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CHAPTER 1 

INTRODUCTION 

 

1.1. Bioinformatics 

 

This thesis involves work in the area of bioinformatics. As stated in [Bayat 2002], 

bioinformatics is the “application of tools of computation and analysis to the capture and 

interpretation of biological data”. It is an interdisciplinary area involving biological 

sciences, computer science, mathematical science, physics, and medicine [Bayat 2002]. 

 

As the vast amount of biological data produced by many genome projects continues to 

grow, the need for computational analysis, organization and management has emerged. 

Bioinformatics tools have been developed to study the genes and proteins in various 

organisms, including humans. The importance of bioinformatics in assisting researchers 

to understand the mechanisms of diseases, design new drugs and develop new treatments 

is obvious. 

 

Bioinformatics projects center around understanding the structure, function and 

regulation of genes and proteins. Bioinformatics can basically be divided into two 

important sub-disciplines [Bioinformatics Factsheet 2001]:  

1. In order to efficiently store, access, query and manage large amounts of 

biological data, tools such as databases have been developed and implemented. 
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2. Analysis of the vast amount of biological data using algorithmic and statistical 

methods to unveil and evaluate the relationships among members of the data sets. For 

instance, gene-finding programs have been developed to locate genes in genomic 

sequence data, and clustering algorithms have been used to study gene regulation from 

microarray data. 

 

Recently, with the completion of genome sequencing of quite a few model organisms, 

such as human, mouse, rat, and two fruit flies, and more sequencing projects being 

conducted for more organisms, a vast amount of sequence data has become available. 

The annotation of the sequence data to unveil the gene structures, various types of repeats 

and other complex biological patterns, such as the Long Terminal Repeat (LTR) 

retrotransposons and Miniature Inverted repeat Transposable Elements (MITEs), has 

increasingly emerged as a both important and challenging problem. 

 

Aimed at the above annotation problem, this thesis work provides three contributions: 

 

1. An analysis of several gene-finding programs for the fungus 

Neurospora crassa. 

2. The development of a general tool that can automatically evaluate any 

gene-finding program and will report both the standard metrics and new 

metrics that we define. 

3. The development of a tool, Interactive Pattern Search Tool (IPST), to 

facilitate finding complex patterns in nucleotide sequence data. 
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These contributions are introduced in the following sections. 

 

1.2. Analysis of Gene-finding programs for N. crassa 

 

Computational gene-finding plays an important role in genome projects. A large number 

of programs employing various algorithms have been developed to address this problem. 

The optimal values of parameters for gene-finding programs are often organism-specific.  

A gene-finding program that performs well for one organism does not necessarily 

produce good results in another organism. Choosing the right program to find genes in a 

newly sequenced genome has been a pivotal issue. 

 

Our work on the analysis of gene-finding programs for N. crassa is aimed at the above 

issue using the species N. crassa as the case study. We have conducted the evaluation of 

four commonly used gene-finding programs (GenScan [Burge and Karlin, 1997], 

GeneMark [Borodovsky and McIninch, 1993], HMMGene [Krogh 1997], and Pombe 

[Chen and Zhang, 1998]) and a program developed in the Kraemer lab: FFG (Find 

Fungal Gene). While FFG is designed specifically for the organism N. crassa, the other 

four programs are gene-finding programs designed mainly for other organisms. We have 

used five manually annotated sequences in the evaluation process. 
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The performance of the gene-finding program is measured at the exon level using a 

previously-defined evaluation methodology [Burset and Guigo, 1996]. The performance 

of those five programs on N. crassa is compared. 

 

Selecting the best gene-finding program or programs for a new organism or category of 

sequences can be time-consuming and error-prone, as well as problematic. In the process 

of executing these programs on our test sequences, collating the results of the various 

programs, and calculating statistics, we became keenly aware of the time-consuming and 

error-prone nature of this process and the variation in reporting methodologies. The need 

for a standard tool to perform such studies seems clear. We aim to produce an 

environment and tools to support the task of evaluating gene-finding programs. Toward 

that goal we have developed a general tool that can automatically evaluate any gene-

finding program and will report both the standard and newly defined metrics. 

 

Chapter 2 contains our paper entitled “An analysis of gene-finding programs for N. 

crassa” [Kraemer et al. 2002] and published in the journal Bioinformatics. In this paper, 

we present a general introduction to the problem of computational gene-finding, the 

underlying algorithms of the gene-finding programs that we evaluated, the test data sets, 

the evaluation methodology, and the results. Chapter 3 contains our paper entitled “GFPE: 

gene-finding program evaluation” [Wang et al. 2003] and published in the journal 

Bioinformatics as well. This paper describes the initiative that led to the work of creating 

a general tool to automatically analyze various gene-finding programs, the usage of the 

program, and future work related to this tool. 
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1.3. Interactive Pattern Search Tool (IPST) 

 

Genome projects have produced and continue to produce vast quantities of sequence data. 

Exploring various patterns contained in these sequences is now the primary concern. 

Examples of such patterns include direct repeats, inverted repeats, reverse complements, 

and other more complex structures, such as the long terminal repeat (LTR) 

retrotransposon elements and miniature inverted repeat transposable elements (MITEs). 

Given the important roles that these complex patterns may have played in both evolution 

and regulation of genes and proteins, the need for an efficient computational algorithm to 

identify and locate these patterns has emerged in the research community. Our tool is 

designed to specifically address this problem. 

 

This tool is designed to facilitate finding complex patterns in nucleotide sequence data in 

an interactive manner. In addition to finding direct and inverted repeats, the tool is also 

capable of performing approximate string search, locating start and stop codons and any 

combination of the above operations. Users can use a combination of the functions that 

IPST provides to locate various patterns that they are interested in. We have applied IPST 

to find LTR (Long Terminal Repeat) retrotransposons and MITEs (Miniature Inverted-

repeats Transposable Elements) in rice sequence data. 

 

IPST can be used for multiple sequences and thus is suitable for genomic projects.  IPST 

is implemented in the Java programming language and provides a graphical user interface 
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and visualization and interaction techniques that focus on interactive exploration of 

patterns in sequences. 

 

IPST is implemented using a hashtable based approach. A hashtable storing 

polynucleotide information of the sequences is pre-computed and used in the searching 

processes. The time taken for building the hashtable allows the fast retrieval of patterns in 

the sequences during the pattern search processes. As a test for efficiency of the time and 

memory usage of our hashtable based pattern search approach, we have compared the 

hashtable based algorithm with a suffix tree based approach, which was also 

implemented in IPST. 

 

Chapter 4 discusses related work to IPST. Chapter 5 provides a discussion of IPST that 

represents a manuscript in preparation for submission. Chapter 6 gives a conclusion and 

states the future work.
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CHAPTER 2 

AN ANALYSIS OF GENE-FINDING PROGRAMS FOR NEUROSPORA CRASSA1 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1 Wang, J.*, Kraemer, E. *, Guo, J., Hopkins, S., Arnold, J. 2001. Bioinformatics. 17(10): 901-912. 
Reprinted here with permission of publisher. 
* : Co-authors. Order switched from the original publication with permission of publisher and both authors 
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Abstract 

 

Motivation: Computational gene identification plays an important role in genome 

projects. The approaches used in gene identification programs are often tuned to one 

particular organism, and accuracy for one organism or class of organism does not 

necessarily translate to accurate predictions for other organisms. In this paper we evaluate 

five computer programs on their ability to locate coding regions and to predict gene 

structure in Neurospora crassa. One of these programs (FFG) was designed specifically 

for gene-finding in Neurospora crassa, but the model parameters have not yet been fully 

"tuned", and the program should thus be viewed as an initial prototype.  The other four 

programs were neither designed nor tuned for N. crassa. 

Results: We describe the data sets on which the experiments were performed, the 

approaches employed by the five algorithms: GenScan, HMMGene, GeneMark, Pombe 

and FFG, the methodology of our evaluation, and the results of the experiments. Our 

results show that, while none of the programs consistently performs well,  overall the 

GenScan program has the best performance on sensitivity and ME(Missing exons) while 

the HMMGene and FFG programs have good performance in locating the exons roughly.  

Additional work motivated by this study includes the creation of a tool for the automated 

evaluation of gene-finding programs, the collection of larger and more reliable data sets 

for N. crassa, parameterization of the model used in FFG to produce a more accurate 

gene-finding program for this species, and a more in-depth evaluation of the reasons that 

existing programs generally fail for N. crassa. 
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Availability: Data sets, the ffg program source code, and links to the other programs 

analyzed are available at: 

http://jerry.cs.uga.edu/~wang/genefind.html 

Contact:eileen@cs.uga.edu 

 

2.1 Introduction 

 

Computational gene identification plays an important role in genome projects.  Numerous 

programs have been developed to address this problem.  Some of these programs predict 

protein-coding regions in genomic DNA sequences, while others predict a set of 

spliceable exons, or explicitly assemble genes. The methods used in these programs 

include use of hidden Markov models, linear discriminant analysis, and probabilistic 

models of gene structure that rely on features such as compositional differences and 

signals. 

 

In this paper we evaluate several commonly used computer programs designed to predict 

the structure of protein coding genes in DNA sequences.   Some of these algorithms must 

be “trained” for a particular organism. Thus, the quality of the prediction strategies 

employed in these programs can vary from organism to organism.  Despite these 

limitations, existing methods of gene prediction and models of gene structure are often 

applied to newly sequenced organisms, for which no model or method has yet been 

tuned.  Thus, it is important to assess the accuracy of these methods when applying them 

to a new organism.  Here, we wish to evaluate the ability of these programs to accurately 
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predict gene structure for a particular organism, Neurospora crassa, an organism of 

interest as a well-studied representative of the filamentous fungi.   Thus, no previously 

defined data set is available that meets our needs.  However, related experiments have 

been performed [Fickett and Tung, 1992; Singh and Krawetz 1994; Lopez, et al., 1994; 

Snyder and Stormo, 1995; Burset and Guigo 1996], and we draw upon the methodology 

applied in these studies. 

 

In weighing and applying the results presented here, the reader must be aware of the 

methodology involved.  A critical element of the type of work we describe is the location 

of a "good data set". Ideally, this data set would consist of a large, representative set of 

experimentally-verified annotations.  As stated above, such a data set does not yet exist.  

 

Instead, we have relied upon existing sets of annotated sequences, some of which have 

been annotated using the programs we wish to evaluate. A few sequences exist for which 

more "manual" means were employed, involving the location of Open Reading Frames 

(ORFs) and consensus regulatory sequences, BLAST analysis, and matching cosmid 

sequences with cDNA sequences.  Let us refer to the annotations produced by these 

methods as "actual", and those produced by the programs we evaluate as "predicted".  

Note that the "actual" annotations do not necessarily correspond to the "true" annotations 

(experimentally verified).  Thus, we run the risk of creating what one reviewer refers to 

as a "devil's circle". That is, instead of evaluating the results of these programs against 

the "true" annotations, we instead evaluate them against a set of "actual" annotations that 

may have been influenced by the programs that we wish to evaluate.  Even if the 
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annotations against which we evaluate the programs have been produced by some other 

program completely unrelated to the program we wish to evaluate, we still are not able to 

evaluate the program's ability to predict the "true" set of annotations.  Rather, any 

evaluation we perform will measure a program's ability to produce annotations that 

correlate well with the method used to produce the "actual" annotations.  Unfortunately, 

this is the nature of the beast in performing such studies.  If an adequate set of 

experimentally verified sequences were to already exist, it is likely that we would be in a 

stage of study with the organism of interest in which we would no longer need the 

computational gene prediction tools we seek to create. In summary, the reader should be 

cautioned that the results presented here represent the correlation of the predictions of 

these five programs with annotations produced by the methods described.  As additional 

experimentally verified sequences become available, the set of "actual" annotations will 

change, and our perception of the quality of each of these programs for finding genes in 

N. crassa will change with that. Thus, studies such as the one we describe should be 

periodically repeated, with the gap between the "true" annotations and what we use as 

"actual" annotations in our studies gradually closing. 

 

2.2 Systems and Methods 

 

Sequences 

 

In this evaluation we compare the results of five gene prediction programs on five 

manually annotated sequences.  Of these, three annotated sequences were obtained from 
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the PEDANT web site[PEDANT 2001], one sequence from the University of New 

Mexico[Bean et al., 2001] and a cosmid sequence H123E02 from the University of 

Georgia[Kelkar et al., 2001]. 

 

The PEDANT database, compiled at the Munich Information Center for Protein 

Sequences (MIPS)[PEDANT 2001], contains a detailed annotation of Neurospora gene 

models for many of the sequences.  The sequenced cosmids and BACs are subjected to an 

elaborate, manually supervised and evaluated annotation routine.  The annotation process 

[Mannhaupt, 2000] involves BLAST searching (using human and arabidopsis matrices), 

as well as the application of several separate gene-prediction programs, including 

GenScan[Burge and Karlin, 1997], GeneFinder[Sulston et al., 1992]  and 

GeneMark[Lukashin and Borodovsky, 1998].  Further evidence from EST matches and 

from the structure of predicted protein matches is used to create a "corrected" gene, 

which is reported on the web site.  Curators of the site note on their web pages that the 

training of gene modeling programs for Neurospora is still under way.  Therefore, for the 

PEDANT automatic processes they had to use a default setting in the gene prediction for 

eukaryotes, and they note that these programs may fail to produce a reliable gene 

prediction using these settings.  We looked at three contig sequences for which gene 

predictions were available: b9j10 (66923 bp, 15 genes), 2a23  (36732 bp, 10 genes), and 

4e5   (16820 bp, 3 genes). 

 

Also evaluated was a 36 kilobase-pair cosmid insert, representing genomic DNA from N. 

crassa.  This sequence was obtained from Natvig and Nelson in the Department of 
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Biology at the University of New Mexico, where it was sequenced and characterized 

[Bean et al., 2000].  The sequenced region contains homologs to SNZ1 and SNO1 from 

Saccharomyces cerevisiae, and possesses at least 13 protein-coding genes. The cosmid, 

G6G8 from the Orbach/Sachs cosmid library, was obtained from the Fungal Genetics 

Stock Center at the U. of Kansas Medical Center, Kansas City, grown, subcloned, and 

sequenced according to the procedure described in [Bean et al., 2000].  Basecalling was 

performed using Phred[Ewing et al., 1998], vector screened using Crossmatch[Green, 

1996], and then assembled into contiguous fragments using Phrap[Green, 1996].  The 

sequence was then annotated and deposited in GenBank (accession number AF309689).   

 

The sequence analysis procedure involved using MacDNASIS v 3.2 to find Open 

Reading Frames (ORFs) using the codon bias for N. crassa, searching for consensus 

sequences associated with translational start sites and intron splicing, and using BLAST 

to compare with protein and nucleotide databases at NCBI. Many putative ORFs were 

eliminated from consideration because they overlapped verified genes; none of the ORFs 

excluded from the list exhibited a strong pattern of N. crassa codon preference.  In total, 

thirteen putative protein-coding genes were predicted in this sequence. Eleven of these 

putative genes were verified by identification of a homologous sequence using BLAST 

search. One putative gene was verified by its length (encoding 426 amino acids without 

interruption) and its strong N. crassa codon bias. One more tentative gene was verified by 

matching it to a N. crassa cDNA sequence. 
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The fifth sequence, H123E02, sequenced in the Arnold Lab at the University of Georgia, 

is a 54,728bp cosmid sequence that complements the qa-2 mutation of N. crassa, and has 

been previously analyzed and predicted to contain 12 genes [Kelkar et al., 2001]. In our 

study, we annotated this sequence using a procedure similar to that used in annotating the 

Natvig sequence.   In particular: 

 

1.  MacVector TM 7.0 was used to locate all possible ORFs. 

 

2.  The Gribskov codon preference plotting method was used with the codon usage table 

for N. crassa to find those ORFs that have a low likelihood of being in a coding region. 

These ORFs were removed from the original ORF list. 

 

3.  Sequence files were created for each of the ORFs in the list. In order to verify the 

putative ORFs, a small computer program was written to search for those consensus 

regulatory sequences involved in transcription [Bruchez et al., 1993a] and translation 

[Bruchez et al., 1993b].  ORFs containing fewer than 7 of the 8 consensus sequences (see 

Table 2.2) were removed from the list. 

 

4. BLAST searches were performed for ORFs longer that 500 bp, and each gene verified 

by comparison with BLAST analysis.  If two or more ORFs were found to overlap, the 

ORF representing a verified gene and in the correct frame was kept and the other ORFs 

were removed from the list.   
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Table 2.1 – Some consensus sequences in N. crassa and their acceptance criteria(ζ) 

1. ζ: the criteria we used in accepting a given sequence as a consensus sequence; the given sequence must 

match the minimum number of nucleotides with the consensus sequence  to be accepted. 

2. a. Bruchez et al., 1993a; b. Bruchez et al.,1993b 

3 The subscript number indicates the percent occurrence of the particular nucleotide. 

4. Symbol "-" indicates the splicing site. 

5. If a nucleotide is quoted, it indicates the conserved absence of that particular nucleotide. 

Sequence
Minimum 

match

CAAT box(a) CAAAT 4

TATA box(a) TATATAA 5

Plus 1 Sequence 
consensus(a)

TCATCANC 6

Polyadenylation 
signal(a)

AATAAA 5

Intron Splicing 5' 
signal(a)

G51-G99T99(A77/G17)(A50/C23)G94(T76/C15) 5

Lariat signal(a) (G45/A37)C94T94(A48/G40)A93C82 5

Intron splicing 3' 
signal(a)

"G4"(A56/T20)(T62/C33)A100G100-G40 4

Kozak Sequence(b) C57NNNC77A81(A44/C43)"T3"A99T100G99G51C53 9
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5. Because this sequence had been previously annotated by other means, we compared 

our results with the published results, and found that a gene, qa-2, was missing.  We then 

returned to the complete ORF list originally generated by the MacVector program, and 

selected those ORFs that reside in the region between the sequences that flank qa-2 in the 

published map[Kelkar et al., 2001].  Searching with BLAST on these ORFs succeeded in 

locating the ORF for the qa-2 gene, which had been eliminated in one of the screens in 

prior steps. 

 

6. To avoid missing a gene, we then added back to the ORF list any predicted ORF of 

length greater than 1000 bp not in the current list.  BLAST searches on these newly 

added long ORFS did not produce any significant hits.  Thus, they were again removed 

from the ORF list. 

 

7. BLASTX [Gish and States, 1993] was used to locate the exons in the verified ORFs. 

 

The ORFs and exon structure deduced using this method are shown in Table 2.1. 

 

Gene Prediction Programs 

 

Five programs were evaluated, GenScan[Burge and Karlin, 1997], HMMGene[Krogh 

1997], GeneMark[Borodovsky and McIninch, 1993], Pombe[Chen and Zhang, 1998], and 

FFG (Find Fungal Gene), developed at the University of Georgia and described here.  

Although FFG was designed specifically for gene-finding in Neurospora crassa, the  



 

 -17- 

Table 2.2 – ORF and exon structures in N. crassa cosmid H123E02 

ORF
Protein 

identification

No. of 
am ino 
acid

Best blast hit 
organism

E-
Value

fram e Exon locations
Method of 

exon 
identification

1
Putative pyridoxal 

kinase
309

Schizosaccharomyc
es pombe

3e -11 1

3393 - 3566 
3579 - 3683  
3690 - 3815  
3834 - 3905

BLASTX

2
Catabolic 3-

Dehydroquinase( 
qa-2)

173 Neurospora crassa 2e  -78 1 12550 - 13068    BLASTX

3
Quinate 5-

dehydrogenase  
(qa-3)

321 Neurospora crassa e -179 1 16697 - 17614 BLASTX

4
Quinic Acid 

Utilization Activator 
qa-1F

816 Neurospora crassa 0 1 25001 - 27448    BLASTX

5
Hypothetical 

protein 
SPAC1F12.09 

554
Schizosaccharomyc

es pombe
2e -15 1

44189 - 44377    
44387 - 44524    
44537 - 44617   
44627 - 45001    

BLASTX

6
Elongation factor 1-
Beta(EF-1-BETA)

227 Xenopus laevis 6e  -33 3 48578 - 48805    BLASTX

7
Fatty acid transport 

protein 
643

Cochliobolus 
heterostrophus

4e -80 -1

40595 - 40413 
40391 - 39768 
39729 - 39603 
39596 - 39429  

BLASTX

8
Rehydrin protein 

hom olog 
243 Candida albicans 5e -46 -3

37332 - 37207  
37122 - 36802 

BLASTX

9
Regulatory protein 

ral2 
611

Schizosaccharomyc
es pombe

9e -44 -1

32885 - 32820    
32810 - 32646    
32621 - 32484    
32369 - 32241    
32216 - 31698    
31607 - 31569   
31562 - 31449

BLASTX

10
Hypothetical 

protein YGR277c
305

Saccharomyces 
cerevisiae

2e -12 -1

29187 - 29128    
29088 - 29062    
29043 - 28933    
28806 - 28615    
28581 - 28498

BLASTX

11
Quinate Repressor 

qa-1s
918 Neurospora crassa 0 -1 23601 - 21073    BLASTX

12
Quinate Perm ease     

(qa-Y)
537 Neurospora crassa 0 -1 19916 - 18306    BLASTX

13
3-

dehydroshikim ate 
dehydratase (qa-4)

359 Neurospora crassa 0 -1 14704 - 13628    BLASTX

14
Hypothetical 
protein qa-x 

340 Neurospora crassa e -121 -1 11329 - 10649    BLASTX
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model parameters have not yet been fully "tuned", and the program should thus be 

viewed as an initial prototype.  The other four programs were neither designed nor tuned 

for N. crassa. 

 

GenScan[Burge and Karlin, 1997] is a general-purpose gene identification program that 

analyzes genomic DNA sequences from a variety of organisms including human, other 

vertebrates, invertebrates and plants.  For each sequence, the program applies a 

probabilistic model of the gene structure and compositional properties of the genomic 

DNA for the given organism to determine the most likely gene structure.   This model 

includes consensus sequences involved in transcription and translation, length 

distributions, and compositional differences.  GenScan identifies complete intron/exon 

structures of a gene in genomic DNA, is able to predict multiple genes, can deal with 

both partial and complete genes, and can predict consistent sets of genes that occur on 

either or both strands of DNA.  The GenScan program may be accessed through: 

http://genes.mit.edu/GENSCAN.html.  Parameter settings include a choice of organism 

(vertebrate, arabidopsis, or maize) and a suboptimal exon cutoff value (1.0, 0.50, 0.25,  

0.10, 0.05, 0.02,  and 0.01).  In our evaluation, we used arabidopsis at a cutoff value of 

1.0.  

 

HMMGene[Krogh, 1997] is a program for prediction of genes in anonymous DNA, 

designed for prediction of vertebrate and C. elegans genes.  The program predicts whole 

genes, and can be used on whole cosmids or even longer sequences. It can also predict 

splice sites and start/stop codons. If some features of a sequence are known, such as hits 
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to ESTs, proteins, or repeat elements, these regions can be locked as coding or non-

coding and then the program will find the best gene structure under these constraints.  

The program is based on a hidden Markov model, a probabilistic model of the gene 

structure.  HMMgene can also report the n best gene predictions for a sequence. This is 

useful if the there are several equally likely gene structures and may even indicate 

alternative splicing.  HMMgene takes an input file with one or more DNA sequences in 

FASTA format. It also has a few options for changing the default behavior of the 

program.  The output is a prediction of partial or complete genes in the sequences. The 

output specifies the location of all the predicted genes and their coding regions and scores 

for whole genes as well as exon scores. The HMMgene program is available at: 

http://www.cbs.dtu.dk/services/HMMgene.  Through the web page, users may enter 

sequences, select an organism(vertebrate or C. elegans), specify whether or not to predict 

signals, and specify the number of predictions (1 –5) to report.  In our evaluation, we 

specified C. elegans, did not predict signals, and reported the best prediction. 

 

The GeneMark gene prediction software takes several forms.  The original GeneMark 

program [Borodovsky & McIninch, 1993] relied on inhomogeneous Markov chain 

models of both coding and non-coding regions, based on analysis of known genes and on 

the Bayes decision making function, to predict genes in E. coli DNA sequences, and was 

then retrained for H. influenzae, M. genitalium, and other organisms.    GeneMark-

Genesis, developed for analysis of organisms such as M. jannaschii and H. pylori, was 

designed for the situation in which no experimentally studied segments are available for 

training.  The GeneMark.hmm algorithm [Lukashin and Borodovsky, 1998] generates a 
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maximum-likelihood parse of the DNA sequence into coding and non-coding regions, 

and is designed to more precisely locate the exact gene boundaries.  This program is 

available both through e-mail servers (at Georgia Tech and the EMBL Outstation of the 

European Bioinformatics Institute (EBI)) and through several web pages.  Links to the 

web server, instructions for the e-mail server, and other related information may be found 

through the GeneMark home page: http://genemark.biology.gatech.edu/GeneMark. 

We evaluated  both the e-mail server for GeneMark and the GeneMark.hmm program at: 

http://dixie.biology.gatech.edu/GeneMark/eukhmm.cgi. 

Through the e-mail server for GeneMark, the options specified were “spombe” (S. pombe) 

for the organism and exon for the orflist option; otherwise, default values were accepted.  

Through the web server for GeneMark.hmm, A. thaliana was specified for the organism.  

In analyzing the results of these two programs we found that better results were obtained 

with GeneMark.hmm using A. thaliana as the model organism.  Thus, we report only 

those results here.   Note that we considered using the GeneMark.hmm server at: 

http://dixie.biology.gatech.edu/GeneMark/whmm.cgi because it has an option for “low 

eukaryotes” and provides S. cerevisiae, which is similar to N. crassa, as a model 

organism.  However, we found that the output of this version does not provide 

exon/intron boundary information. 

 

The Pombe program was developed to find genes and predict exon-intron structure in 

Schizosaccharomyces pombe [Chen and Zhang, 1998].  In developing the program, the 

authors first extracted a training data set from GenBank, checked the annotations for 

accuracy, and removed redundancy.  Execution of the program involves a number of 
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linear discriminant analyses.  For example, one analysis differentiates between {sites, 

introns, exons} and {pseudo sites, pseudo introns, pseudo exons}.  Initiation sites, donor 

sites, and acceptor sites are identified.  Exon and intron predictions are the result of the 

combination of three linear discriminant functions.  Other factors considered include 

oligonucleotide preferences, positional triplet preferences, and the location of open 

reading frames.  The results of these intermediate analyses are then combined through 

dynamic programming to predict gene structure.  Pombe is freely available for academic 

use and is available through the web site  at:                      

http://argon.cshl.org/genefinder/Pombe/pombe.htm 

 

Find Fungal Gene (FFG) is a pattern-directed program for gene-finding in Neurospora 

crassa, based on statistical analysis of sequence features with genes from N. crassa 

performed by Edelman and Staben[Edelman and Staben, 1994], and conversations with 

Staben.  This study found that sequence features such as translation initiation sites, codon 

usage in open reading frames, intron length, exon length, intron donor sites, intron branch 

points, and intron acceptor sites within genes from N. crassa are distinctive.   

 

Specifically, coding regions were found to have higher GC content and to exhibit a bias 

toward codons in which the last nucleotide is C, with a secondary preference for G.  Also, 

the stop codon UAA is more commonly used than either UAG or UGA.  An ATG 

initiator codon and surrounding consensus sequence (CAMMATGGCT) were identified. 

Most N. crassa genes were found to have at least one intron.  Introns also tended to be 

short, with average length 63, median length 70, and a range from 52 to 691 bases.  Exon 
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length varied more widely, from 3 to 5367, with an average length of 509 and median 

length of 148.  Consensus sequences identified for the 5’donor site, splice branch sites, 

and 3’acceptor sites are G^GTAAGTnnYCnYY, WRCTRACMnnnnnnYY, and 

WACAG^, respectively [Edelmann and Staben, 1994]. 

 

The FFG algorithm begins by identifying possible start and stop sites, as well as left (5’ 

donor) sites, center (splice branch) sites and right (3’ acceptor) sites.  Frame numbers are 

associated with start and stop sites.  Any subsequence matching the pattern “GTRNGT” 

is identified as a potential left site; any subsequence matching the pattern “CTRAC” is 

identified as a potential center site; and any subsequence matching the pattern “YAG” is 

identified as a potential right site. 

 

Then, the algorithm traverses the list of start sites and builds a list of “primitive” ORFs 

(Open Reading Frames).  Each ORF ends at the first stop site encountered in the same 

reading frame in the sequence.  At this point, each ORF has one exon.   

 

Next, the algorithm repeatedly traverses the ORF list. For each ORF, the algorithm 

examines the last exon in its list and attempts to extend the ORF to include another exon.  

This is possible if a splice site can be found within the exon.  That is, if the exon contains 

a “left” (5’ donor) site and both a “center” (branch site) and “right” (3’ acceptor) site can 

be found within an acceptable distance (currently set to 300 base pairs).  If these are 

located, another exon is added to the list for that ORF; otherwise, the ORF is marked as 

complete.  Extension terminates when all ORFs are marked as complete. 
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Finally, the algorithm deletes ORFs that are less than 300bp in length (an ORF less than 

300 bases is not likely to be a gene).  When several ORFs overlap, the longest one is 

selected and the others are deleted.  The reverse complement strand is then generated and 

the process repeated. 

 

FFG accepts input sequences in FASTA or plain text format, and produces output in the 

GFF format [Sanger Center: GFF, 2000], a sequence annotation format developed with 

gene finding in mind. A more highly tuned FFG program that uses a genetic algorithm to 

tune parameters such as the required homology to the consensus sequences, the relative 

weights of each of the sites, lengths, and distances, and including dinucleotide 

composition and codon bias, is under development, and will make use of the evaluation 

performed in this study. 

 

The Evaluation Methodology 

 

In our study, we evaluated only the accuracy of the prediction, and did not evaluate 

factors such as execution time or memory requirements.   In general, prediction accuracy 

can be measured at three levels: at the level of the coding nucleotide, at the level of 

exonic structure, and the level of the predicted protein product.  At the protein product 

level, the protein encoded by the actual gene is compared with the protein encoded by the 

predicted gene.  We focus our evaluation on the exon level, but have developed and apply 

here a technique that provides combined information about both ability to predict 
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sequence coding regions and how well signals are identified, which we explain later in 

this section. 

 

Measurements of accuracy at the coding level compare predicted coding value with the 

actual coding value for each nucleotide along the test sequence. In this widely used 

approach predictions are divided into four categories: 

 

• True Positive = nucleotides classified as coding in both actual and predicted (TP). 

• True Negative = nucleotides classified as non-coding in both actual and predicted 

(TN). 

• False Positive = classified as coding in predicted, but as non-coding in actual (FP). 

• False Negative = classified as non-coding in predicted, but as coding in actual (FN). 

 

Sensitivity is defined as the proportion of coding nucleotides that have been correctly 

predicted as coding.  That is, sensitivity = TP / (TP + FN).  Specificity is the proportion 

of noncoding nucleotides that have been correctly predicted as non-coding. That is, 

specificity = TN/(TN+FP). An issue that arises in evaluating specificity is that the 

frequency of noncoding nucleotides in genomic DNA sequences is much greater than the 

frequency of coding nucleotides, so that TN tends to be much larger than FP, with the 

result of a tendency toward very large non-informative values for specificity.  Thus, in 

much of the literature on gene structure prediction, specificity is instead defined to be 

TP/(TP + FP), the proportion of predicted coding nucleotides that are actually coding.  
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Other commonly used metrics based on these categories are the Correlation 

Coefficient(CC), defined as: 
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 [Burset and Guigo, 1996]. 

 

While nucleotide-level metrics are often used to evaluate how well the program locates 

sequence coding regions, exonic structure metrics are typically used to evaluate how well 

the sequence 

signals (splice sites, start codons, and stop codons) are identified [Burset and Guigo, 

1996]. Our evaluation focused on measuring the accuracy of predictions at the exon level, 

by comparing predicted and actual exons along the test sequence.  Although this 

approach is widely used, no unique criterion has been used to consider an exon as 

“correctly” predicted.  The strictest criterion would score an exon prediction as a correct 
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match only if an exact match exists between actual and predicted start and stop locations, 

both splicing boundaries correctly identified.  We label these as “type 1” predictions. A 

looser criterion scores a prediction as correct if a partial match occurs, if at least one of 

the splice sites has been correctly identified. We label these as “type 2” predictions.   

Finally, a predicted exon may be scored as correct if the overlap between actual and 

predicted exceeds some threshold.  We label these as “type 3” predicted exons.  While 

the first two approaches are more stringent, the advantage of the third approach is that an 

evaluation performed using this method provides combined information about both the 

ability of the program to locate sequence coding regions and how well sequence signals 

are identified.  Type 4 predicted exons do not overlap with any actual exon. 

 

The notions of sensitivity and specificity are still applicable in measurements performed 

at the exon level.  Sensitivity is the proportion of actual exons in the test sequence that 

are correctly predicted.  Specificity is the proportion of predicted exons that are correctly 

predicted.  Also useful are the notions of Missing Exons(ME) and Wrong Exons(WE). 

Missing Exons indicates the proportion of actual exons with no overlap to predicted 

exons. Wrong Exons indicates the proportion of predicted exons with no overlap to actual 

exons. 

 

Determining the criteria to use in selecting a threshold for the type 3 exons proved 

challenging.  To address this problem, we developed a method of selecting a threshold for 

overlap between actual and predicted exons that relies on the notions of Overlap-

sensitivity and Overlap-specificity and an initial empirical evaluation.   
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From all of the predicted exons obtained by running all of the programs on four of the 

five test sequences (annotations for H123E02 were not yet available) we selected all the 

type 2 and preliminary type 3(any overlap at all) exons. For each of these exons, we 

calculated the overlap-sensitivity, overlap-specificity, and combined overlap percentage.  

Overlap-sensitivity is the number of nucleotides in the overlapping region between the 

predicted exon and the actual exons, divided by the number of nucleotides in the actual 

exon. Overlap-specificity is the number of nucleotides in the overlapping region, divided 

by the number of nucleotides in the predicted exon. A Combined Overlap Percentage 

(COP) was defined to be (OverlapSn + OverlapSp)/2. We then divided the exons into 

different groups based on the value of COP, such as group 100, [95,100), [90,95), ... , 

[0,10). Then we calculated the fractions of the exons falling into each of the above groups 

and drew a curve (figure 2.1) with the y-axis representing the COP value and the x-axis 

representing the fraction of exons with a COP value equal to or greater than the 

corresponding y value.  As can be seen from figure 2.1, the “knee” of the curve falls 

between 70 and 90 on the x-axis, and appears to be linear in this range.  Based on this 

curve, “greater than 80%" was determined to be a reasonable threshold to define a type 3 

exon.  In reporting the results of our evaluations, we define three categories, labeled one-

star (*), two-star (**), and three-star (***).  The one-star category includes only the type 

1 exons.  The two-star category includes only the type 1 and type 2 exons.  Both of these 

categories may be used to evaluate the ability of a program to exactly locate exon and 

intron boundaries.  The three-star category combines this information with a measure of 

the ability of a program to correctly predict coding regions, and consists of type 1 exons,  
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Determining the threshhold for type 2 and type 3 exons
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Figure 2.1 – Chart of data used to select “appropriate” value of COP for type-2 and type-3 threshold cutoff.
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 type 2 exons for which the COP exceeds the threshold (80%),  and type 3 exons for 

which the COP exceeds the same threshold. 

 

2.3 Results and discussion: 

 

Annotation of the H123E02 cosmid sequence: 

 

Our annotations for the N. crassa cosmid H123E02 sequence are shown in Table 2.1. As 

described in the Systems and Methods section, we used a method similar to that 

employed in the annotation of the Natvig sequence. All of the 12 genes predicted by 

[Kelkar et al., 2001] are “recovered” in our study, and two additional hypothetical genes 

(Hypothetical protein SPAC1F12.09 and Hypothetical protein YGR277c) are predicted.  

We note, however, that in the absence of Kelkar’s annotations, only 11 of those 12 genes 

would have been recovered. Specifically, the Catabolic 3-Dehydroquinase( qa-2) gene 

would have been missed, indicating that the methodology described may have some room 

for improvement.  Two elements of the screening process are possible culprits in the 

omission of the ORF that represents the Catabolic 3-Dehydroquinase. One possibility is 

that it was eliminated because it exhibited a low codon preference when using the 

Gribskov codon preference plotting method. Although the Gribskov method can help to 

locate highly and moderately expressed genes very well, and can save substantial effort in 

analyzing unlikely ORFs, it is not good at distinguishing weakly expressed genes from 

non-genes [Gribskov et al.,  1984].  Thus, those ORFs that were removed because of low 

Gribskov plotting likelihood might represent weakly expressed genes. 
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The other possibility is that the qa-2 gene was removed during the process of verifying 

the presence of the consensus sequences. In this study, eight consensus sequences, seen in 

Table 2.2 along with the acceptance criteria: the CAAT box, the TATA box, the +1 

sequence consensus, the polyadenylation signal sequences, the intron splicing 5’ signal, 

the lariat sequence, the intron splicing 3’ signal[ Bruchez and et al., 1993a] and the 

Kozak sequence[ Bruchez and et al., 1993b]  were searched for in those putative ORFs.  

The screen for these consensus sequences is fairly stringent, and thus some actual ORFs 

may have been eliminated.    

 

To locate exons within the ORFs, we simply used the BLASTX [Gish and States, 1993] 

method to deduce the exon boundaries. Ideally, we would have incorporated the 

information derived from aligning the cDNA clone with the ORFs. In that way, the 

boundaries would be more precisely located. 

 

Prediction accuracy analysis for Natvig Sequence  

 

Results of analysis for the Natvig test sequence are shown in table 2.3. For this sequence, 

it seems that regardless of the method used to define the exon, the GenScan program has 

the best sensitivity followed by the FFG and GeneMark.hmm programs.  For specificity, 

the FFG program behaves best, for all definitions of an actual exon. 
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Prediction accuracy analysis for the H123E02  cosmid  

 

The result for the cosmid H123E02 is shown in table 2.4. None of the five programs 

predicted exons that have the same boundaries as the actual exons. Since an important 

deviation of our hand annotation procedure from that used in the annotation of the Natvig 

sequence is that we did not compare and align those putative ORFs with the cDNA 

sequence, it illustrates the importance of cDNA sequence in the hand annotation 

procedure. As a consequence, the three-star(***) category is the most informative for this 

sequence.  The results in table 2.4 show that, for this sequence, none of the programs 

performed well and all programs performed similarly in sensitivity except that 

HMMGene’s score for sensitivity is relatively low. The FFG program has a relatively 

better specificity. 

 

Prediction accuracy analysis for the contig b9j10 

 

For this test sequence, the result shown in table 2.5 indicates that the GenScan program 

has the best sensitivity and specificity. It also has relatively low ME and WE. The 

GeneMark.hmm program also has a relatively good sensitivity and the HMMGene 

program has a relatively good specificity.  We note that the GenScan program was used 

in the annotation process for the PEDANT sequences (b9j10, 2a23, 4e5), thus biasing the 

results with these sequences in favor of the GenScan program. 
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Table 2.3 - Prediction accuracy analysis for Natvig Sequence 

* :    Only include Type 1 exons 

** :  Include both Type 1 and Type 2 exons 

***: Include Type 1 and only those Type 2 and   

        Type 3 with Combined Overlap Percentage  

        (COP) greater than 80% 

GenScan HMMGene
GeneMark.h

mm Pombe FFG

# of correct exons* 14 3 7 1 8

# of correct exons** 24 7 15 8 17

# of correct exons*** 24 8 19 7 17

# of actual exons 27 27 27 27 27

# of predicted exons 82 27 93 57 40

# of missing exons 1 15 5 9 8

# of wrong exons (Type 4) 56 16 70 42 19

Sn* 0.52 0.11 0.26 0.04 0.3

Sn** 0.89 0.26 0.56 0.3 0.63

Sn*** 0.89 0.3 0.7 0.26 0.63

Sp* 0.17 0.11 0.08 0.02 0.2

Sp** 0.29 0.26 0.16 0.14 0.43

Sp*** 0.29 0.3 0.2 0.12 0.43

ME 0.04 0.56 0.19 0.33 0.3

WE 0.68 0.59 0.75 0.74 0.48
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Table 2.4 - - Prediction accuracy analysis for the H123E02 cosmid 

* :    Only include Type 1 exons 

** :  Include both Type 1 and Type 2 exons 

***: Include Type 1 and only those Type 2 and   

        Type 3 with Combined Overlap Percentage  

        (COP) greater than 80% 

 

 

GenScan HMMGene
GeneMark.h

mm Pombe FFG

# of correct exons* 0 0 0 0 0

# of correct exons** 1 2 2 2 5

# of correct exons*** 9 5 8 7 7

# of actual exons 34 34 34 34 34

# of predicted exons 112 44 110 75 49

# of missing exons 3 6 6 2 14

# of wrong exons (Type 4) 95 29 96 61 39

Sn* 0 0 0 0 0

Sn** 0.03 0.06 0.06 0.06 0.15

Sn*** 0.26 0.15 0.24 0.21 0.21

Sp* 0 0 0 0 0

Sp** 0.01 0.05 0.02 0.03 0.1

Sp*** 0.08 0.11 0.07 0.09 0.14

ME 0.09 0.18 0.18 0.06 0.41

WE 0.85 0.66 0.87 0.81 0.8
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 Prediction accuracy analysis for the contig 2a23 

 

The result for the contig 2a23 is shown in Table 2.6, and indicates that the GenScan 

program has the best sensitivity and the lowest ME. The FFG program has a relatively 

good performance on specificity for this sequence. 

 

Prediction accuracy analysis for the contig 4e5 

  

The result for this test sequence is shown in Table 2.7.  The GenScan program shows the 

best performance on sensitivity and ME. In regard to specificity, although the HMMGene 

program is not good at locating the exons exactly, it is good at roughly locating the exons 

with the highest Sp** and Sp***. 

 

2.4 Summary 

 

The average results for evaluating the prediction accuracy on these five test sequences is 

shown in table 2.8. Overall, the GenScan program has the best performance on sensitivity 

and ME. But as for specificity, the HMMGene and the FFG program have good 

performance in locating the exons roughly, since they both have relatively high average 

scores on Sp** and Sp***. This result encourages heavier weighting of the factors 

considered by GenScan and HMMGene in the parameterized method being developed for 

the refined FFG program. 
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Table 2.5 -- Prediction accuracy analysis for the contig b9j10 

* :    Only include Type 1 exons 

** :  Include both Type 1 and Type 2 exons 

***: Include Type 1 and only those Type 2 and   

        Type 3 with Combined Overlap Percentage  

        (COP) greater than 80% 

 

GenScan HMMGene
GeneMark.h

mm
Pombe FFG

# of correct exons* 43 6 9 0 4

# of correct exons** 58 13 28 11 19

# of correct exons*** 51 16 36 12 18

# of actual exons 61 61 61 61 61

# of predicted exons 123 41 174 102 66

# of missing exons 4 42 18 10 32

# of wrong exons 62 22 131 64 35

Sn* 0.7 0.1 0.15 0 0.07

Sn** 0.95 0.21 0.46 0.18 0.31

Sn*** 0.84 0.26 0.59 0.2 0.3

Sp* 0.35 0.15 0.05 0 0.06

Sp** 0.47 0.32 0.16 0.11 0.29

Sp*** 0.41 0.39 0.21 0.12 0.27

ME 0.07 0.69 0.3 0.16 0.52

WE 0.5 0.54 0.75 0.63 0.53
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Table 2.6 -- Prediction accuracy analysis for the contig 2a23 

* :    Only include Type 1 exons 

** :  Include both Type 1 and Type 2 exons 

***: Include Type 1 and only those Type 2 and   

        Type 3 with Combined Overlap Percentage  

        (COP) greater than 80% 

GenScan HMMGene
GeneMark.h

mm
Pombe FFG

# of correct exons* 15 0 3 2 4

# of correct exons** 27 9 15 6 12

# of correct exons*** 25 12 18 10 14

# of actual exons 28 28 28 28 28

# of predicted exons 73 23 79 49 29

# of missing exons 1 11 5 5 10

# of wrong exons 44 7 56 31 9

Sn* 0.54 0 0.11 0.07 0.14

Sn** 0.96 0.32 0.54 0.21 0.43

Sn*** 0.89 0.43 0.64 0.36 0.5

Sp* 0.21 0 0.04 0.04 0.14

Sp** 0.37 0.39 0.19 0.12 0.41

Sp*** 0.34 0.52 0.23 0.2 0.48

ME 0.04 0.39 0.18 0.18 0.36

WE 0.6 0.3 0.71 0.63 0.31
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Table 2.7 -- Prediction accuracy analysis for the contig 4e5 

* :    Only include Type 1 exons 

** :  Include both Type 1 and Type 2 exons 

***: Include Type 1 and only those Type 2 and   

        Type 3 with Combined Overlap Percentage  

        (COP) greater than 80% 

GenScan HMMGene
GeneMark.h

mm
Pombe FFG

# of correct exons* 5 1 2 0 1

# of correct exons** 6 4 5 2 3

# of correct exons*** 6 3 4 1 3

# of actual exons 7 7 7 7 7

# of predicted exons 24 7 48 24 10

# of missing exons 1 2 2 3 2

# of wrong exons 18 2 43 21 5

Sn* 0.71 0.14 0.29 0 0.14

Sn** 0.86 0.57 0.71 0.29 0.43

Sn*** 0.86 0.43 0.57 0.14 0.43

Sp* 0.21 0.14 0.04 0 0.1

Sp** 0.25 0.57 0.1 0.08 0.3

Sp*** 0.25 0.43 0.08 0.04 0.3

ME 0.14 0.28 0.28 0.43 0.29

WE 0.75 0.28 0.9 0.88 0.5
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Table 2.8 – Average results of prediction accuracy on all five test sequences 

* :    Only include Type 1 exons 

** :  Include both Type 1 and Type 2 exons 

***: Include Type 1 and only those Type 2 and   

        Type 3 with Combined Overlap Percentage  

        (COP) greater than 80% 

GenScan HMMGene
GeneMark.h

mm
Pombe FFG

Sn* 0.49 0.07 0.16 0.02 0.13

Sn** 0.74 0.28 0.47 0.21 0.39

Sn*** 0.75 0.31 0.55 0.23 0.41

Sp* 0.19 0.08 0.04 0.01 0.1

Sp** 0.28 0.32 0.13 0.1 0.31

Sp*** 0.27 0.35 0.16 0.57 0.32

ME 0.08 0.42 0.23 0.23 0.38

WE 0.68 0.47 0.8 0.74 0.52
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In another study, GeneMark.hmm was suggested as the most accurate exon prediction 

program for the Arabidopsis genome[Pavy, et al., 1999].  In our study, however, 

GeneMark did not perform as well. This suggests the importance of evaluating programs 

based on the particular organism that one wishes to study. 

  

The results also show that most of the programs performed better at sensitivity than at 

specificity. On one hand, this may indicate that our original annotation for these test 

sequences is too stringent. Alternatively, the gene finding programs may be too liberal in 

retaining unlikely ORFs and exons. 

 

Although the three test sequences contig b9j10, contig 2a23, and contig 4e5 were 

annotated using GenScan, thus biasing the results with these sequences in favor of 

GenScan, we note that the relatively good performance of GenScan is consistent in all of 

these five sequences.  Ideally, those sequences that have been annotated using a testing 

program should not be used to evaluate that program. However, the dearth of sequences 

annotated by other means was a major factor in our decision to include these sequences.  

 

In summary, none of the gene-finding programs evaluated consistently performs well at 

finding genes in N. crassa.  The programs may have failed because the models they use 

are inappropriate for this organism, or the models may be appropriate but the model 

parameters may be inappropriate.  Further investigation is necessary to determine the 

reasons that these programs failed.   
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The FFG algorithm is designed for N. crassa. Model parameters include homology to 

consensus sequences, relative weights of donor, branch, and acceptor sites, distances 

between these sites, and lengths of introns and exons. We are working to parameterize the 

model used in FFG to obtain a more accurate gene-finding program for this species.  A 

program that uses a genetic algorithm has been designed and implemented, with the goal 

of determining appropriate weights for these parameters in the prediction formula, and 

for including dinucleotide composition and codon bias.  However, this tuning process 

requires the existence of a "seed" set of reliably annotated sequences.  The studies 

described in this paper were performed in the process of obtaining such a data set, and 

work on this refined version of FFG continues.  Thus, the FFG algorithm evaluated in 

this paper should be viewed as a prototype version. 

 

We note that we have used only 5 test sequences in our evaluation, and note further that 

despite the small number of sequences, the evaluation process was quite tedious and 

time-consuming. To address this problem we are developing a tool to automate the 

process of performing these studies, permitting rapid evaluation of a set of programs 

and/or parameters for those programs against a set of annotated sequences.  The existence 

of such a tool will permit the scientist working with a "new" organism to evaluate the 

ability of existing programs to "correctly" predict (that is, in a way that correlates with 

the current best annotation procedure) genes in a newly studied organism, and to select 

the best parameter sets for those programs.  Further, we seek to obtain sequences that 

have been experimentally verified, and to expand our evaluation to include additional 
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programs (GeneWise and NEX have been suggested).  Finally, we plan to perform 

periodic re-evaluations to include additional programs, as existing programs are updated, 

and as more and/or more reliable data becomes available. 
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CHAPTER 3 

GFPE: Gene-finding Program Evaluation2 
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Abstract 

 

Summary: GFPE (Gene-finding program evaluation) is a set of Java classes for 

evaluating gene-finding programs. A command-line interface is also provided. Inputs to 

the program include the sequence data (in FASTA format), annotations of “actual” 

sequence features, and annotations of “predicted” sequence features. Annotation files are 

in the GFF (General Feature Format) promoted by the Sanger center. GFPE calculates a 

number of metrics of accuracy of predictions at three levels: the coding level, the exon 

level, and the protein level. 

Availability: The program is free, available at:  

ftp://anonymous@iubio.bio.indiana.edu/molbio/genefind/ 

Contact: eileen@cs.uga.edu 

 

3.1 The program 

 

Computational gene identification plays an important role in genome projects, and 

numerous programs have been developed to address this problem. Selecting the best 

gene-finding program or programs for a new organism or category of sequences can be 

time-consuming and error-prone, as well as problematic for the following reasons:  1) 

The approaches used in gene identification programs are often tuned to one particular 

organism; accuracy for one organism or class of organism does not necessarily translate 

to accurate predictions for other organisms.   2) The performance of the gene-finding 

programs may depend on the parameter settings used to perform the analysis.    3) 
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Published evaluations of gene identification programs are often not only limited to a 

particular organism, but may report only a subset of the available metrics. This use of 

different metrics by the authors of different gene-finding programs complicates the 

comparison of results. The effort required to reproduce these studies to verify the results 

or to generate a consistent set of metrics is typically prohibitive.   

 

Despite these limitations, existing methods of gene prediction and models of gene 

structure are often applied to newly sequenced organisms, for which no model or method 

has yet been tuned.  Thus, it is important to have a rapid and reliable means to assess the 

accuracy of different gene identification methods and parameter settings when beginning 

a new genome project or evaluating a new gene identification program. 

 

Recently, we evaluated several commonly used gene-prediction programs to compare the 

ability of these programs to accurately predict gene structure for a particular organism, 

Neurospora crassa (Kraemer, 2001). In the process of executing these programs on our 

test sequences, collating the results of the various programs, and calculating statistics, we 

became keenly aware of both the time-consuming and error-prone nature of this process 

and the variation in reporting methodologies in prior studies.  

 

The need for a standard tool to perform such studies seems clear.  We aim to produce an 

environment and tools to support the task of evaluating gene-finding programs. Toward 

that goal we have developed a set of Java classes to perform the necessary analysis and a 
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simple command-line program through which they may be invoked. A graphical user 

interface and analysis environment is under development. 

 

The evaluation criteria are based on those described in (Burset et al. 1996). New criteria 

for prediction at the exon level have been added (Kraemer, 2001). The evaluation is 

carried out at three levels: the coding level, the exon level and the protein level. 

 

The GFPE program takes as input the DNA sequence file in FASTA format, the GFF-

formatted sequence annotation and gene-finding program output. GFF is the short for 

Gene-Finding Format or General Feature Format. The attribute fields are <seqname> 

<source> <feature> <start> <end> <score> <strand> <frame> [attributes] [comments] 

(Sanger Center, GFF, 2000). For those genefinding programs (GenScan, GeneMark, and 

Pombe) whose output is not in GFF format, some Java programs are included in the 

GFPE package to convert their outputs to GFF format. In addition, since the exon 

positions are used in the accuracy calculations in all three levels, the <feature> attribute 

field must contain the string “exon” for recognition. GFF-format output that contains a 

feature name other than “exon” can be converted using a Java program included in the 

GFPE package. 

 

Figure 3.1 shows an example output of the GFPE program on a single sequence. 

Notations used in this example are largely as illustrated in  (Burset et al. 1996). New 

notation describes prediction accuracy at the exon level. If both splicing boundaries are 

correctly identified, this prediction is defined as “type 1”. If at least one of the splicing 
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boundaries from the prediction matches with the correct exon, this prediction is defined 

as “Type 2”. “Type 3” predictions are those predicted exons whose overlap with the 

actual exons exceeds some threshold. In figure 3.1, for prediction at the exon level, those 

marked with “*” mean that only “Type 1” predictions are included in the calculation.  For 

those marked with “**”, both “Type 1” and “Type 2” predictions are included. Those 

marked with “***” include “Type 1” predictions and those “Type 2” and “Type 3” 

predictions whose sensitivity and specificity values exceed some threshold (Kraemer 

2001). Note that GFPE can be used to evaluate prediction accuracy not only for a single 

sequence but also for multiple sequences. Users provide a file in which each line contains 

the name of a sequence file, and the annotation file and gene-finding program output file 

for that sequence. The average prediction accuracy across multiple sequences is 

calculated on a weighted basis. 

 

Execution of the analysis codes of a 17kb sequence for 4 gene-finding programs required 

90 seconds on a Pentium II 450 Mhz PC with 128 MB of RAM running Red Hat Linux 

7.2. On the same machine, execution of the analysis codes on 10 sequences whose 

average size was 17kb required approximately 160 seconds. 

 

This GFPE program saves the evaluators of gene-finding programs substantial effort in 

calculating the prediction accuracy. Note that GFPE can be used to evaluate the 

prediction accuracy of gene-finding programs on a whole genome basis. Limitations of 

the program include the difficulty of executing the various gene-finding programs to be 

evaluated. To solve this problem, we are developing a GUI and environment to simplify 
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 Figure 3.1 Example output of the GFPE program on a single sequence 

 

and/or automate the process of executing the runs of the gene-finding programs in the 

sequences of interest and of collecting and analyzing the results. 

 

 

 

 

 

 

 

 

 

[wang@elaine GFPE]$ java Run dat/4e5-seq dat/4e5_anno.gff  
 
dat/4e5_FFG_out.gff 
Sequence name = dat/4e5-seq        
Annotation file name = dat/4e5_anno.gff 
Perdition File Name = dat/4e5_FFG_out.gff    
The length of this testing sequence is: 16820 
This genefinding program has the following prediction accuracy with this testing sequence in the coding level: 
 
TP : 3619  TN : 26587   FP : 1796   FN : 1638   Sn : 0.68841547   Sp : 0.6683287    
Correlation Coefficient (CC) : 0.617672  Simple Matching Coefficient (SMC) : 0.8979191 
Average Conditional Probability (ACP) : 0.8088583     Approximate Correlation (AC) : 0.6177166 
 
*************** 
 
This genefinding program has the following prediction accuracy in the exon level: 
 
# of correct exons* is: 1    # of correct exons** is: 3     
# of correct exons*** is: 3   # of actual exons is: 7 
# of predicted exons is: 10   # of missing exons is: 2    
  # of wrong exons(Type4) is: 5 
Sn* : 0.14285715    Sn** : 0.42857143     Sn*** : 0.42857143     Sp* : 0.1     Sp** : 0.3     Sp*** : 0.3 
 (Sn* + Sp*)/2 : 0.12142857   (Sn**+Sp**)/2 : 0.3642857   
(Sn*** + Sp***)/2 : 0.3642857     ME : 0.2857143   WE : 0.5 
 
*************** 
 
The prediction accuracy at the protein level is: 0.060139433 
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CHAPTER 4 

RELATED WORK 

 

The Interactive Pattern Search Tool (IPST) that we have developed is designed for 

pattern searching in biological sequences. The functions that are provided in this tool 

include approximate string searching, finding direct and inverted repeats and 

combinations of these operations. Before we describe the IPST tool in detail, we first 

discuss related work in string searching, which is the central element in this tool. Below 

we will talk about five categories of string matching and the related problems of  exact 

pattern match, approximate pattern match, finding direct repeats, finding inverted repeats 

and finding the reverse-complement type inverted repeats. 

 

4.1. Exact pattern match  

 

(In the analysis of the time and space complexity of each algorithm, unless otherwise 

specified, m and n are the lengths of the pattern and the text, respectively). 

 

In Gusfield’s book [Gusfield, 1997], the exact matching problem is given the following 

definition: 

 

“Given a string P called the pattern and a longer string T called the text, the exact 

matching problem is to find all occurrences, if any, of pattern P in text T.” 
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As an example, the pattern “agct” is found at positions 1, 7 and 12 in the text 

“agctatagctcagct”. Several occurrences of the pattern may overlap in the text. 

 

The exact pattern match is a very important issue in many areas. In the biological 

sciences, exact pattern match is needed to conduct biological database search for some 

specific DNA or protein sequences. In library sciences, exact pattern match is used for 

searching the catalog for the books or articles that the users want. 

 

As the amount of information in texts increases, the time that it takes to search for 

specific patterns in the text could become burdensome. The efficiency of exact pattern 

matches has been a very important issue. 

 

A number of methods have been developed to address the exact string matching problem. 

 

(i) The naïve method 

 

The simplest way to deal with the exact string match problem begins by aligning the left 

end of the pattern string with the left end of the text string.  Then the characters of the 

pattern and the text are compared from left to right. If all characters match, the pattern is 

found in the text. Otherwise, the pattern is moved to the right by one more position. The 

comparison is made repeatedly until the right end of the pattern reaches the end of the 

text string. 
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The naïve method is very straightforward and easy to implement. However, the worst-

case running time is (nm) ( where n and m are the lengths of the pattern and the text, 

respectively), which is unsatisfactory. 

 

(ii) The modified naïve method with preprocessing 

 

The naïve method is simple but not efficient. A modified approach based on the naïve 

method emphasizes preprocessing of the pattern, which is basically to compute the Zi(s) 

values for each 1 < i < |s| (s is the string). 

 

Zi(S) is defined to be the length of the longest substring of X that starts at i and matches a 

prefix of S, given a string S and a position i > 1.[Gusfield, 1997]. 

 

This method utilizes the pre-computed Zi(s) values and constructs a new String S = P$T, 

where $ is a symbol that appears neither in P nor in T. Let n = |P| and m = |T|. In order to 

solve the exact matching problem, we need only to find if for any value i > n+1, a Zi(s) = 

n can be found. 

 

As proved in [Gusfield, 1997], computing the Zi(S) can be solved in O(m) time. Thus, 

this method can solve the exact matching problem in O(m) time. As discussed in 

[Gusfield, 1997], this approach can be implemented to use only O(n) space. 

 

(iii) The Boyer-Moore algorithm 
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This method employs three clever ideas that were missed in the naïve method: right-to-

left scan, the bad character rule and the (strong) good suffix rule. In the preprocessing 

stage, three variables: L’ (i), l’( i), and R(x) (i is the position index of the pattern and x is 

each character in the alphabet) are pre-computed. For each i, L’ (i) is defined as the largest 

position less than n so that string P[i..n] matches a suffix of P[1.. L’(i)] and the character 

preceding the suffix is not P(i-1). If no position satisfies both of these conditions, L’ (i) 

will be zero. l’( i) is the length of the largest suffix of P[i..n] and this suffix is also a prefix 

of the pattern P. If there is not such a suffix, l’( i) is defined to be zero. R(x) is defined to 

be the position of the right-most occurrence of character x (a character in the alphabet) in 

the pattern P. If x is not in P, R(x) will be zero [Gusfield, 1997]. The algorithms to 

compute L’ (i), l’( i), and R(x) are available in [Gusfield, 1997]. 

 

Here is an outline of the algorithm from [Gusfield, 1997]. 

 

{Preprocessing stage} 

  Given the pattern P, 

  Compute L’(i) and l’(i) for each position i of P, 

  and compute R(x) for each character x  . 

{Searching stage} 

  k := n; 

  while k <= m do 

   begin 
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   i:=n; 

   h:=k; 

   while i > 0 and P(i) = T(h) do 

    begin 

    i:= i-1 

    h:=h-1; 

    end; 

  I f i = 0 then 

    begin 

    report an occurrence of P in T ending at position k. 

    k := k+n-l’(2); 

    end 

   else 

shift P (increase k) by the maximum amount determined by 

the (extended) bad character rule and the good suffix rule. 

   end; 

 

In the preprocessing phase, both the time and space complexity are O(m+ ), where  is 

the alphabet size. The searching phase is in O(mn) time complexity [Charras et al. 1997]. 

 

 (iv) The Knuth-Morris-Pratt algorithm 
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This best known linear-time algorithm for the exact string matching problem was 

developed by Knuth, Morris and Pratt [Knuth et al., 1977]. 

 

At first, several terms need to be defined. 

spi(P) is defined to be the longest proper substring of P[1..i] that ends at i and that 

matches a prefix of P. Consequently, spi’(P) is defined in the same way but with the 

added condition that characters P(i+1) and P(spi’+1) are unequal. Then we have the 

definition of the failure function F’(i), which is defined to be sp’i-1 + 1 for each position i 

from 1 to n+1, where sp0’ and sp0 are defined to be zero ( also define F(i) = spi-1+1) 

[Knuth et al., 1977]. 

 

Here is an outline of the Knuth-Morris-Pratt algorithm from [Gusfield, 1997]. 

 

begin 

preprocessing P to find F’(k) = spk-1’+1 for k from 1 to n+1. 

 c :=1; 

 p :=1; 

while c + (n-p) <= m 

 do begin 

  while P(p) = T( c ) and p <= n 

  do begin 

   p:= p+1; 

   c:= c+1; 
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  end; 

 if p = n +1 then 

  report an occurrence of P starting at position c – n of T. 

 if p := 1 then c := c+1 

 P:=F’(p); 

 end; 

end. 

 

It has been shown that finding find F’(k) can be solved in linear time [Gusfield, 1997]. 

Overall, in the preprocessing phase, both the time and space complexity are O(m). The 

searching phase is in O(n+m) time complexity [Charras et al. 1997]. 

 

This algorithm can be easily implemented. A C-program implementation is available 

from the web [Charras et al. 1997]. 

 

(v) The Shift-Or algorithm 

 

In [Charras et al. 1997], the procedure of this method is described as the following: 

 

Let R be a bit array of size m. Vector Rj is the value of the array R after text character y[j] 

has been processed. It contains information about all matches of prefixes of x that end at 

position j in the text for 0 < i <= m-1. If x[0,i] = y[j-i, j], then Rj[i] = 0; otherwise, it is 1. 
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For each Rj[i] = 0, Rj+1[i+1] = 0 if x[i+1] = y[j+1]; else, it is 1. Rj+1[0] = 0 if x[0] = y[j+1]; 

else, it is 1. 

 

The computation of Rj+1 can be reduced to two bit operations: a shift and an or: 

Rj+1=SHIFT(Rj) OR Sy[j+1], where Sc contains the positions of the character c in the 

pattern. Sc[i]=0 if and only if x[i]=c, where i is the index of each character in the pattern. 

 

This algorithm is efficient. The preprocessing phase is in O(m+ ) time (where  is the 

alphabet size) and space complexity and the searching phase is in O(n) time 

complexity( m is the size of the pattern and n is the size of the text). The only catch to 

this method is that the pattern length should be shorter than the memory-word size of the 

machine. 

 

A C-program implementation is available from the web [Charras et al. 1997]. 

 

(vi) Karp-Rabin algorithm [Charras et al. 1997] 

 

This method uses a hashing function to compare the hashing values of the patterns and 

each substring in the text. If the values differ, then no match exists. Otherwise, a 

character-to-character comparison is needed to confirm the match. 

 

This method uses the following hashing function: 
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hash(w[0 .. m-1])=(w[0]*2m-1+ w[1]*2m-2+···+ w[m-1]*20) mod q,  

where m is the length of the word w and q is a large number. 

 

and 

 

rehash(a,b,h)= ((h-a*2m-1)*2+b) mod q 

 

This hashing function is computationally efficient, highly discriminating for strings and 

hash(y[j+1 .. j+m]) can be easily computed from hash(y[j .. j+m-1]) and y[j+m]: 

hash(y[j+1 .. j+m])= rehash(y[j], y[j+m], hash(y[j .. j+m-1]). 

 

The preprocessing phase is in O(m) time and space. The searching phase has a worst-case 

time O(mn) and a O(n+m) expected time. 

 

A C-program implementation is available from the web [Charras et al. 1997]. 

 

 

 

 

 

 

 

 



 

 -64- 

4.2. Approximate pattern match 

 

(In the analysis of the time and space complexity of each algorithm, unless otherwise 

specified, m and n are the lengths of the pattern and the text, respectively; k is the number 

of mismatches allowed). 

 

Approximate pattern (string) match allows errors when matching the pattern with the text. 

The number of errors allowed is specified by the user. 

 

In computational biology, searching a specific subsequence over a long DNA or protein 

sequence is fundamental to primer design, sequence alignment, homology study, etc. 

Since the usual length of the target sequence (or text ) is vast and the patterns rarely 

match the text exactly,  the application of approximate string match is more widely 

appreciable than exact string match. 

 

In addition to computational biology, approximate string match is also a pivotal issue in 

many other areas such as signal processing, text retrieval, handwriting recognition, and 

image compression [Navarro, 2001]. 
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(i). The dynamic programming approach 

 

The edit distance of two strings is the smallest number of steps to convert one string to 

another. In the dynamic programming approach, the edit distance should be calculated 

and filled into a matrix at first. The matrix C0..|x|,0..|y| is computed as follows: 

Ci, 0 = i; C0,j = j; 

Ci,j = Ci-1, j-1 if x i = yj 

 1+ min(Ci-1,j,Ci,j-1,Ci-1,j-1), otherwise. 

 

The matrix of edit distance between the strings “survey” and “surgery” is shown in figure 

4.1. 

 

To use this method for approximate string match, we must allow any text start position to 

be a potential start of a match. We can achieve this by simply setting C0,j = 0 for all j 

0..n. Then the matrix’s column can be initialized with Ci being set to i and the text is 

processed character by character. For each new text character Tj, its column vector is 

updated to C’0..m by the formula:  

 

C’ i = Ci-1 if Pi = Tj 

 1+min(C’i-1,Ci,Ci-1) otherwise.      

 

The text positions can be found where Cm <= k is reported. 

 



 

 -66- 

 

    s u r g e r y 

  0 1 2 3 4 5 6 7 

s 1 0 1 2 3 4 5 6 

u 2 1 0 1 2 3 4 5 

r 3 2 1 0 1 2 3 4 

v 4 3 2 1 1 2 3 4 

e 5 4 3 2 2 1 2 3 

y 6 5 4 3 3 2 2 2 

 

Figure 4.1 The matrix of edit distance between the strings “survey” and “surgery” [Navarro, 2001]. 

 

The search time of this method is O(mn) and its space requirement is O(m) [Navarro, 

2001]. 

 

(ii) Algorithms aimed at improving the average case 

 

(ii-a) The cut-off heuristic algorithm 

 

Originally developed by [Ukkonen, 1985], this algorithm aims to improve the average 

case. It was proven to have a O(kn) average running time and O(m) space [Chang and 

Lampe, 1992; Baeza-Yates and Navarro 1999]. 

 

This method takes advantage of the fact that usually a pattern does not match the text and 

the values at each column of the matrix in the dynamic programming approach quickly 
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reaches k+1 from top to bottom. If a cell in the matrix has a value greater than k+1, then 

the result of the search does not depend on its exact value. If a cell has a value of at most 

k, it will be called “active”. This method keeps counting the last active cell and does not 

work on the remainder of the cells [Navarro, 2001]. 

 

An implementation is available from [Baeza-Yates and Navarro 1999; Navarro, 2001] 

 

(ii-b) Column partitioning algorithm. 

 

Produced by [Chang and Lampe, 1992], this algorithm is based on the property of the 

dynamic programming matrix that the numbers along each column are normally 

increasing. “Runs” of consecutive increasing cells are focused on. A run ends when 

Ci+1 != Ci+1. A value called loc(j, x) = minj’>= j Pj’  = x for all pattern positions j and all 

characters x must be pre-computed. For each column of the matrix they are trying to find 

where the run is going to end and thus find the next character match. The run can be 

performed on all of the columns in parallel. 

 

This algorithm needs an average searching time of O(kn/sqrt( )) and a O(m ) space, 

where  is the alphabet size[Navarro, 2001]. 
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(iii) Wu, Manber and Myers’ algorithm based on automata [Wu, et al. 1996] 

 

A non-deterministic automaton ( NFA) can be used to model approximate search. This 

automaton was first proposed in [Ukkonen, 1985]. As illustrated in figure 4.2, every row 

of states denotes the number of errors seen and every column of states stands for 

matching a pattern prefix. Horizontal arrows from state to state represent matching a 

character and vertical arrows insert a character in the pattern. Note that they advance in 

the text but not the pattern. Solid diagonal arrows substitute a character and dashed 

diagonal arrows delete a character of the pattern. The automaton signals the end of a 

match when a rightmost state is active. 

 

In the work of [Wu, et al. 1996], they trade time with space by utilizing a Four Russians 

technique [Arlazarov et al. 1975]. The columns were partitioned into blocks of r cells 

which took 2r bits each. The transitions from a region to the next region in the column 

were precomputed. 

 

This algorithm has an average O(kn/logn) time and O(mn/logn) worst time with an O(n) 

space[Navarro, 2001]. 

 

(iv). Bit-parallelism algorithms 

 

These algorithms focus on parallelizing the computation on a bit-wise fashion. 
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Figure 4.2 The NFA for approximate string matching of the pattern “survey” with two errors. The black 

states are those active states after reading the text “surgery”. This figure is reproduced from Fig. 15 in 

[Navarro 2001] with slight modifications.
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 (iv-a). Wu and Manber’s method [Wu et al., 1992]. 

 

The idea is to use bit-parallelism to simulate the NFA that we discussed before. Each row 

i of the NFA fits in a computer word Ri with each state being represented by a bit. Since 

all of the k+1 computer words (where k is the number of mismatches allowed and these 

k+1 words each have 0, 1, 2, … k mismatches) have the same structure, parallelism was 

utilized to simulate all the transitions of the NFA for each new text character using bit 

operations. The update to obtain the new R’i values at text position j from the current Ri 

values is computed in the following way: 

 

R’0 = ((R0 << 1) |0m-11) & B[T j] 

R’ i+1 = ((Ri+1 << 1) & B[Tj])|Ri|(Ri<<1)|(R’i << 1), where k is the number of mismatches 

allowed and w is the length of each computer word (in bits).  

 

This method takes O(k*ceil(m/w)*n) time both in the worst case and the average case 

[Navarro, 2001]. 

 

(iv-b). Baeza-Yates and Navarro’s method [Baeza-Yates et al. 1999] 

 

This method parallelizes the computation even more than the Wu and Manber’s method 

[Wu et al., 1992]. Instead of parallelizing the computation of the rows in the NFA, 

packing the states of the automaton along the diagonals is adopted. The number of 
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complete diagonals is m-k+1. Di is the row of the first active state in diagonal i. The new 

D’ i values after reading the text position j are computed as follows: 

 

D’ i = min(Di+1, Di+1+1, g(Di-1, Tj)), 

G(Di, Tj) = min({k+1}U {r/r>=D i ^ Pi+r = Tj}) 

 

This algorithm has an improved O(ceil(k(m-k)/w)*n) worst case time and O(ceil(k2/w)*n) 

on average [Navarro, 2001] 

 

(iv-c) Parallelizing the dynamic programming matrix 

 

Instead of parallelizing the rows or diagonals of the automata, this method [Myers, 1999] 

parallelizes the computation of the dynamic programming matrix. 

 

The differences along columns instead of the columns themselves are represented so that 

two bits per cell were enough. A new set of recurrences is defined for the horizontal and 

vertical differences as the following: 

 

vi,j = Ci,j –Ci-1,j = min(-Eqi,j, vi,j-1, hi-1,j)+(1- hi-1,j) 

hi,j = min(-Eqi,j, vi,j-1, hi-1,j)+(1- vi,j-1),  

 

Where Eqi,j is 1 if Pi = Tj and 0 otherwise. 
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The resulting algorithm has an improved running time. The worse case time is O 

( m/w n) and the average case time is O (k/w n) [Navarro, 2001]. 

 

(v). Filtering algorithms 

 

This is a quite new and still active area in which many algorithms [Tarhio and Ukkonen, 

1993; Jokinen et al.1996; Wu and Manber, 1992; Baeza-Yates and Navarro, 1998, 1999; 

Navarro and Raffinot, 2000; Takaoka, 1994.; Chang and Marr, 1994; Sutinen and Tarhio, 

1995] have been developed based on the idea of filtering.  

 

Since the text usually contains much unmatched content, it will be very efficient for the 

matching process if those unmatched parts in the text are first filtered. The filtering 

algorithm focuses mainly on improving the average case. 

 

Among all of the above-mentioned algorithms, Chang and Marr’s algorithm [Chang and 

Marr, 1994] has achieved the optimal average case bound: O (n(k+log� m)/m). The space 

complexity of this method is O (mt) for some constant t which depends on , which is the 

alphabet size. 

 

Chang and Marr’s algorithm first splits the text in contiguous substrings of length l = 

tlog� m. It then searches the text substrings of length l in the pattern allowing errors. The 

best matches allowing errors inside P are pre-computed for every l-tuple. The searches 
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start at the beginning of the block and continue along the consecutive l-tuples in the 

pattern until the total number of errors made exceeds k. 

 

 

(vi) Suffix tree approach 

 

According to [Gusfield, 1997], the suffix tree is formally defined as follows: 

 

“A suffix tree T for an m-character string S is a rooted directed tree with exactly m leaves 

numbered 1 to m. Each internal node, other than the root, has at least two children and 

each edge is labeled with a nonempty substring of S. No two edges out of a node can 

have edge-labels beginning with the same character. The key feature of the suffix tree is 

that for any leaf i, the concatenation of the edge-labels on the path from the root to leaf i 

exactly spells out the suffix of S that starts at position i. That is, it spells out S [i..m].” 

 

To use the suffix tree approach to solve the exact string match problem, a suffix tree for 

the text must first be built. 

 

Esko Ukkonen [Ukkonen, 1995] has developed a linear-time algorithm to construct the 

suffix tree. 

 

Here is a high level description of Ukkonen’s algorithm, according to [Gusfield, 1997]. 
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construct tree T1. 

for i from 1 to m-1 do 

begin {phase i+1} 

 for j from 1 to i+1 

 begin {extension j} 

find the end of the path from the root labeled S[j..i] in the 

 current tree. If needed, extend that path by adding character S(i+1), 

 thus assuring that string S[j..i+1] is in the tree. 

 end; 

end; 

 

There are three rules to perform a suffix extension. Let S[j..i] =  be a suffix of S[1..i]. In 

extension j, when the algorithm finds the end of  in the current tree, it extends  to be 

sure the suffix S(i+1) is in the tree based on the following three rules [Gusfield, 1997]: 

 

Rule 1: If in the current tree, path  ends at a leaf, then simply add the character S(i+1) to 

the end of the label on that leaf edge. 

 

Rule 2: If there is no path from the end of string  that starts with S(i+1), but there is at 

least one labeled path that continues from the end of , a new leaf edge starting from the 

end of  must be created and labeled with S(i+1). Plus, a new node will need to be 

created there if  ends inside an edge. 

 



 

 -75- 

Rule 3: If some path from the end of string  starts with character S(i+1), do nothing. 

 

This sketch and several additional speedup tricks described in [Gusfield, 1997] account 

for an algorithm that runs in O(m) time and 
�

(mlog| |) space [Gusfield, 1997], where  

is the alphabet. 

 

Having built the suffix tree, we are now able to fully utilize the advantage of the suffix 

tree to solve our approximate string matching problem, or the so-called k-mismatch 

problem. 

 

In [Gusfield, 1997], the following approach is used to solve this problem. 

 

begin 

1. Set j to 1 and i’  to i, and count to 0. 

2. compute the length l of the longest common extension starting at positions j of 

P and i’  of T. 

3. if j+l = n+1, then a k-mismatch of P occurs in T starting at i ; stop. 

4. if count <= k, then increment count by one, set j to j+l+1, set i’ to i’+ l +1, and 

go to step 1. 

 if count = k+1, then a k-mismatch of P does not occur starting at i; stop. 

end. 
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Note that in the above algorithm there is an intermediate step for computing the longest 

common extension, which is a bridge to the k-mismatch problem. The definition and 

solution of the longest common extension problem are available in [Gusfield, 1997]. 

 

The time and space requirements for the k-mismatch problem are O(km) and O(n+m), 

respectively [Gusfield, 1997]. 

 

A Java-program implementation for constructing the suffix tree and solving the k-

mismatch problem is available from [Dorohonceanu et al. 2000]. 

 

(vii). STAR – An algorithm to search for approximate repeats [Delgrangey et al. 2004] 

 

STAR is an algorithm to find all significant approximate tandem repeats in a DNA 

sequence given a motif and the DNA sequence. Here the motif is the pattern and the 

DNA sequence is the text. 

 

First of all, STAR aligns the sequence (say s) with an exact tandem repeat (ETR) of the 

motif m and obtains an optimal list of mutations that convert the repeat into s and the 

optimal length for the ETR. The Wraparound Dynamic Programming (WDP) algorithm 

[Fischetti et al.1993] is employed in this step. 

 

Secondly, STAR involves a compression procedure that outputs a compressed version of 

the sequence s: s’. The compression is aimed at reducing the size of the sequence by 
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exploiting a property, which is “s contains segments that are significant approximate 

tandem repeats (ATRs) of the motif m”. Based on the mutation list created from step 1, 

STAR evaluates the compression gain as if s were a single ATR of m. Theoretically, a 

true ATR segment has a positive compression gain.  

 

Finally, STAR optimizes the global compression gain over s by decompressing s into 

ATR and non-ATR segments optimally with respect to the global compression gain. 

 

If the lengths of the motif and the sequence are p and n, respectively, the time complexity 

of this algorithm is O(np + nlogn). 

 

An implementation of this algorithm is available from http://atgc.lirmm.fr/star. 

 

4.3. Finding direct repeats 

 

(In the analysis of the time and space complexity of each algorithm, unless otherwise 

specified, m and n are the lengths of the pattern and the text, respectively; k is the number 

of mismatches allowed). 

 

In biology, repeats or so-called tandem repeats in DNA or protein sequences are often of 

enormous interests to researchers. These repeats consist of two or more adjacent or 

isolated approximate copies of a pattern of nucleotide or amino acid sequences. It has 
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been noted that a large part of many genomes consists of repetitive sequences. Repetitive 

sequences have three major categories: 

 

1. Local repeats (tandem repeats and simple sequence repeats. Note that tandem 

repeats refer to those contiguous approximate copies of a nucleotide sequence and 

the number of copies is more that two [Benson 1999]). 

2. Families of dispersed repeats (mostly transposable elements and retro-transposed 

elements). 

3. Duplicated genomic fragments [Bao et al., 2002]. 

 

These repeats usually allow errors. So, more precisely, they should be called approximate 

repeats. 

 

Repetitive sequences play an important role in evolution and they are often fundamental 

regulatory elements in the genome. Some tandem repeats have been shown to cause 

human diseases. A more specific case of this type of repeats is the Long Terminal Repeat 

(LTR) in some retrotransposons, which contains two repetitive copies of nucleotide 

sequence at both ends of the same DNA strand. Since the vastly large number of 

repetitive sequences in the genome are impossible to be manually analyzed, the need for 

efficient computational algorithms to find those repeats has emerged in the research 

community. 
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(i) Tandem repeats finder [Benson 1999]. 

 

This program is designed to find tandem repeats in DNA sequences. The algorithm looks 

for matching nucleotide sequences separated by a common distance d and looks for k-

tuple matches (Note that a k-tuple is a window of k consecutive characters from the 

nucleotide sequence. Tandem repeats are found through scanning of sequence with a 

small window, determining the distance between exact matches and testing the statistical 

criteria. 

 

An implementation of the program with a web interface is available at 

http://c3.biomath.mssm.edu/trf.html . 

 

(ii) STRING – a heuristic approach to find tandem repeats in DNA sequences [Parisi, 

2003]. 

 

STRING uses a heuristic method to find all possible tandem repeats in DNA sequences. 

Two heuristic criteria are adopted in this algorithm. First of all, instead of studying the 

whole sequence, those that are considered to be more promising ones according to an 

autoalignment procedure are examined as potential tandem repeats. Note that 

autoalignment is a procedure to search local alignments of a sequence with itself [De 

Fonzo et al., 1998]. Secondly, instead of studying all possible consensus words, only 

those that are considered to be more promising (in a way inspired by the autoalignment 

procedure) are selected. 
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The algorithm consists of two phases. In the first phase, prospective Tandem Repeats 

(TRs) are obtained by using the search for autoalignments. In the second phase, the final 

TR search is performed based on the above heuristic criteria. 

 

An implementation of this algorithm is available from 

http://www.caspur.it/~castri/STRING/ . 

 

(iii) mreps: efficient and flexible detection of tandem repeats in DNA [Kolpakov et al. 

2003] 

 

This program is able to identify all tandem repeats in the whole genome with no 

limitation on the size of the repeated pattern. It can output tandem repeats with all 

possible pattern sizes. 

 

The algorithm first utilizes an efficient combinatorial algorithm [Kolpakov et al. 1999, 

2001] to find all repetitive structures of a certain kind in a given sequence. This will 

create a set of raw repeat sequences which will undergo further processing by a series of 

heuristic treatments: trimming the left and right edges of each repeat, computing the best 

period and merging for each repeat, filtering out statistically expected repeats and 

merging repeats with the same period p overlapping by at least 2p. 
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The time complexity during the combinatorial part of this algorithm is O(nklog(k)+S) for 

k-mismatch tandem repeats ( S is the number of repeats found) [Kolpakov et al. 2003]. 

 

The mreps program has a web interface accessible through http://www.loria.fr/mreps/ . 

 

(iv). REPEATMASKER [Smit et al. 2003] 

 

This is a program developed to screen DNA sequences for interspersed repeats and low 

complexity DNA sequences. The program utilizes the program cross_match to perform 

sequence comparisons. The cross_match program is an efficient implementation of the 

Smith-Waterman-Gotoh algorithm with some enhancements. 

 

The time complexity of this method is O(nklog(k)log(n)+S) in the case of edit distance 

and O(nklog(n/k)+S) in the case of Hamming distance, where k is the maximal distance 

between two tandem repeats, and S is the number of repeats found [Smit et al. 2003]. 

  

Implementation of this program is available at [Smit et al. 2003]. 

 

(v). EQUICKTANDEM 

 

EQUICKTANDEM is a program from the EMBOSS package [Rice et al. 2000]. It is 

aimed at finding tandem repeats up to a specified size in DNA sequences. The algorithm 
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is based on a statistical method. The program is available at 

http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/equicktandem.html . 

 

(vi). A method to find two specific kinds of tandem repeats in DNA [Hauth et al. 2002]. 

 

Regular tandem repeats consist of perfect and degenerate Tandem Repeats, variable 

length tandem repeats (VLTRs) and multi-period tandem repeats (MPTRs). This method 

focuses on finding the latter two kinds of regular tandem repeats in DNA sequences. 

 

A variable length tandem repeat (VLTR) is a simple nested tandem repeat in which the 

copy number for some pattern is variable rather than constant, while a multi-period 

tandem repeat (MPTR) contains the nested concatenation of two or more i-similar 

patterns, [Hauth et al. 2002], which are patterns that share i same characters. 

 

This method to find VLTRs and MPTRs is performed in three major tasks. (1). 

Determine a tandem repeat’s period and its approximate location in order to isolate a 

tandem repeat. (2). Find the pattern affiliated with a region period. (3). Use the pattern to 

characterize the region. 

 

Algorithms of this method are available through http://www.cs.wisc.edu/areas/theory/ . 
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(vii) TROLL – Tandem Repeat Occurrence Locator [Castelo, 2002]. 

 

TROLL is designed to find Simple Sequence Repeats (SSRs), which are repetitive short 

nucleotide sequences with length less than six and that are fairly well conserved. 

 

TROLL requires the user to provide a motif list and finds all occurrences of patterns from 

the motif list. TROLL is based on the Aho Corasick Algorithm (ACA) [Aho and Corasick, 

1975], which was aimed at finding all occurrences from a list of patterns in a text. The 

ACA keeps track of a failure link while encountering a partial match in the text. It uses 

the failure link to continue the search to avoid re-examining characters in the text. The 

TROLL implements the ACA to find pre-selected patterns in the text.  It also records the 

tandem repeats such that the SSRs can be located. 

 

The time complexity for TROLL is O (n+m+k), where n, m and k are the total length of 

all patterns being searched, the length of the DNA sequence, and the number of 

occurrences found, respectively. 

 

This program is available through http://finder.sourceforge.net . 
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4.4. Finding inverted repeats (on the same DNA strand) 

 

This type of repeat refers to those pairs of DNA sequences found in identical but inverted 

form. Note that the pair of repeats appear on the same strand.  Inverted repeats of this 

kind have appeared in some DNA transposons in plants [Feschotte, 2002]. 

 

No literature was found to design algorithms for locating this type of repeat. 

 

4.5. Finding the reverse-complementary type inverted repeats (repeat pairs are on 

opposite DNA strands) 

 

The pair of repeats also appear in identical but inverted form. In addition, the two copies 

of the repetitive elements appear on opposite DNA strands. This situation is also called 

reverse complement. DNA or RNA sequences that contain this type of repetitive 

elements can form inside loops. This is particularly important in the formation of RNA 

secondary structures. 

 

No literature was found to design algorithms for locating this type of repeats. 
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CHAPTER 5 

IPST – INTERACTIVE PATTERN SEARCH TOOL3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
3 Wang, J. and Kraemer, E. To be submitted to Bioinformatics. 
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Abstract 

 

Motivation: Genome projects have produced and continue to produce vast quantities of 

sequence data. Exploring various patterns contained in these sequences is now a primary 

concern. Examples of such patterns include direct repeats, inverted repeats, reverse 

complements, and other more complex structures, such as the long terminal repeat (LTR) 

retrotransposon elements and miniature inverted repeat transposable elements (MITEs). 

Given the important roles that these complex patterns may have played in both evolution 

and regulation of genes and proteins, the need for an efficient computational algorithm to 

identify and locate these patterns has emerged in the research community. Our tool is 

designed to specifically address this problem. 

 

Results: We have designed and implemented a tool called Interactive Pattern Search Tool 

(IPST) to facilitate finding repeats and other complex patterns in biological sequence data. 

IPST utilizes a hashtable of n-mers for storage and fast retrieval of various patterns in the 

sequence. The time-consuming hashtable-building process is compensated for by the fast 

retrieval of patterns in an interactive manner. In addition to locating direct and inverted 

repeats, IPST can also be applied to pattern search, locating start and stop codons and a 

combination of any of these operations. IPST can be used for multiple sequences.  IPST 

is implemented in the Java programming language and provides a graphical user interface 

and visualization and interaction techniques that focus on interactive exploration of 

patterns in sequences. In this article, we demonstrate the abilities of IPST to find 

miniature inverted repeat transposable elements (MITEs) and long terminal repeat (LTR) 
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retrotransposon elements in rice sequences. In addition, we compare the time and 

memory efficiency of our hashtable based algorithm in pattern search against an 

implementation of IPST using a suffix tree approach. 

 

Availability: Program source code, data sets and result are available at 

http://www.cs.uga.edu/~eileen/IPST 

Contact: eileen@cs.uga.edu 

 

5.1 Introduction 

 

Genome projects have produced and continue to produce vast quantities of sequence data. 

Exploring the information contained in these sequences is now a primary concern. 

Examples of such patterns include various repetitive sequences, such as direct repeats, 

inverted repeats and reverse complements, and other more complex structures, such as 

the long terminal repeat (LTR) retrotransposon elements and miniature inverted repeat 

transposable elements (MITEs). 

 

Repetitive sequences are those nucleotide sequences appearing in identical form or 

approximately identical form with similarity above a certain threshold. 

 

Repetitive sequences can be divided into three major categories:  
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1. Local repeats (tandem repeats and simple sequence repeats. Note that tandem repeats 

refer to those contiguous approximate copies of a nucleotide sequence in which the 

number of copies is more that two [Benson 1999]). 

2. Families of dispersed repeats (mostly transposable elements and retro-transposed 

elements). 

3. Duplicated genomic fragments [Bao et al., 2002]. 

 

In terms of their orientation, repeats can be grouped into two types: direct repeats, which 

are sequences found in identical form with the same orientation; and inverted repeats, 

which are sequences in identical form but inverted orientation. For the inverted repeats, 

the copies of the repeats appear on the same strand of the nucleotide sequence. If one 

copy of an inverted repeat appears on one DNA strand and the other appears on the 

complement strand, we call them reverse complements. Note that we normally allow 

some errors in the repeats, as long as the number of errors is below some threshold. More 

precisely, those repeats should be called approximate repeats. Figure 5.1 shows examples 

of these types of repeats. 

 

It has been noted that a large part of many genomes consists of repetitive sequences. 

Repetitive sequences play an important role in evolution and may serve as fundamental 

regulatory elements in the genome. 

 

Tandem repeats, which are consecutive approximately repeated nucleotide sequences, 

constitute about 10% or more of the human genome [Benson 1999]. Trinucleotide 
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tandem repeat copies have been characterized in a number of human diseases, such as 

fragile-X mental retardation [Verkerk et al. 1991], Huntington’s disease [Huntington's 

Disease Collaborative Research Group, 1993], spinal and bulbar muscular atrophy [Spada 

et al. 1991] and Friedreich’s ataxia [Campuzano et al., 1996]. Tandem repeats may not 

only be involved in certain diseases, but may play a certain pivotal role in gene regulation, 

such as interacting with transcription factors, altering the chromatin structure or acting as 

protein binding sites [Hamada et al. 1984; Pardue et al. 1987; Yee et al. 1991; Richards et 

al. 1993; Lu et al. 1993]. 

 

 

Dispersed repeats appear mostly in transposable elements. Transposable elements can be 

grouped into three types: Class II Transposons, Miniature Inverted-repeats Transposable 

Elements (MITEs) (Class III) and Retrotransposons (Class I). 

 

5’  AGCAGCTGGGGACAGATGATGATGATGAAGCAGC 3’  
TCGTCGACCCCTGTCTACTACTACTACTTCGTCG 

a 
 
5’  AGCAGCTGGGGACAGATGATGATGATGACGACGA 3’  

TCGTCGACCCCTGTCTACTACTACTACTGCTGCT 
b 

 
5’  AGCAGCTGGGGACAGATGATGATGATGAGCTGCT 3’ 

TCGTCGACCCCTGTCTACTACTACTACTCGACGA 
c 

 
Figure 5.1 Various types of repeats 

a. A pair of direct repeats 
b. A pair of inverted repeats 
c. A pair of reverse complements 

Pairs are shown in red and bold. 



 

 -90- 

Class II transposons consist of DNA sequences that move from place to place within a 

genome. At the ends of a class II transposon, there is a pair of inverted repeats. After the 

transposon is inserted into host DNA sequences, a pair of direct repeats will flank the 

transposon [Transposons: Mobile  DNA. 2004]. Figure 5.2 shows such a process. 

 

In rice, approximately 26% of the genome sequences are derived from Transposable 

Elements (TEs), of which more than 70% are Miniature Inverted Repeat Transposable 

Elements (MITEs) [Jiang et al. 2004]. MITEs consist of hundreds of nucleotides flanked 

by a pair of reverse complements. The reverse complements consists of tens of 

nucleotides. Figure 5.3 shows an example of MITE. 

 

Among the eukaryotic transposable elements, retrotransposons are the most abundant and 

widespread in the genome.  There are two types of retrotransposons: the long terminal 

repeats (LTRs) and the non-LTR retrotransposons [Kumar and Bennetzen, 1999]. LTR 

retrotransposons contain direct long terminal repeats that have a size ranging from a few 

hundred nucleotides to over 5 kb [Kumar and Bennetzen, 1999]. Figure 5.4 shows the 

generic structure of an LTR retrotransposon element. 

 

Complex biological patterns such as the repeat elements, Miniature Inverted Repeat 

Transposable Elements (MITEs), and the long terminal repeats (LTRs) have been a 

traditional focus in the research community. However, the enormous amount of sequence 

data hinders researchers in manually discovering them. The need for efficient 

computational algorithms to identify and locate those patterns has emerged in the 
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research community. A number of computational methods have thus been developed to 

help discover each of the above categories of patterns. 

 

STRING is a heuristic approach for finding tandem repeats in DNA sequences [Parisi, 

2003]. It uses a heuristic method to find all possible tandem repeats in DNA sequences. 

Two heuristic criteria are adopted in this algorithm. First of all, in order to reduce the 

regions where searching for tandem repeats is conducted, instead of studying the whole  

 

 

 

 

 

 

 

 

 

 

       

Figure 5.2. Process of how a class II Transposons moves into the host DNA, quoted from [Transposons: 

Mobile  DNA. 2004]. 

 

sequence, only those regions that are considered to be more promising to contain tandem 

repeats according to an autoalignment procedure are examined. Note that autoalignment  
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Figure 5.3 Example of a MITE (Miniature Inverted Repeat Transposable Element) 

 

 

Figure 5.4 Generic structure of an LTR retrotransposon. Picture is taken from [McCarthy, et al. 2003] 

 

is a procedure to search local alignments of a sequence with itself [De Fonzo et al., 1998]. 

Secondly, instead of studying all possible consensus tandem repeats, only those that are 

considered to be more promising ones (in a way inspired by the autoalignment procedure) 

are selected. This criterion will reduce the number of consensus tandem repeats being 

focused on in the search process. 

 

The program mreps also aims at efficient and flexible detection of tandem repeats in 

DNA [Kolpakov et al. 2003] This program is able to identify all tandem repeats in the 

5' GGAACCCTTTAAGGG..~400 nt..CCCTTAAAGGGTTCC 3' 
3' CCTTGGGAAATTCCC..~400 nt.. GGGAATTTCCCAAGG 5' 
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genome with no limitation on the size of the repeated pattern. It can output tandem 

repeats with all possible pattern sizes. The algorithm first utilizes an efficient 

combinatorial algorithm [Kolpakov et al. 1999, 2001] to find all repetitive structures of a 

certain kind in a given sequence. This creates a set of raw repeat sequences that undergo 

further processing by a series of heuristic treatments: trimming the left and right edges of 

each repeat, computing the best period and merging for each repeat, filtering out 

statistically expected repeats and merging repeats with the same period p overlapping by 

at least 2p. 

 

TROLL, Tandem Repeat Occurrence Locator, [Castelo, 2002] is designed to find Simple 

Sequence Repeats (SSRs), which are those repetitive short nucleotide sequences with 

length less than six and that are fairly well conserved. It requires the user to provide a 

motif list and finds all occurrences of patterns from the motif list. TROLL is based on the 

Aho Corasick Algorithm (ACA) [Aho and Corasick, 1975], which was designed to find 

all occurrences from a list of patterns in a text. The ACA keeps track of a failure link 

while encountering a partial match in the text. It uses the failure link to continue the 

search and avoid re-examining characters in the text. TROLL implements the ACA to 

find pre-selected patterns in the text.  It also records the tandem repeats such that the 

SSRs can be located. 

 

Other programs such as EQUICKTANDEM from the EMBOSS package [Rice et al. 

2000] and Tandem Repeats Finder [Benson 1999] have also been reported to facilitate 

finding tandem repeats. And in [Hauth et al. 2002], an algorithm was developed to find 
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two specific kinds of tandem repeats: variable length tandem repeats (VLTRs) and multi-

period tandem repeats (MPTRs). Note that a variable length tandem repeat (VLTR) is a 

simple nested tandem repeat in which the copy number for some pattern is variable rather 

than constant, while a multi-period tandem repeat (MPTR) contains the nested 

concatenation of two or more i-similar patterns [Hauth et al. 2002], which are patterns 

that share i same characters. 

 

REPEATMASKER [Smit et al. 2003] is a program developed to screen DNA sequences 

for interspersed repeats and low complexity DNA sequences. The program utilizes the 

program cross_match to perform sequence comparisons. The cross_match program is an 

efficient implementation of the Smith-Waterman-Gotoh algorithm with some 

enhancements. 

 

RECON [Bao et al. 2002] is a program for the de novo identification and classification of 

direct repeat sequence families for sequenced genomes. It uses multiple alignment 

information to identify the boundaries of each copy of the repeats and to classify different 

repeat element families. RECON has been tested on the human genome to identify and 

group known transposable elements. 

 

The program LTR_STRUC [McCarthy et al. 2003] is designed to automatically locate 

Long Terminal Repeat (LTR) retrotransposons from genome databases by searching for 

the structural features that exist in LTR retrotransposons. This program differs from 
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previous methods that were based on the sequence’s similarity to previously identified 

LTR retrotransposons. 

 

Although it seems there already are many programs developed to address the problem of 

locating complex patterns in sequences, we can still see that each existing program has 

been designed to locate a particular type of pattern, perhaps in a particular genome. What 

is lacking is a general tool that is able to facilitate locating all types of complex patterns 

in nucleotide sequences. Our tool, namely the Interactive Pattern Search Tool (IPST), is 

specifically designed to address this problem. 

  

IPST utilizes a hashtable of n-mers for storage and fast retrieval of various patterns as 

well as direct and inverted repeats in DNA sequences. It is implemented in an interactive 

way such that users can load their sequences, input the features that they are looking for, 

and retrieve the output both through a graphical user interface and in the widely accepted 

GFF format [Sanger Center: GFF 2003]. IPST supports pattern search and finding 

various complex patterns not only over a single sequence but over multiple sequences. 

This feature enables IPST to find complex patterns at the genome level. 

 

We have applied our tool to search for miniature inverted repeat transposable elements 

(MITEs) and for long terminal repeat (LTR) retrotransposon elements in rice sequences. 

In addition, as a test of the time and memory efficiency of our hashtable based algorithm 

in pattern search (approximate string match), we compared our hashtable based algorithm 

with an implementation of IPST based on a suffix tree approach. 
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5.2 Systems and methods 

 

Algorithm and implementation 

 

IPST uses a hashtable to facilitate searching the sequences. A hashtable is a data structure 

that maps a record to a key for efficient storage and retrieval of the data. IPST utilizes 

this data structure to facilitate finding patterns and repeats in the sequences.  

 

Building the hashtable 

 

Users first must provide the names of the sequence files. Three formats are accepted: 

FASTA, GCG and STADEN. After reading in the input sequences, IPST builds a 

hashtable in which the key values are polynucleotide subsequences. For a key of length 6, 

the maximum number of keys possible is 46. The longer and more varied the sequence is, 

the closer to this maximum the number of actual keys will be. Associated with each key 

is a value record that contains the position of the polynucleotide in the sequence and the 

index of the sequence in the set of multiple sequences being considered. This hashtable 

contains information for all of the sequences that users input. The process of hashtable-

building is performed along each input sequence, and there will be at most (n-s+1) 

records for each sequence, where s is the length of the key. Since there may be more than 

one record corresponding to each key, these records are stored in a linked list. So the 

actual value corresponding to each key is a linked list of records. In practice, this process 
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is the major time-consuming process in the IPST algorithmic part, but this is 

compensated for by the quick access and retrieval of the patterns in the sequences. 

 

A flexibility that IPST provides is that if users are only interested in part of the sequences, 

they can set delimiters for each input sequence before building the hashtable. This can 

save substantial computational time if only portions of the sequences are of interest to 

users. 

 

Operations supported by IPST 

 

IPST currently supports four major search operations (pattern search or approximate 

string matching, finding direct repeats, finding inverted repeats, and finding start and stop 

codons) as well as combinations of these operations. The steps for carrying out these 

operations are as follows. 

 

1. Pattern search 

Users enter the subsequence they want to search for as well as the number of 

mismatches they allow. IPST will locate those subsequences and display them on the 

graphical user interface with each pattern on a separate line. A textual output containing 

the result in GFF format [Sanger Center: GFF 2003] can be saved by the users by 

clicking the “report” button in the left panel.  
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2. Direct repeats 

 Users can find all pairs of direct repeats with specified minimum and maximum 

lengths, minimum and maximum spacing, and minimum percentage of repeat similarity 

within each sequence. Those pairs of direct repeats satisfying the criteria will be 

displayed on the graphical user interface. The textual results may be saved into a GFF-

format [Sanger Center: GFF 2003] file. 

 

3. Inverted repeats 

 Similar to the direct repeats, users can find all pairs of inverted repeats with 

specified minimum and maximum lengths, minimum and maximum spacing, and 

minimum percentage of repeat similarity within each sequence. Those pairs of inverted 

repeats satisfying the criteria will be displayed on the graphical user interface. The textual 

results can also be saved into a GFF-formatted [Sanger Center: GFF 2003] file. 

 

4. Reverse complements 

 Given the specified minimum and maximum lengths, minimum and maximum 

spacing, and minimum percentage of repeat similarity, IPST can display the pairs of 

reverse complement on the graphical user interface and provide the GFF-format textual 

output. 
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5. Start and stop codons 

 Locate and display the positions of all the start and stop codons on both forward 

and reverse strands for each input sequence. An output containing the textual result in 

GFF format can also be created. 

 

6. Combination of operations 

The current implementation of IPST gives users the option of combining the 

pattern search operation with the operations of finding direct repeats, inverted repeats, or 

reverse complements. In the parameter setting panel for finding direct repeats, inverted 

repeats and reverse complements, users have the option to specify the pattern that needs 

to appear within the sequences that contain the repeats, and the minimum similarity for 

the pattern. 

 

Figure 5.5 shows a snapshot of the graphical user interface of IPST with the results of a 

pattern search and direct repeats graphically displayed. 

 

Underlying data structures and the procedure for each IPST-supported operation 

 

There are nine major data structures involved in the IPST program: Hashtable, a Vector 

of SeqInfo objects, class SeqInfo, class DrawInfo_PS, DrawInfo_DR, DrawInfo_IR, 

DrawInfo_START, DrawInfo_STOP and class PolyNuclInfo. 
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Figure 5.5. Snapshot of the IPST graphical user interface (with the results of a pattern search and direct 

repeats graphically displayed). The red arrows indicate the positions where the patterns were found during 

the pattern search process. The filled rectangles indicate the positions where each direct repeat is located. 

The lines connect pairs of direct repeats.  

 

The class SeqInfo object contains the input sequence and its name, the delimiters of the 

sequence to be analyzed, and a series of DrawInfo classes (DrawInfo_PS, DrawInfo_DR,  

etc.) for each feature type, which contain the information about where to draw and what 

to draw on the canvas. Each sequence is associated with a SeqInfo object. The class 

PolyNuclInfo contains the position of the polynucleotide on the sequence and the index 

of the sequence in the vector that contains the SeqInfo objects. The Hashtable is used as 
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the central data structure for storing the sequence information. There are two Hashtables, 

one for the forward sequence and the other for the reverse sequence.  

 

The relationship among all of the underlying data structures for IPST is shown in figure 

5.6. A more detailed description about these data structures is available in figure 5.7. 

 

With the hashtable and all other data structures established, the processes for performing 

the IPST operations are straightforward. 

 

The pattern search process begins by searching the hashtable with the provided 

polynucleotide sequence as the key. If the length of input polynucleotide sequence is less 

than the default key length, the input polynucleotide will be extended by enumeration to 

every possible polynucleotide with the default length. Then each of these extended 

polynucleotides will be searched for against the hashtable. For example, given a key  

length of 6, and the pattern ATG, all 64 hexamer string beginning with ATG would be 

searched in the hashtable. In the case that the length of input polynucleotide sequence is 

greater than the default key length (6), the hashtable is searched with the first 6 

nucleotides as the key. Once the list of PolyNuclInfo objects is retrieved, IPST will 

extend the first 6 nucleotides from each position along the sequence to check if the input 

polynucleotide sequence exists. 

 

If a certain number of mismatches (users provided the minimum similarity percentage 

and a ceiling function is used to convert the calculated floating number of mismatches 

into an integer) are allowed for the pattern search, all possible polynucleotides with the 
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Figure 5.6: Relationships among IPST underlying data structures 

 

length of the hashtable’s key will be generated and then lists of PolyNuclInfo objects will 

be retrieved, extended along the sequence, and examined to determine whether the 

similarity between the extended polynucleotide and the pattern is above the similarity 

threshold. Retrieving the lists of PolyNuclInfo objects is fast and the main time-

consuming step is the enumeration process. In order to reduce the number of 

enumerations, we adopted an assumption that the mismatch occurs in the first s (key 

length) nucleotides with the same probability as in all nucleotides of the whole pattern. 

Under this assumption, the number of enumerations is significantly reduced. For example, 

for a hashtable with key size of six and the common minimum similarity of 70% for the 

Hashtable 

Key: PolyNucleotide Value: List of  PolyNuclInfo objects 

Start position of the polynucleotide on the sequence Index of the sequence in the vector containing all of the SeqInfo objects 

SeqInfo 

Sequence and name Delimiters Series of DrawInfo classes 

Location on the drawing canvas Shapes to draw 
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  Key Value 
Data type String LinkedList 

Content Every possible polynucleotide in all sequences 
with the default number of nucleotides 

Contains a list of PolyNuclInfo objects 

Data structure of the Hashtable 
 

 Element 1 Element 2 
Data type Int Int 

Content The starting position of the 
polynucleotide on the sequence 

The index of the sequence in the 
SeqInfoVector 

Data structure of the class PolyNuclInfo 
 

 Element 1 Element 2 Element 3 Element 4 Element 5 -- 9 
Data type String int int String Vector 

Content The sequence 

The starting 
position of the 
sequence to 
display 

The ending 
position of the 
sequence to 
display 

The name 
of the 
sequence 

Contains Objects of 
DrawInfo_PS, 
DrawInfo_DR, 
DrawInfo_IR, 
DrawInfo_START, 
and DrawInfo_STOP, 
respetively 

Data structure of the class SeqInfo 
 

 Element 1 

 Data type Int 

Content The position on the sequence where objects should be drawn 

Data structure of the class DrawInfo_PS 
 

 Element 1 Element 2 
Data type Int int 

Content The position on the sequence where 
objects should be drawn 

Index of the DR 

Data structure of the class DrawInfo_DR 
 

 Element 1 Element 2 
Data type Int int 

Content The position on the sequence where 
objects should be drawn 

Index of the IR 

Data structure of the class DrawInfo_IR 
 

 Element 1 Element 2 
Data type Int int 

Content The position on the sequence where 
objects should be drawn 

Index of the SSIR 

Data structure of the class DrawInfo_SameStrandIR 
 

 Element 1 
Data type Int 

Content The position on the sequence where objects should be drawn 

Data structure of the class DrawInfo_START 
 
 

 Element 1 
Data type Int 

Content The position on the sequence where objects should be drawn 

Data structure of the class DrawInfo_STOP 

 
Figure 5.7. Underlying data structures of IPST 
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pattern search, the number of allowed mismatches is ceil( (1-70%)*6) = 2, and the 

number of enumerations is only (6*5)*42=480. The number of enumerations will be only 

24 given a minimum similarity of 80%. If the pattern is shorter than the size of the key,  

the pattern will be extended to meet the length of the key by adding enumerated 

nucleotides at each of the position for additional nucleotides. If mismatch is allowed, 

enumerations of the pattern will be performed prior to the extending process. 

 

The procedure for finding the pairs of direct repeats or inverted repeats is very similar. 

The basic idea is to first retrieve the list of PolyNuclInfo objects by searching the 

hashtable with the first s-nucleotide sequence, where s is the default length of the 

hashtable’s key, and then extend the polynucleotide sequence along the whole input 

sequence to see if there is a match. If users request a combination of pattern search and 

finding direct (inverted) repeats or reverse complement, a pattern search will be 

performed and only those pairs of repeats that contain the specified pattern will be 

located. For direct and inverted repeats and reverse complements, if a pair of repeats 

overlaps the other, covers the other pair, or if they have the same delimiters but one pair 

of repeats is longer than the other one, the shorter pairs of repeats will be removed in both 

cases. 

  

Figure 5.8 shows the procedure for searching the pairs of direct repeats. 

 

The procedures for locating the start and stop codons are very similar to those for the 

pattern search. 
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The graphical user interface is designed for users to interact with the program in a 

friendly manner. Users can input their sequences, click the corresponding buttons to let 

the program build the table, set their criteria for pattern searches, direct and inverted 

repeats, and view the results displayed in the graphical user interface. Furthermore, IPST 

can provide a GFF-formatted textual report of the results [Sanger Center: GFF 2003]. 

 

The Java-programming language 

 

IPST is implemented using the Java-programming language [Java, 2004]. The version 

that we used to compile and run the Java codes is 1.4.2. 

 

 

For each key in the PolyNuclTable 
          1.  If pattern search is also requested, perform the pattern search operation. 

2. Get the LinkedLists containing the PolyNuclInfo(s) for the key. 
3. If the above list is not null and has more than two elements 

For each pair of PolyNuclInfos in the list 
         If both of these PolyNuclInfo(s) are from the same sequence 

do 
Extend the polynucleotide along the sequence 

    while 
The spacing between this pair of direct repeats is still within the specified 
range AND 
The similarity of these two repeats remains above the threshold 

    If there is match 
(if the pattern search operation is also performed) if the pair of repeats 
contains the pattern 

Record the positions and sequence index into the 
DrawInfo_DR object. 

          4. Eliminate overlapped repeats. 

 
Figure 5.8. the procedure for searching for pairs of direct repeats 
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Test sequences on which IPST was applied 

 

Rice sequence 1 

 

This sequence of size around 340kb was downloaded from NCBI 

(http://www.ncbi.nlm.nih.gov/). The GenBank accession number of this sequence is 

AF172282. It is the adh1-adh2 region of the rice Oryza sativa. 

 

Rice sequence 2 

 

This sequence of size around 160 kb was downloaded from NCBI 

(http://www.ncbi.nlm.nih.gov/) as well. The GenBank accession number of this sequence 

is AC020666. It is a BAC genomic sequence on the chromosome 10 of the rice O. sativa. 

 

Sequence for time-memory testing 

 

Seven sequences with sizes ranging from 10 kb, 20 kb, 50 kb, …, to 500kb are created by 

cut and paste (start from the beginning) of a concatenated series of Zea mays BAC 

(Bacterial Artificial Chromosome) clones from the GenBank. Refer to 

http://www.cs.uga.edu/~eileen/IPST to view the file containing the concatenated series of 

Zea mays BAC sequences. 
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Time-memory testing of hashtable based IPST versus suffix tree based IPST 

 

IPST utilizes a hashtable based approach to perform approximate string matching and 

find the direct and inverted repeats. In order to test the time and memory performance, 

we also implemented the pattern match (approximate string matching) procedure using a 

suffix tree based approach, as implemented in a set of Java codes written by 

[Dorohonceanu et al. 2000]. Since this Java-implementation of the suffix tree data 

structure and string search is a general suffix tree implementation designed for 

representing multiple sequences and searching strings on a multi-sequence context, it is 

well suited for our test purposes and acts as a good comparison of these approaches. 

 

We performed two sets of tests. First, we tested the time and memory usage of these two 

versions of IPST for a certain pattern search with test sequences of various sizes. In the 

second set, we tested the time and memory usage of these two versions of IPST for 

searching patterns with various lengths (3 bp, 6 bp, 12 bp and 24 bp) on the same 

sequence (the 100 kb test sequence). 

 

Tests were executed on a PC with Intel Pentium 4 CPU 3.00 GHz and 512 MB of RAM, 

running Microsoft windows XP Professional Version 2002. 

 

IPST is implemented using the Java-programming language [Java 2004]. Testing the 

memory usage in the Java environment is problematic because the Java-programming 

language uses a garbage collector to automatically deal with the memory usage while the 
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program is running. We adopted the approach for memory usage testing from [Roubtsov 

2002], which uses three techniques to accurately measure the memory usage. These three 

techniques are as follows: 

 

1. Use Runtime.totalMemory()-Runtime.freeMemory() to calculate the used heap 

size instead of a single call to Runtime.freeMemory(). 

2. Execute many Runtime.gc() calls and request object finalizers to stabilize the 

perceived heap size. 

3. Ignore heap space consumed by the first class instance. 

 

5.3 Results and Discussions 

 

Apply IPST to find MITEs (Miniature Inverted-repeats Transposable Elements) in 

sequence 1 

 

As shown in figure 5.3, MITEs (Miniature Inverted-repeats Transposable Elements) 

contain a pair of reverse complements at the ends of the sequence. To apply IPST to 

locate this element, we need to find the reverse complements in the sequence. 

 

IPST provides a panel of parameter settings for users to define the types of reverse 

complements they wish to find. Users can interact with IPST by providing different 

parameter settings and producing different outputs. Having considered the property of the 
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MITEs and interactively explored a number of parameter settings, we chose the following 

parameter settings for the operation of finding reverse complements in this sequence. 

 

Minimum length of reverse complement: 10 

Maximum length of reverse complement: 100 

Minimum spacing between the pair of reverse complements: 200 

Maximum spacing between the pair of reverse complements: 500 

Minimum identity between the pair of reverse complements: 0.95 

 

We did not choose the option of combining the pattern search. 

 

It took 1.343 seconds time and 28,669,984 bytes memory for IPST to build the hashtable. 

Then it took 78.266 seconds and 89864 bytes memory to find those potential MITEs with 

our computer (Intel Pentium 4 CPU 3.00 GHz and 512 MB of RAM, running Microsoft 

windows XP Professional Version 2002). Our analysis has revealed a total of 256 

potential MITEs in this sequence. Figure 5.9 and 5.10 show part of the GFF-format 

textual report and the graphical user interface (GUI) for finding the MITEs in sequence 1, 

respectively. 

 

We have also examined the annotation of sequence 1 from GenBank, where a total of 33 

MITEs have been annotated. Between the 256 MITEs found by IPST and those 33 

MITEs from the GenBank annotation, 19 share the same locations to a large extent.  
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## IPST -- Interactive Pattern Search Tool, designed to find repeats in DNA 

sequences     

## 2004-07-15 14:05:28               

                    

<seqname> <source> <feature> <start> <end> <score><strand> <frame> <length> [comments] 

                    

## Reverse 

complements                   

                    

6979318.fastaIPST reverse_complement 2308362312401 . . 10 pair 1 

6979318.fastaIPST reverse_complement 1092921096851 . . 10 pair 2 

6979318.fastaIPST reverse_complement 1247871250211 . . 10 pair 3 

6979318.fastaIPST reverse_complement 1700181703041 . . 10 pair 4 

6979318.fastaIPST reverse_complement 1673871678321 . . 11 pair 5 

6979318.fastaIPST reverse_complement 1757821762231 . . 11 pair 6 

6979318.fastaIPST reverse_complement 3247663251031 . . 10 pair 7 

6979318.fastaIPST reverse_complement 4398 4735 1 . . 10 pair 8 

6979318.fastaIPST reverse_complement 12374 12685 1 . . 10 pair 9 

6979318.fastaIPST reverse_complement 1570621575791 . . 11 pair 10 

  

Figure 5.9  Part of the GFF-format textual report for finding miniature inverted repeat transposable 

elements (MITEs) sequence 1 

 

Detailed examination on those 14 missed MITEs needs to be performed to analyze why 

IPST failed to find these elements. Then users can experiment with different parameter 

settings for the reverse complements that will be able to lead to the identification of those 

14 MITEs. In addition, the fact that the number of MITEs found by IPST is much larger 
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Figure 5.10 Snapshot of some MITEs Miniature Inverted-repeats Transposable Elements) from the rice 

sequence found by IPST. 

 

than the number of annotated MITEs in the GenBank suggests other operations, such as 

pattern search, can be combined with finding the reverse complements to exclude those 

“false” MITEs. In order to do that, further study needs to be done to find consensus 

sequences in MITEs.  On the other hand, there may be some MITEs that have not been 

annotated and need further study for confirmation. Many of these processes can be done 

through user interaction with the IPST program. 
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Apply IPST to find Long Terminal Repeat retrotransposons in sequence 2 

 

Since Long Terminal Repeat (LTR) retrotransposons contain a pair of direct repeats at 

the ends of the sequence, the operation of finding direct repeats needs to be performed in 

IPST in order to find this element. In addition, the interior region of the LTR 

retrotransposons contains several genes such as env, gag, and pol, as shown in figure 5.3. 

A combination of finding the direct repeats with pattern search will be very effective to 

locate the element.  

 

These genes often have consensus amino acid sequences. Ideally it will be very useful if 

IPST can also be applied to pattern search for amino acid sequences, which will be 

effective to find the LTR retrotransposons. However, the current implementation has yet 

to include amino acid sequences as the inputs. So we simply combine the operations of 

finding the pattern “ATG” (start codon) with finding the direct repeats to locate the LTR 

retrotransposons in this sequence 

 

Similar to finding reverse complements, IPST provides a panel for parameter settings of 

the direct repeats. After experimenting with a variety of parameter settings with IPST, we 

used the following parameter settings for the operation of finding direct repeats: 

 

Minimum direct repeat length: 100 

Maximum direct repeat length: 100000 

Minimum spacing between Direct Repeats: 1000 



 

 -113- 

Maximum spacing between Direct Repeats: 1000000 

Minimum identity of Direct Repeats: 0.95 

 

We clicked the “and” checkbox to perform the pattern search as well. We searched for 

“atg” with an identity value of “1.0”. 

 

It took 0.75 seconds time 13831160 bytes memory for IPST to build the hashtable. Then 

it took 5.719 seconds time and 80656 bytes memory to find those potential Long 

Terminal Repeat (LTR) retrotransposons with our computer (Intel Pentium 4 CPU 3.00 

GHz and 512 MB of RAM, running Microsoft windows XP Professional Version 2002). 

Our analysis has revealed a total of 13 potential LTR retrotransposons that contain both 

the direct repeats and the pattern “ATG”. 

 

Figure 5.11 and figure 5.12 show the GFF-format textual report and the graphical user 

interface (GUI) for finding the Long Terminal Repeat (LTR) retrotransposons in 

sequence 2, respectively. 

 

Time-memory tests 

 

In order to measure the time and memory efficiency of our hashtable based approach for 

string match, we compared both the theoretical time and memory complexity and the 

empirical running time and memory consumed while applying IPST on pattern search 

(approximate string matching). 
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## IPST -- Interactive Pattern Search Tool, designed to find repeats in DNA 

sequences     

## 2004-07-15 14:43:48               

<seqname> <source> <feature> <start> <end> <score> <strand><frame> <length> [comments] 

## Find Direct 

repeats  

that  contain the 

pattern 

"atg"             

20198551.fastaIPST direct_repeat77337 93548 0.950980392. . 102 pair 1;pattern at 78208 

20198551.fastaIPST direct_repeat141397 155407 0.952702703. . 148 pair 2;pattern at 142925 

20198551.fastaIPST direct_repeat141288 146090 0.953703704. . 108 pair 3;pattern at 142925 

20198551.fastaIPST direct_repeat141297 146107 0.956896552. . 116 pair 4;pattern at 142925 

20198551.fastaIPST direct_repeat36495 47607 0.953703704. . 108 pair 5;pattern at 37628 

20198551.fastaIPST direct_repeat141353 155405 0.952631579. . 190 pair 6;pattern at 142925 

20198551.fastaIPST direct_repeat77313 93546 0.951612903. . 124 pair 7;pattern at 78208 

20198551.fastaIPST direct_repeat78098 94297 0.956896552. . 116 pair 8;pattern at 78208 

20198551.fastaIPST direct_repeat65731 77170 0.95025729 . . 583 pair 9;pattern at 67077 

20198551.fastaIPST direct_repeat78774 94839 0.95049505 . . 101 pair 10;pattern at 81316 

20198551.fastaIPST direct_repeat77803 94097 0.952631579. . 190 pair 11;pattern at 78208 

20198551.fastaIPST direct_repeat78089 94280 0.953703704. . 108 pair 12;pattern at 78208 

20198551.fastaIPST direct_repeat78074 94270 0.955752212. . 113 pair 13;pattern at 78208 

 

Figure 5.11 GFF-format textual report for finding the Long Terminal Repeat (LTR) retrotransposons in 

sequence 2 

 

To build the hashtable, the algorithm employed in IPST needs to go through each 

nucleotide in the input sequence and apply the hashing function to the s-mer beginning at 

that position. Since applying the hashing function on each polynucleotide can be 

considered to take constant time and there are a total of (n-s+1) polynucleotides along the 

sequence (where n is the length of the sequence and s is the length of the key for the 

hashtable), the time complexity for building the hashtable is O(n). 
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The space needed for building the hashtable consists of the space needed by all keys in 

the hashtable and by the values, which are linked lists of PolyNuclInfo objects. Both a 

key and a PolyNuclInfo object occupy constant space. The maximum number of all 

possible keys is 4s, (we have four different nucleotides: a, g, c and t) where s is the size of  

the key. The maximum possible number of PolyNuclInfo objects in a linked list is (n-

s+1). So the space complexity for the hashtable approach is O(max(n, 4s). Assuming that 

s is small and constant, the space complexity is O(n). 

 

To perform the pattern search with mismatch allowed, if the pattern is no shorter than the 

hashtable key, our hashtable approach first enumerates all possible key values based on 

the percentage of similarity for the whole pattern under our assumption that the mismatch 

occurs in the first s (key length) nucleotides with the same probability as in all 

nucleotides of the whole pattern. This process takes O(4k * C(s,k)) (C(s,k) is the math 

expression for “s choose k”) time where k is the number of allowed mismatches and 4 is 

the number of different nucleotides. Then lists of PolyNuclInfo objects will be retrieved, 

extended along the sequence, and examined to determine whether the similarity between 

the extended polynucleotide and the pattern is above the similarity threshold. Applying 

the hashing function and retrieving the values can be considered to take constant time. 

The time needed for extending the polynucleotide and checking for the similarity is O(m-

s), where m is the length of the pattern. So the time complexity for the pattern search in 

our hashtable approach is O((m-s) * 4k * C(s,k)) if the pattern is larger than the hashtable 

key. If the pattern has the same size as the key, the complexity will be O(4k C(s,k)). If the 
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Figure 5.12 Snapshot of part of the LTR retrotransposons from the rice sequence found by IPST. 

 

pattern is shorter than the key, the pattern will be extended to meet the length of the key 

by adding enumerated nucleotides at each of the position for additional nucleotides. 

When mismatch is allowed, the number of enumerations will be 4k * C(s,k) * 4s-m. So the 

time complexity for pattern search while the pattern is shorter than the key size is O(4k+s-

m * C(s,k)). 

  

As for the space complexity of the hashtable approach for the pattern search, storing the 

hashtable takes O(n), as discussed above for the space complexity of building the 
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hashtable. Storing the pattern takes space O(m) The space complexity needed for pattern 

search in our hashtable approach is O(m + n). 

 

Table 5.1 shows the time and memory complexity comparison between our hashtable 

based approach and the suffix tree approach. This table indicates that these two 

approaches share the same time complexity for preprocessing and the same space 

complexity for pattern search. In our hashtable approach, both the space complexity for 

preprocessing and the time complexity for pattern search depend on the size of the 

hashtable key. If the key of the hashtable is relatively small, the two approaches will have 

similar space complexity for preprocessing. Otherwise, our hashtable approach will 

consume more space. As for the time complexity for pattern search in our hashtable 

approach, it varies with different relationships between the size of the pattern and that of 

the hashtable key. When the pattern has the same size as the key or has a larger size than 

the key, our hashtable approach takes less time than the suffix tree approach. The 

hashtable approach is less efficient if the pattern is shorter than the key. 

 

A Java-implementation of the suffix tree and search from [Dorohonceanu et al. 2000] was 

adopted into the IPST program using the same interface to perform the time-measure on 

the test sequences. 

 

Figure 5.13 shows the time-memory test comparison between the suffix tree approach 

and our hashtable approach on 6 sequences ranging from 10kb to 500kb. The hashtable 
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Preprocessing Patten Search 

  Time complexity Space complexity Time complexity Space complexity 

Suffix tree O(n)a � (nlog|� |)a O(km)a O(n+m)a  

Hashtable O(n) 

O(max(n, 4s); 

O(n) assuming s is 

small and constant 

O((m-s) * 4k * C(s,k)) if m > s 

O(4k C(s,k)) if m = s 

O(4k+s-m * C(s,k)) if m < s 

 

O(n+m)  

 

Table 5.1: Time and memory complexity comparison between our hashtable based approach and the suffix 

tree approach. 

n: text size; m: pattern size; k: number of mismatches allowed; s: length of key for building the hashtable 

a: cited from [Gusfield, 1997] 

 

was built with the default key size of 6. The string “agattcgaacgt” was searched with 2 

mismatches allowed. 

 

Figure 5.13a shows that the preprocessing time needed for the hashtable approach is 

significantly less than what is needed for the suffix tree approach. While the size of the 

input sequence increases, our hashtable approach becomes even more time efficient for 

the preprocessing. While table 5.1 shows these two approaches have the same time 

complexity, our experimental results on the test sequences indicate that the 

implementation of the suffix tree approach from [Dorohonceanu et al. 2000] has not 

achieved the same efficiency as our hashtable implementation. 
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The message from figure 5.13b confirms with our space complexity comparison between 

these two approaches: our hashtable consumes more space during the preprocessing stage 

than the suffix tree approach. 

 

Figure 5.13c shows the comparison of time efficiency for the two approaches on pattern 

search. The time needed for these two approaches on the test sequences was in small 

amount. While the two approaches take similar time for pattern search against input 

sequences of size up to 100kb, our hashtable approach is two times faster than the suffix 

tree approach. Figure 5.13d indicates that the memory needed for our hashtable approach 

during the pattern search process is always at least 40% less than what is needed for the 

suffix tree approach in out tests. 

 

Based on figure 5.13, the preprocess time needed for the hashtable approach is much less 

than what is needed in the suffix tree approach and the time and memory efficiencies of 

our hashtable approach are always superior than that of the suffix tree approach on 

pattern search (or approximate string matching). The only drawback of the hashtable 

approach is that it needs more memory in the preprocessing phase. 

 

Figure 5.14 shows the time-memory comparisons for the suffix tree based and hashtable 

based IPST implementation for approximate string matching on patterns with various 

lengths. Figure 5.14a indicates that our hashtable approach is up to three times more 

efficient than the suffix tree approach whenever the pattern is longer than the key. The 
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benefit of our hashtable approach increases while the pattern is longer. Figure 5.14b 

shows that while the size of the pattern increases, the amount of memory to be spent on 

the pattern search becomes very close between these two approaches. As we have 

discussed in the previous complexity analysis, our hashtable approach is not time-

efficient when the size of the pattern is less than that of the hashtable’s key. This is 

indicated in figure 5.14a where it takes much more time to find the pattern “atg” for the 

hashtable approach than for the suffix tree approach. 

 

Approximate string matching, as a basic computational problem, has acted as a 

fundamental basis for many other problems in computational biology, such as primer 

design, sequence alignment, homology study etc. Due to its importance,  

a large number of approaches have been developed for the approximate string matching 

problem aiming to improve the time and space efficiency. These approaches include the 

dynamic programming approach based on edit distances [Gusfield, 1997], some 

algorithms based on automata [Wu, et al. 1996], bit-parallelism algorithms [Wu et al., 

1992], filtering algorithms based on cutting unmatched contents [Chang and Marr, 1994], 

the suffix tree approach [Ukkonen, 1995] and other heuristic methods. Table 5.2 shows 

our survey of current approximate string matching algorithms and their time and space 

complexity. The heuristic method employed in our IPST program for the approximate 

string match (as well as for finding the direct and inverted repeats) utilizes a preprocessed  

hashtable to expedite the searching process. The empirical time and space comparison 

between our approach and the suffix tree approach showed that our approach can achieve 

the same or better time efficiency in approximate string matching as the suffix tree  
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Pattern Search time for Suffix tree vs Hashtable
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Figure 5.13. Time-memory test comparisons between the suffix tree approach and the hashtable based 

approach for approximate string matching on six test sequences with various lengths.  

 

i. For suffix tree, preprocessing means the process of building the suffix tree in the suffix tree approach and 

the process of building the hashtable in the hashtable approach 

ii. For all pattern seaches, “agattcgaacgt” was searched in the test sequences with 2 mismatch allowed. 

All time and memory test results are averaged on three tests.  
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approach while requiring much less preprocessing time. From table 5.2 we can see that 

the suffix tree approach is the most time-efficient among all of the surveyed approximate 

string matching approaches. Thus, our hashtable based approach for approximate string 

matching should also compare well against the other methods. 

 

5.4 Summary and future work 

 

An Interactive Pattern Search Tool (IPST) has been developed to facilitate finding 

various complex patterns in biological sequences in an interactive manner. Current 

functions of this tool include pattern search, finding direct repeats, inverted repeats and 

reverse complements and a combination of the above operations. IPST has been 

demonstrated to find LTR (Long Terminal Repeat) retrotransposons and MITEs 

(Miniature Inverted-repeats Transposable Elements) in rice sequences. The time and 

memory efficiency of the hashtable based heuristic approach for approximate string 

match implemented in this tool has been compared with another implementation of IPST 

using the suffix tree approach. 

 

Future work includes developing more combinational operations (such as OR, NOT, 

XOR) in IPST and making the combinational operation more versatile and user-

interactive. In some situations, users need to find some complex pattern over many 

different input sequences. A nice feature for IPST to include is to be able to generate the 

codes (in our case, Java classes) that support the operations or the set of combinational 

operations to find a particular complex pattern. In this way, users simply need to use the  
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Figure 5.14. Time-memory tests for suffix tree based and hashtable based IPST for approximate string 

matching on patterns with various lengths. All results are averaged on three tests.  

i.            All patterns are searched for against the 100 kb test sequence. 

ii.  For the pattern of length 3, “atg” was searched for with 0 mismatch allowed ( or 0.8 identity) 

iii.  For the pattern of length 6, “agcatc” was searched for with 1 mismatch allowed ( or 0.8 

identity) 

iv. For the pattern of length 12, “agattcgaacgt” was searched for with 2 mismatches allowed ( or 

0.8 identity) 

v. For the pattern of length 24, “gaacttgcaggtatcacttgcatc” was searched for with 2 mismatches 

allowed ( or 0.9 identity) 



 

 -125- 

 

Approach name Space complexity Time complexity Source 

The dynamic programming 

approach 
O(m)  O(mn)  Navarro, 2001 

The cut-off heuristic 

algorithm 
O(m)  O(kn) on average b Ukkonen, 1985 

Column partitioning algorithm O(m � ) a O(kn/sqrt( � )) on average a 
Chang and Lampe, 

1992 

Wu, Manber and Myers’ 

algorithm based on automata  
O(n) a O(kn/logn) on average a Wu, et al. 1996 

Wu and Manber’s Bit-

parallelism algorithm 

c  O(k � m/w � n) a Wu et al., 1992 

Yates and Navarro’s Bit-

parallelism algorithm 

c 

O( � k(m-k)/w� n) on worst 

case; O( � k^2/w� n) on average 

case a 

Baeza-Yates et al. 

1999 

Myers' approach on 

parallelizing the dynamic 

programming matrix 

 c 
O ( � m/w� n) for worst case; O 

( � k/w� n) on average 
Myers, 1999 

Chang and Marr’s Filtering 

algorithm 
O (m^t) 

O (n(k+log � m)/m) on average 

( �  is the base of the log; t is 

some constant which depends 

on � ) 

Chang and Marr, 

1994 

Suffix tree approach 

�
(mlog| � |) space 

for building the 

tree; O(n+m) for 

approximate string 

matching 

O(m) time for building the tree; 

O(km) for approximate string 

matching 

Ukkonen, 1995 

 

Table 5.2. A survey of the time and space complexities of the currently-developed algorithms for 

approximate string matching (pattern search). Note that k is the number of mismatches allowed. m is the 

length of the pattern to search for and n is the length of the text 

a: proved in [Navarro, 2001]            b: proved in [Chang and Lampe, 1992; Baeza-Yates and Navarro 1999] 

c: data unavailable 
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generated codes to find the complex pattern that they are interested in. In addition, it will 

be very useful for this tool to be able to perform all of these functions on amino acid 

sequences. 

 

The motivation and application of IPST discussed so far are mainly based on exploring 

biological sequences to find interesting patterns. If we adapt the alphabet into a user-

supplied character set, we can explore both protein sequences and complex patterns in 

arbitrary texts. 
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Chapter 6 

Conclusions and future work 

 

In this thesis work, we have evaluated five computer programs on their ability to locate 

coding regions and to predict gene structure in the organism N. crassa. We have also 

designed and implemented a tool for automatic evaluation of various gene-finding 

programs. This tool can be applied in various genome projects to facilitate choosing the 

right gene-finding program for a specific organism. It can also be used to assess the 

performance of newly-developed gene-finding programs. 

 

In addition, an Interactive Pattern Search Tool (IPST) has been developed to facilitate 

finding various complex patterns in biological sequences in an interactive manner. 

Current functions of this tool include pattern search, finding direct repeats, inverted 

repeats and reverse complements and any combination of the above operations. IPST has 

been demonstrated to find LTR (Long Terminal Repeat) retrotransposons and MITEs 

(Miniature Inverted-repeats Transposable Elements) in rice sequences. The time and 

memory efficiency of the hashtable based heuristic approach for approximate string 

match implemented in this tool has been compared with another implementation of IPST 

using the suffix tree approach. Future work of this IPST project includes developing more 

functions in the tool, providing more combinational operations among those implemented 

functions, and applying the tool to find other complex patterns in both nucleotide and 

amino acid sequences. 
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