: London, 1986.

CHAPTER 5

OTHER MODELING

5.1 INTRODUCTION

After the completion of the hydrocarbon model, it was thought the next simplest compounds
to model would be those containing oxygen. This was assumed because in the combustion

reaction

there are no by-products, such as Ny, HySO4(nH>0), or HCIl(nH>0) which have to be
accounted when combusting compounds containing other elements, as described by Cox and

Pilcher.[9] With this in mind, we attempted to model alcohols, aldehydes, and ketones.

5.2 ALCOHOLS

Pure alcohols are those compounds which contain Carbon, Hydrogen, and one or more OH-
groups. We learned when modeling hydrocarbons that molecules without rings or aromatic
structures are the simplest to model. Our attempt at modeling alcohols followed this rea-
soning and alcohols in chains were easily modeled. The contribution of an alcohol group
remains constant and is independent of chain length or branching. These compounds have
an RMS of 3.78 kJ mol™.

It was assumed that diols (molecules with two alcohol groups) would be similiarly mod-
eled. However, as the results were examined, it appeard that the assumption that each alcohol

group contributed a constant amount appeared invalid. A plot of diol length versus heat of

72

73

formation was not linear. The longer the hydrocarbon chain of the backbone, the more scat-
tered the data became. We thought at first that this could be explained through hydrogen
bonding; however, intra-molecular hydrogen bonding would only occur in small molecules.
The scattering in the data is probably due to diols being hygroscopic and samples, if not kept
under nitrogen, are likely to be contaminated with water or perhaps dissociated into other
compounds. Since we could not model alcohol chains with the degree of accuracy necessary

for SPARC, it was decided to focus our efforts on more stable groups.

5.3 ALDEHYDES

There are suprisingly few heat of formation measurements for aldehydes, only eight. As an
aldehyde functional group is considered a reaction center in SPARC, all that was necessary
was to add a parameter to SPARCs database which determines how much an aldehyde
contributes to the heat of formation. This parameter has a value of -168.37 kJ mol*. The

RMS for these compounds is 2.6 kJ mol™.

5.4 KETONES

Ketones are more difficult to model than aldehydes, although they have the same reaction
center. This is because the ‘oethylenic’-group, has three possible steric interactions (similar to
an ethylenic), as opposed to one in an aldehyde, and has dipole effects. The same parameter
was used as for aldehydes, and for chains the model worked well, producing an RMS of 4.21
kJ mol! for 27 compounds.

There was no data for oethylenics and ethylenics nor was there data for oethylenics and
acetylenics bonded together. When we attempted to model ketones in rings, the modeling
done for oethylenics in chains no longer worked. We sufferd from the problems of large
amounts of bad data and small data sets for each supposed effect. For these reasons we

moved on to calculating the heat of formation of halogens.

74

5.5 ASSORTED PROJECTS

Other projects were also undertaken to improve the SPARC modeling system as a whole. This
included updating ‘distance.pro’ and ‘pkadata.pro’ to handle any arbitrary aromatic com-
pound and to calculate ‘LeninLenout’ data. LeninLenout is the distance from a substituent
on an aromatic reaction center to another substitent on the same reaction center. This infor-
mation is necessary when determining resonance contribution of substituents through a ring.
As aromatic reaction centers can be expressed as hexagons, we used cartesian coordinates
to generate a map of the compounds and calculate the distance and angles between each
atom. We also separated the benzene, napthalene, anthracene, and phenanthrene templates
so each could be trained independently of the others.

During this time we also moved SPARC from ALS to SICSTUS Prolog. This was done
because ALS Prolog is no longer being maintained and SICSTUS is one of the fastest and

highest quality Prolog distributions available.

CHAPTER 6

TooLSs

6.1 INTRODUCTION

The process of model building is expedited when the proper tools are provided. Lucinda
Bornander created many tools to: add new data to the SPARC database, remove training sets
from the database, build training sets from data in the database, and search the database for
property values. A large number of these were originally written in Visual Basic, but were
converted to Cold Fusion, providing a platform independent method of processing data.
This “toolbox” has been expanded upon and new tools added to ease the implementation of
SPARC and facilitate model development.

These new tools include: database management, improved training file building, viewing
of SPARC data, user area creation, and quality control of the SPARC models. The code for

these tools is found in Appendix A.

6.2 THE SPARC DATABASE

Originally, SPARC’s data was kept in multiple Microsoft Access databases. In order to
ease the maintenance of the data, we ported all of it into one MySQL database called
sparcdb. MySQL has the dual advantages, over Microsoft Access, of faster record searching
and allowing larger queries to be built.

In order to create one database, the various tables in the other databases were imported
into the sparcdb. It was also desired to have a consistent table layout, as far as possible. With

these considerations in mind, the pka, physical properties, heat of formation, and entropy of

75

76

fuston tables were imported and updated as necessary. The training file database was also
inserted. The indexMaster table was created to build training files, link data and provide a
common source for unique SMILES strings. This is the largest table in the SPARC database
and contains all of the compounds used in SPARC. It lists the CAS number, unique SMILES
string, name, substituents, reactophores, molecular weight, and generics of each molecule.

While the SPARC database is relatively static, it still requires maintenance. Whenever
new data or compounds are discovered, these must be added to the appropriate table. For
heat of formation and entropy of fusion data this is accomplished via a Cold Fusion tool
which allows the user to select which table to insert data and enter the information for the
appropriate fields. The code for inserting heat of formation data is included in Appendix
A. Code for the entropy of fusion is not included because it is nearly identical. No tools
were created to insert data for the other properties because these models are relatively
mature; however, if new data is found, it can be inserted into the database by hand. If
a new compound is obtained, it is necessary to update indexMaster as well. Since indez-
Master contains over 81,000 compounds and has many fields, the simplest way to add
compounds is to create a .mol file named “CAS_number.mol” and place it in the folder
c:\Inetpub\wwwroot\TadsTool\Hf _Database_Builder\Mol\Temp on Ibmlc2. Once the file
is in this location a Cold Fusion tool (Appendix A, fixmol.cfm) is used to create the unique
smiles string, calculate the molecular weight, find the substituents, reactophores, and generics
of the compound and update indexMaster.

Since the SPARC database contains “real-world” data, some erroneous data may inad-
vertently be included in the database. Because some of this data is to be kept for further
analysis, a method for “commenting it out” was developed (Appendix A, remove.cfm and
remove_2.cfm). Also, because the heat of formation, entropy of fusion, and melting point
data were obtained from the NIST chemical webbook, which has known errors, this tool

was written specifically to “comment out” data from these tables. When a user wishes to

7

“comment out” data, a field in the appropriate table is updated and the next time a training
file is built, this compound will be commented out.

Some compounds in indexMaster do not have CAS numbers or names associated with
them; an ongoing project is to update this table with the CAS numbers and names. This
is done by taking a SMILES string without a CAS number and generating a .mol file from
it, then pasting the .mol file into SciFinder. If the compound is found, indexMaster can be
updated with the name and CAS number. To expedite this process, a tool was built as an
administrator function in the Bornander training file tool. The code for this process is found

in Appendix A, fix_indexmaster.cfm and get_cas2.cfm.

6.3 TRAINING FILE ToOOLS

The training file tools were initially developed by Bornander for producing files to train pka
and GC data; with the addition of heat of formation and entropy of fusion it was desired to
make this into a generic process. This generic training file builder was constructed by mod-
ifying the code to query the appropriate table in the unified SPARC database. Bornander’s
code was functionally complete for all data sets. Missing was a method to sort the file by type
and subtype of molecule: alkane chains, alkene chains, compounds with one ring, compounds
with two rings, aromatic compounds, etc. To correct this, a new file builder was created;
included in this new method was a way to “comment out” compounds and include multiple
measurements of data for the same compound. If a compound is marked as “commented
out” in the database, the training file builder will include that data in the training file, but
will comment it out. If there are multiple measurements of the same data, these are ranked,
in the database, according to preference. The training file builder will insert all of this data
into the training file with the “best” value as the value to be trained and the remaining
values commented out. By editing the database, the rank can be changed and the next time
the training file is built this new rank will be first. The code for this improved training file

builder is included in Appendix A.

78

Another useful tool in building training files is one which converts values from the SPARC
data area into training file parameters. When a model is in the development process there are
many new parameters being added. This tool takes the data and parses it to build training file
parameters. This allows parameters to be quickly and accurately built for inclusion in training

files. This code is found in Appendix A as data2param_top.cfm and data2params.cfm.

6.4 SPARC DATA VIEWER / COMPARER

After SPARC models are built and trained, it is helpful to examine the results of the model
and compare them to other methods and the observed values. The data viewer shows the
molecular structure as well as the observed and calculated values of the molecules. The
viewer developed specifically for the heat of formation, besides displaying the difference in
the calculated and observed values and CAS number, also shows the reference of the observed
data and the command necessary to run the model the compound. At the bottom of the
file, the RMS between the calculated and observed values and the actual RMS, as obtained
from the error in the actual measurements, is displayed. In the heat of formation data
comparer tool, the observed data is compared with the SPARC, PM3, and Benson/NIST
calculated values. Also shown are the RMS’ for these various methods and the total number
of compounds calculated by each. This tool is extremely useful to check the linearity of the
calculated values. The Cold Fusion code for these two tools is listed in Appendix A. Only
the heat of formation version of this code is listed, as the generic versions of this code are

nearly identical.

6.5 QuALITY CONTROL OF SPARC

Quality control is an important process of model development. When one portion of a model
changes, it is necessary to know how this change affects other sections of the model. A quality

control program was developed to alert SPARC developers when a model change occurs.

79

The quality control program examines the model every night and sends an email to
the SPARC developers when its task is completed. To check the model, the quality control
script runs the aqueous pka, heat of formation, physical properties, hydrolysis, electron
affinity, diffusion, ehalf, nonaqueous pka, and hydration batch files. These files test all of
the “production level” SPARC models. Each night, after the batch files have been tested,
the difference in the current output file and the previous day’s output file is calculated. If
there are differences in the two files, SPARC sorts the differences into large differences and
small differences. Large differences are those molecules which have changed by more than
10% from the previous day; small differences are those that have changed by less than this
amount. Once the differences have been calculated an email is sent to the SPARC developers,
letting them know of any changes and which molecules were affected. If the model has not
changed, this is stated in the email. A daily notification ensures the quality control program

actually worked and a flaw in a model did not cause the whole process to fail.

6.6 COMMON USER AREA

Before a new developer can work with the SPARC system, their work area must be created.
For SPARC to run properly each user needs multiple directories and files in their home
directory. Previously, to add a new user to the system, an existing area was copied and
renamed. This resulted in files with permission problems and unwanted files being duplicated.
To improve on this process we developed a shell script that generates a user’s work area and
then removes itself. This script, “build_area”, is found in the SPARC area inside of the
“user_template” directory. To build the user’s area, this script is copied to the user’s home
directory and then run. It copies or creates all of the necessary files and creates the necessary

directories; finally, the script removes itself, leaving the user with a freshly created area.

80

6.7 SUMMARY

A full code listing, broken down by section, can be found in Appendix A. These tools facilitate
adding users to the SPARC development process, managing SPARC model development,

building training files, and analyzing the data from SPARC model development.

CHAPTER 7

CONCLUSIONS

7.1 REVIEW OF FINDINGS

The SPARC AH; model is nearly as accurate as most experimental measurements of
hydrocarbons and halogenated hydrocarbons. It has been tested with all reliably measured
compounds. The structures of these compounds range from hydrocarbon chains to highly
branched perfluoroalkanes; from conjugated rings to halogenated aromatics. SPARC pro-
vides a quick and reliable method for determining the AH of these compounds and a more
accurate alternative to using semi-empirical or group additivity methods.

Information on the effects which contribute to the AH; was acquired and a database of
high quality, measured compounds was compiled before the a SPARC AH/ calculator was
developed. After this background knowledge was obtained the models were built.

The SPARC model of the heat of formation uses procedures developed for other SPARC
models and has similarities between semi-empirical and group additivity methods. The heat
of formation is expressed as a function of the energy required to add an atom to the free
element state. It represents the energy difference between the free element state and the
whole molecule state. This energy difference is modeled by expressing AH; in terms of the
summation of the contributions of all the components, perturber(s), and reaction centers(s),

in the molecule (Equation 7.1).

AHf = Z [(AHf)C + AC’] + (AHf)Whole,molecule (71)
C=1

Using the standard SPARC procedure, molecules are first broken into C' reaction centers

essential atoms/groups) and their perturber structures. In this equation, (AH¢)c is the
g I

81

82

intrinsic heat of formation of the reaction center, C', and is assumed to be unperturbed and
independent of any perturbing structures. Ac describes adjustments made to the (AHy)c
by the perturber structure(s); the (AHf)whote_motecute 1S any additional energy added (or
subtracted) due to the overall molecular structure, e.g. distribution of NBMO charge in
conjugated systems.

The reaction center perturbation, Aq, is further factored into mechanistic components
SPARC calculates for perturbations to the heat of formation of each reaction center, as

described by Equation 7.2.
AC’ - Asteric(AHf)C + Aresonance(AHf)C + Aconnectivity(AHf)C (72)

Agteric(AH) o, Aresonance(AHf) e, and A onnectivity(AH) describe how the size, resonance,
and connectivity of the perturber(s) affect the reaction center’s value. The steric interac-
tion is the effect of a perturber’s size on the reaction center. The resonance interaction
is a description of the amount of stabilization a molecule undergoes due to charge being
distributed out of the reaction center and into the perturbing structures. The connectivity
adjustment describes the change in a reactophore’s energy when a hydrogen atom of a base
reactophore is replaced with another group.

The “whole molecule” correction, (AH f)w hote_molecute; 1S the sum of corrections applied to
the entire molecule; this includes corrections for rings, additional resonance, and additional

steric energy (Equation 7.3).

(AHf)Whole,molecule = (AHf)rings + (AHf)xres + (AHf):cstem’c (73)

The number, size, and connectivity of the rings in a molecule determine the amount of
correction for rings, (AHy)yings.- There is an additional resonance correction, (AH),yes, for
homoaromaticity. (AHf)zsteric models the strain induced by various spatial environments.
All of the perturbations and adjustments are empirically trained against experimentally

determined values of the heat of formation.

83

The hydrocarbon model underwent extensive development because hydrocarbons have
the most reliably measured heats of formation and also because these compounds provide the
basic structural framework for all other types of organic compounds. The 587 hydrocarbons
used to build this model have a SPARC calculated RMS of 4.50 kJ mol™.

The halogenated hydrocarbon model was developed because these halogens can only
bond to one other reaction center. Also, other researchers [5, 27, 22, 26] had successfully
modeled this group of compounds using group additivity. Unfortunately, this model requires
a large number of parameters to correctly model all of the measured compounds. Halogenated
hydrocarbons have a calculated RMS deviation of 5.18 kJ mol™ for 202 compounds.

The stereocenter model was developed because stereochemistry in a molecule can alter the
AH; by 5-25 kJ mol™. 169 stereocompounds (70 pairs of stereoisomers) were used to build
the model, SPARC calculates a 6.1 kJ mol! RMS deviation between pairs of stereoisomers
(AAHy).

At room temperature, a shift in the enthalpy of reaction by 1 kcal mol-1 (4.184 kJ
mol!) will generally change the equilibrium constant by a factor of five.[5] Therefore, for
any calculation scheme to be accurate within a factor of ten, its uncertainty must be less
than 9 kJ mol ™. To meet the future goals of SPARC and accurately predict transition state
energies, it is necessary to develop a heat of formation calculator to meet or exceed this

requirement.

7.2 FUTURE STUDIES

While at present SPARC only calculates the heat of formation of hydrocarbons and halo-
genated hydrocarbons, work is in progress to extend the capability of these models to calcu-
late the AH[for molecules containing oxygen, nitrogen, phosphorus, and sulfur. Once the
heteroatom models are complete it will be possible to integrate them into SPARC’s kinetic

and redox rate models in order to better predict transition state energies. The extrapolata-

84

bility of models to other types of chemistry is one of SPARC’s greatest strengths and is the
impetus behind continued development of these models.

A complete listing of the compounds used to develop these models can be found in
Appendix B. The code developed for modeling the heat of formation can be found in

Appendix C.

1]

BIBLIOGRAPHY

Hilal, S. H.; Carreira, L. A.; and Karickhoff, S. W. “Estimation of Chemical Reactivity
Parameters and Physical Properties of Organic Molecules Using SPARC.” In Quanti-
tative Treatment of Solute/Solvent Interactions; Politzer, P. and Murray, J. S., Eds.;

Theoretical and computational chemistry; Elsevier: New York, 1994; Vol. 1, 291-353.

Lowry, T.H. and Richardson, K.S. Mechanism and Theory in Organic Chemistry. 3rd
edition. Harper and Row: New York, 1987.

Taft, R.W. Progress in Organic Chemistry, John Wiley & Sons: New York, 1987; Vol.
16.

Atkins, P. Physical Chemistry., bth edition; WH Freeman and Company: New York,

1994; 85.
Cohen, N.; Benson, S. W. J. Chem. Rev. 1993, 93, 2419-2438.

Computational Thermochemistry.Irikura, K. and Frurip D., Eds.;American Chemical

Society: Washington DC, 1998.

Benson, S.W. Thermochemical Kinetics, 2nd edition; John Wiley & Sons: New York,

1976.

Afeefy, H.Y.; Liebman, J.F.; and Stein S.E. “Neutral Thermochemical Data” in NIST
Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Lin-
strom and W.G. Mallard, July 2001, National Institute of Standards and Technology,
Gaithersburg MD, 20899 (http://webbook.nist.gov).

85

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

18]

[19]

[20]

[21]

86

Cox, J. D. and Pilcher, G.; Thermochemistry of Organic and Organometallic Com-

pounds; Academic Press: London, 1970.

Pedley, J. B.; Naylor, R. D.; and Kirby, S. P.; Thermochemical Data of Organic Com-
pounds, 2nd ed.; Chapman and Hall: London, 1986.

Hilal, S. H.; Karickhoff, S. W.; Carreira, L. A.; Quant. Struct.-Act. Relat. 1995, 14,
348-355.

Hilal, S. H.; Karickhoff, S. W.; Carreira, L. A.; QSAR & Comb. Sci. 2003, 22, 565-573.

Hilal, S. H.; Karickhoff, S. W.; Carreira, L. A.; Quant. Struct.-Act. Relat. 1993, 12,
389-396.

Whiteside, T. S.; Carreira, L. A.; J. Theoretical and Computational Chemistry 2004, 3,

451-469.

Whiteside, T. S.; Carreira, L. A.; submitted to Journal of Chemical Theory and Com-

putation.
Carreira, L. A.; SPARC. http://ibmlc2.chem.uga.edu/sparc
Stein, S. E.; Golden, D. M.; Benson, S. W. J. Phys. Chem. 1977, 81, 314-317.

Liebman, J. F.; Paquette, L. A.; Peterson, J. R.; Rogers, D. W.; J. Am. Chem. Soc.
1986, 108, 8267-8268.

Stewart, J. J. P.; J. Comp. Chem. 1989, 10, 221-264.

HyperChem(TM) Student Edition 7.0; Hypercube, Inc.; 1115 NW 4th St, Gainesville,
Florida 32601.

Roth, W. R.; Adamczak, O.; Breuckmann, R.; Lennartz, H. W.; Boese, R.; Chem. Ber.
1991, 124, 2499-2521.

[22]
[23]

[24]

[25]

[26]
[27]

[28]

87

Kolesov, V. P.; Papina, T. S.; Russtan Chemical Reviews 1983, 52, 425-439.
Paddison, S. J.; Tschuikow-Roux, E.; Int. J. Thermophysics 1998, 19, 719-730.

Smart, B. E. in Molecular Structure and Energetics Vol 3.; Liebman, J. F.; Greenberg,
A., Eds.; VCH Publishers: Deerfield Beach, FL, 1986; 141-191.

Stein, S. E.; Brown, R. L.; “Structures and Propeties Group Additivity Model” in NIST
Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom, P. J.;
Mallard, W. G., Eds; March 2003, National Institute of Standards and Technology:
Gaithersburg MD, 20899 (http://webbook.nist.gov).

Kolesov, V. P.; Kozina, M. P. Russian Chemical Reviews 1986, 55, 912-928.
Joshi, R. M. J Macromol Sci-Chem 1974, A8, 861-885.

Eremenko, L.T; Korolev, A.M; Berezina, L.1.; Kirpichev, E.P.; Rubtsov, Yu.l.; Sorokina,
T.V. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1985, 795-798.

APPENDIX A

SPARC TooLs

A.1 DATABASE MANAGEMENT TOOLS

A.1.1 INSERT_HF.CFM

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
<head>
<title>Add data to HF</title>
</head>

<body>

<cfoutput>

<form action="insert2_hf.cfm7db=#db#" method="post">

<table>

<tr><td>Cas number</td><td><input type="text" name="cas"></input></td></tr>
<tr><td>DfH</td><td> <input type="text" name="dfh"></input></td></tr>
<tr><td>Error </td><td> <input type="text" name="error"></input></td></tr>
<tr><td>Method</td><td> <input type="text" name="m"></input></td></tr>
<tr><td>Refs</td><td> <input type="text" name="refs'"></input></td></tr>
<tr><td>Comments </td><td><input type="text" name="c"></input></td></tr>
<tr><td>Rank </td><td> <input type="text" name="rank"

value = 1></input></td></tr>

</table>

<input type="hidden" name="table" value = "dataHF"></input>

<p>

<input type="submit" name="button" value="Submit">

</form>

</cfoutput>

<hr>

<center>Home</center>
</body>

</html>

38

A.1.2 INSERT2_HF.CFM

<cfset newdfh = dfh * 1>
<cfset newerror = error * 1>

<l--- update the ranks --->
<cfquery datasource=#db# name="ru">
SELECT id,Rank FROM #table#

WHERE cas = #cas#

</cfquery>

<cfloop query="ru">

<cfset newrank = #Rank#+1>

<cfquery datasource=#db# name="nru'">
UPDATE #table#

SET Rank = #newrank#

WHERE id = #id#

</cfquery>

</cfloop>

<!--- add the new data —-->

<cfquery datasource=#db# name="insert">

INSERT INTO #table#(cas,DfH,Error,Method,Refs,Comments,Rank)
VALUES (#cas#, #newdfh# ,#newerror#, *#m#’ , *#refs#’ , *#c#’ ,#rank#)
</cfquery>

<cflocation url="insert_hf.cfm?db=#db#">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>

<head>

<title>Untitled</title>

</head>

<body>

<cfoutput>

</cfoutput>

</body>
</html>

90

A.1.3 FIXMOL.CFM

<!---- Table to update ———->
<cfset table = "indexMaster">
<!---- Change to point to the mol area to be read --——-—>

<cfset molpath=’c:\inetpub\wwwroot\tadstool\hf_database_builder\mol\temp\’>
<cfset movepath=’c:\inetpub\wwwroot\tadstool\hf_database_builder\mol\’>
<cfdirectory directory="#molpath#" name="mydirectory" sort="name DESC">
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head><title>Gets Unique Smiles From Mol</title></head>

<body>

<I--- create the smiles class for calculation --—>

<cfobject action="CREATE" name="MySmilesObject"
class="NewCD_Proj.SmilesCF" type="COM">

<!--- create a sun class for calculation --—>

<cfobject action="CREATE" name="MyObject"

class="NewCD_Proj.clsSun" type="COM">

<cfset MyObject.SunHost = "ibmlc2.chem.uga.edu">

<cfset MyObject.SunPort = 1250>

<cfset MyObject.ServerType = "new">

<cfset connected=My0Object.Connect()>

<cfif not connected>

<cflocation url="error.cfm?error=1">

</cfif>

<cfset j=0>

<table border=1>
<tr><td>File</td><td>CAS</td><td>Smiles</td></tr>
<cfoutput query="mydirectory">

<cfif trim(name) is ’’>

<cfelseif trim(name) is ’.’>

<cfelseif trim(name) is ’..’>

<cfelse>

<cfset cas=listfirst(name,".")>

<cfset molfilename=molpath & #name#>

<cfset calculateOK=

MySmilesObject.SmilesFromMol (molfilename,0,"UniqueSmiles", "MyErrorMessage")>
<tr><td>#name#</td><td>#cas#</td>

<cfif calculateQOK>

<td>#uniquesmiles#</td>

<cfset mysmiles=uniquesmiles>

<cfset SmilesIn=’#mysmiles#’>

<cfset MW="None">

<cfset CAS2="None">

<cfset MyName="None">

<cfset Subs="None'">

<cfset Reacs="None">

<cfset the_generic="None">

<cfset the_generic=MyObject.get_generic(SmilesIn)>

<cfset calculateOK2=
MyObject.Prop_Cas(SmilesIn,"MW","CAS2","MyName", "Subs","Reacs")>
<cfset CAS2 = 0>

<cfset MyName = "777">
<cfif calculateOK2 and MW neq ’’>
<cfquery datasource = "#db#" name = "myupdate">

UPDATE #table#

SET MolWt=#MW#,
Substituents=’#Subs#’,
Reactophores=’#Reacs#’
WHERE cas = #cas#

</cfquery>
<cfif the_generic is not ’fail’>
<cfquery datasource = "#db#" name = "myupdate2">

update #table#
set generic=’#the_generic#’
where cas = #cas#

</cfquery>
</cfif>
<cfelse>
<cfquery datasource = "#db#" name = "myupdate">
Update #table#
Set substituents=’bad’
Where cas = #cas#
</cfquery>
</cfif>
<cfelse>
<td>Failed</td>
<cfset mysmiles="Failed">
</cfif>
<cfquery datasource="#db#" name="up">
UPDATE #table#
SET smiles = ’#replace(mysmiles,’\’,’\\’,"ALL")#’
WHERE cas= #cas#
</cfquery>

</tr>
<cffile action="MOVE" source="#molfilename#" destination="#movepath#">
</cfif>
</cfoutput>
<cfset rc=MyObject.disconnect()>

91

</table>
</body>
</html>

A.1.4 REMOVE.CFM

<head>
<title>Mark out data</title>
</head>

<body>
<cfoutput>
<form action="remove_2.cfm?db=#db#" method="post">
Select the table in you wish to mark out data.
<cfset names="dataHF,dataSfus,dataSPARC,dataTfus">
<select name="table">
<cfloop index="x" list="#names#">
<option>#x#</option>
</cfloop>
</select>

Select the cas number to mark out.<input type="text"
name="cas"></input>

Enter the comment for the comments2 column.<input type="text"
name="c2"></input>
<p>
<input type="submit" name="button" value="Submit">
</form>

</cfoutput>

<hr>

<center>Home</center>
</body>

</html>

A.1.5 REMOVE_2.CFM

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

92

<head>
<title>Untitled</title>
</head>

<body>
<cfoutput>
<cfif cas is not "" AND c2 is not "">

<cfquery datasource=#db# name='"markout">
UPDATE #table#

SET xuse = ’n’
WHERE cas=#cas#
</cfquery>

<cfquery datasource=#db# name="markout">
UPDATE #table#

SET comments2 = ’#c2#’

WHERE cas=#cas# AND rank = 1

</cfquery>

OK!

Remove
<cfelse>

Go back and fill in completely!

Remove
</cfif>

</cfoutput>

</body>

</html>

A.1.6 FIX_INDEXMASTER.CFM

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
<head>
<title>Fix indexMaster</title>
</head>
<body>

<cfoutput>

<cfif id is 1>
The smiles is #smiles#

93

<cfset myfile= "\\ibmlc2\wwwroot\Born\cas_todo\" & "#smilesid#" & ".mol">
#myfile#

<form action=fix_indexMaster.cfm>

<input type = text name="cas"> CAS Number from SciFinder

<input type = text name="name"> Name from SciFinder

<input type "checkbox" name="notin" value="true">

Check this if cannot find in SciFinder

<input type = hidden name="id" value = "2">

<input type = hidden name="smiles" value = ’#smiles#’>
<input type = hidden name="myfile" value = ’#myfile#’>
<input type = submit value = "Submit" >

</form>

<cfelseif id is 2>
<cfif NOT IsDefined("notin")><cfset notin="false"></cfif>
<cfif #notin# is "true">
<cfquery datasource=#application.datasource# name="fix">
UPDATE indexMaster

SET comments = "not found in SciFinder"
WHERE smiles=’#replace(smiles,’\’,’\\’,"ALL")#’
</cfquery>
<cflocation url="get_cas2.cfm">
<cfelse>
<cfset cas = replace(cas,’-’,’’,"ALL")>

<cfquery datasource=#application.datasource# name="check">
SELECT * FROM indexMaster
WHERE cas = #cas#
</cfquery>
<cfif check.recordcount is 0>
<cfquery datasource=#application.datasource# name="fix">
UPDATE indexMaster

SET cas = #cas#, name = ’#name#’
WHERE smiles=’#replace(smiles,’\’,’\\’,"ALL")#’
</cfquery>

<cffile action="delete" file = "#myfile#">
Database Updated!
<cflocation url="get_cas2.cfm">
<cfelse>
Sorry buddy this cas number is already in the database for:

#check.smiles#

This is your smiles:

#smiles#

Why do they have the same cas? Something is wrong.
</cfif>

</cfif>
</cfif>
</cfoutput>
<hr>

<center>
Get_CAS2</center>

<center>
Admin</center>
</body>
</html>

A.1.7 GET_CAS2.CFM

<cfset table = "indexMaster">

<!--- Get all the records that are not in this database --->
<cfquery datasource = #application.datasource# name= "notin">
SELECT * FROM #table#

WHERE cas = -2

ORDER BY id

</cfquery>

<html>

<head> <title>SMILES not in db</title> </head>

<body>

If you would like to avoid doing any updating, then click

 here to go back to "get_cas.cfm"

and have it add the CAS,MW,etc.
<hr>

<cfoutput>

Clicking on a smiles string will take you to a page where you

can copy the path, go to SciFinder and paste that path into the
structure import section, be sure to change the file type to *.mol,
and then click '"get structure". When you do this the proper
compound should appear and you can get the CAS number and name.

MAKE SURE TO REPLACE BENZENE’S WITH PROPER BENZENE’S, THE SMILES
TO MOL PROGRAM MESSED THEM UP.

If multiple compounds appear, then pick the one that is a "real compound",
not a component of a multi component system or a "radical".

This is usually found near the bottom of the list.

If it appears that something is already in the database or

you are not sure which cas to use, ask Tad or Butch,

probably Butch, what to do.

95

96

If you have decided that the structure is wrong,

you will need to edit indexMaster by hand --

deleting the old smiles and entering the new one. (

I suppose this could actually be a page also..but I’m lazy. -Tad)
<hr>

This is the list of #notin.recordcount#

SMILES that do not have CAS numbers associated with them:

<cfloop query = "notin">

<cfset newsmiles = urlencodedformat (#smiles#)>

#id#<a href=
"fix_indexMaster.cfm?7id=1&smiles=#newsmiles#&smilesid=#id#">#smiles#
 #comments#

</cfloop>

</cfoutput>

<hr>

<center>Admin</center>
</body>

</html>

A.1.8 TS_VIEWER.CFM

<cfinclude template="../login_check.cfm">
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
<head>
<title>Sparc Data Viewer</title>
</head>

<body>

Sparc Data Viewer

<p>

<form action="Choice.cfm" method="post">

<input type='"radio" name="TS" value="Display Joe Diff" checked>
Display Joe Diff

<input type='"radio" name="TS" value="Display Generic Joe Diff">
Display Generic Joe Diff

<input type="radio" name="TS" value="Display Training Set">
Display Training Set

97

<input type="radio" name="TS" value="Upload"> Upload File

<input type='"radio" name="TS" value="Delete"> Delete File <p>

<input type="submit" value="Submit'">

</form>

Take me back to the Research Tools Portal.
</body>

</html>

A.1.9 CHOOSESETDIFF.CFM

<cfinclude template="../login_check.cfm">

<cfdirectory directory = "#expandpath(’diffuploads’)#"
name = "diffuploads"
sort="name">

<cfset db = "mysql">

<!--—<cfset db = "newSPARCdb">--->
<cfset data2use="dataHF">

<cfset index="indexMaster">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
<head>
<title>Display Joe Diff</title>
</head>

<body>

Display Joe Diff

<p>

<p>

Choose a Diff File to Display:
<cfoutput>
<form action="displayJoe.cfm?db=#db#&data2use=#data2use#&index=#index#"
method="post">
</cfoutput>
<select name="File2Use">
<cfoutput query="DiffUploads">
<cfif trim(name) is "." or trim(name) is "..">

98

<cfelse>
<option>#name#</option>
</cfif>
</cfoutput>
</select>
<p>
<input type="submit" name="button" value="Display Set">
</form>
<hr>
<p>

Compare a Diff File with the Observed,PM3, and Benson Values:
<form action="compareJoe.cfm" method="post">
<select name="File2Use">
<cfoutput query="DiffUploads">
<cfif trim(name) is "." or trim(name) is "..">
<cfelse>
<option>#name#</option>
</cfif>
</cfoutput>
</select>
<p>
<input type="submit" name="button" value="Compare Set">
</form>
<hr>

Select from which database the diff file will be compared:

Select from which database the diff file will be displayed:

<p>

Choose a Diff File to Quasi-Display:

<form action="quasiJoe.cfm" method="post">
<select name="File2Use">

<cfoutput query="DiffUploads">

<cfif trim(name) is "." or trim(name) is "..">

<cfelse>

<option>#name#</option>

</cfif>

</cfoutput>

</select>

<p>

<input type="submit" name="button" value="Qusai-Display Set">
</form>

<p>

Home
</body>

</html>

A.1.10 DISPLAYJOE.CFM

<cfinclude template="../login_check.cfm">
<cffile action="READ"
file="#expandpath(’diffuploads\’)##file2use#"
variable="thefile">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>

<head>

<title>Joe Diff Viewer</title>

</head>

<body>

<cfoutput>

<cfset started=false>

<cfset item=0>

<cfobject action="CREATE" name="MyGifObject"
class="NewCD_Proj.clsCD" type="COM">

<cfset MyGif(Object.StorageSubDirectory = "gif">
<cfobject action="CREATE" name="MyObject"
class="NewCD_Proj.SmilesCF" type="COM">
<cfset pos=0>

<cfset totalerror=0>

<cfset errorsum=0>

<cfset errorcnt=0>

<table>

<cfset xx=0>

<cfloop list="#thefile#" delimiters="#chr(13)##chr(10)#" index="line">
<cfset xx = xx+1>

<cfset item=item+1>

<cfswitch expression="#item#">

<cfcase value=1>

<cfset pos=find(’** Proc’,line)>

<cfif pos gt 0>

99

<cfset iteml=line>

<cfelse>

<cfset item=item-1>

</cfif>

</cfcase>

<cfcase value=2>

<cfset item2=1ine>

<l--- finding the smiles-—-->
<cfset pos=find(":",item2)>

<cfset smiles=trim(mid(item2,pos+1,len(item2)-pos))>

<cfset smilesin=’#smiles#’>
<cfset myerror=0>
<cfset myerrormessage=" ">

100

<cfset uniquesmiles=MyObject.GetUnique(smilesin, "myerror","myerrormessage")>

<cfif myerror>

<cfset uniquesmiles = smiles>

</cfif>

</cfcase>

<cfcase value=3>

<cfset item3=line>

</cfcase>

<cfcase value=4>

<cfset itemd4=trim(line)>

</cfcase>

<cfcase value=5>

<cfset item5=trim(line)>

</cfcase>

<cfcase value=6>

<cfset item6=trim(line)>

<!--- finding the obs val --->

<cfset dpos = find("[",item6)>

<cfset dposl = find("/",item6,dpos)>

<cfset obs = mid(item6,dpos+1,dposl-(dpos+1))>

</cfcase>

<cfcase value=7>

<cfset item7=trim(line)>

</cfcase>

<cfcase value=8>

<cfset item8=trim(line)>

<lI--- getting the cas from the database --->
<cfinclude template="cas_from_db.cfm">

<tr>

<td>

#iteml#

#item2#

101

#item3#

#itemd#

#itemb#

#itemb6#

#item7#

#item8#

Steal the line(s) below:

<cfif find("/",smiles) gt 0>
hf (S) .

#smiles#

<cfelseif find("\",smiles) gt 0>
hf (S) .

#smiles#

<cfelse>
hf (*#smiles#’,S)

</cfif>
CAS num: #xxx.cas#

<!--- Getting the Reference and the Error--——>
<cfinclude template="data_ref_error.cfm">

<cfif casnum.recordcount 1t 1>
<cflocation url="error.cfm7cas=#xxx.cas#&smiles=#smiles#">
</cfif>
<cfset pos = find("http",casnum.refs)>
<cfif pos gt 0>
#casnum.refs#

<cfelse>
#casnum.refs#

</cfif>
</td>
<cfif casnum.recordcount gt 0>
<cfset mycas=xxx.cas>

<cfelse>

<cfset mycas="0000">

</cfif>

<!--- found cas: see if its picture is cached --——>

<cfset newdir=left(ltrim(mycas),1)> <!--- this gets subdirectory --->
<cfset temp="..\..\sparc\com_location\casgif\" &

newdir & "\" & mycas & ".gif">
<cfset testname=expandpath(temp)>

<td>
<cfif FileExists(testname)>
<l--- it was cached so use it —--—>

<p>

<cfelse>

<I--- not cached so ask ChemDraw to make the gif picture and save it-———>

<cfset gifname=session.sessionid & session.counter>

<cfset session.counter=session.counter+1>

<cfset MadeGIF=MyGifObject.MakeGIF ("#gifname#", "#smiles#")>
<cfif MadeGIF>

<cfset session.gif_file="gif\#gifname#" & ".gif">

<cfset temp="..\..\sparc\com_location\#session.gif_file#">
nc:

<cfif mycas is "0000">

<!--- cas is 0000 don’t save the pic --—>
bad cas <p>

<cfelse>

<!--- real cas, save the pic --->

<cfset myfrom=expandpath(temp)>
<cfset temp="..\..\sparc\com_location\casgif\" &
newdir & "\" & mycas & ".gif">
<cfset myto=expandpath(temp)>
<cffile action="COPY" source="#myfrom#" destination="#myto#">
<p>
</cfif>
<cfelse>
Picture failed <p>
</cfif>
</cfif>
</td>
<td>
<!--- tabulating the error --->
<cfset errorsum=casnum.error>
<cfif errorsum is "none" or
errorsum is '"none reported" or
errorsum is "nr">
<cfelse>
<cfset totalerror = totalerror+(errorsum*errorsum)>
<cfset errorcnt =(errorcnt+1)>
</cfif>
</td>
</tr>
<tr><td> </td></tr>
<cfset item=0>
</cfcase>
</cfswitch>
</cfloop>

</table>

102

103

<cfset pos1=0>
<cfset calcrms=0>

<cfloop list="#thefile#" delimiters="#chr(13)##chr(10)#" index="line">
<cfset posl=find(’RMS’,line)>
<cfif posl gt 0>
<cfset rms=line>
#rms#

<cfif errorcnt gt 0>
<cfset calcrms=sqr(totalerror/errorcnt)>
<cfelse>
<cfset calcrms = "none">
</cfif>
Observed RMS is #calcrms#
</cfif>
</cfloop>
</cfoutput>
<p>
Home
</body>
</html>

A.1.11 COMPAREJOE.CFM

<cfinclude template="../login_check.cfm">

<cffile action="READ"
file="#expandpath(’diffuploads\’)##file2use#"
variable="thefile">

<cfset db="mysql">

<cfset dataluse="dataHF'">

<cfset index="indexMaster">

<cfset calctable="dataCalculated">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
<head>
<title>Joe Diff Comparer</title>

104

</head>

<body>

<cfoutput>

<cfset started=false>
<cfset item=0>

<cfset pos=0>

<cfset errorPM3cnt = 0>
<cfset errorBensoncnt = 0>
<cfset totalcmpds = 0>

<cfset totalerror=0>
<cfset errorsum=0>
<cfset errorcnt=0>
<cfset ptotalerror=0>
<cfset perrorsum=0>
<cfset perrorcnt=0>
<cfset btotalerror=0>
<cfset berrorsum=0>
<cfset berrorcnt=0>

<cfobject action="CREATE" name="MyObject"
class="NewCD_Proj.SmilesCF" type="COM">
<table border=1>

<tr>

<td>0Observed Values</td>

<td>SPARC</td>

<td>PM3 </td>

<td>Benson (NIST)</td>

</tr>

<cfloop list="#thefile#" delimiters="#chr(13)##chr(10)#" index="line">
<cfset item=item+1>

<cfswitch expression="#item#">
<cfcase value=1>

<cfset pos=find(’** Proc’,line)>
<cfif pos gt 0>

<cfset iteml=line>

<cfelse>

<cfset item=item-1>

</cfif>

</cfcase>

<cfcase value=2>

105

<cfset item2=line>

<!---finding the smiles string --->

<cfset pos=find(":",item2)>

<cfset smiles=trim(mid(item2,pos+1,len(item2)-pos))>

<cfset smilesin=’#smiles#’>

<cfset myerror=0>

<cfset myerrormessage=" ">

<cfset uniquesmiles=MyObject.GetUnique(smilesin, "myerror","myerrormessage")>
<cfif myerror>

<l--- SMILES ERROR: #smiles# --->
<cfset uniquesmiles = smiles>
</cfif>

</cfcase>

<cfcase value=3>

<cfset item3=line>

</cfcase>

<cfcase value=4>

<cfset itemd4=trim(line)>

</cfcase>

<cfcase value=5>

<cfset item5=trim(line)>

</cfcase>

<cfcase value=6>

<cfset item6=trim(line)>

<!---finding the observed value --->
<cfset pos=find(’[’,item6)>

<cfset pos2=find(’/’,item6)>

<cfset obs=trim(mid(item6,pos+1l,pos2-1-pos))>
</cfcase>

<cfcase value=7>

<cfset item7=trim(line)>

<!---finding the calculated value --->
<cfset pos7=find(’:’,item7)>

<cfset calc=trim(mid(item7,pos7+2,15))>
</cfcase>

<cfcase value=8>

<cfset item8=trim(line)>

<lI--- getting the cas from the database --—>
<cfinclude template="cas_from_db.cfm">

<!---finding the calculated value for PM3 and Benson--->
<cfquery datasource="#db#" name="obsval">

select pm3,benson from #calctable#

where cas = #xxx.cas#

</cfquery>

<cfif obsval.recordcount gt 0>

<cfset pm3=trim(obsval.pm3)>

<cfset benson=trim(obsval.benson)>
<cfelse>

<cfset pm3="">

<cfset benson="">

</cfif>

<tr>

<td>#obs#</td>

<td>#calc# <cfset totalcmpds = totalcmpds + 1></td>
<td><cfif pm3 is "bad mol file" or

pm3 is "error" or

pm3 is "file not found">

<cfset pm3 = "">

<cfset errorPM3cnt = errorPM3cnt + 1>
</cfif>

#pm3#

</td>

<td><cfif benson is "Calculations failed">
<cfset benson = "">

<cfset errorBensoncnt = errorBensoncnt + 1>
</cfif>

#benson#

</td>

</tr>

<!--- tabulating the error --->
<cfinclude template="data_ref_error.cfm">

<!--- (Observed error --—->
<cfset errorsum=casnum.error>
<cfif errorsum is "none" or
errorsum is '"none reported" or
errorsum is "nr">
<cfelse>
<cfset totalerror = totalerror+(errorsum*errorsum)>
<cfset errorcnt =(errorcnt+1)>
</cfif>
<!--- PM3 error —-->
<cfif pm3 neq "">
<cfset perrorsum = abs(pm3-obs)>
<cfset ptotalerror = ptotalerror+(perrorsum*perrorsum)>
<cfset perrorcnt =(perrorcnt+1)>
</cfif>

106

<!--- Benson error --—->

<cfif benson neq "">
<cfset berrorsum = abs(benson-obs)>

<cfset btotalerror = btotalerror+(berrorsum*berrorsum)>

<cfset berrorcnt =(berrorcnt+1)>

</cfif>

<cfset item=0>

</cfcase>

</cfswitch>

</cfloop>

</table>

<cfset posl=0>
<cfset rms=0>
<cfset pcalcrms=0>
<cfset bcalcrms=0>

<cfloop list="#thefile#" delimiters="#chr(13)##chr(10)#" index="line">
<cfset posl=find(’RMS’,line)>

<cfif posl gt 0>

<cfset scalcrms=trim(mid(line,posl+7,4))>
<cfif errorcnt gt 0>

<cfset rms=sqr(totalerror/errorcnt)>
<cfelse>

<cfset rms = "none">

</cfif>

<cfif perrorcnt gt 0>

<cfset pcalcrms=sqr(ptotalerror/perrorcnt)>
<cfelse>

<cfset pcalcrms = "none">

</cfif>

<cfif berrorcnt gt 0>

<cfset bcalcrms=sqr(btotalerror/berrorcnt)>
<cfelse>

<cfset bcalcrms = "none">

</cfif>

</cfif>

</cfloop>

<table border=1>

<tr><td>0bs RMS</td><td>SPARC RMS</td><td>PM3 RMS</td>
<td>Benson RMS</td></tr>
<tr><td>#rms#</td><td>#scalcrms#</td><td>#pcalcrms#</td>

107

108

<td>#bcalcrms#</td></tr>

</table>

<cfset totalPM3 = totalcmpds-errorPM3cnt>

<cfset totalbenson = totalcmpds-errorBensoncnt>

<table border=1>

<tr><td>Total Compounds</td><td>PM3 cmpds</td><td>Benson cmpds</td></tr>
<tr><td>#totalcmpds#</td><td>#totalPM3#</td><td>#totalbenson#</td></tr>
</table>

</cfoutput>

<p>

Copy the top tables values and paste into Excel,

then do an XY Scatter to check their linearity

Set the size of the RMS, R™2 box, the X and Y axis labels,
and the tic marks to be 16.

Also set the size of the data series should be 8

with fore and background colors black.

Have the X and Y axis’ cross so that they are on

the left and bottom of the rectangle.

The second table shows the RMS of the various methods

The third table can be used to show how many

compounds each method can do.

<p>

Home
</body>

</html>

A.1.12 BTRAIN.CFM

<cfset p = "c:\inetpub\wwwroot\testme\">

<cfset header = "Get number of compounds from bottom of file" &
chr (13)&chr(10) & chr(13)&chr(10) &
"%hiParameters:" & chr(13)&chr(10) &
"[" & chr(13)&chr(10) &
chr (13)&chr(10) &
" %% Put Parameters here" & chr(13)&chr(10) &

chr(13)&chr(10) &
"]1." & chr(13)&chr(10)>

<!--- training file piece --->

<cfset header2 = session.header2>
<cfset temp = session.header4>
<!--- data --—->

<!--- smiles --->

<cfset header3 = session.header3>

<!--- training file ———>
<cfset tf = p & "traininX.sam">

<!--- removing and creating the files --->

<cfif fileexists(tf)>

<cffile file="#tf#" action="delete">

</cfif>
<l--- chains --->
<cfset type = "ane">

<cfinclude template= "remove_files.

<cfset type = "ene">

<cfinclude template= "remove_files.

<cfset type = "yne">

<cfinclude template= "remove_files.
<cfset type = '"yene'">

<cfinclude template= "remove_files.
<!-—- rings ——>

<cfset type = '"rane">

<cfinclude template= "remove_files.
<cfset type = '"rene">

<cfinclude template= "remove_files.
<cfset type = "ryne">

<cfinclude template= "remove_files.
<cfset type = '"ryene">

<cfinclude template= "remove_files.
<!--- 2rings --->

<cfset type = '"r2ane">

<cfinclude template= "remove_files.

<cfset type = '"r2ene">

<cfinclude template= "remove_files.

<cfset type = "r2yne">

<cfinclude template= "remove_files.

<cfset type = "r2yene">

<cfinclude template= "remove_files.

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

109

<!--- 3rings --—>
<cfset type = "r3ane">

<cfinclude template= "remove_files.

<cfset type = '"r3ene">

<cfinclude template= "remove_files.

<cfset type = "r3yne'">

<cfinclude template= "remove_files.

<cfset type = "r3yene">

<cfinclude template= "remove_files.
<!--- 4rings -——>
<cfset type = "rdane">

<cfinclude template= "remove_files.

<cfset type = '"r4dene">

<cfinclude template= "remove_files.

<cfset type = '"rdyne">

<cfinclude template= "remove_files.

<cfset type = '"rédyene">

<cfinclude template= "remove_files.
<!--- aroms -——>

<cfset type = "aane">

<cfinclude template= "remove_files.
<cfset type = "aene">

<cfinclude template= "remove_files.
<cfset type = "ayne">

<cfinclude template= "remove_files.
<cfset type = '"ayene">

<cfinclude template= "remove_files.
<!--- 2aroms --—>

<cfset type = "a2ane">

<cfinclude template= "remove_files.

<cfset type = "a2ene">

<cfinclude template= "remove_files.

<cfset type = "alyne">

<cfinclude template= "remove_files.
<cfset type = "a2yene">

<cfinclude template= "remove_files.
<!--- 3aroms -——>

<cfset type = "a3ane">

<cfinclude template= "remove_files.

<cfset type = "a3ene">

<cfinclude template= "remove_files.

<cfset type = "a3yne">

<cfinclude template= "remove_files.

<cfset type = "a3yene">

<cfinclude template= "remove_files.

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

110

<!--- 4aroms -——>

<cfset type = "adane">

<cfinclude template= "remove_files.
<cfset type = "adene">

<cfinclude template= "remove_files.
<cfset type = "adyne'">
<cfinclude template= "remove_files.
<cfset type = "adyene">
<cfinclude template= "remove_files.

<cfoutput>

0>
0>

<cfset j
<cfset k

<!--- adding the header --->

<cffile file="#tf#" action="APPEND" output="#header#">

<!--- #header#
 ——>
<cfloop query="results">
<!--- Stuff in smiles --——>
<cfset ring=find("1",#smiles#)
<cfset ring2=find("2",#smiles#)>
<cfset ring3=find("3",#smiles#)>
<cfset ring4=find("4",#smiles#)>

<cfset arom=find("c",#smiles#)>

<cfset ene=find("=",#smiles#)>
<cfset yne=find(chr(35),#smile

<cfif ring gt 0>
<!--- aromatic rings --->
<cfif arom gt 0>
<cfif ringd gt 0>
<cfif yne gt 0>
<cfif ene gt 0>

cfm">

cfm">

cfm">

cfm">

>

s#)>

<l--- aromatic ring yene--->

<cfset type = "adyene'">

<cfinclude template= "add_data.cfm">

<cfelse>
<l--- aromatic ring yne
<cfset type = "adyne">

<cfinclude template= "add_data.cfm">

</cfif>
<cfelse>

-—=>

111

<cfif ene gt 0>

<!--- aromatic ring ene --->
<cfset type = "adene">
<cfinclude template= "add_data.cfm">
<cfelse>
<!--- aromatic ring -——>
<cfset type = "adane">
<cfinclude template= "add_data.cfm">
</cfif>

</cfif>
<cfelseif ring3 gt 0>
<cfif yne gt 0>
<cfif ene gt 0>

<!--- aromatic ring yene--->

<cfset type = "a3yene">
<cfinclude template= "add_data.cfm">
<cfelse>

<!--- aromatic ring yne --->

<cfset type = "a3yne">
<cfinclude template= "add_data.cfm">

</cfif>
<cfelse>
<cfif ene gt 0>
<l--- aromatic ring ene --->
<cfset type = "a3ene">
<cfinclude template= "add_data.cfm">
<cfelse>
<!--- aromatic ring ———>
<cfset type = "a3ane">
<cfinclude template= "add_data.cfm">
</cfif>
</cfif>

<cfelseif ring2 gt 0>
<cfif yne gt 0>
<cfif ene gt 0>
<!--- aromatic ring yene--->
<cfset type = "a2yene'">
<cfinclude template= "add_data.cfm">
<cfelse>
<l--- aromatic ring yne --->
<cfset type = "a2yne">
<cfinclude template= "add_data.cfm">
</cfif>
<cfelse>
<cfif ene gt 0>

112

<!--- aromatic ring ene --->
<cfset type = "a2ene">
<cfinclude template= "add_data.cfm">

<cfelse>
<!--- aromatic ring --->
<cfset type = "a2ane">

<cfinclude template= "add_data.cfm">

</cfif>

</cfif>
<cfelse>

<cfif yne gt 0>
<cfif ene gt 0>

<l--- aromatic ring yene--->
<cfset type = "ayene">
<cfinclude template= "add_data.cfm">
<cfelse>
<!--- aromatic ring yne --->
<cfset type = "ayne">
<cfinclude template= "add_data.cfm">
</cfif>
<cfelse>
<cfif ene gt 0>
<!--- aromatic ring ene --->
<cfset type = "aene">
<cfinclude template= "add_data.cfm">
<cfelse>
<!--- aromatic ring -——>
<cfset type = "aane">
<cfinclude template= "add_data.cfm">
</cfif>
</cfif>
</cfif>
<!--- regular rings ———>
<cfelse>

<cfif ring4 gt 0>
<cfif yne gt 0>
<cfif ene gt 0>
<!--- ring yenes —-——>
<cfset type = '"rdyene'">
<cfinclude template= "add_data.cfm">
<cfelse>
<!--- ring ynes --—>
<cfset type = "rdyne'">
<cfinclude template= "add_data.cfm">
</cfif>

113

<cfelse>
<cfif ene gt 0>
<l--- ring enes ———>
<cfset type = '"r4ene">
<cfinclude template= "add_data.cfm">
<cfelse>
<!--- ring anes ———>
<cfset type = '"r4ane">
<cfinclude template= "add_data.cfm">
</cfif>
</cfif>
<cfelseif ring3 gt 0>
<cfif yne gt 0>
<cfif ene gt 0>
<!--- ring yenes --—->
<cfset type = "r3yene">
<cfinclude template= "add_data.cfm">
<cfelse>
<l--- ring ynes -———>
<cfset type = "r3yne">
<cfinclude template= "add_data.cfm">
</cfif>
<cfelse>
<cfif ene gt 0>
<!--- ring enes --—>
<cfset type = "r3ene">
<cfinclude template= "add_data.cfm">
<cfelse>
<!--- ring anes ———>
<cfset type = "r3ane'">
<cfinclude template= "add_data.cfm">
</cfif>
</cfif>
<cfelseif ring2 gt 0>
<cfif yne gt 0>
<cfif ene gt 0>

<!--- ring yenes —-——>
<cfset type = "r2yene">
<cfinclude template= "add_data.cfm">
<cfelse>
<!--- ring ynes --->

<cfset type = "r2yne">
<cfinclude template= "add_data.cfm">
</cfif>
<cfelse>

114

<cfif ene gt 0>

<!--- ring enes ———>
<cfset type = "r2ene">
<cfinclude template= "add_data.cfm">
<cfelse>
<!--- ring anes ———>
<cfset type = '"r2ane">
<cfinclude template= "add_data.cfm">
</cfif>
</cfif>
<cfelse>

<cfif yne gt 0>
<cfif ene gt 0>

<!--- ring yenes --——>
<cfset type = '"ryene">
<cfinclude template= "add_data.cfm">
<cfelse>
<!--- ring ynes ———>
<cfset type = "ryne">
<cfinclude template= "add_data.cfm">
</cfif>
<cfelse>
<cfif ene gt 0>
<l--- ring enes ———>
<cfset type = '"rene">
<cfinclude template= "add_data.cfm">
<cfelse>
<!--- ring anes ———>
<cfset type = "rane">
<cfinclude template= "add_data.cfm">
</cfif>
</cfif>
</cfif>
</cfif>
<l--- chains --->
<cfelse>

<cfif yne gt 0>
<cfif ene gt 0>

<l--- ynes-enes ———>

<cfset type = '"yene">

<cfinclude template= "add_data.cfm">
<cfelse>

<!--- ynes --—>

<cfset type = "yne">

<cfinclude template= "add_data.cfm">

115

</cfif>
<cfelse>
<cfif ene gt 0>

<!--- enes --—>

<cfset type = "ene">

<cfinclude template= "add_data.cfm">
<cfelse>
<l--- anes --—>
<cfset type = "ane">
<cfinclude template= "add_data.cfm">
</cfif>
</cfif>
</cfif>
</cfloop>
<!--- Adding the number of cmpds in the file —--—-—>

<cffile file="#tf#" action = "READ" variable = "tfile">
<cfset all = ")" &j & ".">
<cfset newtfile = Replace

(tfile,
"Get number of compounds from bottom of file",
j-k & "." & Chr(13) & Chr(10) & all)>

<cffile file="#tf#" action = "WRITE" addNewLine = "No"
output = "#newtfile#">

<!--- Adds all the small files together to get a big file --->
<!--- chains --—>

<cfset type = "ane">

<cfinclude template= "read_files.cfm">

<cfset type = "ene">

<cfinclude template= "read_files.cfm">
<cfset type = "yne">
<cfinclude template= "read_files.cfm">
<cfset type = "yene">
<cfinclude template= "read_files.cfm">

<!--- rings --—>

<cfset type = "rane">

<cfinclude template= "read_files.cfm">
<cfset type = '"rene">

<cfinclude template= "read_files.cfm">
<cfset type = "ryne">

<cfinclude template= "read_files.cfm">
<cfset type = '"ryene">

<cfinclude template= "read_files.cfm">
<!--- rings2 --—>

116

<cfset type = '"r2ane">

<cfinclude template= "read_files.

<cfset type = '"r2ene">

<cfinclude template= "read_files.

<cfset type = '"r2yne">

<cfinclude template= "read_files.

<cfset type = "r2yene">

<cfinclude template= "read_files.

<!--- rings3 --->
<cfset type = '"r3ane">

<cfinclude template= "read_files.

<cfset type = "r3ene">

<cfinclude template= "read_files.

<cfset type = "r3yne">

<cfinclude template= "read_files.

<cfset type = "r3yene">

<cfinclude template= "read_files.

<!-—- rings4 --—>
<cfset type = '"r4ane">

<cfinclude template= "read_files.

<cfset type = '"r4ene">

<cfinclude template= "read_files.

<cfset type = "rdyne">

<cfinclude template= "read_files.

<cfset type = "rdyene">

<cfinclude template= "read_files.

<l--- aromatics ———>
<cfset type = "aane">

<cfinclude template= "read_files.

<cfset type = "aene">

<cfinclude template= "read_files.

<cfset type = "ayne">

<cfinclude template= "read_files.

<cfset type = "ayene">

<cfinclude template= "read_files.

<!--- 2aromatics -——>
<cfset type = "a2ane'">

<cfinclude template= "read_files.

<cfset type = "alene">

<cfinclude template= "read_files.

<cfset type = "a2yne">

<cfinclude template= "read_files.

<cfset type = "a2yene">

<cfinclude template= "read_files.

<l--- 3aromatics --->

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cftm">

cfm">

117

<cfset type = "a3ane">

<cfinclude template= "read_files.

<cfset type = "a3ene">

<cfinclude template= "read_files.

<cfset type = "a3yne">

<cfinclude template= "read_files.

<cfset type = "a3yene">

<cfinclude template= "read_files.

<l--- 4aromatics --->
<cfset type = "adane">

<cfinclude template= "read_files.

<cfset type = "adene">

<cfinclude template= "read_files.

<cfset type = "adyne">

<cfinclude template= "read_files.

<cfset type = "adyene">

<cfinclude template= "read_files.

</cfoutput>

A.1.13 REMOVE_FILES.CFM

<cfset pp = p & type & ".sam">

<!---delete the file --->
<cfif fileexists(pp)>

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

cfm">

<cffile file="#pp#" action="delete">

</cfif>
<cfset comment = "/*xkkxx " & type & " skkxkx/">
<l---create the file —--->

<cffile file="#pp#" action="APPEND" output= "#comment#">

A.1.14 READ_FILES.CFM

<cfset pp = p & type & ".sam">

<cffile file="#pp#" action="READ" variable="type">
<cffile file="#tf#" action="APPEND"

addNewLine="No" output="#type#">

118

A.1.15 ADD_DATA.CFM

<cfset fle ="c:\inetpub\wwwroot\testme\" & #type# &".sam">

<!--- get data ——>

<cfquery datasource=#application.datasource# name="hfC">
SELECT #session.select#

WHERE cas = #cas#

ORDER BY rank

</cfquery>

<cfset hf = Valuelist(hfC.prop)>
<cfif session.header3 eq "sfus.">
<cfset templ = hfC.temp - 273.15>
<cfset temp = templ & ".">

</cfif>

<cfset hf3 = Valuelist(hfC.xuse)>
<cfset hf4 = Valuelist(hfC.comments2)>
<l--- adding the data to the file--->

<cfif listlen(hf) gt 0>
<cfset j=j+1>
<cfset 1fst = ListFirst(hf3)>
<cfif 1fst is "n">
<cfset k=k+1>
<cffile file="#fle#" action="APPEND"

output="/**")

<cfif listlen(hf4) gt 0>
<cffile file="#fle#" action="APPEND"
output="#header2# /#listfirst(hfd)#">
<cfelse>
<cffile file="#fle#" action="APPEND"
output="#header2#">
</cfif>
<cffile file="#fle#" action="APPEND"
output="#temp#">
<cfif listlen(hf) eq 1>
<cffile file="#fle#" action="APPEND"
output="#listfirst(hf)#.">
<cfelse>
<cffile file="#fle#" action="APPEND"
output="#listfirst(hf)#. %#listrest(hf)#">
</cfif>
<cffile file="#fle#" action="APPEND"

119

120

output="’#smiles#’. J#cas#">
<cffile file="#fle#" action="APPEND"
output="#header3#">
<cffile file="#fle#" action="APPEND"
OUTPUTS" sk koA A A A A KA KKK A A ARk /11>
<cfelse>
<cfif listlen(hf4) gt 0>
<cffile file="#fle#" action="APPEND"
output="#header2# %#listfirst(hfd)#">
<cfelse>
<cffile file="#fle#" action="APPEND"
output="#header2#">
</cfif>
<cffile file="#fle#" action="APPEND"
output="#temp#">
<cfif listlen(hf) eq 1>
<cffile file="#fle#" action="APPEND"
output="#listfirst(hf)#.">
<cfelse>
<cffile file="#fle#" action="APPEND"
output="#listfirst(hf)#. Y#listrest(hf)#">
</cfif>
<cffile file="#fle#" action="APPEND" output="’#smiles#’. J#cas#">
<cffile file="#fle#" action="APPEND" output="#header3#">
</cfif>
</cfif>

A.1.16 DATA2PARAM_TOP.CFM

<cfinclude template="../login_check.cfm">
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
<head>
<title>Convert SPARC Data to Trainable Parameters</title>
</head>

<body>
Paste the SPARC data into the form, click Convert.

<Form action="data2Zparams.cfm" method="post">
<pP>

<Textarea name="data" rows="20" cols="60"></textarea>
<P>

<input type="submit" value="Convert">

</form>

</body>
</html>

A.1.17 DATA2PARAMS.CFM

<cfinclude template="../login_check.cfm">
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
<head>
<title>Training File Parameters</title>
</head>

<body>

<cfoutput>

<cfset delim=chr(13) & chr(10)>
<cfset data=#form.data#>

<cfset j=0>
<cfloop list="#form.data#" delimiters="#delim#" index="a_line">
<cfset pos=find(delim,a_line)+1>
<cfset j=j+1>
<cfif pos gt 0>
<cfset posl findnocase("(",a_line)>
<cfset pos2 findnocase(",",a_line)>
<cfset name= mid(a_line,pos,posl-pos)>
<cfset value= mid(a_line,posi+l,pos2-posl-1)>
<cfset parameter= "[" & value & "," & name & ",1,1]," & delim>
#parameter#

</cfif>
</cfloop>

</cfoutput>

</body>
</html>

121

A.2 QuArLiTY CONTROL PROGRAMS

A.2.1 BENCHSCRIPT SCRIPT

#!/bin/sh

define variables here

SPARCG=’"tad@sunlc3.chem.uga.edu, raj@sunlc3.chem.uga.edu, \

butch@sunlc3.chem.uga.edu, hilal.said@epa.gov’
##SPARCG="tad@sunlc3.chem.uga.edu’
FROM="butch@sunlc3.chem.uga.edu’
FILE_NEW=’bench.out’

FILE_OLD=’bench_old.out’

DIFF_FILE="diff.out’

BAD="bad.dat’

#H#HHHHH#HAAHH#E 1T script dies - send mail saying so

trap ’nail -s "Script died, something wrong" -r $FROM $SPARCG ’ 1 2 3

#H#dHHHHHAR# copy previous days *.out to *_old.out
mv -f $FILE_NEW $FILE_OLD
#HHHHHH######A#E remove bad.dat

rm -f $BAD

122

#H#HHHHH#FHA##E run benchsparc for each bench file, throw away output junk

#———- PROPERTY ----- LINES

- pKa ----- 1-2715
#/home3/trainfiles/pka/pka_jan_04.tra

fmm Hf ----- 2716-3307
#/home3/trainfiles/hf/hydrocarbons.sam

- Properties --———- 3308-6766
#/home3/trainfiles/bigset/save_vp-03.tra

#-—- Hydrolysis - acid ----- 6767-7445
#/home3/trainfiles/hydrolysis/acide_hyde.tra

#————- Hydrolysis - base —--——- 7446-8140

123

#/home3/trainfiles/hydrolysis/base_hyd.tra

#-——- Hydrolysis - neutral ---—- 8141-8309
#/home3/trainfiles/hydrolysis/gen_hyde.tra

#-—- Electron Affinity ----- 8310-8562
#/home3/trainfiles/electronaffinity/electron_affinity_03.tra

f#—————- Diffusion --—-- 8563-8672
#/home3/trainfiles/diffusion/diffuse.dat

#-—————- Ehalf -———- 8673-8991
#/home3/trainfiles/ehalf/ehalf_all_03.tra

- Gas and NonAqueous pKa ----- 8992-9799
#/home3/trainfiles/ehalf/charge_03.tra
#/home3/trainfiles/ehalf/charge_nr2n_03.tra
#/home3/trainfiles/ehalf/charge_methyl_03_10.tra

#-——- Hydration ----- 9800-9864
#/home3/trainfiles/hydration/aldeketohyd36.tra
#/home3/trainfiles/hydration/quinaz_other.tra

echo Running BigBench
yes | benchsparc bench ##>& /dev/null
echo Done

i nnaadd# if SPARC dies
if [-f $BAD]; then
cat $BAD | nail -s ’SPARC died, something REALLY wrong’ -r $FROM $SPARCG

if it doesn’t, then do rest of stuff
else
perform difference on $FILE_NEW and $FILE_OLD \
and redirect results to $DIFF_FILE
gc_diff_exe
mv -f largeerror.out $DIFF_FILE
cat smallerror.out >> $DIFF_FILE

if diff not 66(empty except for headers), mail results to SPARCG
DIFF_SIZE=‘/usr/bin/filesize $DIFF_FILE®

if (test $DIFF_SIZE != 66) then
cat $DIFF_FILE | nail -s ’QC Results have changed!!’ -r $FROM $SPARCG

124

else

echo | nail -s ’Delete this message: QC Results 0K!’ -r $FROM $SPARCG
fi

fi

A.2.2 BENCHSPARC SCRIPT

#!/bin/sh
#

GOAL="benchbatch($1)."

/usr/local/bin/sicstus -1 /home3/sparc3/sparc.pro
--goal $GOAL -a $HOME compile

A.2.3 BENCHSPARC PREDICATE, PART OF BATCHMOD.PRO

/KKK ok ok ok sk ok o sk ok o ok ok ok o sk ok oK ok ok ok ok ok sk ok o K ok ok oK oK ok Kok o K ok ok sk ok o Kok o Kok Kok o Kok ok ok ok
Benchmark code goes here
stk ke ok sk sk ok skok sk ok o ok sk sk ok sk ok ok sk sk ok sk sk sk ok ok sk sk ok sk ok sk ok sk ok sk sk ok sk sk sk sk sk kok sk sk ok sk sk ook /
benchbatch(FileName) :-

set_working dir_list,

get_toggle_status(l,_),

new_pk,

set_output (user_output),

set_input (user_input),

retractalls(molecule_data(_,_,_)),

cls,

%%% INPUT FILE SECTION %%h%
concatenate_atomlist_to_atom([FileName,’.dat’],DatFile),

%% DRIBBLE FILE SECTION %%%%

W Drib = 7,
open_null_stream(Dribble),
DribX = Dribble,

%%% OUTPUT FILE SECTION %%%%
concatenate_atomlist_to_atom([FileName,’.out’],0ut),
execute(catch(close(Out),_,fail),_),
open(Qut,write,_Output, [alias(Out)]),

OutX = Out,

125

%% MULTIPLIER FILE SECTION %%%%
assert(do_multiply),

%%% REST OF STUFF %%%%
open(’time.dat’ ,write,Time),
time (X),
write(Time,X) ,nl1(Time),
close(Time),

batchmodel (DatFile,OutX,DribX),

open(’time.dat’,append,Time2),
time(Y),
write(Time2,Y) ,nl(Time2),
write(Time2, ’batch’) ,nl(Time2),
close(Time?2),
halt.

benchbatch(_) :-
halt.

A.3 CoOMMON AREA SCRIPT

A.3.1 DBUILD_AREA SCRIPT

#!/bin/sh

#

FHEH R R R R R R R
Copy this file to the area you would like to build
this will reach into “sparc/user_template area and
get all the necessary files to set up your area,
create the necessary directories, etc

H OH H H H H

TSW 5-6-2004
HURHH A R R R

creates necessary directories

mkdir mol

mkdir ss

mkdir last

mkdir lastl last2 last3 last4 lastb last6 last7 last8 last9 lastl0

mkdir lastll lastl12 lastl3 lastl4 lastlb lastl16 lastl7 lastl18 lastl19 last20

126

gets the exes

cp “sparc/user_template/runsparc ./.

cp “sparc/user_template/build_library ./.
#cp “sparc/user_template/doreparam ./.
#cp “sparc/user_template/trainsparc ./.
cp “sparc/user_template/prolog.cmd ./.

gets the files

cp “sparc/user_template/kovtemp.dat ./.

cp “sparc/user_template/defaults.pl ./.

cp “sparc/user_template/current.pl ./.

cp “sparc/user_template/multipliers.dat ./.
cp “sparc/user_template/propunit.dat ./.
cp “sparc/user_template/passnum.dat ./.

cp “sparc/user_template/header.dat ./.

cp “sparc/user_template/batch_init.pro ./.
cp “sparc/user_template/stripped.ss ./ss/.
cp “sparc/user_template/test.ss ./ss/.

cp “sparc/user_template/unique.ss ./ss/.

creates links
temp=/home3/sparc/

1n -s $temp’batstat’ batstat
1n -s $temp’cas’ cas

1n -s $temp’notuniq’ notuniq
1n -s $temp’rebuild’ rebuild
1n -s $temp’reparam’ reparam
1n -s $temp’thresh’ thresh

builds special files
#H#H#

touch obs.sam

touch newparam.sam

H#i#
for j in last lastl last2 last3 last4 lastb last6 last7
last8 last9 lastl10 lastll lastl2 lastl3 lastiléd
last15 lastl16 lastl7 last18 last19 last20
do
touch $j/newparam.sam
done

make progs.dat

echo "emacs-nox

127

/home3/sparc3/" > progs.dat

echo $HOME’/’ >> progs.dat

echo "First line is the default editor (path&name if needed default is AHED)
Second is the root area for SPARC

Third is home directory

" >> progs.dat

make logicals.pl

eCho "/skskokokokokakakokskokokok sk sk kokok ok sksksk sk sk sk sk sk s kok ok ok sk sksk sk sk sk sk sk kokoksksk sk sk ok sk sk ok kok ok sk sk sksk sk sk ok ok ok ok
This file contains the definitions of a set of logical names which should
also appear in your login file This allows SPARC to substitute the full
directory path whenever it has access either to the logical name for the
path or the directory name itself. This file should be modified whenever
the logical name definitions in your login file are changed. It is used
by the procedure load_logicals to create a set of facts which have the
form: logical_name(Name,Path,Directory).

sk sk sk sk ok ok ok ok ok o o ok ok sk sk sk sk sk sk sk sk sk ok o sk ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk ok ko kok /1!

> logicals.pl

echo "[% LOGICAL NAME FULL PATH DIRECTORY
[defaultdir, A ’current directory.’],
[sparcdir, ’ /home3/sparc3/’, sparc 1,
[pkadir, > /home3/sparc/’, pka 1,
[hydrodir, > /home3/sparc3/’, hydro],

>> logicals.pl

temp="[lightdir,’"$HOME"/’,’ "$HOME"/’],"

echo $temp >> logicals.pl

echo " [rootdir,’/home3/sparc3/’,anv], [mdata,’/home3/sparc3/’,fr],"
>> logicals.pl

temp="[sdata,’"$HOME" /ss/’,ss]

1.

echo $temp >> logicals.pl

make conv.cfg

echo "Below is the path to the *.MOL files and the CONV.TAB file" > conv.cfg
temp=$HOME’ /mol/’

echo $temp >> conv.cfg

echo "Next is the path to the *.5S file storage area:" >> conv.cfg
temp=$HOME’ /ss/’

echo $temp >> conv.cfg

echo "Next is the path to the bild.dat file" >> conv.cfg
temp=$HOME’ /’

echo $temp >> conv.cfg

echo "Next is the path to the *.DAT files" >> conv.cfg

128

temp=’/home3/sparc/bild/’
echo $temp >> conv.cfg

make doreparam

echo "#!/bin/sh" > doreparam

temp=’cd ’$HOME

echo $temp >> doreparam

temp='sicstus --iso -1 /home3/sparc3/backgr.pro
--goal myreparam. -a ’$HOME

echo $temp >> doreparam

chmod +x doreparam

make trainsparc

echo "#!/bin/sh" > trainsparc

temp="cd ’$HOME

echo $temp >> trainsparc

temp=’sicstus --iso -1 /home3/sparc3/backgr.pro
--goal background. -a ’$HOME

echo $temp >> trainsparc

chmod +x trainsparc

delete itself after run
rm build_area

B.1

APPENDIX B

CoMPOUNDS USED TO DEVELOP THE MODEL

HYDROCARBONS

Table B.1: Observed and calculated values of hydrocar-

bons
Name CAS Observed SPARC

(kJ mol™t)

Ethane 74840 -83.80 -87.26
Propane 74986 -105.64 -107.46
[sobutane 75285 -134.20 -135.43
Butane, 2,2-dimethyl- 75832 -187.51 -185.66
Butane, 2-methyl- 78784 -155.19 -154.72
Butane, 2,3-dimethyl- 79298 -179.55 -178.33
Pentane, 3-methyl- 96140 -173.96 -173.84
Butane 106978 -125.60 -127.99
Pentane, 2-methyl- 107835 -176.58 -175.04
Pentane, 2,4-dimethyl- 108087 -204.31 -199.99
Pentane 109660 -148.73 -148.67
Hexane 110543 -169.59 -169.40

129

Continued on next page

Name CAS Observed SPARC
(kJ mol?t)
Octane 111659 -211.22 -210.92
Nonane 111842 -231.01 -231.69
n-Dodecane 112403 -290.27 -293.98
Eicosane 112958 -461.55 -460.10
Decane 124185 -252.46 -252.45
Heptane 142825 -191.92 -190.16
Propane, 2,2-dimethyl- 463821 -167.56 -170.33
Butane, 2,2,3-trimethyl- 464062 -205.95 -203.64
Pentane, 2,2,4-trimethyl- 540841 -225.43 -226.80
Hexadecane 544763 -378.54 -377.04
Pentane, 2,3,3-trimethyl- 560214 -217.46 -217.84
Pentane, 3,3-dimethyl- 562492 -203.33 -200.79
Hexane, 3,3-dimethyl- 563166 -221.81 -219.47
Pentane, 2,2,3-trimethyl- 564023 -221.31 -217.39
Pentane, 2,3-dimethyl- 565593 -200.68 -196.64
Pentane, 2,3,4-trimethyl- 565753 -218.96 -217.83
Hexane, 3,4-dimethyl- 583482 -214.85 -214.87
Hexane, 2,3-dimethyl- 584941 -215.86 -216.63
Hexane, 3-methyl- 589344 -195.35 -194.11
Hexane, 2,4-dimethyl- 589435 -221.70 -218.60
Heptane, 4-methyl- 589537 -214.42 -214.37
Heptane, 3-methyl- 589811 -214.96 -214.86
Pentane, 2,2-dimethyl- 590352 -208.15 -204.41
Hexane, 2,2-dimethyl- 590738 -226.70 -224.61

Continued on next page

130

Name CAS Observed SPARC
(kJ mol?t)
Hexane, 2-methyl- 591764 -198.56 -195.79
Hexane, 2,5-dimethyl- 592132 -224.78 -221.54
Heptane, 2-methyl- 592278 -218.00 -216.53
Octadecane 593453 -418.57 -418.57
Butane, 2,2,3,3-tetramethyl- 594821 -232.74 -230.13
Pentane, 3-ethyl-2-methyl- 609267 -212.99 -214.71
Pentane, 3-ethyl- 617787 -192.20 -192.79
Hexane, 3-ethyl- 619998 -213.11 -213.01
Tridecane 629505 -313.80 -314.74
Tetradecane 629594 -334.64 -335.51
Pentadecane 629629 -355.52 -356.27
Heptadecane 629787 -397.28 -397.80
Nonadecane 629925 -439.93 -439.33
Nonane, 2-methyl- 871830 -262.79 -257.81
Pentane, 3-ethyl-3-methyl- 1067089 -216.33 -215.82
Pentane, 3,3-diethyl- 1067205 -233.30 -230.93
Pentane, 3-ethyl-2,4-dimethyl- 1068877 -229.28 -234.94
Hexane, 2,3,5-trimethyl- 1069530 -244.50 -240.33
Pentane, 2,2,4,4-tetramethyl- 1070877 -243.56 -243.79
Heptane, 2,2-dimethyl- 1071267 -248.19 -245.09
Undecane 1120214 -273.82 -273.21
Pentane, 2,2,3,4-tetramethyl- 1186534 -236.90 -232.32
Hexane, 2,2 5-trimethyl- 3522949 -254.84 -250.18
Pentane, 2,2,3,3-tetramethyl- 7154792 -237.10 -239.70

Continued on next page

131

Name CAS Observed SPARC
(kJ mol?t)
11-n-Butyldocosane 13475768 -591.74 -586.41
Nonane, 5-methyl- 15869859 -260.79 -255.87
Hexane, 2,2,3-trimethyl- 16747254 -242.47 -235.63
Hexane, 2,2 4-trimethyl- 16747265 -244.41 -241.23
Hexane, 2,3,3-trimethyl- 16747287 -240.43 -236.20
Hexane, 2,4,4-trimethyl- 16747301 -240.99 -241.37
Hexane, 3,3,4-trimethyl- 16747312 -236.77 -231.49
Pentane, 3-ethyl-2,2-dimethyl- 16747323 -232.59 -230.53
Pentane, 2,3,3,4-tetramethyl- 16747389 -236.10 -233.11
Docosane, 5-butyl- 55282161 -588.78 -585.97
Heneicosane, 11-decyl- 55320064 -702.99 -690.71
1,1,2,2-Tetra-t-butylethane 62850219 -263.86 -273.05
1,3-Butadiene, 2-methyl- 78795 75.70 80.94
1-Butene 106989 -0.63 -2.31
1,3-Butadiene 106990 111.11 112.38
1-Pentene, 2,4,4-trimethyl- 107391 -107.59 -112.51
2-Pentene, 2,4,4-trimethyl- 107404 -106.85 -110.75
1-Pentene 109671 -22.73 -23.27
1-Octene 111660 -83.06 -85.47
1-Dodecene 112414 -168.79 -168.53
Propene 115071 20.41 18.62
1-Propene, 2-methyl- 115117 -17.90 -17.17
2-Butene, 2-methyl- 513359 -43.38 -43.43
1,3-Butadiene, 2,3-dimethyl- 513815 45.10 49.05

Continued on next page

132

Name CAS Observed SPARC
(kJ mol?t)
1-Butene, 3,3-dimethyl- 558372 -61.84 -60.30
1-Butene, 3-methyl- 563451 -28.87 -29.19
1-Butene, 2-methyl- 563462 -36.94 -37.62
1-Butene, 2,3-dimethyl- 563780 -65.18 -63.41
2-Butene, 2,3-dimethyl- 563791 -73.26 -70.75
2-Butene, (Z)- 590181 -7.70 -9.30
1,4-Pentadiene 591935 106.30 102.78
1-Hexene 592416 -43.25 -44.25
1,5-Hexadiene 592427 82.71 81.94
1-Heptene 592767 -63.84 -65.10
1-Butene, 2,3,3-trimethyl- 594569 -86.89 -91.55
2-Pentene, 3-methyl-, (E)- 616126 -65.60 -63.79
2-Butene, (E)- 624646 -10.80 -14.78
2-Pentene, 2-methyl- 625274 -66.90 -64.02
2-Pentene, 2,4-dimethyl- 625650 -90.90 -88.44
2-Pentene, (Z)- 627203 -28.58 -29.98
1-Hexadecene 629732 -253.10 -251.59
2-Pentene, (E)- 646048 -33.67 -35.68
2-Pentene, 4-methyl-, (E)- 674760 -63.83 -61.95
2-Pentene, 4,4-dimethyl-, (E)- 690084 -91.15 -90.81
3-Hexene, 2,2-dimethyl-, (Z)- 690926 -100.91 -105.17
3-Hexene, 2,2-dimethyl-, (E)- 690937 -109.97 -111.71
1-Pentene, 4-methyl- 691372 -50.75 -49.57
2-Pentene, 4-methyl-, (Z)- 691383 -58.98 -56.02

Continued on next page

133

Name CAS Observed SPARC
(kJ mol?t)
3-Hexene, 2,5-dimethyl-, (E)- 692706 124.27 -109.13
1-Pentene, 3-methyl- 760203 -50.73 -48.87
Pentane, 3-methylene- 760214 -58.46 -58.04
1-Pentene, 4,4-dimethyl- 762629 -81.60 -80.66
2-Pentene, 4,4-dimethyl-, (Z)- 762630 -74.22 -84.53
1-Pentene, 2-methyl- 763291 -61.35 -58.38
1,3,5-Hexatriene, (E)- 821078 168.00 171.53
1-Decene 872059 -125.50 -127.00
2-Pentene, 3-methyl-, (Z)- 922623 -64.76 -63.56
1,3-Pentadiene, (Z)- 1574410 82.72 84.49
1,3-Pentadiene, (E)- 2004708 75.77 78.76
1-Pentene, 2,4-dimethyl- 2213323 -85.49 -84.14
1,3,5-Hexatriene, (Z)- 2612466 172.00 177.54
1,3-Butadiene, 2-ethyl- 3404635 63.60 60.68
1-Hexene, 5-methyl- 3524730 -67.52 -70.40
3-Hexene, 3-methyl-, (E)- 3899363 -78.89 -84.38
2-Hexene, (E)- 4050457 -53.92 -56.63
3-Hexene, 3-methyl-, (Z)- 4914890 -82.27 -84.15
2,4-Hexadiene, (E,Z)- 5194503 48.00 51.01
2,4-Hexadiene, (E,E)- 5194514 44.00 45.13
(7),(Z)-2,4-Hexadiene 6108618 52.00 56.88
(Z)-2-Heptene 6443921 -70.93 -71.78
1,4-Hexadiene, (Z)- 7318674 77.00 74.91
trans-1,4-Hexadiene 7319008 74.00 69.19

Continued on next page

134

Name CAS Observed SPARC
(kJ mol?t)
1-Butene, 2-ethyl-3-methyl- 7357939 -81.45 -83.82
3-Hexene, (Z)- 7642093 -48.75 -50.64
(Z)-3-Heptene 7642106 -70.35 -71.50
2-Hexene, (Z)- 7688213 -50.61 -50.84
(Z)-2,5-Dimethyl-3-hexene 10557445 -116.26 -102.70
3-Hexene, (E)- 13269528 -52.96 -56.58
1,3-Hexadiene, (Z)- 14596920 59.00 63.83
2-Heptene, (E)- 14686136 -75.41 -77.61
3-Heptene, (E)- 14686147 -74.56 -77.54
1-Pentene, 3-ethyl-2-methyl- 19780666 -101.70 -101.21
(E)-1,3-Hexadiene 20237347 54.00 57.86
Propyne 74997 185.40 191.12
1-Butyne 107006 165.20 167.83
1,3-Butadiyne 460128 464.00 469.50
2-Butyne 503173 145.10 148.94
1-Butyne, 3-methyl- 598232 136.40 136.78
1-Pentyne 627190 144.30 146.04
2-Pentyne 627214 128.90 125.64
1-Heptyne 628717 103.80 104.03
1-Octyne 629050 80.70 83.22
1-Hexyne 693027 122.30 124.92
2-Hexyne 764352 107.70 103.83
1-Decyne 764932 41.90 41.67
1-Butyne, 3,3-dimethyl- 917920 104.52 97.45

Continued on next page

135

Name CAS Observed SPARC
(kJ mol?t)
3-Hexyne 928494 105.40 102.18
2-Heptyne 1119659 84.80 82.70
4-Octyne 1942456 60.10 58.45
5-Decyne 1942467 18.70 16.12
2-Decyne 2384705 23.60 20.22
3-Decyne 2384852 21.80 17.46
4-Decyne 2384863 19.90 16.38
3-Heptyne 2586892 82.80 80.33
2-Octyne 2809678 63.80 61.80
2,4-Hexadiyne 2809690 374.62 379.26
1-Nonyne 3452093 62.30 62.44
3-Octyne 15232765 62.50 59.17
2-Nonyne 19447291 43.60 41.00
3-Nonyne 20184898 42.00 38.27
4-Nonyne 20184912 42.00 37.29
1-Buten-3-yne 689974 295.00 293.09
3-Penten-1-yne, (7Z)- 1574409 258.00 263.35
3-Penten-1-yne, (E)- 2004695 259.00 257.87
(Z)-Hexa-1,5-diyne-3-ene 16668670 541.80 535.79
(E)-Hexa-1,5-diyne-3-ene 16668681 538.10 530.31
Cyclopropane 75194 53.30 49.99
Cyclopentane, methyl- 96377 -108.28 -108.55
Cyclohexane, methyl- 108872 -154.78 -153.57
Cyclohexane 110827 -124.96 -125.54

Continued on next page

136

Name CAS Observed SPARC
(kJ mol?t)
Cyclobutane 287230 24.01 19.14
Cyclopentane 287923 -78.85 -80.25
Cycloheptane 291645 -119.24 -124.86
Cyclooctane 292648 -126.04 -127.59
Cyclononane 293550 -134.33 -140.67
Cyclodecane 293969 -154.15 -158.62
Cycloundecane 294417 -177.41 -177.56
Cyclotridecane 295023 -244.23 -244.29
Cyclopentadecane 295487 -301.09 -299.24
Cyclohexadecane 295658 -323.89 -324.17
Cycloheptadecane 295976 -346.11 -348.00
Cyclohexane, 1,1-dimethyl- 590669 -181.16 -182.69
Methylcyclopropane 594116 22.43 20.84
Cyclohexane, 1,4-dimethyl-, cis- 624293 -176.80 -174.53
Cyclohexane, 1,3-dimethyl-, cis- 638040 -183.47 -181.61
Cyclopentane, 1,2-dimethyl-, trans- 822504 -138.38 -136.05
Cyclopropane, 1,2-dimethyl-, cis- 930187 -2.19 -4.13
Cyclopentane, 1-ethyl-2-methyl-, cis- 930892 -153.25 -151.98
trans-1-Ethyl-2-methyl-cyclopentane 930905 -157.55 -155.90
Cyclopropane, ethyl- 1191964 0.54 0.29
Cyclopentane, 1,2-dimethyl-, cis- 1192183 -132.48 -132.13
Cyclopropane, 1,1-dimethyl- 1630940 -10.74 -11.65
Cyclopentane, 1,1-dimethyl- 1638262 -140.33 -138.69
Cyclopentane, ethyl- 1640897 -130.87 -128.72

Continued on next page

137

Name CAS Observed SPARC
(kJ mol?t)

Cyclohexane, ethyl- 1678917 -172.56 -173.73
Cyclohexane, propyl- 1678928 -193.13 -194.39
Cyclohexane, butyl- 1678939 -213.25 -215.27
Cyclopentane, 1,3-dimethyl-, trans- 1759586 -136.24 -136.86
Cyclohexane, decyl- 1795160 -339.10 -339.72
Dodecylcyclohexane 1795171 -377.65 -381.25
Cyclopentane, decyl- 1795217 -294.54 -294.66
Cyclohexane, 1,3,5-trimethyl-, (1a,3a,5c)- 1795273 -212.09 -209.65
cis

Cyclopentane, propyl- 2040962 -149.03 -149.39
1,1,4-Trimethylcycloheptane 2158556 -211.37 -210.06
Cyclohexane, 1,2-dimethyl-, cis- 2207014 -174.35 -173.72
Cyclohexane, 1,3-dimethyl-, trans- 2207036 -176.27 -174.53
Cyclohexane, 1,4-dimethyl-, trans- 2207047 -183.60 -181.61
Cyclopropane, 1,2-dimethyl-, trans- 2402064 -6.59 -8.05
Cyclopentane, 1,3-dimethyl-, cis- 2532583 -134.24 -136.86
Cyclopentane, 1-ethyl-3-methyl-, trans- 2613652 -157.39 -157.03
Cyclopentane, 1-ethyl-3-methyl-, cis- 2613663 -155.78 -157.03
Eicosane, 3-cyclohexyl- 4443576 -539.40 -546.80
Eicosane, 9-cyclohexyl- 4443612 -546.63 -546.64
Cyclobutane, ethyl- 4806615 -30.32 -29.92
Cyclohexane, 1-ethyl-2-methyl-, cis- 4923777 -193.19 -193.55
Cyclohexane, 1-ethyl-2-methyl-, trans- 4923788 -197.26 -200.63
Cyclohexane, 1-ethyl-4-methyl-, cis- 4926787 -195.54 -194.68

Continued on next page

138

Name CAS Observed SPARC
(kJ mol?t)
Cyclohexane, 1-ethyl-1-methyl- 4926903 -198.21 -199.44
Heptylcyclohexane 5617414 -288.33 -277.43
Cyclohexane, 1-ethyl-4-methyl-, trans- 6236880 -202.94 -201.77
Pentacosane, 13-cyclohexyl- 6697150 -638.99 -650.46
Cyclopentane, heneicosyl- 6703828 -525.20 -523.08
Cyclohexane, (1-decylundecyl)- 6703997 -557.55 -567.40
Cyclohexane, 1,2-dimethyl-, trans- 6876239 -179.85 -180.80
1,1,4,4-Tetramethyl-cyclodecane 15841119 -275.89 -272.94
1,1,5,5-Tetramethyl-cyclodecane 16723890 -266.39 -272.94
Cyclopentane, 1-ethyl-1-methyl- 16747505 -156.70 -155.45
cis-1-Ethyl-3-methyl-cyclohexane 19489102 -202.60 -201.77
1,1-Dimethyl-2-ethyl-cyclopropane 41845470 -58.95 -57.64
1,1-Dimethyl-2-propyl-cyclopropane 41845481 -80.29 -77.46
1,1-Dimethyl-2-hexylcyclopropane 41845492 -142.69 -139.03
trans-1,2-Diethyl-cyclopropane 71032661 -50.05 -47.87
cis-1,2-Diethylcyclopropane 71032672 -47.03 -43.95
Terpilene 99865 -20.60 -14.39
Cyclohexene, 4-ethenyl- 100403 69.11 66.76
Cyclohexene 110838 -5.89 -10.50
Cyclopentene 142290 30.45 33.97
Fulvene 497201 221.72 225.99
Cyclohexene, 4-methyl-1-(1-methylethyl)- 500005 -109.12 -115.40
1,3-Cyclopentadiene 542927 134.96 134.27
1,3,5-Cycloheptatriene 544252 187.00 190.69

Continued on next page

139

Name CAS Observed SPARC
(kJ mol?t)
Cyclohexene, 4-methyl- 591479 -39.89 -38.54
Cyclohexene, 1-methyl- 591491 -44.66 -42.98
1,3-Cyclohexadiene 592574 101.38 93.31
1,4-Cyclohexadiene 628411 101.54 104.53
Cycloheptene 628922 -9.16 -11.95
1,3,5,7-Cyclooctatetraene 629209 293.04 284.56
1,5,9-Cyclododecatriene, (E,E E)- 676222 87.26 88.85
Ethenylcyclopropane 693867 128.30 126.39
Cyclopentene, 1-methyl- 693890 -7.45 -6.55
Cyclopentene, 3-ethyl- 694359 -16.37 -14.58
Cyclohexane, ethenyl- 695125 -47.87 -48.27
cis,cis,cis-Cyclononatriene 696866 189.00 189.02
1,5,9-Cyclododecatriene, (E,E,Z)- 706310 90.56 88.85
Cyclopentene, 1,2-dimethyl- 765479 -41.40 -41.58
Cyclobutene 822355 157.00 160.50
3-Methylenecyclopentene 930267 112.72 110.55
cis-Cyclooctene 931873 -22.70 -13.17
trans-Cyclooctene 931895 20.00 34.74
Cyclohexane, ethylidene- 1003641 -62.48 -66.17
Cyclobutane, methylene- 1120565 118.44 118.43
Cyclopentene, 3-methyl- 1120623 5.44 5.62
Cyclohexane, methylene- 1192376 -25.20 -29.41
Cyclohexene, 1-ethyl- 1453243 -65.45 -62.84
Cyclopentane, methylene- 1528309 10.35 10.30

Continued on next page

140

Name CAS Observed SPARC
(kJ mol?t)
1,5-Cyclooctadiene, (Z,7)- 1552121 98.76 101.25
Cyclopentene, 4-methyl- 1759815 11.71 5.66
Ethylidenecyclopentane 2146374 -21.26 -26.49
Cyclopentene, 1-ethyl- 2146385 -22.92 -26.75
cis-2-Methyl-1-vinylcyclopropane 2628571 103.00 102.10
Cyclopropene 2781853 277.10 278.27
1-Methylcyclopropene 3100047 243.57 246.86
Cyclopropane, tris(methylene)- 3227905 396.00 392.67
Cyclopentane, 2-propenyl- 3524752 -26.34 -23.96
1,3,6-Cyclooctatriene 3725302 196.30 204.45
Cyclopentane, ethenyl- 3742345 0.41 -3.14
cis,cis-1,3-Cyclooctadiene 3806595 84.10 90.03
(Z,E)-1,3-Cyclooctadiene 3806608 146.00 137.94
6-Methylfulvene 3839507 181.13 189.20
1,3-Cycloheptadiene 4054380 93.90 89.75
1,3-Cyclopentadiene, 5,5-dimethyl- 4125182 86.60 75.67
a-Phellandrene 4221981 -13.79 -8.32
Cyclopropane, (1-methylethenyl)- 4663223 89.23 91.24
Cyclohexane, 1,4-bis(methylene)- 4982201 64.39 66.72
1,5-Cyclooctadiene, (E,Z)- 5259712 158.00 149.16
Cyclohexene, 1-methyl-4-(1-methylethyl)- 5502885 -111.50 -116.03
Methylenecyclopropane 6142730 201.00 193.80
trans-1,2-Divinylcyclobutane 6553486 177.00 174.21
cis-1,2-Divinylcyclobutane 16177461 188.00 185.21

Continued on next page

141

Name CAS Observed SPARC
(kJ mol?t)
Cyclopropane, 1,1-diethenyl- 17085846 202.00 200.82
1,5-Cyclooctadiene, (E,E)- 17612509 196.00 197.08
Cyclopentane, 1,2-bis(methylene)- 20968701 92.62 89.49
3-(cis-Ethylidene)-1-cyclopentene 22704387 80.13 73.75
Cyclopropylacetylene 6746947 287.74 296.21
Cyclopropane, 1,1-diethynyl- 72323661 541.04 533.92
1-Cyclopropylpenta-1,3-diyne 116316768 480.28 484.45
1,1’-Bicyclohexyl 02513 21514 -218.29
Bicyclo[1.1.0]butane 157335 217.00 217.00
Spiropentane 157404 185.10 158.03
Spiro(4,4)nonane 175939 -99.14 -100.33
Spiro(4-5)decane 176636 -149.40 -144.52
Spiro[5.5]undecane 180438 -188.25 -188.70
Spiro[5.6]dodecane 181157 -192.53 -188.02
Bicyclo[2.1.0]pentane 185944 155.88 165.17
Bicyclo[2.2.0]hexane 186049 123.15 116.30
Bicyclo[4.2.0]octane 278308 -27.56 -28.00
Norbornane 279232 -52.35 -52.22
Bicyclo[2.2.2]octane 280331 -98.90 -96.95
Bicyclo[3.3.1]nonane 280659 -124.91 -124.88
Bicyclo[3.3.2]decane 283501 -113.77 -113.76
Bicyclo[3.1.0]hexane 285585 43.14 41.75
Bicyclo[4.1.0]heptane 286088 4.36 1.57
Naphthalene, decahydro-, cis- 493016 -166.93 -169.37

Continued on next page

142

Name CAS Observed SPARC
(kJ mol?t)
Naphthalene, decahydro-, trans- 493027 -178.04 -187.75
Endo-2-methylnorbornane 765902 -81.27 -78.44
Bicyclo[2.2.1]heptane, 2-methyl-, exo- 872786 -81.67 -82.36
Cyclopentylcyclohexane 1606082 -173.28 -173.37
1,1’-Bicyclopentyl 1636391 -127.98 -128.44
Pentalene, octahydro-, cis- 1755051 -94.75 -92.80
7,7-Dimethyl-bicyclo[2.2.1]heptane 2034539 -102.07 -107.77
Bicyclo[2.2.1]heptane, 2-ethyl- 2146410 -94.72 -102.18
1-Methylbicyclo[4.1.0]-heptane 2439794 -17.38 -20.82
cis-4a-Methyl-decahydronaphthalene 2547264 -188.86 -186.92
trans-4a-Methyl-decahydronaphthalene 2547275 -194.57 -205.29
Dicyclopentylmethane 2619343 -148.95 -149.32
1H-Indene, octahydro-, trans- 3296502 -129.35 -122.79
1H-Indene, octahydro-, cis- 4551513 -126.25 -126.76
1-Methyl-bicyclo[3.1.0]-hexane 4625245 7.09 19.28
trans-syn-2-Methyldecalin 14398711 -209.23 -215.78
trans-Bicyclo[3.3.0]octane 5597897 -67.75 -67.76
cis-Bicyclo[5.3.0]decane 16189461 -132.45 -126.09
1,1’-Bicyclopropyl 5685461 128.01 128.93
1-Methylnorbornane 10052183 -92.74 -90.33
cis-Bicyclo[6.1.0]nonane 13757432 -31.22 -30.28
cis-Bicyclo[5.1.0]octane 16526902 -17.43 -17.42
1,4-Dimethyl-bicyclo[2.2.1]heptane 20454813 -127.27 -128.44
trans-2,3-Dimethyl-bicyclo[2.2.1]heptane 20558161 -106.58 -107.76

Continued on next page

143

Name CAS Observed SPARC
(kJ mol?t)
1,1’-Bicycloheptyl 23183111 -214.50 -216.94
Bicyclo[3.3.3]undecane 29415950 -94.25 -94.23
trans-(+4)-Bicyclo-[6.1.0Jnonane 39124793 -33.32 -34.25
Cyclopentylcycloheptane 42347488 -165.37 -172.69
Camphene 79925 -25.89 -21.34
Bicyclo[3.2.1]oct-2-ene 823029 15.69 14.48
2,5-Norbornadiene 121460 245.34 236.96
Azulene 275514 259.81 260.06
Azulene, 1,4-dimethyl-7-(1-methylethyl)- 489849 128.35 128.10
2-Methylenebicyclo[2.2.1]-heptane 497358 36.37 35.80
2-Norbornene 498668 89.66 92.37
Bicyclo[4.1.0]hept-2-ene, 3,7, 7-trimethyl- 554610 28.24 25.04
Bicyclo(3.1.0)hex-2-ene 694019 156.83 155.96
Bicyclo[2.2.1]hept-2-ene, 2-methyl- 694928 44.45 49.72
Spiro[2,4]hepta-4,6-diene 765468 233.56 239.26
Bicyclo[2.2.2]oct-2-ene 931646 21.67 19.99
2-Methylene-bicyclo[2.2.2]-octane 2972205 -8.76 -3.35
Bicyclo[2.2.1]hept-2-ene, 5-ethenyl- 3048644 159.89 167.70
Bicyclo[2.2.0]hex-2-ene 3097630 261.40 257.66
Bicyclo[4.2.0]oct-T-ene, cis- 3806824 119.72 113.36
Bicyclo[3.2.1]octa-2,6-diene 4096951 157.86 159.07
2-Methyl-bicyclo[2.2.2]-oct-2-ene 4893134 -16.12 -14.63
Bicyclo(3.3.1)non-2-ene 6671665 -47.50 -47.49
Bicyclo[3.2.2]non-6-ene 7124869 -6.34 -6.31

Continued on next page

144

Name CAS Observed SPARC
(kJ mol?t)
Bicyclo[4.2.0]oct-1(6)-ene 10563118 0540 97.53
3-Carene 13466789 21.25 25.04
Bicyclo[4,2,1]non-3-ene 16456330 0.42 0.43
Bicyclo[4.1.0]hept-3-ene 16554839 120.50 116.61
(Z)-5-Ethylidene-bicyclo[2.2.1]hept-2-ene 28304667 145.32 143.60
Bicyclo[2.2.0]hex-1(4)-ene 30830207 304.00 306.23
7-Methylenebicyclo[2.2.1]-heptane 31463351 59.91 65.35
7-Methylenebicyclo[4.1.0]hept-2-ene 36398966 250.92 260.42
cis-Bicyclo[4.3.0]nona-3,7-diene 38451182 109.59 102.49
Bicyclo[1.1.0]but-1(3)-ene 58208494 544.00 541.76
(E) 3,3-Bis-(1-cyclohexenylidene) 132911343 92.00 92.05
(Z) 3,3'-Bis-(1-cyclohexenylidene) 132911354 93.20 92.05
Nortricyclene 279196 106.37 106.35
Adamantane 281232 -126.68 -129.37
Tricyclo[8.2.2.24,7]-hexadecane 283681 -161.66 -145.68
Benzvalene 659858 365.30 363.76
2-Methyladamantane 700561 -151.83 -158.46
1-Methyladamantane 768912 -175.86 -171.53
1,3,5,7-Tetramethyladamantane 1687361 -297.69 -298.02
trans-syn-trans-Perhydroanthracene 1755197 -243.21 -249.95
4,7-Methano-1H-indene, octahydro- 6004382 -65.68 -64.77
Tricyclo[5.2.1.02,6]decane 2825823 -73.70 -64.77
endo-Trimethylenenorbornane 2825834 -61.90 -56.82
Tricyclo[4.2.0.02,5]octane, anti- 13027753 206.39 213.45

Continued on next page

145

Name CAS Observed SPARC
(kJ mol?t)
Anti-tricyclo[4.1.0.0(2,4)]heptane 16782448 154.00 164.09
Perhydrotriquinacene 17760917 -107.31 -106.02
Protoadamantane 19026949 -85.90 -85.91
Tricyclo[3.2.1.01,5]octane 19074250 152.00 152.01
cis-syn-cis-Perhydroanthracene 19128780 -234.30 -213.21
Spiro[bicyclo[2.1.0]pentane. . . 19446685 286.45 277.14
2,2-Dimethyladamantane 19740342 -188.90 -183.59
trans-anti-trans-Perhydroanthracene 28071990 -220.66 -221.25
Tricyclo[4.2.0.02,5]octane, syn- 28636104 230.39 229.34
Dispiro[2.0.2.1]heptane 33475228 303.07 285.67
Tetra-tert-butyltetrahedrane 66809061 45.19 45.19
trans-1,2-dicyclopropylcyclopropane 150895640 181.57 186.96
cis-1,2-dicyclopropylcyclopropane 150895651 183.83 186.96
Bullvalene 1005512 303.63 303.64
endo-Tricyclo[3.2.1.02,4]oct-6-ene 3635947 239.00 234.23
exo-Tricyclo[3.2.1.02,4]oct-6-ene 3635958 208.13 214.37
Triquinacene 6053743 219.10 217.80
1,2-Dihydrotriquinacene 31678747 122.80 122.41
Tetrahydrotriquinacene 57595398 7.80 8.20
Cubane 277101 576.65 576.63
Quadricyclane 278068 353.61 353.60
Ethanediylidenecyclopentalcd]pentalene 704029 84.77 84.77
Dicyclopropalcd,gh]|pentalene,octahydro- 765720 238.37 238.36
Tetracyclo[6.2.1.0(2,7).0(3,5)undecane 1777442 57.64 57.23

Continued on next page

146

Name CAS Observed SPARC
(kJ mol?t)
Diadamantane 2292797 -145.90 -142.91
1-Methyldiadamantane 26460764 -166.70 -166.73
4-Methyldiadamantane 30545289 -182.10 -185.07
Trispiro[2.0.2.0.2.0]nonane 31561598 429.43 445.47
Tetracyclo[4.1.0.0(2,4).0(3,5)heptane 50861262 370.00 371.54
Trispiro[2.0.0.2.1.1]nonane 50874243 434.09 422.95
Pentacyclo[6.3.1.13,6.02,7.09,11]tridecane 61140689 83.11 76.93
Pentacyclo[6.3.1.0.0.0]dodecane 82110701 188.93 179.23
painintheassane 86301942 406.65 399.92
10-Methylpentacyclotridecane 114056461 42.64 48.84
Tetraspiro[2.0.0.0.2.1.1.1Jundecane 129872306 546.11 560.23
Benzene 71432 80.21 80.30
Benzene, hexamethyl- 87854 -91.14 -92.37
Benzene, 1,2-dimethyl- 95476 17.54 14.07
Benzene, 1,2,4-trimethyl- 95636 -14.56 -18.17
Benzene, 1,2,4,5-tetramethyl- 95932 -64.78 -52.16
Benzene, tert-butyl- 98066 -24.30 -24.68
Benzene, 1-(1,1-dimethylethyl)-4-methyl- 98511 -57.86 -56.92
Benzene, (1-methylethyl)- 98828 1.77 1.13
Benzene, 1,3-bis(1-methylethyl)- 99627 -77.85 -78.03
Benzene, 1-methyl-4-(1-methylethyl)- 99876 -29.94 -31.11
Benzene, 1,4-bis(1-methylethyl)- 100185 -76.98 -78.03
Ethylbenzene 100414 27.71 26.84
Benzene, propyl- 103651 6.25 5.74

Continued on next page

147

Name CAS Observed SPARC
(kJ mol?t)
Benzene, butyl- 104518 -13.46 -15.30
Benzene, decyl- 104723 -140.75 -139.87
Benzene, 1,4-diethyl- 105055 -23.69 -26.63
p-Xylene 106423 17.33 15.82
Benzene, 1,3-dimethyl- 108383 15.96 15.82
Benzene, 1,3,5-trimethyl- 108678 -17.23 -16.42
Toluene 108883 48.46 48.06
Benzene, 1,2-diethyl- 135013 -19.43 -17.79
Benzene, (1-methylpropyl)- 135988 -18.26 -18.88
Benzene, 1,3-diethyl- 141935 -24.57 -26.63
Benzene, 1,2,3,4-tetramethyl- 488233 -42.36 -43.49
Benzene, 1,2,3-trimethyl- 526738 -10.42 -14.71
Benzene, 1,2,3,5-tetramethyl- 527537 -42.99 -46.95
1-Methyl-2-iso-propylbenzene 527844 -25.19 -21.31
1-Methyl-3-iso-propylbenzene 535773 -30.72 -31.11
Benzene, (2-methylpropyl)- 538932 -22.44 -19.94
Benzene, 1-ethyl-2-methyl- 611143 -0.88 -1.88
Benzene, 1-ethyl-3-methyl- 620144 -3.62 -5.40
1-Ethyl-4-methylbenzene 622968 -4.26 -5.40
Benzene, pentamethyl- 700129 -73.43 -72.26
Benzene, 1-ethyl-2,4-dimethyl- 874419 -33.10 -34.12
Benzene, 1-ethyl-2,3-dimethyl- 933982 -31.35 -30.64
Benzene, 1-ethyl-3,5-dimethyl- 934747 -37.31 -37.64
Benzene, 4-ethyl-1,2-dimethyl- 934805 -34.63 -39.39

Continued on next page

148

Name CAS Observed SPARC
(kJ mol?t)
Benzene, 1,4-bis(1,1-dimethylethyl)- 1012722 -125.59 -129.67
Benzene, 1,3-bis(1,1-dimethylethyl)- 1014604 -126.58 -129.67
Benzene, 1-methyl-2-propyl- 1074175 -23.38 -20.86
Benzene, 1-methyl-3-propyl- 1074437 -25.79 -26.50
Benzene, 1-methyl-4-propyl- 1074551 -25.48 -26.50
Benzene, 1-(1,1-dimethylethyl)-3-methyl- 1075383 -58.38 -56.92
1,2,4-Tri-tert-butylbenzene 1459116 -174.42 -177.96
Benzene, 1,3,5-tri-tert-butyl- 1460022 -231.81 -234.65
Benzene, 2-ethyl-1,4-dimethyl- 1758889 -34.17 -34.12
9-Phenyleicosane 2398654 -349.61 -351.50
Benzene, 2-ethyl-1,3-dimethyl- 2870044 -31.61 -27.91
Heneicosane, 11-phenyl- 6703806 -374.16 -372.26
m-Xylene, 5-tert-butyl- 98191 -90.66 -89.16
Benzene, (1-methylethenyl)- 98839 116.93 113.69
Styrene 100425 145.90 147.83
(Z)-1-Phenylpropene 766905 121.40 120.09
Benzene, 1-propenyl-, (E)- 873665 117.21 113.99
trans-1-Phenyl-3,3-dimethyl-but-1-ene 3846660 34.88 37.95
Benzyne 462806 440.00 407.96
Phenylacetylene 536743 306.60 317.89
Benzene, 1-butynyl- 622764 248.60 251.68
Benzene, 1-propynyl- 673325 268.20 275.55
Naphthalene, 1-methyl- 90120 117.88 113.28
Naphthalene 91203 135.04 140.41

Continued on next page

149

Name CAS Observed SPARC
(kJ mol?t)
Naphthalene, 2-methyl- 91576 107.67 108.17
Biphenyl 92524 161.34 167.59
Diphenylmethane 101815 164.14 158.80
Bibenzyl 103297 124.67 138.53
Tetralin 119642 27.87 26.15
Indane 496117 62.52 54.41
Naphthalene, 1,8-dimethyl- 569415 95.46 104.07
Naphthalene, 2,3-dimethyl- 581408 64.70 74.18
Naphthalene, 2,6-dimethyl- 581420 65.42 75.93
Naphthalene, 2,7-dimethyl- 582161 64.95 75.93
1,1-Diphenylethane 612000 133.98 133.83
1,1’-Biphenyl, 3,3’-dimethyl- 612759 92.22 103.11
4,4’-Dimethylbiphenyl 613332 94.15 103.11
4-Methyldiphenylmethane 620837 133.77 126.56
1,1’-Biphenyl, 2-methyl- 643583 152.72 144.50
1,1’-Biphenyl, 4-methyl- 644086 127.65 135.35
Bicyclo[4.2.0]octa-1,3,5-triene 694871 203.20 223.16
Benzene, cyclohexyl- 827521 -16.40 -19.24
1-Isopropyl-6-methylindane 828977 -45.56 -50.72
Benzene, cyclopropyl- 873494 154.07 155.97
1,1,4,6-Tetramethylindane 941606 -63.48 -67.99
Naphthalene, 1,2,3,4-tetrahydro-1-methyl- 1559815 -0.47 -1.17
1H-Indene, 2,3-dihydro-4,6-dimethyl- 1685821 -1.42 -10.75
1,4,5,8-Tetramethylnaphthalene 2717397 64.11 67.74

Continued on next page

150

Name CAS Observed SPARC
(kJ mol?t)
Naphthalene, 2-(1,1-dimethylethyl)- 2876359 44.03 35.42
1,1-Dimethyl-6-tert-butylindan 3605310 -102.39 -107.82
1H-Indene, 2,3-dihydro-1,1-dimethyl- 4912929 3.35 -2.83
1,1,4,6,7-Pentamethylindan 6682673 -101.12 -90.72
1H-Indene, 2,3-dihydro-4,7-dimethyl- 6682719 -3.31 -11.43
2,5-Dimethyldiphenylmethane 13540506 101.60 104.94
Naphthalene, 1-ethyl-1,2,3,4-tetrahydro- 13556586 -22.42 -21.42
1-Cyclopropyl-2,4,6-trimethylbenzene 26269590 69.90 69.36
1-Cyclopropyl-2-methylbenzene 27546469 129.01 127.39
1-Cyclopropyl-2,4-dimethylbenzene 27546470 95.62 95.15
1-Cyclopropyl-4-isopropylbenzene 27546492 74.36 76.81
2,5,8-Trimethyltetralin 30316177 -65.39 -66.34
1-Ethyl-8-methylnaphthalene 61886713 96.58 89.98
1-Isopropyl-8-methylnaphthalene 81603443 75.66 71.93
Indene 95136 159.94 176.84
(E)-Stilbene 103300 221.85 244.52
(Z)-Stilbene 645498 259.02 251.31
2,5-Diphenyl-1,5-hexadiene 7283490 285.00 273.63
2,6-Diphenyl-1,6-heptadiene 27905653 259.00 252.13
1-(Methylene)-2-phenylcyclopropane 29817092 292.00 299.69
Diphenylethyne 501655 385.00 399.90
Acenaphthene 83329 145.53 141.18
Phenanthrene 85018 201.35 197.88
9H-Fluorene 86737 163.75 159.83

Continued on next page

151

Name CAS Observed SPARC
(kJ mol?t)
p-Terphenyl 92944 256.99 255.87
o-Terphenyl 84151 273.77 261.86
m-Terphenyl 92068 257.18 257.46
Anthracene 120127 219.62 215.80
Biphenylene 259790 405.53 395.55
1H-Cyclopropalb|naphthalene 286851 433.12 433.12
Triphenylmethane 519733 267.30 261.75
Phenanthrene, 9,10-dimethyl- 604831 145.50 145.49
Anthracene, 9,10-dihydro- 613310 154.91 152.17
Phenanthrene, 9,10-dihydro- 776352 140.07 142.75
Phenanthrene, 4-methyl- 832644 191.51 188.10
Phenanthrene, 1,2,3,4-tetrahydro- 1013087 92.30 91.12
Anthracene, 1,2,3,4,5,6,7,8-octahydro- 1079716 -33.94 -28.01
Phenanthrene, 2,7-dimethyl- 1576698 132.74 133.40
Di-1,4-xylylene 1633223 247.65 236.81
Di-1,3-xylylene 2319973 169.58 174.70
9H-Fluorene, 9-methyl- 2523377 141.59 133.29
Paracyclophane -[3.3] 2913248 123.61 123.69
Phenanthrene, 4,5-dimethyl- 3674699 184.45 178.32
6,6-Paracyclophane 4384230 -64.75 -63.66
2,2-Metaparacyclophane 5385364 215.99 205.75
1,8-Paracyclophane 6169944 29.00 27.25
Acenaphthylene 208968 256.47 252.67
Benz[aJanthracene 56553 282.43 277.75

Continued on next page

152

Name CAS Observed SPARC
(kJ mol?t)
Benz a anthracene, 7,12-dimethyl- 57976 268.24 272.23
Naphthacene 92240 281.33 291.19
Pyrene 129000 209.32 205.86
Benzo[c|phenanthrene 195197 297.96 297.31
Perylene 198550 307.26 297.38
Triphenylene 217594 266.34 271.03
Chrysene 218019 262.74 264.31
Benz[aJanthracene, 1,12-dimethyl- 313746 258.51 265.21
Triptycene ATT7T58 337.94 330.77
Naphthalene, 1-(2-naphthalenylmethyl)- 611483 285.08 283.70
1,1:37,1”-Terphenyl, 5’-phenyl- 612715 349.09 348.52
Tetraphenylmethane 630762 379.56 387.74
sym-Tetraphenylethane 632508 349.37 350.29
Pyrene, 4,5,9,10-tetrahydro- 781179 117.31 116.80
Naphthacene, 5,12-dihydro- 959024 217.80 212.28
9,9’-Bianthracene 1055238 496.82 501.17
Anthracene, 9,10-diphenyl- 1499101 468.49 459.25
9,9’-Bi-9H-fluorene 1530127 343.29 356.24
Tritetralin 1610395 -76.03 -78.53
Benzyltriphenylmethane 2294942 366.85 367.77
Benzolc|phenanthrene, 1,12-dimethyl- 4076431 275.72 277.75
9,9’-Dimethyl-9,9’-bifluorenyl 15300820 348.26 349.37
Pentacyclohexacosa-nonane 35117216 388.49 388.77
namewontfitane 56818065 164.82 177.19

Continued on next page

153

154

Name CAS Observed SPARC
(kJ mol?t)
Coronene 191071 291.49 295.93

B.2 HALOGENATED HYDROCARBONS

Table B.2: Observed and calculated values of halogenated

hydrocarbons
Name CAS Observed SPARC
(kJ mol™?)
Methyl fluoride 593533 -234.30 -248.04
Methyl chloride 74873 -85.90 -91.61
Methane, difluoro- 75105 -450.66 ~ -458.00
Ethyl chloride 75003 -109.00 -113.80
Ethane, 1,1-difluoro- 75376 -497.00 -502.51
Methane, trifluoro- 75467 -695.40 -683.00
Propane, 2-chloro- 75296 -144.00 -143.96
Propane, 1-chloro- 540545 -131.20 -134.48
Ethane, 1-chloro-1-fluoro- 1615754 -313.40 -313.39
Ethane, 1,1,1-trifluoro- 420462 -748.70 -745.06
1,1,2-Trifluoroethane 430660 -691.00 -682.72
Methylene chloride 75092 -96.84 -97.19

Continued on next page

Name CAS Observed SPARC
(kJ mol?t)
Methane, chlorodifluoro- 75456 -483.00 -473.30
Carbon tetrafluoride 75730 -934.30 -930.29
Butane, 2-chloro- 78864 -166.66 -163.87
Butane, 1-chloro- 109693 -156.51 -155.21
Propane, 2-chloro-2-methyl- 507200 -183.73 -181.28
Methyl bromide 74839 -38.48 -37.73
Ethane, 1,1-dichloro- 75343 -127.60 -130.56
Ethane, 1,2-dichloro- 107062 -136.25 -134.51
Methane, chlorotrifluoro- 75729 -707.10 -698.73
Butane, 1-chloro-3-methyl- 107846 -179.50 -181.60
Pentane, 1-chloro- 543599 -177.04 -175.96
Ethane, bromo- 74964 -68.45 -64.11
Propane, 1,2-dichloro- 78875 -162.80 -164.10
Propane, 2,2-dichloro- 594207 -174.06 -171.38
Chloroform 67663 -103.53 -98.50
Dichlorodifluoromethane 75718 -477.00 -482.04
Propane, 2-bromo- 75263 -99.00 -97.96
Propane, 1-bromo- 106945 -92.78 -84.81
1,4-Dichlorobutane 110565 -181.02 -182.52
Butane, 1,3-dichloro- 1190223 -194.87 -190.83
Methane, bromodifluoro- 1511622 -425.30 -421.05
Propane, 3-chloro-1,1,1-trifluoro- 460355 -779.70 -793.08
Ethane, 1,1,1-trichloro- 71556 -144.60 -129.77
Ethane, 1,1,2-trichloro- 79005 -148.76 -145.08

Continued on next page

155

Name CAS Observed SPARC
(kJ mol?t)
Butane, 2-bromo- 78762 -121.97 -117.71
Butane, 1-bromo- 109659 -107.62 -105.56
Propane, 2-bromo-2-methyl- 507197 -132.40 -138.42
Trichloromonofluoromethane 75694 -268.30 -280.21
Ethane, hexafluoro- 76164 -1344.00 -1351.42
Methyl iodide 74884 13.31 15.56
1-Fluorononane 463183 -425.87 -427.88
Propane, 1,2,3-trichloro- 96184 -182.20 -184.81
Octane, 1-chloro- 111853 -240.94 -238.25
Methane, bromotrifluoro- 75638 -649.40 -652.26
Pentane, 1-bromo- 110532 -129.57 -126.32
Carbon tetrachloride 56235 -97.37 -93.25
Iodoethane 75036 -9.42 -7.79
Hexane, 1-bromo- 111251 -148.96 -147.08
3,3-Dichloro-1,1,1-trifluoropropane 460695 -807.19 -809.57
Ethane, 1,1,2,2-tetrachloro- 79345 -149.65 -151.78
Ethane, 1,1,1,2-tetrachloro- 630206 -154.28 -150.92
1-Chloro-1,1,3,3,3-pentafluoropropane 460924 -1158.91 -1158.92
Propane, 2-iodo- 75309 -42.31 -38.05
Propane, 1-iodo- 107084 -30.77 -28.52
1,2-Dichloro-1,1,2,2-tetrafluoroethane 76142 -940.56 -939.51
Heptane, 1-bromo- 629049 -168.33 -167.84
Propane, 1,1,1,3-tetrachloro- 1070786 -162.55 -175.36
Propane, 1,2,2,3-tetrachloro- 13116535 -199.96 -196.29

Continued on next page

156

Name CAS Observed SPARC
(kJ mol?t)
Tert-butyl iodide 558178 -72.00 -74.02
Ethane, 1,1,2-trichloro-1,2,2-trifluoro- 76131 -729.09 -722.87
Ethane, 1,1-dibromo- 557915 -28.51 -28.50
Propane, octafluoro- 76197 -1784.70 -1769.78
Dodecane, 1-fluoro- 334689 -489.51 -490.18
Ethane, 1-bromo-1,1-difluoro- 420439 -474.30 -474.29
Ethane, 1,1-difluoro-1-iodo- 420473 -410.00 -409.95
Octane, 1-bromo- 111831 -190.33 -188.61
Methane, trifluoroiodo- 2314978 -587.80 -587.83
Halothane 151677 -693.27 -693.23
1-Bromo-2-chloro-1,1,2-trifluoroethane 354063 -649.30 -649.30
Methane, bromotrichloro- 75627 -42.00 -42.01
1,1,1-Trichloro-3,3,3-trifluoropropane 7125840 -799.44 -801.48
Ethane, pentachloro- 76017 -144.35 -151.98
Dodecane, 1-chloro- 112527 -321.51 -321.31
1,1,1-Trifluoro-2-iodoethane 353833 -648.70 -648.68
Butane, 1,3-dibromo- 107802 -97.44 -95.11
Butane, 1,4-dibromo- 110521 -83.95 -83.23
Butane, 1,2-dibromo- 533982 -93.11 -97.28
Propane, 1,2-dibromo-2-methyl- 594343 -105.34 -113.88
1,3-Dibromoisobutane 28148041 -92.15 -88.61
Tetradecane, 1-fluoro- 593339 -534.50 -531.71
1,2-Dichlorohexafluoropropane 661972 -1350.16 -1356.08
Pentane, 1,2-dibromo- 3234499 -112.86 -117.92

Continued on next page

157

Name CAS Observed SPARC
(kJ mol?t)
Ethane, hexachloro- 67721 -143.50 -140.97
Dodecane, 1-bromo- 143157 -269.53 -271.67
Methane, tribromo- 75252 52.71 51.34
Methane, diiodo- 75116 116.72 109.33
Ethane, 1,2-diiodo- 624737 62.70 62.23
Octadecane, 1-chloro- 3386332 -450.11 -445.90
1,2-Diiodopropane 598298 35.60 32.83
Propane, 1,3-diiodo- 627316 48.47 50.09
Hexadecane, 1-bromo- 112823 -353.47 -354.73
Butane, 1,4-diiodo- 628217 32.94 29.32
1,2-Diiodobutane 53161721 12.30 12.78
Carbon tetrabromide 558134 80.75 81.42
Heptane, hexadecafluoro- 335579 -3383.70 -3389.07
Methane, triiodo- 75478 253.63 263.47
Methane, tetraiodo- 507255 469.10 465.41
Perfluoro-2,7-dimethyloctane 3021634 -4636.95 -4635.44
Ethene, fluoro- 75025 -136.00 -133.96
Ethene, chloro- 75014 29.00 23.04
Ethene, 1,1-difluoro- 75387 -334.00 -333.92
Ethene, 1,2-difluoro-, (E)- 1630780 -290.40 -288.39
Ethene, trifluoro- 359115 -490.40 -491.95
Propene, 3,3,3-trifluoro- 677214 -614.20 -614.29
Ethene, 1,1-dichloro- 75354 -2.54 6.65
Ethene, 1,2-dichloro-, (Z)- 156592 4.18 5.36

Continued on next page

158

Name CAS Observed SPARC
(kJ mol?t)
Ethene, 1,2-dichloro-, (E)- 156605 5.02 -6.39
Ethene, tetrafluoro- 116143 -661.00 -663.52
Ethene, bromo- 593602 79.20 79.19
2,3-Dichloropropene 78886 -36.13 -31.75
Ethene, chlorotrifluoro- 79389 -523.00 -516.43
Trichloroethylene 79016 -10.53 -11.03
1-Propene, 1,2 3-trichloro- 96195 -57.39 -49.33
Tetrachloroethylene 127184 -11.30 -15.68
(Z)-1,2-Diiodoethylene 590261 207.40 210.26
(E)-1,2-Diiodoethylene 590272 207.40 204.54
Perfluoro-2-methyl-2-pentene 1584038 -2490.64 -2501.90
Cyclohexane, fluoro- 372463 -339.92 -339.98
1,1,2,2-Tetrafluorocyclopropane 3899716 -650.00 -643.01
Cyclohexane, chloro- 542187 -167.95 -164.38
Cyclopropane, hexafluoro- 931919 -978.20 -982.86
Octafluorocyclobutane 115253 -1488.00 -1487.86
Cyclohexane, 1,2-dibromo- 5401627 -103.28 -103.31
Lindane 58899 -297.32 -298.71
a-Lindane 319846 -311.52 -304.54
f-Lindane 319857 -310.99 -316.19
0-Lindane 319868 -309.38 -310.36
Cyclohexane, dodecafluoro- 355680 -2368.90 -2366.76
Perfluoromethylcyclohexane 355022 -2895.99 -2905.79
Perfluoroethylcyclohexane 335217 -3301.16 -3294.11

Continued on next page

159

Name CAS Observed SPARC
(kJ mol?t)
Decafluorocyclohexene 355759 -1906.60 -1906.60
trans-Perfluorobicyclo[4,3.0]nonane 75240061 -3210.42 -3209.89
cis-Perfluorobicyclo[4.3.0]nonane 75262872 -3212.20 -3213.86
cis-Perfluorodecalin 60433116 -3619.39 -3619.42
trans-Perfluorodecalin 60433127 -3644.50 -3643.45
Perfluorobicyclo-[4.4.0]-dec-1,6-ene 54939047 -3205.42 -3205.46
Benzene, fluoro- 462066 -117.83 -116.35
Benzene, (fluoromethyl)- 350505 -127.01 -134.87
Benzene, 1-fluoro-4-methyl- 352329 -148.53 -148.59
Benzene, chloro- 108907 50.48 52.23
Benzene, 1,2-difluoro- 367113 -286.17 -287.10
Benzene, 1,3-difluoro- 372189 -312.68 -313.00
Benzene, 1,4-difluoro- 540363 -310.71 -313.00
Benzene, (chloromethyl)- 100447 18.25 21.54
Benzene, 1-chloro-2-ethyl- 89963 0.44 0.53
Benzene, 1-chloro-3-ethyl- 620166 -1.50 -1.16
Benzene, 1-chloro-4-ethyl- 622980 -0.55 -1.16
Benzene, (1-chloroethyl)- 672651 -5.76 -6.76
Benzene, (trifluoromethyl)- 98088 -599.10 -598.59
Benzene, 1,2-dichloro- 95501 32.76 23.28
Benzene, 1,4-dichloro- 106467 24.60 24.15
Benzene, 1,3-dichloro- 541731 25.89 24.15
Benzene, 1,2,4,5-tetrafluoro- 327548 -656.67 -654.50
1,1-Difluoro-3-phenylpropane 1.46E+408 -418.98 -409.48

Continued on next page

160

Name CAS Observed SPARC
(kJ mol?t)
Benzene, bromo- 108861 103.80 109.97
1,1,1-Trifluoro-2-phenylethane 21249934 -629.67 -627.72
1-Fluoro-3-(trifluoro-methyl)benzene 401809 -794.59 -795.08
Benzene, pentafluoro- 363724 -806.00 -809.42
m-Tert-butyl chlorobenzene 3972552 -54.71 -52.68
1-Chloro-4-(1,1-dimethylethyl)benzene 3972563 -53.21 -52.68
Benzene, 1-tert-butyl-2-chloro- 7073985 -33.12 -33.99
Benzene, (bromomethyl)- 100390 71.26 75.29
Benzene, 1,2,3-trichloro- 87616 8.20 2.06
Benzene, 1,3,5-trichloro- 108703 -2.60 -3.92
Benzene, 1,2,4-trichloro- 120821 -8.05 -4.79
Benzene, pentafluoromethyl- 771562 -852.28 -852.28
Benzene, hexafluoro- 392563 -965.78 -964.35
1-Bromo-4-chlorobenzene 106398 82.58 81.98
Benzene, chloropentafluoro- 344070 -818.24 -817.91
Benzene, iodo- 591504 169.05 166.94
Benzene, 1,2,4,5-tetrachloro- 95943 -32.62 -33.73
Benzene, 1,2,3,4-tetrachloro- 634662 -25.40 -19.17
Benzene, 1,2,3,5-tetrachloro- 634902 -34.90 -26.02
Benzene, 1-iodo-2-methyl- 615372 133.14 135.43
Benzene, (iodomethyl)- 620053 127.30 128.41
Benzene, 1-iodo-4-methyl- 624317 126.49 134.70
Benzene, 1-iodo-3-methyl- 625956 136.55 134.70
2,4-Di-t-butyl chlorobenzene 80438659 -137.14 -138.98

Continued on next page

161

Name CAS Observed SPARC
(kJ mol?t)
3,5-Di-tert-butyl chlorobenzene 80438671 -160.43 -157.66
Benzene, pentafluoro(trifluoromethyl)- 434640 -1285.92 -1285.91
1,2,4,5-Tetrachloro-3,6-dimethylbenzene 877101 -93.18 -93.17
Benzene, pentachloro- 608935 -40.00 -40.39
Benzene, hexachloro- 118741 -44.70 -47.05
Benzene, pentafluoroiodo- 827156 -549.00 -549.01
1,2-Diiodobenzene 615429 256.77 256.60
Benzene, 1,4-dichloro-2-ethenyl- 1123848 92.14 95.24
Fluorodiphenylmethane 579555 -39.11 -29.68
2,2’-Difluorobiphenyl 388829 -229.65 -229.65
1,1’-Biphenyl, 4,4’-difluoro- 398232 -227.56 -225.39
Naphthalene, 1-bromo- 90119 182.30 174.95
2-Bromonaphthalene 580132 168.31 170.08
1,1-Difuoro-1,2-diphenylethane 350629 -260.50 -278.46
1,1’-Biphenyl, 4,4’-dichloro- 2050682 120.00 111.60
1,1’-Biphenyl, 2,2’-dichloro- 13029088 127.90 129.19
1,1,1-Trifluoro-2,2-diphemylethane 384941 -515.68 -503.44
1,1,2-Trifluoro-1,2-diphenylethane 68936776 -462.20 -458.27
1-Todonaphthalene 90142 239.77 231.92
Naphthalene, 2-iodo- 612555 225.37 227.05
1,2-Diphenyltetrafluoroethane 425321 -689.00 -675.08
Perfluorobiphenyl 434902 -1264.20 -1264.21

162

APPENDIX C

THE HEAT OF FORMATION PROLOG CODE

C.1 HF.rProO

/KoK sk sk ok sk sk ok ok sk ok ok sk o ok ok sk sk ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk s ok ok ok ok ok sk sk ok K ok ok sk sk ok ok ok ok ok ok ok
The call for when running in batch mode

Kok sk ok ok ok ok ok K ok ok 3 ok ok ok ok ok ok K ok ok sk ok K ok K ok ok ok sk ok ok sk ok ok K ok ok ok sk ok ok sk ok sk ok ok K ok ok ok ok ok sk ok ok ko kok ok /
heat :-

batch_mode,

hf_clean(NewList),

hf_aux(NewList,0,HF),

assert(value_calculated(HF)) .

[HAKAF A KA KA KA KA KA KA KA KA KA KKK KK KK KKK KKK KK KK KK KK KKK oK K ok oK ok oK ok o ok o ok ok o ok ok ok ok ok o
This handles smiles strings with ’/’ or ’\’ in them (cis-trans)

KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK oK K ok Kok ok ok ok ok ok ok ok Kok %/
hf (HF) :-

write(’Give me a SMILES:’),nl,

cis_trans_read(user_input,Smiles),

hf_top(Smiles,HF).

[Aok ok skskok ok skokook ok ok sk s ok skokook sk ok skskoko ok skskok s ok stk sk sk koo s ok stk ok skskok sk ok skskok ok ok skokok ok skokok ok
The call for running smiles strings that are not cis-trans

stk ok stk ok stk sk ok stk sk ok stk ok stk s ok stk sk sk sk sk ok stk sk ok stk skok stk sk sk ok sksksk ok ok skskok ok skokok ok ok /
hf(Smiles,HF) :-

write (’ATTENTION!!’) ,nl,

write (’ATTENTION!!’) ,nl,

write (’THIS WILL NOT WORK FOR CIS-TRANS, USE OTHER HF’),nl,
hf_top(Smiles,HF).

[F A KKK KKK KKK KK KK KKK KKK KoK KoK Kok K
finds the proper data (_top2)
gets the hf (_aux)

prints out the parts to each calculation (_values & _values2)
**/

hf_top(Smiles,HF) :-

163

164

execute (prepare_for_property(nul,Smiles),ResTop),

ResTop = true,
!

b

hf_clean(NewList),
hf_aux(NewList,0,HF),

nl,
findall([Name,Reac,Value] ,data_tad(Name,Reac,Value),Parts),
hf_values(Parts),
hf_values2(Parts).

hf_top(_,HF) :-

HF = ’Error!!!’.

/3K 3k ok sk ok ok sk ok ok ok sk o ok ok ok ok ok 3 ok K ok sk 3 ok 3 ok K ok ok 3 ok K ok sk 3k ok 3 ok K ok ok 3 ok 3 ok ok 3k ok sk ok 3 ok K ok ok 3 ok ok ok ok ok K ok ok ok ok
removes all the asserted facts

gets all of the reactophore facts

fixes the db for aromatics

gets the hf

Kok ok ok ok ok 3 ok K ok ok 3 ok 3 ok K ok ok 3 ok K ok ok 3k ok 3 ok K ok ok 3 ok 3 ok K ok ok 3 ok K ok ok sk ok 3 ok K ok ok K ok ok K ok ok K ok ok 3 ok ok ok Kok ok kR ok ok /
hf_clean(NewList) : -

retractalls(data_tad(_,_,_)), %remove valueDB
retractalls(hf_bridge_atom(_)), %remove hf_bridge atomsDB
retractalls(chiral_atom_info(_,_,_,_,_,_)),

Jremove chiral_atom_info (replace all other CA data)

retractalls(chiral_pairs(_)), %remove chiral_pairsDB
retractalls(chiral_sense(_,_,_)), Y%remove chiral_senseDB

%% retractalls(chiral_subsense(_,_,_)), Y%remove chiral_subsenseDB
%% retractalls(chiral_size(_,_,_)), Yremove chiral_sizeDB

retractalls(done_chiral_pairs(_)), %remove done_chiralsDB
retractalls(hf_structure(_,_,_)), Y%remove structureDB
findall(reactophore_fact(A,B,C,D,E), reactophore_fact(A,B,C,D,E), List),
alter_hf_db(List,NewList).

/K 3kk sk sk ok ok sk ok ok ok ok sk sk sk sk sk sk ok sk o ok ok ok ok sk sk sk sk sk sk sk sk ko ok ok sk sk sk sk sk sk sk sk ki sk sk sk sk sk sk ok ok ok ok sk sksk sk sk sk ok sk ok ok
Change database so that if you have an aromatic cmpd, it calls this

routine to change the cmpd so it is described as an aromatic, not

a large number of ethylenics.

Keyword: annulene

sk ok ok sk ok o o ok sk ok ok o sk ok ok o ok sk ok o ok sk sk ok o sk sk ok ok ok sk ok ok ok sk sk o ok sk sk ok sk ok ok ok ok sk ok ok ok sk ko ok sk okok ok /
alter_hf_db(Reacs,NewReac) : -

findall(conj_ring(K,RA),conj_ring(K,RA),Z),
alter_hf_db_aux(Z,Reacs,NewReac).

165

alter_hf_db_aux([],Reacs,Reacs).
alter_hf_db_aux([conj_ring(K,RA)|T],_Reacs,NewReac):-

length(RA,Len),

N is (Len - 2) / 4,

IntN is integer(N),

X is IntN *x 4 + 2,
X =:= Len,
findall(reactophore_fact(A,e, [C1,C2],D,E),
(reactophore_fact(A,e, [C1,C2],D,E),

intersects([C1,C2],RA,[_,_])),DBList),
findall(reactophore_fact(L,M,NN,0,P), (reactophore_fact(L,M,NN,0,P),
\+ memberchk(reactophore_fact(L,M,NN,0,P),DBList)
) ,StrippedReac),

retract (ring(X,_)),
retract(conj_ring(K,_)),
!
build_long_arom(DBList,LongArom), %reactophore_fact
alter_hf_db_aux(T, [LongArom|StrippedReac] ,NewReac) .
alter_hf_db_aux([_|T],Reacs,NewReac) : -
alter_hf_db_aux(T,Reacs,NewReac).

build_long_arom(DBList,LongArom) : -
sparc_gensym(arom, Type) ,
length(DBList,Len),
X is Len * 2,
name(X,Y),
name (Name, [108]Y]),
hf_build_atom_list(DBList, [],Atoms),
atom_types (Atoms,AtomTypes),
hf_build_atom_subs(Atoms,Atoms, [],SubsList),
LongArom =.. [reactophore_fact,Type,Name,Atoms,AtomTypes,SubsList],
assert (LongArom) ,
assert(bridge_atoms(Type, [1)),
assert (buried_atoms(Type, [1)),
findall (W, (bonded_pair (W,E,R,T),
memberchk (reactophore_fact(W,_,_,_,_),DBList),
memberchk (reactophore_fact(T,_,_,_,_),DBList),
retract (bonded_pair(W,E,R,T))),_),
hf_repair_bonded_pair(DBList,Type),
findall (XX, (member (XX,DBList),
retract(XX)),_).

hf_repair_bonded_pair(DBList,Type) :-
bonded_pair (W,E,R,T),

166

reactophore_fact(W,e,A,S,D),

memberchk (reactophore_fact(W,e,A,S,D),DBList),
prove_once (assert(bonded_pair(Type,E,R,T))),
retract(bonded_pair(W,E,R,T)),

fail.

hf_repair_bonded_pair(DBList,Type) :-
bonded_pair (W,E,R,T),
reactophore_fact(T,e,A,S,D),

memberchk (reactophore_fact(T,e,A,S,D),DBList),
prove_once (assert (bonded_pair(W,E,R,Type))),
retract (bonded_pair(W,E,R,T)),

fail.

hf_repair_bonded_pair(_,_).

hf_build_atom_list([],A,A).
hf_build_atom_list([reactophore_fact(_,_,[C1,C2],_,_)IT],In,Atoms):-
hf_build_atom_list(T, [C1,C2|In],Atoms).

/o ko ok ok ok ok ok sk sk sk sk sk sk sk sk sk ok ok ok okokokok ok ko sk ok ok ok sk sk sk sk sk sk sk sk sk ok ok okttt ookt ok koo okokokok sk sk sk sk ok ok ok ok ok ok
Writes out the result from each part of the calculation.
_values prints each part on the screen
_values2 makes sure that we got all of the values
Kok sk sk ok ok ok ok ok o o ok ok ok ok ok sk ok ok ok ok o o o ok ok sk sk sk sk ok ok ok o o ok ok ok sk sk sk sk sk ok ok ok ok ok sk sk ok ok o o o ok ok sk sk sk sk ok ok ok ok ok ko /
hf_values([]):-
write(’Done.’),nl.
hf_values([[Name,’_’,Value] |T]):-
write(’The whole molecule has a ’), write(Name), write(’ of ’),
write(Value), write(’ kJ.’),nl,
hf_values(T).
hf_values([[Name,Reac,Value] |T]) :-
reac_type(Reac,_,Type),
write(’The reactophore ’),write(Reac),write(’(’),
write(Type) ,write(’)’),
write(’ has a ’),write(Name) ,write(’ of ’),write(Value),
write(’ kJ.’),nl,
hf_values(T).

hf_values2(Parts) :-
findall(X, (member (Y,Parts),
Y =[_,_,XI),List),
sumlist(List,Hf),
write(’This should match what is below: ’),write(Hf),nl.

/Aot ok sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk skokokok ok ok ok ok ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk skokok sk sk skskokokok ko ok ok sk sk sk sk sk sk sk sk sk ok
The starting place where all the real work gets done.

167

sk ok ok sk ok o o ok sk ok ok ok sk ok o o ok sk ok ok sk o sk sk ok o ok sk sk o o ok sk ok o sk sk ok o ok sk sk ok sk ok o ok sksk ok ok ok sk ok ok ok skok ok o /
hf_aux([],Part,HF) :-

findall(X,ring(_,X),Rings),

gensort (Rings,longer,Sorted),

superset_filter(Sorted,Filteredx),
structure_separator(Filteredx, [], [],Groups),
hf_filters(Groups, [],Filtered),

flatten(Filtered,Flat),
delete_duplicates(Flat,RingAtoms),

hf_ring correct(Filtered,Filtered,RingAtoms,0,Correct), %hfor rings
hf_data(steric,’_’,Correct),

hf_homoarom(Filtered,RingAtoms,HA), %hfor molecules w/ homoaromaticity
hf_data(resonance,’_’ ,HA),

% hf_ethy_ring_ correct(Filtered,RingAtoms,0,ERC),%molecules w/ endo ethys
% NERC is ERC * -1,
% hf_data(stericerc,’_’,NERC),

hf_near_methyl (RingAtoms,Near),%for methyl groups w/ 3subs connected to same
hf_data(steric,’_’,Near),

hfor aroms or rings joined by 2 chains of atoms
hf_ring chain(Filteredx,Filtered,RC),

hf_data(steric,’_’,RC),
hf_resonance3(Res3),%for arom-ethy connected together--!!!CHECK DATA
hf_data(resonance,’_’ ,Res3),

hf_chiral(Filtered,Chiral),
hf_data(steric,’_’,Chiral),

%% HF is Part + Correct + HA + Near + RC + Chiral.
HF is Part + Correct + HA + Near + RC + Chiral + Res3.
%res3 is temporary(I hope)

hf_aux([Reac|Rest],Part,HF) :-
reac_hf (Reac,PartHF),

NewPart is Part + PartHF,
hf_aux(Rest,NewPart,HF).

/Aot ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk skt ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skokok sk sk sk skokokok ko ok sk ok sk sk sk sk sk sk sk ok
For molecules that have ethylenics endo in them. This is a steric

168

correction b/c as more ethys get added to a ring, and are next to
another ethy, the ring strain goes up more than can be accounted for
by a linear correction. It increases as a parabola w/ 6-membered ring
at the minimum.

I'l If there are any e’s exo in the ring next to an endo, then don’t get
a correction, unless the exo is bound to only 1 of the endos (I think)

sk sk sk sk ok ok ok ok o o o ok ok sk sk sk sk sk o o o o o ok ok sk sk sk sk sk ok ok o o o ok ok sk sk sk sk sk ok ok o o o sk sk sk sk ok o o o o ok ok sk sk sk sk sk ok ok ok /
hf_ethy_ring_correct([],_,0ut,0Out).
hf_ethy_ring_correct([H|T],_,Part,ERC):-
findall(NDO, (reactophore_fact(NDO,e, [A,B],_,_),%List of E’s endo in ring

intersects([A,B],H,[_,_])),ListNDO),
ListNDO = [_,_I_],
findall (XXX-YYY, (member (XXX,ListNDO),

member (YYY,ListNDQO),

XXX \= YYY,
pair (XXX,YYY)) ,Pairs),
Pairs \= [],

findall (X0, (reactophore_fact(X0,e, [A,B],_,_),% List of E’s exo in ring
intersects([A,B],H,[_]),% that are paired to 2 endos
member (NDO,ListNDO) ,
member (NDO2,ListNDO),
NDO2 \= NDO,
pair(X0,NDO),
pair(X0,ND02)) ,ListExo),

length(ListExo,LenX0),

LenX0 < 1,

length(ListNDO, NumNDQ) ,

Num is NumNDO-1,

length(H,Len),

/%%

hf_erc(a,d),

hf_erc(b,B),

hf_erc(c,C),

Basic is (A*(Len*Len))+(BxLen) + C,
*kk /

hf_erc(Len,Basic),

NewPart is Part + Basic * Num,
hf_ethy_ring_correct(T,_,NewPart,ERC).
hf_ethy_ring_correct([_|T],_,Part,ERC):-
hf_ethy_ring_correct(T,_,Part,ERC).

169

[kkokok sk ok skskok sk ok sksk sk sk ok sksk sk ok sksk sk sk ok sksksk sk sk sksk sk ok sksk sk ok sksk skok sksk sk sk ok sk sksk sk ok sk sk ok ok sk sk ok ok sk ok
For molecules w/ homoaromaticity. Like triquinacene: val = 224.

Since this is the only one going to set parameter by hand and not

train until get more in set.

See JACS 1986 Liebman,Paquette,Peterson,Rogers

seotokok ok ok ok ok ok ok ok sk ok sk sk sk ok sk sk sk ok ok ok koot ok ko sk ok ok ok ok sk sk sk sk ok sk sk sk sk ok ok ookt ok ookt ok ok ok kokokok sk sk sk sk ok ok ok ok ok /
hf_homoarom(Filtered,RingAtoms,HA) :-

findall (Atom, (member (Atom,RingAtoms),

atom_specs(_,Atom,_,_,List),
length(List,LL),
LL > 2,

findall (X, (member(X,Filtered),
length(X,L),
L > 3,
intersects(List,X,[_,_]1)),[A,B,C]),
intersects(A,B,[_,_1),
intersects(A,C,[_,_1),
intersects(B,C,[_,_])) ,Flats),
Flats \= [],
hf_homoarom_aux(Flats,Filtered,RingAtoms,0,HA).
hf_homoarom(_,_,0).

hf_homoarom_aux([],_,_,In,In).
hf_homoarom_aux([H|T] ,Filtered,RingAtoms,Part,HA) : -
findall (X, (reactophore_fact(X,e, [A,B],_,_),

member (Ring,Filtered),

memberchk (A,Ring) ,

memberchk (B,Ring),

memberchk (H,Ring)),[_,_,_1),
hf_homarom(pp,Val),
NewPart is Part + Val,
hf_homoarom_aux(T,Filtered,RingAtoms,NewPart ,HA) .
hf_homoarom_aux([_|T],Filtered,RingAtoms,Part,HA) : -
hf_homoarom_aux(T,Filtered,RingAtoms,Part,HA).

/3K sk sk sk sk ok ok o ok sk ok sk sk sk sk sk sk sk sk sk o ok ok sk sk sk sk sk sk sk sk sk o ok sk sk sk sk sk sk sk sk sk sk o sk sk sk sk sk sk sk o sk ok sk sk sk sk sk sk ok ok
resonance3: Correction for molecules w/ aromatic and ethylenic
Value is the Num#*Value

111 This may be justified only by bad data, but since I don’t have
any good data to back it up, I’m going w/ this

Check the Roth-’91 paper for errors!
sk sk sk sk ok ok ok ok o o o ok ok ok sk sk sk sk ok ok o o o o ok ok sk sk sk sk ok ok ok o o ok ok sk sk sk sk sk ok ok o o sk ok sk sk sk sk ok ok ok ok ok o ok ok sk ok ok ok /
hf_resonance3(Value) : -
findall(A-B, (reactophore_fact(A,_,_,_,_),
reac_type(A,_,Pi),
memberchk (Pi, [aromatic]),
pair(A,B),
Doto reac_type(B,_,Pi2),
n_o_s_type(B,ethylenic)),ListPair),
length(ListPair,Pairs),
resonance3(pp,Val),
Value is Pairsx*Val.

[/ 3kksk koo ok sk ok okok ok sk sk sksk sk sk sk ok sk ok ok ok sk sksk sk sk sk sk ok sk ok ko ok sk sk sk sk sk sk sk ok sk ok koksksk sk sk sk sk o ok ok ok sk sk sk sk sk ok ok
Correction for molecules joined by chains of atoms:

_chainl is for aromatics

_chain2 is for nonaromatics ie cyclohexane

sksk sk ok ok ok ok ok o o ko ok sk sk sk sk ok ok ok ok ok s ok ook ok sk sk sk sk sk sk ok ok sk ko ok sk sk sk sk sk sk ok ok sk ok sk sk sk sk sk sk ok sk ok ok ok sk sk sk ok ok /
hf_ring chain(Filteredx,Filtered,RC):-

hf_ring chainl(Filteredx,Filtered,AromRC),

hf_ring chain2(Filteredx,Filtered,RingRC),

RC is AromRC + RingRC.

[F KKKk ko ok sk sk ok ok okokok ok ok ok ok ok ok sk ok ok skokokok ok ok sk sk sk sk ok skokokok ok ok sk ok skokok o o ok ok sk sk ok ok ok ok ok
Correction for molecules w/ two aroms joined by chains of
atoms:
only deals w/ molecules that are joined together like a ring
the [] checks that Filtered is []
the [HIT] are the rings found from above...but we
aren’t using them, just making sure that rings are
present

rc_position deals w/ the position off of each arom:
position_aux: finds the number in each location off each arom
multiplies each location by a value to get correction

rc_aux2 deals w/ the chain length of atoms between the aroms:
really adds up the length of the compound (like a big ring
correction) and gets a value based on that

**/

hf_ring chaini([],_,0).

hf_ring chaini(_,[_|_],0).

hf_ring_chainl([_|_],_,Correct) :-

findall(A, (reactophore_fact(A,_B,_C,_D,_E),
reac_type(A,_,aromatic)),Aroms),

170

171

hf_rc_position(Aroms,_Ortho,_Meta,_Para,PositCorrect),
hf_rc_chain(Aroms,Aroms, [],ChainLenCorrect),
Correct is PositCorrect + ChainLenCorrect.

hf_rc_position(Aroms,Ortho,Meta,Para,PC): -
hf_rc_position_aux(Aroms,Aroms,0,0rtho,0,Meta,0,Para,0,0T),
hf_rc(ortho,Vall),

hf_rc(meta,ValM),

hf_rc(para,ValP),

PC is Ortho*ValO + Meta*ValM + ParaxValP + OT.

/KoK ok ok ok ok ok o ok ok ok sk sk sk ok ok ok ok o o ok ok ok sk ok sk ok ok ok o o o ok ok ok sk ok sk sk sk ok ok o o ok sk sk ok ok ok o o ok ok ok ok sk ok ok ok ok ok o o ok
rc_position_aux finds the number in each position off of each arom:

stttk ko ook ok ok ok sk sk sk sk sk sk sk sk ok ok ok koo ok ok ook ok ok sk sk sk sk sk sk sk sk sk ok ok okttt okt ok ko okokokokokok sk sk sk sk ok ok ok /
hf_rc_position_aux([],_,0,0,M,M,P,P,0T,0T).
hf_rc_position_aux([H|T],Aroms,IO0,0,IM,M,IP,P,Part0T,0T):-
findall([A1,A2],ortho_pair(H,A1,A2),ListOrtho),
hf_rc_aux_aux2(ListOrtho,Aroms,I0,NewI0O),

hf_rc_ortho_twist(ListOrtho,NewIO,Part0T1),
NewPart is PartOT + Part0T1,

findall([A11,A22] ,meta_pair(H,A11,A22) ,ListMeta),
hf_rc_aux_aux2(ListMeta,Aroms,IM,NewIM),

findall([A111,A222] ,para_pair(H,A111,A222) ,ListPara),
hf_rc_aux_aux2(ListPara,Aroms,IP,NewIP),

hf_rc_position_aux(T,Aroms,NewI0,0,NewIM,M,NewIP,P, ,NewPart,0T).

[/ 3kskk sk ok ok sk ok ok ok ok sk sk sksk sk sk sk ok o ok ko ok sk sk sk sk sk sk sk ok sk ok ok ok sk sk sk sk sk sk sk ok sk ok ok sksk sk sk sk ok s ok ok sk sk sk sk sk ok ok
Ortho Twist gets a correction for molecules with orthos that

go through different reactophores

sk sk sk sk ok ok ok ok ok o o ok ok ok sk sk sk sk sk ok sk sk o o ok ok sk sk sk sk sk sk sk sk ok o ok sk sk sk sk sk sk sk sk sk o ok sk sk sk sk sk sk sk ok ok ok ok sk sk sk ok ok /
hf_rc_ortho_twist([],_,0).

hf_rc_ortho_twist([_|_],0.0,0T):-

hf_rc(ortho_twist,0T).

hf_rc_ortho_twist([_|_],_,0).

[/ 3kkk ok ok ok ok sk ok ok ok ok sk sk sk ok sk ok ok ok s ok ok ok sk sk sksk sk sk sk ok sk ko ok sk sk sk sk sk sk sk ok sk kst sk sk sk sk ok ok s ok ok sk sk sk sk ok ok
aux2 deals w/ the chain length of atoms between the aroms-really adds
up the length of the compound...like a big ring correction...

and gets a value based upon that
sk sk sk sk ok ok ok ok ok o o ok ok sk sk sk sk sk sk sk sk o o sk ok sk sk sk sk sk sk sk sk sk o ok sk ok sk sk sk sk sk sk sk sk sk o ok sk sk sk sk sk sk sk ok ke ok ok sk sk sk ok ok /

hf_rc_aux_aux2(List,Aroms,In,NewIn):-

172

hf_for_real(List,Aroms,Aroms,NewList),
flatten(NewList,FL),
delete_duplicates(FL,Atoms),
length(Atoms,LenA),

AA is LenA/2,

NewIn is In + AA.

/K 3kkok koo ok s ok ok ok sk sk ok ok ok ok ok ok s ok ok sk stk sk sk ok ok ok sk ok ok sk sk sk sk sk ok ok o s ek sk ok sk ok o o s ko ok sk sk sk ok ok ok
checks if these o,m,p actually go to the same reac..if not throw away
.._aux gets the list of Connects: [[aroml,arom2], [aroml,aroml]], etc

.._aux2 gets
otk ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok R R ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk ok ok ok ok sk ok sk koo kR Rk Rk okokok /
hf_for_real([],_,_,[]1).

hf_for_real(List,_,Aroms,NewList):-

member (R,List),

member (R1,R),

pair(R1,R2),

reac_type(R2,_,aromatic),
delete(Aroms,R2,Rest),
hf_for_real_aux(List,Rest, [],Connects),
hf_for_real_aux2(List,Connects, [],NewList).

hf_for_real_aux([],_,A,A).

hf_for_real_aux([[A1,A2] |T],Rest,A,Out):-
all_paths(Al,_,PA1),

all_paths(A2,_,PA2),
hf_rc_aux2_aux(Rest,OtherOutsl),’designed and used below

hf_for_real_aux_aux(OtherOutsl,Rest,PAl1, [],Connectsla),
hf_fraa22a(Connectsla, [],Connectsl),
hf_for_real_aux_aux(OtherOutsl,Rest,PA2, [],Connects2a),
hf_fraa22a(Connects2a, [],Connects?2),
hf_for_real_aux_aux2(Connectsi, [],Shortestl),
hf_for_real_aux_aux2(Connects2, [],Shortest2),
Shortestl=[Arl, _Numil],

Shortest2=[Ar2,_Num2],

NewCon=[Arl,6Ar2],
hf_for_real_aux(T,Rest, [NewCon|A] ,Out).

hf_fraa22a([],A,A).
hf_fraa22a([H|T],In,Connectsl):-
append (H,In,RR),
hf_fraa22a(T,RR,Connectsl).

173

hf_for_real_aux_aux2(Con,_A,Shortestl) :-
hf_fraa2(Con, [],Short),

minimum(Short ,MS),
findall([R,MS] ,member ([R,MS],Con), [Shortestl]).

hf_fraa2([],A,A).
hf_fraa2([[_,L]1IT],A,Short):-
hf_fraa2(T, [L|A],Short) .

/st st sk koo ok ok o sk sk sk sk sk sk sk sk sk sk ok ok ok okttt kst sk s koo o ok ok sk sk sk sk sk sk sk sk sk sk ook sk sk sk sk ok ok okttt ok ok ook ok
Determines the distance to next arom
Kok sk ok ok ok ok ok o o o ok ok ok sk ok ok sk ok ok ok o ok ok ok ok sk sk sk sk ok ok ok ok o ok ok ok sk ok sk ok ok ok o o ok sk ok ok sk ok ok ok ok ok o kK ok ok ok /
hf_for_real_aux_aux([],_,_,A,A).
hf_for_real_aux_aux([H|T], [H2|T2] ,PA,New,Connects) :-
findall([H2,Dist], (member ([_Atom, [Atom2, [Dist|_],_,_11,PA),

memberchk (Atom2,H)) ,ListAl),
hf_for_real_aux_aux(T,T2,PA, [ListAl|New] ,Connects).

/ot sk ko koo ok ok sk sk sk sk sk sk sk sk sk sk ok sk okttt ok ko s koo ok ok sk sk sk sk sk sk sk sk sk sk sk ook sk sk sk sk ok ok okttt ok ok ook ok
??7? If C1=C2 then add H to the list of kept things

Else throw it away

sk sk ok ok ok ok ok o o o ok ok ok sk sk ok sk ok ok o o o o ok ok ok ok sk sk sk ok ok ok o o ok ok ok sk sk sk sk sk ok ok o o sk ok sk sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok /
hf_for_real_aux2([],_,A,A).
hf_for_real_aux2([HI|T],[[C1,C2]|T2],A,New):-

C1=C2,

hf_for_real_aux2(T,T2, [HIA] ,New).
hf_for_real_aux2([_|T],[[_C1,_C2]|T2],A,New) :—
hf_for_real_aux2(T,T2,A,New).

[k ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok kK o R ok ok ok ok ok ok ok ok ok ok ok ok sk oK K K oK oK KoK Kk ok ok ko ok ok o ok ok ok
aux?2 deals w/ the chain length of atoms between the aroms

aux2_aux gets the "Out" atoms from the other aromatic(s)

aux2_aux2 gets the shortest chain length from 1

aromatic to the other

otk ok o ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok kK o ok ok ok ok ok ok ok ok ok ok ok ok oK KK ok ok ok kKK Kk ko ko ok kR ok ok okok /
hf_rc_chain([],_,ListLens,Correct):-
hf_rc_aux2_11(ListLens,UselistLens),
hf_rc_aux2_aux3(UseListLens,Correct).
hf_rc_chain([H|T],Aroms,In,NewCorrect) :-

delete(Aroms,H,Rest),

hf_rc_aux2_aux(Rest,0OtherOutsi),

flatten(OtherOutsl,0therOuts),

all_paths(H,_,Paths),

174

findall(P,pair(H,P,_,_) ,0Outs),
findall([Start,Reac,Len], (member(Start,Quts),
member ([Start, [Y,L|_]],Paths), %from all_paths
memberchk (Y, OtherOuts),
member (Reac,Aroms) ,
reactophore_fact(Reac,_,Atoms,_,_),
memberchk(Y,Atoms) ,
minimum(L,Len)) ,Lengths),
hf_rc_aux2_aux2(Lengths,ListLens),
NewListLens = [ListLens|In],
hf_rc_chain(T,Aroms,NewListLens,NewCorrect).

/KK sk sk sk ok ok o o o ok ok sk sk sk sk sk ok ok o o s ok ok sk sk sk sk sk ok o o o o ok ok ok sk sk sk sk ok ok o o o sk sk sk sk ok o o o o ok ok ok sk sk sk ok ok ok
finds the ListLens that are to be used
stk ok ok sk o o ok sk ok ok o sk ok ok o ok sk ok ok ok sk sk o o ok sk sk ok ok sk sk ok ok ok sk sk ok ok sk sk ok ok sk ok ok sk sk sk ok ok ok skok ok ok ok /
hf_rc_aux2_11(ListLens,UselistLens):-
findall (X, (member (X,ListLens),
X=10[_,_,_,_1),List),

(List = [] -> ListLens = [UseListLens,_]

; flatten(List,UselListLens)

/ot ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk ok ok okttt ok ok ok ok ok ok sk sk sk sk sk sk ok sk sk sk sk ok ook sk sk sk ko ook okt ok ok ok ok ok ok
finds the atom that the H-type is a part of

Kok ok ok ok ok ok ok o o ok ok koK ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK ok ok ok /
hf_rc_aux2_aux([],[1).

hf_rc_aux2_aux([H|T], [00|OtherOuts]) :-

findall(P,pair(H,P,_,_),00),

hf_rc_aux2_aux(T,0OtherQOuts) .

/KK ok ok ok ok ok o ok ok ok sk ok ok ok ok ok ok ok o o ok ok sk ok ok ok ok ok ok ok o o ok ok sk ok ok ok ok ok ok ok o o ok sk ok ok ok ok o o ok ok ok ok ok ok ok ok
finds all of the lengths that are in a list

sk sk sk sk ok ok ok ok o o o ok ok ok sk sk sk sk ok ok o o o o ok ok ok sk sk sk sk sk ok ok o o ok ok ok sk sk sk sk sk ok ok o o sk ok sk sk sk sk ok ok o ok ok ok ok ok ok ok ok ok /
hf_rc_aux2_aux2([],[]1).

hf_rc_aux2_aux2([[S,R,L]IT], [LL|ListLens]) :-

findall (X,member([S,_,X],[[S,R,L]IT]),Lens),

minimum(Lens,LL),

delete([[S,R,L]1IT1,[S,_,_],Rest),

hf_rc_aux2_aux2(Rest,ListLens).

[3k koo sk ok ok ok ok ok sk sk sksk sk sk ok sk ok ok ok sk sk sksksk sk sk sk o ke ok ok sk sk sk sk sk sk sk sk ok ke koksk sk sk sk ok sk ok ok ok ok sk sk sk sk ok
the new version sums up the bonds and gets a correction based on
the length (if 6 get special correction, otherwise get another)

175

??need to add something that counts the bonds in the middle too??
K ok ok ok K K ok ok ok KK K oK ok oK 3K K K oK ok ok sk 3 K o ok ok ok K K o ok ok ok K K ok ok ok sk K K ok ok ok sk ok K ok ok ok ok K K ok sk sk kK ok /
hf_rc_aux2_aux3(LL,Correct) :-
sumlist (LL,Suml),
(Suml = 6 -> hf_rc(6,X)

; hf_rc(pp,M),

X is Mx*Suml

),

Correct is X.

J/Askskokokokok ko okok sk sk sk sk sk sk sk sk sk sk sk ok sk skskokokokokok ok skok skoskoskosk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk ok sk skskkokokokok ok ok ok ok
Correction for molecules w/ two rings joined by chains of
atoms:

like ring_chainl: needs a position correct and a chain correct

have to fix _chain2_chk so it works for all types of ring_ chains
not just 6-6 ring chains

GOT TO FILTER OUT NON-RING-CHAIN COMPOUNDS

KoKk ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok ok o ok ok sk sk ok ok ok ok ok ok o o ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok /
hf_ring chain2(_,Filtered,Correct):-

length(Filtered,2),

hf_ring chain2_chk(Filtered),

hf_rc2_position(Filtered,PositCorrect),

hf_rc2_chain(Filtered,Filtered, [],ChainLenCorrect),

Correct is PositCorrect + ChainLenCorrect.

hf_ring chain2(_,_,0).

/At ko ook ok ok sk sk sk sk sk sk sk sk sk ok skokokokok ko koo ook ok sk sk sk sk sk sk sk sk sk ok ok skokokak sk okokokokok sk kol ook okokokok sk sk ok ok ok
gets the correction for position that the ring is in.

I don’t think it should even be in here if the rings are joined

ortho.

uses the same correction for meta and para for those that are

at positions 1,4 or greater, then use the para correction,

until a better model is proposed

Probably will fuck up if multiple chains coming off of this
sk sk sk sk ok ok ok ok ok o o ok ok sk sk sk sk sk ok sk ok o ks ok sk sk sk sk sk sk sk sk ok o ok sk sk sk sk sk sk sk sk sk sk o sk sk sk sk sk sk sk o sk sk sk sk sk sk sk sk sk sk ok ok /
hf_rc2_position(Filtered,PositCorrect):-
findall([A,Ring], (member (Ring,Filtered),
findall (X, (member (Y,Ring),
reactophore_fact(_R,_,[X],_,_),
\+ memberchk(X,Ring),
bonded(X,_,Y)),A)),ListAs),

176

hf_rc2_position_aux(ListAs,0,Posl,0,Po0s2,0,P0s3,0,PosOther),
hf_rc(ortho,P1),

hf_rc(meta,P2),

hf_rc(para,P3),

PositCorrect is Posl1*P1 + Pos2%P2 + Pos3*P3 + PosOther*P3.

/oK ok ok sk ok ok ok sk sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok kR ok ok oK
rc2_position_aux finds the number in each position off of

each ring

st ok ok ok sk ok ok ok ok K K ok ok ok K K K ok ok ok sk K K ok ok ok sk K K ok ok ok ok K K ok ok ok ok kK sk ok ok ok sk K ko sk ok ok ok K K ok ok ok ok ok ok ok ok /
hf_rc2_position_aux([],0,0,M,M,P,P,P0O,P0).
hf_rc2_position_aux([[A,R]|T],Part0,0Ortho,PartM,Meta,
PartP,Para,Part0t,Other) : -

hrc2a_aux(A,R,0,0,0,M,0,P,0,0t),

NewPart0 is Part0O + O,

NewPartM is PartM + M,

NewPartP is PartP + P,

NewPart0Ot is PartOt + Ot,
hf_rc2_position_aux(T,NewPart0,0Ortho,NewPartM,Meta,
NewPartP,Para,NewPartOt,Other).

hrc2a_aux([],_,0,0,M,M,P,P,0t,0t).
hrc2a_auX([H|T],Ring,IPO,LPO,IPM,LPM,IPP,LPP,IPOt,LPOt):—
reactophore_fact(Sub,_, [H],_,),
hf_pseudo_ortho_subs(Ring,Sub,P0s),
hf_pseudo_meta_subs(Ring,Sub,PMs),
hf_pseudo_para_subs(Ring,Sub,PPs),
hf_other_subs(Ring,Sub,P0ts),

length(POs,LP01),

LP02 is LP01/2,

length(PMs,LPM1),

LPM2 is LPM1/2,

length(PPs,LPP1),

LPP2 is LPP1/2,

length(POts,LP0Ot1),

LPOt2 is LPOt1/2,

NewLPO is IPO + LPO2,

NewLPM is IPM + LPM2,

NewLPP is IPP + LPP2,

NewLPOt is IPOt + LPOt2,
hrc2a_aux(T,Ring,NewLPD,LPO,NeWLPM,LPM,NeWLPP,LPP,NewLPUt,LPOt).

/**

177

Returns the substituents that are OMP not real OMPs b/c not a phenyl ring
ps_meta and _para check for 6 membered ring, but ortho does not
b/c might need an ortho correction in other rings

I''1Got to fix so that will work for rings besides len6!!!
Kok ok ok ok ok ok ok ok o kK ok ok ok ok ok ok ok ok o o o ok ok ok ok ok ok ok ok ok ok o o o ok ok sk ok ok sk ok ok ok ok o ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ko /
hf_pseudo_ortho_subs(Ring,Sub,POrthos) : -
pair(Sub,R1,A,_),
memberchk (A,Ring),
findall(Y, (pair(_,A,B,),

B \= R1,

pair(_,B,X,Y),

\+ memberchk(X,Ring)) ,POrthos) .
hf_pseudo_meta_subs(Ring,Sub,PMetas) :-
length(Ring,6),
pair(Sub,R1,A,),
memberchk (A,Ring) ,
findall(Y, (pair(_,A,B,_),

B \= R1,
pair(_,B,C,_),
A \=C,

pair(_,C,X,Y),

\+memberchk (X,Ring)) ,PMetas) .
hf_pseudo_para_subs(Ring,Reacl, [Reac2]) :-
length(Ring,6),
pair(Reacl,R1,A,),
memberchk (A,Ring) ,
pair(_,A,B,_),

B \= R1,
pair(_,B,C,_),
A\=C,
pair(_,C,D,_),
B \= D,

pair(_,D,E,Reac2),
\+memberchk (E,Ring) .

hf_other_subs(Ring,_Sub,POts) :-
length(Ring,LR),

LR \= 6,

POts = [_].

/*x*x GOT TO WRITE SOME CODE FOR THIS**x*/
hf_other_subs(_,_, []).

[/ 3kkk koo ok sk ok ok ok ok sk sk sksk sk ok sk ok s ok ok ok sk sk sk sk sk sk sk ok sk ok ko ok sk sk sk sk sk sk sk ok sk o kesk sk sk sk sk sk ok s ok ok sk sk sk sk sk ok
rc2_chain deals w/ the chain length of atoms between the aroms
aux2_aux gets the "Out" atoms from the other aromatic(s)

aux2_aux2 gets the shortest chain length from 1

aromatic to the other

aux2_aux3(same call as in ring_chainl)

Kok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok o ok ok sk sk ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok kK ok ok ok /
hf_rc2_chain([],_,_,0).
hf_rc2_chain([H|_],Filtered,_,Correct):-
delete(Filtered,H,Rest),
hf_rc2_aux2_aux(Rest,0therQutsl),
flatten(OtherOutsl,0therQuts),
hf_rc2_aux2_aux([H],Outs),
flatten(Outs,Outsl),
hf_rc2aa(Outsl,0therQuts,Filtered,Lengths),
hf_rc_aux2_aux3(Lengths,Correct) .

/K sk sk ok ok ok ok o o ok ok ok sk ok ok ok ok ok ok ok o ok ok sk ok sk sk ok ok ok ok o o ko ok sk sk ok ok ok ok ok o o ok sk ok ok ok ok ok ok ok o ok ok ok ok ok ok ok
Finds the Lengths between the Outs
sk sk sk sk ok ok ok ok o o o ok ok ok sk sk sk sk ok ok o o o ok ok ok sk sk sk sk sk ok ok o o ok ok ok sk sk sk sk ok ok o o ok sk sk sk sk ok ok ok ok ok o ok ok k ok ok /
hf_rc2aa([],_,_,[1).
hf_rc2aa([H|T],O0therOuts,Filtered, [Lenl|Rest]) :-
findall(Ring, (member (Ring,Filtered),
memberchk (H,Ring)), [Ring]),
reactophore_fact(Sub,_, [H],_,_),
all_paths(Sub,_,Paths),
findall(Len, (member ([H, [Y, [0] |End]] ,Paths), %from all_paths
memberchk(Y,OtherOuts),
\+ memberchk(Y,Ring),
\+ memberchk([_,_],End),
delete_duplicates([Y, [0] |End],Short),
delete(Short, [_|_],Path),
length(Path,Len)), [Len]),
Lenl is Len-1,
hf_rc2aa(T,0therOuts,Filtered,Rest).

[FHKAFAK A KA A A K A KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KK KoK Kok Kok Kok Kok Kok Kok Ko
Finds the Outs

3K KKK KKK KKK KK KKK KKK K KK K KK K K K oK K oK oK KK oK ok ok Kok ok ok K ok ok ok /
hf_rc2_aux2_aux([],[]1).

hf_rc2_aux2_aux([Ring|T], [00|OtherOuts]) :-

178

findall(A, (member (A,Ring),
pair(_,A,X,_),
\+memberchk (X,Ring)),00),
hf_rc2_aux2_aux(T,0therQuts).

/3K Kk sk sk ok sk ok sk ok ok ok ok ok sk ok o ok ok ok ok sk ok sk ok o ok ok sk sk ok sk ok ok ok sk sk R koK o ok ok sk ok o ok ok sk ok sk sk sk ok ok ok ok ok
Checks that the molecule is actually a ring_chain
KoK o KoK oK KK oK KoK o KoK oK K oK KoK oK oK oK ok KoK o K oK oK o oK ok K oK ok K oK ok K ok o KoK ok ok o KoK ok Kok Kok K ok ok K/
hf_ring_chain2_chk([]).
hf_ring_chain2_chk([H|T]):-
length(H,6),
findall(A, (member (X,H),
pair(_,X,A,_),
\+memberchk (A,H)),[_,_]1),
hf_ring_chain2_chk(T).

J/Askskokokokokoskok ok ok sk sk sk sk sk sk sk sk sk sk sk ok sk skskkokokok ok ok skokoskosk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk ok sk skskkokokokok ok kok ok ok
New hf_ring_correct calls a module in hf_ring2.pro (
hf_ring structure_correct)

***/

hf_ring correct([],All,RAs,Part,Value):-
hf_ring structure_correct(RAs,All,Val),
Value is Part + Val.

hf_ring correct([H|T],All,RAs,Part,Val):-
length(H,Len),

get_hf_ring(Len,V),

hf_ring deform(Len,H,All,RingDeform),
hf_ring_aromatic(Len,H,All,RingBridge),

NewPart is Part + V + RingBridge + RingDeform,
hf_ring_correct(T,All,RAs,NewPart,Val).

J/Akskokokskok skok ko sk sk sk sk sk sk sk sk sk sk sk ok sk skskokokokokok ok skok skoskosk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk ok ok skskskokokokok ok ok kok
Correction for the deformation rings undergo for having
-sp2 atoms a part of their structure that can’t be accounted
for in their appropriate section b/c this describes how
the RING is deformed by their being a part of it

-have to have a correction for each Len

(THIS SHOULD PROBABLY SUBSUME hf_ring_aromatic)

179

180

Kok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o o ok ok sk ok ok sk ok ok ok ok o ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ko kK ok ok ok /

hf_ring deform(Len,Ring,_All,Value):-

findall (X, (reactophore_fact(X,e, [A,B],_,_),
intersects([A,B],Ring, [_])),RingExos),

length(RingExos,NumExos) ,

findall (X, (reactophore_fact(X,e, [A,B],_,_),
intersects([A,B],Ring,[_,_])) ,RingEndos),

length(RingEndos,NumEndos),

findall (X, (reactophore_fact(X,_,Atoms,_,_),
reac_type(X,_,aromatic),
intersects(Atoms,Ring, [_,_])) ,RingAroms),

length(RingAroms,NumAroms) ,

hf_ring deform_aux(Len,NumExos,RingExos,NumEndos,

RingEndos,NumAroms,RingAroms,Ring,Value) .

hf_ring deform_aux(_,0,_,0,_,0,_,_,0).

hf_ring deform_aux(3,_NumExos,_RingExos,_NumEndos,
_RingEndos, _NumAroms,_RingAroms,_Ring,0).
hf_ring_deform_aux(4,_NumExos,_RingExos,_NumEndos,
_RingEndos, _NumAroms,_RingAroms,_Ring,0).

hf_ring deform_aux(5,1,_,2,_,0,_,_,Value):-
hf_ring deform(5,Value).

hf_ring deform_aux(6,_NumExos,RingExos,2,RingEndos,0,_,_Ring,Value):-
member (Endol,RingEndos),

member (Exol,RingExos),

pair (Endol,Exol),

member (Endo2,RingEndos),

Endo2 \= Endol,

pair(Endo2,Exo01l),

hf_ring_deform(6,Value).
hf_ring_deform_aux(7,NumExos,_,3,_,0,_,_,Value):-
NumExos < 2,

Value is 0.

hf_ring deform_aux(8,_NumExos,_RingExos,_NumEndos,
_RingEndos, _NumAroms,_RingAroms,_Ring,0).

% General rule for cases not thought of yet

/**

181

Correction for Rings that share a side with an
aromatic. (RSizeVal*BridgeNum)

ring_aromatic_aux2 - gets a correction for a db in a 6 membered
ring being next to an aromatic "18kJ.

Additional correction for multiple aroms on a ring
Value (from hf_multiple_arom).
stttk ok ok ook ok ok ok sk sk sk sk sk sk sk sk ok sk ok koot ok ok ook ok ok sk sk sk sk sk sk sk sk sk ok ok okttt okokokokok ok kokokokokokok sk sk sk sk sk ok ok ok ok /
hf_ring_aromatic(Len,R,All,Value) :-
findall (XX, (member (XX,R),
atom_spec(_,XX,_,_,_)),List),
hf_ring aromatic_aux(List,Len,R,A11,0,Vall),
hf_ring_aromatic_aux2(List,Len,Val2),
hf_multiple_arom(List,R,A11,0,Val3),
Value is Vall + Val2 - Val3.

hf_ring_aromatic_aux([],_,_,_,0ut,Out).
hf_ring aromatic_aux([H|T],Len,R,All,In,Qut):-
findall (X, (member (X,Al1l),

memberchk (H,X)) ,Rings),
findall (XX, (bonded(H, _,XX),

\+ memberchk (XX, T),

member (RR,A11),

RR \= R,

memberchk (XX,RR),

member (RRR,A11),

RRR \= R,

RRR \= RR,

memberchk (XX,RRR)) ,ListSSS),
(Rings = [_] -> true

; (ListSSS = [] -> true
; fail
)
),
(Len < 8 -> arom_ring_side(Len,RSizeVal)
; arom_ring_side(other,RSizeVal)

),
NewIn is In + RSizeVal,
hf_ring aromatic_aux(T,Len,R,All,NewIn,Out).
hf_ring_aromatic_aux([_|T],Len,R,All,In,Out):-
hf_ring_aromatic_aux(T,Len,R,All,In,Out).

hf_ring_aromatic_aux2(List,5,0ut):- Y%this only fires for exo-oeth?

182

length(List,LL),

LL > 2,

findall (X, (member (X,List),
bonded(X,_,Y),
reac_type(Y,ethylenic),
member (Z,List),

Z \= X,
bonded(Y,_,Z),
reactophore_fact(A,_,C,_,_),

memberchk(Y,C),
n_o_s_type(A,oethylenic)),[_|_1),

arom_ring_side(db5,0ut) .

/**xx*x* this fires for every 5-ethy (including CAS: 208968)

length(List,LL),

LL > 2,

findall (X, (member (X,List),
bonded (X, _,Y),
reac_type(Y,ethylenic)),[_I_]),

arom_ring_side(db5,0ut).

*okokkokk ok /

hf_ring aromatic_aux2(List,6,0ut):-

findall (X, (member (X,List),
bonded (X, _,Y),
reac_type(Y,ethylenic)),[_I_1),

arom_ring_side(db,0Out).

hf_ring aromatic_aux2(_,_,0).

hf_multiple_arom([],_,_,0Out,0Out).
hf_multiple_arom([H|T],R,Al11l,In,Value) :-
findall (X, (member (X,A1l),
memberchk (H,X)) ,Rings),
findall (XX, (bonded(H, _,XX),
\+ memberchk(XX,T),
member (RR,A11),
RR \= R,
memberchk (XX,RR) ,
member (RRR,Al1l),
RRR \= R,
RRR \= RR,
memberchk (XX,RRR)) ,ListSSS),
(Rings = [_] -> true

; (ListSSS = [1 -> true

; fail
)
),
findall (X, (member(A,R),
atom_spec(_,A,_,_,_),

reactophore_fact(X,_,L,_,_),
memberchk(A,L)),List),
delete_duplicates(List,NewList),
length(NewList,Len),
Len > 1,
length(R,LenR),
arom_ring_side(maromA,A),
arom_ring_side(maromB,B),
NewIn is In + A*LenRx*xLenR + BxLenR,
hf_multiple_arom(T,R,All,NewIn,Value).
hf_multiple_arom([_|T],R,All,In,Value) :-
hf_multiple_arom(T,R,Al1,In,Value).

/3K Kk sk ook ok sk ok ok ok ok sk sk sk sk sk sk sk ok sk s ok ok ok ok sk sk sk sk sk sk ok sk sk ok ok ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk ok sk ok ok ok sk sk ok ok
Correction that depends on the size of the ring being

looked at:

if the size is < 6 looks up a correction in the database

if it’s >= 6 then uses a ’morse potential’ to calculate

the value of the correction.

A Morse potential has the form:

Val = D*(1-e”(-B*(Len-6))) "2

where D is the height of the function, B is where the function

rolls over, Len is the point sitting on.

may need to train D. right now D=52.23 b/c that is decane’s diff

Looks like Morse potential until size = 10
At size = 11 have an exponential decay

***/

get_hf_ring(Len,Val) :-

Len < 6,

hf_ring(Len,Val),

!

get_hf_ring(Len,Val) :-

6 =< Len,

Len =< 10,

hf_ring(mp_b,B),

hf_ring(mp_d,D),

X is (1-exp(-B*(Len-6))),%Morse potential

183

184

pow (X,2,NX),

Val is DxNX.
get_hf_ring(Len,Val) :-
Len > 10,
hf_ring(ed_a,A),
hf_ring(ed_b,B),

Val is Axexp(-B*Len).

/3% kokok stk sk ok ok sk sksk ok ok sk sksk sk ok sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk ok sk sk sk sk sk sksksk ok sk sk sk sk ok ok sksk sk sk sk sk sk ok sk sk ok
Gets the basic correction for chains and aromatic compounds
HFStart is the correction each reac_type has: methyl=-74.6, etc

Correction is the amount of correction based on:

steric, connectivity, resonance, etc

stttk sk ook o ok ok sk sk sk sk sk sk sk sk sk sk ok ookt ks sk s o o o sk sk sk sk sk sk sk sk sk sk ok okttt ok otttk ok sk kokokokokok sk sk sk sk ok ok ok /
reac_hf (reactophore_fact(R1,_,_,_,_) ,HF) :-

reac_type(R1,_,ReacType),

get_hf_contrib(ReacType,R1,HFStart),

hf_data(basic,R1,HFStart),

hf_correct (ReacType,R1,Resonance,Correction),

HF is HFStart + Correction + Resonance.
%% HF is HFStart + Correction.

J/Akokokokokok ko okosk sk sk sk sk sk sk sk sk sk sk sk ok sk skokokokok ok ok skokok sk skosk sk sk sk sk sk sk sk sk ok ok sk oksk sk sk ok skokskskokokok ok sk ok ok kokok sk ok ok
Gets the charge distributed out of the reactophore

makes sure that only aroms,ethys,and acetys go through

the charge_distributor routine...everything else gets a O.

the aux routine gets the Qin distributed out of the
reactophore, [H|T] are list of atoms that are ’outs’
of the reactophore.

get’s normalized by taking away 1 from the Qin depending
on the number of outs from the reactophore...
for 2reacs -1,
for 3reacs -2, etc
sk sk sk okok ok ok ok ok o ko ok sk sk ok sk ok ok ok o s ko ok sk sk sk sk sk sk sk ok sk ok ok sk sk sk sk sk sk ok ok sk sk sk sk sk sk ok ok s ok ok ok sk sk sk sk sk sk ok ok ok /
hf_get_chargeout (Reac,TadChains,ChargeOut) : -
reac_type(Reac, _,RType),
memberchk (RType, [aromatic,ethylenic,acetylenic]),
findall(A, (pair(Reac,A,B,_),
\+ atom_type(B,q)),0uts),

185

hf_get_chargeout_aux(Outs,Reac,TadChains,0,ChargeOutx),
length(Outs,Len0),

ChargeOut is 1-1/(ChargeOutx-(Len0-1)).
hf_get_chargeout(_,_,0).

hf_get_chargeout_aux([],_,_,Part,Part).
hf_get_chargeout_aux([H|T] ,Reac,TadChains,Part,ChargeQut) : -
charge_distributor(Reac,H,gamacalc,TadChains,true,_,Qin),
NewPart is Part + Qin,
hf_get_chargeout_aux(T,Reac,TadChains,NewPart,ChargeQut) .

/3K sk sk sk sk ok ok o ok ok ok ok sk sk sk sk ok sk ok ok o ok ok ok sk sk sk sk sk sk sk o o ok ok sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk o o sk ok ok sk sk sk sk sk sk ok sk ke k ok
Contribution to Hf from the reactophore types:

methyl, ethylenic, acetylenic, aromatics(calls oa_aux)

1. not one of the following types get a 0

2. for aromatics

%%kt 3. for [methyl-groups) halogens,oeth,seth?

4. for the other groups

''need to look at the stuff that deals w/ halogens eventually
Kok sk ok ok ok ok ok o o o ok ok ok ok sk ok ok ok ok ok o o ok ok ok sk sk sk sk ok ok o o o ok ok ok sk sk sk sk ok ok o ok o ok sk sk ok ok o o ok ok ok sk sk sk sk ok ok ok ok ok ko ok /
get_hf_contrib(ReacType,_,0) :-

\+ memberchk(ReacType, [methyl,aromatic,ethylenic,acetylenic, J%carbons

oh,co2h,o0eth, hoxygens
oo le nr2,cn, Jnitrogens

f,cl,br,i %halogens
Doolo sh, %sulfurs
oo pr2 Jiphosphorus

D.
get_hf_contrib(aromatic,R1,HFStart) :-
oa_aux(reactophore_fact(R1l,_,_,_,_) ,HFStart).

get_hf_contrib(ReacType,R1,HFStart) :-
memberchk (ReacType, [f,cl,br,i]),
hf_halo_contrib(ReacType,R1,HFStart) .
get_hf_contrib(ReacType,_,HFStart) :-
hf_contrib(ReacType,HFStart) .

/K 3kkok koo ok sk ok ok ok sk sk skok ok ok ok ok s ko ok sk sk sksk sk sk sk ok sk ko ok sk sk sk sk sk sk sk ok sk ki sksk sk sk ok ok sk ok ok ok sk sk sk sk ok ok ok
takes a halogen and sees what it’s attached to, gets the

basic contribution based on this

sk sk sk sk sk ok ok ok ok o o ok ok sk sk sk sk sk sk sk ok sk o ok ok ok sk sk sk sk sk sk sk sk sk ks ok sk sk sk sk sk sk sk ok sk ok kok sk sk sk sk sk sk o sk ok ok sk sk sk sk sk sk ok /
hf_halo_contrib(ReacType,R1,HFStart) : -

pair(R1,Sub),

186

reac_type(Sub, _,Type),
hf_contrib(ReacType-Type,HFStart) .
hf_halo_contrib(_,_,0).

/] Kok sk sk ok sk sk ok ok sk sk ok ok ok ok sk sk ok sk ok ok sk sk ok ok sk ok ok sk sk ok ok s ok ok sk sk ok ok ok ok sk sk ok ok sk ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok K
correction for number of non-carbons (halos for now 12/19/01)
on molecule
Kok sk ok ok ok ok K ok sk ok ok 3 ok K ok oK sk ok ok K ok ok 3 ok sk ok K sk ok ok K ok ok 3 ok sk ok K sk ok sk ok sk ok ok 3 ok sk ok ok ok sk ok ok sk ok ok ok ok k sk ok /
hf_ref_contrib([],HF,HF).
hf_ref_contrib([H|T] ,Part,HF) :-
hf_contrib(H,HFO0),
NewPart is HFO + Part,
hf_ref_contrib(T,NewPart,HF).
hf_ref_contrib([_|T],NewPart ,HF) :-
hf_ref_contrib(T,NewPart,HF).
/] Kok sk sk ok sk sk ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk o ok ok sk ok ok ok sk sk ok ok ok ok sk ok ok ok ok ok ok ok K
Correction for when there are multiple noncarbons (Subs)
branching off of the carbon with the ’noncarbon’ attached
to it. eg. CBr4

hf _multi_ref is the reference point for certain number,

doesn’t care what the Subs are.

Kok K ok ok ok ok 3 ok K ok ok 3 ok K ok oK ok ok 3 ok K ok ok 3 ok K ok ok ok ok K ok K ok ok 3 ok K ok K ok ok 3 ok K ok ok 3 ok ok ok ok ok ok ok K ok ok ok ok ok k ok /
hf_multi_reduction(Subs,HFO,HF) :-
length(Subs,L),

L>1,

',

hf_multi_charge_correction(L,Subs,0,Add),

hf _multi_ref(L,Mult),

hf_multi_ref(const,Constant),’%why do we need this constant?
HF is HFO * Mult + Constant + Add.

hf_multi_reduction(_,HF,HF).

/st sk s ok ok oo ok o sk sk sk sk sk sk sk sk sk ok ok otttk st sk sk koo o ok ok sk sk sk sk sk sk sk sk sk ok ookttt sk ookttt ok ok ok ook ok ok sk ok ok
Correction for the type of ’noncarbons’

hf_multi_ref is correction for what Subs are attached
sk ok sk sk ok ok ok ok o o o ok ok ok sk ok ok ok ok ok o o o ok ok ok sk sk sk sk ok ok o o o ok ok ok sk sk sk sk sk ok ok o o o sk sk ok ok ok ok o o o ok ok ok sk ok sk ok ok ok /
hf_multi_charge_correction(_, [],Add,Add).
hf_multi_charge_correction(L, [H|T],Part,Add) :-
substituent_type(H,_,Type),
pka_s_f (Type,Chi),%electronegativity
hf_multi_charge(L,Mult),
NewPart is Part + Mult * (Chi - 2.3),

187

hf_multi_charge_correction(L,T,NewPart,Add) .
hf_multi_charge_correction(L, [_|T],NewPart,Add) :-
hf_multi_charge_correction(L,T,NewPart,Add) .

/3K sk sk sk sk ok ok o o ok ok ok sk sk sk sk sk sk sk ok o ok ok ok sk sk sk sk sk sk sk o o ok ok sk sk sk sk sk sk sk sk sk ke ksk sk sk sk sk sk o ok sk ok sk sk sk sk sk sk sk sk o ok
Correction to Hf for each of the reactophore types

inside of ethylenic, have to check if this ethylenic is really
an neth,oeth,or seth, or just a regular ethylene.

sk sk sk sk ok ok ok ok o o o o ok ok sk sk sk sk ok ok o o o o ok ok sk sk sk sk sk o o o o ok ok ok sk sk sk sk ok ok o o o ok sk sk ok ok o o o ok ok sk sk sk sk sk ok ok ok sk ok /
hf_correct (methyl,Sub,0,Value):-
findall (X,pair(Sub,X),Subs),

hf_branch(methyl,Sub, _,Subs,Val),
hf_halo(methyl,Sub,Halo),
Value is Val + Halo,

!
hf_correct(ethylenic,Sub,ValueR,ValueB) :-%for neth_oeth_seth
neth_oeth_seth(Sub),%n_o_s? yes -> keep going
n_o_s_type(Sub,Type),
hf_branch(Type,Sub,_,_,ValueBl),%steric and strain

hf_pi_subs(Sub,ListPi),

hf_dipole_repulsion(ListPi,Type,0,ValueB2),
hf_data(dipole,Sub,ValueB2),

ValueB is ValueB1 + ValueB2,
hf_resonance(ListPi,_,Sub,Type,0,ValueR),

|
hf_correct(ethylenic,Sub,ValueR,ValueB) :-%for regular ethylenic
\+ neth_oeth_seth(Sub),
n_o_s_type(Sub,Type),
hf_branch(Type,Sub,_,_,ValueB),%steric and strain

hf_pi_subs(Sub,ListPi),

hf_resonance(ListPi,_,Sub,Type,0,ValueR),
I.
hf_correct(acetylenic,Sub,ValueR,ValueB) : -
findall(X,pair(Sub,X),Subs),
hf_branch(acetylenic,Sub,_,Subs,Val),

188

hf_halo(acetylenic,Sub,Halo),

ValueB is Val + Halo,

hf_pi_subs(Sub,ListPi),

hf_resonance(ListPi,Subs,Sub,acetylenic,0,ValueR),
I.
hf_correct(aromatic,Sub,ValueR,ValueB) :-
findall (X,pair(Sub,X),Subs),
hf_branch(aromatic,Sub,_,Subs,ValueB),
hf_pi_subs(Sub,ListPi),
hf_resonance(ListPi,Subs,Sub,aromatic,0,ValueR),
I.
hf_correct(oh,Sub,0,Value) : -
findall (X,pair(Sub,X),Subs),
hf_branch(oh,Sub, _,Subs,Value),

I.
hf_correct(co2h,Sub,0,Value) : -
findall (X,pair(Sub,X),Subs),
hf_branch(co2h,Sub,_,Subs,Value),

I.
hf_correct(SubType,Sub,0,ValueB) :-
fail,
findall(X,pair(Sub,X),Subs),
hf_branch(SubType,Sub, _,Subs,ValueB),
I.
hf_correct(_,_,0,0).

/st sk sk sk oo oo ok s sk sk sk sk sk sk sk sk sk ok ok otk stk st sk s ko ok o sk sk sk sk sk sk sk sk sk sk sk okttt stk okttt sk ko ook ko sk sk sk sk sk sk ok ok ok ok
This is for when a halogen is attached to a substituent

Kok ok ok ok ok ok ok ok o o ok ok ok ok sk ok ok ok ok ok o o ok ok ok sk ok ok sk ok ok ok o o o ok ok ok sk sk sk sk ok ok ok ok o ok sk sk ok ok ok ok o ok ok sk sk sk sk ok ok ok ok ok ko ok /
hf_halo(Type,Sub,Halo) :-

hf_halo_aux3(Sub,Hals,Halos),

Halos \= [],

hf_halo_aux(Type,Halos,Sub,Hal),’%interaction between halos on same atom
hf_halo_aux2(Type,Halos,Sub,Xi),

hinteraction between halos and adjacent atoms
hf_halo_per(Type,Hals,Halos,Sub,Per),

Halo is Hal + Xi + Per,

hf_data(connectivity,Sub,Halo).
hf_halo(_,_,0).

189

/KK sk ok ok ok ok o ok ok ok sk sk ok ok ok ok ok o o o ok ok ok sk ok ok ok ok ok ok o o o ok ok ok sk ok ok sk ok ok ok ok o ok sk sk ok ok ok ok o kK ok ok ok ok ok ok ok ok o kK
Finds the Halos off a given Sub
sk sk sk sk ok ok ok ok o o o ok ok ok sk sk sk ok ok ok ok o o ok ok ok sk sk sk sk ok ok o o o o ok ok ok sk sk sk sk ok ok o o o ok sk sk ok ok o ok o ok ok sk sk sk sk ok ok ok ok ok ko ok /
hf_halo_aux3(Sub,Hals,Halos):-
findall (X, (pair(Sub,Hal),
reac_type(Hal,_,X),
memberchk (X, [f,cl,br,i])) ,Halos),
findall(Hal, (pair(Sub,Hal),
reac_type(Hal,_,X),
memberchk (X, [f,cl,br,i])) ,Hals).

/3K sk sk ok ok ok ok o ok ok ok sk sk ok ok ok ok ok o o ok ok ok sk ok ok sk ok ok ok o o o ok ok ok sk sk sk sk ok ok ok ok o ok sk sk ok ok o ok o ok ok sk sk ok ok ok ok ok ok ok ko ok ok
This code will see what each Sub is hooked to and get the appropriate
correction
stttk sk sk ook ok ok ok sk sk sk sk sk sk sk sk sk ok ok ok otk stk sk sk s ko ok ok sk sk sk sk sk sk sk sk sk sk ok okttt ok okokokokok kol ookl sk sk sk sk ok ok ok ok ok /
hf_halo_aux2(methyl,Halos,Sub,Xi):-
findall (0Sub, (pair(Sub,0Sub),

reac_type(0Sub, _,0Type) ,

\+ memberchk (0Type, [f,cl,br,i])),0Subs),
hf_halo_aux2_aux1(0Subs,Halos,0,Xi).
hf_halo_aux2(ethylenic,_,Sub,Xi):-
reactophore_fact(Sub,_, [A,B],_,Atoms),
hf_halo_aux2_ethy1(Sub,A,[_|_1),
Jmake sure at least one halo on each side of ethy
hf_halo_aux2_ethyl(Sub,B,[_|_]1),
hf_halo_aux2_ethy(Atoms,Xi).
hf_halo_aux2(_,_,_,0).

[Kok Kok ok ok ok ok ok ok Kok K oK oK ok K oK Kok oK Kok K oK K ok K oK K ok KK Kok K R K Kok K Kok oK Kok K Kok ok Kok
Make sure there are Halos off off a Sub (maybe can combine w/ hf_halo_aux3)
Kok KoK oK ok oK oK oK oK KoK K oK o oK oK oK o oK K oK o oK K ok o oK o oK ok o oK o K ok o oK ok K ok oK ok Ko K ok oK ok K ok oK o K ok ok ok K ok ok kK ok /
hf_halo_aux2_ethyl(Sub,A,Halos) : -
findall(Type, (pair(Sub,A,_,X),

reac_type(X,_,Type),

memberchk (Type, [f,cl,br,i])) ,Halos).

/KoK sk sk ok sk sk ok ok sk ok ok sk K ok ok sk ok ok sk K ok ok sk ok ok K 3 ok ok K ok ok K 3 ok ok ok ok K 3 ok ok K ok ok K ok ok sk ok ok k3 ok ok ok ok sk ok ok ok ok ok ok K
Get the "cis" interaction and then if there is no "cis" interaction

get other correction (only necessary for fluorine)

Kok K ok ok ok ok 3 ok K ok ok ok ok ok K ok ok 3 ok K ok ok ok ok 3 ok K ok ok 3 ok K ok K ok ok 3 ok K ok ok sk ok 3 ok ok ok ok sk ok ok 3k ok ok K ok ok 3 ok ok ok ok K ok ok sk ok ok /
hf_halo_aux2_ethy([[A1,A2], [B1,B2]],Xil):-
hf_halo_aux2_ethy_aux(Al1,B2,Valla),

hf_halo_aux2_ethy_aux(A2,B1,Vallb),

hf_halo_aux2_ethy_aux2(Valla,Vallb, [A1,A2,B1,B2],Val2),

Xil is Valla + Vallb + Val2.

190

Doolots

hf_halo_aux2_ethy_aux2(Valla,Vallb,_,0):-

(Valla \= 0 ; Vallb \= 0).
hf_halo_aux2_ethy_aux2(_,_, [A1,A2,B1,B2],Val2):-
hf_halo_aux2_ethy_aux2_aux([A1,B1],Val2a),
hf_halo_aux2_ethy_aux2_aux([A2,B2],Val2b),

Val2 is Val2a + Val2b.

oot

hf_halo_aux2_ethy_aux2_aux([[A], [B]],Val):-

%% only for fluorine (Cl seems to work just fine)
hf_halo_get_halo(A,f),

hf_halo_get_halo(B,f),

hf_halo_get_key(f,f,Key),

hf_halo_ethy3(Key,Val).
hf_halo_aux2_ethy_aux2_aux(_,0).

T ot to

hf_halo_aux2_ethy_aux([A], [B],Vall):-
hf_halo_get_halo(A,AHal),
hf_halo_get_halo(B,BHal),
hf_halo_get_key(AHal,BHal,Key),
hf_halo_ethy2(Key,Vall).
hf_halo_aux2_ethy_aux(_,_,0).

[Kk ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o o kK ok ok ok ok ok ok ok ok o o ok ok ok sk ok ok ok ok ok ok ok o ok ok ok ok ok ok ok o o K K ok
Get the correction for the halos off of each Sub

sk ok sk ok ok ok ok o o o o ok ok ok sk sk sk sk ok ok o o o ok ok ok sk sk sk sk ok ok o o o ok ok sk sk sk sk sk ok ok o o ok sk sk ok ok ok ok ok ok ok k ok /
hf_halo_aux2_aux1([],_,Xi,Xi).

hf_halo_aux2_aux1([0Sub|T] ,Halos,Part,Xi):-
hf_halo_aux3(0Sub,_,0Halos),

reac_type (0Sub, _,0Type),
hf_halo_aux2_aux(0Type,0Sub,0Halos,Halos,Val),

NewPart is Part + Val,

hf_halo_aux2_aux1(T,Halos,NewPart,Xi).

hf_halo_aux2_aux(methyl,_, [],Halos,Xi):-
%for Halos attached to pure methyl
length(Halos,Len),
delete_duplicates(Halos,Hals),
concatenate_atomlist_to_atom(Hals,Keyl),
concatenate_atomlist_to_atom([Keyl-Len],Key),
hf_halo_xi(Key,Xi).
hf_halo_aux2_aux(methyl,_,[],_,Xi):-

Xi is error.
hf_halo_aux2_aux(ethylenic,_,[],[f,f,f],Xi):-
%for when a methyl is attached to an ethy
hf_halo_xi(f3-e,Xi).
hf_halo_aux2_aux(aromatic,_,_,[f,f,f],Xi):-
%for when a methyl is attached to an arom
hf_halo_xi(f3-arom,Xi).

hf_halo_aux2_aux(methyl,_,0Halos,Halos,Xi):-
hfor Halos attached to methyl w/ multiHalos
hf_halo_aux2_aux_aux(Halos,0Halos,0,Xi).
hf_halo_aux2_aux(_,_,_,_,0).

/ot ko ook ok ok ok sk sk sk sk sk sk sk sk ok ok ok otttk ok ok ook ok ok ok sk sk sk sk sk sk sk sk sk ok ok ookt kok koo ok ook ook
for calculating the interaction between Halos on adjacent atoms
Kok oK ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o ok ok ok sk ok ok ok ok ok ok ok o ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko kk /
hf_halo_aux2_aux_aux([],_,Xi,Xi).
hf_halo_aux2_aux_aux([H|T],OHalos,Part,Xi):-
hf_halo_aux2_aux_aux_aux(0OHalos,H,0,PXi),

NewPart is Part + PXi,

hf_halo_aux2_aux_aux(T,0Halos,NewPart,Xi).

hf_halo_aux2_aux_aux_aux([],_,PXi,PXi).
hf_halo_aux2_aux_aux_aux([H|T],Hal,Part,PXi) :-
hf_halo_get_key(H,Hal,Key),

hf_halo_xi(Key,V),

NewPart is Part + V,
hf_halo_aux2_aux_aux_aux(T,Hal,NewPart,PXi).

/3K sk sk ok ok ok o o o ok ok ok sk sk sk sk ok ok o o o ok ok ok sk sk sk sk ok ok o o o ok ok sk sk sk sk sk ok ok o o e e okok sk ok ok ok ok o o ok ok ok ok
for calculating the perfluoro interaction

sk ok ok sk ok o o ok sk ok o ok sk ok ok o ok sk ok ok ok sk sk o s ok sk ok ok sk sk ok o ok sk sk ok ok sksk ok ok skok ok sk sk ok ok ok ok ok /
hf_halo_per (methyl,_,Halos,Sub,Per):-

hf_halo_per_common (Halos,Sub,Len,0Subs,Len0S),

(Len =:= 3 -> true
; Len =:= 2, Len0S =:= 2 -> true
; Len =:= 1, Len0S =:= 3 -> true
; fail
),

hf_halo_per_aux(methyl,0Subs,Sub,Len,0,Per).
hf_halo_per(ethylenic,Hals,Halos,Sub,Per):-
hf_halo_per_common(Halos,Sub,Len,0Subs,Len0S),
(Len =:= 3 —> true
; Len =:= 2,
Len0S

I
I
N

191

192

Hals = [A,B],
pair(A,_,C1,S),
pair(B,_,C2,S),

Cl1 \= C2,
reactophore_fact(S,_,_,_,_) —-> true
; fail
),
hf_halo_per_aux(ethylenic,0Subs,Sub,_,0,Per).
hf_halo_per(_,_,_,_,0).
Tolo ot

hf_halo_per_common(Halos,Sub,Len,0Subs,Len0S) : -
delete_duplicates(Halos, [f]),
length(Halos,Len),
findall (OSub, (pair(Sub,0Sub),
reac_type (0Sub, _,0Type),
\+ memberchk(0Type, [f,cl,br,i])) ,0Subs),
length (0Subs,Len0S) .

Dotoo o

hf_halo_per_aux(_,[],_,_,Per,Per).
hf_halo_per_aux(methyl, [0Sub|T],Sub,NFS,Part,Per) : -
hf_halo_per_common2(0Sub,Sub,_),
hf_halo(per-NFS,Val),

NewPart is Part + Val,
hf_halo_per_aux(methyl,T,Sub,NFS,NewPart,Per) .
hf_halo_per_aux(ethylenic, [0Sub|T],Sub,_,Part,Per):-
hf_halo_per_common2(0Sub,Sub,Len),
hf_halo_ethyl(per-Len,Val),

NewPart is Part + Val,
hf_halo_per_aux(ethylenic,T,Sub,_,NewPart,Per).
hf_halo_per_aux(_, [_|T],Sub,NFS,Part,Per):-
hf_halo_per_aux(_,T,Sub,NFS,Part,Per).

Dotoo o

hf_halo_per_common2(0Sub,Sub,Len) : -

hf_halo_aux3(0Sub,_,0Halos),

delete_duplicates(OHalos, [f]),

length(OHalos,Len),

findall (00Sub, (pair (0Sub,00Sub),
00Sub \= Sub,
reac_type (00Sub, _,00Type),
\+ memberchk (00Type, [f,cl,br,i])) ,00Subs),

length (00Subs,Len00S),

(Len =:= 3 -> true

; Len =:= 2, Len00S =:=1 -> true
; fail

[KKK KA R KK KK K K K KRR KR SR KK oK K oK K oK KRk KR sk koK Sk oK Sk KoK ok ok ok ok ok sk ok ok o o
%%’ THIS Determines the xi mult, the real way to do it, i’m going to hack

193

%kt something together and then see if we can come back and do it right when

%%l get more data

hf_halo_aux2(methyl,Sub,Halos,Halo) :-
fail,

hf_halo_aux_out (Sub,0Outs),
length(Outs,Len),

Len > 0,
hf_halo_aux_aux(Outs,Halos,Sub, [],Halo).
hf_halo_aux2(_,_,_,0).

Dotolo o

hf_halo_aux_out (Sub,0uts) : -
findall(Out, (pair (Sub,0Out),
reac_type(Out,_,X),
\+ memberchk (X, [f,cl,br,i])),0uts).

Toto ot
hf_halo_aux_aux([],_,_,Xis,Halo) :-
sumlist (Xis,Halo).

hf_halo_aux_aux([Out|Rest] ,Halos,Sub,Part,Halo) : -

hf_get_effective_xi(Halos,Sub,0ut,XiCl1),

findall(02, (pair(Sub,02),
reac_type(02,_,X),

\+ memberchk (X, [methyl])),02s),
hf_get_effective_xi(02s,0ut,Sub,XiC2),
P1 is XiC2-XiC1,
abs(P1,P2),

hf_halo(f,Q),

XX is Qx(P2 - 4.6),
abs (XX, XXX),

hf_halo_aux_aux(Rest,Halos,Sub, [XXX|Part] ,Halo).

%%Gets the effective Chi for subs

%%for pure C it’s 2.3

%hSubs are the Substiuents off of Ci,
%%C1 is the reac_center

%%C2 is the other reac

%%XiC1 is the Xi getting

hf_get_effective_xi(Subs,C1,C2,XiCl1):-
reac_type(Cl,_,CiType),
pka_s_f (C1Type,StartXi),
reac_type(C2,_,C2Type),

sigmal (Subs,C1,StartXi,C2,C2Type,0.295,0,sigma,0.911766, [],XiC1).

test_xi(X):-
Smiles = ’FCCC’,
execute (prepare_for_property(nul,Smiles),ResTop),
ResTop = true,
!
findall (X, (pair(m1,X),
\+ reac_type(X,_,methyl)),Subs),

hf_get_effective_xi(Subs,ml,m2,X).
5ok K ok oK o ok 3 ok 3 ok oK 3 ok 3 ok 3K ok ok 3 ok 3 ok K 3k ok 3 ok 3 ok sk 3 ok 3 ok 3 3k ok 3 ok 3 ok sk 3k ok 3 ok 3 ok ok ok ok ok 3 ok 3k ok ok ok ok k ok /

/3K sk sk sk ok ok o o o ok ok sk sk sk sk sk ok ok o o o ok ok ok sk sk sk sk sk ok ok o o o ok ok ok sk sk sk ok sk ok ok o o ok sk sk sk sk ok ok o ok o ok ok ok ok ok ok
Gets the intra-atom interaction between Halos

stttk stk sk ko ook ok ok sk sk sk sk sk sk sk sk sk sk ok ok ok okttt kst sk s koo ok ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok ok ookt ok ok ok /
hf_halo_aux(methyl,Halos,_,0):-

length(Halos,NumHalos),

NumHalos =< 1.

hf_halo_aux(methyl,Halos,_,Halo):-/mutiple Halos on same sub
hf_halo_part(Halos,f,FPart),

hf_halo_part(Halos,cl,ClPart),

hf_halo_part(Halos,br,BrPart),

hf_halo_part(Halos,i,IPart),

Partl is FPart + ClPart + BrPart + IPart,
hf_halo_aux_aux(Halos,Halos,0,Part2),

hgets interaction between each halo and the others

Halo is Partl + Part2.

hf_halo_aux(ethylenic,_,Sub,Halo):-
reactophore_fact(Sub,_,_,_, [AA,BB]),

194

195

hf_halo_aux_ethy(AA,P1),
hf_halo_aux_ethy(BB,P2),
Halo is P1 + P2.

[Kk Kok ok ok ok Kok ok o ok KoK ok ok oK Kok ok oK Kok ok o K KoK ok ok ok Kok ok K Kok ok o K KoK ok KoK ok ok ok Kok ok ok Kok ok ok
Gets interaction between Halos on same atom in an ethy

KoKk o ok Kok ok ok KoK ok o K oK ok ok oK Kok ok ok Kok ok o K K oK ok o ok K ok ok ok K ok ok o K ok ok K ok ok ok ok Kok ok ok Kok ok /
hf_halo_aux_ethy([[],[1],0).

hf_halo_aux_ethy([[_]1,[1],0).

hf_halo_aux_ethy([[],[_1],0).

hf_halo_aux_ethy([[A1], [A2]],P1):-

hf_halo_get_halo(Al,H1),

hf_halo_get_halo(A2,H2),

hf_halo_get_key(H1,H2,Key),

hf_halo_ethyl(Key,P1).

hf_halo_aux_ethy(_,0).

[KoKk ok ok ok Kk ok Kok ok ok Kok ok ok Kok ok ok ok ok ok oK
Gets the "Key" from two inputs

stk Kok oK ok Kok Kok oK oK ok KoK Kok oK Kok Kok kK ok ok
hf_halo_get_key(H1,H1,H1-H1).
hf_halo_get_key(H1,H2,Key) : -

sort ([H1,H2], [A,B]),

Key = A-B.

[KKK Kok Kok KoK ok Kok KoK ok Kok ok ok Kok oK ok Kok ok ok K oK
Takes and atom and see what halogen
is paired to it (used by ethylenics)
sk Kok Kok KoK Kok KoK Kok oK KoK K Kok oKk ok K/
hf_halo_get_halo(Atom,Halo):-
reactophore_fact (Subl,_,Atl,_,_),
memberchk (Atom,Atl),
reac_type(Subl,_,Halo),
memberchk (Halo, [f,cl,br,i]).

/***

gets correction for each halogen interaction with the others

if same type don’t get interaction, just recall

sk sk sk sk ok ok ok ok ok o ok ok ok sk sk sk sk sk sk sk sk ok o sk ok sk sk sk sk sk sk sk sk sk o ok sk sk ok sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk ko ok ok ok ok ok /
hf_halo_aux_aux([],_,0Out,Out).

hf_halo_aux_aux([H|T] ,Halos,Part,Part2):-
hf_halo_aux_aux_aux(Halos,H,0,Val),

NewPart is Part + Val,

hf_halo_aux_aux(T,Halos,NewPart,Part?2).

196

hf_halo_aux_aux_aux([],_,0Out,Out).
hf_halo_aux_aux_aux([H|T] ,H,Part,Val) :-
hf_halo_aux_aux_aux(T,H,Part,Val).
hf_halo_aux_aux_aux([H2|T] ,H,Part,Val):-
hf_halo_get_key(H2,H,Key),
hf_halo(Key,V),

NewPart is Part + V,
hf_halo_aux_aux_aux(T,H,NewPart,Val).

[KKK K ok Kok oK ok oK oK oK ok oK oK oK ok oK oK oK ok o oK oK ok o oK oK ok o oK oK ok o oK o K ok oK K K ok ook K ok oK oK ok ok ok
Gets the correction for a Type of halogen

(polynomial correction)

stk oK ok ko oK oK Kok K oK Kok K oK K ok K oK Kok K oK Kok oK Kok K oK Kok oK Kok oK K Kok oK Kok oK K ok ok
hf_halo_part(Halos,Type,Part) :—

hf_num_halos(Halos,Type,NumX),
concatenate_atomlist_to_atom([Type-al,KeyA),
concatenate_atomlist_to_atom([Type-b],KeyB),

hf_halo(KeyA,VA),

hf_halo(KeyB,VB),

Part is VA*NumX*NumX+VB*NumX.

hf_num_halos(Halos,Type,Num) : -
findall(Type,member(Type,Halos),Xs),
length (Xs,Num) .

[KKK KK ok Kok oK ok ook K oK oK oK ok o oK oK ok o oK K ok o oK oK ok o oK o K ok oK o Kok oK ok Ko Kok o oK o Kok oK o Kok oK o Kok oK o Kok
Code is written to account for the raising of energy by ~2bkJ

when two oeths are joined next to each other

stk ok ok ok ok oK oK oK oK oK oK oK ok oK oK oK oK oK oK o oK ok o oK K ok o oK o oK ok o ok o oK ok o ok ok K ok o ok ok K o K ok o ok ok K ok ok ok K ok ok ok Kok ok sk ok ok /
hf_dipole_repulsion([],_,0Out,Out).
hf_dipole_repulsion([H|T],Type,Part,ValueB2):-

n_o_s_type(H,HType),

hf_dipole(HType,Val),

NewPart is Part + Val,

hf_dipole_repulsion(T,Type,NewPart,ValueB2).
hf_dipole_repulsion([_|T],Type,Part,ValueB2):-
hf_dipole_repulsion(T,Type,Part,ValueB2).

/R 3kkok ok ok ok ok s ok ok ok sk sk sksk sk ok ok ok s ok ok ok sk sk sk sk sk sk ok sk s ok ok ok sk sk sk sk sk sk sk sk ki sk sk sk sk ok sk ko ok sk sksk sk sk ok ok sk ok ok ok
Correction for resonance in chains and chains-rings

Sub is whatever substituent you are on (eg: e2) ListPi are the

other ethylenic or aromatic compounds that are hooked to it

sk sk sk sk ok ok ok ok ok o o ok ok ok sk sk sk sk sk sk ok sk o ko sk sk sk sk sk sk sk sk o o ok ok sk sk sk sk sk sk sk sk sk sk sksk sk sk sk sk sk ok ok sk ok sk sk sk sk sk sk sk sk ok ko ok /

hf_resonance([_|_],_Subs,Sub,Type, _Part,Resonance) :-

allchains(Chains),
hf_fix_chain(Chains,Sub,TadChain),
delete_duplicates(TadChain,TadChainsl),

hf_fix_chain2(TadChains1,TadChains),

hf_get_chargeout (Sub,TadChains,Chargelut),
hf_resonance(Type,ResVal),

Resonance is ChargeOut*ResVal*x(-1.0),
hf_data(resonance,Sub,Resonance).

hf_resonance(_,_,Sub,_,_,0):-
hf_data(resonance,Sub,0) .

/KKK skskok ok sk ok ok ok sk sk sk sk sk sk sk sk sk ok okok ok sk sk sk sk sk sk sk ok sk ok ok ok ok sk sk sk sk sk sk ok sk s ok sk sk sk sk sk ok ok
deletes acetylenics from chain because no charge

should get distributed into them

sk sk sk sk ok ok ok ok ok o o ok ok sk sk sk sk sk sk sk sk o ok sk sk sk sk sk sk sk sk ok o ok sk sk sk sk sk sk sk sk sk o ok sk sk sk sk sk sk sk ok /
hf_fix_chain2([1,[1).

hf_fix_chain2([H|T], [H|TadChains]) : -

H=[1],

3

hf_fix_chain2(T,TadChains).
hf_fix_chain2([H|T], [H| TadChains]) :-
H = [_,Name|_],

\+ reac_type(Name,_,acetylenic),
b,

hf_fix_chain2(T,TadChains).
hf_fix_chain2([_|T],TadChains) :-

hf_fix_chain2(T,TadChains).

/K 3kkok koo o s ko ok sk stk ok ok ok ok ok sk s ok ok ok sk sk sk sk sk ok ok o s ok ok ok sk sk sk sk ok sk ok o s ok sk sk ok ok ok ok ok
arranges the Chains so that gets the reactophores to

the left and right of the reactophore you are sitting

on

sk skok ok ok ok ok o o ok ok sk sk ok ok sk ok ok o o ok ok ok sk sk sk sk sk ok ok o ok ok ok sk sk sk sk sk ok ok o ok sk sk sk sk ok ok ok ok /
hf_fix_chain([],_,[1).

hf_fix_chain([H|T],Sub,Chains) :-

\+ memberchk(Sub,H),

hf_fix_chain(T,Sub,Chains).
hf_fix_chain([H|T],Sub, [[Sub|RLeft], [Sub|Right] |Chains]) :-
memberchk (Sub,H),

chop_at_item(H,Sub,Left,Right),

197

198

reverse(Left,RLeft),
hf_fix_chain(T,Sub,Chains).

/K 3kksk sk ok ok ok sk ok ok ok ok sk sk sk sksk sk ok ok o ok ok ok sk sk sk sk sk sk ok sk koo sk sk sk sk sk sk sk sk sk ok okksk sk sk sk ok sk ok ok ok ok sk sksksk sk sk ok ok ok ok
Correction for size and number of methyl,ethylenic,acetylenic,

and aromatic groups:

Len is number of substituent groups,

Effective Size is the size of these groups

hf_perri gets correction for groups that are perri

get’s oh groups connectivity correction too.

sk sk sk sk ok ok ok ok o o o ok ok sk sk sk sk ok ok o o o o ok ok sk sk sk sk sk ok o o o ok ok ok sk sk sk sk ok ok o o o sk sk sk ok ok o o o ok ok sk sk sk sk sk ok ok ok ok ok /
hf_branch(methyl,Sub, _,Subs,Value) :-

length(Subs,Len),

Len =< 4,

hf_branch_connectivity(methyl,Len,Sub,Subs,Connectivity),

hf_get_sub_size(Sub,Subs,Sizes),’%capped at size of 2-t-butyls
%% get_sub_size(Sub,Subs,Sizes),

sumlist (Sizes,Size),

ESizel is Size - Len * 0.05,

YA minimum([ESizel1,0.735] ,ESize),

ESize is ESizel,

maximum([0,ESize], EffectiveSize),
hf_steric_methyl(Len, Hfs),
Steric is EffectiveSize * Hfs,
hf_data(steric,Sub,Steric),

Value is Connectivity + Steric.

hf_branch(ethylenic,Sub,_,_,Value) :-
hf_cis_trans(Sub,ethylenic,Value). %really deals w/ atoms around ethy
hf_branch(oethylenic,Sub,_,_,Value) :-
hf_cis_trans(Sub,oethylenic,Value).
hf_branch(nethylenic,Sub,_,_,Value) :-
hf_cis_trans(Sub,nethylenic,Value).
hf_branch(sethylenic,Sub,_,_,Value) :-

hf_cis_trans(Sub,sethylenic,Value).

hf_branch(acetylenic,Sub,_,Subs,Value) :-
length(Subs,Len),

hf_branch_acetylenic(a,A),

hf_branch_acetylenic(b,B),

Connectivity is ((A*Len*Len)+(B*Len)),
hf_data(connectivity,Sub,Connectivity),

hf_get_sub_size(Sub,Subs,Sizes),
%% get_sub_size(Sub,Subs,Sizes),
sumlist(Sizes,Size),
ESize is Size - Len *x 0.05,
maximum([0,ESize], EffectiveSize),
hf_steric_acetylenic(ace, Hfs),
Steric is EffectiveSize * Hfs,
hf_data(steric,Sub,Steric),
hf_endo_ace(Sub,Endo),
hf_data(basic_endo,Sub,Endo),

Value is Connectivity + Steric + Endo.
hf_branch(aromatic,Sub,_,Subs,Value) :-

hf_branch_aromatic_pos(Sub, Subs,NumReg, NmN21BReg, NmNxt21BrgIlnner,

NmNxt21BrgQOuter, NmNxt22Brgs) ,
hf_ba_reg(aromatic,Vall),
hf_ba_breg(aromatic,Val2),
hf_ba_inn(aromatic,Val3),
hf_ba_out (aromatic,Val4d),
hf_ba_mid(aromatic,Val5s),

Part is NumReg*Vall + NmN21BReg*Val2 + NmNxt21BrgInner*Val3 +

NmNxt21BrgOuter*Val4 + NmNxt22Brgs*Valb,
hf_data(connectivity,Sub,Part),

hf_get_sub_size(Sub,Subs,Sizes),

%% get_sub_size(Sub,Subs,Sizes),

sumlist(Sizes,Size),

length(Subs,Len),

ESize is Size - Len * 0.05,

maximum([0,ESize] ,EffectiveSize),

hf_sa(aromatic,Hfs),

Steric is EffectiveSizexHfs,
hf_data(steric,Sub,Steric),

hf_branch_ortho (Subs,Sub,0rtho),
%% hf_data(connectivity,Sub,0rtho),
hf_data(steric,Sub,0rtho),

hf_perri(Subs,Sub,0,Perri),
hf_data(steric,Sub,Perri),

199

Value is Part + Steric + Ortho + Perri.

hf_branch(oh,Sub,_, [],Value) : -

Connectivity is O,
hf_data(connectivity,Sub,Connectivity),
Value is Connectivity.

hf_branch(oh,Sub,_, [Subs],Value) : -

reac_type(Subs, _,Type),

hf_connect_oh(Type,Val),

Connectivity is Val,
hf_data(connectivity,Sub,Connectivity),

Value is Connectivity.
hf_branch(co2h,Sub,_, []1,Value):-
Connectivity is O,
hf_data(connectivity,Sub,Connectivity),
Value is Connectivity.
hf_branch(co2h,Sub,_, [Subs],Value) : -
reac_type(Subs,_,Type),
hf_connect_co2h(Type,Val),
Connectivity is Val,
hf_data(connectivity,Sub,Connectivity),
Value is Connectivity.
hf_branch(_SubType,_,_,_Subs,error).

/3K sk skok sk ok ok o ok ok sksk sk sk sk sk sk sk sk sk ok o sk ok ok sk sk sk sk sk sk sk ok o ok sk sk sk sk sk sk sk sk sk ok sk o ok sk sk sk sk sk sk ok
Deals with the connectivity of Atoms.

-methyl - for methyl groups

when there are Len num of Subs,

get’s correction based on polynomial +

correction for what each of the type those

subs are.

only necessary when there are more than 2

substituents b/c that’s when this interaction

occurs

sksk sk sk sk sk ok ok ok o o ko ok sk sk sk sk sk sk sk sk sk o ko ok sk sk sk sk sk sk sk ok ok o sk sk sk sk sk sk sk sk sk sk sk sk kok ok sk sk sk sk ok /
hf_branch_connectivity(methyl,Len,Sub,Subs,Connectivity) :-
hf_branch_connectivity_aux(methyl,Len,Subs,0,C),

hf_branch_methyl(a,A),

hf_branch_methyl(b,B),

Connectivity is (A*Len*Len)+(BxLen) + C,
hf_data(connectivity,Sub,Connectivity) .

200

201

hf_branch_connectivity_aux(methyl,_, [],0Out,Out).
hf_branch_connectivity_aux(methyl,Len, [Sub|Rest],Part,C):-
Len > 2,

reac_type(Sub, _,Name),

concatenate_atomlist_to_atom([Name-Len] ,Key),
hf_branch_methyl (Key,Val),

NewPart is Part + Val,
hf_branch_connectivity_aux(methyl,Len,Rest,NewPart,C).
hf_branch_connectivity_aux(methyl,Len, [_|Rest],Part,C):-
hf_branch_connectivity_aux(methyl,Len,Rest,Part,C).

/KK skskskokok ok ok ok ok sk sk sk sk sksk sk sk sk ok o ok okok sk sk sk sk sk sk sk ok sk ok ks ok ok sk sk sk sk sk sk ok sk o ok sk sk sk sk sk sk ok
gets a correction for acetylenic being endo in
a ring.
stk ok ok sk sk sk ok ok sk sk sk sk ok sk sksk sk ok sk sk sk ok sk sksk sk ok sksk sk ok sk sksk sk ksksksk sk ok sk sk ok sk sk sk ok /
hf_endo_ace(Sub,Endo) : -
reactophore_fact(Sub,_, [A,B],_,_),
findall(_X, (ring(_,R),
memberchk (A,R),
memberchk (B,R)), [_I_]),
hf_branch_acetylenic(endo,Endo),
!

hf_endo_ace(_,0).

//skskokokokok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk skskokok ok ko ok kok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok ok ok
gets the number of subs that are in each of the 5 possible
positions in an aromatic hydrocarbon:

regular location NOT next to a bridge

regular location next to a bridge if cmpd is NOT bent

inner location next to a bridge if bent

outer location next to a bridge if bent

middle location between 2 bridges

Sub is Sub sitting on....Subs are the substituents off that Sub
first gets the Atoms of the all the Subs in a list

--maybe should seperate to lists of atoms for each sub

then gets all the bridge_atoms in the Sub

next get All the Atoms in the Sub

then find the locations:

after the locations are found find out how much each location
contributes to the total Hf, b/c some branches might

be in more than 1 location: eg middle location and inner

figure out how much each should contribute by getting total num
of subs, and total num of locations,

the actual contribution for each location is:

the location/total num locations * total subs

ok ok ok ok ok 3 ok K ok ok 3 ok ok oK ok ok 3 ok ok ok 3 ok 3 ok K ok ok 3 ok ok ok ok ok ok sk ok ok ok ok ok sk ok sk ok ok ok ok ok /

hf_branch_aromatic_pos(_,[],0,0,0,0,0).

hf_branch_aromatic_pos(Sub, Subs,NumReg,NN21BReg,
NumNxt21BrgInner,NumNxt21BrgOuter ,NumNxt22Brgs) : -
hf_branch_aromatic_pos_aux(Subs, [],Atoms),

bridge_atoms(Sub,BridgeAs),

reactophore_fact(Sub,_,AA,_,_),
hf_branch_aromatic_pos_aux2a(Atoms,AA,BridgeAs,_,0,NumNxt22Brgs1),
hf_branch_aromatic_pos_aux2b(Atoms,AA,BridgeAs,_,0,NumNxt21BrgQuterl),
hf_branch_aromatic_pos_aux2c(Atoms,AA,BridgeAs,_,0,NumNxt21BrgInnerl),
hf_branch_aromatic_pos_aux2d(Atoms,AA,BridgeAs,_,0,NN21BRegl),
hf_branch_aromatic_pos_aux2e(Atoms,AA,BridgeAs,_,0,NumRegl),

length(Subs,NumSubs),
Total is NumRegl + NN21BRegl + NumNxt21Brglnnerl
+ NumNxt21BrgOuterl + NumNxt22Brgsi,

NumReg is (NumRegl/Total)*NumSubs,

NN21BReg is (NN21BRegl/Total)*NumSubs,
NumNxt21BrgInner is (NumNxt21BrgInnerl/Total)*NumSubs,
NumNxt21BrgOuter is (NumNxt21BrgQOuterl/Total)*NumSubs,
NumNxt22Brgs is (NumNxt22Brgsl/Total)*NumSubs.

/KKK ok koo ok ok o o ok ok sk ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o ok k koK ok ok ok ok ok ok ok o ok ok ok ok ok ok ok o
NumNxt22Brgsl is Number of Subs Next To 2 Bridges

sk ok sk sk ok ok ok ok o o o ok ok ok ok sk sk sk ok ok ok o o o ok ok ok ok sk sk sk sk ok ok o o o ok ok sk sk sk sk sk ok ok ok sk ok ok ok ok ok ok ok /
hf_branch_aromatic_pos_aux2a(_,_,[],_,_,0).
hf_branch_aromatic_pos_aux2a([],_,_,_,Part,Part).

hf_branch_aromatic_pos_aux2a([H|T],AA,BridgeAs, Subs,Part,NumNxt22Brgs1) : -

findall (X, (member (X,H),

bonded(X,_,7Z),
memberchk (Z, AA),

bonded(Z,_,Y),
Y \= X,
memberchk (Y,BridgeAs),
bonded(Z,_,YY),
YY \= X,

202

203

YY \=Y,

memberchk (YY,BridgeAs)) ,Next22Bridgel),
delete_duplicates(Next22Bridgel,Next22Bridge),
length(Next22Bridge, NumN22B) ,
NewPart is Part + NumN22B,
hf_branch_aromatic_pos_aux2a(T,AA,BridgeAs,Subs,NewPart,NumNxt22Brgsl) .

/K 3k sk sk sk ok ok o o o ok ok ok sk sk sk sk sk ok ok o o o o ok ok ok sk sk sk sk ok ok ok o o o ok ok ok sk sk sk sk sk ok o o o ok sk ok ok ok ok ok
Outer is NumberofSubsNextToBridge on the Outer side of a curve
stttk st sk ok ook ok ok sk sk sk sk sk sk sk sk sk ok ok okokokokok sk ko ook ok sk sk sk sk sk sk sk sk sk sk ok ok ok ok sk ok ok ok ok ok /
hf_branch_aromatic_pos_aux2b(_,_,[]1,_,_,0).
hf_branch_aromatic_pos_aux2b([],_,_,_,Part,Part).
hf_branch_aromatic_pos_aux2b([H|T],AA,BridgeAs,Subs,Part,Quter) : -
findall (X, (member (X,H),

bonded(X,_,Z),

memberchk(Z,AA),

bonded(Z,_,Y),

Y \= X,

memberchk (Y,BridgeAs),

bonded(Z,_,YY),

YY \= X,

YY \=Y,

\+ memberchk(YY,BridgeAs),

bonded (YY, _,YY2),

memberchk (YY2,AA),

YY2 \= Z,

memberchk (YY2,BridgeAs),

bonded (YY2,_,YY3),

YY3 \= YY,

memberchk (YY3,BridgeAs),

bonded(Y,_,Y2),

memberchk (Y2, AA),

Y2 \= Z,

memberchk (Y2,BridgeAs),

bonded (YY3,_,Y2)),ListOuterl),
delete_duplicates(ListOuterl,ListOuter),
length(ListOuter,NumOuter),
NewPart is Part + NumOuter,
hf_branch_aromatic_pos_aux2b(T,AA,BridgeAs,Subs,NewPart,Quter) .

/K 3k sk sk ok ok ok o ok o o ok ok sk sk sk sk sk ok ok ok ok o ok ok ok sk sk sk sk ok ok ok ok o o o ok ok sk sk sk sk sk ok o o ok ok sk sk ok ok ok ok o
Inner is NumberofSubsNextToBridge on the Inner side of a curve
sk ok ok sk o o ok sk ok o ok sk ok o ok sk ok ok s ok sk sk ok ok ok sk sk ok ok sk ok ok sk sk ok ok ok skok ok skok ok ok /
hf_branch_aromatic_pos_aux2c(_,_,[],_,_,0).
hf_branch_aromatic_pos_aux2c([],_,_,_,Part,Part).

204

hf_branch_aromatic_pos_aux2c([H|T],AA,BridgeAs,Subs,Part,Inner):-
findall (X, (member (X,H),

bonded (X, _,7Z),
memberchk(Z, AA),

bonded(Z,_,Y),

Y \= X,

memberchk (Y,BridgeAs),

bonded(Y,_,Y2),

memberchk (Y2,BridgeAs),

bonded(Y,_,Y3),

Y2 \= Y3,

memberchk (Y3,BridgeAs),

bonded (Y2, _,Y4),

Y4 \=Y,

memberchk (Y4,BridgeAs),

bonded(Y2,_,Y8),

Y8 \=Y,

Y8 \= Y4,

memberchk (Y8, AA),

bonded (Y3, _,Y5),

memberchk (Y5, AA),

Y5 \=Y,
bonded (Y4, _,Y6),
Y6 \= Y2,

memberchk (Y6, AA) ,

bonded(Y5,_,Y6)),ListInnerl),
delete_duplicates(ListInnerl,ListInner),
length(ListInner,NumInner),
NewPart is Part + NumInner,
hf_branch_aromatic_pos_aux2c(T,AA,BridgeAs,Subs,NewPart, Inner) .

/K ok sk ok o ok sk sk ok o sk sk ok ok ok sk ok o ok sk sk ok o sk sk ok o ok sk ok o o ok sk sk ok sk sk sk ok o sk ok ok ok ok ok
NN2Brg is NumberNextToBridge
stk ok ok ok sk ok ok o o sk sk ok sk ok sk sk ok ok sk sk o s o sk sk sk sk ok sk sk ok ok stk ok sk ok sk sk sk sk ok skok ok skok ok sk ok /
hf_branch_aromatic_pos_aux2d(_,_,[],_,_,0).
hf_branch_aromatic_pos_aux2d([],_,_,_,Part,Part).
hf_branch_aromatic_pos_aux2d([H|T],AA,BridgeAs, Subs,Part ,NN2Brg) : -
findall (X, (member (X,H),

bonded(X,_,7Z),

memberchk (Z, AA),

bonded(Z,_,Y),

Y \= X,

memberchk (Y,BridgeAs),

bonded(Z,_,YY),

YY \= X,

205

YY \=Y,

\+ memberchk(YY,BridgeAs),

bonded (YY, _,YY2),

memberchk (YY2,AA),

YY2 \= Z,

\+ memberchk(YY2,BridgeAs),

bonded (Y, _,Y2),

memberchk (Y2,AA),

Y2 \= Z,

\+ memberchk(Y2,BridgeAs),

bonded(Y,_,Y3),

memberchk (Y3,AA),

Y3 \= Z,

memberchk (Y3,BridgeAs)) ,ListN2Brgl),
delete_duplicates(ListN2Brgl,ListN2Brg),
length(ListN2Brg, NumN2Brg) ,
NewPart is Part + NumN2Brg,
hf_branch_aromatic_pos_aux2d(T,AA,BridgeAs,Subs,NewPart,NN2Brg) .

/ot ko ok ook ook ok sk sk sk sk sk sk sk sk sk sk ok sk okokokok ok ok kokokokokokosk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok
Regular Subs--ie not next to a bridge
Kok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok /
hf_branch_aromatic_pos_aux2e([],_,_,_,Part,Part).
hf_branch_aromatic_pos_aux2e([H|T],AA,BridgeAs,Subs,Part,Reg) : -
findall(X, (member (X,H),

bonded(X,_,Z),

memberchk (Z,AA),

bonded(Z,_,Y),

Y \= X,

\+ memberchk(Y,BridgeAs),

bonded(Z,_,YY),

YY \= X,

YY \=Y,

\+ memberchk(YY,BridgeAs)) ,ListRegl),
delete_duplicates(ListRegl,ListReg),
length(ListReg,NumReg),
NewPart is Part + NumReg,
hf_branch_aromatic_pos_aux2e(T,AA,BridgeAs,Subs,NewPart,Reg) .

/K 3k sk sk ok ok ok o o o ok ok ok sk sk sk sk ok ok o o o o ok ok ok sk sk sk sk ok ok o o o o ok ok ok sk sk sk sk ok ok o o o ok sk sk sk ok ok ok
hf_branch_aromatic_pos_aux:

gets the a list of the Atoms in all of the Subs

sk o ok sk o o ok sk ok o ok sk ok o ok sk ok s ok sk sk ok ok ok sk sk o ok sk ok sk sk sk ok ok ok skok ok skok ok ok /
hf_branch_aromatic_pos_aux([],Atoms,Atoms) .
hf_branch_aromatic_pos_aux([H|T],List,Atoms) :-

206

reactophore_fact(H,_,Atom,_,_),
hf_branch_aromatic_pos_aux (T, [Atom|List],Atoms).

/**

For aromatic groups an ortho correction:
Subs are the groups off of Arom

hf_branch_ortho_aux gets the subs that are ortho to each other

hf_branch_ortho_aux2 takes all of the OrthoPairs in an aromatic ring
and depending on if the sub in question is
paired to only one other sub (outer) or
is between two other subs (inner)
the routine follows the proper path to get the appropriate correction

Kok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o o ko ok sk sk ok sk ok ok ok o o ok ok ok sk ok ok sk ok ok ok ok ok ok sk sk ok ok ok ok o ok ok ok sk sk ok ok ok ok ok ko k ok /
hf_branch_ortho (Subs,Arom,OrthoSum) :-

hf_branch_ortho_aux(Subs, Arom,OrthoPairs),

hf_branch_ortho_aux2(0rthoPairs, Arom,0rtho),

sumlist (Ortho,OrthoSum) .

hf_branch_ortho_aux([],_, []).
hf_branch_ortho_aux([H|T],Arom, [H-NewList |Rest]) : -
ortho_subs(Arom,H,List),

hf_boa(List,H,NewList),
hf_branch_ortho_aux(T,Arom,Rest).

hf_boa([l,_, [1).
hf_boa([HIT],Sub, [HIT]):-
reactophore_fact(Sub,_, [A]l,_,_),
findall (_X, (ring(_,R),
length(R,LenR),
LenR < 9,
memberchk(A,R)), [1),
|
hf_boa([H|T],Sub, [H|Rest]) :-
reactophore_fact(Sub,_, [A]l,_,_),
findall (X, (ring(_,X),
% length(R,LenR),
length(X,LenR),

LenR < 9,
memberchk (A,X)),List),
reactophore_fact(H,_, [B],_,_),

findall(_Y, (member (AA,List),

207

memberchk (B,AA)), [1),
L,
hf_boa(T,Sub,Rest).
hf_boa([_|T],Sub,Rest) : -

hf_boa(T,Sub,Rest).

hf_branch_ortho_aux2([],_,[]1).
hf_branch_ortho_aux2([_-[]IT],Arom,0Ortho) : -
hf_branch_ortho_aux2(T,Arom,0rtho) .
hf_branch_ortho_aux2([H-[Sub] |T],Arom, [Part|Ortho]):- Youter
hf_ortho(outer,A),
hf_branch_ortho_mult(outer,H, [Sub] ,Mult),
hf_get_sub_size(Arom, [H,Sub],Sizes),
sumlist(Sizes,Size),

ESize is Size - 2 *x 0.05,

maximum([0,ESize], EffectiveSize),
hf_ortho(inner_outer_size,0S),

Part is A*xMult + EffectiveSizex*0S,
hf_branch_ortho_aux2(T,Arom,Ortho) .
hf_branch_ortho_aux2([H-[Subl,Sub2] |T],Arom, [Part|Ortho]) :- %inner
hf_ortho(inner,A),
hf_branch_ortho_mult(inner,H, [Subl,Sub2] ,Mult),
hf_get_sub_size(Arom, [H,Subl,Sub2],Sizes),
sumlist(Sizes,Size),

ESize is Size - 3 x 0.05,

maximum([0,ESize], EffectiveSize),
hf_ortho(inner_outer_size,IS),

Part is A*Mult + EffectiveSizexIS,
hf_branch_ortho_aux2(T,Arom,Ortho) .

[KKK R oK ok K ok ok ok oK ok oK oK oK oK oK oK oK oK oK oK o oK K ok o oK o oK ok o oK o oK ok o oK o K ok oK ok K o K ok o oK o K ok oK ok K ok ok ok K ok ok o Kok
gets the multiplier for different substiuents besides methyl

both are methyl - 1

both are cl - -5, etc

sk ok ok oK ok oK oK oK ok oK oK oK oK o oK oK ok oK oK oK ok o ok oK ok o oK o K ok o ok o K ok o ok ok K ok ok ok K o K ok o ok ok K ok ok ok K ok ok ok ok ok ok sk ok ok /
hf_branch_ortho_mult (outer,H, [Sub] ,Mult):-

reac_type(H,_,TypeH),

reac_type(Sub, _,TypeS),
hf_branch_ortho_mult_aux(outer,H,TypeH, TypeS, _,Mult) .
hf_branch_ortho_mult(outer,_,_,1).
hf_branch_ortho_mult (inner,H, [Subl,Sub2] ,Mult) :-

reac_type(H,_,TypeH),

reac_type(Subl,_,Typel),

reac_type(Sub2,_,Type2),
hf_branch_ortho_mult_aux(inner,H,TypeH,Typel,Type2,Mult) .

208

hf_branch_ortho_mult(inner,_,_,1).

Doolots
hf_branch_ortho_mult_aux(outer,_,Type,Type,_,Mult) :-
hf_ortho(outer-Type,Mult) .
hf_branch_ortho_mult_aux(outer,_,TypeH, TypeS,_,Mult) :-
TypeH \= TypeS,

sort ([TypeH, TypeS],List),
concatenate_atomlist_to_atom(List,Key),
hf_ortho(outer-Key,Mult) .
hf_branch_ortho_mult_aux(outer,_,_,_,_,1).

oo e
hf_branch_ortho_mult_aux(inner,_,Type,Type,Type,Mult) : -
hf_ortho(inner-Type,Mult).
hf_branch_ortho_mult_aux(inner,H,TypeH,Typel,Type2,Mult) :-
hf_branch_ortho_mult_aux_aux(inner,H,TypeH, Typel,M1),
hf_branch_ortho_mult_aux_aux(inner,H,TypeH, Type2,M2),

Mult is M1 + M2.

/ *kk

sort ([TypeH, Typel,Type2] ,List),
concatenate_atomlist_to_atom(List,Key),
hf_boma(Key,H,MultMult),
hf_ortho(inner-Key,X),

Mult is MultMultx*X.

*kkk /

hf_branch_ortho_mult_aux(inner,_,_,_,_,1).

hf_branch_ortho_mult_aux_aux(inner,_,Type,Type,M1) :-
hf_ortho(inner-Type,M1).
hf_branch_ortho_mult_aux_aux(inner,H,methyl,f ,M1):-
reactophore_fact(H,_,_,_,Atoms),
findall(F, (member ([A] ,Atoms),

reactophore_fact(F,_,Atl,_,_),

memberchk (A,At1),

reac_type(F,_,£)),[_,_,_1),
hf_ortho(inner-methylf3,M1).
hf_branch_ortho_mult_aux_aux(inner,_,Typel,Type2,M1) :-
sort ([Typel,Type2],List),
concatenate_atomlist_to_atom(List,Key),
hf_ortho(inner-Key,M1) .

hf_boma(fmethyl,H,MultMult):-

findall(F, (pair(H,F),
reac_type(F,_,f)),LF),

length (LF,NumF),

NumF =3,

hf_ortho(multf,MultMult).

hf_boma(_,_,1).

209

/KoK sk ok ok sk sk ok ok sk ok ok sk K ok ok sk ok ok K K ok ok sk ok ok sk 3 ok ok K ok ok sk 3 ok ok sk ok ok K 3 ok ok K ok ok sk ok ok sk K ok ok sk ok ok ok ok K ok ok ok ok ok ok K

correction for Perri pairs of atoms

**/

hf_perri([],_,Perri,Perri).
hf_perri([H|T],Sub,Part,Perri) :-
reactophore_fact(H,_, [A]l,_,),
findall(R, (ring(_,R),
length(R,LenR),

LenR < 9,

memberchk (A,R)), [1),
findall (X,perri_pair(H,X), List),
List \= [],

hf_get_sub_size(Sub, List, Sizes),
%% get_sub_size(Sub, List, Sizes),

sumlist(Sizes, Size),
ESize is Size,
hf_perri_param(aromatic, Hfs),

NewPart is Part + Hfs * ESize,
L,
hf_perri(T,Sub,NewPart,Perri).
hf_perri([_|T],Sub,Part,Perri):-
hf_perri(T,Sub,Part,Perri).

hf_perri(_,_,_,0).

/**

Correction for groups that are next to methyl groups, that are not in a ring
The groups being examined have to have 3 substiuents and 1 bond to the other

group for a total of 4 things off it.

Basically, another steric correction

**/

hf_near_methyl (RingAtoms,Near) :-

%% findall(Q,ring(_,Q),ListQ),%% Changed 2/25/04

%% flatten(ListQ,RingAtoms),

210

findall (X, (substituent_type(X,AA,_),
\+ memberchk (AA,RingAtoms),
atom_specs(_,AA, _,_,[A1,A2,A3,A4]),
hf_near_methyl_aux([A1,A2,A3,A4],[S1,S2,83,34]),
hf_get_sub_size(X, [S1,S2,53,54],Sizes),
findall (S, (member(S,Sizes),
S>0.08),[_,_,_,.1)
),List4),
findall(Y, (member(Y,List4),
pair(Y,2),
Z\=Y,
memberchk(Z,List4)),List),
length(List,Len),
hf_near_methylparam(4,V),
Near is VxLen.

hf_near_methyl_aux([],[]).
hf_near_methyl_aux([H|T], [S1|List]):-
reactophore_fact(S1,_,AAA,_,),
memberchk (H, AAA) ,
hf_near_methyl_aux(T,List).

/Aot ok ok ok sk sk sk sk sk sk sk sk sk sk ok sk sk skokok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skokok kok stttk ook sk kosk sk sk sk sk sk sk sk sk sk sk sk ok
This actually returns corrections for the steric interaction

of groups that are connected to the db.

A B

C D
hf_cis_1 handles (A&C) and (B&D) interactions
hf_cis_2 handles (A&B) and (C&D) interactions

1 is for chains,

2 is for db’s in rings,

3 is in case everything else fails

steotokok ko ook ok ok ok sk sk sk sk sk sk sk sk ok sk ok okokok ok ok kol ok ok ok sk sk sk sk sk sk sk sk sk ok ok okttt kokokokokokok sk sk sk sk sk k ko ok /

hf_cis_trans(Sub,Type,Value) :-

reactophore_fact(Sub,e, [A,B],_, [AA,BB]),%A,B-atoms that makeup db

findall (X, (ring(_,X),%%AA and BB are the atoms connected to A&B
intersects([A,B],X,[_,_1)),[]),%make sure not in a ring--endo

findall(Y, (ring(_,Y),

intersects([A,B],Y,[_]1)),[]),%make sure not in a ring--exo
|

hf_cis(Type,Type,A,B,AA,BB,Sub,Value).
hf_cis_trans(Sub,Type,Value) :-

reactophore_fact(Sub,e, [A,B],_, [_AA,_BB]),

211

findall(Y-X, (ring(_,X),%finds rings w/ endo ethylenics
length(X,Y),
intersects([A,B],X,[_,_]1)) ,EndoRingl),
(EndoRingl == [] -> EndoRing = []
; keysort (EndoRingl,SortEndoRing),
filter_endoexo(SortEndoRing,Sub,EndoRing)
),
findall(Y-X, (ring(_,X),%finds rings w/ exo ethylenics
length(X,Y),%off of the A-Sub
intersects([A],X,[_])) ,ExoRinglA),
findall(Y-X, (ring(_,X),%finds rings w/ exo ethylenics
length(X,Y),%o0ff of the B-Sub
intersects([B],X,[_])) ,ExoRinglB),
(ExoRinglA == [] -> ExoRingA =[]
; keysort (ExoRinglA,SortExoRingA),
filter_endoexo_top(SortExoRingA,Sub,ExoRingA)
),
(ExoRingiB == [] -> ExoRingB =[]
; keysort (ExoRinglB,SortExoRingB),
filter_endoexo_top(SortExoRingB, Sub,ExoRingB)
),
append (ExoRingA ,ExoRingB,ExoRing) ,
filter_endoexo2(ExoRing,EndoRing,NewExoRing) ,

hf_ct_ring(Sub,Type,EndoRing,NewExoRing,Value) .
Y%routine where all the real work starts
hf_cis_trans(_,_,0).

[KKK oK o KoK ok KK ok o KoK oK o oK oK K oK ok K oK oK KoK o K oK oK K K ok K oK ok oK oK ok K oK o K oK ok oK o KoK ok o oK ok Kok o KoK ok oK ok Kok o KoK
This routine throws away the ExoRings where the db is also in

EndoRing

stk o ok ok ok ok ok ok R Kok o oK ok ok R sk ok oK ok ok ok sk ok sk ok o ok ok sk sk ok o sk ok sk ok sk sk sk ok o ok sk sk ok s ok ok sk ok sk sk sk ok sk ok sk sk sk sk ok ok ok /
filter_endoexo2(_,EndoRing,NewExoRing) : -

EndoRing \= [],

NewExoRing =[] .

filter_endoexo2(ExoRing, [],ExoRing) .

/Aot ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk skokok ok ok ok sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk skokok ok stttk ok ok okokokok sk sk sk sk sk sk sk sk sk sk sk ok
The _top call is for those rings with a db on the bridge of noraborane
aka two bmembered rings joined w/ a bridge.

This routine is to get the most strained rings in a molecule,
it throws away the rings where the db appears twice, but the
correction should only get picked up once.

212

sk o ok sk ok o ok sk ok ok o o sk sk ok o ok sk ok ok ok sk o o ok sk sk ok o sk sk ok ok ok sk ok o e ok sk sk ok ok stk ok s sk sk ok ok ok sk ok ok skokok ok /

filter_endoexo_top(SortedRings,Sub,0ut) :-

findall(Len,member (Len-X,SortedRings) ,ListLen),

(delete_duplicates(ListLen, [6]) -> findall(X,member (Len-X,SortedRings),0Out)
; filter_endoexo(SortedRings,Sub,0Out)

).

filter_endoexo([_-H|T],Sub, [H|Out]):-%List are the atoms hooked to Sub that
findall (X, (pair(Sub,_,X,_) ,%are in the ring (H)

memberchk (X,H)),List),
filter_endoexo_aux(T,Sub,List,0ut).

filter_endoexo_aux([],_,_,[]1).
filter_endoexo_aux([_-H|T],Sub,List,Out) :-

Jthrows away rings that are part of List in at
reactophore_fact(Sub,e, [C1,C2],_,_),%least 2 places
difference(H, [C1,C2] ,RestAtoms),

intersects(RestAtoms,List,[_|_]1),
|

filter_endoexo_aux(T,Sub,List,0ut).
filter_endoexo_aux([_-H|T],Sub,List, [H|Out]) :-%otherwise keep the ring
filter_endoexo_aux(T,Sub,List,0ut).

/ot sk sk ook ook sk sk sk sk sk sk sk sk sk sk sk ok koot sk kot koo ok ok sk sk sk sk sk sk sk sk sk ok ok okttt sokokokokok ok koo kool sk sk sk sk sk ok ok ok ok ok
gets the correction for rings that have Endo and Exo db’s in them

Kok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok o o o ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok k ko k /
hf_ct_ring(Sub,Type,Endo,Exo,Value) : -
hf_ct_ring_endo(Endo,Endo,Sub,Type,0,ValEndo),
hf_ct_ring_exo(Exo,Exo,Sub,Type,0,ValExo),

hf_halo(ethylenic,Sub,Halo),

Value is ValEndo+ValExo + Halo.

[KoKk sk ok ok ok sk ok ok ok o sk ok o ok oK ok oK ok oK ok o ok K ok o ok o oK ok o ok o oK ok o ok o K ok ok ok K o K ok o ok ok K ok ok o K ok ok o ok ok ok o ok ok
Exo db rings

Gets a correction for exo’s based on size of ring that db is exo to

3ok Kok oK ok KoK KoK KoK oK oK o oK oK ok oK oK K ok o oK KoK o oK K ok o oK o K ok o oK o Kok oK ok Ko Kok o oK o Kok oK ok Kok ok ok Kok ok ok ok /
hf_ct_ring exo([],_,_,_,Part,Part).
hf_ct_ring_exo([Ring|T],Al1Good,Sub,Type,Part,ValExo) : -
length(Ring,RingSize),

hf_ring_exo_aux(Sub,Type,Ring,RingSize,Val),%gets the basic exo correction
hf_data(basic_ring_exo,Sub,Val),

reactophore_fact(Sub,e, [_C1,_C2],_, [[A1,A2],[B1,B2]]),

213

flatten([[A1,A2],[B1,B2]],FlatSubs),
findall (X, (member ([X], [A1,A2]),
memberchk (X,Ring)) ,RA),

(length(RA,0) ;length(RA,2)),
!

b

findall (X, (member ([X], [B1,B2]),
memberchk (X,Ring)) ,RB),
(length(RB,0) ;length(RB,2)),
|
append (RA,RB,RAtoms) ,
difference(FlatSubs,RAtoms,Others),
findall(Y, (ring(_,Y),%gets the ring on the other side of the db
\+ Y = Ring,%if it’s empty call ..._aux
memberchk(Y,A11Good) ,%else, call ..._aux2
member (Otherl,0thers),
memberchk (Other1,Y),
member (Other2,0thers),
\+ Other2 = Otherl,
memberchk (Other2,Y)),0therRingX),
delete_duplicates(OtherRingX,0OtherRing),
(OtherRing = [] -> hf_ct_ring_exo_aux_top(0Others,Sub, Type,
[[A1,A2],[B1,B2]],RingSize,Val2)
; hf_ct_ring_exo_aux2(0therRing,0thers,Sub,Type,RingSize,0,Val2)
),

hf_ct_ring_exo_aux3(RingSize,Ring,Sub,Val3),
hf_data(stericl,Sub,Val3),

NewPart is Part + Val + Val2 + Val3,
hf_ct_ring_exo(T,Al11Good,Sub, Type,NewPart,ValExo) .

hf_ct_ring exo(_,_,_,_,_,_):-
write (’ERROR ERROR ERROR’),
abort.

/R 3k kK sk ok sk ok ok ok ok sk sk sk sk sk sk ok ok o ok ok ok sk sk sk sk sk sk sk sk ko okok sk sk sk sk sk sk sk sk ok kksksk sk sk ok sk ok kok ok sk sk sk sk sk sk ok sk ok ok ok
Takes into account the strain additional exos to a ring
place on the ring.

ortho interaction - for extra exos in the ortho position
ring deform - for exos in pos other than ortho, should only affect 4 ring

Kook ok sk ok ok ok ok ok K ok ok K ok ok sk ok ok K ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok ok /
hf_ct_ring_exo_aux3(RingSize,Ring,Sub,Val3):-

214

%%’ ortho interaction
findall (X, (pair(Sub,X),
reactophore_fact(X,e, [A,B],_,_),
intersects([A,B],Ring, [_])),0rthoBondedExos),
hf_ct_ring_exo_aux3_auxl(0OrthoBondedExos,RingSize,Ortho),

%Whh% ring deform
findall (X, (reactophore_fact(X,e, [A,B],_,_),

X \= Sub,

intersects([A,B],Ring,[_]),

\+ pair(Sub,X)),0therExos),
hf_ct_ring_exo_aux3_aux2(0therExos,RingSize,RingDeform),

Val3 is Ortho + RingDeform.

/3K sk sksk sk ok ok ok ok ok ok sk sk sk sk sk sk ok ok o ok ok sk sk sk sk sk sk sk sk o o ok ok sk sk sk sk sk sk sk sk ok sk ksk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk ok sk ok ok ok ok
For exos in positions on ring besides 1,2 gets the deformation
correction....only noticible in 4ring

skt stk ok ok ok ok ok s ok ok ok ok sk sk sk sk sk sk ok sk o ok ok ok sk sk sk sk sk sk sk sk ok ok ok ok sk sk sk sk sk sk sk sk sk kokksksk sk sk sk sk ok kok ok sk sk sk sk sk sk ok sk ook /
hf_ct_ring_exo_aux3_aux2([],_,0).

hf_ct_ring exo_aux3_aux2([_|_],4,Val):-

hf_ring exo(ringdeform,Val).

hf_ct_ring_exo_aux3_aux2([_|_],_,0).

/KK ks ook ok o ok sk ok sk sk sk sk sk sk sk ok ok o ok ok sk sk sk sk sk sk sk sk ok o ok ok sk sk sk sk sk sk sk sk ok sk kk sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk ok ok ok ok ok ok
For extra exos in the ortho position, all have a steric interacion

For size 3 rings, there is no steric interaction, but something
lowers the value by "21/ortho, could be extra resonance b/c

the dbs are nearly linear? or just really crappy data? based on
CAS 3227905

Correction for exos in the 1,2 positions ("6kJ)
For size 4 rings, this should get less of correction (half?)

Also corrects for the deformation of the ring due to ortho...none in set
right now but could be trained:

in 6 makes ring like a chair,

in 7 should be ok,

in a 8 deformed,

and >=9 should be ok

this is for single rings, i don’t know what’s going

215

to happen if the other exo is in another ring
koK sk ok ok ok ok ok o o o ok ok ok ok sk ok ok ok ok ok o o o ok ok sk sk ok sk ok ok o o o o ok ok ok sk sk sk sk ok ok ok ok o ok sk sk sk ok ok o o o ok ok sk sk sk ok ok ok ok ok ok ko ok /
hf_ct_ring_exo_aux3_aux1([],_,0).
hf_ct_ring_exo_aux3_auxl(Exos,3,Val):-
length(Exos,LExos),
hf_ring_exo(ortho-3,V),
Val is LExos * V.
hf_ct_ring_exo_aux3_aux1([_|_],RingSize,0rtho):-
(RingSize > 4 -> Mult is 1
; (RingSize =:= 4 -> Mult is 0.5
; Mult is O

)

),
hf_ring_exo(ortho,0Val),
OrthoBasic is 0Val * Mult,

concatenate_atomlist_to_atom([ortho-RingSize] ,Key),
Jnone in set so set equal to O
hf_ring_exo(Key,OrthoDeform),

Ortho is OrthoBasic + OrthoDeform.

/3K sk sk ok ok ok ok o ok ok ok sk sk sk sk ok ok ok o o ok ok ok sk sk sk sk ok ok o o o o ok ok ok sk sk sk sk sk ok ok ok o o kok sk sk ok ok o o o o ok ok sk sk sk ok ok ok o ok ok ko o ok
Gets the basic exo correction
stk ko ok ok ok ok sk sk sk sk sk sk sk sk ok sk ok koot ok kot koo ok ok sk sk sk sk sk sk sk sk sk ok ok okttt sokokokokok ok kokokokokokok sk sk sk sk sk ok ok ok ok /
hf_ring_exo_aux(_Sub,ethylenic,_Ring,RingSize,Val):-
(RingSize > 6 -> hf_ring_exo(other,Vall)
; hf_ring exo(RingSize,Vall)
),
VAL
(RingSize < 5 -> findall(X, (pair(Sub,X),
reactophore_fact(X,e,[A,B],_,_),
intersects([A,B],Ring, [_])),0therBondedExos),
length (OtherBondedExos,Len),
(Len =:= 0 -> Mult is 1
; Mult is 0.75

; Mult is 1
),
Val is Valilx*Mult.
K%k /

Val is Vall.
hf_ring exo_aux(_Sub,oethylenic,_Ring,RingSize,Val):-
(hf_ring_exo_oethylenic(RingSize,Basic) -> true

216

%if in db get val, else use 12’s value

; hf_ring_exo_oethylenic(12,Basic)
),
%kt hf_ring_exo_sigma(oethylenic,Ring,Sigma),
hknot using b/c can’t see it’s effects easily
%kt Val is Basic + Sigma.
Val is Basic.

hf_ring_exo_aux(_Sub,nethylenic,_Ring,_RingSize,Val):-
Val is O.
hf_ring_exo_aux(_Sub,sethylenic,_Ring, RingSize,Val):-
Val is O.

/KKK ok sk ok ok ok s ok ok ok ok sk sk sksk sk ok ok ok s ok ok ok sk sk sksk sk sk sk sk s ok ok ok sk sk sk sk sk sk sk sk sk ki sk sk sk sk ok sk ok ok ok ok sk sksksk sk sk ok sk o ok ok ok
I don’t think this correction is necessary yet - it’s not easily
observable - therefore I’m not using it just yet!

This get’s a "sigma" correction for groups off of the carbon next
to the "=", this stablizes the engery by ~6kJ/methyl.

Perhaps this should be put higher up, so that it is picked up in

every "ethy" type group, now this is subsumed by the steric correction

- 1f it were seperate maybe would show up in that too!!!

skt sk sk ok ook ok ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok ko ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sksksk ok kokokokoskosk sk sk sk sk sk sk sk sk sk ok /
hf_ring_exo_sigma(oethylenic,Ring,Sigma):-

n_o_s_type(Sub,oethylenic),

reactophore_fact(Sub,_,Name, _,Subs),

flatten(Subs,FSubs),

findall(Subl, (member (Subl,FSubs),

memberchk (Subl,Ring)) ,NewRSubs),

hf_res_branches(NewRSubs,Ring,Name,0,Branches),
hf_exo_sigma(pp,Sig),
Sigma is Branches*Sig.

hf_res_branches([],_,_,0Out,0ut).

hf_res_branches([H|T],Ring,Name,Part,Branches) :-
reactophore_fact(_,_, [H],_,Subs),
flatten(Subs,FSubs),
findall (APart, (member (APart,FSubs),
\+ (memberchk(APart,Ring))),ListB),
length(ListB,LenB),
hf_res_branch_mult (H,Name,Ring,Mult),%this is a temporary stub!!!!
Val is LenB * Mult,

217

NewPart is Part + Val,
hf_res_branches(T,Ring,Name,NewPart,Branches) .

hf_res_branch_mult (H,Name,Ring,Mult) :-
bonded(H, _,Sub),
memberchk (Sub,Ring),
\+ memberchk (Sub,Name) ,
reac_type (Sub, Type),
(Type = ethylenic -> Mult is 0.5
; Mult is 1
).

/K 3kkok ok ok ok ok sk ok ok ok ok sk sk sksk sk ok ok ok s ke ok ok ok sk sk sksk sk sk ok s s ok ok ok ok sksksk sk sk sk sk sk ki sk sk sk sk ok sk ok ok ok ok sk sksksk sk sk ok sk ok ok
modified get_sub_size:

Sub is the substituent you are on

List is the list of subs coming off of Sub

Sizes is the list of sizes of the subs

look in steric.pro for doing(hf) for ring thing, may need to change

doesn’t return anything that is larger than 2-t-butyls

otk ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk ok ok ok ok ootk ok ok ok ok ok ok ok sk ok sk ok sk sk sk sk sk ok ok ok kot ok koot ok ok sk ok ok ok ok sk sk ok ok ok ok ok k ok /
hf_get_sub_size(Sub,List,Sizes):-

get_sub_size(Sub,List,Sizes0),

hf_get_sub_size_aux(Sizes0,Sizes).

hf_get_sub_size_aux([],[]).
hf_get_sub_size_aux([HIT], [Max|Sizes]):-
% minimum([H,0.367] ,Max),%1-t-butyl * 2
minimum([H,0.531] ,Max),%2-t-butyls
hf_get_sub_size_aux(T,Sizes).

/3K kok sk ok sk sksk ok sk sksk sk ok sksk sk ok skskosk ok sksksk sk sk sksk sk ok sksk sk ok sksk skoksksk sk sk ok sksksk sk sk sk sk sk ok sk sk ok ok sk ok
gets the correction for exo-rings that have branches coming off of

the Subs on the other side of the double bond.

the 1 branch is:

similar to hf_cis_2....uses some of the same database values
the 2 branch is:
similar to hf_cis_1....uses some of the same database values

and similar to hf_cis_2...also uses same database vals.

stk ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk sk ok sk sk sk ok sk sk sk sk sk sk sk ok sk sk ok sk sk sk ko sk ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok ok /
hf_ct_ring_exo_aux_top([],_,_,_,_,0).
hf_ct_ring_exo_aux_top(Others,Sub,Type, [[A1,A2], [B1,B2]],RingSize,Val2):-

218

findall ([X1,Y1], (member (X1,0thers),

(([X1] = A1, [Y1] = B2);
([X1] = A2, [Y1] = B1);
([X1] = B1, [Y1] = A2);
([X1] = B2, [Y1] = A1)

)) ,0therPairs),
hf_ct_ring_exo_aux(Others,Sub,Type,OtherPairs,RingSize,Val2).

hf_ct_ring_exo_aux([_],Sub,_,_,_,Value):-)when there is a n_o_s
neth_oeth_seth(Sub),

Value is O,

hf_data(stericl,Sub,Value).

hf_ct_ring_exo_aux([A1],Sub,_, [[A1,B1]],_RingSize,Value):-
Jwhen there is only 1 branch

reactophore_fact (SubAl,_,AL,_,_),

memberchk (Al1,AL),

reactophore_fact(SubB1,_,BL,_,_),

memberchk (B1,BL),

hf_get_sub_size(Sub, [SubAl,SubB1],SizesAB),
hf_cis_2_aux(SizesAB, [AL,BL],Value),
hf_data(stericl,Sub,Value).

hf_ct_ring_exo_aux([_Al,_A2],_Sub,nethylenic,_,_RingSize,Value):-

Jwhen there is a neth w/ a branch
%hgoing to be similar to things w/ one thing coming off

Value is O.

hf_ct_ring_exo_aux([A1,A2],Sub, _Type, [[A1,B1], [A2,B2]],_RingSize,Value):-
%when there are 2 branches

hhth cis_2 part

hf_ct_ring_exo_aux([A1],Sub,_, [[A1,B1]],_,Val2l),
hf_ct_ring_exo_aux([A2],Sub,_, [[A2,B2]],_,Val22),

hht cis_1 part
pair(Sub,_,Al1,SubAl),
pair(Sub,_,A2,SubA2),
hf_get_sub_size(Sub, [SubAl,SubA2],SizesA),
hf_cis_1(SizesA, [SubAl,SubA2],Sub,Vall),

Value is Vall + Val21l + Val22.

219

/3K skksk sk ok ok o ok ok ok sk sk sk sk sk sk sk ok ok o ok ok sk sk sk sk sk sk sk sk ok o ok ok sk sk sk sk sk sk sk sk ok o sk sksk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk ok ok ok ok ok ok
doesn’t need a correction right now b/c counts the 2 rings up in
hf_ct_ring_exo

sksk sk sk ok ok ok ok o sk ok ok ok ok sk sk sk sk sk sk ok sk s ok ok ok sk sk sk sk sk sk sk sk koo oksksksk sk sk sk sk sk ki sk sk sk sk ok sk ok kok ok sk sk sksk sk sk ok sk ko okok /

/3K sk sk sk sk ok ok o o ok ok ok sk sk sk sk ok sk ok ok o ok ok ok sk sk sk sk sk sk sk o o sk ok sk sk sk sk sk sk sk sk sk o sk ksk sk sk sk sk sk o ok sk sk sk sk sk sk sk sk ok ok ok ok
Gets a basic correction for size of the db_ring on,

Others are the branches (atoms) off of the ring

Calls routines that gets the other correction for interaction between
branches, other rings, etc, depends on whether or not

OtherRingX is empty or not.

sksk sk ok ok ok ok ok ok s ok ok ok sk sk sk sk sk ok ok ok s ok ok ok sk skl sk sk sk sk sk s ok ko sk sksksk sk sk sk sk sk ki sk sk sk sk ok sk ok ok ok ok sk sksksk sk sk ok sk ok ok /
hf_ct_ring_endo([],_,_,_,Part,Part).
hf_ct_ring_endo([Ring|T],Al1Good,Sub,Type,Part,ValEndo) :-
length(Ring,RingSize),

get_hf_ring db(RingSize,Sub,Vall),%basic correction
hf_data(basic_ring_endo,Sub,Vall),

reactophore_fact(Sub,e, [C1,C2],_, [[A1,A2], [B1,B2]]),
flatten([[A1,A2], [B1,B2]],FlatSubs),
findall (X, (member (X,FlatSubs),
memberchk (X,Ring)), [R1,R2]),
difference(FlatSubs, [R1,R2],0thers),
findall(Y, (ring(_,Y),%gets the ring on the other side of the db
\+ Y = Ring,%if it’s empty call ..._aux
memberchk(Y,Al11Good) ,%else, call ..._aux2
memberchk (C1,Y),
memberchk (C2,Y),
(Others = [A,A] -> memberchk(A,Y)
; member (Otherl,0Others),
memberchk (Other1,Y),
member (Other2,0thers),
\+ Other2 = Otherl,
memberchk (Other2,Y)
)) ,0therRingX),

delete_duplicates(OtherRingX,0OtherRing),
(OtherRing=[] -> hf_ct_ring_endo_aux_top(Others,Sub,Type, [[A1,A2], [B1,B2]],
Ring,RingSize,Val2)
; hf_ct_ring_endo_aux2(0therRing,0Others,Sub, Type,
Ring,RingSize,0,Val2)
),
NewPart is Part + Vall + Val2,

220

hf_ct_ring_endo(T,Al11Good,Sub, Type,NewPart,ValEndo) .

/] 3Kk ok sk ok ok sk ok sk ok sk ok ok ok ok ok ok s ok K ok ok ok ok 3 ok 3 ok ok 3 ok ok K ok ok 3 ok K ok oK sk ok 3 ok K ok ok 3k ok ok 3k ok ok K ok ok 3 ok ok ok ok ok ok Kk ok ok
gets the correction for rings that have branches coming off of

the Subs on the other side of the double bond.

the 1 branch is:

similar to hf_cis_1....uses some of the same database values
the 2 branch is:
similar to hf_cis_1....uses some of the same database values

and similar to hf_cis_2...also uses same database vals.

I''INEEDS TO BE REWRITTEN SO MORE COMPACT AND RESEMBLES hf_cis more closely
ko ok ok ok ok ok ok sk sk ok ok ok ok sk sk ok okok ok sk sk sk sk ok sk sk sk ok sk ok sk sk sk ok ok sk sk sk sk sk ok sk sk sk sk skokok sk ok sk sk skokok ok sk sk ok sk ok sk sk ok ok ok k ok /

hf_ct_ring_endo_aux_top(Others,Sub,Type, [[A1,A2], [B1,B2]],
Ring,RingSize,Val2) :-
findall([X1,Y1], (member (X1,0thers),

(([X11 = A1, [Y1] = A2);
([X1] = A2, [Y1] = A1);
([X1] = B1, [Y1] = B2);
([x1] = B2, [Y1] = B1)

)) ,0therPairs),
hf_ct_ring_endo_aux(Others,Sub,Type,OtherPairs,Ring,RingSize,Val2).

hf_ct_ring_endo_aux([Al],Sub,Type, [[A1,B1]],Ring,RingSize,Value) :-
Jwhen there is only 1 branch

reactophore_fact (SubAl,_,AL,_,_),

memberchk (A1,AL),

reactophore_fact (SubB1,_,BL,_,_),

memberchk (B1,BL),

findall (X, (ring(_,X) ,%%what the hell is this doing?
X \= Ring,
memberchk (A1,X),
memberchk (B1,X),
findall(Y,bonded(B1,_,Y),[_,_1)),List),
(List \= [1 -> List = [_],
Value is O
; hf_cis_1_res([[A1], [B1]],0,Resonance),
hf_data(resonancel,Sub,Resonance),

hf_get_sub_size(Sub, [SubAl,SubB1], [SizeAl,SizeB1]),
hsize of the sub and ringsub
hf_steric_ring(RingSize,Mult),

221

Size is SizeAl + SizeB1*Mult,

ESize is Size - (2 * 0.05),
maximum([0,ESize], EffectiveSize),
n_o_s_type(Sub,Type),
hf_cis_1_aux(Type,C),

Steric is Cxexp(EffectiveSize),
hf_data(stericl,Sub,Steric),

Value is Resonance + Steric

).
hf_ct_ring_endo_aux([_1,_,_,_,_,_,0):-
write (’ERROR ERROR ERROR’),

abort.

hf_ct_ring_endo_aux([A1l,A2],Sub,Type, [[A1,B1], [A2,B2]],
Ring,RingSize,Value):-
%when there are 2 branches
hht cis_1 part
hf_ct_ring_endo_aux([A1l],Sub,Type, [[A1,B1]],Ring,RingSize,Valll),
hf_ct_ring endo_aux([A2],Sub,Type, [[A2,B2]],Ring,RingSize,Vall2),
%Whh cis_2 part

pair(Sub,_,Al1,SubAl),

pair(Sub,_,A2,SubA2),

hf_get_sub_size(Sub, [SubAl,SubA2],SizesA),
hf_cis_2_aux(SizesA, [A1,A2],Val2),
hf_data(steric2,Sub,Val2),
Value is Valll + Vall2 + Val2.

/**

gets correction for rings that are joined to another ring across
a double-bond (eg ringl|ring)

Others are the other atoms that were not part of the original ring,
can either have 1 or 2 things in them.

_aux2_aux gets a correction like hf_cis_1
stk ok koo ok stk sk ok stk ok sk ok stk s ok stk sk sk ok stk ok skskskok stk sk sk kb ok skkok ok skokok ok ok /

hf_ct_ring_endo_aux2([H|T],Others,Sub,_Type,_,RingSize,Part,Value):-
intersects(H,Others,Iatoms),

length(H,0therRingSize),
hf_ct_ring_endo_aux2_aux(H,Iatoms,Sub,0therRingSize,RingSize,Val),
NewPart is Part + Val,
hf_ct_ring_endo_aux2(T,0thers,Sub,_Type,_,RingSize,NewPart,Value).

/**

222

...aux2_aux gets correction like hf_cis_1,
no need for a hf_cis_2 type correction b/c ring size is
picked up in hf_ct_ring_endo

not real sure about ...aux2_aux b/c don’t understand Iatoms, if it’s
one, then won’t mess up when have a \ ringl 7
ring2 ===

b/c ring2 is exo and ringl is endo

1st rule handles 3 and 4 rings joined across db. No cis_1 interaction
just a correction that raises the dHf by 721
2nd rule is for a ring > 4 hooked to a 3 or 4 and
for a 3 or 4 ring hooked to a ring > 4
doesn’t need a correction...well, that’s what works
3rd rule is for those rings > 4
should just get a correction like hf_cis_1...no additional strain
ok ok sk ok ok ok ok ok sk ok ok K ok ok sk ok ok ok ok ok sk ok ok sk ok ok sk ok ok K ok ok sk ok ok K ok ok sk ok ok sk ok ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok ok /
hf_ct_ring_endo_aux2_aux(_H,_Iatoms,Sub,0OtherRingSize,RingSize,Val):-
OtherRingSize =< 4,
RingSize =< 4,
%% reactophore_fact(Sub,_,As,_,_),
%% difference(H,As,Atoms),%Atoms not in the ring
%% length(Atoms,Len),
hf_ring_db(tworing,V),
Val is V,
hf_data(steric,Sub,Val).
hf_ct_ring_endo_aux2_aux(_H,_Iatoms,Sub,0OtherRingSize,RingSize,Val):-
(OtherRingSize =< 4, RingSize > 4; OtherRingSize > 4, RingSize =< 4),
Val is O,
hf_data(steric,Sub,Val).
hf_ct_ring_endo_aux2_aux(_H,Iatoms,Sub,0therRingSize,RingSize,Val):-
OtherRingSize > 4,
RingSize > 4,
length(Iatoms,LenIatoms),
hf_ring_element_size(OtherRingSize,SizeORS1),
maximum([0,Size0ORS1],Size0ORS),
hf_ring element_size(RingSize,SizeRS1),
maximum([0,SizeRS1],SizeRS),

JEL LS
%kt I guess this used to be used but is not anywhere else in this section
Resonance is -7.1 *x 2,

hf_data(resonancel, Sub,Resonance),
k%% /

223

ESizeORS is (SizeORS + SizeRS)-(LenlIatoms * (2 * 0.05)),
maximum([0,ESize0RS] ,EffectiveSize),

hf_steric_ethylenic(pp,C),
hf_ct_ring_endo_aux2_aux_halo(Iatoms,0,Halo),
Val is Halo + EffectiveSize * (LenIatoms * C),

hf_data(steric,Sub,Val).

hf_ct_ring_endo_aux2_aux(_H,_,Sub,_,_,Val):-
%catches anything that slips through
Val is O,

hf_data(steric,Sub,Val).

/R kskskskskok sk ok okokok sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok
This is a fucking kludge, but maybe it’1ll work

supposed to see what the Iatoms are hooked to -
and get correction based on this

right now only correction is for bonded to two f’s b/c stablizes by -32 each
KoKk ok ok okokok ok ok ok ok ok ok ok ok okokok ok kR ko kk /
hf_ct_ring_endo_aux2_aux_halo([],Val,Val).
hf_ct_ring_endo_aux2_aux_halo([H|T],Part,Val):-
hf_halo_aux2_ethy1(_,H,Halos),
delete_duplicates(Halos, [f]),
length(Halos,Len),

hf_halo(ringendo,V),

NewPart is Part + VxLen,
hf_ct_ring_endo_aux2_aux_halo(T,NewPart,Val).
hf_ct_ring_endo_aux2_aux_halo([_|T],Part,Val):-
hf_ct_ring_endo_aux2_aux_halo(T,Part,Val).

/K kok sk sk ok sk ok sk sk s ok sk sk ok sk ok ok sk sk ok sk ok sk ok s ok sk sk ok skok sk sk sk ok sk sk ok skok s ok sk sk ok sk sk sk ok sk ok sk sk sk ok sk sk ok sk ok sk ok sk ok ok
given a ring element get a size for it

stk o ok ok ok ok sk ok R sk ok ok ok ok ok R sk ok o K ok sk ok sk ok sk ok o ok ok sk sk ok sk ok sk ok sk sk sk ok ok sk sk ok s ok ok sk ok sk sk sk ok sk ok sk sk sk sk ok ok ok /
hf_ring element_size(RingSize,Size):-

RingSize < 8,

hf_relsz(RingSize,Size).

hf_ring_element_size(RingSize,Size):-

RingSize >= 8,

Size is 0.05.

hf_ring element_size(_,0).

224

/3K skksk sk ok ok o ok ok ok sk sk sk sk sk sk sk ok ok o ok ok sk sk sk sk sk sk sk sk ok o ok ok sk sk sk sk sk sk sk sk ok o sk sksk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk ok ok ok ok ok ok
gets the correction for db’s w/ branches coming off and interacting

based only on size and location

A%B--atoms that make up db

AA4BB--atoms that hooked to A&B respectively

Sub is the db you’re on

_cis_aux2 gets the size(s) of the atom(s) off of the C
calls hf_get_sub_size, which caps the size at 0.189
_cis_1 deals w/ the interaction of atoms on the same C
_cis_2 deals w/ the strain of atoms on the same side of
the db--top and bottom
_connectivity gets the diff in ethy connected to nothing and
connected to something
_hbonding - gets the lowering of energy for hydrogen bonding
Kok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o o ok ok ok sk ok ok ok ok ok ok o o ok ok ok ok ok sk ok ko k /
hf_cis(ethylenic,Type,A,B,AA,BB,Sub,Value) :-
hf_cis_aux2(AA,A,Sub,SizesA),
hf_cis_aux2(BB,B,Sub,SizesB),
hf_cis_1(SizesA,AA,Sub,Via),
hf_cis_1(SizesB,BB,Sub,Vib),
hf_cis_2(SizesA,AA,SizesB,BB,Sub,V2),
hf_cis_connectivity(Type,AA,BB,Sub,Connectivity),
hf_halo(ethylenic,Sub,Halo),
Value is Vlia + V1b + V2 + Connectivity + Halo.
hf_cis(oethylenic,Type,A,B,AA,BB,Sub,Value) :-
hf_cis_aux2(AA,A,Sub,SizesAl),
atom_type(A,AType),
(AType = ’0° -> SizesA = [0,0]

; SizesA = SizesAl
),
hf_cis_aux2(BB,B,Sub,SizesB1),
atom_type (B,BType),
(BType = ’0° -> SizesB = [0,0]

; SizesB = SizesBl1
),
hf_cis_1(SizesA,AA,Sub,Via),
hf_cis_1(SizesB,BB,Sub,Vib),

hf_cis_connectivity(Type,AA,BB,Sub,Connectivity),

/ *kk

(SizesA = [0,0] -> hf_cis_hbonding(Type,BB,B,0,HBonding)
; hf_cis_hbonding(Type,AA,A,0,HBonding)

)

225

hf_data(hbonding,Sub,HBonding),
Value is Vla + V1b + Connectivity + HBonding.
*kk /

Value is Vlia + V1b + Connectivity.

hf_cis(nethylenic,Type,A,B,AA,BB,Sub,Value) :-
hf_cis_aux2(AA,A,Sub,SizesA),
hf_cis_aux2(BB,B,Sub,SizesB),
hf_cis_1(SizesA,AA,Sub,Via),
hf_cis_1(SizesB,BB,Sub,V1b),
hf_cis_connectivity(Type,AA,BB,Sub,Connectivity),
hf_cis_hbonding(Type,AA,A,0,HBonding),

Value is Vlia + V1b + Connectivity + HBonding.
hf_cis(sethylenic,Type,A,B,AA,BB,Sub,Value) :-
hf_cis_aux2(AA,A,Sub,SizesA),
hf_cis_aux2(BB,B,Sub,SizesB),
hf_cis_1(SizesA,AA,Sub,Via),
hf_cis_1(SizesB,BB,Sub,Vib),
hf_cis_connectivity(Type,AA,BB,Sub,Connectivity),
hf_cis_hbonding(Type,AA,A,0,HBonding),

Value is Vla + V1b + Connectivity + HBonding.

/R 3kk sk sk koo ok sk ok ok ok ok sk sksksk sk sk ok ok s ok ok ok sk sk sk sk sk sk sk sk ko ok ok sk sk sk sk sk sk sk sk ok kksksk sk sk ok sk ok ok ok sk sk sksk sk sk ok sk ok ok ok ok
Determines if Sub is hooked to an arom or ethy and any branches
coming off l1-away have at least 1 H on it, if so H-bonding may
occur - lowering energy by ~1bkJ
sk sk sk sk ok ok ok ok ok o o ok ok ok sk sk sk sk ok ok ok ok o ok ok ok sk sk sk sk sk sk sk s o sk ok sk sk sk sk sk sk sk sk sk o s sksk sk sk sk sk sk o ok sk ok sk sk sk sk sk sk sk sk ko ok ok /
hf_cis_hbonding(oethylenic, [],_,0ut,Out).
hf_cis_hbonding(oethylenic, [[H] |T],Atom,In,HBonding) :-
reactophore_fact(B,_,Atoms,_,_),

memberchk (H,Atoms) ,
reac_type(B,_,Type),

memberchk (Type, [aromatic,ethylenic]),
!

b

findall(Y, (bonded(H,_,X),

memberchk (X, Atoms) ,

bonded(X,_,Y),

\+ memberchk(Y,Atoms)),ListY),
hf_cis_hbonding_aux(ListY,0,0,Part),
NewPart is In + Part,
hf_cis_hbonding(oethylenic,T,Atom,NewPart,HBonding) .
hf_cis_hbonding(oethylenic, [_|T],Atom,In,HBonding) :-
hf_cis_hbonding(oethylenic,T,Atom,In,HBonding) .

226

hf_cis_hbonding(_,_,_,_,0).

hf_cis_hbonding_aux([],_,0Out,Out).
hf_cis_hbonding_aux([H|T],Counter,In,Val):-
reactophore_fact(B,_,Atoms,_,Connect),

memberchk (H,Atoms) ,

reac_type(B,_,Type),
hf_cis_hbonding_aux_aux(Type,Connect,Counter,CounterOut,Part),
NewIn is In + Part,
hf_cis_hbonding_aux(T,CounterOut,NewIn,Val).

hf_cis_hbonding_aux([_|T],In,Part):-
hf_cis_hbonding_aux(T,In,Part).

hf_cis_hbonding_aux_aux(Type,Connect,Counter,NewCounter,Part) : -
(Counter > 0 -> fail

memberchk (Type, [methyl,ethylenic]),

length(Connect,Len),

Len < 3,

hf_hbonding(pp,Part),

NewCounter = Counter + 1

).

hf_cis_hbonding_aux_aux(_,_,0,0,0).

Doolots
hf_cis_connectivity(ethylenic,AA,BB,Sub,Connectivity):-
append (AA,BB,Subsl),

flatten(Subsl,Subs),

length(Subs,NumS),

hf_branch_ethylenic(pp,Val),

Connectivity is Val * NumS,
hf_data(connectivity,Sub,Connectivity).
hf_cis_connectivity(oethylenic,AA,BB,Sub,Connectivity):-

append (AA,BB,Subs1Q),

flatten(SubsiQ,SubsQ),

findall (Name,atom_type(Name,q) ,ListQ),

difference(SubsQ,ListQ,Subs),

length(Subs,NumS),

hf_branch_oethylenic(pp,Val),

Connectivity is Val * NumS,
hf_data(connectivity,Sub,Connectivity) .

227

/**% hf_cis_connectivity_aux(oeth,SizesA1,ConA),
hf_cis_connectivity_aux(oeth,SizesB1,ConB),
Connectivity is ConA + ConB,
hf_data(connectivity,Sub,Connectivity) .
*kk /
hf_cis_connectivity(nethylenic,AA,BB,Sub,Connectivity) :-
append (AA,BB,Subsl),
flatten(Subsl,Subs),
findall (X, (member (X, Subs),
substituent_type(_,X,Type),
\+ memberchk(Type, [neth])) ,NSubs),
length (NSubs,NumS),
hf_branch_nethylenic(pp,Val),
Connectivity is Val * NumS,
hf_data(connectivity,Sub,Connectivity) .
hf_cis_connectivity(sethylenic,AA,BB,Sub,Connectivity): -
append (AA,BB,Subsl),
flatten(Subsi1,Subs),
findall (X, (member (X, Subs),
substituent_type(_,X,Type),
\+ memberchk(Type, [seth])) ,NSubs),
length (NSubs,NumS),
hf_branch_sethylenic(pp,Val),
Connectivity is Val * NumS,
hf_data(connectivity,Sub,Connectivity) .

hf_cis_connectivity_aux(oeth, [Sizel,Size2],Con):-
hf_branch_oethylenic(pp,Val),
Con is (Sizel * Val) + (Size2 * Val).

hf_cis_aux2(AA,_,_,[0,0]) :-
flatten(AA,FlatA),
length(FlatA,LenA),

LenA = 0.
hf_cis_aux2(AA,A,_,Sizes) :-
flatten(AA,FlatA),
length(FlatA,LenA),

LenA = 1,
hf_cis_aux2_aux(A,AA,_Sub,Sizes).
hf_cis_aux2(AA,A,Sub,Sizes) :-

228

flatten(AA,FlatA),

length(FlatA,LenA),

LenA = 2,

FlatA = [X,Y],

pair(Sub,A,X,SubX),

pair(Sub,A,Y,SubY),
hf_get_sub_size(Sub, [SubX,SubY],Sizes).

hf_cis_aux2_aux(A,[[], [X]],Sub,Sizes) :-
pair(Sub,A,X,SubX),

hf_get_sub_size(Sub, [SubX],Size),
maximum([0,Size], Sizel),

Sizes = [0,Sizel].

hf_cis_aux2_aux(A, [[X],[1],Sub,Sizes) :-
pair(Sub,A,X,SubX),

hf_get_sub_size(Sub, [SubX],Size),
maximum([0,Size], Sizel),

Sizes = [Sizel,0].

hf_cis_1(SizesA,AA,Sub,Value) :-Ywhen 2 subs on same carbon
flatten(SizesA,Flat),

delete(Flat,0,NewFlat),

length(NewFlat,LenNF),

LenNF > 1,

hf_cis_1_res(AA,0,Resonance),
hf_data(resonancel, Sub,Resonance),
sumlist (SizesA,Size),
ESize is Size - (LenNF * 0.05),
maximum([0,ESize], EffectiveSize),
n_o_s_type(Sub,Type),
hf_cis_1_aux(Type,C),
Steric is Cxexp(EffectiveSize),
hf_data(stericl,Sub,Steric),

Value is Resonance + Steric,
I

hf_cis_1(_,_,_,0).

/R 3kskskskskokok ok ok ok ok ok sk sk sk sk sk sk sk sk ok o ok ok ok ok sk sk sk sk sk sk ok sk s ko ok sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk sk ok ok ok ok ok
Gets the proper multiplier depending on the type of

ethylenic
skt sk okok ok ok ok o ok ok ok sk sk sk ok sk ok ok sk s ok ok sk sk sk sk sk ok ok ok s ko ok sk sk sk sk sk sk sk sk sk ke okk sk sk sk ok sk sk ok ok ok sk sk ok ok /

229

hf_cis_1_aux(ethylenic,C):-
hf_steric_ethylenic(pp,C).
hf_cis_1_aux(oethylenic,C):-
hf_steric_oethylenic(pp,C) .
hf_cis_1_aux(nethylenic,C):-
hf_steric_nethylenic(pp,C) .
hf_cis_1_aux(sethylenic,C):-
hf_steric_sethylenic(pp,C).

[/ 3Kk skskskokok ok ok ok ok ok sk sk sk sk sk sk sk sk ok o ok ok ok sk sk sk sk sk sk sk sk o ke ok sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk ok ok ok ok ok ok ok ok
Gets the resonance value of groups off of an ethylenic

-I’m setting it to be -3.5582 = -7.1 for methyls

-for other groups I’11 have to add to the code

koK sk sk ok sk ok ok ok ok ok ok sk sk sk sk sk sk ok ok ok ok sk sk sksk sk sk sk sk s ok ok ok sk sk sk sk sk sk sk sk sk ok kokk sk sk sk sk sk sk koo ok sk sk ok ok /
hf_cis_1_res([],0ut,0ut).

hf_cis_1_res([[H] |T],Part,Resonance) :—
reactophore_fact(R,_,AL,_,_),

memberchk (H,AL) ,

reac_type(R,_,Type),

Jwant to get for ANY connecting methyl group for thru res
hf_cisl_resonance(Type,Res),

NewPart is Part + Res,

hf_cis_1_res(T,NewPart,Resonance).
hf_cis_1_res([_I|T],Part,Resonance) : -
hf_cis_1_res(T,Part,Resonance).

[ok sk ok ok sk ok ok sk ok ok sk o ok ok sk ok ok sk ok ok sk ok ok sk o ok ok sk ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok sk ok ok sk ok ok ok ok ok ok ok ok K
Gets the correction for steric interaction of subs

on ’top’ or ’bottom’ of ethylenic

Kok ok sk ok ok ok ok ok K ok ok oK ok ok k3 ok K K ok ok K 3k ok ok K ok ok K 3k ok ok K ok ok K 3 ok sk K ok ok sk ok sk Kk ok ok sk sk ok ok ok ok kR ok k ok /
hf_cis_2([X,Y], [X1,Y1],[A,B],[A1,B1],Sub,Value) :-
flatten([X,B],Flatl),%deals with cis/Z

flatten([Y,A] ,Flat?2),%deals with cis/Z

hf_cis_2_aux(Flatl, [X1,B1],V1),

hf_cis_2_aux(Flat2, [Y1,A1],V2),

Value is V1 + V2,

hf_data(steric2,Sub,Value),
|

J/Akokokokokok ko ok ok sk sk sk sk sk sk sk sk sk sk sk ok sk stttk ok ok ok ok skokosk sk sk sk sk sk sk sk sk sk sk sk ok ok sk sksk sk sk ok sk skskkokokok ok sk ok ok skokok sk sk ok
increases value exponetially as ESize increases. Uses the full size
of the substituents so gets some kind of correction.

230

Kok ok ok ok ok ok ok ok o o ok ok sk sk ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok ok o ok ok sk sk ok sk sk ok ok ok o o sk sk ok ok ok ok o o o ok ok ok ok ok ok ok ok ok ok o /
hf_cis_2_aux([X,B],_,Value):-

delete([X,B],0,NewFlat),

length(NewFlat,LNF),

LNF > 1,
I

ESizeX is X,
maximum([0,ESizeX],SX),
ESizeB is B,

maximum([0,ESizeB],SB),
ESize is SX + SB,
hf_steric_ethylenic_2(pp,C),
Value is C * exp(ESize).
hf_cis_2_aux(_,_,0).

/3K sksksk sk ok ok o ok sk ok ok sk sk sk sk sk sk ok ok o ok ok sk sk sk sk sk sk sk sk ok o ok ok sk sk sk sk sk sk sk sk sk o sk sksk sksk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok ok
Correction that depends on the length of the ring being looked at:
’Len’ = 3,4,5,6,7,8
other is any other ring not of the specified length
skok sk sk sk sk ok ok ok o ok ok ok sk sk sk sk sk sk ok ok o ke ok ok sk sk sk sk sk sk sk sk sk ko ok sk sk sksk sk sk sk ok sk ok kksksk sk sk sk sk o ke kok ok sk sk sk sk sk sk sk ok ok /
get_hf_ring db(Len,_,Value) :-
Len < 8,
hf_ring db(Len,Value),
!
get_hf_ring_db(Len,Sub,Value) :-
Len >= 8,
reactophore_fact(Sub,e,_,_, [[A1,A2],[B1,B2]]),
get_hf_ring db_aux(Len,A1,A2,B1,B2,Value),
!
get_hf_ring db(_,_,V) :-
hf_ring_db(other,V).

/3K sk sk ok ok ok o o o ok ok ok sk sk sk ok sk ok ok o o o ok ok ok sk sk sk sk sk ok ok o o o ok ok ok sk sk sk sk sk ok ok o ok o sk sk sk ok ok o o o ok
gets the correction for rings that can have either

cis or trans in them.

the 4 ’others’ are the ending rule

sk ok ok ok ok ok ok ok o o ok ok ok sk ok ok ok ok ok ok o o ok ok ok sk ok ok sk ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok o o ok sk ok ok ok ok ok ok ok /
get_hf_ring db_aux(Len, [],[_],[_],[],Value):-Ycis

hf_ring db(Len-cis,Value),

!

get_hf_ring db_aux(Len, [_],[],[],[_],Value):-Ycis

hf_ring db(Len-cis,Value),

|

get_hf_ring_db_aux(Len, [1,_,[],_,Value):-Jtrans

231

hf_ring db(Len-trans,Value),

I.

get_hf_ring db_aux(Len,_,[],_, [],Value):-%trans
hf_ring_db(Len-trans,Value),

I.

get_hf_ring db_aux(_,[1,[_],[_],[],Value):-Y%other
hf_ring db(other-cis,Value),

I.
get_hf_ring_db_aux(_,[_],[],[],[_],Value) :-%other
hf_ring_db(other-cis,Value),

.

get_hf_ring db_aux(_,[],_,[],_,Value):-Jother
hf_ring db(other-trans,Value),

I.

get_hf_ring db_aux(_,_,[],_,[],Value):-Yother

hf_ring_db(other-trans,Value),
.

/KKK oK o KoK ok oK oK o KoK ok oK oK KoK ok oK oK oK KoK o K oK ok o K ok K oK ok oK oK ok K oK o K oK ok ok o K oK ok K sk ok Kok o Kok ok Kok ok
Determines whether an ethylenic sub is a neth, oeth, seth, or eth
Kok Kok oK ok oK oK oK ok oK oK oK ok oK oK oK ok o oK oK ok o ok oK ok ook oK ok o ok oK ok ook oK ok ok KKK ok ok oK ok Kok oK ok Kok Kok koK
n_o_s_type(Sub,Type) : -
reactophore_fact(Sub,e,_, [A1,A2],_),
(A1 = 0’ -> Type = oethylenic
; (A1 = ’N’ -> Type = nethylenic
; (A1 = ’S’ -> Type = sethylenic
(A2 = ’0’ -> Type = oethylenic
; (A2 = °N’ -> Type = nethylenic
; (A2 = ’S’ -> Type = sethylenic
; Type = ethylenic
2))))).

/3K sk sk sk sk ok ok o ok ok ok ok sk sk sk sk sk sk sk sk o ok ok sk sk sk sk sk sk sk sk o o ok ok sk sk sk sk sk sk sk sk ok s sk sk sk sk sk sk sk o sk sk sk sk sk sk sk sk sk sk ok ok
Asserts the pieces of the calculations into the database.
These will get called later up in hf_values(_).
They will be retracted at the top of the program
sk ok sk sk sk ok ok ok ok o ok ok ok sk sk sk sk sk sk ok sk o ko sk sk sk sk sk sk sk sk sk sk ks sk sk sk sk sk sk sk sk ok sk ok ok sk sk sk sk sk sk o sk ok ok sk sk sk sk sk sk sk ok /
hf_data(Name,Reac,Value) : -
assert(data_tad(Name,Reac,Value)).

/KoK sk sk ok sk sk ok ok sk ok ok sk K ok ok K 3 ok sk K ok ok 3 3 ok sk K ok ok K 3 ok ok ok ok 3k ok ok ok ok K ok ok K ok ok ok ok
Finds all the substituents connected to Sub that have

pi orbitals
sksk sk okok ok ok ok ok o ok ok ok ok sk sk sk sk sk ok sk ok sk ko ok sk sk sk sk sk sk ok ok ok s ok ok ok sk sk sksk sk sk sk ok skok ok ok ok ok /

232

hf_pi_subs(Sub,ListPi):-
findall (XX, (pair(Sub,XX),
reac_type (XX, _,Pi),
memberchk (Pi, [aromatic,ethylenic,acetylenic])),ListPi).

JFkkk Data ATea skskskskkokokskkkkokoksk kK ok ok ok 3k K 3 ok ok ok 3k 3 3 ok ok ok ok 3 3 ok ok Kok ok 3k K ok ok ok kK ok ok ok ok /

% This is now in a file called ’hf_data.pro’

C.2 HF_RING2.PRO

/Aot ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk skokokok ko ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skokskokok skskskkokokok ok ok ok ok ok
This module:

Finds all the special substructures in a molecule, eg

norbornane; 2 norbornanes; cubane; diadamantane, etc

Gets a correction for each of the substructures (and any branches
coming off of the substructure)

Finds the regular rings that are not part of the substructures
Gets a correction for branches off of the substructure

Gets a correction for how each of the substructures are
connected to each other.

stttk ok ok ok ok ok ok ok sk sk sk sk ok ok sk sk sk ok ok ok ookt ok ok ok ok ko ok sk sk sk sk sk sk sk sk ok ok ok ook sk ok ok ok ok ok ok ok ok ko /
hf_ring_structure_correct(RAs,AllRings,Value):-
hf_ring_structure(AllRings,StructuresVal),

hf_ring find(_,MostStructures),

hf_ring regular(AllRings,Al1Rings,MostStructures, []),

hf_ring find(_,Al1Sts),

hf_ring structure_filter(AllSts,FilteredSts),

hf_ring find(regular,RegRings),

hf_ring regular2(RegRings,AllRings,0,RegRingsVal),

hf_ring structure_connect(FilteredSts,FilteredSts,Al1Rings,RAs,O0,
ConnectsVal),

Value is StructuresVal + RegRingsVal + ConnectsVal.

/] KoKk sk ok sk sk ok ok sk ok ok sk K ok ok sk ok ok K K ok ok K ok ok sk ok ok K ok ok sk ok ok ok ok K ok ok sk ok ok K ok ok ok ok ok sk ok ok ok ok
This module:

Finds all the substructures in a molecule
Gets the value for that structure and

any branches or

dbs part of or coming off of the structure

233

Kok Kok oK ok Kok oK ok oK oK oK ok ook oK ok ook K ok ook oK ok ook oK ok ok oK ok ok K ok ok KK ok ok ok ok ok ok /
hf_ring structure(AllRings,StructuresVal):-
hf_ring bridge(AllRings,BridgeVal),

hf_ring 5553(A11Rings,FiveVal),
hf_ring_adamantane(AllRings,AdaVal),

hf_ring protoadamantane(AllRings,ProtoAdaVal),
hf_ring tetrane(AllRings,TetraneVal),
hf_ring_cubane(Al1lRings,CubaneVal),

hf_ring bullvalene(AllRings,BullvaleneVal),
hf_ring bridgeane(AllRings,BridgeaneVal),
hf_ring housane(AllRings,HousaneVal),

hf_ring hatane(AllRings,HataneVal),
hf_ring_diadamantane(AllRings,DiaAdaVal),
hf_ring 33bridge(AllRings,TTBridgeVal),
hf_ring_azulene(AllRings,AzVal),

StructuresVal is BridgeVal + FiveVal + AdaVal + ProtoAdaVal +
TetraneVal + CubaneVal + BullvaleneVal +

BridgeaneVal + HousaneVal + HataneVal + DiaAdaVal +

TTBridgeVal + AzVal.

hf_ring_structure(_,_):-

write(’something died in hf_ring_structure’),nl,

abort.

[/ 3kkk sk ook ok sk ok ok ok ok sk sk sksk sk sk sk ok o ok ok ok sk sk sk sk sk sk sk ok sk ko ok sk sk sk sk sk sk sk ok sk ok ksksksk sk sk sk ok s ok kok ok sk sk sk sk sk ok
Each of these finds all of the predefined structures
in a molecule, and gets the appropriate correction for
each
sk sk sk sk ok ok ok ok ok o o ok ok ok sk sk sk sk sk ok ok ok o ok sk sk sk sk sk sk sk sk sk o o koK sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk o ke sk ok sk sk sk sk sk sk sk ok /
/R 3kkk sk ook ok s ok ok ok ok sk sk sk sk sk ok ok sk o ok ok sk sk sk sksk sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk sk ki sk sk sk ok sk sk ok ok ok ok sk ok
For bridges
koK sk sk sk sk sk ok ok o ok ok ok ok sk sk sk sk sk sk ok sk ok s okok sk sk sk sk sk sk sk sk sk ok ke kok ok sk sk sk sk sk sk sk sk sk ok kok sk sk sk skok sk ok ko ok /
hf_ring bridge(AllRings,BridgeVal):-
/ kxkk
findall([R1,R2,R3], (member(R1,A11Rings),
member (R2,A11Rings),
R1 \= R2,

intersects(R1,R2,[_,_,_1_1),

member (R3,A11Rings),

R1 \= R3,

R2 \= R3,

intersects(R1,R3,[_,_,_I_1),

intersects(R2,R3,[_,_,_1_1),

hf_bridge_atom([R1,R2,R3], [_A,_B])

),List),

234

duplicate_list_sort(List,ListBridge),

hf_bridge_in_other (ListBridge,Al1Rings,ListBridgeInOther),
length(ListBridgeInOther,0),
hf_ring_structure_assert(ListBridge,bridge),

*okok /

hf_ring find(bridge,ListBridge),

hf_ring bridge_aux(ListBridge,Al1Rings,0,BridgeVal).
hf_ring_bridge(_,0).

[KKK K ok Kok KoK ok K ok o oK ok oK ok o ok ok Kok oK ok Kok oK ok K ok o oK ok K ok o oK ok K ok oK ok K ok o ok KoK ok K ok ok oK ok ok
Finds if any of the bridges are also in two other rings,
where those two rings are connected to the edges where the
bridge atom is
sk Kok ok ok oK ok oK ok oK ok ok ok o ok oK ok K oK oK ok o ok sk ok o ok ok ok ok sk ok ok sk ok ok koK ok ok ok ok ok ok /
hf_bridge_in_other([],_,[]).
hf_bridge_in_other ([[A,B,C] |Rest],Al1Rings, [[A,B,C]|ListBridge]) :-
findall([X,Y], (member(X,Al1Rings),

X \=4, X\=B, X \=C,

intersects(A,X,[_,_1),

intersects(B,X,[_,_1),

intersects(C,X,[_,_,_1),

member (Y,A11Rings),

Y\=A4, Y\=B, Y \=C,

X \=1Y,

intersects(A,Y,[_,_1),

intersects(B,Y,[_,_]),

intersects(C,Y,[_,_,_1)),[_I_1),
hf_bridge_in_other (Rest,AllRings,ListBridge).
hf_bridge_in_other ([_H|Rest],AllRings,ListBridge) :-
hf_bridge_in_other (Rest,AllRings,ListBridge) .

[KKKk ok ok ok ok o ok ok ok sk ok ok ok ok ok ok o o ok ok sk sk ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok ok o Kok ok ok ok ok ok ok o K K ok
Gets the correction based on the size of the bridge and

the double bonds within it and

the branches coming off

stttk stk ok ook ok ok sk sk sk sk sk sk sk sk sk sk ok ok okttt kst ks koo ok ok sk sk sk sk sk sk sk ok sk sk ok ok sk sk ok sk ok ok ok ok ok o ok /
hf_ring bridge_aux([],_,Val,Val).

hf_ring bridge_aux([H|T],Al1Rings,Part,0Out):-

gensort (H,longer, [A,B,C]),

length(A,LenA),

length(B,LenB),

length(C,LenC),
concatenate_atomlist_to_atom([LenA,LenB,LenC],Key),
hf_bridge(Key,Val),

hf_bridge_atom(H,Atoms),

%htrace,

hf_ring 5553_aux_branch(H,A11Rings,Atoms,0,BranchCorrect),
hf_ring bridge_aux_db(H,Atoms,0,DbCorrect),

NewPart is Part + Val + BranchCorrect + DbCorrect,
hf_ring bridge_aux(T,AllRings,NewPart,Out) .

hf_ring bridge_aux([_H|T],Al1lRings,Part,Out):-

hf_ring bridge_aux(T,AllRings,Part,0Out).

/] 3Kk ok sk ok ok sk ok sk ok ok s ok ok K ok ok 3 ok ok ok ok ok 3 ok K ok ok s ok ok K sk ok s ok 3 ok ok 3k ok ok K sk ok s ok ok s ok ok ok sk ok ok sk ok ok
Takes an atom,
finds the atoms which are not part of the structure;
makes sure the Atom is not in a ring that is not part
of the structure
finds the other atoms hooked to Atom
find those others that are not part of the SAs
ok ok sk ok ok ok ok ok K ok ok K 3 ok ok K ok ok K K ok ok K ok ok K K ok ok K ok ok K 3 ok ok ok ok k3 ok ok ok ok 3k ok ok ok ok ok kK ok k ok ok ok /
hf_rba_branch_aux_aux(Atom,H,SAs,Al1Rings,ListOut) :-
difference(AllRings,H,RestRings),
flatten(RestRings,FRR1),
delete_duplicates(FRR1,FRR),
\+ memberchk(Atom,FRR),
atom_specs(_,Atom,_,_,List),

findall(Y, (member(Y,List),

\+ memberchk(Y,SAs)), ListOut).

[Kk ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok o o ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o o K K ok
Finds any endo ethylenics in a structure and
which ring they are in (the short one)
passes this on
stttk stk ok ook ok ok ok sk sk sk sk sk sk sk sk sk sk ok ok ok okttt kst sk ok ok ok ok sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk ok ok ok ok ok ok ok /
hf_ring bridge_aux_db(H,Atoms,_Part,Val):-
findall([X,Ring], (reactophore_fact(X,e, [E1l,E2],_,Hooks),
flatten(Hooks,_FH),
hf_which_ring(E1,H,Ring),
memberchk (E1,Ring),
memberchk (E2,Ring)) ,ListEl),
delete_duplicates(ListE1l,ListE),
hf_rba_db_aux(ListE,Atoms,0,Val).

/ 3k sk sk ok sk ok ok ok ok sk sk sk sk sk sk ok sk ok ok ok sk sk sk sk sk sk sk sk s ok ok ok sk sk sk sk sk sk sk sk sk ke okok sk sk sk ok sk sk ok ok ok ok ok ok

Takes the list of ethylenics

1. For those e’s that BOTH hooks are connected to bridge atoms
get value based on size of ring the ’e’ is in

2. TFor those e’s in a 6-membered ring who has 1 hook connected to

235

a bridge atom
3. Doesn’t fit either of these rules, just ignore and recall
sk sk sk sk ok ok ok ok o o o ok ok ok sk sk sk sk sk ok ok o o o ok ok sk sk sk sk sk ok o o ok o ok ok sk sk sk sk sk ok ok o o o ok sk sk ok ok ok ok ok ko ok /
hf_rba_db_aux([],_,0ut,Out).
hf_rba_db_aux([[E,Ring] |T], [BA1,BA2] ,Part,V):-
reactophore_fact(E,e,_,_,Hooks),
flatten(Hooks,FH),
memberchk (BA1,FH),
memberchk (BA2,FH) ,
length(Ring,LenRing),
hf_bridgedb(LenRing,Val),
NewPart is Part + Val,
hf_rba_db_aux(T, [BA1,BA2] ,NewPart,V).
hf_rba_db_aux([[E,Ring] |T], [BA1,BA2] ,Part,V) :-
length(Ring,6),
reactophore_fact(E,e,_,_,Hooks),
flatten(Hooks,FH),
(memberchk (BA1,FH), \+ memberchk(BA2,FH) ;
\+ memberchk (BA1,FH), memberchk(BA2,FH)),
hf_bridgedb(b6,Val),
NewPart is Part + Val,
hf_rba_db_aux(T, [BA1,BA2] ,NewPart,V).
hf_rba_db_aux([_|T],BAs,Part,V) :-
hf_rba_db_aux(T,BAs,Part,V).

/5 ok sk ok o ok sk ok ok ok ok sk ok ok ok ok sk ok ok o ok sk sk ok ok ok sk sk ok ok ok sk ok ok s ok sk sk ok sk sk sk ok ok sk ok ok ok ok sk ok ok ok ok
For 5553 molecules
sk ok o ok sk ok o ok stk ok o ok sk ok o ok sk sk ok s o sk sk ok o ok sk sk o ok stk ok o sk sk ok ok ok skok ok skok ok sk ok skok ok sk o/
hf_ring 5553 (A11Rings,FiveVal):-
VELILIL L)
findall([R1,R2,R3,R4],
(member (R1,A11Rings),
length(R1,3),
member (R2,A11Rings),
length(R2,5),
member (R3,A11Rings),
length(R3,5),
R2 \= R3,
member (R4,A11Rings),
length(R4,5),
R2 \= R4,
R3 \= R4,
intersects(R1,R2,[_,_1),
intersects(R1,R3,[_,_1),
intersects(R1,R4,[_,_1),

236

intersects(R2,R3,[_,_,_1),
intersects(R2,R4,[_,_,_1),
intersects(R3,R4,[_,_,_1)),List),

duplicate_list_sort(List,ListFive),
hf_ring_structure_assert(ListFive,5553),
*okokkokk ok /

hf_ring find(5553,ListFive),

hf_ring 5553_aux(ListFive,Al1Rings,0,FiveVal).

hf_ring 5553_aux([],_,0ut,0Out).

hf_ring 5553_aux([H|T],Al1Rings,In,0ut) :-
hf_bridge(5553,Val),

hf_ring 5553_auxdb(H,DbCorrect),
hf_atom_in3rings(H,Atoms),

hf_ring 5553_aux_branch(H,Al1Rings,Atoms,0,BranchCorrect),
NewIn is In + Val + DbCorrect + BranchCorrect,

hf_ring 5553_aux(T,Al1Rings,NewIn,Out) .

/KK ok sk ok ok sk ok sk ok ok s ok ok ok ok ok 3 ok K ok ok 3 ok K ok ok ok ok 3 ok K ok ok 3 ok K ok ok ok ok K ok K ok ok 3 ok ok ok ok sk ok ok ok ok ok
None w/ dbs so don’t know how to model
Kok ok K ok ok oK ok ok K ok ok K 3 ok ok K ok ok K 3 ok ok K ok ok K 3 ok ok K ok ok K 3 ok ok ok ok K 3 ok ok ok ok 3 K ok ok K K ok Kok sk ok ok /

hf_ring 5553_auxdb(_,0) .

/oK sk sk ok sk ok ok ok sk ok ok sk ok ok ok sk sk ok ok o ok ok sk ok ok ok ok ok sk ok ok sk ok ok sk sk ok sk ok ok sk ok ok ok o ok ok ok ok ok ok ok ok ok ok ok
Gets the correction for branches coming off of the atoms in

the structure, if nothing coming off then get no correction

ok ok sk ok ok ok ok ok K ok ok K 3 ok ok K ok ok K K ok ok K ok ok K 3 ok ok K ok ok K 3 ok ok ok ok sk s ok ok ok ok k3 ok ok ok ok ok sk ok ok k ok /
hf_ring 5553_aux_branch(H,Al1Rings,Atoms,0,BranchCorrect) : -
flatten(H,SAsl),

delete_duplicates(SAs1,SAs),
hf_r5553a_branch_aux(SAs,H,SAs,Al1Rings,Atoms,0,BranchCorrect) .

[Kkokok stk ok stk sk sk ok sk sk sk sk ok sksk sk ok sksksk sk ok sksk sk sk ok skskosk ok sksk sk sk ok sk sk skok sk sk sk sk ok sk sk sk ok ok
This module handles bridge atoms and atoms that are in three rings
where 2 of those rings share 1 side w/ the 3rd ring

and it also handles branches coming off of regular rings

Takes each atom

finds the atoms connected to it

gets those that are not members of the current structure
gets the rings that are not members of the current structure
makes sure that the atom is not in another ring

finds the number of branches coming off the atom

237

if atom is in three rings get one correction
may need to add special correction for being in 553
else get other correction
stttk ok ok ook ok ok sk sk sk sk sk sk sk sk sk sk ok ok okttt ok ko ok ook sk sk sk sk sk sk sk ok sk ok sk ok sk ok ok ok ok ok ok ok ok ook /
hf_r5553a_branch_aux([],_,_,_,_,Out,Out).
hf_r5553a_branch_aux([Atom|Rest] ,H,SAs,Al11Rings,Atoms,Part,BC) :-
hf_rba_branch_aux_aux(Atom,H,SAs,Al1Rings,L0),
length(L0,Len),
hf_ba_connect (Atom,Atoms,BAC),
(memberchk (Atom,Atoms) ->
((findall([Ringl,Ring2,Ring3],
(member (Ringl,H),
member (Ring2,H),
Ringl \= Ring2,
member (Ring3,H) ,
Ringl \= Ring3,
Ring2 \= Ring3,
memberchk (Atom,Ringl),
memberchk (Atom,Ring?),
memberchk (Atom,Ring3),
intersects(Ringl,Ring3,[_,_]1),
intersects(Ring2,Ring3,[_,_]1),
intersects(Ringl,Ring2,[_,_|_1)),[_I_1)
) —> ring_vertices_3ring(Len,V)
; ring_vertices_3ring(Len,V)

)

(BAC =:= 1 -> hf_ba_connect2(Atom,H,Len,A11Rings,V)
; ring_vertices_lring(Len,V)

)

),

NewPart is Part + V,
hf_r5553a_branch_aux(Rest,H,SAs,Al1Rings,Atoms,NewPart,BC) .
hf_r5553a_branch_aux([_|Rest] ,H,SAs,Al1Rings,Atoms,NewPart,BC) : -
hf_r5553a_branch_aux(Rest,H,SAs,Al1Rings,Atoms,NewPart,BC) .

/3K sk sk sk sk ok ok ok ok ok ok sk sk sk sk sk sk sk ok ok o ok sk sk sk sk sk sk sk sk sk o ke ok sk sk sk sk sk sk sk sk sk o sk sksk sk sk sk sk ok sk ok ok ok ok ok
Checks that Atom (atom in the ring) is connected to at least
two bridge atoms - if so then BAC = 1 - else BAC = 0
sksk sk sk ok sk ok ok ok s ok ook ok sk sk sk sk sk sk ok ok s ok ok ok sk sk sksk sk sk sk sk sk ke kok ok sk sksksk sk sk sk sk sk ok ksk sk sk sk sk ok sk sk koo ok /
hf_ba_connect (Atom,Atoms, 1) : -
findall ([BA1,BA2], (member (BA1,Atoms),

bonded (BA1l,_,Atom),

member (BA2,Atoms) ,

238

BA2 \= BA1,
bonded (BA2,_,Atom)),[_I_]1).
hf_ba_connect(_,_,0).

/ 3k sksk ok sk ok ok ok ok sk sk sk sk sksk sk ok sk ok ok ok sk sk sk sk sk sk sk sk o e kok ok sk sksk sk sk sk sk sk sk ke kokk sk sk sk ok sk sk ok ok ok ok ok ok
Finds what kind of Atom it is - if ’ethylenic’ and

in two five membered rings get special correction.

correction, else - get regular correction

skskskskok ok ok ok o s o okok ok sk sk sksk sk ok ok sk s ok ok ok sk skl sk sk sk sk sk sk ok kok ok sk sksksk sk sk sk ok sk ok ksk sk sk sk sk ok ok ko ok /
hf_ba_connect2(Atom,H, _Len,Al1Rings,V) : -
reac_type(Atom,ethylenic),
hf_ba_connect2_aux(Atom,H,A11Rings,V).
hf_ba_connect2(_,_,Len,_,V):-

ring_vertices_1lring(Len,V).

hf_ba_connect2_aux(Atom,_H,_AllRings,V):-

findall (Sub, (reactophore_fact(Sub,e,Parts,_,_),
memberchk (Atom,Parts)), [Subl),

neth_oeth_seth(Sub),

n_o_s_type(Sub,Type),

hf_ba_connect2_aux_aux(Type,V1),

ring_vertices_2ring(bridge2,Real),

V is Real-Vl1.

hf_ba_connect2_aux(_Atom,_H,_AllRings,V):-

hf_ring_exo(5,V1),

ring_vertices_2ring(bridge2,Real),

V is Real-Vl1.

/K skskok ok ok ok ok o ok ok ok sk sk sk ok ok ok ok ok ok o o o ok ok ok ok ok

gets the appropriate correction

KKK oK ok ok ok ok ok ok ok ok kKoK ok ok ok ok ok ok ok kK Kk ok /
hf_ba_connect2_aux_aux(oethylenic,V1):-
hf_ring exo_oethylenic(5,V1).
hf_ba_connect2_aux_aux(_,0).

[Kk ok ok ok ok ok o ok ok sk ok sk ok ok ok ok ok o o o ok ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok ok o Kok ok ok ok ok ok ok o K K ok
For adamantane

sk sk sk sk ok ok ok ok o o o ok ok ok ok sk sk ok ok ok ok o o o ok ok ok ok sk sk sk sk ok ok o o o ok ok sk sk sk sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok ko ok /
hf_ring_adamantane(Al1Rings,AdaVal) :-

VAL L

hf_ring_adamantane_aux2(AllRings,ListAda),

\+ hf_ada_share(ListAda,ListAda,0),

hf_ring structure_assert(ListAda,adamantane),

*kkkk [

239

240

hf_ring find(adamantane,ListAda),
hf_ring adamantane_aux(ListAda,AllRings,0,AdaVal).
hf_ring_adamantane(_,0).

hf_ring_adamantane_aux([],_,Out,Out).

hf_ring adamantane_aux([H|T],Al11Rings,In,0ut) :-
hf_bridge(adamantane,Val),

hf_ring adamantane_auxdb(H,DbCorrect),
hf_atom_in3rings(H,Atoms),
hf_ring_ada_aux_branch(H,Al1lRings,Atoms, [],0,BranchCorrect),
NewIn is In + Val + DbCorrect + BranchCorrect,

hf_ring adamantane_aux(T,Al1Rings,NewIn,Qut).

/5K ok sk ok ok ok sk ok ok ok sk ok ok ok ok sk ok ok o ok sk ok ok ok sk ok ok ok ok sk ok ok ok sk ok ok ok sk ok ok Kok ok ok ok ok ok ok K K
None w/ dbs so don’t know how to model

sk ok ok sk ok o ok sk ok ok ok ok sk ok o o ok sk ok ok o ok sk sk ok o ok sk sk ok o ok sk ok ok ok sk sk ok ok ok sk ok ok skok ok sk ok ok ok ok ok /
hf_ring adamantane_auxdb(_,0) .

/oK sk sk ok sk ok ok ok sk ok ok sk o ok ok sk sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok sk ok ok sk sk ok sk ok ok sk sk ok ok kook ok ok ok ok ok ok ok ok ok ok K
Gets the correction for branches coming off of the atoms in

the structure, if nothing coming off then get no correction

K ok ok ok kK ok ok ok Kk K oK ok ok ok K oK ok ok ok K ok ok ok ok K K K ok ok ok K K 3k ok ok ok kK sk ok ok ok Kk ok sk ok ok ok ok ok ok ok k /
hf_ring ada_aux_branch(H,Al1Rings,Atoms,Atoms4,0,BC) :-
flatten(H,SAsl),

delete_duplicates(SAs1,SAs),
hf_radaa_branch_aux(SAs,H,SAs,Al1Rings,Atoms,Atoms4,0,BC).

[Kkokokskskok ok stk sk ok sksksk sk ok sksk sk ok sksk sk sk ok sksk sk sk ok sksk sk ok sksk sk sk ok sk sk sk ok sk sksk sk ok sk sk sk ok k
Takes each atom
finds the number of branches coming off the atom

if atom is in 3 rings

if it’s also in 4 rings

if it is then get an ad4 value

else get an ad3 value

else get a value for just being in 1 ring

***/

hf_radaa_branch_aux([],_,_,_,_,_,0ut,0Out).
hf_radaa_branch_aux([Atom|Rest],H,SAs,Al1Rings,Atoms,Atoms4,Part,BC) : -
hf_rba_branch_aux_aux(Atom,H,SAs,Al1Rings,L0),

length(LO,Len),

(memberchk (Atom,Atoms) —>

241

(memberchk (Atom,Atoms4) -> ring_vertices_4ring(ad-Len,V)

; ring_vertices_3ring(ad-Len,V)
)
; ring_vertices_1ring(Len,V)
),
NewPart is Part + V,
hf_radaa_branch_aux(Rest,H,SAs,Al1Rings,Atoms,Atoms4,NewPart,BC) .
hf_radaa_branch_aux([_Atom|Rest] ,H,SAs,Al1Rings,Atoms,Atoms4,Part,BC) :-
hf_radaa_branch_aux(Rest,H,SAs,Al1Rings,Atoms,Atoms4,Part,BC).

/KoK sk ok ok ok ok o o ok ok ok ok sk ok ok ok ok ok o o o ok ok ok sk ok ok sk ok ok ok o o ok ok ok sk ok sk sk ok ok ok o ok ok sk ok ok ok ok ok o o kK ok
Finds all those sets that are joined together like

adamantane

stttk ok ok ook ok ok ok sk sk sk sk sk sk sk sk sk sk sk ok otttk kot ko ok ko ok ok sk sk sk sk sk sk sk sk sk ok sk ok sk sk ok sk ok ok ok ok ok ok ok /
hf_ring adamantane_aux2(AllRings,ListAda):-
findall([R1,R2,R3,R4],

(member (R1,A11Rings),

length(R1,6),

member (R2,A11Rings),

length(R2,6),

R1 \= R2,

member (R3,A11Rings),

length(R3,6),

R1 \= R3,

R2 \= R3,
member (R4,A11Rings),
length(R4,6),

R1 \= R4,

R2 \= R4,

R3 \= R4,
intersects(R1,R2,[_,_,_1),
intersects(R1,R3,[_,_,_1),
intersects(R1,R4,[_,_,_1),
intersects(R2,R3,[_,_,_1),
intersects(R2,R4,[_,_,_1),
intersects(R3,R4,[_,_,_])),List),

duplicate_list_sort(List,ListAda).

/K 3kk sk sk ok s ok ok ok ok sk sk sk sk sk sk ok sk o ok ok sk sk sksksk sk sk ok s ok ok ok sk sksksk sk sk sk sk sk ok kokok sk sk sk ok sk ok ok ok ok ok ok
Checks to see if the list of adamantanes have a ring in common
If they do, the ’\+’ above causes it to get kicked out and

is not considered adamantane
Kok sk ok ok ok ok 3 ok ok ok ok 3 ok K ok K ok ok 3 ok K ok ok 3 ok ok K ok ok 3 ok K ok sk ok ok ok K ok ok 3 ok ok ok sk ok sk ok ok ok Sk k k sk ok ok ok /

242

hf_ada_share([],[],_):- fail.
hf_ada_share([_]1,[_],_):- fail.
hf_ada_share([],_ListAda,Num):-
(Num =:= 0 -> fail
; true
).
hf_ada_share([H|T],ListAda,In):-
findall (_X, (member (Other,ListAda),
Other \= H,
intersects(H,0ther,[_|_])),List),
length(List,Num),
NewIn is In + Num,
hf_ada_share(T,ListAda,NewIn).

[KKK KK ok Kok KoK ok Kok o oK ok Kok oK ok Kok oK ok Kok oK ok Kok oK ok Kok o oK ok Kok oK ok Kok oK KoK ok Kok oK o K ok oK
For protoadamantane

stk Kok Kok oK oK Kok KoK K ok K ok ok ok K ok K ok oK oK ok ok K ok ok ok ok oK ok ok ok ok ok KK ok ok ok ok ok ok /
hf_ring_protoadamantane(AllRings,ProtoAdaVal):-

VALIIE ST L)

findall([R1,R2,R3,R4],

(member (R1,A11Rings),

length(R1,6),

member (R2,A11Rings),

length(R2,6),

R1 \= R2,

member (R3,A11Rings),

length(R3,5),

member (R4,A11Rings),

length(R4,7),

intersects(R1,R2,[_,_,_1),
intersects(R1,R3,[_,_1),
intersects(R1,R4,[_,_,_,_1),
intersects(R2,R3,[_,_,_1),
intersects(R2,R4,[_,_,_1),
intersects(R3,R4,[_,_,_1)),List),

duplicate_list_sort(List,ListProto),

hf_ring structure_assert(ListProto,protoadamantane),

*okskokokokk /

hf_ring find(protoadamantane,ListProto),

hf_ring protoadamantane_aux(ListProto,AllRings,0,ProtoAdaVal).

hf_ring protoadamantane_aux([],_,0Out,Out).
hf_ring protoadamantane_aux([H|T],Al1Rings,In,Out):-
hf_bridge(protoadamantane,Val),

hf_ring protoadamantane_auxdb(H,DbCorrect),
hf_atom_in3rings(H,Atoms),

hf_ring ada_aux_branch(H,Al11Rings,Atoms, [],0,BranchCorrect),
NewIn is In + Val + DbCorrect + BranchCorrect,

hf_ring protoadamantane_aux(T,Al1Rings,NewIn,Out) .

/o sk ok sk ok ok stk ok o ok sk sk ok ok ok sk ok o ok sk ok o s sk sk ok ok ok sk ok ok ok sk ok s sk sk sk sk sk ok ok ok sk ok ok ok
No structures w/ dbs

sk sk sk sk ok ok ok ok o o o ok ok sk sk sk sk sk ok o o o o ok ok sk sk sk sk sk ok o o o o ok ok sk sk sk sk sk ok ok o ok sk sk sk sk ok ok ok ok ko ok /
hf_ring_protoadamantane_auxdb(_,0) .

/KoK sk ok ok ok ok o o ok ok ok ok sk ok ok ok ok ok o o o ok ok ok sk ok ok sk ok ok ok o o ok ok ok sk ok sk sk ok ok ok o ok ok sk ok ok ok ok ok o o kK ok
For tetrane
stttk ok ok kokokok ok sk sk sk sk sk sk sk sk sk sk ok ok otttk ok ook ook okosk sk sk sk sk sk sk sk ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok /
hf_ring_ tetrane(AllRings,TetraneVal) :-
[/ %k skk sk ok sk ok k
findall([R1,R2,R3,R4],
(member (R1,A11Rings),
length(R1,3),
member (R2,A11Rings),
length(R2,3),
R1 \= R2,
member (R3,A11Rings),
length(R3,3),
R1 \= R3,
R2 \= R3,
member (R4,A11Rings),
length(R4,3),
R1 \= R4,
R2 \= R4,
R3 \= R4,
intersects(R1,R2,[_,_1),
intersects(R1,R3,[_,_1),
intersects(R1,R4,[_,_1),
intersects(R2,R3,[_,_1),
intersects(R2,R4,[_,_1),
intersects(R3,R4,[_,_1)),List),
duplicate_list_sort(List,ListTetrane),
hf_ring structure_assert(ListTetrane,tetrane),
KKKk oKk kokok ok ok /
hf_ring find(tetrane,ListTetrane),
hf_ring tetrane_aux(ListTetrane,AllRings,0,TetraneVal).

hf_ring_tetrane_aux([],_,0Out,Out).
hf_ring tetrane_aux([H|T],AllRings,In,0ut):-

243

244

hf_bridge(tetrane,Val),

hf_ring tetrane_auxdb(H,DbCorrect),

hf_atom_in3rings(H,Atoms),

%kt hf_ring 5553_aux_branch(H,Al1Rings,Atoms,0,BranchCorrect),
hf_ring_ada_aux_branch(H,AllRings,Atoms, [],0,BranchCorrect),
NewIn is In + Val + DbCorrect + BranchCorrect,

hf_ring tetrane_aux(T,AllRings,NewIn,Qut).

[FHKAF KKK A KA KKK KA KA KKK KA KKK KA KA KKK A KKK KKK KA KoK Kok Kok Kok Kok K
None w/ db’s now

3K KKK KKK KKK KK KKK KK KK K K K K K K K oK K oK KooK oK KK oK oK ok Kok ok K ok /
hf_ring tetrane_auxdb(_,0).

/st sk sk ook ook ok sk sk sk sk sk sk sk sk sk sk ok ok okttt sk sk sk koo ok ok sk sk sk sk sk sk sk sk sk sk ok ootk kst ok okokokokok ok koo ook
For cubane
Kok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok o o o ok ok ok ok ok ok sk ok ok ok ok o ok ok sk sk sk sk sk ok ok ok ok ok sk ok ok ok ok ok ok ko k /
hf_ring cubane(AllRings,CubaneVal):-
/ %Kk kkkk
findall([R1,R2,R3,R4,R5,R6],
(member (R1,A11Rings),
length(R1,4),
member (R2,A11Rings),
length(R2,4),
R1 \= R2,
member (R3,A11Rings),
length(R3,4),
R1 \= R3,
R2 \= R3,
member (R4,A11Rings),
length(R4,4),
R1 \= R4,
R2 \= R4,
R3 \= R4,
member (R5,A11Rings) ,
length(R5,4),
R1 \= R5,
R2 \= R5,
R3 \= R5,
R4 \= R5,
member (R6,A11Rings),
length(R6,4),
R1 \= R6,
R2 \= R6,
R3 \= R6,

245

R4 \= R6,

R5 \= R6,

findall([A,B], (member (A, [R1,R2,R3,R4,R5,R6]),

member (B, [R1,R2,R3,R4,R5,R6]),

A \= B,

intersects(A,B,[_,_])),ListAB),
delete_duplicates(ListAB,AB),
length(AB,24)),List),
duplicate_list_sort(List,ListCubane),
hf_ring_structure_assert(ListCubane, cubane),
okokkokkok ok /
hf_ring find(cubane,ListCubane),
hf_ring cubane_aux(ListCubane,AllRings,0,CubaneVal).

hf_ring_cubane_aux([],_,0Out,Out).

hf_ring cubane_aux([H|T],Al11Rings,In,Out):-
hf_bridge(cubane,Val),

hf_ring cubane_auxdb(H,DbCorrect),
hf_atom_in3rings(H,Atoms),

hf_ring 5553_aux_branch(H,Al1Rings,Atoms,0,BranchCorrect),
NewIn is In + Val + DbCorrect + BranchCorrect,

hf_ring cubane_aux(T,Al1Rings,NewIn,Out).

/KK sk sk sk ok ok o o o ok ok ok sk sk sk sk ok ok o o o ok ok ok sk sk sk sk ok ok o o o ok ok ok sk sk sk sk ok o o o o ok sk ok ok ok ok ok o ok ok ok ok
No db’s right now

stk ok ok sk ok ok o ok sk ok ok ok ok sk ok o o ok sk sk ok ok sk sk ok ok ok sk sk ok ok sk ok ok ok sk sk ok ok ok sk ok ok sk ko ok ok okok ok ok /
hf_ring cubane_auxdb(_,0).

/] Kok sk sk ok sk sk ok ok sk ok ok sk ok ok ok sk sk ok ok ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk sk ok sk ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok
For bullvalene

right now we only have bullvalene (which already has

dbs in it, so until we get one that doesn’t, we’re
not going to have a separate db correction)

stk ok sk ok ok ok o ok ok sk ok ok ok ok ok sk ok ok ok o ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok ok ok ok sk sk ok ok ok ok /
hf_ring bullvalene(AllRings,BullaVal):-

[HE Rk ok

findall([R1,R2,R3,R4],

(member (R1,A11Rings),

length(R1,3),

member (R2,A11Rings),

length(R2,7),

member (R3,A11Rings),

length(R3,7),

R2 \= R3,
member (R4,A11Rings),

246

length(R4,7),

R2 \= R4,

R3 \= R4,
intersects(R1,R2,[_,_1),
intersects(R1,R3,[_,_1),
intersects(R1,R4,[_,_1),

intersects(R2,R3,[_,_,_,_1),
intersects(R2,R4,[_,_,_,_1),
intersects(R3,R4,[_,_,_,_1)),List),

duplicate_list_sort(List,ListBulla),
hf_ring_structure_assert(ListBulla,bullvalene),
oKk kok ok Kok /

hf_ring find(bullvalene,ListBulla),

hf_ring bullvalene_aux(ListBulla,AllRings,0,BullaVal).

hf_ring bullvalene_aux([],_,0Out,Out).

hf_ring bullvalene_aux([H|T],Al1Rings,In,0ut):-
hf_bridge(bullvalene,Val),

hf_ring bullvalene_auxdb(H,DbCorrect),
hf_atom_in3rings(H,Atoms),

hf_ring 5553_aux_branch(H,Al1Rings,Atoms,0,BranchCorrect),
NewIn is In + Val + DbCorrect + BranchCorrect,

hf_ring bullvalene_aux(T,Al1Rings,NewIn,Qut).

hf_ring bullvalene_auxdb(_,0).

[Kk ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o o ok ok ok sk ok ok ok ok ok ok o o ok ok ok sk ok ok ok ok ok ok ok o ok ok ok ok ok ok ok o o K ok ok
For bridgeane
sk sk sk sk ok ok ok ok o o o ok ok ok sk sk sk ok ok ok ok o o o ok ok sk sk sk sk sk ok ok o o o ok ok ok sk sk sk sk sk ok ok ok ok ok sk sk ok ok ok ok ok ko ok /
hf_ring bridgeane(AllRings,BridgeaneVal):-
[HE Rk ok ok
findall([R1,R2,R3,R4,R5],
(member (R1,A11Rings),
length(R1,4),
member (R2,A11Rings),
length(R2,3),
member (R3,A11Rings),
length(R3,3),
R2 \= R3,
member (R4,A11Rings),
length(R4,5),
member (R5,A11Rings),
length(R5,5),
R4 \= R5,
intersects(R1,R2,[_,_1),

247

intersects(R1,R3,[_,_1),

intersects(R1,R4,[_,_1),

intersects(R1,R5,[_,_1),

intersects(R2,R3,[]),

intersects(R2,R4,[_,_1),

intersects(R2,R5,[_,_1),

intersects(R3,R4,[_,_1),

intersects(R3,R5,[_,_1)),List),
duplicate_list_sort(List,ListBridgeane),
hf_ring_structure_assert(ListBridgeane,bridgeane),
oKk Kok ok ok /
hf_ring find(bridgeane,ListBridgeane),
hf_ring bridgeane_aux(ListBridgeane,AllRings,0,BridgeaneVal).

hf_ring bridgeane_aux([],_,0Out,Out).

hf_ring bridgeane_aux([H|T],Al1Rings,In,Qut):-
hf_bridge(bridgeane,Val),

hf_ring bridgeane_auxdb(H,DbCorrect),
hf_atom_in3rings(H,Atoms),

hf_ring 5553_aux_branch(H,Al1Rings,Atoms,0,BranchCorrect),
NewIn is In + Val + DbCorrect + BranchCorrect,

hf_ring bridgeane_aux(T,Al1Rings,NewIn,Out) .

hf_ring bridgeane_auxdb(_,0).

[KKk ok ok ok ok ok o ok ok sk sk ok ok ok ok ok ok o o ok ok sk sk ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok ok Kok ok ok ok ok ok o o o K K ok
For housane
Kok sk ok ok ok ok ok ok o o ok ok ok sk ok sk ok ok ok o o o ok ok ok sk sk sk sk ok ok o ok o ok ok sk sk sk sk sk ok ok ok ok ok ok sk ok ok ko ok ok ko ok /
hf_ring_housane(AllRings,HousaneVal) :-
[ok ook ok ok
findall(RL4,(member(RL4,AllRings),
length(RL4,4)),List4s),
findall(RL5, (member (RL5,A11Rings),
length(RL5,5)),Listbs),
findall (RL6, (member (RL6,A11Rings),
length(RL6,6)),List6s),
findall([R1,R2,R3,R4,R5,R6,R7,R8,R9],
(member (R1,List4s),
member (R2,List5s),
member (R3,List5s),

R2 \= R3,
member (R4,Listbs),
R2 \= R4,
R3 \= R4,

member (R5,List5s),

R2 \= R5,
R3 \= R5,
R4 \= R5,
member (R6,List5s),
R2 \= R6,
R3 \= R6,
R4 \= R6,
R5 \= R6,
member (R7,List5s),
R2 \= R7,
R3 \= R7,
R4 \= R7,
R5 \= R7,
R6 \= R7,

member (R8,List6s),
member (R9,List6s),
R8 \= R9,
findall (X, (member (X,List5s),
intersects(R1,X,[_,_1)),List4),
findall(Q, (member(Q,List6s),
member (QQ,List4),
intersects(QQ,Q,[_,_,_1_1)),List3),
length(List3,6),
difference(List5s,List4, [A,B]),
intersects(A,B,[_,_]1)),List),
duplicate_list_sort(List,ListHouse),
hf_ring_structure_assert(ListHouse,houseane),
ook kK ok ok ok k ok k /
hf_ring find(houseane,ListHouse),
hf_ring_housane_aux(ListHouse,Al1lRings,0,HousaneVal) .
Jused to not have AllRings 5-11-04
%could be correct
hf_ring housane_aux([],_,0ut,Out).
hf_ring housane_aux([H|T],Al1Rings,In,0ut):-
hf_bridge(housane,Val),
hf_ring_housane_auxdb(H,DbCorrect),
hf_atom_in3rings(H,Atoms),
hf_ring 5553_aux_branch(H,Al11Rings,Atoms,0,BranchCorrect),
NewIn is In + Val + DbCorrect + BranchCorrect,
hf_ring housane_aux(T,Al1Rings,NewIn,Qut).

hf_ring _housane_auxdb(_,0).

/***

248

For hatane

sk ok ok ok sk o o ok stk ok o sk sk ok o ok sk ok sk s o sk sk ok ok ok sk ok ok ok sk ok s sk sk ok ok ok skok ok sksk ok sk ok skok ok sk o/
hf_ring_hatane(AllRings,HataneVal):-

/K kskokokokokok ok ok ok ok ok

findall([R1,R2,R3,R4,R5],

(member (R1,A11Rings),

length(R1,6),

member (R2,A11Rings),

length(R2,3),

member (R3,A11Rings),

length(R3,3),

R2 \= R3,

member (R4,A11Rings),

length(R4,5),

member (R5,A11Rings) ,

length(R5,5),

R4 \= R5,

intersects(R1,R2,[_,_1),
intersects(R1,R3,[_,_1),
intersects(R1,R4,[_,_,_1),
intersects(R1,R5,[_,_,_1),
intersects(R2,R3,[]),
intersects(R4,R5,[_,_1)),List),
duplicate_list_sort(List,ListHatane),
hf_ring_structure_assert(ListHatane,hatane),
skookok sk ok ok ok k ok ok /
hf_ring find(hatane,ListHatane),
hf_ring hatane_aux(ListHatane,AllRings,0,HataneVal).

hf_ring hatane_aux([],_AllRings,Out,Out).

hf_ring _hatane_aux([H|T],Al1Rings,In,Out):-
hf_bridge(hatane,Val),

hf_ring hatane_auxdb(H,DbCorrect),
hf_atom_in3rings(H,Atoms),

hf_ring 5553_aux_branch(H,Al1lRings,Atoms,0,BranchCorrect),
NewIn is In + Val + DbCorrect + BranchCorrect,

hf_ring hatane_aux(T,Al1lRings,NewIn,Out).

hf_ring hatane_auxdb(_,0).

[KoKk Rk ok ok ok ok ok ok ok o ok ok K ok ok ok K ok o oK ok o ok ok ok K ok o ok ok K ok ok ok K ok ok ok K ok ook K oK ok K ok ok o oK ok ok
For diadamantane

Kok Kok oK ok Kok oK ok oK oK oK ok Kok oK ok Kok K ok ook K ok ook oK ok ok oK ok oK K ok ok KK ok ok ok ok ok ok /
hf_ring diadamantane(AllRings,DiAdaVal):-

/ kKoK Kok sk ok ok ok

249

250

hf_ring adamantane_aux2(AllRings,ListAda),
hf_ada_share(ListAda,ListAda,0),
findall (NewA, (member(Al,ListAda),

member (A2,ListAda),

Al \= A2,

intersects(A1,A2,[_1),
append(A1,A2,NewA)),List),
duplicate_list_sort(List,ListDiAda),
hf_ring_structure_assert(ListDiAda,diadamantane),
ook kR okokokokok /
hf_ring find(diadamantane,ListDiAda),
hf_ring diadamantane_aux(ListDiAda,AllRings,0,DiAdaVal).
hf_ring_diadamantane(_,0).

hf_ring_diadamantane_aux([],_,Out,Out).

hf_ring diadamantane_aux([H|T],Al11Rings,In,Out):-
hf_bridge(diadamantane,Val),

hf_ring diadamantane_auxdb(H,DbCorrect),
hf_atom_in3rings(H,Atoms),

hf_atom_indrings(H,Atoms4),

hf_ring ada_aux_branch(H,Al1Rings,Atoms,Atoms4,0,BranchCorrect),
NewIn is In + Val + DbCorrect + BranchCorrect,

hf_ring diadamantane_aux(T,Al1Rings,NewIn,Out) .

hf_ring_diadamantane_auxdb(_,0).

/] Kok sk sk ok sk sk ok ok sk ok ok sk ok ok sk sk ok ok ok ok sk ok ok ok ok ok sk ok ok sk ok ok sk sk ok sk ok ok sk ok ok sk ok ok ok sk ok ok sk ok ok ok ok
For 3-3 sharing a side and connected on each end
through a "bridge"

Kok ok K ok ok 3K ok ok K oK ok K ok ok 3 ok ok 3 3 ok ok K ok ok 3K 3 ok ok K ok ok K 3 ok ok ok ok 3 3 ok ok K ok ok 3 K ok ok K K ok K ok sk ok ok /
hf_ring 33bridge(AllRings,TTBridgeVal) : -

/% kKoK ook sk ok sk ok k
findall([R1,R2,R3,R4],

(member (R1,A11Rings),

length(R1,3),

member (R2,A11Rings),

length(R2,3),

R1 \= R2,
intersects(R1,R2,[_,_1),

member (R3,A11Rings),
length(R3,L),
member (R4,A11Rings),
length(R4,L),

R3 \= R4,
intersects(R3,R4,[_,_,_I_1),
intersects(R1,R3,I113),
length(I13,2),
intersects(R2,R3,123),

length(I23,2),

intersects(I13,123,[_1),
intersects(R1,R4,I14),
length(I14,2),
intersects(R2,R4,124),
length(I24,2),

intersects(I13,123,[_1),

intersects(I13,I14,[_1),
intersects(I23,I24,[_]1)),List),
duplicate_list_sort(List,ListTTBridge),
hf_ring structure_assert(ListTTBridge,a33bridge),
sokok ok ok skok ok ok kok /

hf_ring find(a33bridge,ListTTBridge),
hf_ring 33bridge_aux(ListTTBridge,AllRings,0,TTBridgeVal).

hf_ring 33bridge_aux([],_,0Out,Out).

hf_ring 33bridge_aux([H|T],Al1Rings,In,Out):-
hf_bridge(a33bridge,Val),

hf_ring 33bridge_auxdb(H,DbCorrect),

hf_atom_in3rings(H,Atoms),

hf_ring 33bridge_aux_branch(H,Al1Rings,Atoms,_,0,BranchCorrect),
NewIn is In + Val + DbCorrect + BranchCorrect,

hf_ring 33bridge_aux(T,AllRings,NewIn,Out) .

/] KoKk ok ok sk sk ok ok sk ok ok sk K ok ok K ok ok oK K ok ok sk 3k ok sk K ok ok K 3k ok ok K ok ok sk 3 ok sk K ok ok sk 3 ok sk K ok ok ok sk ok sk ok ok ko ok ok K ok ok ok ok ok

No db’s right now
sk sk sk sk ok ok ok ok ok o o ok ok ok sk sk sk sk ok ok sk o sk ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk sk o sk sk sk sk sk sk sk o sk ok sk sk sk sk sk sk sk sk ok /

hf_ring 33bridge_auxdb(_,0).

[k ok ook ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok o R o ok ok ok ok ok ok ok ok ok ok ok ok ok Kok ok ok oK sk ok sk ok ok kK ok o o R ok ok ok ok ok ok ok
Gets the correction for branches off of this structure

stttk ok ok ok ok ok ok ok ok sk ok ok ok sk sk sk sk sk ok ok ok ook ok ok ok ok ok ok ok ok ok sk sk sk ok sk sk sk sk sk ok ok ok sk ok sk ok ok ok ook ok ok kokokkokokok /
hf_ring_ 33bridge_aux_branch(H,AllRings,Atoms,_,0,BC):-

flatten(H,SAs1),

delete_duplicates(SAs1,SAs),
hf_r33b_branch_aux(SAs,H,SAs,Al11Rings,Atoms,_,0,BC).

hf_r33b_branch_aux([],_,_,_,_,_,0ut,Out).

251

252

hf_r33b_branch_aux([Atom|Rest] ,H,SAs,Al1Rings,Atoms,_,Part,BranchCorrect): -
hf_rba_branch_aux_aux(Atom,H,SAs,Al1Rings,L0),
length(L0,Len),

(memberchk (Atom,Atoms) ->
(findall([R1,R2,R3],
(member (R1,A11Rings),
length(R1,3),
memberchk (Atom,R1),
member (R2,A11Rings),
R1 \= R2,
length(R2,3),
memberchk (Atom,R2),
member (R3,A11Rings),
memberchk (Atom,R3),
length(R3,5)), [_,_]1) -> ring_vertices_2ring(Len,V)
; ring_vertices_3ring(Len,V)

; ring_vertices_1ring(Len,V)

),

NewPart is Part + V,

hf_r33b_branch_aux(Rest,H,SAs,Al1Rings,Atoms, _Atoms4,NewPart,BranchCorrect) .
hf_r33b_branch_aux([_Atom|Rest] ,H,SAs,Al1Rings,
Atoms,Atoms4,Part,BranchCorrect) : -
hf_r33b_branch_aux(Rest,H,SAs,Al1Rings,Atoms,Atoms4,Part,BranchCorrect) .

/3K sk sk ok ok ok o o o ok ok ok sk sk sk sk ok ok o o o o ok ok ok sk sk sk sk ok ok o o o ok ok ok sk sk sk sk ok o o o ok ok sk sk ok ok ok ok o o ok ok ok ok
For azulenes

stttk sk sk ok ok ook ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok okokok stk sk kool ook ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok ok ok ok ok ok ok /
hf_ring_azulene(AllRings,AzVal) :-

[/ kKK Kok ook ok K
findall([R1,R2], (member (R1,A11Rings),

length(R1,5),

hf_numes (R1,NumbEs),

NumbEs =:= 2,

member (R2,A11Rings),

length(R2,7),

hf_numes (R2,Num7Es) ,

Num7Es =:= 3,

intersects(R1,R2,[_,_1)),List),
duplicate_list_sort(List,ListAz),
hf_ring structure_assert(ListAz,azulene),

KKKk oKk ok okok ok ok ok /

253

hf_ring find(azulene,ListAz),
hf_ring azulene_aux(ListAz,Al11Rings,0,AzVal).

hf_ring_azulene_aux([],_,0ut,Out).
hf_ring_azulene_aux([_H|T],Al1Rings,In,Out):-
hf_bridge(azulene,Val),

NewIn is In + Val,

hf_ring azulene_aux(T,AllRings,NewIn,Qut).

/***

This module finds the regular rings in a molecule and asserts
them in the database.

The basic correction for them was already done in hf.pro

sk Kok oK ok oK oK ok oK oK oK ok ook oK ok Kok oK ok ook oK ok ook oK ok ok oK ok ook oK ok ok KK ok ok ok ok ok ok
hf_ring regular([],AllRings,_,RingsInStructures):-
difference(Al1lRings,RingsInStructures,RegRings),
hf_rsa_reg(RegRings).

hf_ring regular([Ring|Rest],Al1lRings,Structures,In):-
hf_ring_regular_aux(Ring,Structures, [],RIS),

append ([RIS],In,NewIn),

hf_ring regular(Rest,AllRings,Structures,NewlIn).

hf_rsa_reg([]).

hf_rsa_reg([HIT]) :-
hf_ring_structure_assert([[H]],regular),
hf_rsa_reg(T).

hf_ring regular_aux(_,[],In,In).

hf_ring regular_aux(Ring, [S1|Structures],In,Return):-
memberchk (Ring,S1),

append (Ring,In,NewIn),

hf_ring regular_aux(Ring,Structures,NewIn,Return).
hf_ring regular_aux(Ring, [_S1|RestSs],In,Return):-
hf_ring regular_aux(Ring,RestSs,In,Return).

/KK ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok Kok o o ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok koK ok ok ok o ok o ok ok ok ok
Gets the correction for the branches off of the

atoms in a regular ring

stk ok ok sk ok ok o ok ok ok ok ok o ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok o sk ok ok sk ok sk ok ok sk ok ok sk ok sk ok ok sk ok ok ok ok ok ok /
hf_ring regular2([],_,Part,Part).

hf_ring regular2([[H] |T],Al1lRings,Part,RegRingsVal): -

hf_ring r2_aux(H,AllRings, [],0,Val),

NewPart is Part + Val,

hf_ring regular2(T,AllRings,NewPart,RegRingsVal).

254

hf_ring r2_aux(H,AllRings,Atoms,_,BC):-
flatten(H,SAsl),

delete_duplicates(SAs1,SAs),
hf_rr2a_branch_aux(SAs,H,SAs,Al1Rings,Atoms,0,BC) .

hf_rr2a_branch_aux([],_,_,_,_,0Out,0ut).
hf_rr2a_branch_aux([Atom|Rest] ,H,SAs,Al1Rings,Atoms,Part,BC): -
hf_rba_branch_aux_aux(Atom, [H] ,SAs,Al1Rings,L0),
length(L0,Len),

hf_ring branch_halo(LO,Atom,AllRings,Mult),
ring_vertices_lring(Len,V),

NewPart is Part + VxMult,
hf_rr2a_branch_aux(Rest,H,SAs,Al1Rings,Atoms,NewPart,BC) .
hf_rr2a_branch_aux([_Atom|Rest],H,SAs,Al1Rings,Atoms,Part,BC) :-
hf_rr2a_branch_aux(Rest,H,SAs,Al1Rings,Atoms,Part,BC).

/K 3k sk sk sk ok ok o o o ok ok ok sk sk sk sk ok ok o o o ok ok ok sk sk sk sk ok ok o o o ok ok ok sk sk sk sk ok o o o o ok sk ok ok ok ok ok o o ok ok ok ok
This module takes the substituents off a particular atom

and gets the multiplier depending on how many are NOT methyl
Kok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok o o o ok ok sk ok ok ok sk ok ok ok ok o ok ok sk sk sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok ko k k /
hf_ring branch_halo([Atom],_,_,Mult):-
reactophore_fact(T,_,Atoms,_,_),

memberchk (Atom,Atoms),

reac_type(T,_,Type),

ring_vertices_lring(Type,Mult).

hf_ring branch_halo([Atoml,Atom2],_,_,1):-
reactophore_fact(T1,_,Atomsl,_,_),

memberchk (Atoml,Atoms1),

reac_type(T1,_,methyl),

reactophore_fact(T2,_,Atoms2,_,_),

memberchk (Atom2,Atoms?2) ,

reac_type(T2,_,methyl).

hf_ring branch_halo([Atoml,Atom2],A,ARs,Mult):-

hf_ring branch_halo([Atoml],_,_,M1),

hf_ring branch_halo([Atom2],_,_,M2),

hf_ring branch_halo_aux([Atoml,Atom2],A,ARs,M3),

Mult is M1 + M2 + M3.

hf_ring branch_halo(_,_,_,0).

hf_ring branch_halo_aux([Atoml,Atom2],A,ARs,M3):-
member (Ring,ARs),

length(Ring,3),

memberchk (A,Ring) ,

255

hf_halo_get_halo(Atoml,f),
hf_halo_get_halo(Atom2,f),
ring_vertices_1lring(f£3,M3).

hf_ring branch_halo_aux([Atoml,Atom2],_,_,M3):-
hf_halo_get_halo(Atoml,f),
hf_halo_get_halo(Atom2,f),
ring_vertices_lring(ff,M3).

/oK sk sk ok sk ok ok ok sk ok ok sk ok ok ok ok sk ok sk ok ok ok sk ok sk ok ok sk ok ok sk ok ok sk sk ok sk ok ok ok sk ok ok kok ok ok ok ok ok ok ok ok ok ok

This module finds the connections between substructures and

then corrects for that connection

st ok ok ok ok ok o ok ok ok kK K ok ok ok ok K ok ok ok ok K ok ok ok ok kK ok ok ok ok kK sk ok ok ok sk K 3k ok ok ok ok ok ok Kok ok ok ok R ok ok ok k /
hf_ring_structure_connect([],_,_,_,0Out,Out).

hf_ring_structure_connect ([StrX|Rest],A11St,Al1Rings,RAs,Part,ConnectsVal):-
hf_ring_structure_connect_aux(StrX,A11St,Al1Rings,RAs,Val),

NewPart is Part + Val,

hf_ring structure_connect(Rest,A11St,Al11Rings,RAs,NewPart,ConnectsVal).

hf_ring structure_connect_aux(S1,A11St,Al11Rings,RAs,V):-
hf_ring_structure_connect_point(S1,A11St,Al11Rings,RAs,Point),
hf_ring_structure_connect_side(S1,A11St,A11Rings,RAs,Side),
hf_ring_structure_connect_flat(S1,A11St,Al1Rings,RAs,Flat),
hf_ring structure_connect_spoke(S1,A11St,A11Rings,RAs,Spoke),
V is Point + Side + Flat + Spoke.

[KKk ok ok ok ok ok o ok ok ok sk ok ok ok ok ok ok ok o o ok ok sk sk ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok ok o Kok ok ok ok ok ok o o K K ok
Correction for structures joined at a point
Kok sk ok ok ok ok ok o o o ok ok ok ok ok ok ok ok ok o o o ok ok ok ok sk sk sk sk ok ok ok ok o ok ok sk sk sk sk sk ok ok ok ok ok sk sk ok ko ok ok ko ok /
hf_ring structure_connect_point(S1,_Al1l,Al11Rings,RAs,Point):-
flatten(S1,FlatS1),
delete_duplicates(FlatS1,RAsS1),
findall([A,B], (member (Atom,RAs),
memberchk (Atom,RAsS1),
member (N,A11Rings),
\+ memberchk (N,S1),
memberchk (Atom,N) ,
hf_which_ring(Atom,S1,4),
findall(Q, (member(Q,Al11Rings),

memberchk (Atom, Q) ,

\+ memberchk(Q,S1)),ListOther),
hf_which_ring(Atom,ListOther,B),
intersects(A,B,[_])),List),

duplicate_list_sort(List,ListPoints),

ListPoints \= [],
|

*)

hf_rsc_point_aux2(ListPoints,0,Point).
hf_ring_structure_connect_point(_,_,_,_,0).

hf_rsc_point_aux2([],In,In).
hf_rsc_point_aux2([[A,B]|T],In,0ut):-
hf_ring_structure2_point(A,B,Val),
NewIn is In + Val,
hf_rsc_point_aux2(T,NewIn,QOut).

hf_ring_structure2_point(A,B,Val):-
length(A,3),
length(B,3),
hf_ring(point3,Val).
hf_ring_structure2_point(_A,_B,Val):-
hf_ring(point,Val).
hf_ring_structure2_point(_,_,0).

/o ko ok ok ok ok ok ok sk ok sk sk sk sk sk ok ok ok ookt ok ok ok ok ok ok ok sk sk sk ok sk sk sk sk ok ok ok ok ok kkok ok ook koo ok ok ok ok ok
Correction for structures joined at a side
stk ok ok ok ok ook ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok sk sk ok ok ok sk sk sk ok sk sk sk ok sk sk sk ko kok sk sk ok kok ok ok ok /
hf_ring_structure_connect_side(S1,A11,A11Rings,RAs,Side):-
flatten(S1,FlatS1),
delete_duplicates(FlatS1,RAsS1),

findall([Atom,A,S1,B,S2], (member (Atom,RAs),
memberchk (Atom,RAsS1),
member (N,A11Rings),
\+ memberchk(N,S1),
memberchk (Atom,N) ,
hf_which_ring(Atom,S1,4),
findall(Q, (member(Q,Al11Rings),

memberchk (Atom, Q) ,

\+ memberchk(Q,S1)),List0Other),
hf_which_ring(Atom,ListOther,B),
hf_which_structure(B,All, [S2]),
intersects(A,B,Intersects),
length(Intersects,?2),
memberchk (Atom,Intersects)),List),

duplicate_list_sort(List,ListX),
ListX \= [],
|

*)

hf_rsc_side_aux(ListX,0,Side).
hf_ring structure_connect_side(_,_,_,_,0).

256

hf_rsc_side_aux([],In,In).
hf_rsc_side_aux([[Atom,A,S1,B,S2]|T],In,0ut):-
hf_ring structure2_side(Atom, [A,S1,B,S2],Val),
NewIn is In + Val,
hf_rsc_side_aux(T,NewIn,QOut).

/3K 3Kk sk sk ok sk ok ok ok ok sk sk sk sk sk sk sk ok ok o sk sk sk sk sk sk sk sk sk sk o ke ok sk sk sk sk sk sk sk sk sk o ok ke sksk sk sk sk sk ok o ok ok ok ok
1. Gets the correction for rings(A,B) joined by 2 atoms at a side

calls get_hf_ring_side w/ the two rings(A,B) gets the side correct
determines if the side atom has a branch, gets that correction

If A and B are in structures w/ mulitple rings that Atom is

a part of (ie bridge structure) get a correction for the

extra strain.

2. For rings that share a doublebond between them

already accounted for so get a O.

skskskokok ok ok ok o s o ok ok ok sk sk sk ok sk ok ok ok s ko ok sk sk sk sk sk ok sk sk sk ko ok sk sksksk sk sk sk ok sk ke kksksk sk sk ok ok sk ko ok /
hf_ring_structure2_side(Atom, [A,S1,B,52],Val):-
bonded(Atom,1,Atom2),

memberchk (Atom2,4) ,

memberchk (Atom2,B) ,

get_hf_ring side(A,B,V1),

atom_specs(_,Atom,_,_,List),
findall(Y, (member(Y,List),
\+ member(Y,A),
\+ member(Y,B)), ListOut),
hf_ring_structure2_side_aux(ListOut,V2),

length(S1,LS1),

length(82,L82),

(Ls1 > 1, LS2 >1 -> ring_vertices_2ring(bridge,V3)
; V3 is O

),

Val is V1 + V2 + V3.

hf_ring structure2_side(_,_,0).

hf_ring_structure2_side_aux([],0).
hf_ring_structure2_side_aux([L0],Val):-
substituent_type(_,L0,Type),
ring_vertices_2ring(Type,Mult),
ring_vertices_2ring(1,V),

257

258

Val is Mult*V.
hf_ring structure2_side_aux([_],0).

[KKK Kok Kok oK ok Kok oK ok KoK oK ok KoK oK ok o oK oK ok o oK K ok o oK oK ok o oK Kok oK KK ok oK K ok oK K ok oK ok
The first 3 rules deal with 3-membered rings sharing a side
with another ring
The 4th rule handles 5-5 molecules
The 5th is a general rule that handles everything else
....see notebook

stk Kok oK ok Kok oK ok ook oK ok K ok oK ok Kok oK ok oK ok oK ok K ok ok ok ook oK ok ok sk ok Kok oK K oK ok Kok ok ok Kok oK ok Kok ok Kok /

get_hf_ring_side(H,R,Val) :-
symmetric(H,R,AA,BB),
length(AA,3),
length(BB,L),

L >= 3,
L =< 5,
hf_ring _side3(L,Val).

YA LS
hf_ring_side3(a,A),
hf_ring side3(b,B),

Val is Axlog(L)+B.

*kk /

get_hf_ring_side(H,R,Val) :-
symmetric(H,R,AA,BB),
length(AA,3),
length(BB,L),

L >= 6,
L =< 8,
hf_ring_side3(L,Val).

get_hf_ring_side(H,R,Val) :-
symmetric(H,R,AA,BB),
length(AA,3),
length(BB,L),

L > 8,
hf_ring side3(8,Val). Y%setting to the same as 8’s value b/c don’t
Jhave any in set and it should level off somewhere

Jnear here

get_hf_ring_side(H,R,Val) :-

hcorrection for 5-5 (going to be cis naturally)
symmetric(H,R,AA,BB), %strans taken care of in chirality
length(AA,5),
length(BB,5),
hf_ring_side(side5,Val).

get_hf_ring side(H,R,Val) :- %special correction for 6-6
symmetric(H,R,A,B),
length(A,6),
length(B,6),
hf_ring side(side6,Val).
get_hf_ring side(H,R,Val) :- %all other rings
symmetric(H,R,A,B),
length(A,LA),
length(B,LB),
\+ memberchk (3, [LA,LB]),
hf_ring side(side,Val).

/3K sk sk sk ok ok o o o ok ok ok sk sk sk sk ok ok o o o o ok ok ok sk sk sk sk ok ok o o ok ok ok ok sk sk sk sk ok ok o o o ok sk ok ok ok ok ok o o o ok ok ok
Correction for structures joined two other structure
on adjacent sides (eg flat structure)
KoKk ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok ok o o ok ok sk ok ok ok ok ok ok ok ok o ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK /
hf_ring structure_connect_flat(S1,_A11,Al11Rings, RAs,Flat):-
flatten(S1,FlatS1),
delete_duplicates(FlatS1,RAsS1),
findall([A,B,C], (member (Atoml,RAsS1),
member (Atom2,RAsS1),
Atoml \= Atom2,
bonded (Atoml,_,Atom2),
member (Atom3,RAsS1),
Atoml \= Atom3,
Atom2 \= Atom3,
bonded (Atoml,_,Atom3),
hf_which_ring(Atoml,S1,4),
memberchk (Atom2,A) ,
memberchk (Atom3,A) ,
findall(Q, (member (Q,A11Rings),
memberchk (Atom1,Q),

memberchk (Atom2,Q) ,

\+ memberchk(Q,S1)),List0ther2),
hf_which_ring(Atoml,ListOther2,B),
findall(R, (member (R,A11Rings),

memberchk (Atom1,R),

memberchk (Atom3,R),

\+ memberchk(R,S1)),List0Other3),
hf_which_ring(Atoml,ListOther3,C)),List),

duplicate_list_sort(List,ListX),
ListX \= [],
|

hf_rsc_fs_aux(ListX,flat,0,Flat).
hf_ring structure_connect_flat(_,_,_,_,0).

259

260

hf_rsc_fs_aux([],_,In,In).
hf_rsc_fs_aux([_H|T],Type,In,Out):-
ring_vertices_3ring(Type,Val),
NewIn is In + Val,
hf_rsc_fs_aux(T,Type,NewIn,Out) .

/ot ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk ok ok okttt kst kool ook ok ok sk sk sk sk sk sk sk sk sk ok ok ook okt koo ok ok ko ok ok ook
Correction for structures joined at one side to two other
structures (eg spoke)
Kok sk ok ok ok ok ok ok o o ok ok ok sk sk ok ok ok ok ok o o o ko ok sk sk sk sk sk ok ok ok ok o ok ok sk sk sk sk sk ok ok ok ok ok ok sk sk ok ko ok ok k ko ok /
hf_ring_structure_connect_spoke(S1,_All,Al1Rings,RAs,Spoke):-
flatten(S1,FlatS1),
delete_duplicates(FlatS1,RAsS1),
findall([A,B,C], (member (Atoml,RAs),
member (Atom2,RAs),
Atoml \= Atom2,
memberchk (Atom1,RAsS1),
memberchk (Atom2,RAsS1),
bonded (Atoml,_,Atom2),
hf_which_ring(Atom1,S1,A),
memberchk (Atom2,A) ,
findall([Q,R], (member(Q,Al1Rings),
member (R,A11Rings),
Q \=R,
\+ intersects(Q,R,[_,_,_I_1),
memberchk (Atom1,Q),
memberchk (Atom?2,Q) ,
memberchk (Atomi,R),
memberchk (Atom2,R),
\+ memberchk(Q,S1),

\+ memberchk(R,S1)),List0Other2),
duplicate_list_sort(ListOther2,ListOther),
hf_which_ring2(ListOther, [B,C]),
intersects(A,B,[_,_1),
intersects(B,C,[_,_]1),
intersects(A,C,[_,_1)),List),

duplicate_list_sort(List,ListX),
ListX \= [],
!

*)

hf_rsc_fs_aux(ListX,spoke,0,Spoke) .
hf_ring_structure_connect_spoke(_,_,_,_,0).

/] K3k ok sk ok ok sk ok ok ok sk 3 ok ok ok ok ok 3 ok K ok ok 3 ok ok ok ok ok 3 ok K ok ok 3 ok 3 ok oK ok ok 3 ok K ok ok 3 ok s ok ok ok K ok ok ok ok k
Asserts the structure into the database:

structure(Structure,SizeofRingsInStructure, TypeofStructure)

Kok Kok oK ok KoK oK ok oK oK oK ok oK ok oK ok ook oK ok ook oK ok ook oK ok ok oK ok oK oK ok ook KK ok ok ok ok ok Kok /
hf_ring structure_assert([],_):- !.

hf_ring structure_assert([H|T],Type):-
hf_ring_structure_assert_aux(H,ListLens),
assert(structure(H,ListLens,Type)),
hf_ring_structure_assert(T,Type).

hf_ring structure_assert_aux([],[]).
hf_ring_structure_assert_aux([R1|Rest], [Len|ListLens]) :-
length(R1,Len),
hf_ring_structure_assert_aux(Rest,ListLens).

261

/**>I<*****************************

Utility routines for hf_ring2

1. hf ring find: finds all of the structures of a specified type
2. hf_bridge_atom: finds the bridge atoms - those in all three rings
3. hf _which_ring: finds the all the rings a particular atom is in

then sorts that list to find the shortest ring

4. hf_which_structure: finds the structure(s) of which a particular ring is

a member

hf_numes: finds the number of ethylenics in a ring

©O© 00 N O ;1

hf_ring_structure_filter: finds only the independent structures

hf_atom_in3rings: finds all the atoms that are in 3 rings of a structure
hf_atom_in4rings: finds all the atoms that are in 4 rings of a structure
hf_which_ring2: finds the shortest X and Y rings in a list of [X,Y]s

Kok ok sk ok ok ok K ok ok K ok ok K K ok ok sk ok ok K 3 ok ok sk ok ok sk 3 ok ok K ok ok K 3 ok ok K ok ok K 3 ok ok K ok ok sk 3 ok ok ok K ok ok sk ok ok K ok ok ok ok ok ok ok ok /

hf_ring find(Type,AllStructures):-
findall (X,structure(X,_,Type),AllStructures).

hf_bridge_atom(H,Atoms) :-
H = [A,B,C],
findall (X, (member (X,A),
member (X,B),
member (X,C)) ,Atoms) .

hf_which_ring(Atom,S1,ShortRingIn):-
findall (X, (member (X,S1),
memberchk (Atom,X)) ,RingsAtomIn),

262

gensort (RingsAtomIn,longer, [ShortRingIn|_]).

hf_which_structure(Ring,Al1Structures,Structure): -
findall (X, (member (X,AllStructures),

memberchk (Ring,X)),LS),
delete_duplicates(LS,Structure).

hf_atom_in3rings(H,Atoms) :-
flatten(H,FH),
delete_duplicates(FH,FH1),
findall (X, (member (X,FH1),

member (Ringl,H),

member (Ring2,H) ,

Ringl \= Ring2,

member (Ring3,H) ,

Ringl \= Ring3,

Ring2 \= Ring3,

memberchk (X,Ringl),

memberchk (X,Ring2),

memberchk (X,Ring3)) ,Atoms1),
delete_duplicates(Atomsl,Atoms) .

hf_atom_indrings(H,Atoms) : -
flatten(H,FH),
delete_duplicates(FH,FH1),
findall (X, (member (X,FH1),

member (Ringl,H),

member (Ring2,H) ,

Ringl \= Ring2,

member (Ring3,H) ,

Ringl \= Ring3,

Ring2 \= Ring3,

member (Ring4,H) ,

Ringl \= Ring4,

Ring2 \= Ring4,

Ring3 \= Ring4,

memberchk (X,Ringl),

memberchk (X,Ring?2),

memberchk (X,Ring3),

memberchk (X,Ring4)) ,Atoms1),
delete_duplicates(Atoms1,Atoms) .

hf_which_ring2([],[]).
hf_which_ring2 (L0, [ShortX,ShortY]):-

263

findall(X, (member ([X,_],L0)),ListX),
delete_duplicates(ListX,List),
gensort(List,longer, [ShortX|_]),
findall(Y, (member([_,Y],L0)),ListY),
delete_duplicates(ListY,List2),
gensort(List2,longer, [ShortY|_]).

hf_numes(R1,NumbEs) : -
findall(E, (reactophore_fact(E,_,Atoms,_,_),
member (A,R1),
member (B,R1),
A \= B,
memberchk (A, Atoms) ,
memberchk (B,Atoms)) ,ListE),
delete_duplicates(ListE,List),
length(List,NumbEs) .

hf_ring structure_filter([],[]).
hf_ring_structure_filter(Structures,FilteredSts):-
gensort (Structures,shorter, [H|Structures2]),
hf_ring_structure_filter_aux(Structures2, [H] ,FilteredSts).

hf_ring structure_filter_aux([],A,A).
hf_ring structure_filter_aux([H|T],In,FilteredSts):-
length(H,LenH),
findall (X, (member (X, In),

intersects(H,X,Y),

length(Y,Lent)), [1),
hf_ring structure_filter_aux(T, [H|In],FilteredSts).
hf_ring_structure_filter_aux([_|T],In,FilteredSts):-
hf_ring_structure_filter_aux(T,In,FilteredSts).

/**** Data Area **********************************>I<************************/

% This is now in a file called ’hf_data.pro’

C.3 OTHER_AROM.PRO

ot_a:-

264

batch_mode,
findall(reactophore_fact(A,B,C,D,E),
reactophore_fact(A,B,C,D,E), [List]),
oa_aux(List ,HF),
assert(value_calculated(HF)).

oa(Smiles,Hf) :-
execute(prepare_for_property(nul,Smiles),_ResTop),
findall(reactophore_fact(A,B,C,D,E),
reactophore_fact(A,B,C,D,E), [List]),
oa_aux(List,Hf).

[KKKk o Kok ok KK ok ok K oK ok Kok o K oK ok K ok K oK ok K oK ok Kok o K oK ok K ok K ok ok K oK ok ok ok K K ok Kok K ok ok K ok Kok K K
Gets the basic correction for aromatic compounds
KoK K oK ok K oK oK K oK o K oK ok K oK oK K oK ok K 3K ok KoK o K oK ok o sk ok K oK o K ok ok KK ok o K ok ok ok o K ok ok K sk ok Kok K ok ok Kok ok ok ok /
oa_aux(reactophore_fact(R1l,_,_,_,_) ,HF) :-
reac_type(R1,_,aromatic),
oa_correct(aromatic,R1,HF).

/KK koo ok s ok ok ok ok sk sk sk sk sk sk ok ok o ok ok ok sk sk sksk sk sk sk sk ke ok ok ok sk sksk sk sk sk sk sk ki sk sk sk sk ok sk ok ok ok sk sk sk sk sk sk ok ok ok
Correction to Hf for each of the reactophore types

R1 is the aromatic reactophore

List 1is the list of atoms in the reactophore...except

for the buried atoms

Listl is the list of bridge atoms (joins two rings on

the edge of ring)

List2 is the list of buried atoms (atoms not on outer

edge of ring)

Correction is the (#of each type)*correction + bent + resonance

need to add something that can handle nitrogens too

Kok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o o o ko ok sk ok ok ok ok ok ok o o ok ok ok sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok /
oa_correct(aromatic,R1,Correction) :-

reactophore_fact(R1,_,List,_,_),

oa_contrib(part,Val),

bridge_atoms(R1,List1),
length(List1,NumAtomsl),
brg_contrib(part,Vall),

buried_atoms(R1,List2),
length(List2,NumAtoms2),
buried_contrib(part,Val2),

append (List2,List,ListTotal),

265

oa_extended_res(ListTotal,NumPhen,ResCorrect),
oa_bent(ListTotal,List1l,List2,NumPhen,BentCorrect),
oa_helical(Listl,HelicalCorrect),
length(ListTotal,NumAtoms),

Correction is (NumAtoms * Val) + (NumAtomsl * Vall) + (NumAtoms2 * Val2) +
BentCorrect + ResCorrect + HelicalCorrect,

oa_correct(_,_,0).

/] 3Kk sk sk ok sk ok sk ok ok sk ok s ok sk ok ok s ok sk ok ok sk ok s ok ok ok 3k ok s ok K sk ok 3 ok ok ok sk ok ok K ok ok 3k ok ok 3 ok sk ok K sk ok ok sk ok ok 3k ok ok K ok ok
Correction for the strain introduce when the molecule is helical,
eg benzo[c]phenanthrene.

Should be "33kJ, but this may be an experimental error, so not
training.

for 1 set gets 33, for 2 sets gets 66, etc

gets all phenyl_rings

finds A,B,C,D & the corresponding BridgeAtoms of these PRs....
where AB1 is in BrA & BrB and BC1 is in BrB & BrC and AB1 is bonded
to BC1 and CD1 is in BrC and BrD and CD1 is bonded to BC1

sk sk sk sk ok ok ok ok o o o ok ok ok sk sk sk sk ok ok o o o o ok ok ok sk sk sk sk ok ok o o o o ok ok ok sk sk sk sk ok ok o o o ok sk sk ok ok o o o ok ok sk sk ok sk ok ok ok ok ok ok /
oa_helical(BrAtoms,Correct) :-
findall (X,phenyl_ring(X),PRsl),
fix_phenyl_rings(PRs1,PRs1,PRs),
findall(Set, (member (A,PRs),

intersects(A,BrAtoms,BrA),

member (B,PRs) ,

B \= A,

intersects(B,BrAtoms,BrB),

member (C,PRs) ,

C \= B,

C \=A,

intersects(C,BrAtoms,BrC),

member (D,PRs) ,

D \= C,

D \= B,

D \= A,

266

intersects(D,BrAtoms,BrD),
member (AB1,BrA),
memberchk (AB1,BrB),
member (BC1,BrC),
memberchk (BC1,BrB) ,
bonded (AB1,_,BC1),

member (CD1,BrC),
memberchk (CD1,BrD),
bonded (CD1,_,BC1),
Set=[A,B,C,D]

),List),
duplicate_list_sort(List,RealSets),
length(RealSets,LRS),
helical(part,Val),

Correct is LRS * Val.
oa_helical(_,0).

/st ko ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skok sk sk sk sk sk sk sk ok ko k sk ok sk sk sk sk sk sk sk ok
Correction for the number of phenyls in a compound b/c as they
increase the amount of resonance will increase b/c more charge gets
distributed around the reactophore
sk sk sk sk ok ok ok ok ok o o ok ok ok sk sk sk sk sk sk ok ok o sk ok sk sk sk sk sk sk sk sk ok o sk ok sk sk sk sk sk sk sk sk ok stk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk sk ko ok /
oa_extended_res(Atoms,Len,Value) :-
findall(X, (phenyl_ring(X),
intersects(X,Atoms,Y),
difference(X,Y,[])),List),
length(List,Len),

Len > 1,
I

res_contrib(part,Val),
Value is ValxLen.

oa_extended_res(_,1,0).

[/ 3kkk sk ok ok ok sk ok ok ok ok sk sk sksk sk ok ok ok s ok ok sk sk sk sksk sk sk ok sk s ok ok ok ok sk sk sk sk sk sk sk sk s ki sk sk sk sk ok sk ok ok ok ok sk sk sk sk sk ok ok sk ok ok
Deals with reactophores where it is "bent"...more resonance occurs

on the outside of the bend rather than the inside...so this predicate
takes this into account and normalizes the correction for the number of
phyenls in the compound

ListPR is the list of phyenl rings

FixedPR is the list of phyenl rings corrected so all the atoms show up
FilteredPR is the list of phyenl rings where PRs that have >3 buried
atoms are removed

get_3_combos returns the number of bends in a compound

267

LenP is the number of phyenl rings in the reactophore

This finds the number of bends and normalizes it vs the number of
phenyls (LenP) and multiplies that by the correction val.
otk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok kK R o ok ok ok ok ok ok ok ok ok ok ok sk sk Kok ok ok ok ok sk ok sk ok ok o R Rk ok sk okok ok ok ok ok /
oa_bent (Al1Atoms,BridgeAtoms,BuriedAtoms,LenP,Value) :-
findall (PR, (phenyl_ring(PR),
intersects(PR,AllAtoms,Y),
difference(PR,Y,[])),ListPR),
fix_phenyl_rings(ListPR,ListPR,FixedPR),
filter_pr(FixedPR,BuriedAtoms,FilteredPR),
get_3_combos(FilteredPR,BuriedAtoms,BridgeAtoms,Al11Atoms,NumBends) ,
Mult is NumBends / LenP,
bent_contrib(part,Val),
Value is Val * Mult.

/o ko ok ook ok ok sk sk sk sk sk sk sk sk sk sk ok ok ok okokokok ok ok ook ok ok ok sk sk sk sk sk sk sk sk sk ok ok ok ki skok ok ok skttt ok koo ok ok kR ok ok sk ok ok
removes PRs that have more than 3 buried atoms

sttt ot s s ok o o o ok o sk sk sk sk sk sk sk sk sk sk ok ok okttt s sk s ok sk o o ok o sk sk sk sk sk sk sk sk sk sk ok ok skt sk sk sk ok ookttt sk sk ko okokokokok ok sk ok /
filter_pr([],_,[1).

filter_pr([H|T] ,BuriedAtoms, [H|Rest]) :-

intersects(H,BuriedAtoms,Overlap),

length(Overlap,LenOl),

Len0l < 4,
I

filter_pr(T,BuriedAtoms,Rest) .
filter_pr([_|T],BuriedAtoms,Rest):-

filter_pr(T,BuriedAtoms,Rest).

[/ 3kskskskskok ok o ok okok sk sk sk sksk sk sk ok sk o ok ok sk sk sk sk sk sk sk sk sk o sk okok sk sk sk sk sk sk sk sk sk ke ksk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk ok sk ok ok
Finds the number of bends in a reactophore

Finds atom(s) that are part of either buried or bridge atoms
and bonded to each other, then finds PRs that either
have both X&Y in it (Z), and X or Y (ZZ and ZZZ),
the IF statement is to calculate whether the bend is

inner or outer--if it’s an outer it gets full correction
an inner it gets only 1/2 of a full correction.

the inner bend occurs when the 2PRs (ZZ and ZZZ) are
connected ONLY!! by "c" atoms in ZZZ

the outer bend occurs when the 2PRs (ZZ and ZZZ) are
connected both by "c" and "cH" atoms in ZZZ

268

Works b/c PR does not contain the buried atom PRs
Kok sk ok ok ok ok ok o o o ok ok ok ok ok ok ok ok ok ok o o ok ok ok sk sk sk sk ok ok o o o ok ok ok sk sk sk sk ok ok o o ok ok sk sk ok ok ok o o ok ok ok sk sk sk sk ok ok ok ok ok ok /
get_3_combos (PR,BuA,BrA,AA,NumBends) : -
append (BuA,BrA,ABs),
difference(AA,ABs,RegAtoms),
findall (XY, (member (X,ABs),

member (Y,ABs),

Y \= X,

bonded(X,_,Y),

member (Z,PR),

intersects([X,Y],Z,[_,_1),

member (ZZ,PR) ,

ZZ \= Z,

intersects([X,Y],ZZ,[X]),

member (ZZZ,PR) ,

2727 \= 77,

Z77 \= Z,

intersects([X,Y],ZZZ, [Y]),

(intersects(Z,RegAtoms,List),

member (X1,List),

member (X2,List),

bonded(X1,_,X2) -> XY is 1

; XY is 0.5

)) ,BendsX),
sumlist (BendsX,Num),
NumBends is Num / 2.

JHkkk Data ATea kskskskskokokskskskkskok ok ok sk ok ok ok 3k 3 3 ok ok ok 3k 3 ok ok ok ok 3k K ok ok ok ok ok ok 3 ok ok ok sk sk ok ok ok sk ko ok ok /

% This is now in a file called ’hf_data.pro’

C.4 HF_CHIRAL.PRO

/K 3kkk ok ok ok ok sk ok ok ok sk sk skok ok ok ok ok s ok ok ok sk sk sk sk sk sk sk ok sk ko ok sk sk sk sk sk sk sk ok sk o ki sksk sk sk ok o s ok ok sk sk sk sk ok ok
Gets the chiral correction for molecules

_sets - breaks ListCA into types of CAs

_auxl - for Listl types

_aux?2 - for List2 types

_ring_sep - breaks up ringCAs into 3 types

_aux_single - for CAs in single rings

_aux_bridge - for CAs in bridge rings

_aux_sideshare - for CAs in sideshare rings

Kok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o o ok ok sk ok ok sk ok ok ok ok o ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ko kK ok ok ok /
hf_chiral (A11Rings,Chiral):-
findall(CA,chiral_atom(CA,_) ,ListCA),

ListCA \= [],

hf_chiral_sets(ListCA,Al1Rings, [List1,List2,CASets,_]),
hf_chiral_aux1(List1,Al11Rings,0,Chirall),
hf_chiral_aux2(List2,A11Rings,0,Chiral2),
hf_chiral_ring_sep(CASets, [Single,Bridge,SideShare]),
hf_chiral_aux_single(Single,Al1Rings,0,CSingle),
hf_chiral_aux_bridge(Bridge,Al1lRings,0,CBridge),
hf_chiral_aux_sideshare(SideShare,Al1Rings,0,CSideShare),
Chiral is Chirall + Chiral2 + CSingle + CBridge + CSideShare.
hf_chiral(_,0).

/oK sk ook sk ok ok ok sk ok ok sk ok ok ok sk sk ok sk ok ok sk sk ok sk ok ok ok ok sk ok sk ok ok sk sk ok sk ok ok sk sk ok sk ok kok ok ok sk ok sk ok ok ok sk ok ko ok ok ok ok ok
separates the CASets into the 3 type of ring chirals

K ok ok ok K ok o ok ok ok K K o ok ok ok ok K K ok ok ok ok K K ok ok ok ok K K ok ok ok ok sk K ok ok ok ok kK sk ok ok ok sk ok sk ok sk ok ok ok ok sk ok ok ok ok ok ok ok k /
hf_chiral_ring_sep([1,[[],[],[1]). %no CAs
hf_chiral_ring_sep([Set-Ring], [[Set-Ring],[],[1]):- !. Y%single ring CAs
hf_chiral_ring_sep(CASets, [Single,Bridge,SideShare]):- Ymulitple CAs
hf_chiral_remove_bridge(CASets,Bridgel,RestnoBridge),
hf_chiral_sort_sets(Bridgel,Bridge),
hf_chiral_remove_sideshare(RestnoBridge,SideSharel,RestnoSide),
hf_chiral_sort_sets(SideSharel,SideShare),
hf_chiral_ring_sep_rest(RestnoSide, [],Single).

[FHRAF A KA KA KA KA KA KA KA KKK KKK KK KKK KKK KKK KKK KK KK KK KK KoK ok o ok oK ok o ok o ok K ok ok K ok ok
sorts the Sets into individual groups [[Bridgell], [Bridge2],...]

_aux groups all those rings that intersect in 2 places together
put each ring in the donelist and then on the recall

checks the done list to make sure that the ring working on
intersects this donelist

then recalling

sk sk sk sk ok ok ok ok o ok o ok ok ok sk sk sk sk ok ok ok o o o ok ok sk sk sk sk sk ok ok ok ok o ok ok ok sk sk sk sk sk ok ok o sk ok sk sk sk sk ok sk ok ok sk ok ok ok sk sk ok ok /
hf_chiral_sort_sets([],[]).

hf_chiral_sort_sets(SetsIn, [Same|Sets]):-
hf_chiral_sort_sets_aux(SetsIn, [], [],Same),
difference(SetsIn,Same,Rest),

hf_chiral_sort_sets(Rest,Sets).

Tololots
hf_chiral_sort_sets_aux(Sets,Donelist,Same,Out):-
member (_-Ringl,Sets),

269

270

\+ memberchk(Ringl,DonelList),
(DonelList = [] -> true
; findall (RR, (member (RR,DonelList),
intersects(RR,Ringl,[_,_[_1)),[_I_1)
),
findall (AB-R, (member (AB-R,Sets),
\+ memberchk (R,Donelist),
intersects(R,Ringl,[_,_|_1)),List),
List \= [,
!
append(List,Same,NewSame) ,
hf_chiral_sort_sets_aux(Sets, [Ringl|DonelList],NewSame,Out) .
hf_chiral_sort_sets_aux(_,_,InSame,Same):-
delete_duplicates(InSame,Same) .

[Kk ok ok ok ok ok o o ok ok ok sk ok ok ok ok ok ok ok o o ok ok sk ok ok ok ok ok ok ok o o ok ok sk sk ok ok ok ok ok ok o o ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok
gets the sets which are part of the bridge section of molecule
and the remaining sets
ottt ok ok ok ook ok ok sk sk ok sk sk sk sk sk sk ok ook okokokok ok ok ok ok kR sk sk sk sk sk sk sk sk sk sk ok ok ok kok sk ok koo ok kokokokok /
hf_chiral_remove_bridge(CASets,BridgeSets,RestSets):—
findall(Rings,structure(Rings,_,bridge) ,ListRings1),
1lol3_to_lol2(ListRings1, [],ListRings),
ListRings \= [],
findall(Set-Ring, (member (Ring,ListRings),

member (Set-Ring,CASets)) ,PartBridgeSet1),
hf_chiral_remove_bridge_aux(PartBridgeSet1,CASets, [],PBS2),
delete_duplicates(PBS2,PartBridgeSet2),
append (PartBridgeSetl,PartBridgeSet2,BridgeSets),
difference(CASets,BridgeSets,RestSets).
hf_chiral_remove_bridge(CASets, [],CASets).

/KK ok ok ok ok ok o o ok ok ok sk sk ok ok ok ok ok ok o o ok ok ok ok ok sk ok ok ok ok ok o ok sk ok ok ok ok ok ok ok o o ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok
gets the sets making up the bridge section itself
sk sk sk ok ok ok ok o o o ok ok ok sk sk sk sk ok ok o o ok ok ok ok sk sk sk sk sk ok ok ok o ok ok sk sk sk sk sk ok ok o o ok sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok /
hf_chiral_remove_bridge_aux([],_,Out,Out).
hf_chiral_remove_bridge_aux([_-Ring|T],CASets,In,Part):-
findall(Set-ORing, (member (Set-0Ring,CASets),

intersects(Ring,0Ring, [_,_]1)),List),
List \= [],
append(List,In,NewIn),
hf_chiral_remove_bridge_aux(T,CASets,NewIn,Part).
hf_chiral_remove_bridge_aux([_|T],CASets,In,Part):-
hf_chiral_remove_bridge_aux(T,CASets,In,Part).

/***

271

gets the sets part of sideshare section of molecule and the remaining sets
K3k ok ok oK oK oK ok oK KoK ok o K K oK oK ok K oK ok ok oK K oK ok K KoK ok o K K oK ok ok K sk ok ok oK Kok ok ok Kok ok o K Kok ok ok K Kok ok ok Kk ok /
hf_chiral_remove_sideshare(RestnoBridge,SideSets,RestnoSide): -
hf_chiral_set_rings(RestnoBridge,Rings),
findall(Set-Ring, (member (Set-Ring,RestnoBridge),

member (Ring,Rings),

member (ORing,Rings),

ORing \= Ring,

intersects(Ring,0Ring, [_,_]1)) ,TempSideSets),
delete_duplicates(TempSideSets,SideSets),
difference (RestnoBridge,SideSets,RestnoSide) .

/oK sk sk sk ok ok sk ok ok ok sk ok ok ok sk ok ok ok sk ok ok ok o sk ok ok ok sk ok o ok sk ok ok ok sk ok o ok sk ok sk ok sk ok sk ok ok ok sk ok ok ok ok ok
seperates the remaining sets into Single

(could be expanded if necessary)

stk ok sk sk sk ok sk sk ok ok sk sk sk ok sk sk ok ok sk sk ok ok sk sk sk ok sk sk sk ok sk sk ok ok sk sk sk ok sk sk sk ok ok sk sk sk ok sk sk sk ok sk sk ok /
hf_chiral_ring_sep_rest(Single,_,Single).

/ sk sk ok stk ok o ok sk sk sk sk ok ok sk sk ok o ok sk sk sk sk ok sk sk sk sk ok sk sk o ok sk sk sk sk sk sk sk sk ok sk sk ok sk sk ok sk ok sk sk sk sk ok sk ok ok ok ok
hf_chiral_sets(ListCA,AllRings, [List1,List2,CASets,Rest])

Finds the sets of CAs [Listl,List2,RingSets,Rest]

Listl are CAs bonded together where X is not in a ring [[SetL1],...]
List2 are CAs seperated by 2 bonds where X is not in a ring [[SetL2],...]
RingSets are the lists of CAs in rings [[Set1]-Ringl, [Set2]-Ring2,...]
Rest are the remaining CAs (maybe need rule for?)

chiral_check returns those CAs that aren’t used in L1,L2,orRing

stttk ok ok ok ook ok ok ok sk sk sk sk sk sk sk sk sk ok ok okokokokok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk ok ok okok sk sk ok ok okttt okokokokokokok /
hf_chiral_sets(ListCA,AllRings, [L1Sets,L2Sets,RingSets,Rest]) : -
flatten(Al1lRings,RAsl),

delete_duplicates(RAsl,RAs),
hf_chiral_sets_list1(ListCA,ListCA,RAs,L1Sets),
hf_chiral_sets_list2(ListCA,ListCA,RAs,L2Sets),
hf_chiral_sets_rings(ListCA,Al11Rings,RingCAs),
hf_chiral_sets_aux2(Al1Rings,RingCAs,RingSets),
hf_chiral_check(ListCA,L1Sets,L2Sets,RingCAs,Rest).

Doolots
hf_chiral_check(ListCA,L1Sets,L2Sets,RingCAs,Rest) : -
append (L2Sets,L1Sets,AllSetsl),

append (RingCAs,Al1Sets1,AllSets),
flatten(AllSets,FSets),
delete_duplicates(FSets,ListCAl),

272

difference(ListCA,ListCA1,Rest).

Doolots
hf_chiral_sets_aux2(_,[],[]). %no RingCAs
hf_chiral_sets_aux2([],_,[]).
hf_chiral_sets_aux2([H|T],RingCAs, [Set-H|RingSets]) :-
findall (X, (member (X,RingCAs),

memberchk (X,H)),Set),
Set \= [1,
hf_chiral_sets_aux2(T,RingCAs,RingSets).
hf_chiral_sets_aux2([_|T],RingCAs,RingSets) :-
hf_chiral_sets_aux2(T,RingCAs,RingSets).

T oTo
hf_chiral_sets_rings([],_,[]).
hf_chiral_sets_rings([H|T],Al1Rings, [H|RingCAs]) : -
findall(Ring, (member (Ring,Al11Rings),

memberchk (H,Ring)),[__1),
hf_chiral_sets_rings(T,Al11Rings,RingCAs).
hf_chiral_sets_rings([_|T],Al1Rings,RingCAs) :-
hf_chiral_sets_rings(T,Al11Rings,RingCAs).

Doolots

hf_chiral_sets_list1([],_,_,[]).
hf_chiral_sets_list1([X|T],ListCA,RAs, [X|List1CAs]):-
\+ memberchk(X,RAs),

bonded(X,1,Y),

memberchk(Y,ListCA),
hf_chiral_sets_list1(T,ListCA,RAs,List1CAs).
hf_chiral_sets_list1([_|T],ListCA,RAs,List1CAs):-
hf_chiral_sets_list1(T,ListCA,RAs,List1CAs).

Doolots

hf_chiral_sets_list2([],_,_,[]).
hf_chiral_sets_1ist2([X|T],ListCA,RAs, [X|List1CAs]):-
\+ memberchk(X,RAs),

bonded(X,1,Z),

\+ memberchk(Z,RAs),

bonded(Z,1,Y),

Y \= X,

memberchk(Y,ListCA),
hf_chiral_sets_1ist2(T,ListCA,RAs,List1CAs).
hf_chiral_sets_list2([_|T],ListCA,RAs,List1CAs):-
hf_chiral_sets_list2(T,ListCA,RAs,List1CAs).

J/Askokokokokok skokok ok sk sk sk sk sk sk sk sk sk sk sk ok sk skskskokokokok ok skokoskosk skosk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk skokkokokok ok ok sk ok
Gets the chiral correction for each set of chiral pairs
Finds all the chiral_pairs that have already been
corrected for
Gets the list of rings with these chiral atoms in them
Passes this info into the _aux routine where the
real work occurs

_auxl for chiral atoms bonded to each other and one not in a ring
get a 0 b/c chain bends out of way, so can’t distinguish
difference in UP,UP and UP,DOWN

_aux2 for chiral atoms w/ an atom between them and one not in a ring
same as _auxl, this could possibly be worth “6kJ per interaction

but the measurements cover this up b/c in some cases the error is
+/-6kJ, so leaving at O

_aux_single - loops over all the sets:

1 atom in set: get O

mutiple atoms in 1 set:

assert the size of the substituents (chiral_size)

rotate ring so largest substituent is first

get the senses of the set

get the locations (AxInt)

get the neighboring interactions (Chilnt)

get the other interactions (i.e. oh and methyl interacting)

call rulel - get stereoisomer correction based on above interactions

_aux_bridge

gets the bridge sets and correction

_aux_side

gets the sideshare sets and correction

steofeokokokok ok skokokok ok sk sk sk sk sk sk sk sk sk ok ok sk skokokok ko ok ok skokskosk sk sk sk sk sk sk sk sk sk sk sk ok skoksk sk sk ok skokskokokokokokskokkokokok /

hf_chiral_aux1(_,_,Out,Out).

YANY
hf_chiral_aux2(_,_,0Out,Out).

[k ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok K ok ok ok sk sk sk sk ok ok ok ko ok o ok ok ok
takes care of compounds that are just regular CAs

ettt ok ook ok ok ok ok sk sk sk sk sk sk sk sk sk ok ok ok okokokok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk ok ok ok skokskok ok ok okt kokokokokokok /
hf_chiral_aux_single([],_,Rest,Rest).
hf_chiral_aux_single([H|T],Al1Rings,Part,Rest):-
hf_chiral_aux3([H],Al1Rings,0,Val),

NewPart is Part + Val,

hf_chiral_aux_single(T,Al1Rings,NewPart,Rest).

273

274

[Kok Kk ok ok ok ok ok ok ok ok ok K ok ook ok Kok oK ok oK ok ook ok K ok ok ok K ok ok ok K ok ok ok Kok KK ok ok Kok ok ok Kok ok ok Kok ok ok K
takes care of compounds that have CAs part of a bridge

sk Kok oK ok oK oK oK ok oK oK oK ok o oK oK ok oK oK oK oK ok oK ok o oK oK ok K oK K ok o oK o K ok oK KK ok ok K ok ok oK ok ok ok ok /
hf_chiral_aux_bridge([],_,CBridge,CBridge) .
hf_chiral_aux_bridge([H|BSets],Al1Rings,Part,CBridge): -
hf_chiral_bridge_aux(H,Al1Rings,Val),

NewPart is Part + Val,
hf_chiral_aux_bridge(BSets,AllRings,NewPart,CBridge) .

/KoK sk ok ok sk sk ok ok sk ok ok sk K ok ok sk ok ok sk K ok ok sk ok ok K K ok ok ok ok oK K ok ok sk 3k ok K ok ok sk sk ok sk K ok ok ok sk sk ok K ok ok sk ok ok K ok ok ok ok
takes care of compounds that have CAs sharing a side

ook ok sk ok ok ok ok ok sk ok ok ok o ok ok sk ok ok ok ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok ok sk ok ok sk ok ok ok ok ok ok ok ok /
hf_chiral_aux_sideshare([],_,Out,Out).
hf_chiral_aux_sideshare([H|SideSets],Al1Rings,Part,CSideShare) :-
hf_chiral_sideshare_aux(H,Al1Rings,Val),

NewPart is Part + Val,
hf_chiral_aux_sideshare(SideSets,Al1Rings,NewPart,CSideShare) .

[/ 3kkkskskook ok sk ok ok ok ok sk sk sk sk sk sk sk ok s ok ok ok sk sk sk sk sk sk sk ok sk ko ok sk sk sk sk sk sk sk ok sk ok kesksksk sk sk ok sk s ok ok sk sk sk sk sk ok
Single atom work done here

_set_data_single: sets the ring up w/ largest sub first

_sense: gets the senses of newly rotated ring

_get_interactions: gets all interactions in ring

_rulel: gets the Chiral value from interactions

sksk sk sk sk sk ok ok ok o ok ok ok ok sk sk sksksk sk sk sk sk ko ok ok sk sk sk sk sk sk ok sk s ok ok sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk sk ko ok ok ok sk sk ok /
hf_chiral_aux3([[_]-_1,_,0ut,0ut):- !. %one atom in set
hf_chiral_aux3([Set-Ring],_,_,Chiral):-Ymultiple atoms in one set
hf_chiral_set_data_single(Set,Ring,NewRing),
hf_chiral_sense(NewRing,Senses),

length(NewRing,RLen),
hf_chiral_get_interactions(RLen,Set-NewRing,Senses,ChiInt,AxInt,0HME,N02),
hf_chiral_rulel(RLen,Set-NewRing,ChiInt,AxInt,0HME,NO2,Chiral).

/ot ok ok koo ok ok sk sk sk sk sk sk sk sk sk sk ok ok otttk ok ko ok ook ok sk sk sk sk sk sk sk sk sk sk sk sk ook sk sk sk sk ok ok okokokokokok ok ook ok
have to determine the "relative" sense of the side sets

need the size of the rings that are sharing a side

Kok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok o ok o ok ok ok ok ok sk ok ok ok ok o ok ok ok ok sk ok sk ok ok ok ok o ok sk ok ok sk ok ok ok ok ok o ok kK ok ok ok /
hf_chiral_sideshare_aux(SideSets,All1Rings,SideShare) :-
hf_chiral_set_rings(SideSets,SetRings),
hf_chiral_set_data_sideshare(SideSets,SetRings),

/%%

hf_chiral_set_senses(SideSets,SideRings,SideSets),

*x /

hf_chiral_sideshare_aux_aux(SideSets,AllRings, []1,[],SideShare).

275

%(why allrings and not SetRings?)

Doolo
hf_chiral_sideshare_aux_aux([],Al1Rings,Al1lSets,Ring3Sets,Val):-
delete_duplicates(AllSets,AllSetsl),

length(AllSets1,LAS),

LAS > 1,

hf_chiral_sideshare_aux_aux2(AllSetsl,AllRings, [],SSCAs,OtherCAs),
hf_chiral_sideshare_aux_aux3(SSCAs,SSCAs,OtherCAs,Al1Rings,0,V1),
hf_chiral_sideshare_aux_aux4(Ring3Sets,AllRings,0,V2),

Val is V1 + V2.

hf_chiral_sideshare_aux_aux([],_,_,_,0).
hf_chiral_sideshare_aux_aux([Set-Ring|Rest],Al11Rings,In,InK,Val):-
hf_chiral_sideshare_2ring(Set-Ring,AllRings, InK,Keep),

append (Set,In,NewSet),
hf_chiral_sideshare_aux_aux(Rest,AllRings,NewSet,Keep,Val).

/KK ok sk ok ok ok o o ok ok ok sk sk sk sk sk ok ok o o o ok ok ok ok sk sk sk sk ok ok ok o o ok ok ok sk sk sk ok ok ok ok o
find if a set is sharing a side w/ at least 2 rings
steotokok ok ok ook ok ok ok sk sk sk sk sk sk sk sk sk sk ok ok okokokok ok ok kokokokokokosk sk sk sk sk ok sk ok ok ok ke ok /
hf_chiral_sideshare_aux_aux4([],_,V2,V2).
hf_chiral_sideshare_aux_aux4([Set-Ring|T],Al1Rings,Part,V2):-
findall([A1,A2,0Ring], (member(Al,Set),

member (A2,Set),

bonded (A1, _,A2),

member (ORing,Al11Rings),

ORing \= Ring,

memberchk (A1,0Ring),

memberchk (A2,0Ring)),SS1),
duplicate_list_sort(SS1,SS),
hf_csaad4_aux(SS,Senses),
hf_csaa4_aux2(SS, [R1,R2]),

length(Ring,RS),
hf_chiral_rule4(RS,R1,R2,Senses,Val),

NewPart is Part + Val,
hf_chiral_sideshare_aux_aux4(T,AllRings,NewPart,V2).
hf_chiral_sideshare_aux_aux4([_|T],Al1Rings,Part,V2):-
hf_chiral_sideshare_aux_aux4(T,Al1lRings,Part,V2).

Tololots
hf_csaad4_aux([],[]).
hf_csaad4_aux([[A,B,_]|T], [S1|Senses]):-

276

hf_chiral_sense([A,B],S1),
hf_csaad4_aux(T,Senses).

Dotoo o

hf_csaad4_aux2([]1,[]).
hf_csaa4_aux2([[_,_,R]IT], [RLen|Rings]) :-
length(R,RLen),

hf_csaa4_aux2(T,Rings).

/ot sk sk sk koo ook ok sk sk sk sk sk sk sk sk sk sk sk ok ok ookt kot ko ok ook ok sk sk sk sk sk ok ok ok ok ok ok
find if a set is sharing a side w/ at least 2 rings
Kok sk ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok o ok ok ok ok sk ok sk sk ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok /
hf_chiral_sideshare_2ring(Set-Ring,Al11Rings,In,Keep):-
length(Set,LSet),
LSet > 3,
delete(AllRings,Ring,RestRings),
findall (X, (member (X,RestRings),

member (Y,Set) ,

member (Z,Set),

Y \=2Z,

memberchk (Y,X),

memberchk(Z,X)),List),
delete_duplicates(List,NewList),
length(NewList,NumNewList),
NumNewList > 1,
append([Set-Ring] ,In,Keep).
hf_chiral_sideshare_2ring(_,_,In,In).

/KKK ok ok o s ok ok ok ok sk sk ok ok ok ok ok ok s ok ok ok sk stk sk sk ok ok o sk ok ok sk sk sk sk sk sk ok o s sk sk sk sk ok o o s ok ok sk sk ok ok ok ok
For when two rings are sharing a side

hf_chiral_sideshare_aux_aux3(SSCAS,SSCAs,OtherCAs,Al1Rings,Part,Val)
1. ending rule - call _aux_aux3_aux to get correction for
otherCAs in molecule (like off a single ring)
2. gets the two CAs and two rings making up the shared side
checks if either R1 or R2 have DBs in them 1 or 2 atoms from CA
gets the value based on the size of the R1 and R2
remove the 0SSCA from the list and recall

sk sk sk sk ok ok ok ok o o o ok ok ok sk sk sk sk ok ok o o o o ok ok ok sk sk sk sk ok ok ok o o o ok ok sk sk sk sk sk ok ok o o sk ok sk sk sk sk ok ok ok ok ok o ok ok sk ok ok ok /
hf_chiral_sideshare_aux_aux3([],SSCAs,OtherCAs,Al1Rings,Partl,Val):-
hf_chiral_sideshare_aux_aux3_aux(0OtherCAs,SSCAs,Al1Rings,0,Part2),

Val is Partl + Part2.
hf_chiral_sideshare_aux_aux3([H|T],SSCAs,OtherCAs,Al1Rings,Part,Val):-
findall (X, (member (X,A11Rings),

277

memberchk(H,X)), [R1,R2]),
member (0SSCA,T) ,
memberchk (0SSCA,R1),
memberchk (0SSCA,R2),
bonded (H, _,0SSCA),
length(R1,SizeR1),
length(R2,SizeR2),
(SizeR1 = SizeR2 -> SizeR1 = Short,

SizeR2 = Long

; sort([SizeR1,SizeR2], [Short,Long])
),
hf_chiral_sense([H,0SSCA],Senses),

hf_chiral_sideshare_dbcheck([R1,R2] ,H,0SSCA, []1,DBCheck),
length (DBCheck,NumDBRings) ,

hf_chiral_rule3(Short,Long,1,NumDBRings,Senses,Chiral),

NewPart is Part + Chiral,
delete(T,0SSCA,NewT),
hf_chiral_sideshare_aux_aux3(NewT,SSCAs,OtherCAs,Al1Rings,NewPart,Val).

/3K sk sk ok ok ok o o o ok ok ok sk sk sk ok sk ok ok o o o ok ok ok sk ok sk sk ok ok o o o ok ok ok sk sk sk sk ok ok o o o sk sk sk ok ok ok o o o ok ok ok ok ok ok ok ok ok
Get’s the correction for the OtherCAs in the molecule
stttk ok ok ok ook ok ok ok sk sk sk sk sk sk sk sk sk ok ookttt ok kot ok ook ok sk sk sk sk sk sk sk sk sk sk sk ok ok ki sk sk sk ok okttt koo kokokokok /
hf_chiral_sideshare_aux_aux3_aux([],_,_,Part2,Part2).
hf_chiral_sideshare_aux_aux3_aux([H|T],SSCAs,Al1Rings,Part,Part2):-
findall([H,X], (chiral_atom(X,_),

bonded (X, _,H)), [HSet]),
hf_chiral_sets(AllRings,HSet,[],[_,_,CASets,_1),
hf_chiral_remove_sets2(CASets,SSCAs,H,NewSets),
hf_chiral_aux3(NewSets,AllRings,0,Val),
NewPart is Part + Val,
hf_chiral_sideshare_aux_aux3_aux(T,SSCAs,AllRings,NewPart,Part2).
hf_chiral_sideshare_aux_aux3_aux([_|T],SSCAs,AllRings,Part,Part2):-
hf_chiral_sideshare_aux_aux3_aux(T,SSCAs,AllRings,Part,Part2).

Dololots

hf_chiral_remove_sets2([],_,_,[]).
hf_chiral_remove_sets2([CAs-Ring|T],SSCAs,0CA, [CAs-Ring|NewSets]) : -
memberchk (OCA,CAs),

hf_chiral_remove_sets2(T,SSCAs,0CA,NewSets) .
hf_chiral_remove_sets2([_|T],SSCAs,OCA,NewSets) : -
hf_chiral_remove_sets2(T,SSCAs,0CA,NewSets) .

/3K sk sk ok ok ok ok o o ko ok sk ok ok ok ok ok ok ok o o ok ok ok sk ok sk ok ok ok ok o o ok ok sk sk sk sk sk ok ok o o o sk sk ok ok ok ok o o o ok ok ok ok ok ok ok ok ok
checks if R1 or R2 has a db 1 or 2 atoms from CA

sk sk sk sk ok ok ok ok o o o ok ok ok sk sk sk sk ok ok o o o o ok ok ok sk sk sk sk sk o ok o o ok ok sk sk sk sk sk ok ok o o ok sk sk sk sk ok ok ok ok ok o ok ok ok ok ok ok /
hf_chiral_sideshare_dbcheck([],_,_,0ut,0ut).
hf_chiral_sideshare_dbcheck([H|T],CA1,CA2,In,DBCheck) :-
(hf_csd_aux(CA1,H) ; hf_csd_aux(CA2,H)),
hf_chiral_sideshare_dbcheck(T,CA1,CA2, [H|In],DBCheck).
hf_chiral_sideshare_dbcheck([_|T],CA1,CA2,In,DBCheck) :-
hf_chiral_sideshare_dbcheck(T,CA1,CA2,In,DBCheck) .

Yot Tolo
hf_csd_aux(CA,Ring) :-
member (A,Ring) ,

A \= CA,
bonded (CA,_,A),
\+ atom_specs(none,A,_,_,_).

hf_csd_aux(CA,Ring) :-
member (A1,Ring),

Al \= CA,

member (A2,Ring) ,

A2 \= CA,

A1 \= A2,

bonded(Al,_,A2),

\+ atom_specs(none,A2,_,_,_).

[Kk ok ok ok ok ok o ok ok ok sk ok ok ok ok ok ok ok o o ok ok sk ok ok ok ok ok ok ok o o ok ok sk sk ok ok ok ok ok ok o o ok sk ok ok ok ok o o ok kK ok ok ok ok ok
Sorts the CAs into Chiral SideShare Atoms and Other Chiral Atoms
Kok ok ok ok ok ok ok ok o o ok ok ok sk ok ok sk ok ok ok o o ok ok ok sk ok sk sk sk ok ok ok o o ok ok ok sk ok ok sk ok ok o o ok sk ok ok sk ok ok ok ok ok o ok ok ok ok ok ok /
hf_chiral_sideshare_aux_aux2([],_,Out,Out,[]) :- !.
hf_chiral_sideshare_aux_aux2([H|T],Al11Rings,InCSS,Out,OtherCAs):-
findall (X, (member (X,A11Rings),

memberchk(H,X)),[_,_1),
append(T,InCSS,Test),
member (A, Test) ,
bonded(H,_,A),
hf_chiral_sideshare_aux_aux2(T,Al1lRings, [H| InCSS],Out,OtherCAs).
hf_chiral_sideshare_aux_aux2([H|T],Al11Rings,InCSS,0Out, [H|OtherCAs]) :-
hf_chiral_sideshare_aux_aux2(T,Al1Rings,InCSS,0Out,OtherCAs).

//skskkokok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk ko ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ksk sk sk sk sk sk sk sk sksksk kot ok ok ook ok ok
Where the real work for bridge compounds is done

- finds if CBA is bonded to another CA

- check if this CA is bonded to another CBA

-if so then find out if

- up,up,up (chiralx*2)

278

279

- up,up,down (chiral*0)

- down,up,down (chiralx4)

-if not - check if CA is in another ring and the size of that ring
-if ring is same direction as bridge -> 0

-if ring is opposite direction as bridge -> 1

-if that ring is <5 then get (chiralx*~3)

-if ring >4 then get (chiralx*1)

- if not in ring

-get 0 if direction is X,X

-get chiral if direction is X,Y

stk Kok oK ok KoK oK ok oK oK K oK o oK oK ok o oK oK ok oK oK ok o oK K ok o oK oK ok oK oK ok oK KK ok oK Kok oK oK ok ok ok ok /
hf_chiral_bridge_aux(BridgeSets,Al1Rings,Bridge):-
hf_chiral_bridge_aux_remove(BridgeSets,NewBridgeSets),
hf_chiral_set_rings(NewBridgeSets,SetRings),
hf_chiral_set_data_bridge(NewBridgeSets,SetRings),
hf_chiral_bridge_aux_aux(NewBridgeSets,AllRings, [],Bridge).
%hf_chiral_bridge_aux(_,_,0). %should never come here!

[Kok Kok ok ok Kk ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok ok ok Kk ok K ok ok ok K ok ok ok oK ok KK sk ok Kok Kk ok Kok ok ok Kok ok ok K
_aux_aux2 Sorts the Sets into ChiralBridgeAtoms and OtherCAs

_aux_aux3 gets the correction

stk Kok oK ok KoK K ok oK oK oK ok o oK oK ok o oK oK ok o oK oK ok oK K ok o oK Kok oK Kok oK K Kok oK Kok oK K ok ok ok ok /
hf_chiral_bridge_aux_aux([],Al1Rings,Al1Sets,Bridge):-
delete_duplicates(AllSets,AllSetsl),
hf_chiral_bridge_aux_aux2(AllSets1,AllRings, [],CBAs, [],0therCAs),
hf_chiral_bridge_aux_aux3(0therCAs,CBAs,Al1Rings,0,Bridge) .
hf_chiral_bridge_aux_aux([Set-_|Rest],Al1Rings,In,Bridge):-
append(Set,In,NewSet),
hf_chiral_bridge_aux_aux(Rest,AllRings,NewSet,Bridge) .

[KKKk ok Kok R oK ok K ok oK ok oK oK oK ok o oK oK ok o ok oK ok ook oK ok o ok oK ok ook oK ok o ok oK K oK ok ok o oK ok K ok oK ok K ok oK oK
ending rule
for CA joining two CBAs (two bridge sections joined by a CA)
for CA attached to one CBA
goes to _aux_aux3
for CA in bridge cmpd but not above case
should get the other rulel effects (have to write)
maybe should recall w/ top level hf_chiral_aux3
stk Kok Kok KoK KK ok K oK oK ok K oK K ok KoK Kok K oK Kok K oK K ok oK Kok oK Kok oK K Kok oK Kok oK ok ok ok ok ok /
hf_chiral_bridge_aux_aux3([],_,_,Bridge,Bridge).
hf_chiral_bridge_aux_aux3([H|T],CBAs,Al1Rings,Part,Bridge) :-
findall (X, (member (X,CBAs),

bonded (H,_,X)), [A1,A2]),
hf_chiral_sense([Al1,H,A2],Senses),
hf_chiral_rule2(bridgejoin,_,_,Senses,Val),

NewPart is Part + Val,
hf_chiral_bridge_aux_aux3(T,CBAs,Al1Rings,NewPart,Bridge).
hf_chiral_bridge_aux_aux3([H|T],CBAs,Al1Rings,Part,Bridge) :-
findall (X, (member (X,CBAs),

bonded (H,_,X)), [X]),
hf_chiral_bridge_aux_aux3_aux([X,H],Al1Rings,Val),
NewPart is Part + Val,
hf_chiral_bridge_aux_aux3(T,CBAs,Al1Rings,NewPart,Bridge).
hf_chiral_bridge_aux_aux3([H|T],CBAs,Al1Rings,Part,Bridge) :-
findall (X, (member (X,CBAs),

bonded(H,_,X)),[1),

%%% SHOULD GET THE OTHER "rulel" EFFECTS
hf_chiral_bridge_aux_aux3(T,CBAs,AllRings,Part,Bridge).

/KoK sk ok ok ok ok ok o ok ok ok sk sk ok ok sk ok ok ok o o ok ok ok sk ok sk sk ok ok o o o ok ok sk sk sk sk sk ok ok o o o ok sk ok ok ok ok o o o ok ok ok ok ok ok ok ok ok
calls rule2(bridgering,...
if CA is part of a ring that does not make up the bridge cmpd
calls rule2(bridgechain,...
if CA is part of a chain
Kok sk ok ok ok ok ok o ok o ok ok ok ok ok ok ok ok ok ok o o koK ok sk ok sk sk ok ok ok ok o o ok ok sk ok ok ok ok ok ok o ok sk ok ok ok ok ok ok ok ok kK ok ok ok /
hf_chiral_bridge_aux_aux3_aux([CBA,CA],Al1Rings,Val):-
findall (Ring, (member (Ring,Al1Rings),

\+ memberchk(CBA,Ring),

memberchk (CA,Ring)) , [Ring]),
length(Ring,Size),
(Size > 4 -> SubMult is 1

; SubMult is 2.5

),
hf_chiral_sense([CBA,CA],Senses),
hf_chiral_rule2(bridgering,Ring,SubMult,Senses,Val).
hf_chiral_bridge_aux_aux3_aux([CBA,CA],_,Val):-
hf_chiral_sense([CBA,CA], [CBAS,CAS]),
chiral_atom_info(CA,_,CAS,B1,_,_),
hf_chiral_size(CA-B1,SubMult),
hf_chiral_rule2(bridgechain,_,SubMult, [CBAS,CAS],Val).

/3K sk sk ok ok ok o o o ok ok ok sk sk sk ok sk ok ok o o o ok ok ok sk sk sk sk ok ok o o ok ok ok ok ok sk sk sk sk ok ok o o o sk sk sk sk ok o o o o ok ok ok sk ok ok ok ok ok
Sorts the CAs into Chiral Bridge Atoms and Other Chiral Atoms
stttk ko ok ook ok ok sk sk sk sk sk sk sk sk sk ok ok okokokok ok ok ok ook ok sk sk sk sk sk sk sk sk sk sk sk ok ok ook sk sk ok ok ookt kokkokokokok /
hf_chiral_bridge_aux_aux2([],_,CBAs,CBAs,Others,Others) .
hf_chiral_bridge_aux_aux2([H|T],Al11Rings,InCBA,CBAs,InOther,OtherCAs):-
findall (X, (structure(Rings,_,bridge),

member (X,Rings) ,

280

281

memberchk (H,X)),[_,_,_1),
hf_chiral_bridge_aux_aux2(T,Al1Rings, [H|InCBA],CBAs, InOther,OtherCAs).
hf_chiral_bridge_aux_aux2([H|T],Al11Rings,InCBA,CBAs,InOther,OtherCAs) :-
hf_chiral_bridge_aux_aux2(T,Al11Rings,InCBA,CBAs, [H|InOther] ,OtherCAs).

[KKk Kk ok Kok Kok ok Kok oK ok ook oK ok ook oK ok ook oK ok Kok oK ok ook oK ok ook o oK ok ok KK oK ok Kok oK ok Kok oK ok Kok oK ok
removes the two short rings in a bridge
- fine for 5,5,6 have to worry about if ever get other kinds!!
stk ok ok ok ok oK oK oK ok oK ok oK ok oK oK oK oK o oK oK ok o ok oK ok o ok oK ok o ok K ok o ok K ok ok KK ok ok oK ok ok ok ok ok ok ok /
hf_chiral_bridge_aux_remove (BridgeSets,NewBridgeSets) : -
findall([Set1-S1,S8et2-S2], (structure(Rings,_,bridge),

longest (Rings,Base),

delete(Rings,Base, [S1,S2]),

memberchk (Set1-S1,BridgeSets),

memberchk (Set2-52,BridgeSets)) ,Trashl),
10l13_to_1lo0l2(Trashi, [],Trash),
hf_chiral_remove_sets(Trash,BridgeSets,NBS1),
delete_duplicates(NBS1,NewBridgeSets) .

[KKKk ok ok ok ok ok oK ok ok ok oK ok o ok ok o oK oK ok o ok o ok ok o oK ok ok o ok oK ok o ok o ok ok o ok oK oK ok ok ok ok K ok ok ok K ok ok oK
Get’s the rings in a set

stk Kok oK ok KoK oK ok oK oK oK ok o oK oK ok oK K ok oK oK K ok o oK K ok o oK Kok oK Kok oK KK ok oK Kok oK oK ok ok ok ok /
hf_chiral_set_rings([],[]).

hf_chiral_set_rings([_-Ring|T], [Ring|Rings]) :-
hf_chiral_set_rings(T,Rings).

/K ok sk ok ok sk sk ok ok sk ok ok sk K ok ok sk ok ok ok ok ok sk ok ok ok K ok ok ok ok ok ok ok sk 3k ok K K ok ok sk sk ok sk K ok ok ok sk sk ok ok ok ok sk ok ok K ok ok ok ok ok
hf_chiral_get_interactions(RLen,Set-NewRing,Senses,Chilnt,AxInt,SpecInt)
gets the interactions in a ring:

0 for a chain

rules 3 to 6 for rings composed of 3-6 atoms

_interactions_aux (finds CAs next to each other, pointing same direction)
_interactions_aux2 (finds CAs in "Axial" location)

_interactions_other (for CAs w/ other interactions)

_interactions_aux3 (NEED TO DOCUMENT THIS)

Kok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok o ok ok ok sk ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok kK ok ok ok /
hf_chiral_get_interactions(0,Atoms,Senses,Chilnt,_,0,1):-
hf_chiral_get_interactions_aux(0,Atoms,Senses, [],_,ChiInt).
hf_chiral_get_interactions(3,Set-Ring,Senses,Chilnt, [],0HME,NO2) :-
hf_chiral_get_interactions_aux(3,Ring,Senses, [],_,Chilnt),
hf_chiral_get_interactions_other(Set,Ring,Senses,Chilnt,_,0HME,N02) .
hf_chiral_get_interactions(4,Set-Ring,Senses,ChiInt,AxInt,0HME,N02) : -
hf_chiral_get_interactions_aux(4,Ring,Senses, [],50,ChiInt),
hf_chiral_get_interactions_aux2(even,Ring,Senses,S0, [],AxInt),

282

hf_chiral_get_interactions_other(Set,Ring,Senses,Chilnt,_,0HME,N02) .
hf_chiral_get_interactions(5,Set-Ring,Senses,NewChilnt, [],0HME,N02) : -
hf_chiral_get_interactions_aux(5,Ring,Senses, [],_,Chilnt),
hf_chiral_get_interactions_other(Set,Ring,Senses,Chilnt,NewChiInt,OHME,NO2) .
hf_chiral_get_interactions(6,Set-Ring,Senses,Chilnt,AxInt,0HME,N02) : -
hf_chiral_get_interactions_aux(6,Ring,Senses, [],50,ChiInt),
hf_chiral_get_interactions_aux2(even,Ring,Senses,S0, [],AxInt),
hf_chiral_get_interactions_other(Set,Ring,Senses,Chilnt,_,0HME,N02).
hf_chiral_get_interactions(_,Set-Ring,Senses,Chilnt, [],0HME,N0O2) :-
hf_chiral_pairs(Set,CAPairs),
hf_chiral_get_interactions_aux3(CAPairs,Ring, [],ChilInt),
hf_chiral_get_interactions_other(Set,Ring,Senses,Chilnt,_,0HME,N02) .

/] 3Kk ok sk ok ok sk ok sk ok ok sk ok s ok ok ok ok 3 ok K ok ok sk ok 3 ok ok ok 3k ok ok K ok ok 3 ok K ok oK sk ok 3 ok K ok ok sk ok ok 3 ok ok K sk ok ok sk ok ok ok ok K ok ok ok
Get the other interactions that occur in chiral atoms

Kok ok sk ok ok ok ok ok K ok ok oK ok ok K ok ok K 3 ok ok K ok ok K ok ok K ok ok sk 3 ok ok ok ok K 3 ok ok K ok ok sk ok ok ok ok ok k3 ok ok ok ok sk ok ok Kk ok kK ok ok /
hf_chiral_get_interactions_other(Set,Ring,Senses,ChiInt,NewChiInt,
OHME,N02) : -

hf_chiral_no2_interact(Ring,Senses,Chilnt,NewChilInt,N02),
hf_chiral_dipmult(Set,Ring,OHME) .

/Rt Rk ok ok o ok ok ok ok ok ok ok ok ok ok sk sk sk sk Kk sk ko ok ok ok ok ok ok ok ok ok ok sk sk sk K sk Kok sk sk sk sk sk sk sk sk sk sk ok ok ok ok ko
If in a 5 membered ring and a no2 group is bonded to an 0 which is
bonded to the CA’s and these CAs are ortho, then this is a "true"
interaction between trans components

This is true for no2 as measured by a russian group 1985

If neither of these cases succeeds, then Chiral stays the same
and a multiplier of one is returned.

stttk ok ok ok ook ok ok ok sk sk sk sk sk sk sk sk sk ok ok okt ok ok ook ok sk sk sk sk sk sk sk sk sk sk ok ok ok skok sk sk ok ookttt ok kokokokokokok /
hf_chiral_no2_interact(Ring,Senses, [], [Set],N02):-
length(Ring,5),
hf_chiral_no2_interact_aux2(Ring,Senses, [], [Set]),
hf_chiral_no2_interact_aux(Set,N02).
hf_chiral_no2_interact(Ring,_, [Chiral], [],N02):-
length(Ring,5),

hf_chiral_no2_interact_aux(Chiral,N02).
hf_chiral_no2_interact(_,_,Chiral,Chiral,1).

Doolots
hf_chiral_no2_interact_aux([_-A,_-B],N02) :-%no2
bonded(A,_,N1),

substituent_type(_,N1,n02),

bonded (B, _,N2),

substituent_type(_,N2,n02),

283

hf_chiral_val(no2,N02).

Doolots
hf_chiral_no2_interact_aux2([RO,R1,R2,R3,R4],[S0,S1,52,33,34],In,Chiral) :-
hf_chiral_no2_interact_aux2_aux([RO,R1], [S0,S1],In,C1),
hf_chiral_no2_interact_aux2_aux([R1,R2],[S1,S2],C1,C2),
hf_chiral_no2_interact_aux2_aux([R2,R3],[S2,83],C2,C3),
hf_chiral_no2_interact_aux2_aux([R3,R4], [S3,S84],C3,C4),
hf_chiral_no2_interact_aux2_aux([R4,R0], [S4,S0],C4,Chiral).

Tolo ot
hf_chiral_no2_interact_aux2_aux([A1,A2],[S1,S2],In,0ut):-
S1 \= 0,

S2 \= 0,

S1 \= 82,

chiral_atom_info(Al1l,_,S1,B1,_,_),
chiral_atom_info(A2,_,S82,B2,_,_),

append ([[A1-B1,A2-B2]],In,0ut).
hf_chiral_no2_interact_aux2_aux(_,_,In,In).

[/ 3kskskskskok ok sk ok ok ok ok sk sk sk sk sk sk ok ok o ok ok ok sk sk sk sk sk sk sk sk sk ko ok sk sk sk sk sk sk sk ok sk ok koksksk sk sk ok sk o ok ok ok sk sk sk sk sk ok ok
Gets the chiral correction for sets of chiral pairs

Finds all the chiral_pairs that have already been corrected for,

if already done - recall,

if not - make sure pairs are next to each other and same sense

then set as an interaction

sksk sk sk sk sk ok ok ok o sk ok ok sk sk sk sk sk sk sk sk ok o ko ok ok sk sk sk sk sk sk sk sk o ok ok sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk ok /
hf_chiral_get_interactions_aux3([],_,0ut,0ut).
hf_chiral_get_interactions_aux3([[X,Y]|T],Ring,In,Chiral):-
findall(Pair,done_chiral_pairs(Pair) ,DonePairs),

\+ memberchk ([X,Y] ,DonePairs),
|
assert(done_chiral_pairs([X,Y])),
assert(done_chiral_pairs([Y,X])),

bonded(X,_,Y),

hf_chiral_sense([X,Y], [S,S]),
hf_chiral_get_interactions_aux3(T,Ring, [[X,Y]|In],Chiral).
hf_chiral_get_interactions_aux3([_|T],Ring,In,Chiral):-
hf_chiral_get_interactions_aux3(T,Ring,In,Chiral).

/K 3k sk sk ok ok ok ok ok o o ok ok sk sk sk sk sk ok ok o ok o o ok ok sk sk sk sk sk ok ok o sk o ok ok sk sk sk sk sk ok ok o ok o sk sk sk ok ok o o o o ok ok sk sk sk ok ok ok o
gets the ’Axial’ atoms in a ring

sk o ok sk ok o o ok sk ok ok o ok stk ok o ok sk ok ok ok sk ok o o ok sk ok o sk sk o ok ok sk ok o ok sk ok ok sk ok ok sk sk sk ok ok ok skok ok ok ok /
hf_chiral_get_interactions_aux2(_,[],[],_,Axial,Axial).
hf_chiral_get_interactions_aux2(odd, [H2|T2], [SO|T],S0,In,Axial):-

chiral_atom_info(H2,_,S0,B1,_,_),

append ([H2-B1] ,In,0Out),
hf_chiral_get_interactions_aux2(even,T2,T,S0,0ut,Axial).
hf_chiral_get_interactions_aux2(odd, [_|T2],[_|T],S0,In,Axial):-
hf_chiral_get_interactions_aux2(even,T2,T,S0,In,Axial).

hf_chiral_get_interactions_aux2(even, [H2|T2],[SO|T],S0,In,Axial):-
reactophore_fact(_,_, [H2],_,S),

length(S,3),
hf_chiral_get_interactions_aux2(odd,T2,T,S0,In,Axial).
hf_chiral_get_interactions_aux2(even, [H2|T2], [SO|T],S0,In,Axial):-
reactophore_fact(_,_, [H2],_,S),

length(S,4),

S0 \= 0,

(0 =1->81=2
; 81 =1

),

chiral_atom_info(H2,_,S1,B1,_,_),
append ([H2-B1] ,In,Qut),
hf_chiral_get_interactions_aux2(odd,T2,T,S0,0ut,Axial).

hf_chiral_get_interactions_aux2(even, [H2|T2], [H|T],S0,In,Axial):-
H \= 0,

chiral_atom_info(H2,_,H,B1,_,_),

append ([H2-B1] ,In,0Out),
hf_chiral_get_interactions_aux2(odd,T2,T,S0,0ut,Axial).
hf_chiral_get_interactions_aux2(even, [_|T2],[_|T],S0,In,Axial):-
hf_chiral_get_interactions_aux2(odd,T2,T,S0,In,Axial).

/ot tskk koo ok o sk sk sk sk sk sk sk sk sk sk ok ok ok ok otk stk st sk sk koo ok ok sk sk sk sk sk sk sk sk sk sk sk ook sk sk sk sk ok ok okttt ok ok ook ok
gets the ’Chiral’ interactions in a ring

Kok sk ok ok ok ok ok ok ok o ok ok ok sk ok ok sk ok ok ok o ok ok ok ok ok ok sk sk ok ok ok ok o ok ok ok sk sk ok sk ok ok ok o o sk ok sk ok ok ok ok ok ok ok ok o ok ok ok ok ok ok /
hf_chiral_get_interactions_aux(0, [RO,R1],[S0,S1],In,S0,Chiral):-
hf_chiral_get_interactions_aux_aux1([RO,R1], [S0,51],50,In,Chiral).
hf_chiral_get_interactions_aux(3, [RO,R1,R2], [S0,S1,52],In,S0,Chiral) :-
hf_chiral_get_interactions_aux_aux1([RO,R1], [S0,S1],S0,In,C1),
hf_chiral_get_interactions_aux_aux1([R1,R2],[S1,52],S0,C1,C2),
hf_chiral_get_interactions_aux_aux1([R2,R0], [S2,50],S0,C2,Chiral).
hf_chiral_get_interactions_aux(4, [RO,R1,R2,R3],
[S0,S81,82,83],In,S0,Chiral) : -
hf_chiral_get_interactions_aux_aux1([RO,R1], [S0,S1],S0,In,C1),
hf_chiral_get_interactions_aux_aux1([R1,R2], [S1,52],S0,C1,C2),
hf_chiral_get_interactions_aux_auxl([R2,R3], [S$2,83],50,C2,C3),
hf_chiral_get_interactions_aux_auxl([R3,R0], [S$3,50],S0,C3,C4),

284

hf_chiral_get_interactions_aux_aux1([R1,R3],[S1,33],S0,C4,Chiral).
hf_chiral_get_interactions_aux(5, [RO,R1,R2,R3,R4],
[S0,81,82,83,84],In,30,Chiral) : -
hf_chiral_get_interactions_aux_aux1([RO,R1], [S0,S1],S0,In,C1),
hf_chiral_get_interactions_aux_aux1([R1,R2], [S1,52],S0,C1,C2),
hf_chiral_get_interactions_aux_aux1([R2,R3], [S$2,83],50,C2,C3),
hf_chiral_get_interactions_aux_auxl([R3,R4], [S3,54],50,C3,C4),
hf_chiral_get_interactions_aux_aux1([R4,R0], [S4,50],50,C4,Chiral).

Doolots
hf_chiral_get_interactions_aux_aux1([A1,A2],[S1,51],S1,In,0ut):-
chiral_atom_info(Al,_,S1,B1,_,main),
chiral_atom_info(A2,_,S1,B2,_,main),

append ([[A1-B1,A2-B2]],In,0ut).
hf_chiral_get_interactions_aux_aux1([A1,A2],[S1,52],_,In,0ut):-

reactophore_fact(_,_, [A1],_,As),
length(As,4),
S1 \= 0,
(81 =1 ->82=2
; S2 =1
),

chiral_atom_info(Al,_,S1,B1,_,main),
chiral_atom_info(A2,_,S2,B2,_,main),

append ([[A1-B1,A2-B2]],In,Out) .
hf_chiral_get_interactions_aux_auxl1(_,_,_,In,In).

[ok sk ok sk ok stk sk ok sk sk stk ok sk sk ok stk e sksk ok sk ok stk e oksk sk ok sk stk sk ok sk sk ok sk ok sk sk ok stk sksk sk ok sk ok sk ok ok
Code for when a chain of atoms has chirality.

I''l if necessary - have to write this code
stk ok o o sk sk ok ok o ok sk ok ok o ok sk sk ok o sk sk ok ok sk sk ok sk o ok sk ok ok o ok sk sk ok ok sk sk ok sk sk sk ok sk ok sk ok sk sk sk sk sk ok sk ok sk ok /

hf_chiral_chain(_,In,In) :- !.

/oK ok sk ok ok sk sk okt ok sk ok sk ok ok sk sk sk sk sk ok sk sk sk ok sk ok skosk sk sk sk ok sk sk sk sk ok sk sk sk skokok sk okosk sk sk sk ok sk sk sk ook ok sk ok ok ok
RULE SECTION

-rulel: for CAs in 1 ring
hf_chiral_rulel(RLen,Set-Ring,ChiInt,AxialInt,0HME,N02,Chiral)

-rule2: for CAs in a bridge structure
hf_chiral_rule2(Type,Ring,SubMult,Senses,Chiral)

-rule3: for CAs in a sideshare structure

285

286

hf_chiral_rule3(Ringl,Ring2,SubMult,Senses,Chiral)
-rule4: for CAs in a sideshare structure w/ multiple sides shared

KoKk ok ok ok ok ok ok o ok ok sk ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o ok ok sk ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok kK ok ok ok /
Yohhhhhhle RULE FOR CHAINS %%ttt tetetts
hf_chiral_rulel(0,_Set,_ChiInt,_,_,_,Chiral):-

Chiral is O.

NWhh%hh%%h RULE FOR SINGLE RINGS %%%%%%%A%A%A
hf_chiral_rulel(_,Set-Ring,ChiInt,AxInt,0HME,NO2,Chiral):-
hf_chiral_rulel_aux(ChiInt,Set-Ring,AxInt,0HME,N02,0,Chiral).

Y%%%%%% ENDING RULE FOR SINGLE RINGS IF FAILS ELSEWHERE %%%%%%%%%
hf_chiral_rulel(_,_,_,_,_,_,0).

%hhh%Ah%h RULE FOR BRIDGE SECTIONS %%%%%kh%%k
hf_chiral_rule2(bridgejoin,_,_, [X,X,X],Chiral):-
hf_chiral_val(chiral,V1),

Chiral is V1.
hf_chiral_rule2(bridgejoin,_,_, [X,X,_],0).
hf_chiral_rule2(bridgejoin,_,_, [X,_,X],Chiral):-
hf_chiral_val(chiral,V1),

Chiral is V1 *x 2.

hf_chiral_rule2(bridgering,_,_, [X,X],0).
hf_chiral_rule2(bridgering,_,SubMult,[_,_],Chiral):-
hf_chiral_val(chiral,V1),

Chiral is V1 * SubMult.

hf_chiral_rule2(bridgechain,_,_, [X,X],0).
hf_chiral_rule2(bridgechain,_,SubMult,[_,_],Chiral):-
hf_chiral_val(chiral,V1),

Chiral is V1 * SubMult.

%hhh%h% RULE FOR SIDESHARE SECTIONS %%%%%h%h%%%
hf_chiral_rule3(5,5,_,_, [X,X],0).
hf_chiral_rule3(5,5,_,_,[_,_1,Chiral):-
hf_chiral_val(chiralbtrans,Chiral).
hf_chiral_rule3(Short,Long,SubMult,_, [X,X],Chiral):-
Short < 5,

Long > 7,

hf_chiral_val(chiral,V1),

Chiral is V1 * SubMult.

287

hf_chiral_rule3(Short,Long,_,_,[_,_1,0):-
Short < 5,

Long > 7.
hf_chiral_rule3(Short,Long,_,_, [X,X],0):-
Short < 5,

Long =< 7.
hf_chiral_rule3(Short,Long,SubMult,_,[_,_],Chiral):-
Short < 5,

Long =< 7,

hf_chiral_val(chiral,V1),

Chiral is V1 * SubMult.
hf_chiral_rule3(5,6,_,0, [X,X],0).
hf_chiral_rule3(5,6,SubMult,0,[_,_],Chiral):-
hf_chiral_val(chiral,V1),

Chiral is V1 * SubMult.

hf_chiral_rule3(5,6,_,_, [X,X],0).
hf_chiral_rule3(5,6,SubMult,_,[_,_],Chiral):-
hf_chiral_val(chiral,V1),

Chiral is V1 * SubMult.

hf_chiral_rule3(5,7,_,_,[_,_1,0). %5-7 either direction get O
hf_chiral_rule3(6,6,SubMult,_, [X,X],Chiral):-
hf_chiral_val(chiral6cis, V1),

Chiral is V1 * SubMult.

hf_chiral_rule3(6,6,_,_,[_,_1,0).
hf_chiral_rule3(_,_,_,_,[_,_1,0). %catch-all for everything else

hf_chiral_rule4(6,6,6,[[X,X],[Y,Y]],Chiral) :-%2same
hf_chiral_rule4_aux(position,X,Y,Axial), %%boat boat boat - 2 axial
Chiral is Axial * 2.

hf_chiral_rule4(6,6,6,[[X,Y],[X,Y]],0):-% all eq -all chair

X \=1Y.

hf_chiral_rule4(6,6,6, [[X,Y],[Y,X]],Chiral) :-%% chair boat chair
hf_chiral_rule4_aux(position,X,Y,V),

Chiral is V *x 4.

hf_chiral_rule4(6,6,6,[[X,Y],[X,X]],Chiral):-%1lsame - 1 axial atom
hf_chiral_rule4_aux(position,X,Y,Chiral).
hf_chiral_ruled4(6,6,6,[[Y,X],[X,X]],Chiral):
hf_chiral_rule4_aux(position,X,Y,Chiral).
hf_chiral_rule4(6,6,6,[[X,X],[X,Y]],Chiral):
hf_chiral_rule4_aux(position,X,Y,Chiral).
hf_chiral_rule4(6,6,6, [[X,X],[Y,X]],Chiral):

hf_chiral_rule4_aux(position,X,Y,Chiral).

hf_chiral_rule4(6,6,6,[[X,X],[X,X]],0). Yallsame
%Correction determined in _aux3 Y%%boat boat boat

hf_chiral_ruled4(_,_,_,[[X,X],[Y,Y]],0):-%2same
X \=1Y.
hf_chiral_rule4(_,_,_,[[X,Y],[X,Y]],0):-
X\=1Y.
hf_chiral_ruled4(_,_,_,[[X,Y],[Y,X]1],0):-

X \=1Y.
hf_chiral_ruled4(_,_,_,[[X,Y],[X,X]1]1,0):-%1same
X \=1Y.
hf_chiral_ruled4(_,_,_,[[Y,X],[X,X]1],0):-

X \=1Y.
hf_chiral_ruled4(_,_,_,[[X,X],[X,Y]],0):-

X \=1Y.
hf_chiral_rule4(_,_,_,[[X,X],[Y,X]],0):-

X \=1Y.
hf_chiral_ruled4(4,_,_,[[X,X],[X,X]],Chiral):- %allsame

hf_chiral_val(chiral,V1),

Chiral is V1 * 4.
hf_chiral_rule4(_,_,_, [[X,X], [X,X]],Chiral):- %allsame
hf_chiral_val(chiral,V1),

Chiral is V1 *x 2.

Doolots
hf_chiral_ruled4_aux(AA,X,Y,Chiral):-
X\=1Y,

hf_chiral_val(AA,V2),

Chiral is V2.

[ok ok ok sk ok o ok ok ok sk ok ok ok ok ok sk ok o ok ok ok sk ok ok ok ok ok sk ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
hf_chiral_rulel_aux(Set,Set-Ring,AxInt,0HME,NO2,SubMult,Chiral)

Set is the set of chiral interactions

AxInt is the list of Axial CAs

Special is the multiplier caused by special interactions

no2 in a 5

oh-methyl off a ring

ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok ok ok ok ok ok sk ok sk ok ok ok sk ok sk sk sk ok sk ok sk ok sk ok sk kok sk ok ok ok sk ok ok ok ok k ok /
hf_chiral_rulel_aux([],_,AxInt,0HME,NO2,SubMult,Chiral) :-
hf_chiral_rulel_aux2(AxInt,0,AxMult),

hf_chiral_val(chiral,V1),

hf_chiral_val(position,V2),

288

289

Chiral is (V1 * SubMult * N02) + (V2 * AxMult) + OHME.
hf_chiral_rulel_aux([[CA1,CA2]|T],Set-Ring,AxInt,0HME,NO2,Part,Chiral):-
hf_chiral_size(CA1,SubMultl),

hf_chiral_size(CA2,SubMult2),

NewPart is Part + (SubMultl + SubMult2) / 2,
hf_chiral_rulel_aux(T,Set-Ring,AxInt,0HME,NO2,NewPart,Chiral).

hf_chiral_rulel_aux2([],Part,Part).
hf_chiral_rulel_aux2([H|T],InP,Part):-
hf_chiral_size(H,AxMult),

NewPart is InP + AxMult,
hf_chiral_rulel_aux2(T,NewPart,Part).

/K 3kskk koo ok sk ok ok ok ok sk sk sksk sk sk sk ok s ok ok ok sk sksksk sk sk sk ok sk ok ok ok sk sk sk sk sk sk sk ok sk ok koksksk sk sk ok sk s ok ok ok sk sk sk sk sk ok ok
hf_chiral_size
gets the chiral multiplier;
dependant on the size of the chiral Substituent
skt sk sk ok ok ok ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok kot ko sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skok sk sk sk sk skskskskkkok ok okokkok ok /
hf_chiral_size(CA-BA,SubMult):-
chiral_atom_info(CA,_,_,BA,Size,_),
(0.05 < Size, Size < 0.11 -> Sizel = 0.05
; Sizel = Size
)
SubMult is Sizel / 0.0506424308.

[ok ok ok sk ok ok ok ok sk ok o ok ok ok sk kK ok ok ok ok koK ok ok ok ok K K 3k ok ok ok sk K 3 ok ok ok sk K ok ok ok sk ok ok ok ok sk ok ok ok ok ok K R ok ok K K
Returns the sets of chiral atoms and asserts
them in the database
ok ok ok ok ok ok o ok ok ok ok ok ok o ok ok ok sk ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok sk sk ok sk ok sk ok ok ok sk kok sk ok ok sk ok ok ok ok ok ok k ok /
hf_chiral_pairs(CAs,Pairs):-
findall([X,Y], (member(X,CAs),

member (Y,CAs) ,

X \=1Y,

assert(chiral_pairs([X,Y]))

) ,Pairs).

/3K sk sk ok ok ok ok o o ok ok ok ok sk ok ok ok ok ok ok o o ok ok ok sk ok sk sk ok ok ok o o ok ok ok sk sk sk sk ok ok ok o o ok ok ok ok ok ok o o o ok ok ok ok ok ok ok ok ok
Gets the shortest distance between atoms in a ring

etttk ok ok ok ok ok ok ok sk sk ok sk sk sk sk sk sk ok ok ok okokokok ok ok ok ko ok ok sk sk sk sk sk sk sk sk sk ok ok ok skokskok ok ok okt ok kokokokok /
hf_atom_distance(X,Y,Dist) :-

reactophore_fact (ReacX,_,AtomsX,_,_),

memberchk (X, AtomsX) ,

reactophore_fact(ReacY,_,AtomsY,_,_),

memberchk(Y,AtomsY),

290

all_paths(ReacX,APs),
get_path_aux(ReacY,Y,X,APs, [_,DistL,_]),
minimum(DistL,Dist).

[/ 3kkskskskok ok sk ok kok ok sk sk sksksk sk ok ok o ok ok ok sk sk sk sk sk sk sk ok sk ok ko ok sk sk sksk sk sk sk ok sk ok ok sksk sk sk sk ok o ke kok ok sk sk sk sk sk ok ok
In a single ring if a methyl and oh have same sense
(except for meta, then opposite), then need an additonal correction

hf_chiral_dipmult(Set,Ring, OHME)
OHME is the correction dependent on the Subs (off of each CA)

_get the 0OHs

examine each oh for being near a methyl, get total
number of interactions and mult by Val

stk ok ok ok ko ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok sk sk sk ok ok sk sk sk ok ok sk sk sk ok ok ok sk sk ok ook sk sk ok ok ok ok ok /
hf_chiral_dipmult(Set,Ring,0HME) : -
hf_chiral_atom_subs(Set,Ring,Subs),

% hf_chiral_breaksubs(Subs,NewSubsl),
hf_chiral_get_ohs(Subs,NewSubs),
hf_chiral_dipmult_aux_top(NewSubs,Subs,Ring,0,NumInts),
hf_chiral_val(oh-methyl,Val),

OHME is Val * NumInts.

hf_chiral_dipmult(_,_,0).

Dototo o

hf_chiral_dipmult_aux_top([],_,_,0Out,Out).
hf_chiral_dipmult_aux_top([Sub|Rest],NewSubsl,Ring,Part,Totallnts):-
hf_chiral_dipmult_aux(Sub,NewSubsl,Ring,NumInts),

NewPart is Part + NumlInts,
hf_chiral_dipmult_aux_top(Rest,NewSubsl,Ring,NewPart,Totallnts).

Jololots
hf_chiral_dipmult_aux(Sub,Subs,Ring,NumInts):-
length(Ring,LenRing),

LenRing = 6,

Sub = [Y-CA],

delete(Subs,Sub,Rest),
chiral_atom_info(CA,_,SOH,Y,_,_),
hf_chiral_dipmult_12s(Rest,CA,SOH,Num0Os),
hf_chiral_dipmult_13s(Rest,CA,SOH,NumMs),
hf_chiral_dipmult_14s(Rest,CA,SOH,NumPs),
NumInts is NumQOs + NumMs + NumPs.
hf_chiral_dipmult_aux(Sub,Subs,Ring,NumInts):-
length(Ring,LenRing),

LenRing = 4,

291

Sub = [Y-CA],

delete(Subs,Sub,Rest),
chiral_atom_info(CA,_,SOH,Y,_,_),
hf_chiral_dipmult_12s(Rest,CA,SOH,Num0s),
hf_chiral_dipmult_13s(Rest,CA,SOH,NumMs),
NumInts is NumQOs + NumMs.
hf_chiral_dipmult_aux(Sub,Subs,_,NumInts):-
Sub = [Y-CA],

delete(Subs,Sub,Rest),
chiral_atom_info(CA,_,SOH,Y,_,_),
hf_chiral_dipmult_12s(Rest,CA,SOH,NumInts) .
hf_chiral_dipmult_aux(_,_,_,0).

Dotolo o
hf_chiral_dipmult_12s(Rest,CA,SOH,Num0Os) : -
findall (B, (member ([B-CA1] ,Rest),

bonded (CA,_,CA1),

chiral_atom_info(CA1,_,SOH,B,_,_),

substituent_type(_,B,methyl)),List01ls),
delete_duplicates(ListO1s,List0s),
length(ListOs,Num0Os) .
Tololots
hf_chiral_dipmult_13s(Rest,CA,SOH,NumMs) : -
findall (B, (member ([B-CA1] ,Rest),

bonded(CA,_,A),

bonded(A,_,CAl1),

CA1 \= CA,

chiral_atom_info(CAl1l,_,S,B,_,_),

S \= SOH,

substituent_type(_,B,methyl)),ListMis),
delete_duplicates(ListMls,ListMs),
length(ListMs,NumMs) .
Doolots
hf_chiral_dipmult_14s(Rest,CA,SOH,NumPs) : -
findall (B, (member ([B-CA1] ,Rest),

bonded (CA,_,A1),

bonded(Al,_,A2),

A2 \= CA,

bonded (A2, _,CA1),

CA1 \= A1,

chiral_atom_info(CA1,_,SOH,B,_,_),

substituent_type(_,B,methyl)),ListPls),
delete_duplicates(ListP1s,ListPs),
length(ListPs,NumPs) .

292

VEL T T

Doolots

hf_chiral_breaksubs([],[]).
hf_chiral_breaksubs([[A-CA]|T], [[A-CA] |NewSubs]) :-
hf_chiral_breaksubs(T,NewSubs) .
hf_chiral_breaksubs([[[A,B]-CA]IT], [[[A]-CA], [[B]-CA] |INewSubs]):-
hf_chiral_breaksubs(T,NewSubs) .

K% /

Yot Tolo

hf_chiral_get_ohs([],[]).
hf_chiral_get_ohs([Set|T], [Set|NewSubs]):-
Set = [X-_1,

substituent_type(_,X,oh),
hf_chiral_get_ohs(T,NewSubs) .
hf_chiral_get_ohs([_|T],NewSubs) :-
hf_chiral_get_ohs(T,NewSubs) .

/ot ks sk koo ook ok sk sk sk sk sk sk sk sk sk sk ok ok ok ottt kot ko ok koo ok sk sk sk sk sk sk sk sk sk sk sk ook sk sk sk sk ok ok okokokok ok ok ook
take a (list of lists of lists) and convert to a (list of lists)

Kok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok sk ok ok ok ok o ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok kK ok ok ok /
lol3_to_1012([],0ut,0ut).

1013_to_1012([H|T],In,ListRings):-

append (H,In,NewIn),

1013_to_1012(T,NewIn,ListRings) .

/o sk ok sk ok o ok stk ok ok ok sk ok o o ok sk ok ok s o sk sk sk ok ok sk sk o ok sk sk ok ok sk sk ok o ok sk sk ok sk ok s stk ok ok ok sk ok ok ok ok
removes [H|T] from CASets

sk sk sk sk ok ok ok ok o o o ok ok sk sk sk sk sk ok ok o o o ok ok ok sk sk sk sk sk ok ok o o ok ok sk sk sk sk sk ok ok o o ok sk sk sk sk ok ok ok ok ok ok ok ok sk ok ok ok /
hf_chiral_remove_sets([],Out,Out).
hf_chiral_remove_sets([H|T],CASets,RestSets) :-

delete(CASets,H,Rest),

hf_chiral_remove_sets(T,Rest,RestSets).

JRxskkrxskokkkkkkk VVVVVVVVVVVVVVVVVVVVVVVVVVVVV kokokskoskok ok ok sk sk sk ok sk ok ok sk ok sk ok ok ok kok /

[Kok Kok ok ok ok ok ok ok ook ok oK ok ook ok Kok oK ok K ok ok ok K ok ok ok K ok ok ok Kok ok ok K ok KK sk ok Kok sk ok Kok ok ok Kok ok ok
Takes these Sets and Rings and builds the fact:
chiral_atom_info(CA,Ring,Sense,Sub,SubSize,Type)

stk Kok oK ok oK oK K ok oK oK K ok oK oK oK ok oK oK oK o oK K ok o oK oK ok o oK oK ok o oK K ok oK KK ok oK Kok oK oK ok ok ok ok /
hf_chiral_set_data_sideshare(SideSets,SetRings):-
hf_chiral_set_senses(SideSets,SetRings,SideSets,Senses),
hf_chiral_set_data_bridge_aux(SideSets,Senses). %(well this might work)

293

[KKK oK o KoK ok oK ok o KoK ok K oK K oK ok K oK oK KoK o K oK oK oK ok K oK ok oK oK ok K oK o KoK ok ok o Kok ok Kok ok Kok o Kok ok ok ok
Takes these Sets and Rings and builds the fact:
chiral_atom_info(CA,Ring,Sense,Sub,SubSize, Type)

stk sk sk sk ok sk ok ok ok ok ok sk sk R sk ok s ok sk sk ok skok sk ok sk ok sk sk stk sk ok sk sk ok sksk sk sk sk ok sk sk ok sk ok sk sk ok skok sk ok sk sk sk sk ok ok /
hf_chiral_set_data_bridge(NewBridgeSets,SetRings) :-
hf_chiral_set_senses(NewBridgeSets,SetRings,NewBridgeSets,Senses),
hf_chiral_set_data_bridge_aux(NewBridgeSets,Senses).

oot

hf_chiral_set_data_bridge_aux([],_).
hf_chiral_set_data_bridge_aux([Set-Ring|Rest], [RingSenses|RSs]):-
hf_chiral_subsize(Set,Ring,SizeData),
hf_chiral_data_bridge_aux_aux(RingSenses,Senses),
hf_chiral_set_subsense(Ring,Senses,SizeData,SenseData),
hf_chiral_assert_fact(SenseData,Ring),
hf_chiral_set_data_bridge_aux(Rest,RSs).
hf_chiral_set_data_bridge_aux([_|Rest],Senses):- Y%should never get here
abort,

hf_chiral_set_data_bridge_aux(Rest,Senses).

Dolo ot

hf_chiral_data_bridge_aux_aux([],[]).
hf_chiral_data_bridge_aux_aux([[H,_,S]1IT], [[S,H] |Senses]):-
hf_chiral_data_bridge_aux_aux(T,Senses).

/KKK ok ok ok ok ok o o ok ok ok sk ok ok ok ok ok ok ok o o ok ok sk ok ok sk sk ok ok ok o o ok ok sk sk ok sk sk ok ok o o o ok sk ok ok ok ok o o o ok ok ok ok ok ok ok ok ok
Set the CA senses relative to whole molecule
sk ok sk sk ok ok ok ok o o o ok ok ok sk ok ok sk ok ok o o o ok ok ok sk sk sk sk sk ok ok o o o ok ok sk sk sk sk sk ok ok o o ok sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok /
hf_chiral_set_senses([],_,BSets,Senses):-
|
hf_chiral_set_senses_aux3(BSets,Senses).
hf_chiral_set_senses([Set-Ring|T],SetRings,BSets,Senses) :-
delete(SetRings,Ring,Rest),
hf_chiral_set_senses_aux1l(Set,Rest,0therRing),
hf_chiral_set_sense(Ring,Set,Ring,0therRing,S1),
hf_chiral_set_senses_aux(Ring,Ring,S1),
hf_chiral_set_senses(T,SetRings,BSets,Senses).

/KoK sk ok ok ok sk ok ok ok o sk ok o ok o sk ok o ok ok ok ok ok o sk ok o ok sk ok o ok o sk ok o ok sk ok o ok sk sk ok K ok o sk ok K ok ok ok ok ok ok
Finds which ring H is in, b/c that’ll be OtherRing

stk KoK oK ok oK oK oK ok oK oK K oK oK oK ok o oK oK ok o oK oK ok o oK oK ok o oK oK ok oK oK ok oK K Kok oK oK ok oK oK ok ok ok ok /
hf_chiral_set_senses_aux1([],_,[]).
hf_chiral_set_senses_aux1([H|_],RestRings,OtherRing) :-

member (OtherRing,RestRings),

294

memberchk (H,OtherRing) .
hf_chiral_set_senses_aux1([_|T],RestRings,OtherRing) :-
hf_chiral_set_senses_aux1(T,RestRings,0therRing) .

[Kk ok ok ok ok ok o ok ok ok sk ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok o o ok ok sk sk ok ok ok ok ok ok o o ok sk ok ok ok ok ok o ok kK ok ok ok ok ok
asserts the chiral_sense fact in the DB

Kok sk ok ok ok ok ok ok ok o ok ok ok sk ok ok sk ok ok ok o o ok ok ok sk sk sk sk ok ok ok ok o ok ok ok ok sk ok sk sk ok ok o o ok sk ok ok sk ok ok ok ok ok o ok kK ok ok ok /
hf_chiral_set_senses_aux([],_, []).
hf_chiral_set_senses_aux([H|T],Ring, [[S1,_]1IT1]):-
findall(Sense,chiral_sense(H,Ring,Sense), []),%not in - assert it
assert(chiral_sense(H,Ring,S1)),

hf_chiral_set_senses_aux(T,Ring,T1).
hf_chiral_set_senses_aux([H|T],Ring, [[S1,_]11T1]):-
findall(Sense,chiral_sense(H,Ring,Sense), [S1]),
hf_chiral_set_senses_aux(T,Ring,T1).
hf_chiral_set_senses_aux([H|T],Ring, [[S1,_]1IT1]):-
findall(Sense,chiral_sense(H,Ring,Sense), [Sense]),
assert(chiral_sense(H,Ring,S1)),

hf_chiral_set_senses_aux(T,Ring,T1).

[Kk ok ok ok ok ok o ok ok ok sk ok ok ok ok ok ok ok o o ok ok sk sk ok ok ok ok ok ok o o ok ok sk ok ok ok ok ok ok ok o o ok ok ok ok ok ok o o ok kK ok ok ok ok ok
real work done here for making the molecule the same

sk sk ok ok ok ok ok o o o ok ok ok ok ok ok sk ok ok o o o ok ok ok sk sk sk sk sk ok ok o o ok ok ok sk sk sk sk sk ok ok o o sk ok sk sk sk sk ok ok ok ok ok o ok ok ok ok ok ok /
hf_chiral_set_senses_aux3([],[]).
hf_chiral_set_senses_aux3([_-Ringl|T], [S|Senses]):-
hf_chiral_set_senses_aux3_aux(Ring,Ring),
hf_chiral_set_senses_aux3_aux2(Ring,Ring,S),
hf_chiral_set_senses_aux3(T,Senses).

Dotolo o

hf_chiral_set_senses_aux3_aux2([],_,[]).
hf_chiral_set_senses_aux3_aux2([H|T],Ring, [[H,Ring,S0][S]) :-
chiral_sense(H,Ring,S0),

hf_chiral_set_senses_aux3_aux2(T,Ring,S).
hf_chiral_set_senses_aux3_aux2([_|T],Ring,S) :-%should never get here
hf_chiral_set_senses_aux3_aux2(T,Ring,S).

/3K sksksk sk ok ok o ok ok ok ok sk sk sk sk sk sk ok sk o ok ok ok sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk sk ok sk o ok sk sk sk sk sk sk o ke ok sk sk sk sk sk sk sk ok
Finds out if the Ring you are examining has a CA set to a different
sense for a different ring, if it does then fix that other ring

sksk sk sk ok sk ok ok ok s ok ko ok sk sk sk sk sk sk sk sk sk s koo ok sk sk sk sk sk sk sk ok sk ok ok ok sk sk sk sk sk sk sk sk sk ok sk sksk sk sk sk ok sk ko ok sk sk sk sk ok /
hf_chiral_set_senses_aux3_aux([],_).
hf_chiral_set_senses_aux3_aux([H|T],Ring):-
chiral_sense(H,Ring,Sense),

findall(OR, (chiral_sense(H,0R,S1),

295

Sense \= S1), [0R]),
findall ([Atom,0R,S2],chiral_sense(Atom,0R,S2),List),
hf_chiral_set_senses_aux3_aux_aux(List),
hf_chiral_set_senses_aux3_aux(T,Ring).
hf_chiral_set_senses_aux3_aux([_|T],Ring) :-
hf_chiral_set_senses_aux3_aux(T,Ring).

//skskokokok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk skok ok koo ok sk ok skttt koo ok ok ok ok
Sets the other rings sense to the opposite of what it was

steofkokokok ok skokokok ok ok ok sk sk sk sk sk sk sk sk ok sk okokokok stk ok skokokokok sk sk sk sk sk sk sk sk sk sk sk sk oksk sk sk sk ookttt kokokkokok /
hf_chiral_set_senses_aux3_aux_aux([]).

hf_chiral_set_senses_aux3_aux_aux([[_,_,0]IT]):-
|
hf_chiral_set_senses_aux3_aux_aux(T).
hf_chiral_set_senses_aux3_aux_aux([[Atom,0R,S2]|T]):-
retract(chiral_sense(Atom,0R,S2)),
(82 =:= 1 -> NewSense = 2

; NewSense = 1
),
assert(chiral_sense(Atom,OR,NewSense)),
hf_chiral_set_senses_aux3_aux_aux(T).

/3K sk sk sk sk ok ok o ok sk ok ok sk sk sk sk sk sk sk sk o ok ok ok sk sk sk sk sk sk sk sk o o ok sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk o sk ok sk sk sk sk sk sk ok ok
Takes a Set and a Ring and builds the fact:
chiral_atom_info(CA,Ring,Sense,Sub,SubSize,Type)

_subsize: returns [[CA,SubAtom,SizeofSubl,...] for each sub

off of CA, not in ring

_set_sense: find senses of RingAtoms - [[0,A1],[1,A2],[2,A3],...]
_ring_rot: rotates Ring so largest sub is first

_set_subsense: gets the relative senses of the ring

_assert_fact: asserts the chiral_atom_info fact

Kok ok sk ok ok ok ok ok K ok ok ok ok ok sk 3k ok K ok ok sk ok ok sk ok ok K ok ok K 3 ok ok sk sk ok sk ok ok sk ok ok sk ok ok ok sk ok ok sk ok ok ok ok ok ok ok /
hf_chiral_set_data_single(Set,Ring,NewRing):-
hf_chiral_subsize(Set,Ring,SizeData),
hf_chiral_set_sense(Ring,Set,Ring,Ring,Senses),
hf_chiral_ring_rot(Ring,SizeData,Senses,NewRing),
hf_chiral_set_subsense(NewRing,Senses,SizeData,SenseData),
hf_chiral_assert_fact(SenseData,NewRing) .

Dotoo o

hf_chiral_assert_fact([],_).
hf_chiral_assert_fact([[CA,Sense,Sub,SubSize,Typel |T],Ring) :-
assert(chiral_atom_info(CA,Ring,Sense,Sub,SubSize,Type)),
hf_chiral_assert_fact(T,Ring).

296

/3K sk sk ok ok ok o o o ok ok ok sk sk sk ok sk ok ok o o o ok ok ok sk sk sk sk ok ok o o o ok ok ok ok sk sk sk sk ok ok o o o sk sk sk ok ok ok o o o ok ok ok sk ok ok ok ok ok
determines the senses of the subatoms
stttk ok ok ok ook ok ok ok sk sk sk sk sk sk sk sk sk ok ookt ok ok ook ok sk sk sk sk sk sk sk sk sk sk ok ok ok ook sk sk ok ookttt okokkokokokok /
hf_chiral_set_subsense([],_,_,[1).
hf_chiral_set_subsense([RA|Rest],Senses,SizeData, [[RA,0,_,_,_]|SenseDatal) :-
findall ([RA,SubAtom,Size] ,member ([RA,SubAtom,Size] ,SizeData),[]),
hf_chiral_set_subsense(Rest,Senses,SizeData,SenseData) .
hf_chiral_set_subsense([RA|Rest],Senses,SizeData,
[[RA,S,SA,Size,main] | SenseDatal) : -
findall ([RA,SA,Size] ,member ([RA,SA,Size] ,SizeData), [[RA,SA,Sizel]l),
memberchk ([S,RA],Senses),
hf_chiral_set_subsense(Rest,Senses,SizeData,SenseData) .
hf_chiral_set_subsense([RA|Rest],Senses,SizeData,
[[RA,S1,5A1,8izel,Typell, [RA,S2,5A2,8ize2, Type2] | SenseDatal) : -

findall ([RA,SA,Size] ,member ([RA,SA,Size] ,SizeData),

[[RA,SA1,Sizel], [RA,SA2,Size2]]),
memberchk ([S,RA],Senses),
(S8=1->08=2

; 0S =1

),

(Sizel > Size2 -> 81 = S,
52 = 08,
Typel = main,
Type2 = sec

; 82 =8,

S1 = 08S,
Typel = sec,
Type2 = main

),

hf_chiral_set_subsense(Rest,Senses,SizeData,SenseData).

/KoK sk ok ok ok ok o o ok ok ok sk sk sk ok ok ok ok o o o ok ok ok ok sk ok sk sk ok ok o o o ok ok ok sk sk sk sk ok ok ok o o sk sk sk ok ok ok o o o ok ok ok ok ok ok ok ok ok
gets the senses of all the Atoms in a ring

if it’s not a CA then put sense to O

the output is in the same order as the incoming list

returns [[SenseA,A],....]

Kok ok ok ok ok ok ok o o o ok ok ok ok ok ok ok ok ok ok o o ok ok sk ok sk sk ok ok ok ok o ok ok ok ok sk ok sk sk ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok o kK ok ok ok /
hf_chiral_set_sense([],_,_,_,[]).
hf_chiral_set_sense([A|Rest],Set,Ring,0therRing, [[SenseA,A] |Senses]) :-
memberchk (A,Set),

hf_chiral_sense(A,Ring,0OtherRing,Sensel),
hf_chiral_set_sense(Rest,Set,Ring,0therRing,Senses).
hf_chiral_set_sense([A|Rest],Set,Ring,0therRing, [[0,A] |Senses]):-
hf_chiral_set_sense(Rest,Set,Ring,0therRing,Senses).

/3K 3k sk sk sk ok ok o ok sk ok ok sk sk sk sk sk sk sk sk o ok sk sk sk sk sk sk sk sk sk ok o ok sk sk sk sk sk sk sk sk ok sk o ke sk sk sk sk sk sk sk o sk ok sk sk sk sk sk sk ok ok
/2 Takes a list of atoms and brings back the senses

/4 Figures out the "sense" of the chiral atoms: 1 or 2

_ring: get_chirality(CA,InAtom,Quts)
CA is the ChiralCenter,
In is the InAtom,
Outs are the OutAtoms
_chain: not done because not used anywhere at this time (6/04)
Kok sk ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o ok ok ok ok sk ok sk sk ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok sk ok ok sk ok ok ok ok ok o ok ok ok ok ok ok /
hf_chiral_sense([],[]).
hf_chiral_sense([H|T], [S|Senses]) :-
chiral_atom_info(H,_,S,_,_,main),
hf_chiral_sense(T,Senses).

hf_chiral_sense(CAl,Ring,0therRing,SenseCAl) :-
hf_chiral_sense_ring(CA1l,Ring,OtherRing,SenseCAl).
hf_chiral_sense(CAl,Ring,0therRing,SenseCAl) :-
hf_chiral_sense_chain(CAl,Ring,0therRing,SenseCAl).

T oo to
hf_chiral_sense_chain(_CAl,_Ring,_OtherRing,SenseCAl):-%have to write
SenseCAl is 1.

Tolo ot
hf_chiral_sense_ring(CA,Ring,0therRing,Sense) :-
hf_get_inatom(CA,Ring,InAtom),
reactophore_fact(_,_, [CA],_,Subs),
delete(Subs, [InAtom] ,RestSubs),
findall (X, (member ([X],RestSubs),

member (X,Ring)) , [RingSub]),
delete(RestSubs, [RingSub] ,Left0Over),
hf_get_regsub(LeftOver,CA,OtherRing,RegSub),
Outs = [RegSub,RingSub],
get_chirality(CA,InAtom,Outs,Sense).

Doolo

hf_get_inatom(CA,Ring,InAtom) :-

nth(Ring,Pos,CA),

PrevPos is Pos - 1,

(PrevPos > 0 ->nth(Ring,PrevPos,InAtom)
; reverse(Ring,RevRing),

nth(RevRing,1,InAtom)

297

298

oo

hf_get_regsub([[RegSub1]],_,_,RegSubl) :- !.
hf_get_regsub([[RegSubl], [_RegSub2]],_,0therRing,RegSubl) :-
memberchk (RegSubl,0therRing) ,

!

hf_get_regsub([[_RegSubl], [RegSub2]],_,OtherRing,RegSub2) :-
memberchk (RegSub2,0therRing) ,

!

hf_get_regsub([[RegSubl], [RegSub2]],CA,_,Sub) :-
reactophore_fact (CASub,_, [CA],_,_),
reactophore_fact(Subl,_,Al,_,_),

memberchk (RegSub1l,Al),

reactophore_fact(Sub2,_,A2,_,_),

memberchk (RegSub2,A2) ,
hf_get_sub_size(CASub, [Subl,Sub2], [Sizel,Size2]),

(Sizel > Size2 -> Sub = RegSubl

; Sub = RegSub2

),

[Kok Kk ok ok ok ok ok ok ok ok ok oK ok ook ok Kok ok ok ok ok ook ok K ok ok ok K ok ok ok K ok sk ok K ok KK ok ok Kok ok ok Kok ok ok Kok ok ok K
rotates the ring so that the CA w/ the largest substituent is first

stk Kok oK ok oK oK oK ok oK oK K ok oK oK oK ok o oK oK ok oK ok K ok o oK oK ok o oK K ok o oK oK ok ok KoK ok ok oK ok ok ok ok ok ok ok /
hf_chiral_ring_rot(Ring,SizeData,Senses,NewRing) : -
hf_chiral_set_rot_aux(Ring,SizeData,Senses,First),

hf_chiral_ring rot_aux2(Ring,First,NewRing) .

Yoot

hf_chiral_ring_rot_aux2([HIT],H, [HIT]).
hf_chiral_ring_rot_aux2([H|T],First,NewRing) :-
append (T, [H] ,RRing),
hf_chiral_ring_rot_aux2(RRing,First,NewRing) .

/st stk sk ko ook ok ok sk sk sk sk sk sk sk sk sk sk ok sk ok okttt kst sk s koo ok ok sk sk sk sk sk sk sk sk sk sk sk ook sk sk sk sk ok ok okttt ok ok ook ok
gets the first element in the ring
Kok ok ok ok ok ok ok ok ok o ok ok ok sk ok ok ok ok ok ok o o ok ok ok ok sk sk sk ok ok ok ok o ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok o ok kK ok ok ok /
hf_chiral_set_rot_aux(Ring,SizeData,Senses,First):-
findall(Size, (member ([A,_,Size],SizeData),

memberchk (A,Ring)) ,Sizesl),
delete_duplicates(Sizes1,Sizes),
maximum(Sizes,Size),
findall (CA,member ([CA,_,Size] ,SizeData) ,Potentials),
hf_chiral_set_rot_aux_auxl(Potentials,SizeData,Bs),

hf_chiral_set_rot_aux_aux2(Bs,Potentials,Size,SizeData,Ring,
Senses, [First|_]).

/ot ok ks ok koo ok ok sk sk sk sk sk sk sk sk sk sk ok ok ok okokok ok ok ok ook sk sk sk sk sk sk sk sk sk sk sk sk ook sk sk sk sk ok ok okokokok ok ok ook ok
gets the number of branches off of each potential first CA

Kok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o o ok ok ok sk ok ok ok ok ok ok ok o ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok Kk ok ok ok /
hf_chiral_set_rot_aux_aux1([],_,[]).
hf_chiral_set_rot_aux_aux1([H|T],SizeData, [Bs|In]):-
findall(B,member([H,B,_],SizeData),ListBs),

length(ListBs,Bs),

hf_chiral_set_rot_aux_auxl(T,SizeData,In).

/3K sk sk ok ok ok o o o ok ok ok sk sk sk ok ok ok ok o o o ok ok ok sk sk sk sk ok ok o o o ok ok ok sk sk sk sk sk ok ok o o o sk sk ok sk ok ok o o o ok ok ok sk ok sk ok ok ok
Depending on the number of branches gets correction
stttk stk ok ok ook ok ok sk sk sk sk sk sk sk sk sk sk ook okt ks sk s ko ok ok o sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk ok okttt ok ko skokokokok /
hf_chiral_set_rot_aux_aux2(Bs,Pots,Size,SizeData,Ring,Senses,NewPots) :-
%for Pots w/ 1 and 2Bs
memberchk(2,Bs),
memberchk(1,Bs),
findall(CA, (member (CA,Pots),
findall (X,member ([CA,_,X],SizeData),[_])),CAls),
difference(Pots,CAls,CA2s),
hf_chiral_set_rot_aux_aux2([2],CA2s,Size,Ring,Senses,NewPots).
hf_chiral_set_rot_aux_aux2(Bs,Pots,Size,SizeData,_,_,NewPots):-
%for Pots w/ 2Bs
memberchk(2,Bs),
findall (X, (member (CA,Pots),
member ([CA,_,X],SizeData),
X \= Size),Sizes),
maximum(Sizes,BSize),
member ([First,_,BSize],SizeData),
member ([First,_,Size] ,SizeData),
difference(Pots, [First] ,Rest),
NewPots = [First|Rest].
hf_chiral_set_rot_aux_aux2(_,Pots,_,_,Ring,S1,NewPots) :-%for Pots w/ 1B
findall(Sense, (member (CA,Pots),
memberchk([Sense,CA],S1)),Senses),
findall(1,member(1,Senses),ListOnes),
length(ListOnes,NumOnes),
findall(2,member(2,Senses),ListTwos),
length(ListTwos,NumTwos),
hf_chiral_set_rot_aux_aux2_aux(NumOnes,NumTwos,Pots,Ring,S1,NewPots) .

/3K 3Kk sk ok ok sk ok sk ok sk o ok ok K ok ok 3 ok K ok sk ok ok 3 ok 3k ok sk 3 ok 3 ok K ok ok 3 ok 3 ok sk 3 ok 3 ok K sk ok s ok ok 3 ok ok sk K ok ok ok ok ok ok oK
Gets Potentials based on number of senses in a certain direction

299

300

-more 1ls than 2s, get the 1s
-more 2s than 1s, get the 2s
-same number of 1s and 2s, filter
stttk ko ok ook ok ok ok sk sk sk sk sk sk sk sk sk ok ok okttt ok ok ook ok sk sk sk sk sk sk sk sk sk sk ok ok ok skok sk sk ok ookttt kokkokokokok /
hf_chiral_set_rot_aux_aux2_aux(NumOnes,NumTwos,Pots,Ring,Senses,NewPots) : -
NumOnes > NumTwos,
findall(CA, (member (CA,Pots),

memberchk ([1,CA],Senses)) ,PPots),
hf_chiral_set_rot_aux_aux2_ringl(PPots,Ring,PotRings),
hf_chiral_set_rot_aux_aux2_ring2(PotRings,Senses,PotRings2),
hf_chiral_set_rot_aux_aux2_ring3(PotRings2,NewPots).

hf_chiral_set_rot_aux_aux2_aux(NumOnes,NumTwos,Pots,_,Senses,NewPots) : -
NumOnes < NumTwos,
findall(CA, (member (CA,Pots),

memberchk([2,CA],Senses)) ,NewPots) .
hf_chiral_set_rot_aux_aux2_aux(Num,Num,Pots,Ring,Senses,NewPots) :-
findall(CA, (member (CA,Pots),

member ([1,CA],Senses)) ,PPots),
hf_chiral_set_rot_aux_aux2_ringl (PPots,Ring,PotRings),
hf_chiral_set_rot_aux_aux2_ring2(PotRings,Senses,PotRings2),
hf_chiral_set_rot_aux_aux2_ring3(PotRings2,NewPots).

[KKK K ok Kok ook ok ok ok o ok ok oK ok ok ok o ok oK ok o ok ok ok o ok ok ok o ok o ok ok o ok ok ok ok ok ok ok K ok ok ok K ok ok ok K ok ok ok K ok
take all of the potentials and get the potential rings from them

Kok Kok oK ok Kok oK ok oK oK oK ok Kok oK ok ook oK ok ook ok ok ook oK ok ook oK ok ook oK ok ok kK oK ok Kok oK ok Kok oK ok Kok Kok Kok /
hf_chiral_set_rot_aux_aux2_ringl([],_,[]).
hf_chiral_set_rot_aux_aux2_ringl ([H|T],Ring, [NewRing|PotRings]) :-
hf_chiral_ring_rot_aux2(Ring,H,NewRing),
hf_chiral_set_rot_aux_aux2_ringl(T,Ring,PotRings).

[Kok Kk ok ok ok Kok ok ok ok ok ok Kok ook ok Kok oK ok K ok ok ok Kok ok ok ok oK ok Kok ok ok Kok ok Kok ok Kok sk ok Kok oK ok Kok ok o K o
take all of the potential rings
- if 6 and senses are one of 5 cases, throw away ring (ghetto way of doing)
- else keep pot rings
Kok Kok oK ok oK oK K ok oK oK oK ok ook oK ok ook oK ok o ok oK ok ook oK ok ook oK ok ook oK ok ok oK KoK ok Kok ok ok Kok oK ok Kok Kok koK
hf_chiral_set_rot_aux_aux2_ring2([],_,[]).
hf_chiral_set_rot_aux_aux2_ring2([Ring|Rest],Senses,NewPots):-
length(Ring,6),
findall (S, (member (A,Ring),

member ([S,A] ,Senses)) ,RSenses),
hf_chiral_set_rot_aux_aux2_ring2_aux(RSenses),
hf_chiral_set_rot_aux_aux2_ring2(Rest,Senses,NewPots).
hf_chiral_set_rot_aux_aux2_ring2([Ring|Rest],Senses, [Ring|NewPots]) :-

hf_chiral_set_rot_aux_aux2_ring2(Rest,Senses,NewPots).

hf_chiral_set_rot_aux_aux2_ring2_aux([1,2,2,1,2,1]).
hf_chiral_set_rot_aux_aux2_ring2_aux([1,2,2,1,1,2]).
hf_chiral_set_rot_aux_aux2_ring2_aux([1,2,1,1,2,2]).
hf_chiral_set_rot_aux_aux2_ring2_aux([1,1,2,2,2,1]).

hf_chiral_set_rot_aux_aux2_ring2_aux([1,1,2,1,2,0]).

[/ 3k sk sk ok ok sk ok ok ok ok sk sk sksksk sk ok ok s ok ok ok sk sk sk sk sk sk sk ok sk ok ko ok sk sk sk sk sk sk sk ok sk ok koksksk sk sk sk ok s ok ok ok sk sk sk sk sk sk ok
all else being equal, take the first atom of the first pot ring and
that’s the new pot

sk sk sk sk ok ok ok ok ok o o ok ok sk sk sk sk ok ok ok ok o ks ok sk sk sk sk sk sk sk sk o ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk o sk ok sk sk sk sk sk sk ok ok /
hf_chiral_set_rot_aux_aux2_ring3([[H|_1|_], [H]).

/5K ok ok sk ok o ok sk ok ok ok ok sk ok o o ok sk ok ok sk ok sk sk ok ok ok sk sk o o ok sk sk ok ok sk sk ok o ok sk sk ok sk sk ok ok sk ok ok ok ok sk ok ok ok ok
hf_chiral_subsize

returns [[CA,SubAtom,Size],...]

sk sk sk sk ok ok ok ok o o o ok ok ok sk sk sk sk ok ok o o o o ok ok ok sk sk sk sk ok ok ok o o o ok ok ok ok sk sk sk sk ok ok o o sk ok sk sk sk sk ok ok o ok ok ok ok ok sk ok ok ok /
hf_chiral_subsize(Set,Ring,SizeData):-
hf_chiral_atom_subs(Set,Ring,Subs),
hf_chiral_subsize_aux(Subs,Ring,SizeData).

hf_chiral_subsize_aux([],_,[]).
hf_chiral_subsize_aux([[SA-CA] |Rest],Ring, [[CA,SA,Size] |SizeDatal) :-
reactophore_fact(Sub,_, [CA],_,_),

reactophore_fact (ExSub,_,ExAtoms,_,_),

memberchk (SA,ExAtoms),

hf_get_sub_size(Sub, [ExSub], [Size]),
hf_chiral_subsize_aux(Rest,Ring,SizeData).

/KK ok ok ok ok ok o o ok ok ok sk ok ok ok ok ok ok ok o o ok ok sk ok ok ok ok ok ok ok ok o ok ok sk ok ok ok ok ok ok ok o o ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok
Returns the External Subs off of each CA

[[Sub1-CA,Sub2-CA],...] or (gets large one first - need this part?)
[[Sub1-CAJ,...]

stttk st sk ok oo ook ok sk sk sk sk sk sk sk sk sk sk ok ok ok kot ok sk s ko ko ok o sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk ok ookttt ok ko skokokokok /
hf_chiral_atom_subs([],_,[1).
hf_chiral_atom_subs([CA|T],Ring, [[A1-CA] |ExSubs]) :-
reactophore_fact(_,_, [CA],_,Atoms),

flatten(Atoms,FAtoms),

difference(Ring, [CA] ,RestRAtoms),

difference(FAtoms,RestRAtoms, [A1]),
hf_chiral_atom_subs(T,Ring,ExSubs) .
hf_chiral_atom_subs([CA|T],Ring, [[A1-CA], [A2-CA] |ExSubs]) : -
reactophore_fact (CASub, _, [CA],_,Atoms),

301

302

flatten(Atoms,FAtoms),

difference(Ring, [CA] ,RestRAtoms),

difference(FAtoms,RestRAtoms, [A1,A2]),
reactophore_fact(Subl,_, [A1],_,),

reactophore_fact(Sub2,_, [A2],_,_),

hf_get_sub_size(CASub, [Subl,Sub2], [Sizel,Size2]),

(Sizel > Size2 -> Ex1 = Al, Ex2 = A2

; Ex1 = A2, Ex2 = Al

),

hf_chiral_atom_subs(T,Ring,ExSubs) .

hf_chiral_atom_subs([_|T],Ring,ExSubs) :-%this should never fire

hf_chiral_atom_subs(T,Ring,ExSubs) .

C.5 HF_DATA.PRO

/xxkckkkckokkkokkkk DYNAMIC AREA skkskskokskskokskskoskoskskok /
:— dynamic
arom_ring_side/2,
hf_ba_breg/2,
hf_ba_inn/2,
hf_ba_mid/2,
hf_ba_out/2,
hf_ba_reg/2,
hf_branch_acetylenic/2,
hf_branch_ethylenic/2,
hf_branch_methyl/2,
hf_bridge/2,
hf_bridgedb/2,
hf_chiral_val/2,
hf_cisl_resonance/2,
hf_erc/2,
hf_near_methylparam/2,
hf_ortho/2,
hf_perri_param/2,
hf_rc/2,

hf_relsz/2,

hf_ring/2,
hf_ring_db/2,

hf_ring exo/2,

hf_ring side/2,
hf_ring_side3/2,
hf_sa/2,

hf_steric_acetylenic/2,
hf_steric_ethylenic/2,
hf_steric_ethylenic_2/2,
hf_steric_methyl/2,
hf_resonance/2,
resonance?2/2,
resonance3/2,
ring_vertices_1lring/2,
ring_vertices_2ring/2,
ring_vertices_3ring/2,
ring_vertices_4ring/2,
hf_dipole/2,
hf_branch_oethylenic/2,
res_contrib/2,
hf_steric_oethylenic/2,
hf_ring_exo_oethylenic/2,
hf_steric_ring/2,
hf_ring deform/2,
hf_contrib/2,
hf_halo/2,
hf_connect_co2h/2,
hf_halo_xi/2,
hf_halo_ethy/2,
hf_halo_ethyl/2,
hf_halo_ethy2/2,
hf_halo_ethy3/2.

/xkskokskokskokkkkkokk DYNAMIC AREA skokskskokskokskokskokkokk /

303

/**>I<*****************************

This file is for storing the parameters that the HF code uses

304

The first part came from hf.pro

The second part came from hf_ring2.pro
The third part came from other_arom.pro
The fourth part is for oxygen cmpds

Created 12/2/2003 by Tad Whiteside at the behest of Raj because he

was bitching that predicates kept getting redefined elsewhere
sk sk sk sk ok ok ok ok ok o ok ok ok sk sk sk sk sk ok ok sk o ok sk sk sk sk sk sk sk sk sk ok o ok sk sk sk sk sk sk sk sk sk sk sk sksk sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk sk ko okok /

/**** Data Area ***/
%QQ##

hf_contrib(methyl, -74.87). Ymethane
hf_contrib(ethylenic,52.47). Yethane
hf_contrib(acetylenic,226.73). %acetylene

hf_contrib(oh,-241.826). Ywater
hf_contrib(co2h,-352.3).

hf_contrib(oeth,-168.37). %formaldehyde
hf_contrib([methyl-oeth],-21.9586).
hf_contrib([methyl-oh],-21.9586).

hf_contrib(nr2,-45.94). %ammonia
hf_contrib(cn,135.14).

hf_contrib([methyl-nr2],-21.9586) .

hf_contrib(f-methyl,-202.183). % [-204.555] [2004,9,19]
hf_contrib(f-aromatic,-207.42). % [-207.395] [2004,9,19]
hf_contrib(f-ethylenic,-196.2). % [-197.427] [2004,9,19]
hf_contrib(f-acetylenic,-200) .

hf_contrib(cl-methyl,-48.072). % [-48.0984] [2004,9,19]
hf_contrib(cl-aromatic,-38.2942). % [-38.2958] [2004,9,19]
hf_contrib(cl-ethylenic,-39.2465). % [-39.1738] [2004,9,19]
hf_contrib(cl-acetylenic,-40).

hf_contrib(br-methyl,5.59636). % [5.60728] [2004,9,19]
hf_contrib(br-aromatic,18.8797). % [18.896] [2004,9,19]
hf_contrib(br-ethylenic,16.737). % [16.7309] [2004,9,19]
hf_contrib(br-acetylenic,10).

305

hf_contrib(i-methyl,58.8433). 9 [58.8394] [2004,9,19]
hf_contrib(i-aromatic,76.0191). % [76.0828] [2004,9,19]
hf_contrib(i-ethylenic,66.4468). 7 [66.4041] [2004,9,19]
hf_contrib(i-acetylenic,60).

hf_contrib(pr2,22.89). Yphosphine

hf_contrib(sh,-20.50). %hydrogen sulfide

hf_branch_ethylenic(pp,9.99428). % [9.92152] [2004,4,29]

hf_branch_acetylenic(a,-1.556515). % [-1.19295] [2004,4,29]
hf_branch_acetylenic(b,6.0364). % [6.12079] [2004,4,29]
hf_branch_acetylenic(endo,55.6573). ¥ [565.9945] 2004/3/9

hf_ba_reg(aromatic,10.756). % [10.7595] 2004/3/9

hf_ba_breg(aromatic,15.5441). % [15.5647] 2004/3/9
hf_ba_inn(aromatic,32.8096). % [32.8169] 2004/3/9
hf_ba_out(aromatic,17.4823). % [17.4933] 2004/3/9
hf_ba_mid(aromatic,43.3601). % [43.3502] 2004/3/9

hf_steric_methyl(0,1).

hf_steric_methyl(1,7.16569). % [7.24905] 2004/3/9
hf_steric_methyl(2,0.0903988). 7 [0.218187] 2004/3/9
hf_steric_methyl(3,16.9948). ¥ [16.9831] 2004/3/9
hf_steric_methyl(4,107.251). % [107.244] 2004/3/9

hf_steric_ethylenic(pp,10.6416). % [7.02299] [2004,4,29]
hf_steric_ethylenic_2(pp,3.6846). % [3.43581] [2004,4,29]

hf_steric_acetylenic(ace,-7.38874). ¥ [-27.5209] [2004,4,29]
hf_sa(aromatic,-11.6831). % [-11.6591] 2004/3/9
hf_near_methylparam(4,-5.66162) :- !. % [-5.66681] 2004/3/9

hf_ortho(inner,2.54594). 7 [2.5318] 2004/3/9
hf_ortho(outer,-1.47037). % [-1.47867] 2004/3/9
hf_ortho(inner_outer_size,66.7918). 7 [66.8904] 2004/3/9
hf_ortho(outer-methyl,1).

hf_ortho(inner-methyl,1).

hf_ortho(outer-c1,0.703). % [0.700983] [2004,9,19]

306

hf_ortho(inner-cl1,2.48292). % [2.48316] [2004,9,19]
hf_ortho(outer-f,-8.84239). % [-8.78998] [2004,9,19]
hf_ortho(outer-aromaticf,7.99081). % [8.03933] [2004,9,19]

hf_ortho(inner-f,8.85696). ¥ [8.8729] [2004,9,19]
hf_ortho(inner—-aromaticf,26.0387). % [25.8974] [2004,9,19]
hf_ortho(inner-fmethyl,-3.0034). % [-3.0265] [2004,9,19]
hf_ortho(inner-methylf3,35.9336). % [35.8597] [2004,9,19]
hf_ortho(inner-clmethyl,-1.26146). % [-1.26266] [2004,9,19]
hf_ortho(inner-clethylenic,3.66468). ¥ [3.66763] [2004,8,11]
hf_ortho(inner-faromaticf,46.0414). Y% [46.0311] [2004,8,11]
hf_ortho(multf,22.2226). % [22.1987] [2004,8,11]
hf_ortho(inner-clf,-0.037185). ¥ [-0.0897409] [2004,9,19]
hf_ortho(inner-fi,15.1321). % [15.1333] [2004,9,19]

hf_perri_param(aromatic,176.806). % [176.624] 2004/3/9

hf_ring(3,113.535). % [113.404] 2004/3/9
hf_ring(4,103.995). % [103.836] 2004/3/9
hf_ring(5,23.4315). % [23.3011] 2004/3/9
hf_ring(mp_b,1.00071). % [1.00119] 2004/3/9
hf_ring(mp_d,52.3).

hf_ring(ed_a,2876.18). 7 [2752.46] 2004/3/9
hf_ring(ed_b,0.366596). % [0.362327] 2004/3/9
hf_ring(point3,16.7037). % [16.8433] 2004/3/9
hf_ring(point,7.37964). % [7.51005] 2004/3/9

hf_ring db(3,131.844). 7 [131.845] [2004,5,9]

hf_ring db(4,42.035). 7 [42.0342] [2004,5,9]

hf_ring db(5,24.4884). 7 [24.3075] [2004,5,9]

hf_ring db(6,22.5003). 7% [22.5001] [2004,5,9]

hf_ring db(7,21.1901). 7% [21.0001] [2004,5,9]
hf_ring_db(8-cis,21.827). ¥ [21.827] [2004,5,9]
hf_ring db(8-trans,68.0094). 7% [68.0093] [2004,5,9]
hf_ring_db(other-cis,14.9887). ¥ [14.9891] [2004,5,9]
hf_ring_db(other-trans,2.82504). ¥ [2.82333] [2004,5,9]

hf_ring db(tworing,17.1352). % [17.2055] 2004/3/9

hf_ring_exo(3,77.2743). % [77.2717] [2004,5,9]
hf_ring exo(4,25.0011). 7% [24.9998] [2004,5,9]
hf_ring exo(5,22.7663). I [22.8592] [2004,5,9]
hf_ring_exo0(6,23.808). % [23.8077] [2004,5,9]

307

hf_ring_ exo(other,19.601).
hf_ring_exo(ortho,3.16542). % [3.07006] [2004,5,9]
hf_ring_exo(ortho-3,-7.25587). % [-7.25444] [2004,5,9]

hf_ring_exo(ortho-_,0).
hf_ring exo(ringdeform,19.2304). 7% [19.2273] [2004,5,9]

hf_ring deform(5,36.2641). % [36.5326] [2004,5,9]

hf_ring deform(6,48.187). % [48.1863] [2004,5,9]

resonance2(roth,22.2591). % [22.7139] 2004/3/9

resonance3(pp,12.4709). ¥ [13.0868] 2004/3/9

arom_ring_side(3,89.2055) :- !. % [89.2781] 2004/3/9
arom_ring_side(4,30.5333) :- !. % [30.6777] 2004/3/9
arom_ring_side(5,-3.99999) :- !. % [-3.93155] 2004/3/9
arom_ring_side(6,3.95571) :- !'. 9 [3.96306] 2004/3/9
arom_ring_side(7,13.8824) :- !. 9 [14.0146] 2004/2/6

arom_ring_side(other,4.56).
arom_ring_side(maromA,-0.019307). % [-0.0340457] 2004/3/9
arom_ring_side(maromB,1.14471). 7 [1.23226] 2004/3/9
arom_ring_side(db,-23.6863). I [-22.3382] 2004/2/6
arom_ring_side(db5,45.5179). Y [46.5221] 2004/2/6

hf_rc(ortho_twist,93.8485). ¥ [93.7319] 2004/3/9
hf_rc(ortho,0).

hf_rc(meta,31.8791). 7 [32.0315] 2004/3/9
hf_rc(para,65.0615). % [65.1102] 2004/3/9
hf_rc(pp,-10.6374). % [-10.6337] 2004/3/9
hf_rc(6,-9.67191). % [-9.89086] 2004/3/9

%%hf_chiral_mult(pp,1).

hf_chiral_val(chiral,5.51326). % [5.53842] 2004/3/9
hf_chiral_val(position,5.5).

hf_chiral_val(no2,4).

hf_chiral_val(oh-methyl,15).
hf_chiral_val(chiral5trans,26.0148). Y% [25.224] 2004/3/9
hf_chiral_val(chiral6cis,18.3742). % [16.3528] [2004,9,19]

hf_homarom(pp,-18.828) .

hf_erc(5,7.27889).
hf_erc(6,1.30906) .
hf_erc(7,11.4534).
hf_erc(8,0.548129).

%hf_erc(a,5.54).
%hf_erc(b,-66.3).
%hf_erc(c,206.58).

%%hf_cisl_resonance(s,-0.381034).
hf_cisl_resonance(methyl,-6.80129).
hf_cisl_resonance(f,-11.6107).

hf_multi_ref(2,1.33823).
hf _multi_ref(3,1.58636).
hf_multi_ref(4,1.53321).
hf _multi_ref(const,0.1).

hf_sigma_factor(0,1) . %% 66.9087).
hf_sigma_factor(1,0.57943).
hf_sigma_factor(2,0.395021).
hf_sigma_factor(3,0.654941).

hf_multi_charge(2,103.06).
hf_multi_charge(3,180.033).
hf_multi_charge(4,170.106).

hf_bridge(556,16.8015) .
hf_bridge(666,38.6746) .
hf_bridge(567,28.9734) .

hf_bridge(578,-42.9828) .

hf_bridge(668,-7.6174).

hf_bridge(778,-17.5677) .
hf_bridge(888,-13.7023).
hf_bridge(677,-8.70504) .

hf_bridge(5553,9.80447) .
hf_bridge(adamantane,17.6744) .

308

% [8.56665] 2004/3/9
% [1.09055] 2004/3/9
% [11.131] 2004/3/9
% [0.207281] 2004/3/9

% [-0.469702] 2004/3/9
% [-4.92593] [2004,4,29]
% [-11.5083] [2004,8,11]

% [1.34782] 2002/1/9
% [1.58609] 2001/11/29
% [1.53321] 2001/11/29

% [61.9181] 2001/11/20
% [0.627737]1 2002/1/9

% [0.401357] 2002/1/9

% [0.685741] 2001/11/29

% [115.557] 2002/1/9
% [179.3] 2001/11/29
% [169.546] 2001/11/29

% [15.9033] 2004/3/9
% [38.677] 2004/3/9
% [28.8302] 2004/3/9
% [-42.8138] 2004/3/9
% [-7.4454] 2004/3/9
% [-17.4007] 2004/3/9
% [-13.5211] 2004/3/9
% [-8.78653] 2004/3/9

% [10.5532] 2004/3/9
% [17.8551] 2004/3/9

309

hf_bridge(protoadamantane,17.1183). 7 [17.5064] 2004/3/9
hf_bridge(tetrane,52.8163). % [53.5999] 2004/3/9
hf_bridge(cubane,3.78306). % [5.08537] 2004/3/9
hf_bridge(bullvalene,-73.5292). % [-73.5766] 2004/3/9
hf_bridge(bridgeane,34.777). % [35.7171] 2004/3/9
hf_bridge(diadamantane,26.3004). % [26.7009] 2004/3/9
hf_bridge(hatane,44.2785). 7 [45.0771] 2004/3/9
hf_bridge (housane,-91.8675). % [199.525] 2004/3/9
hf_bridge(a33bridge,41.0045). % [41.6845] 2004/3/9
hf_bridge(azulene,-132.254). 7% [-132.254] [2004,5,17]

hf_bridgedb(5,28.0485). % [29.0434] 2004/3/9
hf_bridgedb(6,2.8587). ¥ [2.95356] 2004/3/9
hf_bridgedb(b6,-36.6864). % [-36.8256] 2004/3/9
hf_bridgedb(7,30).

ring_vertices_1ring(0,0).
ring_vertices_1ring(1,-0.777639). % [-0.631593] 2004/3/9
ring_vertices_1ring(2,5.0927). % [5.28791] 2004/3/9
ring_vertices_1ring(cl,2.73934). % [2.76993] [2004,9,19]
ring_vertices_1ring(br,-2.79614). 7 [-2.7894] [2004,9,19]
ring_vertices_1lring(i,0). % [7] [2004,7,22]
ring_vertices_1ring(f,-7.03189). ¥ [-4.19364] [2004,9,19]
ring_vertices_1ring(ff,27.73). % [22.0679] [2004,9,19]
ring_vertices_1ring(f£f3,34.4462). % [28.8012] [2004,9,19]

ring_vertices_2ring(0,0).

ring_vertices_2ring(1,6.09436). ¥ [6.16001] 2004/3/9
ring_vertices_2ring(bridge,-2.30254). 7% [-2.01174] 2004/3/9
ring_vertices_2ring(bridge2,27.0211). % [27.0195] 2004/1/29
ring_vertices_2ring(methyl,1).
ring_vertices_2ring(f,0.0701933). % [0.130209] [2004,9,19]

ring_vertices_3ring(0,0).

ring_vertices_3ring(1,-4.22699). 7 [-3.41371] 2004/3/9
ring_vertices_3ring(ad-0,0).
ring_vertices_3ring(ad-1,-9.58532). ¥ [-9.5412] 2004/3/9
ring_vertices_3ring(spoke,-5.60694). 9 [-5.71879] 2004/3/9
ring_vertices_3ring(flat,-7.07715). % [-7.74242] 2004/3/9

ring_vertices_4ring(ad-0,0).
ring_vertices_4ring(ad-1,8.28913). 7 [8.34161] 2004/3/9

310

hf_ring_side(side,l.01958). % [1.10165] 2004/3/9
hf_ring_side(sideB,—l.10748). % [-0.795676] 2004/3/9
hf_ring_side(side6,-0.243663). % [-0.208041] 2004/3/9

hf_ring side3(3,11.0524). 7% [11.1489] 2004/3/9
hf_ring_side3(4,3.95313). % [4.05519] 2004/3/9
hf_ring_side3(5,0.492026). 7 [0.585548] 2004/3/9
hf_ring_side3(6,1.81556). % [1.8297] 2004/3/9
hf_ring_side3(7,-3.65254). 7 [-3.57995] 2004/3/9
hf_ring_side3(8,-7.41585). 7 [-7.34033] 2004/3/9

hf_ring side3(a,-48.1781).
hf_ring_side3(b,75.6505).

oa_contrib(part,13.3836). % [13.3833] 2003/7/22
brg_contrib(part,18.5708). % [18.8396] 2003/7/22
buried_contrib(part,2.72901). % [16.0499] 2003/7/22
bent_contrib(part,-53.7653). % [-51.9023] 2003/7/22
res_contrib(part,-15.2842). % [-15.6912] 2003/7/22
helical(part,33).

hf_connect_co2h(methyl,-25).
hf_connect_co2h(ethylenic,-50).
hf_connect_co2h(aromatic,-75).
hf_connect_co2h(_,0).

hf_connect_oh(methyl,63.6184). ¥ [63.8688] 2003/12/11
hf_connect_oh(oh,173.771). ¥ [63.8688] 2003/12/11
hf_connect_oh(ethylenic,41.734). 7 [41.734] 2004/1/15
hf_connect_oh(_,63.6184). Y% [63.8688] 2003/12/11

hf_branch_methyl(a,-4.23412). % [-4.23698] 2004/3/9
hf_branch_methyl(b,35.5284). % [35.524] 2004/3/9
hf_branch_methyl (methyl-3,0) .

hf_branch_methyl (methyl-4,0) .
hf_branch_methyl(oh-3,-12.8297). % [10] 2003/12/11
hf_branch_methyl(oh-4,-16.1923). 7% [10] 2003/12/11
hf_branch_oethylenic(pp,-8.57747). % [-7.36389] [2004,4,29]

hf_branch_nethylenic(pp,8.68587). % [8.68549] 2003/12/1

311

hf_branch_sethylenic(pp,8.68587) .

>

, [8.68549] 2003/12/1

==

hf_steric_oethylenic(pp,13.2117). % [7.62951] [2004,4,29]

>~

hf_steric_nethylenic(pp,57.9297).
hf_steric_sethylenic(pp,57.9297).

» [67.9195] 2003/12/1
» [567.9195] 2003/12/1

==

hf_resonance(aromatic,21.7091). % [21.7496] 2004/3/9
hf_resonance(acetylenic,0). % [33.8477] 2004/3/9
hf_resonance(ethylenic,64.2616). ¥ [65.1357] [2004,4,29]
hf_resonance(oethylenic,51.8327). Y [15.6442] [2004,4,29]
hf_resonance(nethylenic,31.4051). 7 [31.4231] 2003/12/1
hf_resonance(sethylenic,31.4051). 7% [31.4231] 2003/12/1
hf_resonance(_,-40025).

hf_ring_exo_oethylenic(3,60.6425). % [60.6419] [2004,5,9]
hf_ring_exo_oethylenic(4,-26.8695). ¥ [-26.8666] [2004,5,9]
hf_ring_exo_oethylenic(5,-18.2225). % [-18.2208] [2004,5,9]
hf_ring_exo_oethylenic(6,-8.96039). ¥ [-8.96025] [2004,5,9]
hf_ring_exo_oethylenic(7,-27.1338). % [-26.8482] [2004,5,9]
hf_ring_exo_oethylenic(8,-43.8089). ¥ [-43.8082] [2004,5,9]
hf_ring_exo_oethylenic(9,-39.3395). ¥ [-39.3387] [2004,5,9]
hf_ring_exo_oethylenic(10,-46.2684). ¥ [-46.2677] [2004,5,9]
hf_ring_exo_oethylenic(11,-44.9439). % [-44.9432] [2004,5,9]
hf_ring_exo_oethylenic(12,-45.707). % [-45.7063] [2004,5,9]
hf_ring_exo_oethylenic(15,-12.5441). % [0] 2004/1/21
hf_ring_exo_oethylenic(17,-37.4991). % [0] 2004/1/21

hf_exo_sigma(pp,6) .
hf_hbonding(pp,-11.7767). % [-10.8665] 2004/2/6
hf_dipole(oethylenic,24.28). % [12.8631] [2004,4,29]

hf_steric_ring(pp,0.524269). 7 [0.524232] [2004,5,9]
hf_steric_ring(3,21.9655). 7 [21.9624] [2004,5,9]
hf_steric_ring(4,13.41). %half way between 3 and 5
hf_steric_ring(5,6.54219). ¥, [6.67269] [2004,5,9]
hf_steric_ring(6,12.1671). % [12.1673] [2004,5,9]
hf_steric_ring(N,Val):-

number (N) ,

N > 6,

hf_steric_ring(6,Val).

312

/ *kkk

hf_relsz(3,0.869486) :- !'. % [0.192009] [2004,4,29]
hf_relsz(4,0.25) :- !.

hf_relsz(5,0.294506) :- !. % [0.13785] [2004,4,29]
hf_relsz(6,0.815003) :- !'. % [0.225018] [2004,4,29]

hf_relsz(7,0.32) :- !.
hf_relsz(_,0) :- I.
K% /

%»hf_halo(f,0.580624). % [0.207018] [2004,7,30]
hf_halo(f2temp,-19.4956). ¥ [-19.7962] [2004,8,11]
hf_halo(f£332temp,15.1096). % [14.7067] [2004,8,11]
hf_halo(£f310temp,-34.7539). % [-34.7853] [2004,8,11]
hf_halo(f310ringtemp,-46.2705). % [-34.7853] [2004,8,11]
hf_halo(f3ethytemp,16.4884). ¥ [15.8181] [2004,8,11]
hf_halo(f3aromtemp,-4.95713). % [-5.24736] [2004,8,11]
hf_halo(f2aromtemp,-22.3653). I [-22.8936] [2004,8,11]
hf_halo(fethytemp,13.9461). 7 [13.3556] [2004,8,11]

hf_halo(f-a,-6.4444). 9 [-7.10747] [2004,9,19]
hf_halo(f-b,-4.35932). % [0.27118] [2004,9,19]
hf_halo(cl-a,7.47735). % [7.49664] [2004,9,19]
hf_halo(cl-b,-5.07362). % [-5.1401] [2004,9,19]
hf_halo(br-a,0.379336). % [0.509887] [2004,9,19]
hf_halo(br-b,12.4337). ¥ [11.9312] [2004,9,19]
hf_halo(i-a,24.5014). % [24.4808] [2004,9,19]
hf_halo(i-b,-42.8356). ¥ [-42.7374] [2004,9,19]

hf_halo(cl-f,4.24612). % [4.03925] [2004,9,19]
hf_halo(br-cl1,5.3726). % [5.44912] [2004,9,19]
hf_halo(br-f,1.27024). % [1.1412] [2004,9,19]
hf_halo(f-i,8.37161). % [8.15535] [2004,9,19]
hf_halo(cl-i,0).
hf_halo(br-i,0).

hf_halo(£f-2,2.20834). % [-0.160563] [2004,8,27]
hf_halo(f-3,-6.18326). ¥ [-14.1608] [2004,8,27]
hf_halo(f-4,-9.60171). % [-17.8236] [2004,8,27]
hf_halo(cl-2,13.163). ¥ [11.7433] [2004,8,27]

hf_halo(cl-3,17.1716). % [11.7433] [2004,8,27]
hf_halo(cl-4,29.7412). % [11.7433] [2004,8,27]
hf_halo(br-2,12.6707). % [13.4419] [2004,8,27]
hf_halo(br-3,23.296). % [13.4419] [2004,8,27]

hf_halo(br-4,22.7055). ¥ [13.4419] [2004,8,27]

hf_halo(i-2,14.9798).
hf_halo(i-3,32.5325).
hf_halo(i-4,60.3095).

hf_halo(ringendo,-24.6554) .
hf_halo(per-1,-21.746) .

hf_halo(per-2,-0.201669) .
hf_halo(per-3,36.2017) .

h
h

hf_halo_xi(_-0,0).
hf_halo_xi(f-1,-16.6814).
hf_halo_xi(cl-1,-1.7291).
hf_halo_xi(br-1,-5.73919).
hf_halo_xi(i-1,-2.65428).
hf_halo_xi(f-2,-15.7148).
hf_halo_xi(cl-2,-4.4341).
hf_halo_xi(br-2,-17.1457).
hf_halo_xi(i-2,0).
hf_halo_xi(clf-2,-13.5431).
hf_halo_xi(clf-3,27.0086).
hf_halo_xi(brf-3,-15.3896) .
hf_halo_xi(fi-3,-1.98018).
hf_halo_xi(f-3,-24.3379).
hf_halo_xi(cl-3,5.62038).
hf_halo_xi(br-3,0).
hf_halo_xi(i-3,0).

hf_halo_xi(f-1-f-1,-7).

hf_halo_xi(cl-1-c1-1,-2.70979).
hf_halo_xi(br-1-br-1,-6.58007).
hf_halo_xi(i-1-i-1,-6.19635).

hf_halo_xi(f-2-f-1,-32.449).

hf_halo_xi(f-f,-3.88949).
hf_halo_xi(cl-f,1.85674).
hf_halo_xi(br-f,-1.22865).
hf_halo_xi(f-i,-1.46654).
hf_halo_xi(cl-cl,1.5597).
hf_halo_xi(br-cl,15.1055).
hf_halo_xi(cl-i,-7).
hf_halo_xi(br-br,-7).
hf_halo_xi(br-i,-7).
hf_halo_xi(i-i,-7).

313

% [25.4632] [2004,8,27]
% [25.4632] [2004,8,27]
% [25.4632] [2004,8,27]

% [-25.0236] [2004,9,19]

[-22.0368] [2004,9,19]
% [-1.43299] [2004,9,19]
[34.442] [2004,9,19]

% [-14.3884] [2004,9,19]
% [-1.70757] [2004,9,19]
% [-5.74464] [2004,9,19]
% [-2.65441] [2004,9,19]
% [-17.0724] [2004,9,19]
% [-4.41394] [2004,9,19]
% [-16.6787] [2004,9,19]

% [-14.6977] [2004,9,19]
% [26.5684] [2004,9,19]

% [-16.5755] [2004,9,19]
% [-2.96178] [2004,9,19]
% [-25.2198] [2004,9,19]
% [5.66367] [2004,9,19]

% [-4.36917] [2004,9,7]
% [-6.55895] [2004,9,7]
% [-6.59742] [2004,9,7]

% [-6.24115] [2004,9,3]

% [-3.82327] [2004,9,19]
% [1.55895] [2004,9,19]
% [-0.996293] [2004,9,19]
% [-1.57734] [2004,9,19]
% [1.58067] [2004,9,19]
% [14.4354] [2004,9,19]

314

hf_halo_xi(f3-e,1.80871). 9% [0.613776] [2004,9,19]
hf_halo_xi(f3-arom,-16.5459). Y% [-17.4856] [2004,9,19]

hf_halo_ethyl(per-2,-54.6922). % [-50.1494] [2004,9,19]
hf_halo_ethyl(per-3,100).

hf_halo_ethyl(f-f,-1.43122). ¥ [2.31213] [2004,9,19]
hf_halo_ethyl(cl-cl,2.26072). % [2.17074] [2004,9,19]
hf_halo_ethyl (br-br,0) .

hf_halo_ethy1(i-i,0).

hf_halo_ethy1(cl-£,0).

hf_halo_ethyl (br-£,0).

hf_halo_ethyl(f-i,0).

hf_halo_ethyl(br-cl,0).

hf_halo_ethy1(cl-i,0).

hf_halo_ethyl(br-i,0).

hf_halo_ethy2(f-f,24.6575). % [23.6007] [2004,9,19]
hf_halo_ethy2(cl-cl,7.46628). 7 [7.37682] [2004,9,19]
hf_halo_ethy2(br-br,0) .

hf_halo_ethy2(i-1i,0).

hf_halo_ethy2(cl-£,0).

hf_halo_ethy2(br-£,0).

hf_halo_ethy2(f-1,0).

hf_halo_ethy2(br-cl1,0).

hf_halo_ethy2(cl-i,0).

hf_halo_ethy2(br-i,0).

hf_halo_ethy3(f-£,31.9963). % [33.015] [2004,9,12]
hf_halo_ethy3(cl-cl1,0).

hf_halo_ethy3(br-br,0) .

hf_halo_ethy3(i-1,0).

hf_halo_ethy3(cl-£,0).

hf_halo_ethy3(br-£,0).

hf_halo_ethy3(f-i,0).

hf_halo_ethy3(br-cl,0).

hf_halo_ethy3(cl-i,0).

hf_halo_ethy3(br-i,0) .

