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ABSTRACT 

This dissertation has focused on the design and implementation of a client-centered 

multimedia content adaptation system suitable for mobile environments comprising of resource-

constrained handheld devices or clients. The current proliferation of mobile computing devices 

and network technologies has created enormous opportunities for mobile device users to 

communicate with multimedia servers, using multimedia streams. One of the natural limitations 

of these handheld devices is that they are constrained by their battery power capacity, rendering 

and display capability, viewing time limit and in many situations, by the available network 

bandwidth connecting these devices to video data servers. Thus, it is a necessity to develop a 

mobile client-centered multimedia personalization system to fulfill clients’ request while 

satisfying client-side resource constraints. 

The primary contributions of this work are (1) the overall architecture of the client-

centered content adaptation system, (2) a data-driven multi-level hidden Markov model (HMM)-

based approach to perform both video segmentation and video indexing in a single pass, (3) the 

formulation and implementation of a Multiple-choice Multi-dimensional Knapsack Problem 

(MMKP)-based video personalization strategy, (4) the multiple-stage client request aggregation 

strategy that reduces the mean client-experienced latency without significant reduction in the 



 

average relevance of the delivered video content to the client’s request, and (5) a client-side 

energy-aware multimedia streaming strategy to efficiently utilize client’s battery power. The 

overall framework of the system is modular and extensible. New techniques can be incorporated 

into the individual subsystems without changing other parts and the overall architecture of the 

system. 
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CHAPTER 1 

INTRODUCTION 

 

This dissertation is a report of an investigation into the problem of mobile client-centered 

multimedia personalization in resource-constrained environments, specifically on the sub-

domain of video personalization. Each step taken in the development of a software system to 

support dynamic creation of personalized multimedia content is described.  

1.1 Background 

Recent developments in mobile computer networks and the advancement of mobile devices now 

allow for the usage of multimedia in mobile applications. The proliferation of the variety of 

devices such as cell phones, pocket PCs and PDAs has created the need to provide these devices 

with access to multimedia contents traditionally achieved on more powerful desktop machines. 

At the same time, applications aim more and more to provide personalized and adaptive content 

and services to better meet the client’s need [Brusilovsky, 1998], [Lemlouma, 2003]. It is a clear 

trend to mark off the transition from the one-size-fits-all parading to a one-to-one addressing of 

the client’s needs [Kopf, 2006], [Mohan, 1999].  The necessity to develop a client-centered 

application becomes even more important for a mobile user. Not only the still limited multimedia 

capacities of the mobile devices and network conditions but also the heterogeneity of these 

devices and the user’s mobility itself requires to be considered by the mobile multimedia 

application. 
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The heart of a multimedia personalization system is to include the mobile user/client in the 

center when designing the technological basis for bringing multimedia content to a mobile user. 

The multimedia personalization application remains in the background and requires minimum 

interactions from mobile users while the mobile user carries out a task such as watching the 

weather forecast of the destination the user is driving to. The capabilities of these mobile devices 

vary widely and are limited in terms of network connectivity, processor speed, display 

constraints, and decoding capabilities. It is a real challenge to implement a universally compliant 

system that fits various usage environments. 

1.2 Research Challenges of Mobile Multimedia Personalization 

In the design of the mobile client-centered multimedia personalization system, the different 

aspects of user influences need to be considered. Depending on the natures of an actual 

application, various characteristics of an individual client such as content preferences, the 

knowledge of a certain domain and special needs have to be obtained and exploited by the 

system. This information is termed as a user profile. The user profile influences the multimedia 

content and format the personalization system selects and delivers.  

A mobile client is constrained by his/her usage environment. A usage environment includes 

conditions of viewing time, location, bandwidth of connection, battery power capacity, screen 

resolution and CPU computing power. This information is termed as usage profile. The client 

environment influences as well the selection and presentation of multimedia information. 

Figure 1.1 illustrates the general process of dynamically generating personalized multimedia 

content. Inputs to the process are multimedia data, the associated metadata, as well as user 

profile and usage profile. The personalization engine consists of the two shadowed modules, i.e. 

context dependent multimedia selection and composition modules. On a request, the 
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personalization engine exploits the user and usage profiles and metadata to choose the most 

suitable multimedia data. The selected multimedia data best suits the client’s preferences and 

satisfies the constraints imposed by the client usage profile. 

 

 

 

 

Figure 1.1 Process of Client-centered Multimedia Personalization 

 

The necessity to reflect the user profile and usage profile in the process of multimedia 

personalization affects the entire process from multimedia data acquisition to the delivery of 

multimedia content to the mobile clients. The chain of stages of the multimedia personalization 

for mobile clients is shown in Figure 1.2. A similar diagram is presented by Boll [2005]. 

• Acquisition of Multimedia Data: In addition to capturing multimedia data, it is desirable 

that the environmental context metadata is associated with multimedia content at the time 
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in the process. In some situations, it is difficult to obtain or select an appropriate set of 

metadata information to be used at the stage of data acquisition. 

 

 

 

 
Figure 1.2  Stages of the Multimedia Personalization for Mobile Clients: Challenges and 

Opportunities 
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• Data Storage: The annotated multimedia data needs to be organized and placed in a way 

that it can reflect client interest/preference and the mobile device’s system parameters. 

Only then can a client request determined by user preference and usage environment 

parameters be efficiently and optimally answered [Bunningen, 2004]. The storage 

architecture of the annotated media data should be able to facilitate similarity comparison 

to rank candidate contents based on client preferences. 

• Retrieval: To fulfill a request from a client, both the user profile and usage profile have to 

be considered in multimedia retrieval. The retrieval needs to integrate the client’s 

preferences, device system and usage environment parameters in the process of choosing 

and compositing the multimedia response to the client’s request. This is a constrained 

optimization problem. The challenge of solving this problem is to find an optimal 

solution to the constrained optimization problem, and, in the meantime, the solution 

should be suitable in the context of multimedia personalization [Wei, ACM TOMCAAP]. 

Another challenge is that in order to rank candidate multimedia data, similarity between 

client preferences and candidate media data needs to be measured [Vasconcelos, 2005], 

[Yu, 98]. 

• Delivery: The client-centered multimedia content delivery needs to address the issues of 

data placement, caching and distribution of the multimedia data. When the clients are 

resource-constrained, multimedia streaming should utilize client resources efficiently. 

1.3 Existing Approaches 

Multimedia document personalization tools such as SMIL [Ayars, 2001] allow the specification 

of adaptive multimedia presentation by the so-called “presentation alternatives”. SMIL is a 

declarative XML-based language. The manual authoring of such context adaptive multimedia 
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documents are complex. Boll et al. [Boll, 1999] propose an approach that a multimedia 

document is enriched by the different presentation alternatives needed for the user contexts in 

which the document is to be viewed. However, this approach is limited by the presentation 

complexity. 

In the area of dynamic generation of personalized multimedia, early systems are mainly text-

focused (such as Amazon.com). Lemlouma et al. [Lemlouma, 2003] propose to use a multimedia 

processing architecture to adaptively transform multimedia content to meet the user context. The 

adaptation process chooses the version with the smallest data size as a response to the client 

request. No constrained optimization is utilized in the adaptation process to provide the user with 

a best solution under user preference and constraints. 

Kopf et al. [Kopf, 2006] propose a color adaptation algorithm for videos in order to make 

them suitable for various mobile devices. The color depth of a video is adapted to facilitate the 

playback of videos on mobile devices which support only a limited number of different colors. 

MobiCon [Lahti, 2005] integrates video clip capturing with context-aware, personalized clip 

annotation to support keyword-based video sharing for mobile phone clients. The video clip 

annotation process is semi-automatic, i.e., automatic annotation suggestions based on context 

data and manual annotation with user-specific keywords. The limitation of MobiCon is that 

expensive human interaction is needed to annotate video clips, and the generation of video 

content is only determined by client’s preference. No user usage profile parameter is considered 

in the process of personalization. 

Tseng et al. [Tseng, 2004] propose a video personalization system which integrates a 

VideoAnnEx video annotation sub-system [Lin, 2003], and a VideoSue video personalization 

[Tseng 2002] sub-system to dynamically generate and deliver personalized video summaries to 
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mobile clients. VideoAnnEx can only detect shot boundaries based on image histogram 

difference, and indexing is done manually by selecting semantic terms from a video content 

description lexicon. It is very expensive to annotate a large amount of video data manually. 

Video candidate ranking is done by a simple voting algorithm, no semantic similarity measure is 

utilized to compare the client video content preference and the semantic labels of video 

segments. Video personalization in this approach is 0/1 Knapsack Problem (0/1 KP)-based. 

Client-side resource capacity is not optimally utilized. This approach cannot support multiple 

client-side constraints simultaneously. 

 

 

 

Figure 1.3 Overall System Architecture 
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constraint decoding subsystem, (4) the video personalization subsystem, and, (5) the client 

request aggregation subsystem. The relationships amongst the five aforementioned subsystems 

are described in the following subsections. 

1.4.1 Video Preprocessing Subsystem 

The video preprocessing subsystem performs temporal video segmentation and video indexing. 

In order to provide mobile clients with personalized video content, the original video streams are 

first segmented and indexed in the temporal domain. A data-driven stochastic algorithm based on 

multi-level Hidden Markov Models (HMMs) is proposed to perform both video segmentation 

and video indexing automatically in a single pass. 

1.4.2 Multi-level Video Transcoding and Hierarchical Video Content Representation 

Subsystem 

Each indexed video segment is transcoded at multiple levels of abstraction. In the proposed 

scheme, semantic-level transcoding based on key frame selection and motion panorama 

computation and low-level transcoding based on bit rate reduction, and temporal and spatial 

resolution reduction are closely integrated. The original video segment and its transcoded 

versions are deemed to constitute a multi-level content group. To facilitate efficient content-

based retrieval, a hierarchical ontology-based description of the video content is employed. A 

multi-level content group is associated with a set of appropriate semantic terms derived from the 

aforementioned ontology. 

1.4.3 Client Query and Constraint Decoding Subsystem 

The client query and client constraint decoding subsystem acts as an intermediary between the 

video personalization subsystem and the mobile client. A client query (request) consists of the 

client’s preference(s) with regard to video content and a list of client-side resource constraints. A 
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client query protocol is established to facilitate the communication of the query between the 

client and the subsystem. A client query under the currently implemented protocol is a structure 

with two fields: PREFERENCES and CONSTRAINTS. The PERFERENCES field is a list of 

strings representing semantic terms that encapsulate the client’s request for information whereas 

the CONSTRAINTS field is a list of numerical parameters representing the client-side resource 

constraints such as the viewing time limit, bandwidth limit and the limit on the amount of data 

the client can receive. Client queries transmitted in the format specified by the above protocol are 

received and subsequently decoded by the subsystem. The decoded query is then forwarded to 

the video personalization subsystem for further processing. 

1.4.4 Video Personalization  Subsystem 

The goal of video personalization is to display a video summary that preserves as much of the 

semantic content desired by the client as possible while simultaneously satisfying the resource 

constraints imposed by the (potentially) mobile client. In the video personalization subsystem, 

the client’s video content preference(s) is (are) matched with the video segments (and their 

various versions) stored in the video database. In order to generate a personalized video 

summary, the client usage environment and the client-side resource constraints are evaluated. 

The personalization engine compiles an optimal video summary that is most relevant to the 

client’s content preference(s) subject to the resource constraints imposed by the client. 

1.4.5 Client Request Aggregation  Subsystem 

When there are a large number of clients sending their requests to the server, the average client-

experienced latency is long if every client request is processed individually. The proposed client 

request aggregation strategy clusters similar client requests together so that the number of 

requests sent to the server is reduced, reducing the average client latency. The client requests are 
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heterogeneous in multiple dimensions, i.e., they are different in their video content preferences, 

and in client-side constraints. A multi-stage clustering strategy is proposed to group similar 

request together one dimension at a time. 

1.5 Structure of the Dissertation 

After the introduction, the work in this dissertation is divided into five chapters. An outline of the 

remaining chapters is given below. 

Chapter 2: The problem of semantic-based video segmentation and indexing is reviewed in 

depth in this chapter, with particular attention on hidden Markov model (HMM)-based 

approaches. After reviewing the state of the art in the field, concepts of HMM and 

multiple-level HMM are discussed. Implementation details of the multiple-level HMM-

based video indexing are given. Video indexing experiment results are presented and 

discussed in this chapter. 

Chapter 3: The state of the art in the field of video personalization is reviewed in depth, with 

an emphasis on the Knapsack Problem (KP)-based approaches. The multiple-choice 

Multi-dimensional Knapsack Problem (MMKP) is investigated with attention to its 

application in video personalization. The MMKP-based Video personalization 

experiment results are compared with the personalization strategies. 

Chapter 4: A multi-stage clustering-based client request aggregation strategy is developed. 

The client-experienced system performances with and without the aggregation are 

compared. 

Chapter 5: A client-side energy-aware multimedia streaming algorithm is investigated. 

Experimental results are compared with the existing history-based prediction algorithm.  
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Chapter 6: The primary contributions that this work has made are presented. Possible future 

research directions are discussed as a result of the investigation in this dissertation. 



 

 

CHAPTER 2 

MULTI-LEVEL HIDDEN MARKOV MODEL AND VIDEO SEGMENTATION AND 

INDEXING 

2.1 Introduction 

Semantic video indexing is regarded as the first step towards automatic retrieval and 

personalization of video data since it enables users to access videos based on their interests and 

preferences regarding video content. It is the process of attaching concept terms from a video 

descriptive ontology to segments of a video. Until now, video indexing is mostly carried out 

manually by assigning a limited number of keywords to the video document. The manual nature 

of the work makes indexing of video documents an expensive and time consuming task. 

Therefore automatic classification of video segments is necessary. 

The content of a video is multimodal, i.e. the content of a video segment can be represented 

by low-level visual features, and semantic-level feature. Furthermore, auditory and textual 

features are also used to represented content of video segments. Therefore, in order to take the 

full advantage of the multimodal information, it is necessary to integrate these multiple features 

together to improve performance of video segmentation and indexing. Hidden Markov Models 

[Manning, 1999] [Rabiner, 1989] are frequently used as a statistical classification method for 

multimodal integration and classification. This feature makes HMM a suitable tool for 

multimodal video segmentation and indexing. 

Video segmentation and indexing typically includes two sub-processes, temporal 

segmentation of the video stream and semantic labeling of the resulting video segments. These 
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two sub-processes are usually performed as two separate steps. For example, in IBM’s 

VideoAnnEx video annotation system [Tseng, 2004], the video stream is first segmented into 

shots. An annotator then manually associates shots with terms selected from a predefined 

lexicon. For large amounts of video data, the manual annotation process involves intense human 

interaction and is extremely time consuming. 

In this work, we propose a data-driven multi-level HMM-based approach to perform both 

video segmentation and video indexing in a single pass. The proposed approach uses only the 

visual features in a video stream in order to avoid potential audio-visual mismatches. The 

proposed approach is purely data-driven, i.e. no-domain specific knowledge about the structure 

of the video program is needed to syntactically or semantically model the video content. 

The remainder of the chapter is organized as follows. Section 2.2 provides a general 

overview of video segmentation and indexing, reviewing the current state of the art. Concepts of 

HMM are discussed in Section 2.3. Section 2.4 describes the image features (especially the 

Tamura features) used in the construction of the video semantic unit level HMMs. In Section 2.5, 

we describe the construction of HMMs for the video semantic units, and the organization (via 

concatenation) of the individual HMMs based on a video program model. The data-driven video 

program model learning approach is detailed. Section 2.6 explains the performance measures 

used and the experimental results obtained. Section 2.7 concludes our work with an outline for 

future research. 

2.2 Video Segmentation and Indexing: A Review 

2.2.1 Video Segmentation 

Early video segmentation methods compare pixels of successive image frames. Pixels of 

consequent frames can be compared pair wise. Dissimilarity between two successive frames is 
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measured to detect shot boundaries. Luminance pixel-wise difference is calculated and various 

shot change detection methods are used to find the location of video shot boundaries. When the 

Thresholddifference ≥ , a boundary is detected [Nagasaka, 1991]. The evolution of temporal 

derivative of the pixel intensities [Taniguchi 1997] can be used as a criterion for shot change 

detection. Temporal derivative evolution is a measure of difference over many frames. The 

image frame is filtered by a Gaussian mask to calculate temporal derivative of pixels. Pixel level 

comparison is a costly and is sensitive to minor camera operation like zooming. A more robust 

method is histogram comparison. 

Histogram comparison-based video segmentation compares two successive image frames 

based on global histograms. A shot change is detected if the histograms of two consequent 

frames differ significantly [Wactlar, 1996]. An advantage of the histogram level information-

based segmentation is that it uses frame-wide information. Thus it is more robust to camera 

movement and luminance changes. The straight forward histogram-based difference is to 

calculate the gray-level histograms of two successive image frames [Tonomura, 1990]. 

Histograms of color spaces, such as RGB, YIQ, etc are used to calculate the difference too 

[Gargi, 1996], [Pye, 1998]. 

In color images, some color components may have more influence than others [Dailianas, 

1995]. In the proposed approach, a weighted histogram difference of two successive frame f and 

f’ which is defined as follows: 

bluegreenred ffd
s
bffd

s
gffd

s
rffd )',()',()',()',( ++=  (2.1) 

where bgr ,, are luminance for the red, green and blue component of the picture respectively. 

3/)( bgrs ++= . Dissimilarity of images is measured by color histogram intersection. Given 



 15

two histograms, Ii and Ij, each containing n bins, the normalized match index of the intersection 

of histograms is defined as follows [Lee, 2005].  

dis(i, j) = 1-∑ k=1~n min(Ii,k, Ij,k) / ∑ k=1~n Ij,k  (2.2) 

Block comparison-based segmentation is robust to noise and luminance changes. Similarity 

measure is performed on block-sampled images [Kasturi, 1991]. Block mean and variance of 

pairs of block with the same spatial coordinates in image frames are compared. RGB images are 

converted to HSV space [Lee, 2001]. Then the mean and values of Hue and Saturation are 

calculated for each block. Difference of two successive blocks is the block mean difference. 

Block histograms can be used to calculate the difference too [Swanberg, 1993]. 

More sophisticated features such as edges, contour of objects, planar points, moment, 

Tamura features are used to catch the time-varying characteristic of image frames in a video 

stream. 

• Edges 

 Zabih et al [Zabih, 1999] use extracted edges of an image frame to segment videos. Two 

consecutive frames are converted into binary edge images. An entering edge pixel is an edge 

pixel that appears far from an existing edge pixel. An existing edge pixel is an edge pixel that 

disappears far from an existing edge pixel. Shot boundaries are detected and classified as cuts, 

fades and dissolves by counting the numbers of entering and exiting edge pixels. 

• Focus of Expansion Points 

Ardebilian et al [Ardebilian, 2000] detect changes of focus of expansion (FOE) of two 

successive images to detect shot boundaries. Contour detection is done with Deriche filtering. 

The FOE is extracted using double Hough transformations (DHT) applied to the contour images. 

The positions of these FOE points are used as indices of shot segmentation in a video sequence. 
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• Tamura features 

Tamura features [Tamura, 1978] are used to capture the texture characteristics of image 

frames at human perception level. Tamura contrast, Tamura coarseness and Tamura 

directionality are successfully used in content-based image retrieval. 

• Statistical Features 

Principle component analysis (PCA) is applied to video segmentation [Yilmaz, 2000]. Rows 

of a RGB image frame are concatenated into a row vector. A 33× covariance matrix of the RGB 

color space is calculated. For two successive frames, angles between principle axes are defined 

as follows. 

)/()(),( ZXZXZXS T ••=    (2.3) 

where X and Z are principal axes of succeeding frames RGB color spaces and ),( ZXS denotes 

the angle of rotation between the two successive frames. For frames within a shot, 

ThresholdZXS <),( . 

Singular value decomposition (SVD) is use to perform shot detection [Gong, 2000]. An 

image frame is divided into 33× blocks. A 125-bin histogram on the RGB space is calculated. 

SVD is performed on the feature vector. The K largest singular values are used to calculate 

similarity among frames. 

• Motion Features 

Motion can be used as an important feature to detect video shot. Various techniques using 

motion feature of image sequence are reviewed as follows. 

Image frames are divided into 88×  blocks [Akutsu, 1992]. Motion vectors among matching 

blocks of successive frames are calculated. For each block, average inter frame correlation 

coefficients are computed. This value represents similarity between frames. Motion smoothness 
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is defined as ratio of velocity to motion in each frame. A shot boundary is detected at local 

maximum of motion smoothness. Porter et al [Porter, 2000] propose a motion-based method in 

frequency domain to perform video shot detection. Frames are divided into 3232×  blocks. For a 

give block in frame n, the matching block in frame n+1 is found using the normalized 

correlation. For computation simplicity, the correlations are calculated in the frequency domain. 

High-level semantic features of video segments are detected and utilized in the process of 

video segmentation and indexing. 

• People detection 

People in video documents are detected by means of their faces and other body parts. Face 

detection techniques aim to identify all image regions which contain a face. If a face is detected, 

image location of the face is returned [Yang, 2002]. Based on the evaluation of Pham [Pham, 

2000], the neural network-based system [Rowley, 1998] is the best. 

Not only the head, but the whole human body is detected [Mohan, 2001]. The algorithm first 

locates the constituent components of the human body, such as head, legs and arms. Each 

individual detector is based on the Haar wavelet transform. After ensuring that these components 

are present in the proper geometric configuration, a second example-based classifier combines 

the results of the component detectors to classify a pattern as either a person or non-person. 

• Object Detection 

Object detection is a generalization of the people detection problem. Visual appearance of 

specific objects is used to detect the presence of passenger cars in image frames by using a 

product of histograms [Schneiderman, 2000]. Each histogram represents the joint statistics of a 

subset of wavelet coefficients and their positions on the object. Passenger cars are detected by 

using statistical modeling to account for variation. 
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Since the appearance of objects might vary widely among image frames, object motion 

detection is the most valuable feature in this case. A typical method to detect moving objects of 

interest starts with a segmentation of the image frame. Regions in the image frame sharing 

similar motion are merged in the second stage. An image frame is segmented into the motion-

based regions [Nguyen, 2000].  

2.2.2 Semantic Video Indexing 

Video stream data can be viewed as a hierarchy. At the lowest level, video stream data is made 

of frames. A collection of image frames taken by a single camera operation, focusing on one 

object or one event is termed a shot. However, just as a phoneme can appear in many different 

words, visually similar video shots can appear in different video segments with different 

semantic meanings. Thus video shot segmentation by itself cannot support content-based video 

retrieval at a semantic level. 

Definition 2.1: A semantic unit within a video stream is a video segment that can be 

associated with a clear semantic meaning or concept, and consists of a concatenation of 

semantically and temporally related video shots or video scenes. 

Instead of detecting video shots or scenes, it is often much more useful to recognize semantic 

units within a video stream to be able to support video retrieval based on high-level semantic 

content. Note that visually similar video shots or video scenes may be contained within unrelated 

semantic units. Thus, video retrieval based purely on detection of video shots or video scenes 

will not necessarily reflect the semantic content of the video stream. 

In recent years, various applications of HMMs to video segmentation and indexing have been 

studied. A clear advantage of the HMM-based video segmentation is that it is capable to 

integrate multimodal features easily [Huang, 1999]. Nam et al [Nam, 1998] propose to integrate 
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both the visual and auditory features of video stream to detect and index violent scenes in TA 

drama and movies. Huang et al. [Huang, 2000] use both audio and visual features in an HMM-

based scheme to perform the video scene recognition. Li et al. [Li, 2001] propose a HMM 

framework to detect play events in sports videos. [Eickeler, 1999] and [Chaisorn, 2003] use an 

HMM-based predefined program model to index news programs. In the aforementioned works, 

however, the system performance could be compromised due to audio-visual mismatch [Huang, 

2000] and inaccurate domain-dependent knowledge about the video scenes and the video 

program structure [Li, 2001],[Eickeler, 1999]. 

2.3 Hidden Markov Model 

The HMM is defined following notations used by Rabiner [Rabiner, 1989], [Rabiner, 1993]. 

Assume the stochastic process to be modeled is governed by a finite number of states, 

},...,{ 1 NssS = . The actual state at time t is denoted as tq . The emission generated by a PDF 

dependent on the current state tq can be observed. The PDF is denoted as )( tj ob , where to is the 

observable emission, under state j . },...,1:{ TtoO t ==  is a complete observation sequence 

generated by a HMM, denoted as λ . It is assumed that the current state tq  in a HMM is only 

dependent on the previous state 1−tq . This is called the Markovian assumption. 

A HMM λ  is denoted as follows 

),,( πλ BA=   (2.4) 

where A is the state transition matrix, B is the set of emission probabilities and π is the initial 

state distribution probabilities. A defines the transition behavior between states, as well as the 

topology of the HMM. The transition probability for moving from state i to state j is defined as 
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 NjiiqjqPa ttij ≤≤=== − ,1),|( 1   (2.5) 

Each state of the HMM has a PDF, jb , defining the probability of generating an observation 

emission to at time t. For this dissertation, the PDF for each state is assumed to be a mixture of 

Gaussian components, defined as 

∑
=

≤≤∑Ν=
M

k
jkjkjkj NjOcOb

1

1),,;()( µ   (2.6) 

where M is the number of Gaussian components, jkµ is the mean of mixture of Gaussian 

component k for the PDF of state j, and jk∑ is the covariance matrix. jkc is the weighting term for 

each Gaussian component where 

∑
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≤≤≤≤≤≤=
M

k
jkjk MkNjcc

1
1,1,10,1   (2.7) 

Finally, the initial state distribution probability vector },...,1:{ Njj == ππ defines the 

probabilities of the HMM commencing at any state, given the observation sequence O. 

 Restriction in the transition matrix A defines the topology and behavior of the HMM. Bakis 

HMM restricts movement from the left states to right states only. Figure 2.1 displays a Bakis 

HMM with 3 states. 

One problem with this approach is that the video features are continuous. To convert the 

video feature sequence into discrete form, methods such as vector quantisation are required. In 

this form, the continuous feature sequences become a sequence of discrete symbols generated 

from a known “code-book”. However, converting the continuous data into discrete form can 

result in serious degradation of the signal, and information loss [Rabiner, 1993]. The approach 

we take is to employ continuous density HMM models. For each state, )(Obj  is represented by a 
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continuous PDF, with the most widely applied distribution being Gaussian. Mixtures enhance the 

power of a model by representing a complex distribution as a combination of simple Gaussian 

components. It is common practice to use a mixture of Gaussians for modeling each state, where 

the same number of mixture components is normally fixed across all states. 

An objective of this dissertation is to identify video semantic units such as Anchor, News, 

Weather and Commercial. Little is known about the underlying physical processes which 

generate the observable visual features in the video stream. Therefore, restricting movement 

between these states, without prior investigation into the underlying generation process, is 

justified [Rabiner, 1993]. 

 

 

 

Figure 2.1 An Example of a 3 State Bakis HMM 

 

2.4 Hidden Markov Model and Video Segmentation and Indexing 

In continuous speech recognition systems, the continuous speech resulting from a spoken 

sentence is modeled at both, the acoustic-phonetic (sub-word) level and the language level. In 

most modern speech recognition systems, these sub-word units are modeled by Hidden Markov 

Models (HMMs) [Ney, 1999] which have been shown to be powerful stochastic models capable 

of approximating many time varying random processes [Rabiner, 1989]. Inspired by the success 
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of modern HMM-based continuous speech recognition systems and HMM-based video 

segmentation approaches [Eickeler, 1999], we propose a data-driven multi-level HMM-based 

approach to perform both video segmentation and video indexing in a single pass.  

The multi-level HMM-based segmentation and indexing algorithm is essentially a stochastic 

model-based segmentation algorithm wherein the input video stream is classified frame by frame 

into semantic units. A semantic unit within a video stream is a video segment that can be 

associated with a clear semantic meaning or concept, and consists of a concatenation of 

semantically and temporally related video shots or video scenes. Temporal boundaries in the 

video stream are then marked at frame locations that represent a transition from one semantic 

unit to another. One of the advantages of the proposed multi-level HMM-based segmentation 

algorithm is that once the set of HMMs for a video stream are defined, future image sequences 

can be segmented, classified and indexed in a single pass. Furthermore, semantic units can be 

added without having to retrain the HMMs corresponding to the other semantic units. Thus, the 

proposed multi-level HMM makes it possible to process different types of videos in a modular 

and extensible manner so as to enable video retrieval based on semantic content. 

Instead of detecting video shots or scenes, it is often much more useful to recognize semantic 

units within a video stream to be able to support video retrieval based on high-level semantic 

content. Note that visually similar video shots or video scenes may be contained within unrelated 

semantic units. Thus, video retrieval based purely on detection of video shots or video scenes 

will not necessarily reflect the semantic content of the video stream. The semantic units within a 

video stream can be spliced together to form a logical video sequence that the viewer can 

understand. In well organized videos, such as TV broadcast news and sports programs, the video 

can be viewed as a sequence of semantic units that are concatenated based on a predefined video 
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program syntax. Parsing a video file into semantic units enables video retrieval based on high-

level semantic content  and playback of logically coherent blocks within a video stream. 

Automatic indexing of semantic components within a video stream can enable a viewer to jump 

straight to points of interest within the indexed video stream, or even skip advertisement breaks 

during video playback. 

In the proposed scheme, a video stream is modeled at both, the semantic unit level and the 

program model level. For each video semantic unit, an HMM is generated to model the 

stochastic behavior of the sequence of feature emissions from the image frames. Each image 

frame in a video stream is characterized by a multi-dimensional feature vector. A video stream is 

considered to generate a sequence of these feature vectors based on an underlying stochastic 

process that is modeled by a multi-level HMM. The advantages of the proposed approach are 

summarized as follows. 

• Video segmentation and video indexing are performed in a single pass. This is extremely 

valuable when dealing with large amounts of video data to populate a video database. Although, 

video segmentation and video indexing are performed off line, they are computationally 

intensive and often result in a serious bottleneck during the creation of a video database. The 

ability to perform video segmentation and video indexing in a single pass alleviates this 

bottleneck to some extent.    

• No domain-dependent knowledge about the structure of video programs is used. The 

probabilistic grammar used to define the video program is learned entirely from the training data. 

This allows the proposed approach to handle various kinds of videos in a modular and extensible 

manner without having to manually redefine the program model. 
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• Semantic unit level HMMs are used to model video units with clear semantic meanings. 

The proposed data-driven approach does not need to use HMMs to model video edit effects. This 

not only simplifies the collection and processing of training data, but also ensures that all video 

segments in the video database are labeled with concepts with clear semantic meanings in order 

to facilitate video retrieval based on semantic content. Furthermore, although a semantic unit 

might include some video edit effects, these effects are considered part of the semantic unit and, 

as such, are not labeled separately. The HMM representation of a semantic unit can 

accommodate these edit effects implicitly. 

2.5 Image Features for Semantic Units 

The success of an HMM-based algorithm for video segmentation and video indexing depends 

greatly on the image features extracted from each frame in the video stream. These features 

should contain enough information about each image frame, yet should capture the differences 

amongst the frames in distinct semantic units in order to be able to distinguish them. In this 

work, we use two categories of image features. The first category includes a set of simple 

features. The dynamic characteristics of the image frames comprising the video stream are 

captured by the differences of successive image frames at both, the pixel level and the histogram 

level. Various motion-based measures describing the movement of the objects in the image 

frames are used, including the motion centroid of the image, and intensity of motion. Measures 

of illumination change at both, the pixel level and the histogram level are also included in the 

multi-dimensional feature vector. Definitions of these features are given in [Eickeler, 1999].  

In the second category, Tamura features [Tamura, 1978] are used to capture the textural 

characteristics of the image frames at the level of human perception. Tamura contrast, Tamura 

coarseness and Tamura directionality have been used successfully in content-based image 



 25

retrieval [Flickner, 1995]. In our work, inclusion of these features is observed to improve the 

accuracy of temporal video segmentation and video indexing. Definitions of the Tamura features 

are given as follows: 

Tamura contrast 

Consider 

∑
∈
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k 4)][(1 µ     (2.8) 

where µ  is the average of the color values in the neighborhood of pixel ),( yx  denoted by 

),( yxO , ][ic  is the color or intensity of the ith pixel in the neighborhood ),( yxO , and N is the 

number of pixels in the neighborhood ),( yxO . The Tamura contrast at pixel ),( yx ,  denoted by 

TCon(x, y), is given by 
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where 2σ is the color covariance computed in the neighborhood of  pixel ),( yx  in the image 

frame and ε is a predefined threshold. 

Tamura coarseness 

The Tamura coarseness measures the spatial scale at which the difference in color values 

between pixels in a local neighborhood of a given pixel ),( yx is a maximum. Given a pixel 

),( yx , 5 spatial scales are used to measure the horizontal and vertical differences of the mean 

color value. The horizontal difference and the vertical difference of the mean color values at 

location ),( yx at scale k are given by 

),,2(),,2(),,( kyxAkyxAkyxE kk
H +−−=   (2.10) 

),2,(),2,(),,( kyxAkyxAkyxE kk
V +−−=    (2.11) 
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where ]4,0[∈k , and ),,( kyxA is the mean color value at pixel ),( yx  for window size 

)12()12( +×+ kk  when 0>k . The window size is 11×  when 0=k .  

Let us define )),,(),,,(max(),,( kyxEkyxEkyxE VH=  

The Tamura coarseness, denoted by TCoar(x, y),  at pixel (x, y)  is given by 

))},,((maxarg{),( kyxEyxTCoar
k

=     (2.12) 

The definition of Tamura coarseness give above, calls for the computation of the mean color 

value ),,( kyxA  in 20 distinct windows if 5 spatial scales are used. The computation cost is high 

if we perform the summation directly by enumerating the color values of each pixel in each 

window. Hence, we need an efficient way to compute ),,( kyxA . The integral image [Viola, 

2004] provides an efficient way to compute the summation of in a rectangular window. Given an 

original input image ),( yxI , the integral image is given by 

∫ ∫=
y x

dudvvuIyxJ
0 0

),(),(     (2.13) 

For a discrete image ),( yxI , the integrals in equation (2.13) are replaced by their 

corresponding summations. The integral image ),( yxJ  can be computed efficiently using the 

following recurrence relation 

)1,1()1,(),1(),(),( −−−−+−+= yxJyxJyxJyxIyxJ   (2.14) 

The mean color value within a given rectangular window ),,,( 2211 yxyx , with corner points 

),( 11 yx  and ),( 22 yx , can be computed as: 

R
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where R is the area size of the rectangular window ),,,( 2211 yxyx . Thus the computation of the 

mean color value within a given rectangular window can achieved efficiently with three 

summation operations as shown in equation (2.15).  

Tamura directionality 

Tamura directionality is simply the intensity gradient orientation ),( yxθ  at a pixel ),( yx  

and is given by 

),(
),(

tan),( 1

yxI
yxI

yx
x

y−=θ   (2.16) 

where the intensity gradient components ),( yxI x  and ),( yxI y  are computed using the Sobel 

edge operator. 

2.6 HMMs for Characterization of Semantic Units in a Video Stream 

In the proposed video segmentation and video indexing scheme based on semantic video content, 

we define six semantic concepts for TV broadcast news video, i.e. News Anchor, News, Sports 

News, Commercial, Weather Forecast and Program Header, and three semantic concepts for 

Major League Soccer (MLS) video, i.e. Zoom Out, Close Up and Replay. Representative images 

for each of these semantic concepts are shown in Figure 2.2(a)-(b). An HMM is formulated for 

each individual semantic concept. The optimal HMM parameters for each semantic unit are 

learned from the feature vector sequences obtained from the training video data. The standard 

HMM training procedure based on the Baum-Welch algorithm [Baum, 1970] is used. In our 

scheme, the HMMs for individual semantic units are trained separately using the training feature 

vector sequences. This allows for modularity in the learning procedure and flexibility in terms of 

being able to accommodate various types of video data. When new video data for a semantic unit 
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are presented, we only need to retrain the corresponding HMM for the relevant semantic unit 

without having to retrain any of the HMMs corresponding to the other semantic units.  

Since the states in an HMM are hidden, researchers typically use heuristics to guess the 

correct HMM topology [Boreczky et al. 1998]. In our work, we adopt a universal left-to-right 

HMM topology (i.e., an HMM topology where no backward state transitions are allowed) with 

continuous observations of the feature vector emissions. The distribution of the feature vector 

emissions in the HMM is approximated by a mixture of Gaussian distributions. The number of 

Gaussian mixture components is fixed at three in all of our HMM implementations. The reason 

for the above HMM design choices is that in the case of actual video data, little is known about 

the underlying physical processes which generate the observable visual features in the video 

stream. Using a universal left-to-right HMM topology with a three Gaussian component mixture 

as a default choice makes it easy construct semantic unit HMMs for unknown data without prior 

detailed investigation into the underlying feature generation process [Eickeler et al. 1999], 

[Shinoda et al. 2005]. Furthermore, the above approach to HMM  design can be used, without 

any modification, to recognize new semantic units in a video stream.  

 

 

(a) TV News Broadcast: From Left to Right: News Anchor, News, Sports News, Commercial, 
Weather Forecast and Program Header 
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(b) MLS Video: From Left to Right: Zoomed Out, Close Up and Replay 

Fig. 2.2  Representative Image Frames of Video Semantic Units 

 

 

Fig. 2.3  Concatenation of the Individual HMMs 

 

2.7 Multi-level HMMs for Single-Pass Video Segmentation and Indexing 

The search space for the proposed single-pass video segmentation and video indexing procedure 

is characterized by the concatenation of the HMMs corresponding to the individual semantic 

units. The HMM corresponding to an individual semantic unit essentially models the stochastic 

behavior of the sequence of image features within the scope of that semantic unit. Transitions 
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amongst these semantic unit HMMs are regulated by a pre-specified video program model. 

Figure 2.3 depicts the concatenation of the individual HMMs corresponding to the three semantic 

units comprising the video program model. The topologies of the individual HMMs are 

described in the callouts in Figure 2.3. The parameter
ijp , 3,1 ≤≤ ji is the transition probability 

from semantic unit i to semantic unit j. The transition probability matrix 33×P , where 

3,1, ≤≤= jipP ijij
, essentially defines the video program model. 

In this work, a data-driven approach is proposed to estimate the video program model 

directly from the training data using sequential maximum likelihood estimation, i.e., no domain-

dependent knowledge about the structure of the video program is used. Most researchers 

typically use domain-specific knowledge about the video program in order to determine the 

video program model [Eickeler, 1999], [Huang, 2005], [Li, 2001]. This knowledge-driven 

approach becomes untenable as the size of the semantic unit vocabulary and the complexity of 

video program increase. The inaccuracy in the estimation of the video program model directly 

affects the segmentation and indexing results. In this work, the video program is represented by a 

2-gram model determined by the conditional probability of the semantic unit sequence given a 

sequence of image feature vectors as shown in equation (2.17). Statistical language models 

(SLMs) can be typically represented by n-gram models [Brown et al. 1992]. When n is large, a 

correspondingly large amount of training data is required to estimate the n-gram model 

parameters, and the training process is computationally expensive. Hence in the proposed 

approach, a 2-gram model is chosen to represent the video program. The training data for 

estimation of the parameters of the video program model are assumed to be manually pre-

labeled. 
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The single-pass video segmentation and video indexing procedure is formulated in terms of 

the following Bayesian decision rule:  Given a sequence of image feature vectors Tff ...1 , 

determine a semantic unit sequence NUU ...1  such that the conditional probability of the semantic 

unit sequence given the sequence of image feature vectors is maximized, i.e.,  

))...|...Pr()...max(Pr(~))...|...max(Pr( 11111 NTNTN UUffUUffUU •     (2.17) 

In equation (2.17), Tff ...1  are the feature vectors extracted from the image frames in the video 

stream to be segmented and indexed and  )...Pr( 1 NUU  is the video program model. The video 

program model regulates the transition probability from a predecessor semantic unit to a 

successor semantic unit. The Viterbi algorithm [Forney, 1973] [Viterbi, 1967] is used to 

determine the optimal path in the concatenation of the HMMs. Figure 2.4 depicts the single-pass 

segmentation and indexing is of a video stream containing the semantic units A, B and C. The y-

axis represents the hidden states within the HMM for an individual semantic unit. The bold 

curves in Figure 4 indicate the change of states within the semantic units A, B and C. The video 

stream in this example is segmented into a semantic unit sequence BACBA. Bold curves within a 

semantic unit are monotonically non-decreasing because the HMMs for the individual semantic 

units have a strict left-to-right topology (i.e., backward-going state transitions are not permitted). 

Note that although a two-level HMM is used in the current implementation, the underlying 

technique for single-pass segmentation and indexing of video can be generalized to a multi-level 

HMM with any number of levels. 
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Figure 2.4  Sincle-pass Segmentation and Indexing of a Video Stream Containing Semantic 
Units A, B and C 

 
 

2.8 Experiment Results of the Multi-level HMMs-based Video Segmentation and 

Indexing 

We recorded 2 hours of the CNN Headline News program and 1.5 hours of the Major League 

Soccer (MLS) program respectively. The video streams were digitized to a frame resolution of 

180 × 120 pixels with a frame rate of 30 frames per second. Sixteen minutes of the CNN video 

and one hour of the soccer video was reserved for testing. For generation of training data, the 

remainder of the CNN news video data was manually segmented into six semantic categories, 

News Anchor, News, Commercial, Program Header, Weather Forecast and Sports News and 

denoted by semantic concepts 1 through 6 respectively, and the MLS video data was manually 

segmented into three semantic categories, Zoom Out, Close Up and Replay and denoted by 

semantic concepts 1 through 3 respectively.  A multi-dimensional feature vector was extracted 

for each image frame in the training video. For each of the semantic units, a left-to-right HMM 
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with continuous emission of observations was trained using feature vector sequences derived 

from the training video. To estimate the 2-gram video program model, the training video was 

manually labeled with labels selected from the aforementioned semantic concepts. The 

maximum likelihood estimation of the video program model was performed using the labeled 

training sequence. 

The performance measurements for the above single-pass video segmentation and video 

indexing scheme comprise of two aspects, performance evaluation of video segment boundary 

detection and performance evaluation of video segment classification. To measure the 

performance of the video segment boundary detection algorithm, parameters such as insertion 

rate, deletion rate and boundary detection accuracy [Eickeler, 2000] were used. These parameters 

are defined as follows. The insertion rate Rinsertion denotes the fraction of unassigned boundaries 

in the detected boundaries. The deletion rate Rdeletion denotes the fraction of missed boundaries in 

the ground truth sequence boundaries. The boundary detection accuracy AccuracyB measures the 

average shift (in terms of number of frames) between the detected boundary and actual boundary 

locations. Thus 

ected

inserted
insertion boundaries

boundariesR
det

=    (2.18) 

actual

missed
deletion boundaries

boundariesR =    (2.19) 

actual
B boundaries

frames
Accuracy ∑∆

=    (2.20) 

where ∑∆frames  is the amount of shift (measured in terms of number of frames) between the 

detected boundary location and the actual boundary location. 

To measure the video segment classification accuracy, we define the following metric:  
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falsecorrect

correct
C SS

SAccuracy
+

=    (2.21) 

where corrects is the number of correctly indexed video segments and falses is the number of 

incorrectly indexed segments. In our experiments, some incorrectly indexed segments were 

observed to be very short. These short segments were observed to contain a very small fraction 

of the total number of image frames in the video stream. Thus, the measure cAccuracy  by itself 

does not reflect the classification performance because it treats very short and incorrectly 

classified segments on par with the relatively long and correctly classified segments. Hence, in 

order to measure the number of correctly classified image frames, we use a frame-based measure 

to determine the fraction of correctly classified image frames in the total number of frames as 

follows:  

falsecorrect

correct
F framesframes

framesAccuracy
+

=   (2.22) 

where correctframes and falseframes  are the numbers of correctly classified and incorrectly classified 

image frames respectively. FAccuracy thus represents the percentage of correctly classified 

frames. It measures the temporal classification accuracy, i.e. the relative duration of correctly 

recognized segments of a video stream. The algorithm provided by Eickeler et al. [2000] was 

used to compute performance measures in equations (2.18) - (2.22). 

In Figure 2.5, the recognized semantic label sequence and the ground truth semantic label 

sequence of the CNN Headline News video stream are plotted against the frame number for the 

entire test video segment. For the news video, the single-pass video segmentation and video 

indexing algorithm was observed to detect most of the segment boundaries and label them 

correctly, except for some portion of the Commercial segment which was incorrectly classified.  
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In Tables 2.1 and 2.2, the numerical measures of performance for the single-pass video 

segmentation and indexing algorithm are tabulated. Figure 2.5 shows that most of the inserted 

boundary detection and false segment classification occurs during the Commercial segment 

(semantic concept ID=3). This is because of the complex nature of the content of TV 

commercials. In TV commercial programs, there could be large video segments similar to those 

found in the other semantic units such as News Anchor and Sports. These scenes in TV 

commercials are visually similar to those in News Anchor and Sports, and hence are classified 

incorrectly by the algorithm. 
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Figure 2.5 Frame Number vs. Recognized/Ground Truth Video Segments and Labels: CNN 
Headline News Video 
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Table 2.1 Performance Measures for Video Segment Boundary Detection:  
CNN Headline News Video 

 

Actual 
Boundaries 

Detected 
Boundaries 

Inserted 
Boundaries 

Deleted 
Boundaries 

Insertion 
Rate (%) 

Deletion 
Rate (%) BAccuracy  

(Frame) 
29 36 7 0 7/36=19.4 0/29=0 55/29=1.9 

 

Table 2.2 Performance Measures for Video Segment Classification: CNN Headline News 

Video 

Correctly 
Classified 
Segments 

Incorrectly 
Classified 
Segments 

CAccuracy  
(%) 

Total Number 
of Frames 

Correctly 
Classified 

Frames 

FAccuracy  (%) 

32 5 86.5 28898 514 28384/28898=98.2 
 

 

In Figure 2.6, the recognized semantic label sequence and the ground truth semantic label 

sequence are plotted against the frame number for the MLS test video segment. In Tables 2.3 and 

2.4, the corresponding numerical measures of performance for the single-pass video 

segmentation and video indexing algorithm are tabulated in the case of the MLS test video 

segment. Experiment results show that the proposed multi-level HMM-based video segmentation 

and video indexing algorithm can segment and index MLS videos quite accurately. 

 

Table 2.3 Performance Measures for Video Segmentation Boundary Detection: 
MLS Video 

 
Actual 

Boundaries 
Detected 

Boundaries 
Inserted 

Boundaries 
Deleted 

Boundaries 
Insertion 
Rate (%) 

Deletion 
Rate (%) BAccuracy  

(Frame) 
57 60 3 0 3/60 = 5 0/60 = 0 671/57=11.8 
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Table 2.4 Performance Measures for Video Segment Classification: MLS Video 

Correctly 
Classified 
Segments 

Incorrectly 
Classified 
Segments 

CAccuracy  
(%) 

Total Number 
of Frames 

Correctly 
Classified 

Frames 

FAccuracy  
(%) 

59 2 96.7 31150 783 30367/31150=97.5 
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Figure 2.6 Frame Number vs. Recognized/Ground Truth Video Segments and Labels: MLS 
Video 

 
 

The proposed multi-level HMM-based video segmentation and video indexing algorithm is 

implemented on a Dell Precision workstation with dual 3.19GHz CPUs and 2.0 GB of RAM. In 

the case of the CNN Headline News video, it takes 3076 seconds to extract feature vectors from 

the training data, 1394 seconds to train the HMMs for the individual video semantic units, and 
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1400 seconds to segment and index the CNN Headline News test video of duration of 962 

seconds as presented in Figure 2.5. For the MLS video, it takes 1078 seconds to extract feature 

vectors from the training data, 873 seconds to train the HMMs for video semantic units, and 930 

seconds to segment and index the MLS test video of duration of 746 seconds as presented in 

Figure 2.6. The video files and their transcoded versions are stored at a bit rate of 210kbps. 

2.9 Conclusions 

Inspired by the success of modern continuous speech recognition, we used Hidden Markov 

Models (HMMs) to stochastically model the input video streams at both the semantic unit level 

and the video program level. For each semantic unit within the input video stream, an HMM was 

established to model the stochastic process of emission of image feature vectors within the scope 

of that semantic unit. In our work, the semantic units were associated only with clear semantic 

concepts. Transitional scenes and special visual effects that lacked clear semantic meaning were 

not modeled using HMMs. This not only simplified the training data collection process, but also 

improved the robustness of the video segmentation and video indexing procedure.  

The 2-gram video program model was used to define the transition probabilities amongst the 

various semantic units. The high complexity of real video programs, often renders a domain 

knowledge dependent definition of the video program model practically untenable. In our 

approach, a data-driven maximum likelihood estimation of the 2-gram program model from 

training data was observed to yield very good results. The individual HMMs for the semantic 

units were concatenated based on the video program model. Determining the optimal path 

through the concatenation of the HMMs corresponding to the individual semantic units was 

shown to result in a data-driven single-pass video segmentation and video indexing algorithm.  



 39

Experimental results showed that the resulting video boundary detection and video segment 

classification were highly accurate. The proposed multi-level HMM-based scheme was observed 

to be scalable and extensible since the program model could be altered by addition, deletion and 

modification (via retraining) of the HMMs corresponding to the relevant semantic units without 

having to retrain or alter the HMMs corresponding to the other semantic units. 

 



 

 

CHAPTER 3 

MULTIPLE-CHOICE MULTI-DIMENSIONAL KNAPSACK PROBLEM-BASED VIDEO 

PERSONALIZATION 

3.1 Introduction 

The current proliferation of mobile computing devices and network technologies has created 

enormous opportunities for mobile device users to communicate with multimedia servers, using 

multimedia streams. As handheld mobile computing and communication devices such as 

personal digital assistants (PDAs), pocket-PCs and cellular devices have become increasingly 

capable of storing, rendering and display of multimedia data, the user demand for being able to 

view streaming video on such devices has increased. For example, a mobile handheld client may 

be interested in viewing traffic conditions on the road and browsing the weather forecast for his 

or her travel destination. One of the natural limitations of these handheld devices is that they are 

constrained by their battery power capacity, rendering and display capability, viewing time limit 

and in many situations, by the available network bandwidth connecting these devices to video 

data servers. Therefore, the original video content often needs to be personalized in order to 

fulfill the client’s request under various client-side system-level resource constraints (henceforth 

termed as “client-side resource constraints”, in the interest of brevity).  

Given the client’s preference(s) regarding the video content, and the various client-side 

resource constraints, the video personalization system should be able to gather and disseminate 

the most relevant video content to the mobile client(s) while simultaneously satisfying multiple 
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client-side resource constraints. In light of the above, a definition of video personalization can be 

given as follows: 

Definition 3.1: Given the client’s preferences regarding the video contents, and given the 

client-side resource constraints, video personalization is the process of compiling and 

disseminating the most relevant video contents to the mobile clients while simultaneously 

satisfying client-side system-level constraints. 

In this work, we present a client-centered video personalization system which can optimally 

fulfill the client’s requests while simultaneously ensuring optimal utilization of client-side 

resources. While there are many challenges to be addressed in the design and implementation of 

a comprehensive video personalization system, the work presented in this chapter focuses on the 

design and implementation of video personalization strategies. The personalization problem is 

modeled as one of constrained optimization, i.e., maximization of the “total value” of the video 

summary delivered to the client under multiple constraints that represent the client’s content 

preferences and system-level resources. Various personalization strategies based on the classical 

Knapsack Problem (KP) have been proposed in the literature. The contribution of the work 

presented in this paper is the design and implementation of a Multiple-choice Multi-dimensional 

Knapsack Problem (MMKP)-based video personalization strategy which is shown to have 

significant advantages over the existing 0/1 Knapsack Problem (0/1KP)-based and the Fractional 

Knapsack Problem (FKP)-based video personalization strategies. The proposed MMKP-based 

personalization strategy is observed to include more relevant video content in response to a 

client’s request compared to the existing 0/1KP-based and FKP-based personalization strategies. 

In contrast to the 0/1KP-based and FKP-based personalization strategies which can support only 

a single client-side constraint at a time, the proposed MMKP-based personalization strategy is 



 42

shown to be capable of supporting multiple client-side constraints simultaneously.  

The proposed MMKP-based video personalization strategy is shown to compile and deliver 

an optimal (i.e., most relevant) (sub)set of the video contents while simultaneously satisfying 

multiple client-side system-level constraints. In the proposed scheme, videos are first segmented 

and indexed automatically in a single pass using the data-driven stochastic modeling approach 

described in chapter 2. The indexed video segments are summarized in a semantic manner 

resulting in video content summaries at multiple levels of abstraction. These video segments and 

their content summaries are stored in a video database which can facilitate semantic-level video 

retrieval. The client’s request consists of the client’s video content preference(s), and the client-

side system-level constraints such as viewing time limit, battery power capacity, screen 

resolution etc. When the video server receives a request from a client, it first retrieves the 

relevant video contents from the video database. It then ascertains the client-side resource 

constraints and forwards the resulting client profile to a video personalization module. The 

personalization module optimally selects from the retrieved video segments, a subset of video 

segments or summaries at the appropriate levels of abstraction that best matches the client 

content preference(s) while simultaneously satisfying the various client-side resource constraints 

The remainder of the chapter is organized as follows. Section 3.2 provides a brief review of 

related work in the fields of video summarization and personalization. Section 3.3 discusses 

Hierarchical content representation of video segment. The computation of the relevance values 

of the video segments and video summaries is detailed. In Section 3.4, various video 

personalization strategies based on variations of the classical Knapsack Problem (KP) are 

discussed and the proposed MMKP-based video personalization strategy is detailed. In Section 

3.5, experimental evaluation results of the proposed MMKP-based video personalization are 
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compared with those of existing 0/1KP-based and FKP-based personalization strategies. Section 

3.6 concludes the paper with an outline for future work. 

3.2 Related Work 

Video transcoding and summarization is an active field of research in computer vision, and 

constitutes the necessary step toward video personalization [Aigrain, 1996]. The overall goal of 

most video transcoding and summarization schemes is to reduce the amount of resources 

required to receive, render, play and view the video stream while preserving the desired level of 

detail of the original video contents. 

Early work in video transcoding has typically focused on reducing the bit rate in order to 

meet the available channel capacity [Nakajima, 1995]. Despite increases in bandwidth 

availability, the fact that the underlying medium is shared necessitates media adaptation at the 

edges of the network. Transcoding schemes designed for bit rate reduction are usually Discrete 

Cosine Transform (DCT) based [Eleftheriadis, 2006],[Sun, 1996] whereas those designed for 

spatial resolution reduction are based on downscaling of the standard video frame size. A 

cascaded DCT-domain downscaling transcoder (CDDT) architecture is first proposed by Zhu et 

al. [Zhu, 1998], where a bilinear filtering scheme was used for spatial resolution downscaling in 

the DCT domain. Temporal transcoding schemes, on the other hand, are designed to reduce the 

number of video frames transmitted to the client [Chen, 2002]. Temporal resolution reduction 

techniques may be used to reduce the bit-rate requirements imposed by a network, to maintain a 

higher quality of coded frames, or to satisfy the viewing time limitations imposed by a client. 

Based on the video transcoding techniques, video summarization is to create shortened video 

clips or video posters from an original video stream. The scheme of video summarization is 

divided into two categories. The first is to temporally compress the amount of video data to 
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generate a concise video summary. Some actual examples of this categories of scheme are movie 

trails and sports digests. Video skimming techniques using visual, auditory and textual features 

of video stream data are applied to summarize videos[Smith, 1997], [Lienhart, 1997], [Oh, 

2000], [Babaguchi, 2000]. The second category of video summarization methods represents 

video contents using storyboard. It is suitable for at-a-glance presentation by laying out spatial 

visualization [Yeung, 1997], [Chang, 2000], [Toklu, 2000]. 

Various innovative key frame selection algorithms have been proposed in the literature to 

temporally compress video data. Doulamis et al. [Doulamis, 2000] use a content-sampling 

algorithm to extract a small set of key frames from a video stream. Kim et al. [Kim, 2000] take 

advantage of the objects of interest in the video along with their actions and the resulting events 

to generate a video abstraction. To facilitate content-based retrieval, video summaries are 

typically organized in a hierarchical manner. Jaimes et al. [Jaimes, 2000] propose a visual 

information indexing framework for systematic representation of image and video data based on 

syntax and semantics. In our client-centered video personalization system, content-aware key 

frame selection algorithm is used to generate video summaries. Summarized versions of the 

videos are labeled by semantic terms selected from a video description ontology. 

Various personalization strategies have been proposed in the literature to generate the 

optimal response to the client’s request while satisfying various client-side system-level 

constraints [Smyth, 2000], [Jasinschi, 2001], [Babaguchi, 2004]. The optimal response to the 

client’s request is defined as a set of video summaries that is most relevant to the client’s content 

preference(s). [Babaguchi, 2004] uses a domain-dependent heuristic personalization strategy for 

broadcasted American football videos. Merialdo et al. [Merialdo, 1999] demonstrate that the 

video personalization problem can be modeled as the classical 0/1 Knapsack Problem (0/1KP). 
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Tseng et al. [Tseng, 2003],[Tseng, 2004] propose a personalization strategy based on a 

combination of 0/1KP-based optimization and context clustering to collect successive similar 

shots. Context clustering is shown to be an enhancement of the scheme proposed in [Tseng, 

2003] in that it considers the temporal smoothness of the generated video summary in order to 

improve the client’s viewing experience. One of the drawbacks of 0/1KP-based video 

personalization strategies is that some of the video segments which are excluded in the response 

to the client’s request may still contain some information that is potentially relevant or of interest 

to the client. Another drawback of 0/1KP-based personalization strategies is that 0/1KP-based 

optimization algorithms can support only a single client-side constraint, such as viewing time 

limit, at a time. 

3.3 Computation of Relevance Value 

3.3.1 Hierarchical Video Content Representation 

In order to optimally satisfy the request of a resource-constrained mobile client, it is often 

necessary to transform the original video stream(s) into various transcoded versions based on the 

available resources. These transcoded versions have different requirements in terms of the 

various client-side resources needed to receive, transmit, render and view the transcoded video.  

In the proposed system, each indexed video segment is summarized at multiple levels of 

abstraction using algorithms for content-aware key frame selection and motion panorama 

generation. We use a clustering algorithm to parse video segments into shots. The video parsing 

algorithm uses inter-frame histogram difference measures to identify the shot boundaries in a 

video segment. Since video segments are usually long, we use a temporally localized 2-class 

(i.e., binary) clustering algorithm to detect shots within a video segment. For a temporal 

window ],[ 21 ttw , we perform 2-class clustering to separate frames in the window into classes 
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1c and 2c . A rejection threshold R is set such that if the distance between 1c and 2c is less than R, 

then the width of the temporal window is increased to ],[ 31 tt  where 23 tt >  and the clustering 

redone.  

In the key frame-based transcoding scheme, each shot is represented by a set of key frames. 

Frames within a shot are clustered into groups. For each group of frames, a key frame is selected. 

Groups with too few frames are merged with nearby groups. By selecting a threshold value for 

the group size, we can control the level of abstraction of the video summary. The smaller the 

threshold value, the more detailed the resulting summary and vice versa. The advantage of this 

approach is that we can preserve the dynamic nature of the content of the video frames within a 

shot. Not only are the commonly encountered frames within the shot selected as the key frames, 

but also those that deviate substantially from the commonly encountered frames in terms of their 

content. 

Thus, in the case of key frame-based transcoding scheme, each video summary consists of a 

set of key frames. If the image frames are displayed at a fixed frame rate, the higher the level of 

abstraction, the shorter the duration of the video summary. The number of levels of abstraction 

associated with the transcoded video is set to three. The relative time durations of the transcoded 

video segments are set to 100%, 50% and 20% of the time duration of the original video 

segments. Due to the nature of the proposed MMKP-based personalization strategy, additional 

levels of abstraction and transcoding methods can be incorporated as and when necessary 

without any modifications to the other parts of the overall system. 

In the case of video shots containing dominant panning camera motion (i.e., pan shots), 

motion panoramas based on image mosaicking are an efficient representation of the video shot 

[Bartoli, 2004]. Pan shots can be detected based on the underlying pattern of the motion vectors 
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(MVs) [Bhandarkar, 1999]. Let ijθ be the direction of the MV associated with the ijth pixel. Let 

∑∑
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1 θθ be the average of the MV directions in the frame. For a frame to qualify as a 

member of a pan shot, the variance ∑ ∑= =
−=

M

i

N

j avgijMN 1 1
22 ][1 θθσθ
 should be less than a predefined 

threshold. 

The motion panorama construction algorithm consists of three major phases: static 

background generation, background-foreground segmentation (i.e., extraction of moving objects) 

and final panorama composition. During the first phase, the homographies corresponding to the 

motion of the camera are computed for certain frames. The static background for the entire scene 

underlying the video sequence is generated by stitching the individual frames into a single large 

wide-angle panoramic image using these homographies. In the second phase, the dynamic 

foreground, which includes regions corresponding to both, moving objects and false detections in 

the scene, is segmented by warping together three consecutive frames in the video sequence and 

consequently detecting the intensity discrepancy at each pixel location. Finally, the foreground 

objects or regions are pasted back onto the static background using the location information from 

the homographies computed in the first phase and the position coordinates computed during the 

second phase. If the motion panorama is encoded to have the same frame size as the original 

video shot, then there is a significant saving in terms of the amount of data to be transmitted and 

the required bandwidth or bitrate. Note that in the case of motion panorama-based transcoding, 

the frame(s) corresponding to the stationary background need(s) to be transmitted only once or 

very infrequently. Only the frames corresponding to the dynamic foreground need to be 

transmitted in the form of a motion overlay at the required frame rate [Bartoli, 2004]. Since the 
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dynamic foreground regions are relatively few in number, the bandwidth requirement of the 

motion overlay is much lower than that of the original video shot [Bartoli, 2004]. 

Video segments are labeled using semantic concepts selected from a video description 

ontology which, in our current implementation, is a three-level hierarchy of semantic terms, 

depicted in Figure 3.1. The first level in the ontology represents the video category (TV 

Broadcast, Sports, Surveillance, etc.), the second level represents the video program group 

(Broadcast News, Soccer, Basketball, Traffic Surveillance, etc.) and the third level defines the 

various semantic concepts (Anchor, Weather Forecast, Commercial, Replay, Closeup, etc.). The 

hierarchical nature of the video description ontology provides a structural framework for 

representation and storage of the video segments and their transcoded versions. The video 

description ontology enables the generation of a personalized response to a client’s request; one 

that best matches the client’s preference(s) with regard to the video content while simultaneously 

ensuring that the various client-side resource constraints are satisfied.  

 

 

Figure 3.1 Three-level Hierarchy of Semantic Concepts 

TV Broadcast Sports 

News 
Soccer Basketball 

Anchor Forecast Commercial Zoom 
Out 

Close Up Replay 

Video Program 
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3.3.2 Computation of Relevance Value 

In order to measure and evaluate the performance of various video personalization strategies, the 

relationship between the information content of the original video versus the amount of 

information retained in its various transcoded versions needs to be established. This is a complex 

task due to the inherent difficulty in quantifying the amount of information contained within the 

original video and due to the diverse nature of the various transcoded versions of the original 

video. In most cases, the amount of information contained within a video (including its 

transcoded versions) does not necessarily increase linearly with its duration. Although Shannon 

entropy has been used as a measure of pixel-level or feature-level information content of a video 

[Snoek, 2003], the relationship between the low-level feature-based entropy measure of a video 

stream and its high-level semantic content has not been firmly established. 

In Section 3.3.2.1, we discuss how to compute the relevance value of a video segment based 

on the client’s content preference(s). In Section 3.3.2.2 we discuss computation of the relevance 

value of a video summary of a video segment based on its relative duration and the relevance 

value of the original video segment. 

3.3.2.1 Relevance Value of a Video Segment 

Video segments are indexed using semantic terms. Each video segment is assigned a relevance 

value based on the client’s preference with regard to video content. Assume video segment iS is 

indexed by a semantic term iT . In its request, the client specifies a preference for video content 

using a descriptive term labeled as P. The relevance value iV assigned to the video segment iS is 

then given by:  

10),,( ≤≤= iii VPTsimilarityV   (3.0) 
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In the current implementation the similarity is evaluated using the lch semantic similarity 

measurement algorithm [Leacock, 1998]. The lch algorithm measures the length of the shortest 

path between two concepts in the WordNet lexical database and scales the value by the 

maximum is-a path length. 

3.3.2.2 Relevance Value of a Video Summary 

We now discuss how to compute the relevance value of a video summary based on its relative 

duration and the relevance value of the original video segment computed using equation (3.0). 

Although there are many factors that determine the information content of a video, it is 

reasonable to assume that the amount of information or detail contained within a video summary 

is related to its duration. For each video segment, its original version is assumed to contain the 

greatest amount of detail; whereas its summary at the highest level of abstraction is assumed to 

contain the least amount of detail. Typically, the amount of information contained within a video 

summary (relative to original version) does not necessarily increase linearly with its relative 

duration. This is especially true when each indexed video segment is summarized at multiple 

levels of abstraction using algorithms for content-based key frame selection and motion 

panorama computation. 

Each indexed video segment is summarized at multiple levels of abstraction using content-

aware key frame selection and motion panorama computation algorithms. Each video summary 

consists of a set of key frames and motion panoramas. If the image frames are displayed at a 

fixed frame rate, the higher the level of abstraction, the shorter the duration of the video 

summary. This is so because at a higher level of abstraction, fewer image frames are included in 

the video summary. Since the FKP-based and the MMKP-based video personalization strategies 

could potentially include both the original video segments and their summaries, the relationship 
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between the relevance value of the original video segment and that of its summaries needs to be 

first established. 

For each video segment, its original version is assumed to contain the greatest amount of 

detail; whereas its summary at the highest level of abstraction is assumed to contain the least 

amount of detail. It is reasonable to assume that the amount of information contained within a 

video summary (relative to original version) is related to its duration, i.e. 

)/( 00 LLfvv iii ⋅=   (3.1) 

where 0iv is the relevance value of the original video segment, and 0L and iL are the time durations 

of the original video segment and the summarized (or transcoded) video segment respectively. 

The function )/( 0LLf i  represents the relationship between the amount of information contained 

within a video summary relative to the original video segment.  

We propose to use empirical laws to quantify the relationship between the amount of 

information contained in the transcoded videos relative to the original video. The Zipf function, 

sigmoid function and Rayleigh distribution are proposed as plausible mapping functions for 

quantifying the relationship between the amount of information in the transcoded video relative 

to the original video, and are shown to be suitable for different kinds of videos. The performance 

results of the personalization subsystem are shown to vary significantly when different empirical 

mapping functions are used to measure the amount of information contained in the transcoded 

video relative to the original video. 

3.3.2.2.1 The Zipf’s Law-Based Mapping Function 

The first empirical mapping function discussed in this paper is based on Zipf’s law [Wheeler, 

2002]. For some categories of videos, such as broadcast news, most of the information is 

revealed in a video segment spanning the first 20%-30% of the video stream. For example, 
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consider a broadcast news video wherein a news anchor summarizes the news events at the 

beginning of the video clip followed by a detailed field news video. This observation justifies the 

use of the Zipf function to quantify the relationship between the amount of information contained 

in the transcoded (or summarized) videos relative to the original video. The mathematical 

definition of the Zipf function [Wheeler, 2002] is given by:  

sNsk HHI ,, /=   (3.2) 

where I (expressed as a percentage) is the amount of information contained within a video 

summary relative to the original video segment, N is the set of all possible discrete durations of 

the video summary, Nk ∈ is the duration of a video summary, Rss ∈> ,0 is the characteristic 

parameter of the Zipf function and skH , is the kth generalized harmonic number. When 0=s , the 

information content of a video summary increases linearly (i.e., at a constant rate) with its 

duration. 

Equation (3.2) is a definition of the discrete Zipf function. In our application, the relative 

(i.e., normalized) duration of a video summary is a continuous variable in the range [0, 1]. To use 

the Zipf function defined in equation (3.2), the following approximation and linear transform are 

used. Let normL denote the normalized and discrete video duration where 

}00.1,99.0,...,02.0,01.0{∈normL and let 100=N . Then the following linear transform maps the 

values of normL to k, i.e., 

)( NLroundk norm ×=   (3.3) 

Figure 3.2 shows a plot of the relative information content of a transcoded video versus its 

normalized duration. The relative duration and relative information content of the transcoded 

video are normalized to lie within the range [0, 1] based on the duration and information content 
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of the original video respectively. The parameter s is set to values 0, 0.5, 1.0 and 1.5 respectively 

where s = 0 denotes a special case when the Zipf function degenerates to a linear mapping.  The 

derivative of the Zipf function in equation (3.2) can be considered as the incremental information 

∆I introduced by a video segment whose duration is incremented by ∆L and is given by: 

sN

s

L H
k

L
LILLII

,
0

/1)()(lim' =
∆

−∆+
=

→∆
  (3.4) 

Figure 3.3 plots 'I  as a function of relative duration when the linear transform in equation 

(3.3) is performed. Figure 3.3 can be seen to be a depiction of the commonly observed law of 

diminishing marginal (incremental) return which further justifies our assumption that the Zipf’s 

law-based mapping function is suitable for categories of videos wherein most of information is 

revealed in the first 20%-30% of the video segment. 
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Figure 3.2 Relative Information Content of a Transcoded Video Segment versus 
Normalized Video Segment Duration: Zipf Function 
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Figure 3.3 Incremental Information Content versus Normalized Video Segment Duration: 
Zipf Function 

 
 
 

3.3.2.2.2 The Sigmoid Mapping Function 

The family of sigmoid functions [Uykan, 2000] is another category of functions we propose to 

use in order to quantify the information content in a transcoded video segment relative to the 

original video segment. This family of functions is suitable for categories of videos wherein the 

middle 20%-30% of the video segment accounts for most of the information content.  

Equations (3.5) and (3.6) describe the sigmoid function family and their corresponding 

derivatives respectively, where 0>α  is the characteristic shape parameter of the sigmoid 

function and the parameter L is dependent on the duration of the video segment. Analogous to 

the parameter s  in the Zipf’s law, the parameterσ  regulates the shape of the sigmoid function: 

Le
I α−+
=

1
1     (3.5) 
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When ]6,6[−∉L , the function values in equations (3.5) and (3.6) are observed to be less than 

5% of their corresponding maximum values. Thus, in the context of our application, it suffices in 

terms of precision, to truncate the domains of the functions I and I' such that ]6,6[−∈L . The 

duration of the video segment is normalized, such that the normalized duration ]1,0[∈normL . In 

order to map the normalized duration ]1,0[∈normL  to  the parameter ]6,6[−∈L in equations (3.5) 

and (3.6), the following function is used: 

612 −×= normLL    (3.7) 
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Figure 3.4 Relative Information Content of a Transcoded Video Segment versus 
Normalized Video Segment Duration: Sigmoid Function 
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Figure 3.5 Incremental Information Content versus Normalized Video Segment Duration: 
Sigmoid Function 

 
 
 

Figures 3.4 and 3.5 show the plots of the sigmoid function for different values of α  (equation 

(3.5)) and the corresponding derivatives (equation (3.6)) respectively. In Figures 3.4 and 3.5, the 

x axis denotes normalized duration Lnorm from which the corresponding value of L in equations 

(3.5) and (3.6) respectively is computed using equation (3.7).  

3.3.2.2.3 The Cumulative Rayleigh Distribution-based Function 

The Rayleigh distribution [Papoulis, 1984] is another plausible mapping function that can serve 

to quantify the relationship between the information content of the original video and that of its 

transcoded versions. Unlike the sigmoid family of functions, the incremental information 

governed by the Rayleigh distribution is skewed to the left. This characteristic makes the 

Rayleigh distribution suitable for videos in which most of the information is revealed in the 

earlier portions of the video segment, but not necessarily at the beginning. Equations (3.8) and 
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(3.9) give the definitions of the cumulative Rayleigh distribution and its derivative (i.e., the 

standard Rayleigh distribution) respectively where L is video segment duration and 0>σ  is the 

characteristic parameter of the Rayleigh distribution. 

2

)2/( 22

σ

σLeLI
−⋅

=    (3.8) 

)2/( 22

1' σLeI −−=    (3.9) 
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Figure 3.6 Relative Information Content of a Transcoded Video Segment versus 
Normalized Video Segment Duration: Cumulative Rayleigh Distribution 

 
 
 

Figure 3.6 and Figure 3.7 plot the function curves of I (equation (3.8)) and I' (equation (3.9)) 

respectively where the video segment duration is normalized. The values of the functions I 

(equation (3.8)) and I' (equation (3.9)) are observed to be less than 5% of their corresponding 

maximum values for ]10,0[∉L . Thus in the context of our application, it suffices, in terms of 
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precision, to truncate the domains of functions I and I' such that ]10,0[∉L . The normalized video 

segment duration ]1,0[∈normL  is mapped to the parameter ]10,0[∈L  in order to compute the 

values of the cumulative Rayleigh distribution (I) and the Rayleigh distribution (I') using the 

following linear transform:  

10×= normLL     (3.10) 
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Figure 3.7 Incremental Information Content versus Normalized Video Segment Duration: 
Rayleigh Distribution 

 
 
 

3.4 Video Personalization Strategies 

The objective of video personalization is to present a customized or personalized video summary 

that retains as much of the semantic content desired by the client as possible but within the 
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resource constraints imposed by the client. The client typically wants to retrieve and view only 

the video content that matches his/her content preference(s). In order to generate the personalized 

video summary, the client preference(s), the client usage environment and client-side resource 

constraints need to be considered. The personalization engine compiles the optimal video content 

(i.e., the most relevant set of video summaries) for the client that satisfies his/her resource 

constraints. With a view towards optimizing the delivered information content while satisfying 

multiple client-side resource constraints, this paper presents the design and implementation of an 

MMKP-based video personalization strategy to generate a customized response to a client’s 

request.  

Compared to the 0/1KP-based and the FKP-based video personalization strategies presented 

in [Merialdo, 1999], [Tseng, 2003] and [Tseng, 2004], the proposed MMKP-based video 

personalization strategy is shown to include more relevant information in its response to the 

client’s request. The MMKP-based personalization strategy is also shown to satisfy multiple 

client-side resource constraints, in contrast to the 0/1KP-based and the FKP-based 

personalization strategies which can only satisfy a single client-side resource constraint at a time.  

3.4.1 Video Personalization as Constrained Optimization 

The input videos are first segmented and indexed using semantic terms selected from a video 

description ontology as described earlier. Each video segment is assigned a relevance value 

based on the client’s preference with regard to the video content. Let the set },...,{ 21 nSSSS =  

denote the video segments that are stored in the video database, where iS  denotes the ith video 

segment and n is the total number of candidate video segments to be included in the response to 

the client’s request.  Video segment iS  is indexed by a semantic term iT  selected from the video 

description ontology. In its request for video content, the client specifies a preference for video 
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content using a semantic term P. A relevance value iV is assigned to the video segment and is 

given by 10),,( ≤≤= iii VPTsimilarityV . In the current implementation the similarity function 

is computed using the lch similarity measure algorithm [Leacock, 1998]. The lch similarity 

measure algorithm measures the length of the shortest path between two semantic concepts, and 

scales the value by the maximum is-a path length in the WordNet lexical database [Fellbaum, 

1998] 

In the following sections, we describe the 0/1KP-based, the FKP-based and the MMKP-

based video personalization strategies and compare their relative performance. 

3.4.2 Video Personalization Modeled as the 0/1KP 

Merialdo et al. [1999] propose that video personalization be formalized as a constrained 

optimization problem that is modeled as the classical 0/1 Knapsack Problem (0/1KP) given by:  

∑
∈ i

ini
V )(max

},...,2,1{
, 

subject to  

∑ ≤
i

i TL    (3.11) 

where iL is the duration of video segment i and T is the client video viewing time limit. To solve 

the 0/1KP, a dynamic programming algorithm can be used. The dynamic programming algorithm 

for the 0/1KP has a time complexity of )(nTO . Video segments included in the server’s 

response to the client’s request are of the original (i.e., non-transcoded) quality. However, some 

of the video segments which are excluded in the server’s response may still contain some 

information of potential interest or relevance to the client. The 0/1KP-based video 

personalization algorithm does not include this information. 
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3.4.3 Video Personalization Modeled as the FKP 

A fractional portion of a video segment could be included in the set of video segments compiled 

by the personalization module. The video segment is transcoded to enable it to fit within the 

limits of the available viewing time. In this case, video personalization is formulated as a 

constrained optimization problem that is modeled on the following fractional knapsack problem 

(FKP). 

∑
∈ i

iini
Vx )(max

},...,2,1{
,  

subject to  

∑ ≤
i

ii TLy    (3.12) 

where T is the client video viewing time limitation, iL  is the temporal length of video segment 

iS , and ]1,0[, ∈ii yx . The above FKP can be solved by using a greedy algorithm. Video 

segments are sorted in decreasing order of their Value_Intensity as computed in equation (5.3), 

where iV is the relevance value and iL is the time duration of video segment iS .  

ii LVsityVauleInten /=   (3.13) 

Video segments with high Value_Intensity values are selected first. A fractional portion of a 

video segment may be included in the set of video segments compiled by the personalization 

module. Although the FKP-based optimization scheme can include transcoded video segments, 

some potentially relevant videos could excluded in the server’s response. This can be attributed 

to the basic nature of the constrained optimization problem posed by the FKP and the greedy 

algorithm used to solve it. The complexity of FKP is )(nO . 
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3.4.4 Video Personalization Modeled as the MMKP 

Multimedia content can be represented at different levels of abstraction. The various levels of 

abstraction describe semantic video content in a hierarchical fashion. In the context of video 

personalization, the original video segment is considered to be associated with a discrete set 

consisting of its various transcoded versions. Each transcoded version is deemed to represent the 

semantic information content of the original video segment at a certain predefined level of 

abstraction. Furthermore, client-side resource constraints are typically multi-dimensional, i.e., in 

addition to constraints on the client’s viewing time, there typically are constraints on other client-

side resources, such as available battery energy, client bandwidth and video display quality. 

Thus, the amount of relevant information included in the personalized video in response to a 

client’s request needs to be maximized subject to multiple resource constraints. This version of 

the video personalization problem is modeled along the Multiple-choice Multi-dimensional 

Knapsack Problem (MMKP) [Khan, 1998] [Akbar, 2001], [Hernandez, 2005] and is formulated 

as follows: 

 

 

 

Figure 3.8 Representation of a Content Group at Multiple Levels of Abstraction 
 

Abstraction 
Level 
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Each video segment iS  is transcoded into il versions, denoted as },...,2,1{, iij ljS ∈ . The 

original video segment and its transcoded versions constitute a content group at multiple levels 

of abstraction, as shown in Figure 3.8. Each item within a content group is a video segment. 

Each transcoded version is associated with a relevance value and is deemed to require m 

resources. The objective of the MMKP-based video personalization strategy is to select exactly 

one item from each content group in order to maximize total relevance value of the selected 

segments, subject to m resource constraints determined by the client. Let ijv  be the relevance 

value of the jth version of the video segment iS , ),...,,( 21 ijmijijij rrrr =v  be the required resource 

vector for the jth version of the video segment iS  and ),...,,( 21 mRRRR =
v

 be the resource bound 

of the knapsack representing the m resources. The problem therefore is to determine 

)max(
1 1
∑∑
= =

=
n

i

l

j
ijij

i

vxV  

subject to 

∑∑
= =

=≤
n

i

l

j
kijkij

i

mkRrx
1 1

,...,2,1,  

and 

}1,0{,1
1

∈=∑
=

ij

l

j
ij xx

i

   (3.14) 

Based on the above formulation of the MMKP-based video personalization strategy it is 

obvious that more items can be added to a content group without requiring any other changes to 

the video personalization system. The modularity and extensibility of MMKP-based video 

personalization strategy is one of its salient features.  
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The MMKP is known to be an NP-hard problem [Hernandez, 2005]. The exact solution to 

the MMKP can be obtained using a brand-and-bound integer programming (BBIP) algorithm 

[Vanderbei, 1997]. In order to use the BBIP algorithm for solving the MMKP, we follow the 

approach of Hernandez et al. [2005] and cast the MMKP as a multi-dimensional knapsack 

problem (MKP). Let us define ∑
=

=
n

i
ilq

1
, ∑

=

=
h

i
ih lL

1
, and 00 =L . Let us also define jLz i += −1 . 

Hence '
zij xx =  and '

kzkij rr = . We define the coefficients for the equality constraints as follows. In 

the hth equality constraint, if the new variable '
zx  is observed to belong to the hth content group, 

then the coefficient 1' =hza ; otherwise 0' =hza . In this case the MMKP can be rephrased as: 

Determine 

)max(
1

''∑
=

=
q

z
zz xvV  

subject to 

mkbxr k

q

z
zkz ,...,2,1,'

1

'' =≤∑
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and 

}1,0{,,...,2,1,1 '

1

''

1

∈==∑
−+=

z

L

Lz
zh xmhxa

h

h

   (3.15) 

For the sake of simplicity and in order to follow standard notation, we will denote variables 

and coefficients by dropping the accent sign. The MMKP is then expressed as:  

Determine 

V = )max(
1
∑
=

q

z
zz xv  

subject to 
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h

  (3.16) 

In order to use the BBIP algorithm in Matlab, we reformulate the MMKP using vector and 

matrix notations as follows:  

Determine  

)max( xvV T ⋅=  

subject to 

bxR ≤⋅  and 1=⋅ xA     (3.17) 

Both v  and x are vectors of size 1×q , R is a qm× array such that kzkz rR = and A is a qn× array 

such that hzhz aA = . The MMKP as formulated above can be solved using the BBIP algorithm in 

Matlab [Vanderbei, 1997]. Since the MMKP known to be an NP-hard problem, the worst-case 

time complexity of the BBIP algorithm used to solve the MMKP is exponential in n, m, and il  

where n is the number of content groups, m is the number of resource constraints and il is the 

number of items in the i-th content group of the MMKP problem [Hernandez, 2005], [Khan, 

1998]. 

3.4.5 Performance Metric 

In order to measure and compare the performance of the various video personalization strategies, 

the sum of relevance values of all video segments included in the response is used as the 

performance metric, i.e. ∑
∈responsei

iv  For a transcoded video segment, its relevance value iv is defined 

in equation (3.1). 
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3.5 Experiment Results 

3.5.1 Video Database 

The CNN Headline News video was first segmented and indexed using the stochastic multi-level 

HMM-based algorithm. Each video segment was labeled with terms selected from a predefined 

video content description ontology. Video segments were transcoded at multiple levels of 

abstraction and then stored in a hierarchical video database. In order to use the proposed 

personalization evaluation metric, key frame-based transcoding was performed such that the 

original video and its transcoded versions have the same spatial resolution, although their time 

durations are different. Based on the client’s request and client-side resource constraints, the 

video personalization system was designed to select an optimal set of video segments from the 

database in response to the client’s request. The sum of relevance values of the video segments 

included in the server’s response was used to measure and compare the performance of the 

various video personalization strategies. 

3.5.2 Relevance Values of Video Items 

In order to use the proposed personalization evaluation metric defined in equation (3.19), it is 

necessary to assign relevance values to video items. For the original video segment, the relevance 

value is computed using equation (3.0). The lch semantic similarity algorithm [Leacock, 1998] is 

used to compute the semantic similarity between the video segment’s label and the client’s 

content preference. As discussed in Section 3.3, for video summaries we use the empirical 

mapping functions defined in equations (3.2), (3.5) and (3.8) to compute their relevance values. 

The sum of relevance values of the video items included in the response to the client’s request is 

used to quantify and compare the performance of the various video personalization strategies. 
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3.5.3 Experimental Results 

For the purpose of experimentally comparing the performance of the various aforementioned 

video personalization strategies, we set the client’s content preference to a fixed semantic 

concept, i.e., News. The video personalization module is designed to generate a response 

consisting of a set of video items using the various aforementioned personalization strategies.  

The Zipf’s law-based, the sigmoid function-based and the cumulative Rayleigh distribution-

based mapping functions are used to compute the relevance values of the video items included in 

the response to the client’s request. We choose the semantic concept News primarily, because our 

video database contains a large number of fairly diverse News video segments. This ensures that 

our experiments do not exhibit a bias for or against any of the proposed empirical mapping 

functions.  

In the client’s request to the server, the client specifies its content preference, i.e., the 

semantic concept News in our experiments. The client also specifies its viewing time limit as a 

client-side system-level constraint. It should be noted that although the MMKP-based video 

personalization strategy can support multiple client-side system-level constraints, the 0/1KP-

based and the FKP-based video personalization strategies can only handle a single client-side 

system-level constraint at a time. In order to experimentally compare the performance of the 

0/1KP-based and the FKP-based video personalization strategies with that of the MMKP-based 

video personalization strategy, the client viewing time limit is the single client-side system-level 

constraint used for all three video personalization strategies in all of our experiments. 

 In Figure 3.9(a), the Zipf function and linear transform defined in equations (3.2) and (3.3) 

respectively are used to compute the relevance values of the video summaries based on their time 

durations and the relevance values of the original video segments. The total relevance value of 
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the response to the client’s request is plotted against the client’s video viewing time limit. In 

Figure 3.9(a), the characteristic parameter s of the Zipf function is set to zero. As defined in 

equation (3.15), the MMKP-based video personalization strategy selects one item from each 

content group where an item is defined as one of the video segments or video summaries in a 

content group. Hence more video items are included in the response generated by the MMKP-

based video personalization strategy compared to the 0/1KP-based and FKP-based video 

personalization strategies. Note that in the response generated by the MMKP-based video 

personalization strategy, numGroupsVIsize selected =)( . This implies that when the number of 

candidate content groups is large, the time durations of the video segments and/or video 

summaries included in the response are short, since more video items are included by the 

MMKP-based strategy within a prespecified viewing time limit.  It is observed in Figure 3.1, that 

when 0=s , the relative information content of a video summary increases linearly with its time 

duration under the Zipf mapping function. In this case, the total information content of these 

short video segments or video summaries in the response to the client’s request generated by the 

MMKP-based video personalization strategy is generally less than that of those included in the 

response generated by the FKP-based video personalization strategy.  However, if we assume 

that beginning portion of a video segment contains the major portion of its information content, 

for example when 0.1=s , then the short video segments selected by MMKP-based 

personalization strategy contain more relevant information than those contained in the responses 

generated by the FKP-based and 0/1KP-based personalization strategies, as shown in Figure 

3.9(b). 

The proposed system also provides a test bed for various video personalization strategies. In 

Figures 3.9(c) and 3.9(d), we use the sigmoid function-based and the cumulative Rayleigh 
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distribution-based mapping functions defined in equations (3.5) and (3.8) respectively to 

quantify the relative information content of transcoded (summarized) videos with respect to their 

original versions. Figure 3.9(c) depicts the performance of the various video personalization 

strategies when the sigmoid function-based mapping function is used to model the relative 

information content of the transcoded (summarized) video segments. The parameter α of the 

sigmoid function is set to 1. As shown in Figure 3.4, in the case of the sigmoid function, the 

central portion of a video segment is considered to contribute more information than the 

remaining portions of a video segment. The short video segments or video summaries selected 

by the MMKP-based personalization strategy contain less total information than the longer video 

segments or video summaries included in the responses generated by the FKP-based 

personalization strategy. When the cumulative Rayleigh distribution-based mapping function is 

used to model the information content in video summaries, as illustrated by Figure 3.6, more 

information is contained in the beginning portions of a video. Thus, more information is 

contained in the shorter video segments or video summaries in this case. In Figure 3.9(d), since 

more video segments or video summaries are included in the response generated by the MMKP-

based personalization strategy than the responses generated by the FKP-based and 0/1KP-based 

personalization strategies, the MMKP-based personalization strategy yields a response with the 

highest total relevance value. In summary, the MMKP-based video personalization strategy is 

observed to generate a response with a higher overall relevance value when the Zipf law-based 

and Rayleigh-based mapping functions are used to model the information content of transcoded 

(summarized) video segments relative to the original video segments. 
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(a) Using the Zipf Function, 0=s  
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(b) Using the Zipf Function, 0.1=s  
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(c) Using the Sigmoid Function, 0.1=α  
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(d) Using the Rayleigh Distribution, 0.2=σ  
 
Figure 3.9 Total Relevance Value of the Response versus the Client Viewing Time Limit 
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A principal advantage of the proposed MMKP-based video personalization strategy is that it 

can satisfy multiple client-side resource constraints simultaneously whereas both the FKP-based 

and 0/1KP-based video personalization strategies can only satisfy a single client-side resource 

constraint at a time. In Figures 3.9 (a)-(d), the client-side resource constraint is the client’s 

viewing time limit. Figure 3.10 shows the experimental results of the MMKP-based 

personalization strategy when the client has two resource constraints, i.e., a viewing time limit 

and a limit on the total amount of data received. The Zipf function with 0=s is used in this case. 

The received data is limited to at most 3 KBytes for each second of the received video stream.  

The data limit constraint is held constant (at 3 KBytes for each second of the received video 

stream) whereas the viewing time limit constraint is varied. As seen in Figure 3.10, when the 

viewing time is less than 150 seconds, the response to the client’s request contains no video 

segment, resulting in a null response. This is so because in each of the content groups, there is no 

video item of size less than 450 Kbytes (= 3 Kbytes per second × 150 seconds). When the client’s 

viewing time limit is large enough (greater than 150 seconds in our experiment), it is possible to 

include video segments or video summaries which satisfy the data limit constraint in the 

response to the client’s request. It is clear that when both constraints need to be satisfied, the 

response contains less video information compared to the case wherein the client viewing time is 

the only constraint.  Thus, the solutions obtained when only a single resource constraint is 

satisfied at a time and when both resource constraints are simultaneously satisfied, are 

substantially different. The FKP-based and 0/1KP-based personalization strategies cannot handle 

such multiple constraints simultaneously and are forced to satisfy individual constraints one at a 

time. Since different resource constraints, when employed individually, yield different solutions, 

determining the optimal combination of these solutions to satisfy multiple resource constraints 
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simultaneously becomes an important (and difficult) issue in the case of the FKP-based and 

0/1KP-based personalization strategies.  This issue is obviously moot in the case of the MMKP-

based personalization strategy since it is inherently equipped to satisfy multiple client-side 

resource constraints. 
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Figure 3.10 Performance of the MMKP-based Personalization Scheme under the Viewing 
Time Limit Constraint and under both, the Viewing Time Limit Constraint and the Data 

Limit Constraint (≤ 3 Kbytes for each second of received video) 
 

 

The proposed 0/1KP, FKP and MMKP-based video personalization algorithms are 

implemented on a Dell Precision workstation with dual 3.19GHz CPUs and 2.0 GB of RAM. In 

the video database, there are 172 video content groups. Each video content group has three items. 

When the client specified viewing time is 90 seconds, it takes 31 milliseconds, 16 milliseconds 
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and 1234 milliseconds for the video personalization algorithm modeled along the 0/1KP, FKP 

and MMKP respectively. 

3.6 Conclusions 

In order to provide a resource-constrained client with its preferred video contents, it is often 

necessary to perform video personalization. The original video contents are personalized or 

adapted in order to best fulfill the client’s request while simultaneously satisfying various client-

side system-level constraints, such as viewing time limit, data limit, transmission bandwidth etc. 

In the proposed scheme, video segments are indexed and summarized at multiple levels of 

abstraction. In order to compare the information content of the transcoded or summarized video 

segments relative to their original versions, certain empirical mapping functions are employed. 

These mapping functions share a common characteristic, i.e. the incremental gain in the 

information content of a video segment diminishes with its total duration. This is in conformity 

with the commonly observed law of diminishing marginal return. The Zipf’s law-based, the 

sigmoid function-based and the cumulative Rayleigh distribution-based mapping functions are 

used to compute the relevance values of video summaries given their time durations and the 

relevance values of the corresponding original video segments. 

The primary task of the video personalization subsystem is to generate an optimal response to 

the client’s request, i.e., one which maximizes the total relevance value of the response, while 

simultaneously satisfying multiple client-side system-level constraints. The video personalization 

problem is formulated as one of constrained optimization that is modeled along various versions 

of the classical Knapsack Problem (KP). The 0/1 Knapsack Problem (0/1KP)-based and 

Fractional Knapsack Problem (FKP)-based video personalization strategies have been described 

in the literature. In this paper, we have formulated  and implemented a Multiple-Choice Multi-
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Dimensional Knapsack Problem (MMKP)-based video personalization scheme as a means to 

maximally include as much relevant information as possible in response to the client’s request, 

while satisfying multiple client-side system-level constraints. Experimental results show that 

when the beginning portions of a video segment contain more information than the rest of the 

video, the proposed MMKP-based optimization strategy yields a response with higher total 

relevance value compared to the 0/1KP-based and FKP-based video personalization approaches. 

Furthermore, this work represents a first attempt to provide a numerical performance metric for 

the evaluation of various video personalization strategies. Furthermore, the proposed MMKP-

based video personalization strategy is shown to be capable of simultaneously handling multiple 

client-side system-level constraints. In constrast, the existing FKP-based and 0/1KP-based 

personalization strategies can only handle a single client-side constraint at a time. 

Future work would include studies to validate the selection of the proposed empirical 

mapping functions. Future work would also seek to apply the proposed client-centered video 

personalization system to a wide collection of video data to test its robustness and extensibility. 

Furthermore, human subject evaluation of the generated responses to the client’s request also 

needs to be explored in order to further validate this work. 

 



 

 

CHAPTER 4 

MULTIPLE CLIENT REQUEST AGGREGATION 

 

4.1 Introduction 

In the video personalization system, requests are from multiple clients. To fulfill each of these 

requests, the server needs to consume a certain amount of its resources, such as computing time 

and network bandwidth. When there are a large number of clients sending their requests to the 

server, the average client-experienced latency is long if every client request is processed 

individually.  

The proposed client request aggregation strategy clusters similar client requests together such 

that the number of requests sent to the server is reduced, reducing the average client latency. The 

client requests are heterogeneous in multiple dimensions, i.e. they are different in their video 

content preferences, and in client-side constraints. A multi-stage clustering strategy is proposed 

to group similar request together one dimension at a time. 

Existing video personalization research in the literature only addresses the single-client 

situation. We proposed the multi-stage clustering-based request aggregation strategy to reduce 

the server load and hence to improve the client-experienced latency. Client service request 

aggregation techniques have been discussed in large scale interactive multimedia service systems 

[Bommaiah, 2000], [Wu, 2005], [Venkatesh, 1995], [Bradshaw1, 2003]. These applications are 

characterized by large client population and high access intensity. Most of the existing works 

address efficient utilization of network channel resources [Hua, 1997], [Sen, 1999]. In the 
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context of video personalization, the process of finding and compiling the personalized video 

content consumes significant server computing power. Hence it is necessary to reduce the 

number of client requests the server needs to process in order to improve the client experienced 

mean latency. We propose the multi-stage client request aggregation strategy to group similar 

requests to reduce the number of requests the multimedia server needs to process. Our work 

serves as a high-level extension of the existing video-on-demand works. The number of 

multimedia streams is reduced such that network-level delivery techniques can be used to 

efficiently deliver multimedia streams to clients. 

Different approaches to cluster data have been investigated [Jain, 1999]. Cluster analysis is a 

well-established research area in pattern recognition that has numerous applications in the areas 

of archaeology, astronomy, biology, medicine, market research, and psychiatry, among others 

[Willett, 1988],[Everitt, 2001]. Cluster analysis is also considered as one of the unsupervised 

machine learning methods, which do not use class information in learning. Most of the cluster 

analysis research in the area of information retrieval has considered the clustering of terms 

[Salton, 1989], and query expansion [Baeza, 1999]. K-means and hierarchical clustering are the 

most commonly used algorithms. 

The hierarchical clustering algorithm has been applied in information retrieval [Everitt, 

2001], and its time complexity is )( 2nO . The k-means algorithm is popular because it is easy to 

implement, and its time complexity is )(nO , where n is the number of patterns [Faber, 1994]. In 

order to measure the dissimilarity between semantic terms, cosine dissimilarity is commonly 

used in text segmentation and computational linguistics [Malioutov, 2006]. 

The remainder of the chapter is organized as follows. Section 4.2 provides details of the 

proposed multi-state client request aggregation strategy. In Section 4.3, experimental results of 
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the proposed multi-stage client request aggregation are provided as well. Section 4.4 concludes 

the paper with an outline for future work. 

4.2 Client Request Aggregation 

4.2.1 K-mean Clustering Algorithm 

The k-means is the most commonly used clustering algorithm since it is easy to implement and 

effective in many applications. Its complexity is )(nO , where n is the number of patterns. K-

means clustering tries to partition data points such that the within-cluster distance is minimized. 

The k-means algorithm is described as follows. 

1. Randomly initialize N cluster centers. 

2. For each data point, find the closet cluster center to the point. 

3. Calculate the centroid of each cluster. 

4. Use the centroids as new cluster centers. 

5. Repeat step 2, until the difference of centroid of clusters is less than a threshold. 

Inputs to the k-means clustering algorithm include dissimilarity measures, clustering criterion 

and number of clusters. The dissimilarity measure is fundamental to the definition of a cluster. It 

measures the distance of every pair of elements. In our application, we propose to use the 

Euclidean and cosine distance for client constraint and video content preference clustering 

respectively. Consine distance has been used to measure dissimilarity of linguistic terms 

[Malioutov, 2006]. Client video content preferences are represented by linguistic terms too. 

Hence cosine distance is suitable for the case. Client constraints such as viewing time and 

bandwidth limits are numerical. It is suitable to use the Euclidean distance to measure the 

dissimilarity of them. 
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The k-means aims to minimize the sum of squared distances of elements to centroid of 

clusters by mapping elements to clusters (patterns). Since silhouettes can be calculated with any 

clustering algorithm and any dissimilarity, it is suitable in the context of client request 

aggregation [van der Laan, 2002] to measure the performance of clustering. It is a real valued 

function of the cluster labels that measures how similar elements are within clusters and how 

different elements are between clusters. The silhouette for a given element is calculated as 

follows. For each element j, calculate the average dissimilarity ja  of element j with other 

elements of its cluster. For each element j and each cluster l to which it does not belong, 

calculate the average dissimilarity jlb of element j with the members of cluster l. The silhouette 

of element j is defined by the formula: 

),max( jj

jj
j ba

ab
S

−
=    (4.1) 

The k-means clustering requires a user-specified number of clusters. Currently available 

methods of selecting the number of clusters consist of optimizing the average silhouette 

[Kaufman, 1990]. Heuristically, the average silhouette measures how well matched an element is 

to the other elements in its own cluster versus how well separated the clusters are. This measure 

ranges from +1 to -1. +1 indicates elements are very distant from neighboring clusters, while -1 

indicates elements are probably assigned to wrong clusters. 

4.2.2 Hierarchical Clustering Algorithm 

A hierarchical clustering is a sequence of partitions in which each partition is nested into the next 

partition in the sequence. The hierarchical clustering algorithm is described as the following 

pseudo code. Assume there are N data points, 

1. Initially assign the N data points to N clusters. 
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2. Calculate pair-wise distances of all clusters. 

3. Find the pair of clusters with the closet distance, and combine them into one cluster. 

4. Repeat steps 2 and 3 until there is only one cluster. 

A hierarchical cluster structure is converted into a partition by selecting one of the fusion or 

division levels of the structure, which is equivalent to “cutting” the hierarchical linkage structure 

at a particular height. In order to decide the optimal number of clusters, we apply the inconsistent 

coefficient [Kawa, 2005] to the dendrograms created by the hierarchical clustering. The 

inconsistent coefficient for the i-th linkage level is defined as follows. 

i

i
ic

σ
αα −

=    (4.2) 

where α  and iσ  are the mean and standard deviation of the heights of linkages below level i 

respectively, iα  is the height of the linkage at the i-th level. Cutting the hierarchical linkage 

structure at height between level )max( ic  and the level immediately before )max( ic  yields the 

best partition. Figure 4.1 shows an example of finding the best cut of the hierarchical linkage 

structure. Data points are (1,1), (1.2, 1.2), (0.95,0.95), (2,2), (2.3,2.3), (1.9,2.1), and (1.8, 1.9). 

The maximum inconsistency coefficient ( =1.1406) is found at the first level. Thus the best cut is 

to divide the set of data points into two clusters. 

Similar to the k-means clustering algorithm, the dissimilarity measure is fundamental to the 

definition of a cluster. In our application, we propose to use the Euclidean and the cosine 

distance for client constraint and video content preference clustering respectively. 
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Figure 4.1. An Example of Finding the Best Cut of Clusters 

 

4.2.3 Multi-stage Client Request Aggregation 

Client requests for personalized videos are heterogeneous in nature. Heterogeneity can appear in 

the following three forms. 

1. Arrival time heterogeneity: Client requests tend to arrive at different time instances. 

2. Video object heterogeneity: The client video content preferences are different. 

3. Client-side constraint heterogeneity: Each client request is associated with a set of client-

side constraints. These client-side constraints tend to be different. 

The goal of the proposed multi-stage client request aggregation strategy is to reduce the 

number of requests sent to the server. Since the multi-dimensional heterogeneous nature of the 

Best Cut 
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client requests, it is more feasible to cluster them one dimension at a time. The proposed multi-

stage client request aggregation strategy consists of the following steps, shown in Figure 4.2. 

 

 

 

Figure 4.2 Multi-stage Client Request Aggregation 

 

Step 1: Batching by time. Batching by time is to group multiple client requests arrived within a 

time window to form a group, termed batch group. 

Step 2: Preference clustering. Client requests in a batch group with similar video content 

preferences are clustered into content service groups at this stage. Details of preference 

clustering are as follows. 

Let q denote the ordered set of semantic terms used to index video segments, Q denote the 

ordered set of semantic terms clients can use in their requests to represent the clients’ video 
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content preferences, and Qq ⊆ . Also assume the similarity matrix )()( QsizeqsizeS ×  defines the 

similarity of semantic terms, where 10 ≤≤ ijs  is the semantic similarity of term qti ∈  and term 

Qt j ∈ . ijs  is calculated using the same lch algorithm. Let T  be the semantic term used in the 

client video content preference, and the index of term T in the ordered set Q  is k, then the client 

content preference vector cP is defined as follows. 

),...,( )(21 kqsizekkc sssP =    (4.3) 

where )(1, qsizeisik ≤≤ is the semantic similarity between term qti ∈ and term Qtk ∈ , and can be 

obtained from the similarity matrix )()( QsizeqsizeS × . The preference clustering algorithm uses the 

cosine dissimilarity of a pair of client query content preference vectors 
1cP and 2cP to measure the 

distance of the pair of client video content preferences, as defined in equation (4.4). 

21

21
21 ),(

cc

cc
cc PP

PPPPsim
×
•

=   (4.4) 

The k-means and hierarchical clustering algorithm is used to cluster client requests with similar 

content preference into a group, termed as content service group.  

The number of the content service groups is adjusted in experiments. We propose to use the 

average silhouette as the criterion to determine the optimal number of content service groups the 

k-means clustering algorithm generates. For every uniqueNk <≤2 , where uniqueN is the number of 

unique client video content preferences in a batch group, the k-means partitions content 

preference vectors into k groups, and the average silhouette is calculated. The k which yields the 

maximum average silhouette value by k-means is denoted as preference
optimalk . 

In experiments, in order to control the performance of the client aggregation system, the number 

of preference clusters generated from a batch group is defined as follows: 
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PAFkN preference
optimalpc ×=   (4.5) 

where 
pcN is the number of preference clusters generated from a batch group, ck is the optimal 

number of client preference clusters, and PAF stands for Preference Aggregation Factor, 

10 ≤≤ PAF  

Step 3: Client-side constraint clustering. Client requests within a content service group are 

clustered further based on client-side constraints to form a set of service groups. In the 

experiments presented in this work, client requests with close video viewing time limit are 

clustered together using the clustering algorithm. 

In the context of client constraint clustering, the dissimilarity measure of client viewing time 

limit is the Euclidean distance. The optimal number of service groups generated by the client 

constraint clustering algorithm is denoted as VT
optimalk , and is determined by the average silhouette 

of the k-means partition. In experiments, the number of service groups (viewing time limit 

clusters) is adjusted as follows. 

CAFkN VT
optimalvtc ×=   (4.6) 

where vtcN is the number of service groups (viewing time limit clusters) generated for a content 

service group. CAF stands for Constraint Aggregation Factor, 10 ≤≤ CAF . 

4.2.4 Service Group Representation 

The multimedia server takes care of the set of client requests in a service group as a whole, i.e. 

only one video response is generated for all clients’ requests in a service group. In order to 

represent the set of client requests in a service group, the video content preference which is the 

closest to the centroid of the service group is selected. The representative client viewing time and 
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allowed bandwidth constraint is the mean values of these parameters specified by the set of client 

requests in a service group. 

4.2.5 Performance Metrics 

In order to measure the performance of the proposed client request aggregation strategy, the 

overall client-server relationship is modeled as the following single queue with one server.  

 

 

Figure 4.3 Single Queue Single Server Model for Client Request Aggregation Performance 
Evaluation 

 
 

The following metrics are used to evaluate the performance of the proposed client request 

aggregation strategy. 

1. Mean client-experienced latency (in seconds): The latency is defined as the duration of 

the interval between the time when the client sends a request to the server and the time when the 

client starts to receive video feedback from the server. 
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2. Mean client-experienced preference dissimilarity: Client-experienced preference 

dissimilarity is defined as the semantic dissimilarity between the video content preferences the 

clients send and receive. The lch semantic similarity measurement algorithm discussed in section 

3.1 is used to calculate the dissimilarity. This metric measures how different the received video 

content is to the client’s content preference. 

3. Mean client-experienced viewing time difference (in seconds): The client-experienced 

viewing time difference is defined as the absolute value of the difference between the client-

specified viewing time and the duration of the video feedback received from the server. The 

viewing time is the most important constraint. This metric measures how close the duration of 

the received video is to the client-specified duration. 

4. Amount of data the server generates (in MB): This parameter measures the total video 

data amount the server processes in order to fulfill the clients’ requests. 

The duration of the batch windows, PAF  and CAF  are system adjustable parameters, will 

influence the overall performance of the proposed client request aggregation strategy. 

Experiment results show the relationships of the proposed performance metrics and the system 

adjustable variables. 

4.3 Client Request Aggregation Evaluation Results 

The single queue single server model discussed in section 4.2.5 is used to evaluate the 

performance of the proposed client request aggregation strategy. In our experiments, for every 

simulation test, 100 clients connect to the video personalization server via IEEE802.11b wireless 

networks. Each test is repeated 10 times. After a random delay, a client sends a video 

personalization request to the server. The durations of the random delays follow Poisson 

distribution )(λP , 50=λ seconds. In our experiments, clients specify viewing time and allowed 
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bandwidth limits in their constraints. In order to simulate mobile devices of different categories, 

the values of viewing time and allowed bandwidth limits follow a mixture of 5 normal 

distributions respectively. Means of the normal distributions of viewing time are 50, 100, 150 

200 and 250 seconds respectively. The standard deviations of the normal distribution 

components for viewing time are set to 25 seconds. Means of the normal distribution 

components for allowed bandwidth are 20, 60, 100, 140 and 180 Kb/second respectively. The 

standard deviations of the normal mixture components are set to 20 Kb/second. The clients pick 

content preference terms from the set Q . Every semantic term in Q  has the same probability to 

be selected. We measure the client-experienced latency, preference dissimilarity and viewing 

time difference for every client. On the server end, we measure the amount of video data 

generated in every test. 

The system parameters, i.e. values of PAF  and CAF , influence the performance of the client 

request aggregation strategy. When both PAF and CAF are set to one, clients get the closest 

match of what they preferred under their constraints, while the client-experienced latency is long. 

Adjustment of PAF  and CAF  can achieve desired balance between precision and client-

experienced latency. We change the value of PAF  and CAF  systematically and measure the 

aggregation strategy’s performance. On the server side, the duration of the batch windows is set 

to 20 seconds. Both k-means and hierarchical clustering algorithms are used in the multi-stage 

client request aggregation. In the following sections, we present and compare experimental 

results of the client request aggregation strategy with the two clustering methods. 

4.3.1 Client Aggregation using K-means 

Figures 4.4-4.8 show the relationships of the system parameters and the mean client-experienced 

viewing time difference, allowed bandwidth difference, the mean client-experienced video 
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content preference dissimilarity, the mean client-experienced latency and the amount of video 

data the server generates respectively. 

It is observed in Figures 4.4-4.8 that when both the values of PAF and CAF are set to 100%, 

clients will get exactly their preferred contents with the duration of their viewing time limits and 

the with the allowed bandwidth, i.e. the mean client experienced preference dissimilarity, 

viewing time and allowed bandwidth difference are zero. However, as shown in Figures 4.7-4.8, 

the mean client-experienced latency is long and the amount of video data the server needs to 

process is large, since every single client request needs to be processed by the server 

individually. 

In Figures 4.4 and 4.5, it is observed that the mean client-experienced viewing time 

difference and allowed bandwidth difference is primarily a decreasing function of CAF 

respectively. When the value of CAF  is relatively small, the mean client-experienced viewing 

time and allowed bandwidth difference are large. This is because with small number of client 

constraint clusters, in a service group, the distance among client specified constraint parameters 

and client-experienced feedback parameters are big. When the number of client constraint 

clusters increases, i.e. when the value of CAF  increases, it is shown in Figures 4.4 and 4.5 that 

both of the mean client-experienced viewing time difference and allowed bandwidth drop. 

However, the client-experienced viewing time difference and allowed bandwidth difference is 

not a monotonic decreasing function primarily of PAF. This is client preferences are clustered at 

a different stage. It is the 2-stage clustering that allows us to control the desired client-

experienced preference dissimilarity and constraint differences separately. 

As to the client-experienced preference dissimilarity, it is observed in Figure 4.6 that it drops 

when the value of PAF increases. Increasing the number of client constraint clusters does not 
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drop the client-experienced preference dissimilarity effectively. Figures 4.7-4.8 shows that either 

increasing the number of client constraint clusters or the number of client preference clusters 

increase the mean client latency and the amount of video data on server. It needs to be noted here 

that when both the numbers of client viewing time clusters and client preference clusters are 

small, the mean client latency is short. However, the prices of the short mean client latency are 

the larger client viewing time difference and client preference dissimilarity as well as larger 

amount of video data on the server. 

In addition to the mean values of the client-experienced performance metrics, we also 

measure the standard deviations of these metrics in order to quantify the spread ranges of the 

metrics.  Tables 4.1-4.4 list the mean and standard deviations of the client experienced viewing 

time, allowed bandwidth, preference dissimilarity, and latency. Mean values of these parameters 

represent the average client experiences, while the standard deviations of these parameters 

indicate the possible spread ranges of client experiences. For the sake of compactness, results of 

hierarchical clustering also are listed in the second line of each cell in the tables. Discussions of 

the meaning of them are provided in the following section. 
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Figure 4.4 Mean Client Viewing Time Difference (seconds) vs. CAF and PAF: 

K-means Clustering 
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Figure 4.5 Mean Client Allowed Bandwidth Difference (KB/second) Difference: K-means 
Clustering 
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Figure 4.6  Mean Client Preference Difference vs. CAF and PAF: 
K-means Clustering 
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Figure 4.7  Mean Client Latency (seconds) vs. CAF and PAF: 

K-means Clustering 
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Figure 4.8  Amount of Data (MB) vs. PAF and CAF: 
K-means Clustering 

 

 

Table 4.1: Mean and Standard Deviations of the Client-experienced Viewing Time 
Difference (seconds): Mean/Stdv 

 
CAF 

 
 

PAF 

 
10 

 
20 

 
40 

 
60 

 
80 

 

20 

 

24.8/19.4 

39.5/28.7 

 

17.6/14.1 

36.8/27.7 

 

11.3/9.8 

33.6/26.0 

 

5.3/8.3 

27.9/21.5 

 

1.8/3.6 

25.0/19.3 

 

40 

 

31.8/23.8 

41.4/30.5 

 

18.9/14.4 

31.2/22.2 

 

11.1/10.5 

36.6/26.8 

 

5.3/8.0 

31.1/24.5 

 

2.6/5.3 

21.9/17.0 

 

60 

 

31.7/24.1 

34.3/25.7 

 

24.2/18.6 

34.9/25.9 

 

11.4/11.2 

30.0/22.1 

 

7.4/9.3 

28.8/23.5 

 

2.1/4.4 

25.0/20.0 
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Table 4.2: Mean and Standard Deviations of the Client-experienced Allowed Bandwidth 
Difference (KB/second) : Mean/Stdv 

 
 

CAF 
 
 

PAF 

 
10 

 
20 

 
40 

 
60 

 
80 

 

20 

 

27.1/22.7 

40.1/28.5 

 

18.1/15.2 

42.8/29.2 

 

10.9/9.8 

38.2/27.9 

 

5.6/6.7 

27.0/22.2 

 

1.5/3.3 

24.2/20.0 

 

40 

 

29.7/24.0 

36.6/28.4 

 

16.1/12.4 

41.2/29.1 

 

9.6/9.3 

38.7/28.6 

 

5.0/6.8 

35.6/26.3 

 

2.6/4.9 

25.1/22.0 

 

60 

 

31.1/26.1 

39.9/27.7 

 

24.4/20.5 

38.7/27.9 

 

13.6/14.6 

36.0/27.6 

 

7.4/9.7 

31.0/24.8 

 

2.4/5.0 

23.7/20.6 

 
 

Table 4.3: Mean and Standard Deviations of the Client-experienced Preference 
Dissimilarity: Mean/Stdv 

 
 

CAF 
 
 

PAF 

 
10 

 
20 

 
40 

 
60 

 
80 

 

20 

 

0.44/0.98 

0.50/0.97 

 

0.42/0.91 

0.29/0.78 

 

0.26/0.75 

0.33/0.82 

 

0.17/0.62 

0.47/0.94 

 

0.08/0.44 

0.41/0.89 

 

40 

 

0.20/0.65 

0.14/0.54 

 

0.17/0.62 

0.11/0.47 

 

0.20/0.66 

0.05/0.31 

 

0.09/0.46 

0.05/0.34 

 

0.04/0.30 

0.07/0.39 

 

60 

 

0.13/0.52 

0.09/0.42 

 

0.13/0.54 

0.04/0.28 

 

0.02/0.22 

0.04/0.28 

 

0.02/0.21 

0.01/0.15 

 

0.01/0.17 

0.07/0.37 
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Table 4.4: Mean and Standard Deviations of the Client-experienced Latency (seconds)  

Mean/Stdv 
 

CAF 
 
 

PAF 

 
10 

 
20 

 
40 

 
60 

 
80 

 

20 

 

346/192 

244/115 

 

688/418 

323/120 
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4.3.2 Client Request Aggregation using Hierarchical Clustering 

In order to compare the performance of the client request aggregation strategies using k-means 

and hierarchical clustering technique respectively, experimental evaluation results of the client 

aggregation using hierarchical clustering is presented in this section. 

The single queue single server model described in Section 4.2.5 is used. Other experimental 

settings are kept the same as the settings for the client request aggregation using k-means 

clustering technique. We measure the influence of systems parameters, i.e. PAF  and CAF , on 

the performance of the client request aggregation strategy using hierarchical clustering 

technique. 
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Figures 4.9-4.13 show the relationships of the system parameters and the mean client-

experienced viewing time difference, allowed bandwidth difference, preference dissimilarity, 

latency and the amount of video data the server generates respectively. 

When comparing figures 4.9-4.13 with figures 4.4-4.8, it is observed that the overall 

performances of the client request aggregation strategies using k-means and hierarchical 

clustering techniques are similar. When both PAF and CAF are set to 1.0, a closer comparison of 

figures 4.4 and 4.9, figures 4.5 and 4.10, and figures 4.6 and 4.11 shows that k-means clustering 

yields lower mean client-experienced viewing time difference, lower client-experience allowed 

bandwidth difference, lower client-experienced preference dissimilarity. The reason is that 

hierarchical clustering tends to generate bigger clusters than k-means [Korenius]. The maximum 

possible silhouette value is 1.0, which means each cluster generated by k-means consists of only 

one data point (equation 4.1). In the meantime, equation 4.2 shows that the smallest possible size 

of a cluster generated by hierarchical clustering is three. This is the reason why the k-means 

tends to generate smaller clusters than the hierarchical clustering. Comparisons of figures 4.7 and 

4.12, and figures 4.8 and 4.13 confirm that since k-means generates smaller but more clusters, it 

results in smaller client-experienced viewing time and allowed bandwidth differences, but higher 

latency and greater server generated video data. On the other hand, the hierarchical clustering 

results in larger but fewer clusters. Hence less precision in client specified viewing time and 

allowed bandwidth, but lower latency and less server generated video data. Hence, if precision is 

preferred, tiny clusters would have been considered better than large ones, which are preferable 

in information retrieval. In this case, k-means is a better choice. If lower client latency and less 

generated video data is preferred, then hierarchical clustering is better. 
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Figure 4.9 Mean Client Viewing Time Difference (seconds) vs. CAF and PAF:  
Hierarchical Clustering 
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Figure 4.10 Mean Client Allowed Bandwidth Difference (KB/second) Difference: 
Hierarchical Clustering 
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Figure 4.11  Mean Client Preference Difference vs. CAF and PAF: 

Hierarchical Clustering 
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Figure 4.12  Mean Client Latency (seconds) vs. CAF and PAF: 

Hierarchical Clustering 
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Figure 4.13 Amount of Data (MB) vs. CAF and PAF: Hierarchical Clustering 

 

4.4 Conclusions 

In the video personalization system, requests are from multiple clients. To fulfill each of these 

requests, the server needs to consume a certain amount of its resources, such as computing time 

and network bandwidth. When there are a large number of clients sending their requests to the 

server, the average client-experienced latency is long if every client request is processed 

individually. The client requests are heterogeneous in multiple dimensions, i.e. they are different 

in their video content preferences, and in client-side constraints. A multi-stage clustering strategy 

is proposed to group similar request together one dimension at a time. The proposed multi-stage 

client request aggregation strategy clusters similar client requests together such that the number 

of requests sent to the server is reduced, reducing the average client latency. Adjustments of 

Preference Aggregation Factor (PAF) and Constraint Aggregation Factor (CAF) can achieve 

desired balance among client-experienced latency and deviations of parameters of video 
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feedback from client specified constraints, i.e. content preference, viewing time and allowed 

bandwidth limitations. The multi-stage clustering strategy allows adjustments along individual 

dimensions separately.  

Both k-means and hierarchical clustering techniques are used in the client request 

aggregation strategy. Comparison of the experimental performances of the client request 

aggregation using k-means and hierarchical clustering technique respectively shows that k-means 

tends to generate smaller but more clusters, and hence yields higher precision in client-

experienced content preference, viewing time and allowed bandwidth limitation in video 

feedback, but longer latency and more video data generated. K-means is preferable when 

precision is important. On the other hand, when hierarchical clustering is used in the client 

request aggregation strategy, it tends to generate larger but fewer clusters, and hence yields lower 

precision in client-experienced content preference, viewing time and allowed bandwidth 

limitations, but shorter latency and less video data generated. Hierarchical clustering is a better 

choice when short latency is important. 



 

 

CHAPTER 5 

CLIENT-SIDE ENERGY-AWARE MULTIMEDIA DATA STREAMING 

5.1 Introduction 

The recent proliferation of multimedia capable mobile computing devices and networking 

technologies have created enormous opportunities for mobile device users to communicate with 

one another using multimedia streams. A necessary criterion for the mass acceptance of mobile 

devices is acceptable battery life of these devices. There has been dramatic improvement in 

energy-aware design of systems, both, in terms of hardware and software. Unfortunately, 

advances in hardware and software are not matched by a corresponding increase in battery life. 

Thus, the usefulness of these mobile devices in watching and/or hearing streaming multimedia is 

restricted by battery capacity. Future trends in battery technology do not promise dramatic 

improvements in battery capacity that will make this issue disappear. Consequently, hardware or 

software solutions need to be developed at the system or application level to prolong battery life. 

Previous work on power management for mobile devices includes spin-down policies for 

disks [Wilkes, 1992], [Kumpf, 1994], [Douglis, 1995], [Helmbold, 1996], scheduling policies for 

reducing CPU energy consumption [Weiser, 1994], [Govil, 1995] and managing wireless 

communications [Imielinski, 1995], [Datta, 1997], [Kravets, 1998]. An IEEE 802.11b Wi-Fi 

connection is a popular way for mobile consumers to access the Internet wirelessly. The energy 

consumption of the wireless network interface can be significant, especially for smaller devices. 

Since media streaming applications are typically long running, the power consumption of these 

applications needs to be taken care of. Early work by Stemm et al. [Stemm, 1996] reports that the 
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network interface draws a significant amount of power. Although dependent on the specific 

machine and wireless device, the energy consumption of wireless communication devices can 

represent over 50% of total system energy consumption for current handheld computing devices 

and up to 10% for high-end laptops [Stemm, 1996]. Feeney et al. [Feeney, 2001] also report the 

energy consumption measurements of an IEEE 802.11b WNIC in an ad hoc networking 

environment and show that the energy consumption of the IEEE 802.11b WNIC has a complex 

range of behavior. Hence, it is important to look at techniques to reduce the energy consumed by 

the network interface used to download the multimedia stream.  
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Figure 5.1 Energy Consumption Rates of Two WNIC’s in Various States 

 

The energy consumption rates of a wireless network interface card (WNIC) in the sleep state 

and in the receive, transmit or idle states are substantially different. Figure 5.1 shows the power 
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consumption rates of two popular WNIC’s in the various aforementioned states [Shih, 2003]. 

The WNIC’s energy consumption rate when receiving, transmitting data or when idling is 

substantially higher than when sleeping. Note that the WNIC cannot transmit, receive or buffer 

data in the sleep state.  

Lorch et al. [Lorch, 1998] present a survey of software techniques for energy management. 

Havinga et al. [Havinga, 2000] present an overview of energy management techniques for 

multimedia streams. Aggarwal et al. [Aggarwal, 1998] describe techniques for processing video 

data for transmission under low power situations. A popular strategy to reduce the energy 

consumption of wireless network devices is by switching them to the lower power sleep state. 

Systems employing a strategy which enables switching of the WNIC to a low power 

consumption sleep state can achieve energy savings whenever possible without modifying the 

underlying application and without user-visible latency. Frequent switching to a low power 

consumption state also promises the added benefit of allowing the batteries to recover, thus 

exploiting the battery recovery effect [Chiasserini, 1999]. 

Media transcoding is a popular strategy used to reduce the stream fidelity. This strategy 

reduces the stream size, and hence reduces the amount of network traffic. Reducing the network 

traffic has the potential of reducing the total energy consumed. However, if care is not taken to 

return the WNIC to the low power-consuming state for as often and as long as possible, reducing 

the amount of transmitted data will have a negligible effect on the overall client energy 

consumption. 

The basic principle underlying the proposed energy-saving approach is to predict the time 

durations during which to suspend communication by switching the WNIC to a sleep state. Our 

analysis of typical streams shows that the WNIC spends most of the time waiting for stream 
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packets in a higher energy consuming idle state. Even for a high bandwidth 2000Kbps stream, 

the WNIC spends over 56% of the time in the idle state; illustrating the potential for significant 

energy savings. Our policies operate on the multimedia client without explicit coordination or 

help from the multimedia server. Multimedia/video data is typically transmitted in the form of 

bursts of data packets with no-data periods between successive bursts. The bursty nature of the 

traffic is a consequence of the media streaming format and other network-related factors such as 

available network bandwidth, the buffering mechanism of the wireless access point and the 

traffic congestion control mechanism.  Also, the bandwidth requirement of the multimedia 

stream is typically much less than what is provided by IEEE 802.11b, thus causing multimedia 

data traffic to appear bursty. The WNIC can be switched to its sleep state during these no-data 

intervals in order to save energy. Since we operate without explicit coordination with the server, 

this energy conservation strategy requires proper estimation of the time interval during which no 

data is expected to be received. If the WNIC is suspended too often or for too long a time 

duration during the wrong time periods, the users will miss the data sent to this client. On the 

other hand, if the WNIC is not suspended long and frequently enough, savings in energy 

consumption may not be appreciable. 

Chandra [Chandra, 2003] describes a client-side history-based scheme that transitions the 

WNIC to a power saving sleep state during the no-data intervals of a multimedia stream. The 

history-based scheme predicts the length of the next no-data interval by computing the average 

of the lengths of the past k successive no-data intervals. The Microsoft Media format was 

observed to benefit immensely from this client-side history-based scheme on account of the fact 

that Microsoft Media transmits large data packets at fairly regular time intervals. The benefits in 

the case of the Real and Apple QuickTime media formats were less apparent on account of the 
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fact that the no-data time interval lengths were less regular. The work in this paper is a 

refinement of the client-side history-based scheme presented in [Chandra, 2003]. Specifically, 

we present a statistical linear prediction-based strategy to predict the occurrences and lengths of 

the no-data time intervals. These predictions are used to select the time periods during which the 

communication is suspended (i.e., the WNIC is powered down to its sleep state) in a client-server 

environment where multimedia streams are being transmitted from a server to a mobile, power-

constrained client. 

The remainder of the chapter is organized as follows. In Section 5.2, we describe the 

proposed linear prediction-based scheme and present a brief outline of the history-based scheme 

proposed in [Chandra, 2003] in the context of energy aware multimedia data streaming. In 

Section 5.3, we describe the experimental setup, evaluation methodologies, measurement metrics 

and experimental results that compare the performance of the proposed linear prediction-based 

scheme with that of the history-based scheme. In Section 5.4, we provide a detailed 

interpretation of the experimental results. In Section 5.5, we conclude the paper and outline 

directions for future research. 

5.2 Linear Prediction-based Approach 

In a client-server wireless network environment, data packets are transmitted by the server in the 

form of discrete bursts, as shown in Figure 5.2. This behavior is dependent on the particular 

multimedia streaming format used; for this work, we use the unmodified streaming formats of 

the Microsoft Media, Real and Apple QuickTime multimedia servers using the UDP protocol. 

Chandra [Chandra, 2003] provides more details on the video data transmission statistics. 

Between two successive bursts there is a time interval during which there is no data being 

transmitted by the server. We refer to this time interval as the no-data interval. In Figure 5.2, the 
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lengths of the two no-data intervals are 12 tt −  and 34 tt −  respectively. The sequence of these no-

data interval lengths can be looked upon as a time series. Empirical observations suggest that the 

length of a no-data interval bears statistical correlation to previously observed no-data interval 

lengths. This provides the motivation for the formulation of a client-side statistical linear 

prediction-based scheme to predict future no-data interval length values based on previous 

observations. 

 

 

 

Figure 5.2  Simplified Stream Packet Transmission in a Wireless Network 

 

Linear prediction is a mathematical operation where a future value of a time series is 

estimated as a linear function of previously observed samples [Hamilton, 1994]. A common 

representation of the linear prediction model is given by: 
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where )(' nx  is the estimated or predicted no-data interval length, sinx ')( −  are the previously 

observed  no-data interval length values, and sai
'  are the predictor coefficients. The error 

generated by this estimate is given by: 

)(')()( nxnxne −=    (5.2) 

where )(nx  is the true no-data interval length value and )(' nx  the predicted value of the no-data 

interval length. A linear predictor optimizes the estimate by minimizing the estimation error. The 

two adjustable parameters of a linear prediction model are the model order p and the width of the  

time window used for training. The algorithm used in our approach is the one proposed by Burg 

[Burg, 1978]. The appropriate values of p and the width of the training time window are chosen 

empirically. 

In a client-server wireless network environment, if the predicted lengths of the no-data 

intervals are frequently longer than the actual ones, the user will experience packet losses in the 

data stream being downloaded because many data packets arrive at the client’s WNIC while it is 

in the sleep state. On this account, it is useful to add a relatively small negative bias to the sleep 

interval lengths predicted by the linear prediction algorithm in order to lower the data drop rate. 

This ensures that the client’s WNIC is transitioned to the idle state before the next data packet 

arrives. Thus, the biased estimate of the no-data interval length is given by 

∑
=

−−=−=
p

i
ib BinxaBnxnx

1
)()(')('    (5.3) 

where )(' nxb  is the biased prediction of the no-data time interval length. However, if the bias B 

is too large in magnitude, the resulting savings in battery energy may not be appreciable.  

The history-based prediction scheme described in Chandra’s previous work [Chandra, 2003] 

predicts the no-data interval length by averaging the observed no-data interval lengths over the 
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past k receive-idle cycles. It also varies the dependence of the prediction on past history by 

offsetting the predicted no-data interval length with a bias B as follows: 

∑
=

−−=
k

i
Binx

k
nx

1
)(1)('     (5.4) 

Note that the history-based prediction scheme can be looked upon as a special (i.e., degenerated) 

case of the linear prediction scheme where all the predictor coefficients are identical. 

5.3 Experimental Setup 

5.3.1 System Description 

The experimental system consists of a multimedia server with a wireless access point, and a 

mobile client with a wireless network interface card (WNIC). The mobile client has a client-side 

proxy that is responsible for transitioning the WNIC to a low-power consumption sleep state 

during the predicted no-data time intervals. Ideally, since no data transfers are expected during 

the no-data time interval, there should be no loss of data. The traffic between the multimedia 

server’s wireless access point and the mobile client is monitored by a monitoring station, which 

records the traffic flow in trace files. The multimedia stream used for our experiment is the Wall 

theatrical trailer. The Wall trailer is 1:59 minutes long and is digitalized to a high quality video 

stream.  

Simulation of the client-side proxy is done using a typical WNIC power consumption model. 

We use the following published power parameters of a Wavelan 2.4 GHz wireless network 

interface card [Havinga, 2000]; sleep state: 177 mw, idle state: 1319 mw, receive state: 1425 mw 

and transmit state: 1675 mw. We assume that the transition from the sleep state to idle state takes 

250 µseconds and the wireless network provides a useful bandwidth of 4 Mbps. 
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Figure 5.3  Experimental Setup 

 

5.3.2 Performance Metrics 

In order to measure the efficiency of our approach, the following performance metrics are used. 

Total Energy Consumed: This is defined as the total amount of energy consumed (in mJoules) 

by the client-side WNIC to receive the streaming video data transmitted by the multimedia 

server. The goal is to minimize this metric when the client-side WNIC receives a video clip. 

Energy Consumed per KB Received: This is defined as the amount of energy consumed (in 

mJoules) per Kilobyte of data received by the client-side WNIC. The goal of our experiment is to 

minimize this metric. As we will see in Section 5.4, due to the inaccuracy of client-side 

prediction, some of the streaming video data packets transmitted by the multimedia server will 

be dropped.  This metric measures the energy efficiency of the client-side WNIC in terms of the 

energy expended for the amount of useful data it has received. 

Drop rate: This is defined as the percentage of data dropped due to longer-than-actual predicted 

no-data interval lengths. The goal of our experiment is to minimize this metric as well. 
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5.4 Experimental Results 

We use the wireless traffic trace files obtained by the monitoring station to perform the 

simulation. A WNIC cannot receive or buffer data when it is in the sleep state. If the predicted 

sleep interval is shorter than the actual one, the client-side WNIC wakes up at the end of 

predicted sleep interval and transitions to an idle state, ready to receive the burst of data packets. 

If the predicted sleep interval is longer than the actual one, the client-side WNIC sleeps through 

the end of the estimated sleep interval. Depending on the time when the WNIC wakes up, part of 

or the entire burst of data following the actual no-data interval is considered to be lost. In our 

experiments, we use the Wall theatrical trailer that is digitized to a high quality video stream. The 

Microsoft Media, Real and Apple QuickTime streaming formats are each used for the wireless 

transmission of the stream. Experimental measurements of the energy metric and drop rate are 

made as the value of the negative bias B is systematically varied. 

To describe the power consumption model used to calculate the client-side WNIC energy 

consumption, we use the simplified stream data transmission model shown in Figure 5.2. The 

power consumption of the WNIC in each of the four states, i.e. sleep, idle, receive and transmit 

is denoted by sleepP , idleP , receiveP  and transmitP  respectively. The predicted idle period is denoted by 

pT , and the energy consumption of the WNIC is denoted by EC . Then the predicted sleep 

period falls in one of the following three cases, as shown in Figure 5.4.  

Case 1: 12 ttTp −≤ , i.e. the predicted sleep period is shorter than or equal to the actual sleep 

period. During the time period pT  the WNIC’s energy consumption is given by 

mWTPT psleepp 177×=× . The WNIC then wakes up and persists in the idle state until time 

instant 2t . The WNIC’s energy consumption during this period is given by 
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mWTttPTtt pidlep 1319)()( 1212 ×−−=×−− . During the time period from 2t  to 3t , the WNIC 

receives data packets resulting in energy consumption given by 

mWttPtt receive 1425)()( 2323 ×−=×− . After having received the data burst, the WNIC goes back 

to the sleep state until the end of the next predicted sleep period. Hence the energy consumption 

in this case is given by 

receividlepsleepp PttPTttPTEC ×−+×−−+×= )()( 23121        (5.5) 

Case 2: )( 12 ttTp −>  and )( 13 ttTp −≤ , i.e. the predicted sleep period is longer than the 

actual no-data period but shorter than or equal to the no-data period plus the data transmission 

period. In this case, during the predicted sleep period pT , the WNIC energy consumption is 

given by mWTPT psleepp 177×=× . Since the WNIC wakes up in the middle of data burst, part of 

the data in the burst is dropped. To receive the remainder of the data in the burst, the energy 

expended by the WNIC is given by mWTttPTtt preceivep 1425)()( 1313 ×−−=×−− . After having 

finished receiving the data burst, the WNIC goes back to the sleep state until the end of the next 

predicted sleep period. The total energy consumption in this case is given by 

receivepsleepp PTttPTEC ×−−+×= )( 132   (5.6) 

Case 3: 13 ttTp −> , i.e. the predicted sleep period is too long. Consequently the WNIC 

wakes up during the next no-data interval and the data transmitted during the period ],[ 32 tt  is 

dropped. The WNIC persists in the idle state until the beginning of the following data burst. 

During the predicted sleep period pT , the WNIC’s energy consumption is given by 

mWTPT psleepp 177×=× . The WNIC then persists in the idle state until the beginning of the next 
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data burst. The energy consumption during this period is given by  

mWTttPTtt pidlep 1319)()( 1414 ×−−=×−− . The energy consumption in this case is given by 

idlepsleepp PTttPTEC ×−−+×= )( 143    (5.7) 

 

 

 

Figure 5.4  The Predicted No-data Period and the WNIC Energy Consumption Model 

 

We compare the WNIC energy consumption results obtained using the linear prediction-

based approach and the history-based approach described in [Chandra, 2003]. The results 

presented in this section are obtained when the Wall video segment is transmitted by the 

multimedia server in the Microsoft Media, Real and Apple QuickTime streaming formats. The 

multimedia server transmission bandwidth is set to result in a streaming bandwidth of 256Kbps 

and 512Kbps. The nature of the data bursts resulting from each of the aforementioned streaming 

formats is depicted in Figures 5.5(a), 5.6(a) and 5.7(a). As pointed out by Chandra [Chandra, 

2003], due to differences in the characteristics of the underlying media stream formats, the time 
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series comprising of the lengths of the no-data intervals between successive data bursts exhibit 

different statistical properties. The Microsoft Media server transmits large data packets at fairly 

regular intervals. The Real and Apple QuickTime players tend to exhibit greater variation in the 

packet sizes and inter-packet arrival times. Figures 5.5(b), 5.6(b) and 5.7(b) show the histograms 

of the no-data interval lengths for each of the above streaming formats. To compare the 

performance of the history-based and linear prediction-based approaches, the histograms of the 

predicted no-data interval lengths obtained using the history-based approach and the linear 

prediction-based approach are presented in Figures 5.5(c), 5.6(c) and 5.7(c) and Figures 5.5(d), 

5.6(d) and 5.7(d) respectively for each of the aforementioned streaming formats. A comparison 

of the distribution of the actual no-data interval lengths and the distributions of the predicted no-

data interval lengths for each of the three streaming formats shows that the linear prediction-

based approach yields no-data interval length distributions that are much closer to the actual 

distributions when compared to the history-based approach. When the distribution of the no-data 

interval lengths spans a broad range, the history-based approach is observed to be incapable of 

preserving the statistical properties of the actual no-data intervals.  
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Figure 5.5(a)   Data Burst Intervals for Microsoft Media Streaming Data at 256Kbps 
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Figure 5.5(b) No-data Interval Length Histogram for Actual Data, Microsoft Media 
Format at 256Kbps 
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Figure 5.5(c) No-data Interval Histogram, History-based Estimation, Microsoft Media 
Format at 256Kbps 
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Figure 5.5(d) No-data Interval Length Histogram for Linear Prediction-based 
Estimation,Microsoft Media Format at 256Kbps 
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Figure 5.6 (a) Data Burst Intervals for Real Streaming Data at 512Kbps 



 115

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

100

200

300

400

500

600

700

800

Time (Second)

N
um

be
r o

f N
o-

da
ta

 In
te

rv
al
s

 

Figure 5.6(b)  No-data Interval Length Histogram for Actual Data, Real Format at 
512Kbps 
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Figure 5.6(c) No-data Interval Length Histogram, History-based Estimation, Real Format 
at 512Kbps 
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Figure 5.6(d) No-data Interval Length Histogram, Linear Prediction-based Estimation, 
Real Format at 512Kbps 
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Figure 5.7(a) Data Burst Intervals for Apple QuickTime Streaming Data at 256Kbps 
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Figure 5.7(b) No-data Interval Length Histogram for Actual Data, Apple QuickTime 
Format at 256Kbps 
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Figure 5.7(c) No-data Interval Length Histogram, History-based Estimation, 
Apple QuickTime Format at 256Kbps 
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Figure 5.7(d) No-data Interval Length Histogram, Linear Prediction-based Estimation, 
Apple QuickTime Format at 256Kbps 
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Figure 5.8  Total WNIC Energy Consumption vs. Drop Rate, Results of the Linear 
Prediction-based, and History-based Approach, Microsoft Media Format at 256Kbps. 
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Figure 5.9  Total WNIC Energy Consumption vs. Drop Rate, Results of the Linear 
Prediction-based, and History-based Approach, Real Format at 512Kbps. 
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Figure 5.10  Total WNIC Energy Consumption vs. Drop Rate, Results of the Linear 
Prediction-based, and History-based Approach, Apple QuickTime Format at 256Kbps. 
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The values of the energy metric for the history-based and linear prediction-based approaches 

are compared for a given value of the drop rate. In order to obtain a fair comparison, the number 

of previous observations (number of previous actual no-data intervals) used in the estimation is 

set to be the same for both, the linear prediction-based approach and the history-based approach. 

The graphs in Figures 5.8 – 5.10 plot the client-side WNIC total energy consumption versus the 

drop rate. The magnitude of the negative bias added to the value of the predicted sleep interval 

length is indicated near the corresponding data point in each figure. Experiment results show that 

the linear prediction-based approach yields a lower total WNIC energy consumption compared to 

the history-based approach, for a given value of the drop rate when the number of previous 

observations used is the same. Moreover, when no negative bias is added, the linear prediction-

based approach always yields a better performance than the history-based approach in terms of 

the drop rate and the total WNIC energy consumption. This implies that, statistically speaking, 

the linear prediction-based approach estimates the sleep interval length values for the client-side 

WNIC more accurately than does the history-based approach. 

When a WNIC is in the sleep state, it neither can receive nor buffer the incoming data. 

Consequently, if the estimated sleep interval length is longer than its actual value, the client-side 

WNIC persists in the sleep state when the data burst arrives. Accordingly, this burst of data is 

considered lost. It is useful to decrease the data drop rate with a properly chosen negative bias 

that is added to the estimated length of the no-data interval. For a fixed magnitude of negative 

bias, the more accurate the estimation, the higher the percentage of predicted sleep intervals that 

are shorter than their actual counterparts. From Figures 5.8 – 5.10, we can see that for the same 

magnitude of negative bias that is added to the predicted sleep period, the linear prediction-based 

approach results in a lower data drop rate compared to the history-based approach. This can be 
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attributed to the fact that the sleep interval length value estimated by the linear prediction-based 

approach lies within a smaller neighborhood about the actual sleep interval length value. With 

the addition of a negative bias of relatively small magnitude, most of the estimated sleep 

intervals are observed to lie within their actual counterparts in the case of the linear prediction-

based approach, thus resulting in a relatively low drop rate.  

With no negative bias added to the predicted sleep interval length values, there is a higher 

probability that the predicted values of the sleep interval lengths are longer than their actual 

counterparts. Some of the predicted values are so long that entire data bursts are dropped by the 

client-side WNIC, as indicated by Case 3 in Figure 5.4. In this situation, the client-side WNIC 

wakes up during the no-data interval, and persists in the idle state until the following data burst. 

The WNIC energy consumption in this situation is defined by equation (5.7). The energy 

consumed by the client-side WNIC during its idle state is given by 

mWTttPTtt pidlep 1319)()( 1414 ×−−=×−−  (Figure 5.4). Since the power consumption of the 

WNIC in the idle state is higher than in the sleep state if the no-data intervals between data bursts 

are long, the energy consumption due to overestimation of the sleep interval is large. A small 

amount of negative bias applied to the predicted values of the sleep interval lengths can reduce 

the probability of overestimation as defined by Case 3 (Figure. 5.4) and therefore reduce the 

client-side WNIC power consumption and also the drop rate. The Microsoft Media and the 

Apple QuickTime streaming formats are characterized by long no-data intervals accompanying 

relatively short data bursts. As shown in Figure 5.8, in the case of the Microsoft Media format, 

when the bias magnitude lies in the range [0, 0.006], the total client-side energy consumption and 

the data drop rate exhibit a decreasing trend with increasing value of the bias magnitude for the 

history-based approach. As shown in Figure 5.10, a similar trend can be observed in the case of 
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the Apple QuickTime format when the bias magnitude values are in the range [0, 0.01] for the 

linear prediction-based approach that uses 18 previous observations. 

When the bias magnitude value is chosen large enough such that all the predicted no-data 

interval length values comply with Case 2 (Figure 5.4), then increasing the bias magnitude value 

results in a greater amount of data received by the client-side WNIC (i.e., a lower drop rate) at 

the expense of increased energy consumption. This explains the trend where the drop rate 

decreases but the total WNIC energy consumption increases with increasing bias magnitude 

value. This trend can be observed in Figure 5.9 in the case of the Real format for both, the 

history-based approach and the linear prediction-based approach. A similar trend can be 

observed in the case of the Apple QuickTime format (Figure 5.10) for the history-based 

approach and for the linear prediction-based approach when the bias magnitude value is greater 

than 0.01. However, once the bias magnitude value crosses a certain threshold value such that all 

the predicted no-data interval length values comply with Case 1 (Figure 5.4) then any further 

increase in the bias magnitude value only increases the total WNIC energy consumption (since 

the client-side WNIC spends more time in the idle state waiting for the data burst to be received) 

without any decrease in the drop rate. This trend can be clearly observed in the case of the 

Microsoft Media format (Figure 5.8), for the history-based approach when the bias magnitude 

value exceeds 0.12 and for the linear prediction-based approach when the bias magnitude value 

exceeds 0.01. In the limiting case when the bias magnitude value equals the longest actual no-

data interval length, the client-side WNIC will be in the idle or receive state for the entire 

duration of the streaming session. This is tantamount to the complete absence of any client-side 

prediction scheme. In this case the energy metric values for both, the history-based approach and 
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the linear prediction-based approach converge to same point, which corresponds to the absence 

of any client-side prediction whatsoever. 

In order to compare the energy efficiency of the client-side WNIC when receiving video 

streams in different formats, the energy consumption of the client-side WNIC per KByte of data 

received is plotted as a function of the drop rate for all the three media streaming formats for 

both, the history-based approach and the linear prediction-based approach (Figures 5.11 – 5.13). 

The graphs in Figures 5.11 – 5.13 do not exhibit the same consistency as their counterparts in 

Figures 5.8 – 5.10 in terms of monotonicity of the function. This can be explained with the 

following analysis. If the total energy consumption of the client-side WNIC, totalEC  (which is 

plotted versus the drop rate in Figures 5.8 – 5.10), is expressed as a function of the drop rate as 

follows: 

)_( ratedropfECtotal =       (5.8) 

then the energy consumed by the client-side WNIC for each KByte of data received, denoted by 

KByteEC , is given by 

)_1(
)_(

ratedropB
ratedropfECKByte −×

=      (5.9) 

where B is the amount of data transmitted in the video stream. From equation (5.9) it can be 

observed that even if )_( ratedropf  is monotonic with respect to ratedrop _ , KByteEC  can still 

be non-monotonic with respect to ratedrop _ . Nevertheless, the value of KByteEC  in the case of 

the linear prediction-based approach is observed to be much lower than that in the case of the 

history-based approach for a given value of ratedrop _  for all the three streaming media formats 

(Figures 5.11 – 5.13). Conversely, the drop rate in the case of the linear prediction-based 

approach is observed to be much lower than that in the case of the history-based approach for a 
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given value of KByteEC  for all the three streaming media formats (Figures 5.11 – 5.13). This 

shows that the linear prediction-based approach is more energy efficient than the history-based 

approach regardless of the streaming media format.  
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Figure 5.11 Energy Consumption per KByte of Data Received, Results of History- & 
Linear Prediction-based Approaches, Microsoft Media Format at 256Kbps 
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Figure 5.12 Energy Consumption per KByte of Data Received, Results of History- & 
Linear Prediction-based Approaches, Real Format at 512Kbps 
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Figure 5.13 Energy Consumption per KByte of Data Received, Results of History- & 
Linear Prediction-based Approaches, Apple QuickTime Format at 256Kbps 
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5.5 Conclusions 

The wireless network interface card (WNIC) of a mobile computing device accounts for a 

significant percentage of the overall client power consumption. In this paper, we have shown 

how linear prediction can be used to predict the length of the sleep time intervals for the client-

side WNIC in order to reduce its energy consumption. The prediction model is trained using 

previously observed no-data intervals for a multimedia traffic stream. Experimental results show 

that, for a given value of additive (negative) bias, the statistical linear prediction-based approach 

yields, simultaneously, a lower data drop rate and a lower energy metric when compared to the 

history-based approach. In fact, the history-based approach can be looked upon as a special (i.e., 

degenerate) case of the linear prediction-based approach where all the predictor coefficients are 

identical in value.  

Different popular multimedia streaming formats exhibit different data streaming 

characteristics. The Real and the Apple QuickTime media streams exhibit greater variation in the 

data packet sizes and inter-packet arrival times when compared to the Microsoft Media streams. 

This makes it hard for the prediction algorithm to reliably predict the lengths of no-data intervals. 

Nevertheless linear prediction-based approach is shown to be more robust than the history-based 

approach in its ability to predict the lengths of the no-data intervals, for all the three popular 

media stream formats explored in this work, namely Microsoft Media, Apple QuickTime and 

Real. 

Future research will investigate more sophisticated time series modeling and prediction 

methods. Problems scenarios where both the server and the client are power constrained (such as 

in a peer-to-peer ad-hoc mobile network) will also be investigated. 

 



 

 

CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Contributions 

At the outset of the dissertation, I outlined the research challenges that are considered important 

for mobile multimedia personalization. In the following paragraphs, I list the contributions this 

dissertation has made towards solving some of these problems in the video personalization 

domain. I first list the contributions to individual problems that this study has achieved. Then the 

overall contributions are summarized when the work of this dissertation is taken as a whole. 

6.1.1 A stochastic modeling approach to automatically segment and index video streams 

in a single pass 

Automatic semantics-based video segmentation and indexing is the first step towards client-

center retrieval and personalization. Humans tend to use high-level features (concepts), such as 

keywords, text descriptors, to interpret images and measure their similarity, while the features 

automatically extracted using computer vision techniques are mostly low-level features (color, 

texture, shape, spatial layout, etc.). In general, there is no direct link between the high-level 

concepts and the low-level features. The proposed multi-level HMM-based approach can solve 

the multimedia annotation problem and bridge the gap between the high-level concepts and the 

low-level features. Furthermore, it has the following advantages compared to the existing 

approaches. 

• Video segmentation and video indexing are performed in a single pass. This is extremely 

valuable when dealing with large amounts of video data to populate a video database. 
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• No domain-dependent knowledge about the structure of video programs is used. The 

probabilistic grammar used to define the video program is learned entirely from the training 

data. This allows the proposed approach to handle various kinds of videos in a modular and 

extensible manner without having to manually redefine the program model. 

• Semantic unit level HMMs are used to model video units with clear semantic meanings. 

The proposed data-driven approach does not need to use HMMs to model video edit effects. 

This not only simplifies the collection and processing of training data, but also ensures that 

all video segments in the video database are labeled with concepts with clear semantic 

meanings in order to facilitate video retrieval based on semantic content. 

6.1.2 A MMKP-based video personalization strategy to generate a customized response to 

a client’s request 

The objective of video personalization is to present a customized or personalized video summary 

that retains as much of the semantic content desired by the client as possible but within the 

resource constraints imposed by the client. In order to generate the personalized video summary, 

the client preference(s), the client usage environment and client-side resource constraints need to 

be considered.  

Compared to the existing 0/1KP-based and the FKP-based video personalization strategies, 

the proposed MMKP-based video personalization strategy is shown to include more relevant 

information in its response to the client’s request. The MMKP-based personalization strategy is 

also shown to satisfy multiple client-side resource constraints, in contrast to the 0/1KP-based and 

the FKP-based personalization strategies which can only satisfy a single client-side resource 

constraint at a time. 
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6.1.3 A proposed approach to use empirical rules to quantify the amount of information 

contained in the transcoded video summaries relative to the original video 

In existing literatures, there is no quantitative technique proposed to measure the performance of 

video personalization strategies. This is because it is a complex task due to the inherent difficulty 

in quantifying the amount of information contained within the original video and due to the 

diverse nature of the various transcoded versions of the original video. 

Although there are many factors that determine the information content of a video, it is 

reasonable to assume that the amount of information or detail contained within a video summary 

is related to its duration. In most cases, the amount of information contained within a video 

(including its transcoded versions) does not necessarily increase linearly with its duration. We 

propose to use empirical laws to quantify the relationship between the amounts of information 

contained in the transcoded videos relative to the original video. The Zipf function, sigmoid 

function and Rayleigh distribution are proposed as plausible mapping functions for quantifying 

the relationship between the amount of information in the transcoded video relative to the 

original video, and are shown to be suitable for different kinds of videos. 

6.1.4 A multi-stage client request aggregation strategy to utilize server resources 

efficiently and to enhance client experience 

When there are a large number of clients sending their requests to the server, the average client-

experienced latency is long if every client request is processed individually. The proposed client 

request aggregation strategy clusters similar client requests together so that the number of 

requests sent to the server is reduced, along with the average client latency. The client requests 

are heterogeneous in multiple dimensions, i.e. they are different in their video content 
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preferences, and in client-side constraints. A multi-stage clustering strategy is proposed to group 

similar request together one dimension at a time. 

6.1.5 A client-side energy-aware multimedia data streaming strategy to efficiently utilize 

client energy 

A necessary criterion for the mass acceptance of mobile devices is acceptable battery life of 

these devices. Unfortunately, advances in hardware and software are not matched by a 

corresponding increase in battery life. The proposed client-side energy-aware multimedia 

streaming strategy predicts the time durations during which to suspend communication by 

switching the WNIC to a sleep state. Experimental results show that, for a given value of 

additive (negative) bias, the proposed approach yields, a lower data drop rate and a lower energy 

metric simultaneously. 

6.1.6 The overall architecture of a client-centered multimedia personalization system 

This dissertation proposes a framework of a multimedia personalization system for mobile 

clients. The system includes a video preprocessing subsystem, a multiple-level video transcoding 

and hierarchical video content representation subsystem, a client query and constraint decoding 

subsystem, a video personalization subsystem, and a client request aggregation subsystem. The 

framework is modular and extensible. New techniques for the individual tasks of mobile 

multimedia personalization can be introduced and incorporated into the corresponding 

subsystems in the framework without changing other parts and the overall architecture of the 

system.  

6.2 Dissertation Conclusions 

The results of the dissertation have demonstrated that the proposed framework of the multimedia 

personalization system for mobile clients is feasible. Every individual subsystem has the capacity 
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to include new techniques to accomplish subtasks of mobile multimedia personalization. Our 

multimedia personalization system has the following characteristics: 

1. It saves time to build the visual content database. 

2. It generates personalized video feedbacks which include more user preferred content. 

3. It supports multiple client-side constraints simultaneously. 

4. It efficiently utilizes server resources to serve multiple clients, and hence shortens the 

user-experienced latency. 

5. It efficiently utilizes client battery energy for multimedia streaming. 

As one of the dissertation achievements, the multi-level HMM-based video segmentation and 

indexing automates the process of building the visual database. Experimental results demonstrate 

that: 

• Parsing a video file into semantic units enables video retrieval based on high-level semantic 

content. 

• For each video semantic unit, the stochastic behavior of the sequence of feature emissions 

from the image frames can be modeled by a HMM. 

• A universal left-to-right HMM topology with three Gaussian mixture components can model 

the stochastic behavior of the image feature sequence in a video semantic unit well. 

• Video program grammar can be represented by an n-gram probabilistic language model. 

• The data-driven maximum likelihood estimation of the 2-gram program model from training 

data yields very good results.  

Another achievement of the dissertation is the formulation of the Multiple-choice Multi-

dimensional Knapsack Problem (MMKP)-based video personalization strategy. Compared to the 
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existing 0/1KP and FKP-based video personalization strategies, it is observed from the 

experimental results that 

• when the beginning portions of a video segment contain more information than the rest of the 

video, the proposed MMKP-based approach yields a response with higher total relevance 

value compared to the existing FKP-based and 0/1KP-based approaches to video 

personalization. 

• the MMKP-based video personalization strategy is capable of satisfying multiple client-side 

constraints simultaneously. 

• although there are many factors that determine the information content of a video, it is 

reasonable to assume that the amount of information or detail contained within a video 

summary is related to its duration. This is especially true when each indexed video segment 

is summarized at multiple levels of abstraction using algorithms for content-based key frame 

selection and motion panorama computation. 

• empirical laws such as the Zipf function, sigmoid function and Rayleigh distribution are 

plausible mapping functions for quantifying the relationship between the amount of 

information in the transcoded video and that in the original video, and are shown to be 

suitable for different kinds of videos. 

In order to limit the client-experienced latency, it is necessary to perform client request 

aggregation on the server end. Experimental results show that  

• the proposed client request aggregation strategy reduces the mean client-experienced latency 

without significant reduction in the average relevance of the delivered video content to the 

client’s request. 
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• k-means clustering tends to generate smaller clusters, and hence yields lower client-

experienced difference in viewing time and preference, and higher total amount of video 

data. 

• k-means is preferable when precision is important. 

Furthermore, experimental results show that 

• the wireless network interface card (WNIC) of a mobile computing device accounts for a 

significant percentage of the overall client power consumption. 

• linear prediction can be used to predict the length of the sleep time intervals for the client-

side WNIC in order to reduce its energy consumption. 

• linear prediction-based approach is shown to be more robust than the history-based approach 

in its ability to predict the lengths of the no-data intervals, for all the three popular media 

stream formats explored in this work, namely Microsoft Media, Apple QuickTime and Real. 

I believe that this dissertation will serve as a useful guidance for developing and extending 

mobile multimedia personalization systems and algorithms. It also provides a framework and 

testing bed for introducing new video indexing, annotation, video content representation, video 

personalization and delivery techniques.  

6.3 Future Research Directions and Extensions 

6.3.1 Video Summarization and Content Representation 

In addition to the content-aware key frame selection and motion panorama techniques used to 

summarize video segments, it would be beneficial to investigate and incorporate further video 

content summarization and representation techniques into the system.  
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6.3.2 Content-based Image Features 

Low level image features and Tamura features are used in the HMM-based video segmentation 

and indexing subsystem. There are a number of high-level semantic features of video segments 

that can be utilized in the process of video segmentation and indexing. People, object and 

semantic event detection can be used to improve the performance of video segmentation and 

indexing.  

6.3.3 HMM Model Selection 

Currently in the system, HMMs with a universal left-to-right topology with three Gaussian 

mixture components are used to model the stochastic behavior of image feature sequences of 

video semantic units. It would be beneficial to investigate the impact of model selection on the 

performance of video indexing. A data-driven model selection approach should be explored to 

automatically select the topology and the number of Gaussian mixture of a HMM. 

6.3.4 N-gram Language Model Investigation 

Investigation into the n-gram ( 2>n ) statistical language model to represent video program 

should be performed. For different categories of videos, the selection of n-gram language model 

needs to be validated. 

6.3.5 Empirical Mapping Function Validation 

For various categories of video programs and video content summarization strategies, it is 

necessary to validate the selection of the empirical mapping rules to quantify the relationship 

between the amount of information contained in the transcoded videos relative to the original 

video. Validation of empirical function parameters should also be preformed. 
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6.3.6 Human Subject Evaluation of the Proposed MMKP-based Video Personalization 

In order to validate the proposed video personalization evaluation strategy, it would be beneficial 

to use human subjects to evaluate the generated video response to a client’s request. 
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