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CHAPTER 1

INTRODUCTION

1.1. Bioinformatics

This thesis involves work in the area of bioinformatics. As stated in [Bayat 2002],
bioinformatics is the “application of tools of computation and analysis to the capture a
interpretation of biological data”. It is an interdisciplinary area involvirgolgical

sciences, computer science, mathematical science, physics, and m@&#igate2002].

As the vast amount of biological data produced by many genome projects continues to
grow, the need for computational analysis, organization and management has emerged.
Bioinformatics tools have been developed to study the genes and proteins in various
organisms, including humans. The importance of bioinformatics in assistingcresssar

to understand the mechanisms of diseases, design new drugs and develop nemtgreatme

is obvious.

Bioinformatics projects center around understanding the structure, function and
regulation of genes and proteins. Bioinformatics can basically be dividedvimto t
important sub-disciplines [Bioinformatics Factsheet 2001]:

1. In order to efficiently store, access, query and manage large amounts of

biological data, tools such as databases have been developed and implemented.



2. Analysis of the vast amount of biological data using algorithmic and statistic
methods to unveil and evaluate the relationships among members of the data sets. For
instance, gene-finding programs have been developed to locate genes in genomic
sequence data, and clustering algorithms have been used to study genemeguhat

microarray data.

Recently, with the completion of genome sequencing of quite a few model organisms,
such as human, mouse, rat, and two fruit flies, and more sequencing projects being
conducted for more organisms, a vast amount of sequence data has become available.
The annotation of the sequence data to unveil the gene structures, various tgpeatsf r
and other complex biological patterns, such as the Long Terminal Rep&jt (LT
retrotransposons and Miniature Inverted repeat Transposable Elements \NiEEs

increasingly emerged as a both important and challenging problem.

Aimed at the above annotation problem, this thesis work provides three contributions:

1. An analysis of several gene-finding programs for the fungus
Neurospora crassa

2. The development of a general tool that can automatically evaluate any
gene-finding program and will report both the standard metrics and new
metrics that we define.

3. The development of a tool, Interactive Pattern Search Tool (IPST), to

facilitate finding complex patterns in nucleotide sequence data.



These contributions are introduced in the following sections.

1.2. Analysis of Gene-finding programsfor N. crassa

Computational gene-finding plays an important role in genome projects. A largemumbe
of programs employing various algorithms have been developed to address this proble
The optimal values of parameters for gene-finding programs are often ongspesific.

A gene-finding program that performs well for one organism does not negessaril
produce good results in another organism. Choosing the right program to find genes in a

newly sequenced genome has been a pivotal issue.

Our work on the analysis of gene-finding programd\focrassas aimed at the above
issue using the specibk crassaas the case study. We have conducted the evaluation of
four commonly used gene-finding programs (GenScan [Burge and Karlin, 1997],
GeneMark [Borodovsky and Mcininch, 1993], HMMGene [Krogh 1997], and Pombe
[Chen and Zhang, 1998]) and a program developed in the Kraemer lab: FFG (Find
Fungal Gene). While FFG is designed specifically for the orgaNisonassathe other

four programs are gene-finding programs designed mainly for other organisntawy

used five manually annotated sequences in the evaluation process.



The performance of the gene-finding program is measured at the exon leved using
previously-defined evaluation methodology [Burset and Guigo, 1996]. The performance

of those five programs dX. crassas compared.

Selecting the best gene-finding program or programs for a new organisregorgaif
sequences can be time-consuming and error-prone, as well as problematipraceise

of executing these programs on our test sequences, collating the results dbtie var
programs, and calculating statistics, we became keenly aware of ¢hedimrasuming and
error-prone nature of this process and the variation in reporting methodologies. The need
for a standard tool to perform such studies seems clear. We aim to produce an
environment and tools to support the task of evaluating gene-finding programs. Toward
that goal we have developed a general tool that can automatically eeaiyajene-

finding program and will report both the standard and newly defined metrics.

Chapter 2 contains our paper entitled “An analysis of gene-finding prograis for
crassd [Kraemer et al. 2002] and published in the joufdminformatics In this paper,

we present a general introduction to the problem of computational gene-finding, the
underlying algorithms of the gene-finding programs that we evaluated, thettesetia

the evaluation methodology, and the results. Chapter 3 contains our péited §GFPE:
gene-finding program evaluation” [Wang et al. 2003] and published in the journal
Bioinformaticsas well. This paper describes the initiative that led to the work of creating
a general tool to automatically analyze various gene-finding programs aiipe afsthe

program, and future work related to this tool.



1.3. Interactive Pattern Search Tool (IPST)

Genome projects have produced and continue to produce vast quantities of sequence data.
Exploring various patterns contained in these sequences is now the primary concern.
Examples of such patterns include direct repeats, inverted repeats, reverksrwnts,

and other more complex structures, such as the long terminal repeat (LTR)
retrotransposon elements and miniature inverted repeat transposable e(®EESS.

Given the important roles that these complex patterns may have played in both evolution
and regulation of genes and proteins, the need for an efficient computational algorithm
identify and locate these patterns has emerged in the research commumitol @

designed to specifically address this problem.

This tool is designed to facilitate finding complex patterns in nucleotide seqd&tace

an interactive manner. In addition to finding direct and inverted repeats, the t@al is al
capable of performing approximate string search, locating start and stop endioasy
combination of the above operations. Users can use a combination of the functions that
IPST provides to locate various patterns that they are interested in. We hase BT

to find LTR (Long Terminal Repeat) retrotransposons and MITEs (Miniatwestied-

repeats Transposable Elements) in rice sequence data.

IPST can be used for multiple sequences and thus is suitable for genomic pi&gadts

is implemented in the Java programming language and provides a graphicalenfaarant



and visualization and interaction techniques that focus on interactive exploration of

patterns in sequences.

IPST is implemented using a hashtable based approach. A hashtable storing
polynucleotide information of the sequences is pre-computed and used in the searching
processes. The time taken for building the hashtable allows the fast taifipatierns in

the sequences during the pattern search processes. As a test forcgfo€igre time and
memory usage of our hashtable based pattern search approach, we have compared the
hashtable based algorithm with a suffix tree based approach, which was also

implemented in IPST.

Chapter 4 discusses related work to IPST. Chapter 5 provides a discussion of tPST tha
represents a manuscript in preparation for submission. Chapter 6 gives a conclusion and

states the future work.



CHAPTER 2

AN ANALYSIS OF GENE-FINDING PROGRAMS FOREEUROSPORA CRASSA

Y Wang, J, Kraemer, E., Guo, J., Hopkins, S., Arnold, J. 20@ioinformatics 17(10): 901-912.
Beprinted here with permission of publisher.
: Co-authors. Order switched from the original peation with permission of publisher and both ausho



Abstract

Motivation: Computational gene identification plays an important role in genom
projects. The approaches used in gene identification programsftaretuned to one
particular organism, and accuracy for one organism or class ohismgadoes not
necessarily translate to accurate predictions for other organisms. In thisveag@ealuate
five computer programs on their ability to locate coding regionstangredict gene
structure in Neurospora crassa. One of these programs (FRGJesmned specifically
for gene-finding in Neurospora crassa, but the model parametersbtiyet been fully
"tuned", and the program should thus be viewed as an initial prototype.other four
programs were neither designed nor tuned for N. crassa.

Results. We describe the data sets on which the experiments werermed, the
approaches employed by the five algorithms: GenScan, HMMGeneMaekh Pombe
and FFG, the methodology of our evaluation, and the results of the ragpé&si Our
results show that, while none of the programs consistently perfoets wverall the
GenScan program has the best performance on sensitivity and B&iii{tylexons) while
the HMMGene and FFG programs have good performance in locatiegdhe roughly.
Additional work motivated by this study includes the creation of afeyxdhe automated
evaluation of gene-finding programs, the collection of larger and neteble data sets
for N. crassa, parameterization of the model used in FFG to predutere accurate
gene-finding program for this species, and a more in-depth ewaluztthe reasons that

existing programs generally fail for N. crassa.



Availability: Data sets, the ff{g program source code, and links to the other rmpgogra
analyzed are available at:

http://jerry.cs.uga.edu/~wang/genefind.html

Contact:eileen@cs.uga.edu

2.1 Introduction

Computational gene identification plays an important role in genoajegs. Numerous
programs have been developed to address this problem. Some qirtiggsens predict
protein-coding regions in genomic DNA sequences, while others pradset of
spliceable exons, or explicitly assemble genes. The methods mugbdse programs
include use of hidden Markov models, linear discriminant analysis, and distiabi
models of gene structure that rely on features such as compaisitifierences and

signals.

In this paper we evaluate several commonly used computer prodesigsied to predict
the structure of protein coding genes in DNA sequences. Some oatpesthms must
be “trained” for a particular organism. Thus, the quality of theliptien strategies
employed in these programs can vary from organism to organisrespit® these
limitations, existing methods of gene prediction and models of gereustuare often
applied to newly sequenced organisms, for which no model or method haseyet
tuned. Thus, it is important to assess the accuracy of theBedaethen applying them

to a new organism. Here, we wish to evaluate the ability sbtpeograms to accurately
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predict gene structure for a particular organi$eurospora crassaan organism of
interest as a well-studied representative of the filamentous. fufidnus, no previously
defined data set is available that meets our needs. Howelaed experiments have
been performed [Fickett and Tung, 1992; Singh and Krawetz 1994; Letpal, 1994,
Snyder and Stormo, 1995; Burset and Guigo 1996], and we draw upon the methodology

applied in these studies.

In weighing and applying the results presented here, the reademeuasvare of the
methodology involved. A critical element of the type of work wecdbs is the location
of a "good data set". Ideally, this data set would consist ofge,laepresentative set of

experimentally-verified annotations. As stated above, such a data set doesertyet

Instead, we have relied upon existing sets of annotated sequencespfsefich have
been annotated using the programs we wish to evaluate. A few ses|@mst for which
more "manual’ means were employed, involving the location of OpedirRe&rames
(ORFs) and consensus regulatory sequences, BLAST analysis, aciingnacosmid
sequences with cDNA sequences. Let us refer to the annotationscguiody these
methods as "actual”, and those produced by the programs we ewadugisedicted".
Note that the "actual” annotations do not necessarily correspond'touieannotations
(experimentally verified). Thus, we run the risk of creatiitat one reviewer refers to
as a "devil's circle". That is, instead of evaluating trseilte of these programs against
the "true" annotations, we instead evaluate them against &"setual” annotations that

may have been influenced by the programs that we wish to exaluaven if the
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annotations against which we evaluate the programs have been progwsmdebother
program completely unrelated to the program we wish to evaluatdillvegesnot able to
evaluate the program's ability to predict the "true" setimfiotations. Rather, any
evaluation we perform will measure a program's ability to procarogotations that
correlate well with the method used to produce the "actual" anragatiUnfortunately,
this is the nature of the beast in performing such studies. n ladequate set of
experimentally verified sequences were to already existjikely that we would be in a
stage of study with the organism of interest in which we wouldonger need the
computational gene prediction tools we seek to create. In summangatier should be
cautioned that the results presented here represent the comrelfthe predictions of
these five programs with annotations produced by the methods descAibextiditional
experimentally verified sequences become available, the satwfal" annotations will
change, and our perception of the quality of each of these profpafirsding genes in
N. crassawill change with that. Thus, studies such as the one we describal dieul
periodically repeated, with the gap between the "true" annotationgvlaadwe use as

"actual” annotations in our studies gradually closing.

2.2 Systems and M ethods

Sequences

In this evaluation we compare the results of five gene predictiograns on five

manually annotated sequences. Of these, three annotated sequenecebtained from
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the PEDANT web site[PEDANT 2001], one sequence from the Univedditilew
Mexico[Beanet al, 2001] and a cosmid sequence H123E02 from the University of

Georgia[Kelkaret al, 2001].

The PEDANT database, compiled at the Munich Information CenterPfotein
Sequences (MIPS)[PEDANT 2001], contains a detailed annotatiblewfosporagene

models for many of the sequences. The sequenced cosmids and BACs are subjected to an
elaborate, manually supervised and evaluated annotation routine nfidtateon process
[Mannhaupt, 2000] involves BLAST searching (using human and arabidopsisasi

as well as the application of several separate gene-predigtmgrams, including
GenScan[Burge and Karlin, 1997], GeneFinder[Sulstenh al, 1992] and
GeneMark[Lukashin and Borodovsky, 1998]. Further evidence from EST matotes

from the structure of predicted protein matches is used toeceedtorrected” gene,
which is reported on the web site. Curators of the site note onvibbipages that the
training of gene modeling programs fdeurosporais still under way. Therefore, for the
PEDANT automatic processes they had to use a default settihg gene prediction for
eukaryotes, and they note that these programs may fail to pr@ueBable gene
prediction using these settings. We looked at three contig sequencskich gene
predictions were available: b9j10 (66923 bp, 15 genes), 2a23 (36732 bp, 10 genes), and

4e5 (16820 bp, 3 genes).

Also evaluated was a 36 kilobase-pair cosmid insert, representioghgeDNA fromN.

crassa This sequence was obtained from Natvig and Nelson in the Departihent
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Biology at the University of New Mexico, where it was setuesl and characterized
[Beanet al, 2000]. The sequenced region contains homolog@N\NiBland SNO1from
Saccharomyceserevisiaeand possesses at least 13 protein-coding genes. The cosmid,
G6G8 from the Orbach/Sachs cosmid library, was obtained from thealFGegetics

Stock Center at the U. of Kansas Medical Center, Kansas @dwn, subcloned, and
sequenced according to the procedure described in [@ealn 2000]. Basecalling was
performed using Phred[Ewingt al, 1998], vector screened using Crossmatch[Green,
1996], and then assembled into contiguous fragments using Phrap[Green, 1996]. The

sequence was then annotated and deposited in GenBank (accession number AF309689).

The sequence analysis procedure involved using MacDNASIS v 3.2ndodpen
Reading Frames (ORFs) using the codon biasNfocrassa,searching for consensus
sequences associated with translational start sites and iptrcngs and using BLAST

to compare with protein and nucleotide databases at NCBI. Manyvpu@RFs were
eliminated from consideration because they overlapped verified;geores of the ORFs
excluded from the list exhibited a strong patteriNotrassacodon preference. In total,
thirteen putative protein-coding genes were predicted in this sequgeuen of these
putative genes were verified by identification of a homologous segquesing BLAST
search. One putative gene was verified by its length (encd@@&agmino acids without
interruption) and its stronly. crassacodon bias. One more tentative gene was verified by

matching it to aN. crassacDNA sequence.
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The fifth sequence, H123E02, sequenced in the Arnold Lab at the Univadr&gorgia,
is a 54,728bp cosmid sequence that complements the gqa-2 mutdtioaraésaand has
been previously analyzed and predicted to contain 12 genes [Ke¢lkhr2001]. In our
study, we annotated this sequence using a procedure simitat tesed in annotating the

Natvig sequence. In particular:

1. MacVector TM 7.0 was used to locate all possible ORFs.

2. The Gribskov codon preference plotting method was used with the codentaisiag
for N. crassato find those ORFs that have a low likelihood of being in a codigigme

These ORFs were removed from the original ORF list.

3. Sequence files were created for each of the ORFs in thénligrder to verify the
putative ORFs, a small computer program was written to sdarcthose consensus
regulatory sequences involved in transcription [Bruckeal., 1993a] and translation
[Bruchezet al.,1993b]. ORFs containing fewer than 7 of the 8 consensus sequences (see

Table 2.2) were removed from the list.

4. BLAST searches were performed for ORFs longer that 500 bp, ehndjeae verified
by comparison with BLAST analysis. If two or more ORFs wierend to overlap, the
ORF representing a verified gene and in the correct frameke@sand the other ORFs

were removed from the list.
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Minimum
Sequence

match
CAAT box(a) CAAAT 4
TATA box(a) TATATAA 5
Plus 1 Sequence TCATCANC 6
consensus(a)
Polygdenylaﬂon AATAS 5
signal(a)
Intron Splicing 5'
. G51-G99T99(A77/G17)(A50/C23)G94(T76/C15) 5
signal(a)
Lariat signal(a) (G45/A37)C94T94(A48/G40)A93C82 5
Imror.‘ splicing 3 "G4"(A56/T20)(T62/C33)A100G100-G40 4
signal(a)
Kozak Sequence(b) C57NNNC77A81(A44/C43)"T3"A99T100G99G51C53 9

Table 2.1 — Some consensus sequenchls imassaand their acceptance criteda(

1. ¢: the criteria we used in accepting a given segei@sca consensus sequence; the given sequence must
match the minimum number of nucleotides with thesemsus sequence to be accepted.

2. a. Brucheet al.,1993a; b. Brucheet al.1993b

3 The subscript number indicates the percent oenoe of the particular nucleotide.

4. Symbol "-" indicates the splicing site.

5. If a nucleotide is quoted, it indicates the @med absence of that particular nucleotide.
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5. Because this sequence had been previously annotated by other meeos\paeed

our results with the published results, and found that a gene, qa-g)issasg. We then
returned to the complete ORF list originally generated byMheVector program, and
selected those ORFs that reside in the region between the segjtletdlank ga-2 in the
published map[Kelkar et al., 2001]. Searching with BLAST on these G&feeeded in
locating the ORF for the ga-2 gene, which had been eliminated iofadhe screens in

prior steps.

6. To avoid missing a gene, we then added back to the ORF ligtredigted ORF of

length greater than 1000 bp not in the current list. BLAST semrchethese newly

added long ORFS did not produce any significant hits. Thus, theyagare removed

from the ORF list.

7. BLASTX [Gish and States, 1993] was used to locate the exons in the verified ORFs.

The ORFs and exon structure deduced using this method are shown in Table 2.1.

Gene Prediction Programs

Five programs were evaluated, GenScan[Burge and Karlin, 1997], HMMGegg[

1997], GeneMark[Borodovsky and Mclninch, 1993], Pombe[Chen and Zhang, 1998], and

FFG (Find Fungal Gene), developed at the University of Georgladascribed here.

Although FFG was designed specifically for gene-findinj@urospora crassahe
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protein ga-x

Protein No._ of Best blast hit E- . Method of
ORF . e amino . frame Exon locations exon
identification . organism Value . e
acid identification
3393 - 3566
Putative pyridoxal Schizosaccharomyc ) 3579 - 3683
1 kinase 309 es pombe se-11 1 3690 - 3815 BLASTX
3834 - 3905
Catabolic 3-
2 Dehydroquinase( 173 Neurospora crassa |2e -78 1 12550 - 13068 BLASTX
qa-2)
Quinate 5-
3 dehydrogenase 321 Neurospora crassa | e -179 1 16697 - 17614 BLASTX
(qa-3)
Quinic Acid
4 |Utilization Activator 816 Neurospora crassa 0 1 25001 - 27448 BLASTX
ga-1F
Hypothetical 44189 - 44377
5 protein 554 Schizosaccharomyc 26 -15 1 44387 - 44524 BLASTX
SPACLFE12.09 es pombe 44537 - 44617
’ 44627 - 45001
g |Elongation factor 1y ., ,, Xenopus laevis | 6e -33| 3 48578 - 48805 BLASTX
Beta(EF-1-BETA) P
40595 - 40413
Fatty acid transport Cochliobolus 40391 - 39768
7 protein 643 heterostrophus 4e -80 ! 39729 - 39603 BLASTX
39596 - 39429
Rehydrin protein . . 37332 - 37207
8 homolog 243 Candida albicans 5e -46 -3 37122 - 36802 BLASTX
32885 - 32820
32810 - 32646
Regulatory protein Schizosaccharomyc 82621 - 32484
9 guialo’y P 611 oot e Lo aa | 1 32369 - 32241 BLASTX
P 32216 - 31698
31607 - 31569
31562 - 31449
29187 - 29128
. 29088 - 29062
10 r;gi"n";“é}ff;n 305 Sacccer:s\r/(iasr’ina);ces 2e-12 | -1 29043 - 28933 BLASTX
P 28806 - 28615
28581 - 28498
11 Q“'”atgaﬁfs’”essor 918 | Neurospora crassa | 0 -1 23601 - 21073 BLASTX
12 Q”'”at('z:_ir)mease 537 | Neurospora crassa | 0 -1 19916 - 18306 | BLASTX
3-
13 dehydroshikimate 359 Neurospora crassa 0 -1 14704 - 13628 BLASTX
dehydratase (qa-4)
14 Hypothetical 340 Neurospora crassa | e -121 | -1 11329 - 10649 BLASTX

Table 2.2 — ORF and exon structuredlircrassacosmid H123E02
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model parameters have not yet been fully "tuned”, and the progrand sthusl be
viewed as an initial prototype. The other four programs were neidsgned nor tuned

for N. crassa

GenScan[Burge and Karlin, 1997] is a general-purpose gene identificgtiogram that
analyzes genomic DNA sequences from a variety of organismslingl human, other
vertebrates, invertebrates and plants. For each sequence, the pragpbes a
probabilistic model of the gene structure and compositional propeitide genomic

DNA for the given organism to determine the most likely genecttre. This model
includes consensus sequences involved in transcription and translation, length
distributions, and compositional differences. GenScan identifies ctamipkeon/exon
structures of a gene in genomic DNA, is able to predict multipleeg, can deal with

both partial and complete genes, and can predict consistertf gggaes that occur on
either or both strands of DNA. The GenScan program may be accessed through:

http://genes.mit.edu/GENSCAN.htmIParameter settings include a choice of organism

(vertebrate, arabidopsis, or maize) and a suboptimal exon cutoff Va@je0(50, 0.25,
0.10, 0.05, 0.02, and 0.01). In our evaluation, we used arabidopsis at a cutoff value of

1.0.

HMM GenelKrogh, 1997] is a program for prediction of genes in anonymous DNA,
designed for prediction of vertebrate addelegangyenes. The program predicts whole
genes, and can be used on whole cosmids or even longer sequencgesldo qaedict

splice sites and start/stop codons. If some features of a sequreniagown, such as hits

-18-



to ESTs, proteins, or repeat elements, these regions can be lockedirag or non-
coding and then the program will find the best gene structure unege tonstraints.
The program is based on a hidden Markov model, a probabilistic modke ajene
structure. HMMgene can also report théest gene predictions for a sequence. This is
useful if the there are several equally likely gene structares may even indicate
alternative splicing. HMMgene takes an input file with one oreyfDNA sequences in
FASTA format. It also has a few options for changing the defaehlavior of the
program. The output is a prediction of partial or complete gendgisdquences. The
output specifies the location of all the predicted genes and their coding ragtsesores
for whole genes as well as exon scores. The HMMgene program iisbesaat:

http://www.cbs.dtu.dk/services/THMMgene Through the web page, users may enter

sequences, select an organism(vertebra@ etegany specify whether or not to predict
signals, and specify the number of predictions (1 —5) to report. Invalwagion, we

specifiedC. elegansdid not predict signals, and reported the best prediction.

The GeneMark gene prediction software takes several forms. The origina¢Gark
program [Borodovsky & Mclninch, 1993] relied on inhomogeneous Markov chain
models of both coding and non-coding regions, based on analysis of known ggtioes a
the Bayes decision making function, to predict gends icoli DNA sequences, and was
then retrained foH. influenzae, M. genitaliumand other organisms. GeneMark-
Genesis, developed for analysis of organisms sudl. gannaschiiandH. pylori, was
designed for the situation in which no experimentally studied setgrare available for

training. The GeneMark.hmm algorithm [Lukashin and Borodovsky, 199&jrgtes a
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maximume-likelihood parse of the DNA sequence into coding and non-codjgnse
and is designed to more precisely locate the exact gene boundahesprdgram is
available both through e-mail servers (at Georgia Tech and ti&_EMitstation of the
European Bioinformatics Institute (EBI)) and through several welead.inks to the
web server, instructions for the e-mail server, and other ral#tadhation may be found

through the GeneMark home pabép://genemark.biology.gatech.edu/GeneMark

We evaluated both the e-mail server for GeneMark and the Gekéktan program at:

http://dixie.biology.gatech.edu/GeneMark/eukhmm.cgi

Through the e-mail server for GeneMark, the options specified ‘spoenbe” §. pombg
for the organism and exon for the orflist option; otherwise, defaluesavere accepted.
Through the web server for GeneMark.hmin thalianawas specified for the organism.
In analyzing the results of these two programs we found tha&r setults were obtained
with GeneMark.hmm using A. thaliana as the model organism. Thusepeet only
those results here. Note that we considered using the GeneMark.hmm server at:

http://dixie.biology.gatech.edu/GeneMark/whmm.bgicause it has an option for “low

eukaryotes” and provideS. cerevisiaewhich is similar toN. crassa,as a model
organism. However, we found that the output of this version does not provide

exon/intron boundary information.

The Pombe program was developed to find genes and predict exon-intron structure in
Schizosaccharomyces pomjiighen and Zhang, 1998]. In developing the program, the
authors first extracted a training data set from GenBank, chdbkednnotations for

accuracy, and removed redundancy. Execution of the program involves a rafmber
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linear discriminant analyses. For example, one analysis dlitiates between {sites,
introns, exons} and {pseudo sites, pseudo introns, pseudo exons}. Initiation sites, donor
sites, and acceptor sites are identified. Exon and intron predietiertbe result of the
combination of three linear discriminant functions. Other factorsideresl include
oligonucleotide preferences, positional triplet preferences, hadldcation of open
reading frames. The results of these intermediate anadysethen combined through
dynamic programming to predict gene structure. Pombeeal/fexailable for academic

use and is available through the web site . at

http://ar gon.cshl.or g/genefinder /Pombe/pombe.htm

Find Fungal GeneHFG) is a pattern-directed program for gene-finding\Nieurospora
crassa,based on statistical analysis of sequence features witls gesra N. crassa
performed by Edelman and Staben[Edelman and Staben, 1994], and convevsdtions
Staben. This study found that sequence features such as trarisliiton sites, codon
usage in open reading frames, intron length, exon length, intron donorrgn&s branch

points, and intron acceptor sites within genes fdnarassaare distinctive.

Specifically, coding regions were found to have higher GC content aexhibit a bias
toward codons in which the last nucleotide is C, with a secondary preference fosd@. Al
the stop codon UAA is more commonly used than either UAG or UGA. AG A
initiator codon and surrounding consensus sequence (CAMMATGGCT) dergfied.

Most N. crassagenes were found to have at least one intron. Introns also tended to be

short, with average length 63, median length 70, and a range from 52ba€%l Exon
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length varied more widely, from 3 to 5367, with an average leafy809 and median
length of 148. Consensus sequences identified for the 5’donor sites bpdinch sites,
and 3’acceptor sites are G "GTAAGTnnYCnYY, WRCTRACMnnnnnnYY, and

WACAG", respectively [Edelmann and Staben, 1994].

The FFG algorithm begins by identifying possible start and step, @s well as left (5’
donor) sites, center (splice branch) sites and right (3’ accegites) Frame numbers are
associated with start and stop sites. Any subsequence matichipgttern “GTRNGT”
is identified as a potential left site; any subsequence mgt¢he pattern “CTRAC” is
identified as a potential center site; and any subsequence ngatichipattern “YAG” is

identified as a potential right site.

Then, the algorithm traverses the list of start sites anddaillist of “primitive” ORFs
(Open Reading Frames). Each ORF ends at the first seoprsibuntered in the same

reading frame in the sequence. At this point, each ORF has one exon.

Next, the algorithm repeatedly traverses the ORF list. Goh éORF, the algorithm
examines the last exon in its list and attempts to extendRfet@include another exon.
This is possible if a splice site can be found within the exdrat iE, if the exon contains
a “left” (5’ donor) site and both a “center” (branch site) anght’ (3’ acceptor) site can
be found within an acceptable distance (currently set to 300 basg pHithese are

located, another exon is added to the list for that ORF; othenhs&®RF is marked as

complete. Extension terminates when all ORFs are marked as complete.
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Finally, the algorithm deletes ORFs that are less than 300lgmgthl (an ORF less than
300 bases is not likely to be a gene). When several ORFs ovésalpngest one is
selected and the others are deleted. The reverse complemeditistizeen generated and

the process repeated.

FFG accepts input sequences in FASTA or plain text format, and psodutiut in the
GFF format [Sanger Center: GFF, 2000], a sequence annotation fderedoped with
gene finding in mind. A more highly tuned FFG program that usesetigalgorithm to
tune parameters such as the required homology to the consensus sedoeneésjve
weights of each of the sites, lengths, and distances, and includmgleditide
composition and codon bias, is under development, and will make use of thdiewalua

performed in this study.

The Evaluation Methodology

In our study, we evaluated only the accuracy of the prediction, andadiévaluate
factors such as execution time or memory requirements. Inajepediction accuracy

can be measured at three levels: at the level of the codingotideleat the level of
exonic structure, and the level of the predicted protein productheAprotein product

level, the protein encoded by the actual gene is comparedneiffrotein encoded by the
predicted gene. We focus our evaluation on the exon level, but have developed and apply

here a technique that provides combined information about both ability ttctpre
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sequence coding regions and how well signals are identified, whidxplain later in

this section.

Measurements of accuracy at the coding level compare medioding value with the
actual coding value for each nucleotide along the test sequendbisIwidely used

approach predictions are divided into four categories:

True Positive = nucleotides classified as coding in both actual and prediBfed (T

* True Negative = nucleotides classified as non-coding in both aatdapredicted
(TN).

» False Positive = classified as coding in predicted, but as non-coding in &&al (

» False Negative = classified as non-coding in predicted, but as coding in &&tyal (

Sensitivity is defined as the proportion of coding nucleotides lthae been correctly
predicted as coding. That is, sensitivity = TP / (TP + FSpecificity is the proportion
of noncoding nucleotides that have been correctly predicted as non-codirigis,Tha
specificity = TN/(TN+FP). An issue that arises in evaluatspgcificity is that the
frequency of noncoding nucleotides in genomic DNA sequences is meafeigthan the
frequency of coding nucleotides, so that TN tends to be much ldrgerFP, with the
result of a tendency toward very large non-informative valuesgecificity. Thus, in
much of the literature on gene structure prediction, specifisiipstead defined to be

TP/(TP + FP), the proportion of predicted coding nucleotides thaaaually coding.
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Other commonly used metrics based on these categories are dielatibn

Coefficient(CC), defined as:

(TPx TN) - (FN x FP)

cc=
J(TP + EN) x (TN + FP) x (TP + FP) x (TN + FN)

the Simple Matching Coefficient(SMC), defined as:

TP+TN
sSMC =

TP+FN+FP+TN

and the Average Conditional Probabilty(ACP), defined as:

ACP=£‘: r.,r, m ™ }[BursetandGuigo, 1996].

4| TP+FN TP+FP TN+FP TN+FN

While nucleotide-level metrics are often used to evaluate helvtiae program locates
sequence coding regions, exonic structure metrics are typisatyto evaluate how well

the sequence

signals (splice sites, start codons, and stop codons) are idenBfiese{ and Guigo,
1996]. Our evaluation focused on measuring the accuracy of predictions at the exon level
by comparing predicted and actual exons along the test sequefltkough this
approach is widely used, no unique criterion has been used to consider aasexon

“correctly” predicted. The strictest criterion would scareexon prediction as a correct
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match only if an exact match exists between actual and prdditart and stop locations,
both splicing boundaries correctly identified. We label thesdyge “1” predictions. A
looser criterion scores a prediction as correct if a part@timoccurs, if at least one of
the splice sites has been correctly identified. We label thes@ype 2" predictions.
Finally, a predicted exon may be scored as correct if the apvétween actual and
predicted exceeds some threshold. We label these as “typedttpd exons. While
the first two approaches are more stringent, the advantage tbirthapproach is that an
evaluation performed using this method provides combined information abouthboth
ability of the program to locate sequence coding regions andaebtvsequence signals

are identified. Type 4 predicted exons do not overlap with any actual exon.

The notions of sensitivity and specificity are still applicableneasurements performed
at the exon level. Sensitivity is the proportion of actual exorikdrtest sequence that
are correctly predicted. Specificity is the proportion of prediexons that are correctly
predicted. Also useful are the notions of Missing Exons(ME) and WExogs(WE).
Missing Exons indicates the proportion of actual exons with no ovéolgpedicted
exons. Wrong Exons indicates the proportion of predicted exons with no ovealetpab

exons.

Determining the criteria to use in selecting a threshold Her type 3 exons proved
challenging. To address this problem, we developed a method of selectinghalthfer
overlap between actual and predicted exons that relies on the notiocDsedap-

sensitivity and Overlap-specificity and an initial empirical evaluation.
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From all of the predicted exons obtained by running all of thgrpms on four of the
five test sequences (annotations for H123E02 were not yet avpaiableelected all the
type 2 and preliminary type 3(any overlap at all) exons. Foh @4 these exons, we
calculated the overlap-sensitivity, overlap-specificity, and combivedap percentage.
Overlap-sensitivity is the number of nucleotides in the overlappggpn between the
predicted exon and the actual exons, divided by the number of nucleotittesactual
exon. Overlap-specificity is the number of nucleotides in the overlappgign, divided
by the number of nucleotides in the predicted exon. A Combined Oveslapritage
(COP) was defined to be (OverlapSn + OverlapSp)/2. We then dittdedxons into
different groups based on the value of COP, such as group 100, [95,100), [90,95), ... ,
[0,10). Then we calculated the fractions of the exons falling into each of the above groups
and drew a curve (figure 2.1) with the y-axis representing the ¢flue and the x-axis
representing the fraction of exons with a COP value equal to eatgyrthan the
corresponding y value. As can be seen from figure 2.1, the “krfetffeacurve falls
between 70 and 90 on the x-axis, and appears to be linear in this raaged d this
curve, “greater than 80%" was determined to be a reasonable threshefthe a type 3
exon. In reporting the results of our evaluations, we define thtegarees, labeled one-
star (*), two-star (**), and three-star (***). The one-star gatg includes only the type
1 exons. The two-star category includes only the type 1 and tyypen2.eBoth of these
categories may be used to evaluate the ability of a progyaemactly locate exon and
intron boundaries. The three-star category combines this informaitiorawvwneasure of

the ability of a program to correctly predict coding regions, and consistgeof tgxons,
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Determining the threshhold for type 2 and type 3 exons

120

100

80

60

40

Combined Overlap Percentage (COP)

20

0 20 40 60 80 100 120
Percentage of exons with this COP or greater

Figure 2.1 — Chart of data used to select “appadgtivalue of COP for type-2 and type-3 threshaltbff.

-28-



type 2 exons for which the COP exceeds the threshold (80%), and gymn$ for

which the COP exceeds the same threshold.

2.3 Results and discussion:

Annotation of the H123E02 cosmid sequence:

Our annotations for thH. crassacosmid H123E02 sequence are shown in Table 2.1. As
described in the Systems and Methods section, we used a methitat simthat
employed in the annotation of the Natvig sequence. All of the 12 geed&tpd by
[Kelkar et al, 2001] are “recovered” in our study, and two additional hypotheticadge
(Hypothetical protein SPAC1F12.09 and Hypothetical protein YGR277c) adkcted.

We note, however, that in the absence of Kelkar's annotations, only 11 eflib@enes
would have been recovered. Specifically, the Catabolic 3-Dehydroquigasg( gene
would have been missed, indicating that the methodology described may have some room
for improvement. Two elements of the screening process areblgossiprits in the
omission of the ORF that represents the Catabolic 3-Dehydroquidasepossibility is

that it was eliminated because it exhibited a low codon preferetie® using the
Gribskov codon preference plotting method. Although the Gribskov method catohelp
locate highly and moderately expressed genes very well, and can save slledtarttin
analyzing unlikely ORFs, it is not good at distinguishing weagressed genes from
non-genes [Gribskoet al, 1984]. Thus, those ORFs that were removed because of low

Gribskov plotting likelihood might represent weakly expressed genes.
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The other possibility is that the ga-2 gene was removed during thesgrof verifying

the presence of the consensus sequences. In this study, eight consensus seegreintes, s
Table 2.2 along with the acceptance criteria: the CAAT box, #WEATbox, the +1
sequence consensus, the polyadenylation signal sequences, the imting Spkignal,

the lariat sequence, the intron splicing 3’ signal[ Bruchez etndl., 1993a] and the
Kozak sequence[ Bruchez aatlal., 1993b] were searched for in those putative ORFs.
The screen for these consensus sequences is fairly striagdrthus some actual ORFs

may have been eliminated.

To locate exons within the ORFs, we simply used the BLASTXH@irsd States, 1993]
method to deduce the exon boundaries. Ideally, we would have incorporated the
information derived from aligning the cDNA clone with the ORFs.that way, the

boundaries would be more precisely located.

Prediction accuracy analysis for Natvig Sequence

Results of analysis for the Natvig test sequence are showhlen2.3. For this sequence,

it seems that regardless of the method used to define the ex@gnBean program has

the best sensitivity followed by the FFG and GeneMark.hmm progyra-or specificity,

the FFG program behaves best, for all definitions of an actual exon.
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Prediction accuracy analysis for the H123E02 cosmid

The result for the cosmid H123E02 is shown in table 2.4. None of ubepfograms
predicted exons that have the same boundaries as the actual eroesarSimportant
deviation of our hand annotation procedure from that used in the annotatioriNaftvinge
sequence is that we did not compare and align those putative ORFth& CDNA
sequence, it illustrates the importance of cDNA sequence inh#mel annotation
procedure. As a consequence, the three-star(***) category isdbeimiormative for this
sequence. The results in table 2.4 show that, for this sequence, ntveepobdgrams
performed well and all programs performed similarly in sensiti except that
HMMGene’s score for sensitivity is relatively low. The Fp@gram has a relatively

better specificity.

Prediction accuracy analysis for the contig b9j10

For this test sequence, the result shown in table 2.5 indicatebeh@enScan program
has the best sensitivity and specificity. It also has relgti@v ME and WE. The
GeneMark.hmm program also has a relatively good sensitivity and khiglG¢ne
program has a relatively good specificity. We note that the Genfogram was used
in the annotation process for the PEDANT sequences (b9j10, 2a23, 4ehjading the

results with these sequences in favor of the GenScan program.
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GeneMark.h

GenScan | HMMGene mm Pombe FFG
# of correct exons* 14 3 7 1 8
# of correct exons** 24 7 15 8 17
# of correct exons*** 24 8 19 7 17
# of actual exons 27 27 27 27 27
# of predicted exons 82 27 93 57 40
# of missing exons 1 15 5 9 8
# of wrong exons (Type 4) 56 16 70 42 19
Sn* 0.52 0.11 0.26 0.04 0.3

Sn** 0.89 0.26 0.56 0.3 0.63

Sp*xx 0.89 0.3 0.7 0.26 0.63

Sp* 0.17 0.11 0.08 0.02 0.2

Sp** 0.29 0.26 0.16 0.14 0.43

Sp*** 0.29 0.3 0.2 0.12 0.43

ME 0.04 0.56 0.19 0.33 0.3

WE 0.68 0.59 0.75 0.74 0.48

Table 2.3 - Prediction accuracy analysis for Na&gguence

*:  Only include Type 1 exons

** . Include both Type 1 and Type 2 exons

***: Include Type 1 and only those Type 2 and

Type 3 with Combined Overlap Percentage

(COP) greater than 80%
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GenScan | HMMGene Gen;l\:lnark.h Pombe FFG
# of correct exons* 0 0 0 0 0
# of correct exons** 1 2 2 2 5
# of correct exons*** 9 5 8 7 7
# of actual exons 34 34 34 34 34
# of predicted exons 112 44 110 75 49
# of missing exons 3 6 6 2 14
# of wrong exons (Type 4) 95 29 96 61 39
Sn* 0 0 0 0 0
Sn** 0.03 0.06 0.06 0.06 0.15
Sn*** 0.26 0.15 0.24 0.21 0.21
Sp* 0 0 0 0 0
Sp** 0.01 0.05 0.02 0.03 0.1
Sp*** 0.08 0.11 0.07 0.09 0.14
ME 0.09 0.18 0.18 0.06 0.41
WE 0.85 0.66 0.87 0.81 0.8

Table 2.4 - - Prediction accuracy analysis fortli®3E02 cosmid

*:  Only include Type 1 exons

**: Include both Type 1 and Type 2 exons

***: Include Type 1 and only those Type 2 and
Type 3 with Combined Overlap Percentage

(COP) greater than 80%
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Prediction accuracy analysis for the contig 2a23

The result for the contig 2a23 is shown in Table 2.6, and indicateshth&enScan
program has the best sensitivity and the lowest ME. The FFG prduga a relatively

good performance on specificity for this sequence.

Prediction accuracy analysis for the contig 4e5

The result for this test sequence is shown in Table 2.7. The Gep®cgam shows the
best performance on sensitivity and ME. In regard to specifidibigugh the HMMGene
program is not good at locating the exons exactly, it is good ghiplocating the exons

with the highest Sp** and Sp***.

2.4 Summary

The average results for evaluating the prediction accuracy onfihegest sequences is
shown in table 2.8. Overall, the GenScan program has the best perferomasensitivity
and ME. But as for specificity, the HMMGene and the FFG pmmoghave good
performance in locating the exons roughly, since they both havevegtatigh average
scores on Sp** and Sp***. This result encourages heavier weighting ofattters
considered by GenScan and HMMGene in the parameterized method bestapdd for

the refined FFG program.
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GeneMark.h

GenScan | HMMGene mm Pombe FFG
# of correct exons* 43 6 9 0 4
# of correct exons** 58 13 28 11 19
# of correct exons*** 51 16 36 12 18
# of actual exons 61 61 61 61 61
# of predicted exons 123 41 174 102 66
# of missing exons 4 42 18 10 32
# of wrong exons 62 22 131 64 35

Sn* 0.7 0.1 0.15 0 0.07

Sn** 0.95 0.21 0.46 0.18 0.31

Sn*** 0.84 0.26 0.59 0.2 0.3

Sp* 0.35 0.15 0.05 0 0.06

Sp** 0.47 0.32 0.16 0.11 0.29

Sp*** 0.41 0.39 0.21 0.12 0.27

ME 0.07 0.69 0.3 0.16 0.52

WE 0.5 0.54 0.75 0.63 0.53

Table 2.5 -- Prediction accuracy analysis for thietig b9j10

*:  Only include Type 1 exons

** . Include both Type 1 and Type 2 exons

***: Include Type 1 and only those Type 2 and

Type 3 with Combined Overlap Percentage

(COP) greater than 80%
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GenScan | HMMGene Genli]l\:lnark.h Pombe FFG
# of correct exons* 15 0 3 2 4
# of correct exons** 27 9 15 6 12
# of correct exons*** 25 12 18 10 14
# of actual exons 28 28 28 28 28
# of predicted exons 73 23 79 49 29
# of missing exons 1 11 5 5 10
# of wrong exons 44 7 56 31 9

Sn* 0.54 0 0.11 0.07 0.14

Sn** 0.96 0.32 0.54 0.21 0.43

Sn*** 0.89 0.43 0.64 0.36 0.5

Sp* 0.21 0 0.04 0.04 0.14

Sp** 0.37 0.39 0.19 0.12 0.41

Sp*** 0.34 0.52 0.23 0.2 0.48

ME 0.04 0.39 0.18 0.18 0.36

WE 0.6 0.3 0.71 0.63 0.31

Table 2.6 -- Prediction accuracy analysis for thitig 2a23

*:  Only include Type 1 exons

** . Include both Type 1 and Type 2 exons

***: Include Type 1 and only those Type 2 and
Type 3 with Combined Overlap Percentage

(COP) greater than 80%

-36-




GeneMark.h

GenScan | HMMGene mm Pombe FFG
# of correct exons* 5 1 2 0 1
# of correct exons** 6 4 5 2 3
# of correct exons*** 6 3 4 1 3
# of actual exons 7 7 7 7 7
# of predicted exons 24 7 48 24 10
# of missing exons 1 2 2 3 2
# of wrong exons 18 2 43 21 5

Sn* 0.71 0.14 0.29 0 0.14

Sn** 0.86 0.57 0.71 0.29 0.43

Sn*** 0.86 0.43 0.57 0.14 0.43

Sp* 0.21 0.14 0.04 0 0.1

Sp** 0.25 0.57 0.1 0.08 0.3

Sp*** 0.25 0.43 0.08 0.04 0.3

ME 0.14 0.28 0.28 0.43 0.29

WE 0.75 0.28 0.9 0.88 0.5

Table 2.7 -- Prediction accuracy analysis for thitig 4e5

*:  Only include Type 1 exons

** . Include both Type 1 and Type 2 exons

***: Include Type 1 and only those Type 2 and

Type 3 with Combined Overlap Percentage

(COP) greater than 80%
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GenScan | HMMGene Gen;h:lnark.h Pombe FFG
Sn* 0.49 0.07 0.16 0.02 0.13
Sn** 0.74 0.28 0.47 0.21 0.39
Sn*** 0.75 0.31 0.55 0.23 0.41
Sp* 0.19 0.08 0.04 0.01 0.1
Sp** 0.28 0.32 0.13 0.1 0.31
Sp*rr* 0.27 0.35 0.16 0.57 0.32
ME 0.08 0.42 0.23 0.23 0.38
WE 0.68 0.47 0.8 0.74 0.52

Table 2.8 — Average results of prediction accui@aell five test sequences

*:  Only include Type 1 exons

** . Include both Type 1 and Type 2 exons

***: Include Type 1 and only those Type 2 and
Type 3 with Combined Overlap Percentage

(COP) greater than 80%
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In another study, GeneMark.hmm was suggested as the most acexwat prediction
program for theArabidopsis genome[Pavyet al, 1999]. In our study, however,
GeneMark did not perform as well. This suggests the importancealfaging programs

based on the particular organism that one wishes to study.

The results also show that most of the programs performed betensitivity than at
specificity. On one hand, this may indicate that our original anootdbr these test
sequences is too stringent. Alternatively, the gene finding pregnaay be too liberal in

retaining unlikely ORFs and exons.

Although the three test sequences contig b9j10, contig 2a23, and cobtigiete
annotated using GenScan, thus biasing the results with these seqimeffi@esr of
GenScan, we note that the relatively good performance of GemScansistent in all of
these five sequences. Ideally, those sequences that havenbetateal using a testing
program should not be used to evaluate that program. However, the deadberfces

annotated by other means was a major factor in our decision to include these sequences

In summary, none of the gene-finding programs evaluated consigpentbyms well at
finding genes irN. crassa. The programs may have failed because the models they use
are inappropriate for this organism, or the models may be appropuatthe model
parameters may be inappropriate. Further investigation issegeto determine the

reasons that these programs failed.
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The FFG algorithm is designed fbl. crassa.Model parameters include homology to
consensus sequences, relative weights of donor, branch, and acdegtodistances
between these sites, and lengths of introns and exons. We are working to pazarteteri
model used in FFG to obtain a more accurate gene-finding prdgraims species. A
program that uses a genetic algorithm has been designed and imiglénvath the goal

of determining appropriate weights for these parameters in #dticpon formula, and
for including dinucleotide composition and codon bias. However, this tuningsgroce
requires the existence of a "seed" set of reliably annosggdences. The studies
described in this paper were performed in the process of obtangiga data set, and
work on this refined version of FFG continues. Thus, the FFG algorifatnated in

this paper should be viewed as a prototype version.

We note that we have used only 5 test sequences in our evaluatiomyta further that
despite the small number of sequences, the evaluation procesguieasedious and
time-consuming. To address this problem we are developing a toaltdamate the
process of performing these studies, permitting rapid evaluati@n saft of programs
and/or parameters for those programs against a set of annotateatssquEhe existence
of such a tool will permit the scientist working with a "new" arigen to evaluate the
ability of existing programs to "correctly” predict (thaf in a way that correlates with
the current best annotation procedure) genes in a newly studioisong and to select
the best parameter sets for those programs. Further, we sebfaiilo sequences that

have been experimentally verified, and to expand our evaluation tedéneldditional

-40-



programs (GeneWise and NEX have been suggested). Finally, weoplaerform
periodic re-evaluations to include additional programs, as existogggmns are updated,

and as more and/or more reliable data becomes available.
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CHAPTER 3

GFPE: Gene-finding Program Evaluation

2Wang, J. and Kraemer, E. 20@3oinformatics 19(13): 1712-1713.
Reprinted here with permission of publisher.
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Abstract

Summary: GFPE (Gene-finding program evaluation) is a set of Jaeases for
evaluating gene-finding programs. A command-line interfacess @lovided. Inputs to
the program include the sequence data (in FASTA format), afongabf “actual”
sequence features, and annotations of “predicted” sequence featuremtidnrfoes are
in the GFF (General Feature Format) promoted by the Sangier.c€FPE calculates a
number of metrics of accuracy of predictions at three leveéscoding level, the exon
level, and the protein level.

Availability: The program is free, available at:
ftp://anonymous@iubio.bio.indiana.edu/molbio/genefind/

Contact: eileen@cs.uga.edu

3.1 Theprogram

Computational gene identification plays an important role in genprogcts, and
numerous programs have been developed to address this problem. Selectbest
gene-finding program or programs for a new organism or categagquences can be
time-consuming and error-prone, as well as problematic foralh@ving reasons: 1)
The approaches used in gene identification programs are afted to one particular
organism; accuracy for one organism or class of organism does mssasly translate
to accurate predictions for other organisms. 2) The perfoenahthe gene-finding

programs may depend on the parameter settings used to perform lygsana 3)
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Published evaluations of gene identification programs are often notliontgd to a

particular organism, but may report only a subset of the availaktiicsnerhis use of
different metrics by the authors of different gene-finding paowr complicates the
comparison of results. The effort required to reproduce these stadiesfy the results

or to generate a consistent set of metrics is typically prohibitive.

Despite these limitations, existing methods of gene prediction naodels of gene
structure are often applied to newly sequenced organisms, for whioldel or method
has yet been tuned. Thus, it is important to have a rapid aableeheans to assess the
accuracy of different gene identification methods and pararsetiéngs when beginning

a new genome project or evaluating a new gene identification program.

Recently, we evaluated several commonly used gene-prediction prograomapare the
ability of these programs to accurately predict gene struébura particular organism,
Neurospora crass@Kraemer, 2001). In the process of executing these programsron
test sequences, collating the results of the various programsalanthting statistics, we
became keenly aware of both the time-consuming and error-prone nathre focess

and the variation in reporting methodologies in prior studies.

The need for a standard tool to perform such studies seems \leagim to produce an

environment and tools to support the task of evaluating gene-finding pregfaward

that goal we have developed a set of Java classes to penmadessary analysis and a
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simple command-line program through which they may be invoked. A gedplser

interface and analysis environment is under development.

The evaluation criteria are based on those described in (Buaetl806). New criteria
for prediction at the exon level have been added (Kraemer, 2001). That®rais

carried out at three levels: the coding level, the exon level and the protein level.

The GFPE program takes as input the DNA sequence file in FASMMat, the GFF-
formatted sequence annotation and gene-finding program output. GFF shattiefor
Gene-Finding Format or General Feature Format. The attribeitis fare <segname>
<source> <feature> <start> <end> <score> <strand> <frajagrbutes] [comments]
(Sanger Center, GFF, 2000). For those genefinding programs (GenSoaMadge and
Pombe) whose output is not in GFF format, some Java programs aréethch the
GFPE package to convert their outputs to GFF format. In additione sirec exon
positions are used in the accuracy calculations in all thueds|ehe <feature> attribute
field must contain the string “exon” for recognition. GFF-formatpautthat contains a
feature name other than “exon” can be converted using a Java priogtaded in the

GFPE package.

Figure 3.1 shows an example output of the GFPE program on a sewlense.
Notations used in this example are largely as illustratedBaorsét et al. 1996). New
notation describes prediction accuracy at the exon level. If bottingplboundaries are

correctly identified, this prediction is defined as “type 1"atfleast one of the splicing
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boundaries from the prediction matches with the correct exon, thictoedis defined
as “Type 2". “Type 3” predictions are those predicted exons whbesdap with the
actual exons exceeds some threshold. In figure 3.1, for predictiba exon level, those
marked with “*” mean that only “Type 1” predictions are included in the caficu. For
those marked with “**”, both “Type 1” and “Type 2" predictions areluded. Those
marked with “***” include “Type 1" predictions and those “Type 2” andype 3~
predictions whose sensitivity and specificity values exceed gsbmeshold (Kraemer
2001) Note that GFPE can be used to evaluate prediction accuracy noboalgihgle
sequence but also for multiple sequences. Users providemavilich each line contains
the name of a sequence file, and the annotation file and gene-fimdogum output file
for that sequence. The average prediction accuracy across mudépleences is

calculated on a weighted basis.

Execution of the analysis codes of a 17kb sequence for 4 gene-findingrpsogrguired
90 seconds on a Pentium Il 450 Mhz PC with 128 MB of RAM running Red.iHak
7.2. On the same machine, execution of the analysis codes on 10 sequeoses w

average size was 17kb required approximately 160 seconds.

This GFPE program saves the evaluators of gene-finding pregsabstantial effort in
calculating the prediction accuracy. Note that GFPE can be usezlaluate the
prediction accuracy of gene-finding programs on a whole genome hasitations of
the program include the difficulty of executing the various gamgirfg programs to be

evaluated. To solve this problem, we are developing a GUI and environment to simplify
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[wang@elaine GFPE]$ java Run dat/4e5-seq dat/4ef.gff

dat/4e5_FFG_out.gff

Sequence name = dat/4e5-seq

Annotation file name = dat/4e5_anno.gff

Perdition File Name = dat/4e5_FFG_out.gff

The length of this testing sequence is: 16820

This genefinding program has the following prediotaccuracy with this testing sequence in the apldivel:

TP :3619 TN : 26587 FP:1796 FN:1638:8168841547 Sp:0.6683287
Correlation Coefficient (CC) : 0.617672 Simple ktahg Coefficient (SMC) : 0.8979191
Average Conditional Probability (ACP) : 0.8088583Approximate Correlation (AC) : 0.6177166

kkkkkkkkkkkkkkk

This genefinding program has the following prediataccuracy in the exon level:

# of correct exons* is: 1 # of correct exonss* 3
# of correct exons*** is: 3 # of actual exons7s:
# of predicted exons is: 10 # of missing exon& is
# of wrong exons(Type4) is: 5
Sn*:0.14285715 Sn**:0.42857143 Sn***.4Q857143 Sp*:0.1 Sp**:0.3 Sp**0:3
(Sn* + Sp*)/2 : 0.12142857 (Sn**+Sp**)/2 : 0.3B457
(Sn*** + Sp***)/2 : 0.3642857 ME : 0.2857143NE : 0.5

*kkkkkkkkkkkkkk

The prediction accuracy at the protein level 860139433

Figure 3.1 Example output of the GFPE program eimgle sequence

and/or automate the process of executmgruns of the gene-finding programs in the

sequences of interest and of collecting and analyzing the results.
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CHAPTER 4

RELATED WORK

The Interactive Pattern Search Tool (IPST) that we have developed is designed f
pattern searching in biological sequences. The functions that are provided in this tool
include approximate string searching, finding direct and inverted repeats and
combinations of these operations. Before we describe the IPST tool in detaistwe f
discuss related work in string searching, which is the central elemerd todhiBelow

we will talk about five categories of string matching and the related proloieresact

pattern matchapproximate pattern match, finding direct repeats, finding inverted repeats

and finding the reverse-complement type inverted repeats.

4.1. Exact pattern match

(In the analysis of the time and space complexity of each algorithm, unlessis¢her

specified, m and n are the lengths of the pattern and the text, respectively).

In Gusfield’s book [Gusfield, 1997], the exact matching problem is given the following

definition:

“Given a stringP called the pattern and a longer stringalled the text, thexact

matching problem is to find all occurrences, if any, of patternm textT.”
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As an example, the pattern “agct” is found at positions 1, 7 and 12 in the text

“agctatagctcagct”. Several occurrences of the pattern may overlap ixtthe te

The exact pattern match is a very important issue in many areas. In thedailologi
sciences, exact pattern match is needed to conduct biological databasecsesantie f
specific DNA or protein sequences. In library sciences, exact patterh maised for

searching the catalog for the books or articles that the users want.

As the amount of information in texts increases, the time that it takes th $&arc
specific patterns in the text could become burdensome. The efficiency of exawt pat

matches has been a very important issue.

A number of methods have been developed to address the exact string matching problem.

(i) The naive method

The simplest way to deal with the exact string match problem begins bynglitpei left

end of the pattern string with the left end of the text string. Then the chaaidiees

pattern and the text are compared from left to right. If all charactchnthe pattern is
found in the text. Otherwise, the pattern is moved to the right by one more position. The
comparison is made repeatedly until the right end of the pattern reaches the end of the

text string.
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The naive method is very straightforward and easy to implement. However, the worst
case running time ©(nm) ( where n and m are the lengths of the pattern and the text,

respectively), which is unsatisfactory.

(i) The modified naive method with preprocessing

The naive method is simple but not efficient. A modified approach based on the naive
method emphasizes preprocessing of the pattern, which is basically to compug)the Z

values for each 1 <i < |[s]| (s is the string).

Zi(S) is defined to be the length of the longest substring of X that starts at i tnisna

prefix of S, given a string S and a position i > 1.[Gusfield, 1997].

This method utilizes the pre-computegsX values and constructs a new String S = P$T,
where $ is a symbol that appears neither in P nor in T. Let n = |P| and m = |d¢rltoor
solve the exact matching problem, we need only to find if for any value i > n{k)&Z

n can be found.

As proved in [Gusfield, 1997], computing th€S) can be solved i@(m) time. Thus,

this method can solve the exact matching proble@®(im) time. As discussed in

[Gusfield, 1997], this approach can be implemented to useQfnlyspace.

(iif) The Boyer-Moore algorithm
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This method employs three clever ideas that were missed in the naive mejthtoia-ri
left scan, the bad character rule and the (strong) good suffix rule. In the prssbngc
stage, three variableis:(i), I'(i), and RX) (i is the position index of the pattern and x is
each character in the alphabet) are pre-computed. For @a@his defined as the largest
position less than n so that string.] matches a suffix of P[1L’(i)] and the character
preceding the suffix is not P{). If no position satisfies both of these conditidrigi)

will be zero.I’(i) is the length of the largest suffix ofi Rf] and this suffix is also a prefix
of the pattern P. If there is not such a suffi) is defined to be zero. R(x) is defined to
be the position of the right-most occurrence of charxat@icharacter in the alphabet) in
the pattern P. Ikis not in P, R(x) will be zero [Gusfield, 1997]. The algorithms to

computel’ (i), I'(i), and RX) are available in [Gusfield, 1997].

Here is an outline of the algorithm from [Gusfield, 1997].

{Preprocessing stage}
Given the pattern P,
Computd_’(i) and I'(i) for each position i oP,
and compute R(x) for each charact&f X.
{Searching stage}
k:=n;
while k <= m do

begin
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i=n;
h:=k;
whilei > 0 andP(i) = T(h) do
begin
i=i-1
h:=h-1;
end;
fi =0 then

begin

report an occurrence of P in T ending at position k.

k := k+n¥'(2);
end

else

shift P (increas&) by the maximum amount determined by

the (extended) bad character rule and the good suffix rule.

end;

In the preprocessing phase, both the time and space complex@ymatg), wherer is

the alphabet size. The searching phase @(mn) time complexity [Charras et al. 1997].

(iv) The Knuth-Morris-Pratt algorithm

-50-



This best known linear-time algorithm for the exact string matching probkesn w

developed by Knuth, Morris and Pratt [Knuth et al., 1977].

At first, several terms need to be defined.

sp(P) is defined to be the longest proper substring of P[1..i] that ends at i and that
matches a prefix of P. Consequendly;(P) is defined in the same way but with the
added condition that characté@§+1) andP(sp’+1) are unequal. Then we have the
definition of the failure function F'(i), which is defined to be;sp* 1 for each position i
from 1 to n+1, where gpand spare defined to be zero (also define F(i) m$f)

[Knuth et al., 1977].

Here is an outline of the Knuth-Morris-Pratt algorithm from [Gusfield, 1997].

begin

preprocessing to find F'(k) =sp..1’ +1 fork from 1 ton+1.

while c + (n-p) <=m
do begin

whileP(p)=T(c )andp<=n

do begin
p:=p+1;
c.=c+1,
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end;
if p=n+1 then
report an occurrence Bfstarting at positioe —n of T.
if p:=1thenc:=c+1
P:=F(p);
end;

end.

It has been shown that finding filk(k) can be solved in linear time [Gusfield, 1997].

Overall, in the preprocessing phase, both the time and space complexitynaré he

searching phase is @(n+m) time complexity [Charras et al. 1997].

This algorithm can be easily implemented. A C-program implementation lalaeai

from the web [Charras et al. 1997].

(v) The Shift-Or algorithm

In [Charras et al. 1997], the procedure of this method is described as the following:

Let R be a bit array of size m. VectoyriRthe value of the array R after text character y[j]

has been processed. It contains information about all matches of prefixes oémxckladt

position j in the text for 0 <i <= m-1. If X[0,i] = y[j-i, j], then;|R = O; otherwise, it is 1.
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For each Ri] = 0, Rii[i+1] = O if x[i+1] = y[j+1]; else, it is 1. R4[0] = 0 if x[0] = y[j+1];

else, itis 1.

The computation of & can be reduced to two bit operations: a shift and an or:
Ri+1=SHIFT(R) OR S[j+1], where S contains the positions of the character c in the

pattern. {i]=0 if and only if x[i]=c, where i is the index of each character in the pattern.

This algorithm is efficient. The preprocessing phase &(im+o) time (wherez is the

alphabet size) and space complexity and the searching phaa(ing trme

complexity( m is the size of the pattern and n is the size of the text). The ariy@at

this method is that the pattern length should be shorter than the memory-word size of the

machine.

A C-program implementation is available from the web [Charras et al. 1997].

(vi) Karp-Rabin algorithm [Charras et al. 1997]

This method uses a hashing function to compare the hashing values of the patterns and

each substring in the text. If the values differ, then no match exists. Ctaegawi

character-to-character comparison is needed to confirm the match.

This method uses the following hashing function:
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hash(w[O0 .. m-1])=(w[0]*Z"*+ w[1]*2™?+..-+ w[m-1]*2) mod q,

where m is the length of the word w and q is a large number.

and

rehash(a,b,h)= ((h-a*2")*2+b) mod q

This hashing function is computationally efficient, highly discriminatingstangs and

hash(y[j+1 .. j+m]) can be easily computed from hash(y[j .. j+m-1]) and y[j+m]:

hash(y[j+1 .. j+m])= rehash(y[j], y[j+m], hash(y][j .. j+m-1]).

The preprocessing phase i99(m) time and space. The searching phase has a worst-case

time O(mn) and @(n+m) expected time.

A C-program implementation is available from the web [Charras et al. 1997].
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4.2. Approximate pattern match

(In the analysis of the time and space complexity of each algorithm, unlessis¢her
specified, m and n are the lengths of the pattern and the text, respectigelye kkumber

of mismatches allowed).

Approximate pattern (string) match allows errors when matdhi@gattern with the text.

The number of errors allowed is specified by the user.

In computational biology, searching a specific subsequence over a long DNAebn prot
sequence is fundamental to primer design, sequence alignment, homology study, etc
Since the usual length of the target sequence (or text ) is vast and thespatigly
match the text exactly, the application of approximate string match is noelyw

appreciable than exact string match.

In addition to computational biology, approximate string match is also a pivotalmnssue

many other areas such as signal processing, text retrieval, handvatagmition, and

image compression [Navarro, 2001].
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(). The dynamic programming approach

The edit distance of two strings is the smallest number of steps to convert rmgpéostri
another. In the dynamic programming approach, the edit distance should be ahlculate
and filled into a matrix at first. The matrixGx0.yis computed as follows:

Cio=1i G,;=]

Cij=CyjaifXxi=y

1+ min(G.1;,Cij1,Ci1j-1), Otherwise.

The matrix of edit distance between the strings “survey” and “surgergioisrsin figure

4.1.

To use this method for approximate string match, we must allow any text stadrpts
be a potential start of a match. We can achieve this by simply segtirg0Jor all
€0..n. Then the matrix’s column can be initialized wittb€ing set to i and the text is
processed character by character. For each new text chasadsec@lumn vector is

updated to G, by the formula:

C’i = G—l if Pi :Tj

1+min(C’.1,Gi,Ci.1) otherwise.

The text positions can be found wherg <= k is reported.
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s u r g e r y

0 1 2 3 4 5 6 7
s 1 0 1 2 3 4 5 6
u 2 1 0 1 2 3 4 5
r 3 2 1 0 1 2 3 4
v 4 3 2 1 1 2 3 4
e 5 4 3 2 2 1 2 3
y 6 5 4 3 3 2 2 2

Figure 4.1 The matrix of edit distance betweensthiags “survey” and “surgery” [Navarro, 2001].

The search time of this methodd@¢mn) and its space requirementién) [Navarro,

2001].

(i) Algorithms aimed at improving the average case

(ii-a) The cut-off heuristic algorithm

Originally developed by [Ukkonen, 1985], this algorithm aims to improve the average

case. It was proven to havé®gkn) average running time ai@(m) space [Chang and

Lampe, 1992; Baeza-Yates and Navarro 1999].

This method takes advantage of the fact that usually a pattern does not matchathe text

the values at each column of the matrix in the dynamic programming approacly quickl
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reaches k+1 from top to bottom. If a cell in the matrix has a value greater thaimén
the result of the search does not depend on its exact value. If a cell has a valuesbf at m
k, it will be called “active”. This method keeps counting the last activeandlldoes not

work on the remainder of the cells [Navarro, 2001].

An implementation is available from [Baeza-Yates and Navarro 1999; Navarro, 2001]

(ii-b) Column partitioning algorithm.

Produced by [Chang and Lampe, 1992], this algorithm is based on the property of the
dynamic programming matrix that the numbers along each column are ryormall
increasing. “Runs” of consecutive increasing cells are focused on. A rumvbeds

Ci+1 = Gi+1. A value called loc(j, x) = mja-j Py = x for all pattern positions j and all
characters x must be pre-computed. For each column of the matrix theyragedrind
where the run is going to end and thus find the next character match. The run can be

performed on all of the columns in parallel.

This algorithm needs an average searching ting@(kri/sqrtc)) and aO(mo) space,

wherer is the alphabet size[Navarro, 2001].
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(iif) Wu, Manber and Myers’ algorithm based on automata [Wu, et al. 1996]

A non-deterministic automaton ( NFA) can be used to model approximate search. This
automaton was first proposed in [Ukkonen, 1985]. As illustrated in figure 4.2, every row
of states denotes the number of errors seen and every column of states stands for
matching a pattern prefix. Horizontal arrows from state to state esyinemtching a
character and vertical arrows insert a character in the pattern. Notfeethadvance in

the text but not the pattern. Solid diagonal arrows substitute a character and dashed
diagonal arrows delete a character of the pattern. The automators signehd of a

match when a rightmost state is active.

In the work of [Wu, et al. 1996], they trade time with space by utilizing a Four Russians
technique [Arlazarov et al. 1975]. The columns were partitioned into blocks of r cells
which took 2r bits each. The transitions from a region to the next region in the column

were precomputed.

This algorithm has an avera@¢kn/logn) time and>(mn/logn) worst time with a@(n)

space[Navarro, 2001].

(iv). Bit-parallelism algorithms

These algorithms focus on parallelizing the computation on a bit-wise fashion.
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s u r v e v
O no errors

1 error

2 errors

Figure 4.2 The NFA for approximate string matchirighe pattern “survey” with two errors. The black
states are those active states after readingxhéstargery”. This figure is reproduced from Fig

[Navarro 2001] with slight modifications.
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(iv-a). Wu and Manber’s method [Wu et al., 1992].

The idea is to use bit-parallelism to simulate the NFA that we discusswé.leach row

i of the NFA fits in a computer word; Rith each state being represented by a bit. Since

all of the k+1 computer words (where k is the number of mismatches allowed and these
k+1 words each have 0, 1, 2, ... k mismatches) have the same structure, parallelism was
utilized to simulate all the transitions of the NFA for each new text clesirasing bit
operations. The update to obtain the neywRlues at text position j from the current R

values is computed in the following way:
R'o=((Ro<< 1) [0"'1) & B[T}]
R'is1 = ((R+1 << 1) & B[Tj])|IRi|(R<<1)|(R} << 1), where k is the number of mismatches

allowed and w is the length of each computer word (in bits).

This method takes O(k*ceil(m/w)*n) time both in the worst case and the aversge ca

[Navarro, 2001].

(iv-b). Baeza-Yates and Navarro’'s method [Baeza-Yates et al. 1999]

This method parallelizes the computation even more than the Wu and Manber’s method

[Wu et al., 1992]. Instead of parallelizing the computation of the rows in the NFA,

packing the states of the automaton along the diagonals is adopted. The number of
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complete diagonals is m-k+1; B the row of the first active state in diagonal i. The new

D’; values after reading the text position j are computed as follows:

D’i = min(D+1, Di+1+1. Q(D-l, Tj)),

G(D;, T)) = min({k+1}U {t/r>=D; ~ Ry, = T})

This algorithm has an improve@{ceil(k(m-k)/w)*n) worst case time ar@(ceil(k’/w)*n)

on average [Navarro, 2001]

(iv-c) Parallelizing the dynamic programming matrix

Instead of parallelizing the rows or diagonals of the automata, this method [[¥92€3

parallelizes the computation of the dynamic programming matrix.
The differences along columns instead of the columns themselves are regreseh
two bits per cell were enough. A new set of recurrences is defined for theritaliand

vertical differences as the following:

Avij = Gj —G.1j = min(-EQqj, AVij1, Ahi.1j)+(1- Ahi1)

Ahj = min(-Eqj, Avij1, Ahigj)+(1- Avija),

Where Egj is 1 if R = T; and O otherwise.
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The resulting algorithm has an improved running time. The worse case time is O

(rm/wq n) and the average case time is [@/(v1 n) [Navarro, 2001].

(v). Filtering algorithms

This is a quite new and still active area in which many algorithms [Tarhio and Ukkone
1993; Jokinen et al.1996; Wu and Manber, 1992; Baeza-Yates and Navarro, 1998, 1999;
Navarro and Raffinot, 2000; Takaoka, 1994.; Chang and Marr, 1994; Sutinen and Tarhio,

1995] have been developed based on the idea of filtering.

Since the text usually contains much unmatched content, it will be very efficrehe
matching process if those unmatched parts in the text are first filteredlt@heg

algorithm focuses mainly on improving the average case.

Among all of the above-mentioned algorithms, Chang and Marr’s algorithm [Chdng a
Marr, 1994] has achieved the optimal average case b@ufrdk+log,m)/m). The space
complexity of this method i® (m') for some constant t which dependsopmvhich is the

alphabet size.

Chang and Marr’s algorithm first splits the text in contiguous substrinigsgth | =

tlog,m. It then searches the text substrings of length | in the pattern allowing &trers

best matches allowing errors inside P are pre-computed for every |-tupleearbkes
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start at the beginning of the block and continue along the consecutive I-tuples in the

pattern until the total number of errors made exceeds k.

(vi) Suffix tree approach

According to [Gusfield, 1997], the suffix tree is formally defined as follows:

“A suffix tree T for an m-character string S is a rooted directed trieexactly m leaves

numbered 1 to m. Each internal node, other than the root, has at least two children and

each edge is labeled with a nonempty substring of S. No two edges out of a node can

have edge-labels beginning with the same character. The key featureudfithiees is

that for any leaf i, the concatenation of the edge-labels on the path from the |ezdtit

exactly spells out the suffix of S that starts at position i. That is, it spelfs joumn].”

To use the suffix tree approach to solve the exact string match problem, drseffor

the text must first be built.

Esko Ukkonen [Ukkonen, 1995] has developed a linear-time algorithm to construct the

suffix tree.

Here is a high level description of Ukkonen’s algorithm, according to [Gusfield, 1997].
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construct tree T1.
for i from 1 to m-1 do
begin {phase i+1}
for jfrom 1 to i+1
begin {extension j}
find the end of the path from the root labeled SJj..i] in the
current tree. If needed, extend that path by adding character S(i+1),
thus assuring that string S[j..i+1] is in the tree.
end;

end;

There are three rules to perform a suffix extension. Let S[jRibe a suffix of S[1..i]. In
extension j, when the algorithm finds the eng @i the current tree, it extenfido be

sure the suffi3S(i+1) is in the tree based on the following three rules [Gusfield, 1997]:

Rule 1: If in the current tree, pahends at a leaf, then simply add the character S(i+1) to

the end of the label on that leaf edge.

Rule 2: If there is no path from the end of stifinlpat starts with S(i+1), but there is at
least one labeled path that continues from the efidahew leaf edge starting from the
end ofp must be created and labeled with S(i+1). Plus, a new node will need to be

created there  ends inside an edge.
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Rule 3: If some path from the end of strihgtarts with character S(i+1), do nothing.

This sketch and several additional speedup tricks described in [Gusfield, 1997] account
for an algorithm that runs i@(m) time and@(mlogk|) space [Gusfield, 1997], wheXe

is the alphabet.

Having built the suffix tree, we are now able to fully utilize the advantageeduffix
tree to solve our approximate string matching problem, or the so-called katoiism

problem.

In [Gusfield, 1997], the following approach is used to solve this problem.

begin
1. Setj to 1 and’ toi, andcountto 0.
2. compute the lengthof the longest common extension starting at posifiarfs
P andi’ of T.
3. if j+l =n+1, then &-mismatch ofP occurs inT starting af ; stop.
4. if count<=Kk, then incrementountby one, sejtoj+I+1, seti’ to i'+| +1, and
go to step 1.
if count=k+1, then &-mismatch ofP does not occur starting iatstop.

end.
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Note that in the above algorithm there is an intermediate step for computinggbstion
common extension, which is a bridge to the k-mismatch problem. The definition and

solution of the longest common extension problem are available in [Gusfield, 1997].

The time and space requirements forkimismatch problem a®(km) andO(n+m),

respectively [Gusfield, 1997].

A Java-program implementation for constructing the suffix tree and solving the k-

mismatch problem is available from [Dorohonceanu et al. 2000].

(vii). STAR- An algorithm to search for approximate repeats [Delgrangey et al. 2004]

STARIs an algorithm to find all significant approximate tandem repeats in a DNA
sequence given a motif and the DNA sequence. Here the motif is the pattern and the

DNA sequence is the text.

First of all, STARaligns the sequence (say s) with an exact tandem repeat (ETR) of the
motif m and obtains an optimal list of mutations that convert the repeat into s and the
optimal length for the ETR. Th&raparound Dynamic ProgrammingVDP) algorithm

[Fischetti et al.1993] is employed in this step.

Secondly STARinvolves a compression procedure that outputs a compressed version of

the sequence s: s’. The compression is aimed at reducing the size of the sequence by
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exploiting a property, which is “s contains segments that are significamtapate
tandem repeats (ATRS) of the motif m”. Based on the mutation list createdtepm,
STARevaluates the compression gain as if s were a single ATR of m. Thetyeéical

true ATR segment has a positive compression gain.

Finally, STARoptimizes the global compression gain over s by decompressing s into

ATR and non-ATR segments optimally with respect to the global compression gain.

If the lengths of the motif and the sequence are p and n, respectively, the timexdympl

of this algorithm i<O(np + nlogn).

An implementation of this algorithm is available from http://atgc.lirmistar.

4.3. Finding direct repeats

(In the analysis of the time and space complexity of each algorithm, unlessis¢her
specified, m and n are the lengths of the pattern and the text, respectigalye kkumber

of mismatches allowed).

In biology, repeats or so-called tandem repeats in DNA or protein sequencdsraid of

enormous interests to researchers. These repeats consist of two or mer adjac

isolated approximate copies of a pattern of nucleotide or amino acid sequehass. It
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been noted that a large part of many genomes consists of repetitive segeepeétive

sequences have three major categories:

1. Local repeats (tandem repeats and simple sequence repeats. Note that tande
repeats refer to those contiguous approximate copies of a nucleotide sequence and
the number of copies is more that two [Benson 1999]).

2. Families of dispersed repeats (mostly transposable elements andanesfmsed
elements).

3. Duplicated genomic fragments [Bao et al., 2002].

These repeats usually allow errors. So, more precisely, they should be ppii@draate

repeats.

Repetitive sequences play an important role in evolution and they are often fundamenta
regulatory elements in the genome. Some tandem repeats have been shown to cause
human diseases. A more specific case of this type of repeats is the lcorigal ®epeat
(LTR) in some retrotransposons, which contains two repetitive copies of nucleotide
sequence at both ends of the same DNA sti@imde the vastly large number of

repetitive sequences in the genome are impossible to be manually analyzeddtfoe ne
efficient computational algorithms to find those repeats has emerged irsdlaecte

community.

-78-



(i) Tandem repeats finder [Benson 1999].

This program is designed to find tandem repeats in DNA sequences. The aldooitsm

for matching nucleotide sequences separated by a common distance d and looks for k-
tuple matches (Note that a k-tuple is a window of k consecutive characterth&om
nucleotide sequence. Tandem repeats are found through scanning of sequence with a
small window, determining the distance between exact matches and tesstajidtieal

criteria.

An implementation of the program with a web interface is available at

http://c3.biomath.mssm.edu/trf.html

(i) STRING- a heuristic approach to find tandem repeats in DNA sequences [Parisi,

2003].

STRINGuses a heuristic method to find all possible tandem repeats in DNA sequences.
Two heuristic criteria are adopted in this algorithm. First of all, insteatudfing the

whole sequence, those that are considered to be more promising ones according to an
autoalignment procedure are examined as potential tandem repeats. Note that
autoalignment is a procedure to search local alignments of a sequendsedfi{ibe

Fonzo et al., 1998]. Secondly, instead of studying all possible consensus words, only
those that are considered to be more promising (in a way inspired by the antealig

procedure) are selected.
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The algorithm consists of two phases. In the first phase, prospective TandensRepeat
(TRs) are obtained by using the search for autoalignments. In the second phasa), the fi

TR search is performed based on the above heuristic criteria.

An implementation of this algorithm is available from

http://www.caspur.it/~castri/STRING/

(i) mreps: efficient and flexible detection of tandem repeats in DNA [Kolpakov et al.

2003]

This program is able to identify all tandem repeats in the whole genome with no
limitation on the size of the repeated pattern. It can output tandem repeats with al

possible pattern sizes.

The algorithm first utilizes an efficient combinatorial algorithm [akov et al. 1999,
2001] to find all repetitive structures of a certain kind in a given sequence. This wi
create a set of raw repeat sequences which will undergo further prgdegsirseries of
heuristic treatments: trimming the left and right edges of eachtrepeaputing the best
period and merging for each repeat, filtering out statistically eggdeepeats and

merging repeats with the same period p overlapping by at least 2p.

-80-



The time complexity during the combinatorial part of this algorith@(igklog(k)+S) for

k-mismatch tandem repeatS (s the number of repeats found) [Kolpakov et al. 2003].

Themreps program has a web interface accessible thrdwighy/www.loria.fr/mreps!/

(iv). REPEATMASKER [Smit et al. 2003]

This is a program developed to screen DNA sequences for interspersed repeats and low

complexity DNA sequences. The program utilizes the program cross_match tonperfor

sequence comparisons. The cross_match program is an efficient implémneritéte

Smith-Waterman-Gotoh algorithm with some enhancements.

The time complexity of this method @nklog(k)log(n)+S) in the case of edit distance

andO(nklog(n/k)+S) in the case of Hamming distance, where k is the maximahckst

between two tandem repeats, and S is the number of repeats found [Smit et al. 2003].

Implementation of this program is available at [Smit et al. 2003].

(v). EQUICKTANDEM

EQUICKTANDEM is a program from the EMBOSS package [Rice et al. 2000]. It is

aimed at finding tandem repeats up to a specified size in DNA sequencegydritbral
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is based on a statistical method. The program is available at

http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/equicktandem.html

(vi). A method to find two specific kinds of tandem repeats in DNA [Hauth et al. 2002].

Regular tandem repeats consist of perfect and degenerate Tandem Repablis, var
length tandem repeats (VLTRS) and multi-period tandem repeats (MPTH#s)nethod

focuses on finding the latter two kinds of regular tandem repeats in DNA sequences.

A variable length tandem repeat (VLTR) is a simple nested tandem nepdath the
copy number for some pattern is variable rather than constant, while a mialti-per
tandem repeat (MPTR) contains the nested concatenation of two or-simitar

patterns, [Hauth et al. 2002], which are patterns that slsaree characters.

This method to find VLTRs and MPTRs is performed in three major tasks. (1).
Determine a tandem repeat’s period and its approximate location in order t® &olat
tandem repeat. (2). Find the pattern affiliated with a region period. (3). Uséettire pa

characterize the region.

Algorithms of this method are available throdgtp://www.cs.wisc.edu/areas/theory/
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(vii) TROLL — Tandem Repeat Occurrence Locator [Castelo, 2002].

TROLL is designed to find Simple Sequence Repeats (SSRs), which arevegatirt

nucleotide sequences with length less than six and that are fairly well cahserve

TROLL requires the user to provide a motif list and finds all occurrences of pdttams
the motif list. TROLL is based on thho CorasickAlgorithm (ACA) [Aho and Corasick,
1975], which was aimed at finding all occurrences from a list of patterns in dbext
ACA keeps track of a failure link while encountering a partial match in thelteses
the failure link to continue the search to avoid re-examining characters in thehex
TROLL implements the ACA to find pre-selected patterns in the textsdtraktords the

tandem repeats such that the SSRs can be located.

The time complexity for TROLL i© (n+m+k), where n, m and k are the total length of

all patterns being searched, the length of the DNA sequence, and the number of

occurrences found, respectively.

This program is available throudttp://finder.sourceforge.net
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4.4. Finding inverted repeats (on the same DNA strand)

This type of repeat refers to those pairs of DNA sequences found in identical bigdnvert
form. Note that the pair of repeats appear on the same strand. Inverted repests of t

kind have appeared in some DNA transposons in plants [Feschotte, 2002].

No literature was found to design algorithms for locating this type of repeat.

4.5. Finding the reverse-complementary type inverted repeats (repearpars

opposite DNA strands)

The pair of repeats also appear in identical but inverted form. In addition, the twe copie
of the repetitive elements appear on opposite DNA strands. This situation ¢alédsl
reverse complement. DNA or RNA sequences that contain this type of repetitive
elements can form inside loops. This is particularly important in the formatieh.Af

secondary structures.

No literature was found to design algorithms for locating this type of repeats
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CHAPTER 5

IPST — INTERACTIVE PATTERN SEARCH TOOL

¥ Wang, J. and Kraemer, E. To be submitteBiwinformatics
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Abstract

Motivation: Genome projects have produced and continue to produce vast quantities of
sequence data. Exploring various patterns contained in these sequences is nowa primar
concern. Examples of such patterns include direct repeats, inverted repeeds, reve
complements, and other more complex structures, such as the long terming|L/ERgat
retrotransposon elements and miniature inverted repeat transposable e(®EESS.

Given the important roles that these complex patterns may have played in both evolution
and regulation of genes and proteins, the need for an efficient computational algorithm
identify and locate these patterns has emerged in the research commumitol @

designed to specifically address this problem.

Results: We have designed and implemented a tool called Interactive Pattern Sealrch T
(IPST) to facilitate finding repeats and other complex padter biological sequence data.
IPST utilizes a hashtable of n-mers for storage and fast retrievatiotis patterns in the
sequence. The time-consuming hashtable-building process is compensated fdasty the
retrieval of patterns in an interactive manner. In addition to locating dinecinverted

repeats, IPST can also be applied to pattern search, locating start and stop codons and a
combination of any of these operations. IPST can be used for multiple sequel®ks. IP

is implemented in the Java programming language and provides a graphicalenfaarant

and visualization and interaction techniques that focus on interactive exploration of
patterns in sequences. In this article, we demonstrate the abilitiesTofd Fisd

miniature inverted repeat transposable elements (MITES) and long terepeat (LTR)
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retrotransposon elements in rice sequences. In addition, we compare thedtime a
memory efficiency of our hashtable based algorithm in pattern search against

implementation of IPST using a suffix tree approach.

Availability: Program source code, data sets and result are available at

http://www.cs.uga.edu/~eileen/IPST

Contact: eileen@cs.uga.edu

5.1 Introduction

Genome projects have produced and continue to produce vast quantities of sequence data.
Exploring the information contained in these sequences is now a primary concern.
Examples of such patterns include various repetitive sequences, such agoéatst, r

inverted repeats and reverse complements, and other more complex struatras, s

the long terminal repeat (LTR) retrotransposon elements and miniaturethvepeat

transposable elements (MITES).

Repetitive sequences are those nucleotide sequences appearing in icgentical f

approximately identical form with similarity above a certain threshold.

Repetitive sequences can be divided into three major categories:
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1. Local repeats (tandem repeats and simple sequence repeats. Nateddratrepeats
refer to those contiguous approximate copies of a nucleotide sequence in which the
number of copies is more that two [Benson 1999]).

2. Families of dispersed repeats (mostly transposable elements andaretpm$ed
elements).

3. Duplicated genomic fragments [Bao et al., 2002].

In terms of their orientation, repeats can be grouped into two types: direcsregaah

are sequences found in identical form with the same orientation; and inverted, repeats
which are sequences in identical form but inverted orientation. For the invertetsyepea
the copies of the repeats appear on the same strand of the nucleotide sequence. If one
copy of an inverted repeat appears on one DNA strand and the other appears on the
complement strand, we call them reverse complements. Note that we norioully al
some errors in the repeats, as long as the number of errors is below somedthkésteol
precisely, those repeats should be called approximate repeats. Figure 5.1xsimoples

of these types of repeats.

It has been noted that a large part of many genomes consists of repetitive squenc

Repetitive sequences play an important role in evolution and may serve as fualament

regulatory elements in the genome.

Tandem repeats, which are consecutive approximately repeated nucleotidesgque

constitute about 10% or more of the human genome [Benson 1999]. Trinucleotide
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tandem repeat copies have been characterized in a number of human diseases, such as
fragile-X mental retardation [Verkerk et al. 1991], Huntington’s disease [higtot's

Disease Collaborative Research Group, 1993], spinal and bulbar muscular atrophy [Spada
et al. 1991] and Friedreich’s ataxia [Campuzano et al., 1996]. Tandem repeats may not
only be involved in certain diseases, but may play a certain pivotal role imeggration,

such as interacting with transcription factors, altering the chromatiristlar acting as

protein binding sites [Hamada et al. 1984; Pardue et al. 1987; Yee et al. 1991; Richards et

al. 1993; Lu et al. 1993].

5 AGCAGCTGGGGACAGATGATGATGAAGCACC 3
TCGTCGACCCCTGTCTACTACTACTATISTCG
a

5 AGCAGCTGGGGACAGATGATGATGATGWCGA 3’
TCGICGACCCCTGTCTACTACTACTAZIT GCT
b
5 AGCACCTGGGGACAGATGATGATGATGALCT 3

TCGICGACCCCTGTCTACTACTACTATIACCGA
C

Figure 5.1 Various types of repeats

a. A pair of direct repeats

b. A pair of inverted repeats

c. A pair of reverse complements
Pairs are shown in red and bold.

Dispersed repeats appear mostly in transposable elements. Transposaaiésetan be
grouped into three types: Class Il Transposons, Miniature Inverted-ré@paasposable

Elements (MITESs) (Class Ill) and Retrotransposons (Class ).

-89-



Class Il transposons consist of DNA sequences that move from place to planewithi
genome. At the ends of a class Il transposon, there is a pair of inverted refieatbeA
transposon is inserted into host DNA sequences, a pair of direct repeats wilh#ank t

transposon [Transposons: Mobile DNA. 2004]. Figure 5.2 shows such a process.

In rice, approximately 26% of the genome sequences are derived from Tréhsposa
Elements (TEs), of which more than 70% are Miniature Inverted Repeat Transposabl
Elements (MITESs) [Jiang et al. 2004]. MITEs consist of hundreds of nucleotides flanked
by a pair of reverse complements. The reverse complements consists aff te

nucleotides. Figure 5.3 shows an example of MITE.

Among the eukaryotic transposable elements, retrotransposons are the most alngndant a
widespread in the genome. There are two types of retrotransposons: the lond termina
repeats (LTRs) and the non-LTR retrotransposons [Kumar and Bennetzen, 1999]. LTR
retrotransposons contain direct long terminal repeats that have a size famgiagiew
hundred nucleotides to over 5 kb [Kumar and Bennetzen, 1999]. Figure 5.4 shows the

generic structure of an LTR retrotransposon element.

Complex biological patterns such as the repeat elements, Miniature InvefedtR
Transposable Elements (MITEs), and the long terminal repeats (LTRS) leava be
traditional focus in the research community. However, the enormous amount of sequence
data hinders researchers in manually discovering them. The need for efficient

computational algorithms to identify and locate those patterns has emetped i
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research community. A number of computational methods have thus been developed to

help discover each of the above categories of patterns.

STRINGIs a heuristic approach for finding tandem repeats in DNA sequences [Parisi,
2003]. It uses a heuristic method to find all possible tandem repeats in DNA sequences
Two heuristic criteria are adopted in this algorithm. First of all, in ordexdoce the

regions where searching for tandem repeats is conducted, instead of studwhgléhe

R S,

Fill in the gaps

) ¥
%ACGTE#E::

Fill in the gaps

CACARG..
GTGTC..

YW nc

¢ Pirect Repeats 4

Figure 5.2. Process of how a class Il Transposangeminto the host DNA, quoted from [Transposons:

Mobile DNA. 2004].

sequence, only those regions that are considered to be more promising to contain tandem

repeats according to an autoalignment procedure are examined. Note thajrautrali
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5' GGAACCCTTTAAGGG..~400 nt..CCCTTAAAGGGTTCC 3
3' CCTTGGGAAATTCCC..~400 nt.. GGGAATTTCCCAAGG 5'

Figure 5.3 Example of a MITE (Miniature Invertedf®at Transposable Element)

|4- Interior region contains proviral genes p-|

5" LTR JLTIR

PBS PPT

Flanking direct repeats (4—8bp)

Figure 5.4 Generic structure of an LTR retrotrasgpo Picture is taken from [McCarthy, et al. 2003]

is a procedure to search local alignments of a sequencéseifiDe Fonzo et al., 1998].
Secondly, instead of studying all possible consensus tandem repeats, only those that ar
considered to be more promising ones (in a way inspired by the autoalignment procedure)
are selected. This criterion will reduce the number of consensus tanders kepegt

focused on in the search process.

The programmreps also aims at efficient and flexible detection of tandem repeats in

DNA [Kolpakov et al. 2003] This program is able to identify all tandem repeats in the
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genome with no limitation on the size of the repeated pattern. It can output tandem
repeats with all possible pattern sizes. The algorithm first utilizeHieie et

combinatorial algorithm [Kolpakov et al. 1999, 2001] to find all repetitive structures of a
certain kind in a given sequence. This creates a set of raw repeat seduanoedergo
further processing by a series of heuristic treatments: trimmingfthend right edges of
each repeat, computing the best period and merging for each repeat, filtering out
statistically expected repeats and merging repeats with the saogkpeverlapping by

at least p.

TROLL, Tandem Repeat Occurrence Locator, [Castelo, 2002] is designed to find Simple
Sequence Repeats (SSRs), which are those repetitive short nucleotide segitlences
length less than six and that are fairly well conserved. It requires theoysewride a

motif list and finds all occurrences of patterns from the motif list. TR@Lkased on the

Aho CorasickAlgorithm (ACA) [Aho and Corasick, 1975], which was designed to find

all occurrences from a list of patterns in a text. The ACA keeps track otieefhilk

while encountering a partial match in the text. It uses the failure link tohcenthe

search and avoid re-examining characters in the text. TROLL implemem€ o

find pre-selected patterns in the text. It also records the tandem repdatsat the

SSRs can be located.

Other programs such as EQUICKTANDEM from the EMBOSS package [Rale et

2000] and Tandem Repeats Finder [Benson 1999] have also been reported to facilitate

finding tandem repeats. And in [Hauth et al. 2002], an algorithm was developed to find
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two specific kinds of tandem repeats: variable length tandem repeats (VaidRmulti-
period tandem repeats (MPTRS). Note that a variable length tandem repeRf) (§lar
simple nested tandem repeat in which the copy number for some pattern iswartizd
than constant, while a multi-period tandem repeat (MPTR) contains the nested
concatenation of two or moresimilar patterns [Hauth et al. 2002], which are patterns

that shareé same characters.

REPEATMASKER [Smit et al. 2003] is a program developed to screen DNA sequences
for interspersed repeats and low complexity DNA sequences. The prograestitii

program cross_match to perform sequence comparisons. The cross_match program is an
efficient implementation of the Smith-Waterman-Gotoh algorithm with some

enhancements.

RECON [Bao et al. 2002] is a program for tteenovadentification and classification of
direct repeat sequence families for sequenced genomes. It usesenalijipinent
information to identify the boundaries of each copy of the repeats and toycthfsifent
repeat element families. RECON has been tested on the human genome toadentify

group known transposable elements.

The program LTR_STRUC [McCarthy et al. 2003] is designed to automaticaiite

Long Terminal Repeat (LTR) retrotransposons from genome databasesdinngefor

the structural features that exist in LTR retrotransposons. This prafiifens from
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previous methods that were based on the sequence’s similarity to previouslyadentifi

LTR retrotransposons.

Although it seems there already are many programs developed to address the giroblem
locating complex patterns in sequences, we can still see that each exisgiragn has

been designed to locate a particular type of pattern, perhaps in a particulae géftah

is lacking is a general tool that is able to facilitate locating allstgbeomplex patterns

in nucleotide sequences. Our tool, namely the Interactive Pattern SeardlPEag| is

specifically designed to address this problem.

IPST utilizes a hashtable of n-mers for storage and fast retrievafiotis patterns as

well as direct and inverted repeats in DNA sequences. It is implementectieractive

way such that users can load their sequences, input the features that they arédnoking
and retrieve the output both through a graphical user interface and in the widekgdcce
GFF format [Sanger Center: GFF 2003]. IPST supports pattern search and finding
various complex patterns not only over a single sequence but over multiple sequences.

This feature enables IPST to find complex patterns at the genome level.

We have applied our tool to search for miniature inverted repeat transposablet®leme
(MITESs) and for long terminal repeat (LTR) retrotransposon elementsiseiguences.
In addition, as a test of the time and memory efficiency of our hashtable basetthalg
in pattern search (approximate string match), we compared our hashtadlalgaséhm

with an implementation of IPST based on a suffix tree approach.
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5.2 Systems and methods

Algorithm and implementation

IPST uses a hashtable to facilitate searching the sequences. A hastdatdé structure
that maps a record to a key for efficient storage and retrieval of thei&&utilizes

this data structure to facilitate finding patterns and repeats in the segjuence

Building the hashtable

Users first must provide the names of the sequence files. Three formateeped:

FASTA, GCG and STADEN. After reading in the input sequences, IPST builds a
hashtable in which the key values are polynucleotide subsequences. For a kgihdd,len
the maximum number of keys possible §she longer and more varied the sequence is,
the closer to this maximum the number of actual keys will be. Associatedaglitkey

is a value record that contains the position of the polynucleotide in the sequence and the
index of the sequence in the set of multiple sequences being considered. This hashtable
contains information for all of the sequences that users input. The process dfleashta
building is performed along each input sequence, and there will be at most (n-s+1)
records for each sequence, where s is the length of the key. Since there mag theumor
one record corresponding to each key, these records are stored in a linked list. So the

actual value corresponding to each key is a linked list of records. In pracsga;dbess
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is the major time-consuming process in the IPST algorithmic part, but this is

compensated for by the quick access and retrieval of the patterns in the sequence

A flexibility that IPST provides is that if users are onlyergsted in part of the sequences,
they can set delimiters for each input sequence before building the hashtabt=arT hi
save substantial computational time if only portions of the sequences areeastitder

users.

Operations supported by IPST

IPST currently supports four major search operations (pattern search or agpeoxim
string matching, finding direct repeats, finding inverted repeats, adithd start and stop
codons) as well as combinations of these operations. The steps for carrying out these

operations are as follows.

1. Pattern search

Users enter the subsequence they want to search for as well as the number of
mismatches they allow. IPST will locate those subsequences and displayrttieen
graphical user interface with each pattern on a separate line. A textual autiauniog
the result in GFF format [Sanger Center: GFF 2003] can be saved by the users by

clicking the “report” button in the left panel.
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2. Direct repeats

Users can find all pairs of direct repeats with specified minimum and maxim
lengths, minimum and maximum spacing, and minimum percentage of repeattyimilar
within each sequence. Those pairs of direct repeats satisfying thia evitebe
displayed on the graphical user interface. The textual results may be rsavadiFF-

format [Sanger Center: GFF 2003] file.

3. Inverted repeats

Similar to the direct repeats, users can find all pairs of inverted repéats w
specified minimum and maximum lengths, minimum and maximum spacing, and
minimum percentage of repeat similarity within each sequence. Thosepiawverted
repeats satisfying the criteria will be displayed on the graphicaintseiace. The textual

results can also be saved into a GFF-formatted [Sanger Center: GFF 2003] file.

4. Reverse complements

Given the specified minimum and maximum lengths, minimum and maximum
spacing, and minimum percentage of repeat similarity, IPST can displpgithef
reverse complement on the graphical user interface and provide the GFF-fatoalt te

output.
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5. Start and stop codons
Locate and display the positions of all the start and stop codons on both forward
and reverse strands for each input sequence. An output containing the textual result in

GFF format can also be created.

6. Combination of operations

The current implementation of IPST gives users the option of combining the
pattern search operation with the operations of finding direct repeats, inegéads; or
reverse complements. In the parameter setting panel for finding dipeetts, inverted
repeats and reverse complements, users have the option to specify thelpatiezeds
to appear within the sequences that contain the repeats, and the minimum gifoilarit

the pattern.

Figure 5.5 shows a snapshot of the graphical user interface of IPST with tie o€aul

pattern search and direct repeats graphically displayed.

Underlying data structures and the procedure for each IPST-supported operation

There are nine major data structures involved in the IPST program: Hashtabtgoa V

of SeqlInfo objects, class Seqlinfo, class Drawinfo_PS, DrawInfo_DR, Bi@awR,

DrawInfo_START, DrawInfo_STOP and class PolyNuclinfo.
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Figure 5.5. Snapshot of the IPST graphical userfat¢e (with the results of a pattern search aretti
repeats graphically displayed). The red arrowsciugi the positions where the patterns were founiciglu
the pattern search process. The filled rectangldisate the positions where each direct repeatitéd.

The lines connect pairs of direct repeats.

The class Seqlnfo object contains the input sequence and its name, the debintiter
sequence to be analyzed, and a series of Drawinfo classes (DrawinfoaR$if®rDR,

etc.) for each feature type, which contain the information about where to draw and wha
to draw on the canvas. Each sequence is associated with a Seqinfo object. The class
PolyNuclinfo contains the position of the polynucleotide on the sequence and the index

of the sequence in the vector that contains the Seqinfo objects. The HashtalWeas use
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the central data structure for storing the sequence information. Thewoafashtables,

one for the forward sequence and the other for the reverse sequence.

The relationship among all of the underlying data structures for IPSTwsishdigure

5.6. A more detailed description about these data structures is available in figure 5.7.

With the hashtable and all other data structures established, the processdsriairuer

the IPST operations are straightforward.

The pattern search process begins by searching the hashtable with the provided
polynucleotide sequence as the key. If the length of input polynucleotide sequesse is |
than the default key length, the input polynucleotide will be extended by enumeration to
every possible polynucleotide with the default length. Then each of these extended
polynucleotides will be searched for against the hashtable. For exampleadieg

length of 6, and the pattern ATG, all 64 hexamer string beginning with ATG would be
searched in the hashtable. In the case that the length of input polynucleotide séguenc
greater than the default key length (6), the hashtable is searched witkttBe f

nucleotides as the key. Once the list of PolyNuclinfo objects is retrieved, il

extend the first 6 nucleotides from each position along the sequence to check if the input

polynucleotide sequence exists.

If a certain number of mismatches (users provided the minimum similardgrgage
and a ceiling function is used to convert the calculated floating number of mi@sat

into an integer) are allowed for the pattern search, all possible polynuclesiideise
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[ Seqlnfo ]

[ Sequence and name ] [ Delimiters ] [ Series of DrawlInfo classes ]

[ Location on the drawing canva} [ Shapes to draw ]

Hashtable

1 1
[Key: PolyNucleotide ] [Value: List of PolyNuclinfo objects ]

[ Index of the sequence in the vector containingfaihe Seqlnfo objects] [Start position of the polynucleotide on the seqeenc

Figure 5.6: Relationships among IPST underlyingdituctures

length of the hashtable’s key will be generated and then lists of PolyNucllecio kil

be retrieved, extended along the sequence, and examined to determine whether the
similarity between the extended polynucleotide and the pattern is above ilaetgim
threshold. Retrieving the lists of PolyNuclinfo objects is fast and the nmagn ti
consuming step is the enumeration process. In order to reduce the number of
enumerations, we adopted an assumption that the mismatch occurs in the first s (key
length) nucleotides with the same probability as in all nucleotides of the wéuibézn.
Under this assumption, the number of enumerations is significadtiged. For example,

for a hashtable with key size of six and the common minimum similarity of 70% for the
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Key Value

Data type String LinkedList

Every possible polynucleotide in all sequences

Content with the default number of nucleotides Contains a list of PolyNuclinfo objects
Data structure of the Hashtable
Element 1 Element 2
Data type Int Int
The starting position of the The index of the sequence in the
Content g
polynucleotide on the sequence SeqlnfoVector
Data structure of the class PolyNuclinfo
Element 1 Element 2 Element 3 Element 4 Element 5 -- 9
Data type String int int String Vector
Contains Objects of
. . Drawlinfo_PS,
boctmotte | postonothe | Thename | Drawinfo DR,
Content The sequence p p of the DrawlInfo_IR,
sequence to sequence to —
display display sequence DrawInfo_START,
and DrawInfo_STOP,
respetively
Data structure of the class Seqlnfo
Element 1
Data type Int
Content The position on the sequence where objects should be drawn
Data structure of the class DrawInfo_PS
Element 1 Element 2
Data type Int int
Content Th_e position on the sequence where Index of the DR
objects should be drawn
Data structure of the class DrawInfo_DR
Element 1 Element 2
Data type Int int
Content Th_e position on the sequence where Index of the IR
objects should be drawn
Data structure of the class DrawInfo_IR
Element 1 Element 2
Data type Int int
Content Th_e position on the sequence where Index of the SSIR
objects should be drawn
Data structure of the class DrawlInfo_SameStrandIR
Element 1
Data type Int
Content The position on the sequence where objects should be drawn
Data structure of the class Drawinfo_ START
Element 1
Data type Int
Content The position on the sequence where objects should be drawn

Data structure of the class DrawInfo_STOP

Figure 5.7. Underlying data structures of IPST
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pattern search, the number of allowed mismatches is ceil( (1-70%)*6) = 2, and the
number of enumerations is only (6*5/*#480. The number of enumerations will be only
24 given a minimum similarity of 80%. If the pattern is shorter than the size kéyhe
the pattern will be extended to meet the length of the key by adding enumerated
nucleotides at each of the position for additional nucleotides. If mismatch is @&llowe

enumerations of the pattern will be performed prior to the extending process.

The procedure for finding the pairs of direct repeats or inverted repeaty isimilar.

The basic idea is to first retrieve the list of PolyNuclinfo objects bickesy the

hashtable with the first s-nucleotide sequence, where s is the defaultdétigth
hashtable’s key, and then extend the polynucleotide sequence along the whole input
sequence to see if there is a match. If users request a combination of pattérarsgar
finding direct (inverted) repeats or reverse complement, a pattern sedrio wil

performed and only those pairs of repeats that contain the specified pattdra will
located. For direct and inverted repeats and reverse complements, ibbrppeats

overlaps the other, covers the other pair, or if they have the same delimiters bt one pa
of repeats is longer than the other one, the shorter pairs of repeats will bed@miovth

cases.

Figure 5.8 shows the procedure for searching the pairs of direct repeats.

The procedures for locating the start and stop codons are very similar to those for the

pattern search.
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For each key in the PolyNuclTable
1. If pattern search is also requegtediorm the pattern search operation.
2. Get the LinkedLists containing the PolyNuclinfofg) the key.
3. Ifthe above list is not null and has more than él@nents
For each pair of PolyNuclinfos in the list
If both of these PolyNuclinfo(s) are frdhe same sequence
do
Extend the polynucleotide along the sequence
while
The spacing between this pair of direct repeassilisvithin the specified
range AND
The similarity of these two repeats remains abbeettireshold
If there is match
(if the pattern search operation is also perfornifethe pair of repeats
contains the pattern
Record the positions and sequence index into the
DrawlInfo_DR object.
4. Eliminate overlapped repeats.

Figure 5.8. the procedure for searching for pdidirect repeats

The graphical user interface is designed for users to interact with thamproga
friendly manner. Users can input their sequences, click the corresponding buttins t
the program build the table, set their criteria for pattern searches, dideicivarted
repeats, and view the results displayed in the graphical user interfaterfare, IPST

can provide a GFF-formatted textual report of the results [Sanger CenteR0BB].

The Java-programming language

IPST is implemented using the Java-programming language [Java, 2004]. Jiba ver

that we used to compile and run the Java codes is 1.4.2.
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Test sequences on which IPST was applied

Rice sequence 1

This sequence of size around 340kb was downloaded from NCBI

(http://www.ncbi.nlm.nih.goy/ The GenBank accession number of this sequence is

AF172282. It is the adhl-adh2 region of the rgza sativa

Rice sequence 2

This sequence of size around 160 kb was downloaded from NCBI

(http://www.ncbi.nlm.nih.goy/as well. The GenBank accession number of this sequence

is AC020666. It is a BAC genomic sequence on the chromosome 10 of tle saBva

Sequence for time-memory testing

Seven sequences with sizes ranging from 10 kb, 20 kb, 50 kb, ..., to 500kb are created by
cut and paste (start from the beginning) of a concatenated seziea nfay8AC
(Bacterial Artificial Chromosome) clones from the GenBank. Refer to

http://www.cs.uga.edu/~eileen/IP$d view the file containing the concatenated series of

Zea may$8AC sequences.
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Time-memory testing of hashtable based IPST versus suffix tree based IPST

IPST utilizes a hashtable based approach to perform approximate stringgpatothi
find the direct and inverted repeats. In order to test the time and memory perderm
we also implemented the pattern match (approximate string matchingilprecssing a
suffix tree based approach, as implemented in a set of Java codes written by
[Dorohonceanu et al. 2000]. Since this Java-implementation of the suffix tree data
structure and string search is a general suffix tree implementatigmeeégor
representing multiple sequences and searching strings on a multi-sequeegég @ is

well suited for our test purposes and acts as a good comparison of these approaches.

We performed two sets of tests. First, we tested the time and memory usage tivthe
versions of IPST for a certain pattern search with test sequences of vargsudnsthe
second set, we tested the time and memory usage of these two versions of IPST for
searching patterns with various lengths (3 bp, 6 bp, 12 bp and 24 bp) on the same

sequence (the 100 kb test sequence).

Tests were executed on a PC with Intel Pentium 4 CPU 3.00 GHz and 512 MB of RAM,

running Microsoft windows XP Professional Version 2002.

IPST is implemented using the Java-programming language [Java 200#4ig Tiest

memory usage in the Java environment is problematic because the Java-programming

language uses a garbage collector to automatically deal with thersnegage while the
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program is running. We adopted the approach for memory usage testing from [Roubtsov
2002], which uses three techniques to accurately measure the memory usagdwrébaese t

techniques are as follows:

1. Use Runtime.totalMemory()-Runtime.freeMemory() to calculate the usga he
size instead of a single call to Runtime.freeMemory().

2. Execute many Runtime.gc() calls and request object finalizers to ztathid
perceived heap size.

3. Ignore heap space consumed by the first class instance.

5.3 Results and Discussions

Apply IPST to find MITEs (Miniature Inverted-repeats Transposable Elements) in

sequence 1

As shown in figure 5.3, MITEs (Miniature Inverted-repeats Transposabhedaits)
contain a pair of reverse complements at the ends of the sequence. To appty IPST

locate this element, we need to find the reverse complements in the sequence.

IPST provides a panel of parameter settings for users to define the typesrsé

complements they wish to find. Users can interact with IPST by providireyetitf

parameter settings and producing different outputs. Having considered the proplesty of
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MITEs and interactively explored a number of parameter settings, we ttieofdlowing

parameter settings for the operation of finding reverse complements inghénse.

Minimum length of reverse complement: 10

Maximum length of reverse complement: 100

Minimum spacing between the pair of reverse complements: 200
Maximum spacing between the pair of reverse complements: 500

Minimum identity between the pair of reverse complements: 0.95

We did not choose the option of combining the pattern search.

It took 1.343 seconds time and 28,669,984 bytes memory for IPST to build the hashtable.
Then it took 78.266 seconds and 89864 bytes memory to find those potential MITEs with
our computer (Intel Pentium 4 CPU 3.00 GHz and 512 MB of RAM, running Microsoft
windows XP Professional Version 2002). Our analysis has revealed a total of 256
potential MITEs in this sequence. Figure 5.9 and 5.10 show part of the GFF-format
textual report and the graphical user interface (GUI) for finding the MifEsquence 1,

respectively.

We have also examined the annotation of sequence 1 from GenBank, where a total of 33

MITEs have been annotated. Between the 256 MITEs found by IPST and those 33

MITEs from the GenBank annotation, 19 share the same locations to a large extent.
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## IPST -- Interactive Pattern Search Tool, desigodind repeats in DNA
sequences

## 2004-07-15 14:05:28

<segname> <sourcefeature> <startzend> <score><strandsframe><lengthcomments]

H## Reverse

complements

6979318.fastalPST  reverse_complerd808362312401 . . 10 pair 1
6979318.fastalPST  reverse_complernié82921096851 . . 10 pair 2
6979318.fastalPST  reverse_complem@A7871250211 . . 10 pair 3
6979318.fastalPST  reverse_complem&00181703041 . . 10 pair 4
6979318.fastalPST  reverse_complenéiiB871678321 . . 11 pair 5
6979318.fastalPST  reverse_complerni@b7821762231 . . 11 pair 6
6979318.fastalPST  reverse_compler3@A7663251031 . . 10 pair 7
6979318.fastalPST  reverse_complem888 4735 1 . . 10 pair 8
6979318.fastalPST  reverse_complerm@874 12685 1 . . 10 pair 9
6979318.fastalPST  reverse_complené&i0621575791 . . 11 pair 10

Figure 5.9 Part of the GFF-format textual reportfinding miniature inverted repeat transposable

elements (MITES) sequence 1

Detailed examination on those 14 missed MITEs needs to be performed to analyze why
IPST failed to find these elements. Then users can experiment with diffarameter
settings for the reverse complements that will be able to lead to the icggiuifiof those

14 MITEs. In addition, the fact that the number of MITEs found by IPST is muchr large
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Figure 5.10 Snapshot of some MITEs Miniature Inegntepeats Transposable Elements) from the rice

sequence found by IPST.

than the number of annotated MITEs in the GenBank suggests other operations, such as
pattern search, can be combined with finding the reverse complements to exclade thos
“false” MITEs. In order to do that, further study needs to be done to find consensus
sequences in MITEs. On the other hand, there may be some MITEs that have not been
annotated and need further study for confirmation. Many of these procasdss done

through user interaction with the IPST program.
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Apply IPST to find Long Terminal Repeat retrotransposons in sequence 2

Since Long Terminal Repeat (LTR) retrotransposons contain a pair of djpeatsat

the ends of the sequence, the operation of finding direct repeats needs to be genforme
IPST in order to find this element. In addition, the interior region of the LTR
retrotransposons contains several genes suehvagag, and pohs shown in figure 5.3.

A combination of finding the direct repeats with pattern search will be veryie&do

locate the element.

These genes often have consensus amino acid sequences. Ideally it will tsetidrif

IPST can also be applied to pattern search for amino acid sequences, whaeh will
effective to find the LTR retrotransposons. However, the current implementasigetha

to include amino acid sequences as the inputs. So we simply combine the operations of
finding the pattern “ATG” (start codon) with finding the direct repeats to éottest LTR

retrotransposons in this sequence

Similar to finding reverse complements, IPST provides a panel for parasettegs of
the direct repeats. After experimenting with a variety of parametergsetvith IPST, we

used the following parameter settings for the operation of finding directsepe

Minimum direct repeat length: 100

Maximum direct repeat length: 200000

Minimum spacing between Direct Repeats: 1000
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Maximum spacing between Direct Repeats: 1000000

Minimum identity of Direct Repeats: 0.95

We clicked the “and” checkbox to perform the pattern search as well. We sktoche

“atg” with an identity value of “1.0".

It took 0.75 seconds time 13831160 bytes memory for IPST to build the hashtable. Then
it took 5.719 seconds time and 80656 bytes memory to find those potential Long
Terminal Repeat (LTR) retrotransposons with our computer (Intel Pentium 80BU

GHz and 512 MB of RAM, running Microsoft windows XP Professional Version 2002).
Our analysis has revealed a total of 13 potential LTR retrotransposons that bottai

the direct repeats and the pattern “ATG".

Figure 5.11 and figure 5.12 show the GFF-format textual report and the grapbical us
interface (GUI) for finding the Long Terminal Repeat (LTR) retrofpassns in

sequence 2, respectively.

Time-memory tests

In order to measure the time and memory efficiency of our hashtable based lapproac

string match, we compared both the theoretical time and memory complexity and the

empirical running time and memory consumed while applying IPST on pattech sear

(approximate string matching).
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## IPST -- Interactive Pattern Search Tool, desigodind repeats in DNA

sequences

## 2004-07-15 14:43:48

<segname>

repeats

## Find Directthat

20198551.fasIPST

20198551.fasIPST

20198551.fasIPST

20198551.fasiPST

20198551.fasIPST

20198551.fasIPST

20198551.fasIPST

20198551.fasIPST

20198551.fasIPST

20198551.fasIPST

20198551.fasIPST

20198551.fasIPST

20198551.fasIPST

<sourcesfeature>

pattern
contain the"atg"
direct_repei77337
direct_repeil41397
direct_repeil41288
direct_repeil41297
direct_repei36495
direct_repeil41353
direct_repei77313
direct_repei78098
direct_repei65731
direct_repei78774
direct_repei77803
direct_repei78089

direct_repei78074

<start> <endsxscore>

93548 0.950980392.

155400.952702703.

146090.953703704.

146100.956896552.

47607 0.953703704.

155408.952631579.

93546 0.951612903.

94297 0.956896552.

77170 0.95025729 .

94839 0.95049505 .

94097 0.952631579.

94280 0.953703704.

94270 0.955752212.

102

148

108

116

108

190

124

116

583

101

190

108

113

<strand><framedengthcomments]

pair 1;pattern 2088
pair 2;pattern at 14292
pair 3;pattern at 14292
pair 4;pattern at 14292

pair 5;pattern @237
pair 6;pattern at 14292

pair 7;pattern 2088

pair 8;pattern 2088

pair 9;pattern @r87

pair 10;patterrial 8

pair 11;patteri8208

pair 12;patteri8208

pair 13;patter3208

Figure 5.11 GFF-format textual report for findifgtLong Terminal Repeat (LTR) retrotransposons in

sequence 2

To build the hashtable, the algorithm employed in IPST needs to go through each

nucleotide in the input sequence and apply the hashing function to the s-mer beginning at

that position. Since applying the hashing function on each polynucleotide can be

considered to take constant time and there are a total of (n-s+1) polynucleatidethal

sequence (where n is the length of the sequence and s is the length of thehesy for t

hashtable), the time complexity for building the hashtab(mg.
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The space needed for building the hashtable consists of the space needed byrall keys
the hashtable and by the values, which are linked lists of PolyNuclinfo objects. Both a
key and a PolyNuclinfo object occupy constant space. The maximum number of all
possible keys is*4(we have four different nucleotides: a, g, ¢ and t) where s is the size of
the key. The maximum possible number of PolyNuclinfo objects in a linked list is (n-
s+1). So the space complexity for the hashtable appro&miax(n 4°. Assuming that

s is small and constant, the space complexi@(ig.

To perform the pattern search with mismatch allowed, if the pattern is no shari¢he
hashtable key, our hashtable approach first enumerates all possible key values based on
the percentage of similarity for the whole pattern under our assumption tmaitsthatch
occurs in the first s (key length) nucleotides with the same probabilityadls in

nucleotides of the whole pattern. This process takds* C(s,k)) (C(s,k) is the math
expression for “s choose k”) time where k is the number of allowed mismatches and 4 is
the number of different nucleotides. Then lists of PolyNuclinfo objects will bevet,
extended along the sequence, and examined to determine whether the similaeignbet
the extended polynucleotide and the pattern is above the similarity threshold. 4pplyin
the hashing function and retrieving the values can be considered to take cam&tant ti

The time needed for extending the polynucleotide and checking for the simg&{iy4

s), where m is the length of the pattern. So the time complexity for the pa&idech &

our hashtable approach@(m-s) * 4 * C(s,k)) if the pattern is larger than the hashtable

key. If the pattern has the same size as the key, the complexity @(#bE(s,k)). If the
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Figure 5.12 Snapshot of part of the LTR retrotrassms from the rice sequence found by IPST.

pattern is shorter than the key, the pattern will be extended to meet the lengtkeyf the
by adding enumerated nucleotides at each of the position for additional nucleotides.
When mismatch is allowed, the number of enumerations wil|‘be:34}s,k) * 4™ So the
k+s-

time complexity for pattern search while the pattern is shorter than thezkelgS(4

m* C(s,K)).

As for the space complexity of the hashtable approach for the pattern seanat) tiseor

hashtable take®(n), as discussed above for the space complexity of building the
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hashtable. Storing the pattern takes sfi2(©e) The space complexity needed for pattern

search in our hashtable approacim + n).

Table 5.1 shows the time and memory complexity comparison between our hashtable
based approach and the suffix tree approach. This table indicates that these two
approaches share the same time complexity for preprocessing and th@aeene s
complexity for pattern search. In our hashtable approach, both the space dyrfuriex
preprocessing and the time complexity for pattern search depend on the size of the
hashtable key. If the key of the hashtable is relatively small, the two appsoaitiieave
similar space complexity for preprocessing. Otherwise, our hashtableaappvol
consume more space. As for the time complexity for pattern search in our feashtabl
approach, it varies with different relationships between the size of thenpatiek that of
the hashtable key. When the pattern has the same size as the key or has adatger si
the key, our hashtable approach takes less time than the suffix tree approach. The

hashtable approach is less efficient if the pattern is shorter than the key.

A Java-implementation of the suffix tree and search from [Dorohonceanu et al. 2000] was

adopted into the IPST program using the same interface to perform the time-er@mas

the test sequences.

Figure 5.13 shows the time-memory test comparison between the suffix treacippro

and our hashtable approach on 6 sequences ranging from 10kb to 500kb. The hashtable
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Preprocessing Patten Search

Time complexitySpace complexityTime complexity Space complexity

Suffix tree |O(n)? O(nlogE|)? O(km)? O(n+my

O((m-s) * 4* C(s,k)) if m>s
O(max(n 4°;
O(4* C(s,k)) ifm=s
Hashtable |O(n) O(n) assuming s O(n+m)
O(4¥*s™M* C(s,k)) if m<'s
small and constaht

Table 5.1: Time and memory complexity comparisotwben our hashtable based approach and the suffix
tree approach.
n: text size; m: pattern size; k: number of misrhagcallowed; s: length of key for building the hasie

a: cited from[Gusfield, 1997]

was built with the default key size of 6. The string “agattcgaacgt” vaasised with 2

mismatches allowed.

Figure 5.13a shows that the preprocessing time needed for the hashtablehaiproac
significantly less than what is needed for the suffix tree approach. Whigthef the
input sequence increases, our hashtable approach becomes even more tenefeffici
the preprocessing. While table 5.1 shows these two approaches have the same time
complexity, our experimental results on the test sequences indicate that the
implementation of the suffix tree approach from [Dorohonceanu et al. 2000] has not

achieved the same efficiency as our hashtable implementation.
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The message from figure 5.13b confirms with our space complexity comparis@ebetw
these two approaches: our hashtable consumes more space during the preprtagssing s

than the suffix tree approach.

Figure 5.13c shows the comparison of time efficiency for the two approachesesn patt
search. The time needed for these two approaches on the test sequences alhs in sm
amount. While the two approaches take similar time for pattern search against input
sequences of size up to 100kb, our hashtable approach is two times faster than the suffix
tree approach. Figure 5.13d indicates that the memory needed for our hashtablénapproac
during the pattern search process is always at least 40% less than whdets foe the

suffix tree approach in out tests.

Based on figure 5.13, the preprocess time needed for the hashtable approach is much less
than what is needed in the suffix tree approach and the time and memory e&g@nci

our hashtable approach are always superior than that of the suffix tree approach on
pattern search (or approximate string matching). The only drawback of titaliias

approach is that it needs more memory in the preprocessing phase.

Figure 5.14 shows the time-memory comparisons for the suffix tree based and bashtabl
based IPST implementation for approximate string matching on patterns wahsvari
lengths. Figure 5.14a indicates that our hashtable approach is up to three times more

efficient than the suffix tree approach whenever the pattern is longethth&ey. The
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benefit of our hashtable approach increases while the pattern is longer.Figlve

shows that while the size of the pattern increases, the amount of memory to be spent on
the pattern search becomes very close between these two approaches. As we have
discussed in the previous complexity analysis, our hashtable approach is not time-
efficient when the size of the pattern is less than that of the hashtableThieig

indicated in figure 5.14a where it takes much more time to find the pattefridatge

hashtable approach than for the suffix tree approach.

Approximate string matching, as a basic computational problem, has acted as a
fundamental basis for many other problems in computational biology, such as primer
design, sequence alignment, homology study etc. Due to its importance,

a large number of approaches have been developed for the approximate string matching
problem aiming to improve the time and space efficiency. These approaches ihelude t
dynamic programming approach based on edit distances [Gusfield, 1997], some
algorithms based on automata [Wu, et al. 1996], bit-parallelism algorithme{\Al.,

1992], filtering algorithms based on cutting unmatched contents [Chang and Marr, 1994],
the suffix tree approach [Ukkonen, 1995] and other heuristic methods. Table 5.2 shows
our survey of current approximate string matching algorithms and their time ared spa
complexity. The heuristic method employed in our IPST program for the apptexima
string match (as well as for finding the direct and inverted repeats) sidipeeprocessed
hashtable to expedite the searching process. The empirical time and@ppeeson

between our approach and the suffix tree approach showed that our approach can achieve

the same or better time efficiency in approximate string matchingauthix tree
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Figure 5.13. Time-memory test comparisons betwkerstiffix tree approach and the hashtable based

approach for approximate string matching on sik¢eguences with various lengths.

i. For suffix tree, preprocessing means the prooébsilding the suffix tree in the suffix tree appch and

the process of building the hashtable in the hasht@pproach

ii. For all pattern seaches, “agattcgaacgt” wascbedl in the test sequences with 2 mismatch allowed

All time and memory test results are averaged ogetkests.
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approach while requiring much less preprocessing time. From table 5.2 we daatt see t
the suffix tree approach is the most time-efficient among all of the suhagpmroximate
string matching approaches. Thus, our hashtable based approach for approrimgate st

matching should also compare well against the other methods.

5.4 Summary and futurework

An Interactive Pattern Search Tool (IPST) has been developed to facifitiief

various complex patterns in biological sequences in an interactive manner. Current
functions of this tool include pattern search, finding direct repeats, inverteds el

reverse complements and a combination of the above operations. IPST has been
demonstrated to find LTR (Long Terminal Repeat) retrotransposons and MITEs
(Miniature Inverted-repeats Transposable Elements) in rice sequehegdm€ and

memory efficiency of the hashtable based heuristic approach for approsiniage

match implemented in this tool has been compared with another implementation of IPST

using the suffix tree approach.

Future work includes developing more combinational operations (such as OR, NOT,
XOR) in IPST and making the combinational operation more versatile and user-
interactive. In some situations, users need to find some complex pattern over many
different input sequences. A nice feature for IPST to include is to be ableciaigetine
codes (in our case, Java classes) that support the operations or the set of icoabinat

operations to find a particular complex pattern. In this way, users simply neettteus

-123-



Various-length Pattern Search time of Suffix tree
vs Hashtable
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Figure 5.14. Time-memory tests for suffix tree llhand hashtable based IPST for approximate string

matching on patterns with various lengths. All tessare averaged on three tests.

All patterns are searched for agaihset100 kb test sequence.
For the pattern of length 3, “atg” was searchedafitih 0 mismatch allowed ( or 0.8 identity)
For the pattern of length 6, “agcatc” was seardbedavith 1 mismatch allowed ( or 0.8
identity)
For the pattern of length 12, “agattcgaacgt” wasdged for with 2 mismatches allowed ( or
0.8 identity)
For the pattern of length 24, “gaacttgcaggtatcaetty was searched for with 2 mismatches

allowed (or 0.9 identity)
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Approach name

Space complexity

Time complexity

Source

The dynamic programming

Oo(m) O(mn) Navarro, 2001
approach
The cut-off heuristic
Oo(m) O(kn) on average b Ukkonen, 1985
algorithm
Chang and Lampe,
Column partitioning algorithm O(mo)? O(kn/sqrt(o)) on average ®
1992
Wu, Manber and Myers’
o(n)? O(kn/logn) on average ® Wu, et al. 1996
algorithm based on automata
Wu and Manber’s Bit-
¢ O(k rm/w 4 n)® Wu et al., 1992
parallelism algorithm
O( rk(m-k)/w+ n) on worst
Yates and Navarro’s Bit- Baeza-Yates et al.
¢ case; O( k"2/wq n) on average
parallelism algorithm 1999
case®
Myers' approach on
O (m/w+ n) for worst case; O
parallelizing the dynamic ¢ Myers, 1999
(rk/wq n) on average
programming matrix
O (n(k+logom)/m) on average
Chang and Marr’s Filtering (o is the base of the log; tis Chang and Marr,
O (m™)

algorithm

some constant which depends

on o)

1994

Suffix tree approach

©(mlog|Z|) space
for building the
tree; O(n+m) for

approximate string

matching

O(m) time for building the tree;
O(km) for approximate string

matching

Ukkonen, 1995

Table 5.2. A survey of the time and space compexif the currently-developed algorithms for
approximate string matching (pattern search). Nwaek is the number of mismatches allowed. més th
length of the pattern to search for and n is thgtle of the text

b: proved in [Chang and Lampe, 1992; Baeza-YatddNavarro 1999]

a: proved in [Navarro, 2001]

c: data unavailable
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generated codes to find the complex pattern that they are interested in. ipnadditill
be very useful for this tool to be able to perform all of these functions on amino acid

sequences.

The motivation and application of IPST discussed so far are mainly based on exploring
biological sequences to find interesting patterns. If we adapt the alph@betiser-
supplied character set, we can explore both protein sequences and complex patterns in

arbitrary texts.
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Chapter 6

Conclusions and future work

In this thesis work, we have evaluated five computer programs on their ability ® locat
coding regions and to predict gene structure in the orgadistrassaWe have also
designed and implemented a tool for automatic evaluation of various gene-finding
programs. This tool can be applied in various genome projects to facilitate chd@sing t
right gene-finding program for a specific organism. It can also be usesessabe

performance of newly-developed gene-finding programs.

In addition, an Interactive Pattern Search Tool (IPST) has been developeditaadaci

finding various complex patterns in biological sequences in an interactive manner.
Current functions of this tool include pattern search, finding direct repeatsgnhvert

repeats and reverse complements and any combination of the above operationss IPST ha
been demonstrated to find LTR (Long Terminal Repeat) retrotransposons and MITEs
(Miniature Inverted-repeats Transposable Elements) in rice sequehegsm€ and

memory efficiency of the hashtable based heuristic approach for approsiniage

match implemented in this tool has been compared with another implementation of IPST
using the suffix tree approach. Future work of this IPST project includes devetopieg
functions in the tool, providing more combinational operations among those implemented
functions, and applying the tool to find other complex patterns in both nucleotide and

amino acid sequences.
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