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ABSTRACT 

Availability of reliable genotyping platforms for single nucleotide polymorphism 

markers (SNP) has made genomic breeding value (GBV) estimation a reality. 

Unfortunately, genotyping is still expensive and its use at large scale requires SNPs 

genotypes of non-typed animals to be inferred from genotyped animals. However, 

relationships and allele frequency information could be limited. To overcome this 

problem we proposed combining genotyping information from high and low density SNP 

panels. This low density and low cost chip will provide an additional source of 

information, linkage disequilibrium, in inferring missing genotypes.  

The proposed procedure was successful in increasing the probability of inferring 

true SNP genotypes for the non-typed animals by 12 to 18% depending of the simulation 

parameters. It increased accuracy of estimated GBVs by 3 to 12% depending on the 

number of SNPs and genotyped animals. These results suggest that this procedure could 

provide a cost effective tool for large genomic evaluation. 
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CHAPTER 1 

INTRODUCTION 

Whole genome selection (GS) has recently become available due to the feasibility of 

high-throughput genotyping technologies and commercial platforms. Following completion of 

the human genome sequence in 2001, genome databases of several livestock species went under 

construction. For example, the map of genome sequence variation in chicken has become 

available, in 2004, with more then of 2.8 million single-nucleotide polymorphisms (SNPs) in 

2004.  

A two step procedure is currently used to implement the genomic selection approach 

which: 1) estimation of the effects of chromosome segments of the whole genome in a reference 

population, 2) prediction of genomic breeding values (GEBV) of selection candidates by 

applying estimated marker effects from training data to their marker genotypes. However, the 

two step procedure requires genotypes for both the reference dataset and selection candidates 

because GEBVs are only available for animals with genotypes. Thus, SNP genotypes for non-

typed animals must be inferred from three types of information: allele frequencies, linkage 

disequilibrium and relationships with genotyped animals. Unfortunately, the relationship 

information is often limited because pedigrees span multiple generations for domestic animals. 

Moreover, GS using dense marker maps that require expensive high density chips that can not be 

used at the population level due to limited budgets.  

Low density SNP panels have been developed through feature selection to reduce high 

dimension datasets. There are three advantages of using low density marker panels. Firstly, low 

density chips are much less expensive than high density chips thus they are relatively more cost 
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effective. Secondly, with reduced genotyping cost, larger numbers of individuals of a population 

can be genotyped including some females. Lastly, due to the larger sample size being available, 

low cost panels will provide an additional source of information through linkage disequilibrium 

resulting in an increase in the detection of association between specific alleles and target 

phenotypes. Consequently, low density panels could potentially be an efficient approach to 

estimate GEBV for non-typed animals.  

To optimize parameters critical to successful GS, numerous strategies have been 

developed. Meuwissen et al. investigated stepwise testing approaches to select parameters 

arbitrarily based on stringent significance tests. Habier et al. regarded methods of searching 

informative SNP subsets as “variable selection” and presented evenly-spaced SNP panels (ELD-

panel) with broad application of GS but more loss of accuracy in estimating breeding values. 

Bayesian feature selection can be applied by adding indicator variables whose prior follows an 

independent Bernoulli distribution.  Machine learning techniques select influential features 

efficiently employing the classifier, and are superior to other methods because of their robustness 

and power of information reduction. More recently, a two-step feature selection scheme was 

proposed in supervised learning (classification) using a naïve Bayesian classifier for mortality 

traits in broilers. It consisted of filtering and wrapping steps aiming to reduce the number of 

markers from all features then optimizing the filtered SNPs.  

An alternative strategy recently being investigated in genomic selection is the Ant Colony 

Algorithm (ACA). It is an optimization algorithm capable of incorporating prior information, 

allowing it to search the sample space efficiently. The ACA has been proved efficient in high-

dimension and was first applied to solve traveling salesman problems based on a mechanism by 

which ant colonies uncover the shortest/best route to a food source. Relying on a positive feed 
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back system, ants communicate through the use of chemicals called pheromones which are 

deposited along the trail an ant travels. The shorter route will take ants less time thus more 

pheromone is accumulated generating a stronger signal to attract more ants.  Artificial ants of 

ACA work analogously to real ants with the pheromone function updated by prediction accuracy.  

 The objective of this study was to develop a procedure that employ the Ant Colony 

Algorithm to select low density panels then combine high and low density panels to estimate 

GEBV. Different scenarios were simulated to evaluate the efficiency of the procedure.  
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CHAPTER 2 

LITERATURE REVIEW 

Traditional animal breeding: Development and Achievements  

The concept of “traditional animal breeding” has been in used for genetic evaluation by 

animal breeders since the middle of the last century. Its development has taken much longer and 

is still under improvement. With the primary aim in maximizing the rate of genetic improvement 

(i.e., a combination of genetic values for several economic traits), data, which represent the 

observable records of performance, have become critical for analysis together with sophisticated 

and often complex statistical and computational procedures. There are several crucial landmarks 

that have shaped the history of animal breeding and genetics. Habier and Gianola (2000) 

presented a comprehensive review of major statistical developments. From selection index to 

Henderson’s mixed model equation (MME) procedure, restricted maximum likelihood (REML), 

and Bayesian approach, appropriate estimation and computational tools have lead to an 

unprecedented level of accuracy in predicting genetic merit. Furthermore, computer power has 

brought new opportunity for analyzing high-dimensional datasets in a reasonable computational 

cost. Through the integration of several braches of science, which include genetics, statistics, 

computer science and reproductive physiology, selective breeding has stepped into a new level. 

The achievement of traditional animal breeding is dramatic and it has been proved effective. In 

dairy cattle, for example, breeding values for milk yield in Holstein and Red & White cows 

calculated by USDA (April 2009) show a clear positive trend from one generation to the other 

and a spectacular increase in  the genetic potential of the dairy population (Figure 1). Although 
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the traditional animal breeding approach has developed dramatically fast and brought remarkable 

economic benefits, several limitations still exist: 1) Time consuming: Traditional breeding 

schemes are largely based on progeny or sib-families testing which is often a very lengthy 

process especially for animals with large generational intervals. The average generation interval 

for dairy cattle, for instance, is about five years. 2) Inefficient for specific traits: For traits that 

are sex-linked, difficult or expensive to measure including those that could be collected only late 

in life, such as longevity, traditional breeding methods are proved to be less effective and 

sometimes inappropriate (Goddard and Hayes, 2007). This is in part due to the limited amount of 

phenotypic information as a result of measurement difficulties or cost, low heritabilities, and 

often the inadequate statistical procedure used for analysis. 3) Confounded variation: The 

available sources of information of traditional breeding strategy are all observable data as 

pedigree and phenotypes. However, the objective of breeding process is looking for the genetic 

variation which is confounded with environmental part thus impossible to be observed directly. 

What complicated the situation even further is the fact that these so called “secondary traits” 

have been neglected for long period of time as the profitability of livestock operations was 

largely dominated by production traits. This is no more the situation in part due to the huge 

success in selecting for primary traits which has lead to an ever shrinking differences between 

the top animals for these traits, the negative indirect correlative responses in some secondary 

traits (health and fertility traits), and the emerging concerns about animal welfare and 

environmental impact.  

Development in Animal breeding after the availability of molecular information 

All these limitations together have created the need to strengthen the current genetic 

evaluation procedures and to find new tools and sources of information that will allow animal 
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breeders to examine more closely the source of genetic variation. As the genetic variation is the 

inherited and consistent source that causes performance difference, research on genes or 

chromosome segments which affect traits of interest has gained a lot of popularity. This interest 

in molecular approaches in the field of animal breeding has evolved for several decades 

simultaneously with the effort in exploring better statistical and computational methods. Early 

molecular research often based on “naïve” simulation scenarios has placed high expectations on 

the potential impact of molecular information for animal selection. Unfortunately that was not 

true and the extent of the practical use has fallen short of those initial expectations (Dekkers, 

2004). However, the sequencing of the human genome and short after of several livestock 

species together with the recent advances in high through put technologies such as gene 

expression profiling and large scale single nucleotide polymorphism (SNP) genotyping have 

created an unprecedented opportunity for a more direct and feasible dissection of complex traits. 

Candidate gene and QTL mapping    

Early molecular methods used in the field of animal breeding and genetics consisted 

on candidate gene and QTL mapping approaches. A quantitative trait locus (QTL) is 

defined as a chromosomal segment with a Mendelian transmission pattern and with an 

effect on a trait of interest (Boichard et al., 2003). Unlike typical Mendelian traits, these 

economical traits in livestock are under the control of more than one single gene or 

chromosome region. In fact, the distribution of QTLs is “moderately leptokurtic” indicating 

that most genes have small effects and only few have large effect (i.e., leading QTL or 

major QTL) as suggested by Hayes and Goddard (Figure 2A). In dairy cattle and pigs 

experiments it was reported that 17% and 35% of the leading QTLs could explain almost 

90% of genetic variance respectively (Figure 2B). If the genes which contribute to 
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quantitative trait variation can be detected and located on the different chromosomes, a 

deeper understanding of the impact of quantitative traits on the performance would be 

gained with more confidence. That was the original premise of the QTL detection approach. 

Unfortunately, such endeavor proved to be much more complex and even unrealistic. There 

are primarily two methods to detect QTLs: candidate gene approach and QTL mapping.  

A candidate gene is a gene that is suspected to be involved in the expression of a 

particular trait. Although several mutant traits and disease phenotypes are likely to be caused by 

mutation in candidate genes, for quantitative genes, at least two main problems arose for testing 

variation association between DNA sequence and phenotypic traits which are the insufficient 

number of animal samples and the false positive rate (Hayes, 2007).  

QTL mapping approach, in contrast, assumes that the actual genes impacting the 

quantitative trait are unknown. It involves linkage maps construction and QTL analysis 

indentifying polymorphic makers associated with target traits (Collard et al., 2005). A significant 

association between traits and markers may implicate that a QTL is close to the marker. QTL 

mapping is a combination of traditional quantitative genetics method and linkage mapping and 

has demonstrated the potential to model quantitative traits at the individual gene level (Liu, 

1998). Single-marker analysis and interval mapping (including simple and composite interval 

mapping) are two basic methods to detect QTL. QTL mapping statistics often involve the 

logarithm of odds (LOD) scores and some permutation testing in order to account for the false 

positive detection (Liu, 1998). Methodological concerns for QTL mapping approach are 

important for accuracy. On one hand, large number of progeny per family or half-sib family is 

required to reduce the confidence interval for QTL location. On the other hand, dense maker 

maps, in excess of 200 markers, are often needed.  
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Marker-Assisted Selection (MAS) 

Following a positive QTL identification in the mapping step using linked DNA markers, 

this information becomes the foundation for the implementation of a marker assisted selection 

(MAS) procedure. Furthermore, DNA makers have been deemed as the third data resource for 

selection strategy besides pedigree and phenotypic information (Hayes, 2007). Development in 

maker technology was notable. Conversion from low reproducibility and requirement for 

complex, time- and cost-consuming marker technique (e.g. RAPDs, RFLPs or AFLPs) to reliable 

and robust makers (e.g. SCARs or STSs) has been achieved (Collard et al., 2005). There are 

three types of marker for MAS defined as direct makers, LD (linkage disequilibrium) markers 

and LE (linkage equilibrium) makers (Dekkers, 2004). Direct makers are functional mutation 

loci and selection on them will be referred to as gene-assisted selection (GAS); LD and LE 

makers are loci in population–wide linkage disequilibrium and equilibrium with functional 

mutations on which selection will be called as LD-MAS and LE- MAS, respectively (Dekkers, 

2004). It was originally speculated that the extraordinary development of MAS techniques will 

imply a revolutionary era in the field of animal breeding especially after dense maker maps has 

become available. However, that was not the case because the reliability for MAS depends on 

the accuracy of the utilized QTLs which are obtained in QTL mapping experiment. 

Unfortunately, QTL mapping, which is often based on linkage mapping that needs huge amount 

of progeny and dense markers on chromosomes, in order to retain recombination across 

generations, failed to detect real or even major QTLs instead of false positive errors and 

misestimate the QTL effects. Additionally, LE based mapping being the easiest method for 

detection, provided the hardest molecular information  to use in a breeding program as the phase 

of the resulting QTLs are family specific. Moreover, even in the more favorable scenario, MAS 



 9

could not outperform the traditional selection methods in the long term although it could lead to 

a faster genetic progress in the short term. These results are not surprising as the favorable alleles 

frequencies increase towards fixation over time (Hayes, 2007).  

Microarray and high throughput makers 

Since 1986 when Santa Fe conference accouchement was posted, the Human Genome 

Project (HGP) has officially started and more than five million dollars were allocated to develop 

the needed resources and technologies. Soon after, low-resolution to moderate and even high-

resolution genetic linkage maps were made available for several chromosomes culminating in the 

publishing of the first working draft of the human genome (Venter et al., 2001) that was shortly 

followed by the sequencing of several laboratory and domestic animal genomes (Hillier et al., 

2004; Humphray et al., 2007; Nadeau et al., 2001; Womack, 2005). Such milestone has provided 

the necessary resource for the feasibility and identification of structural variation and 

polymorphisms. Microarray technology has been blooming since late 1990’s due to HGP. It 

allows for the simultaneous profiling of a massive number of genes or proteins on a tiny chip. 

Generally speaking, there are two types of DNA microarrays depending on the  to nucleic acid 

printed on the chip: cDNA array and oligonucleotide array (Huang et al., 2001). Oligonucleotide 

arrays have not gained popularity until the improvement in better specificity and sensitivity. 

They are more robust because cDNA arrays need to use a completely uncharacterized library for 

expression profiling and may raise the risk of array errors (Pennington and Dunn, 2001). More 

importantly, Microarrays are not only useful for gene or protein profiling but also for genotyping 

or analysis of DNA sequence variation. For high-throughput markers, single nucleotide 

polymorphism (SNP) markers are one of the most abundant and available markers in genome-

wide scale.  The SNP maker genotyping could be achieved mainly either by PCR or array-based 
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technologies. It is worth mentioning that the later does not require the use of PCR products and 

both methods have comparable accuracy (Gunderson et al., 2005). 

Introduction to microsatellites and SNPs  

Microsatellites, which are also named as Simple Sequence Repeats (SSRs), are tandem 

repeated of DNA of up to six base pairs. They were the dominant type of DNA markers for 

animal and human genetics applications before SNP genotyping had become feasible due to cost 

reduction and advances in high throughput techniques. Compared with other types of markers 

(Table 1), microsatellite markers are more appropriate for human genetic maps. This is because 

microsatellite markers possess a higher level of polymorphism than other types of markers due to 

multiple alleles at a single microsatellite locus. Furthermore, microsatellite markers have higher 

variability and mutation rate attributable to codominance (Thuillet et al., 2002). This 

characteristic makes genetic mapping and detection of heterogeneity in a population possible 

(Brinkmann et al., 1998). Finally, microsatellites are easily genotyped using PCR procedure in 

the laboratory. 

Single Nucleotide Polymorphism (SNPs) must occur in more than 1% of the population 

of interest.  It represents a single nucleotide variation in the genome sequence. SNPs can be 

categorizes into three categories according to their location and function: 1) Coding-region SNPs 

(cSNPs): They are variations located in coding regions which can alter amino acid encoding 

procedure and therefore affect protein sequence; 2) Perigenic SNPs (pSNPs):  Located either 

inside or labeled relative to the nearest gene, pSNPs may affect transcription or other DNA 

functions; 3) Random non-coding SNPs (rSNPs): They occur in intragenic region but are deemed 

as nonfunctional DNA sequences in genome even though they have possession of similar 
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sequence with other types of SNPs which own the capability to regulate gene expression (Nebert, 

1999). 

Although SNPs have much less variability compared with microsatellites, their 

unsurpassed characteristics have made them widely applied to construct high-density genetic 

maps for genome-wide association studies (GWAS) or genomic selection (GS). Their advantages 

are mainly derived from the following three characteristics. First, is their abundance in a given 

genome. In humans, for instance, almost 18 million SNPs are available in a public database 

“dbSNP” maintained by National Center for Biotechnology Information (NCBI) with more than 

6 million of them have been already validated. Second, SNPs are often assumed as biallelic 

markers, although theoretically any one of the four nucleotide bases could be present at each 

locus, the mutation mechanisms are able to explain the favorable bias on the ratio of transition 

(i.e., purine to purine or pyrimidine to pyrimidine) over transversion (i.e., purine-pyrimidine or 

pyrimidine to purine) (Vignal et al., 2002). Although microsatellites are multi-allelic and might 

be the most informative markers, the number for highly polymorphic microsatellites is barely up 

to 30 K until recently for human genome and in some other species (e.g., chicken) only limited 

numbers are available (Bahram and Inoko, 2007; Vignal et al., 2002). Third, SNPs are 

considered as stable markers with relatively low mutation rate (i.e., merit of evolutionary 

conservation). As to autosomes and the X chromosome, for example, the average mutation rate 

for each nucleotide is only 8105.2 −×  per generation (Tishkoff and Verrelli, 2003). This feature is 

the foundation for SNPs as qualifiedly stable markers. Last, the cost of genotyping using high 

throughput methods has been decreasing constantly (just over $200 per animal in 2008 for the 

50K chip).  
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SNPs discovery and genotyping 

 As individual genotypes are the main source of information for association or prediction 

studies, efficient and cost-effective SNP genotyping procedure are of crucial importance. There 

are three criteria for an ideal genotyping scheme: high-throughput capability, cost and 

computational efficiency and availability for reliability and robustness of results (Peltz, 2005). 

SNP genotyping protocols are different according to variant requirements but microarrays are 

one of the most robust methods for investigating allelic variation. Additionally, microarray-based 

SNP genotyping system which is widely applied currently involve three fundamental 

components: allele distinction, signal detection and assay format (Lorincz, 2006).  

For allele distinction, there are mainly five techniques to identify single base difference at 

a specific locus, which are allelic-specific hybridization, restriction enzyme cleavage, enzymatic 

ligation, primer extension by polymerization and structure-specific cleavage (Lorincz, 2006). 

Changes in Physical properties are used to detect SNPs, as radioactivity, molecular mass, and 

luminescence phenomena. Moreover, assay formats are usually commercialized as beads, glass 

slides, and gel matrices which can by easily visualized using a standard microarray scanner. 

Commercial platforms are offered by genomic service providers to make very reliable and 

efficient high-throughput SNP genotyping data available like Taqman, Illumina, and Affymetrix.  

Application of SNP technologies  

 There are mainly two aspects for application of high density SNP genotyping assays 

which are referred as GWAS and GS. On one hand, combination of candidate gene approach and 

association-based fine mapping is becoming available to identify human disease causing gene(s) 

across the whole genome (Lai, 2001; Sladek et al., 2007). On the other hand, appropriate models 
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and algorithms are under development aiming to predict accurate total genetic values for animals 

or plants (Meuwissen et al., 2001). 

Genome Wide Association Studies 

Genome wide association studies use high density genetic maps as tools mainly for classification, 

class prediction and diagnostics. In medical and pharmacogenetic research, it is used to classify 

heterogeneous diseases (e.g., cancer or type II diabetes) for diagnosis and treatment (e.g., test of 

individual metabolic responses to a given medicine). It is revolutionary to use common genetic 

variation across the complete genome to discover genetic associations with observable traits 

without segregation information (Pearson and Manolio, 2008; Van Ommen, 2008).  

 Pearson and Manolio (2008) proposed a procedure for in a typical GWAS. First, a 

reasonable population structure of samples is needed as the foundation for further analyses. A 

large number of individuals with disease or traits of interested should be collected as well as 

reasonable quantity of samples for comparison group (e.g., case-control design). Moreover, three 

steps, which are DNA isolation, genotyping and data review, are needed to ensure high 

genotyping quality. Additionally, appropriate statistical methods to uncover association between 

potentially useful SNPs (i.e., SNPs which passed a certain threshold) and disease/traits are 

needed. Finally, the results have to be validated in another independent population.  

  GWAS is a highly robust approach to classify the genetic variants which impact the 

disease/trait of interest. However, there are also problems that need to be resolved after the 

design of the experiment and the implementation of the statistical analysis. These issues are 

mainly centered on the potentially large the false-positive disvovery rate and the gene by gene 

and gene by environment interactions (Ziegler et al., 2008).     
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Genomic Selection 

 The completion of a working draft of the human genome sequencing project had lead to 

the proliferation of several genomic technologies with applications in several fields of science 

including animal breeding and genetics. Genomic selection is a MAS tool of predicting the total 

genetic breeding values using dense marker maps, especially SNPs which are able to cover the 

whole genome and they are often in linkage disequilibrium with a neighborhood QTL (Calus, 

2008; Goddard and Hayes, 2007; Meuwissen et al., 2001). Dense marker maps would likely to 

guarantee that a QTL would be close to at least one marker and in sufficient linkage 

disequilibrium with them to successfully perform the prediction work. Linkage disequilibrium is 

usually caused by limited effective population size in livestock (i.e. as low as 100; for human, it 

is almost 10,000) and used for MAS across populations and generations (Hayes, 2007). Measure 

of LD is frequently based on r2 which is less dependent on allele frequencies. Figure 3 presents a 

plot of the relationship between  the pair-wise linkage disequilibrium (r2) and the physical 

distance, in Kb, between markers. 

 According to the “moderately leptokurtic” distribution of QTLs, significance test is too 

stringent to accurately accept true QTL with small effects. Therefore, the scheme of GS is to skip 

the stringent significance testing and as an alternative simultaneously predicting the marker 

effects for all chromosomal regions or genes (Meuwissen, 2003; Meuwissen et al., 2001). The 

two step procedure of implementing GS consists of 1) predict the effects of markers according to 

genotypes and modified phenotypes (i.e. pseudo-phenotypes) of individuals for trait(s), and 2) 

calculate the genomic breeding values (GEBV) based on the estimated marker effects and their 

marker genotypes . 
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Compared with traditional breeding approach such as parent average (PA), genomic 

prediction could increase the reliability (squared correlation of true BV and GEBV) depending 

on trait and sample size in training and validation dataset. For example, for chicken feed 

conversion efficiency trait, the accuracy of genomic selection is almost four times higher than 

PA (Gonzalez-Recio et al., 2009; VanRaden et al., 2008). For progeny test based BVs whose 

reliability is already reasonably high, genomic prediction could increase the genetic gain by 

decreasing generation interval while keeping or slightly increasing accuracy of selection 

(Meuwissen, 2003; VanRaden et al., 2008).  

Mixed linear methodology is often used to implement GS (Meuwissen et al., 2001). 

egXy ii in ++= ∑1μ  [1] 

where: y  is the corrected data vector often referred to as pseudo-phenotypes,μ is the overall 

mean, n1 is a 1×n  vector of  ones; summation term is all chromosomal segments (or markers) or 

genes effects, and e  is residual.  

The implementation of model in [1] could be carried out using different methods and 

approaches. Meuwissen et al. (2001) presented four approaches consisting of Least-Squares (LS), 

Best Linear Unbiased Prediction (BLUP), BayesA and BayesB. Other approaches have followed 

soon after including Partial Least Square (PLS), BayesC (π ), Bayesian LASSO (Least Angle 

Shrinkage Selection Operator), semiparametric approach and other machine learning methods 

(e.g., support vector machine).  

1. Least Square estimation 

 Least-squares approach is the simplest method to estimate the effect of markers. It 

assumed markers as fixed effects.  In matrix notation, the system of equations could be presented 

as: 
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However, this approach is ararely used due to its multiple disadvantages (Goddard and 

Hayes, 2007). Using any meaneful high-density marker map, the number of explonatory variable 

(markers effects) is much higher than the number of observations leading to the well known 

small “n” large “p” problem. Even in the situation where LS could be used, significance test will 

allow only the detection of markers with large variance limiting the amount of total genetic 

variance that can be captured by the markers and consequently the accuracy of the GEBV 

(Meuwissen et al., 2001; Goddard and Hayes, 2007).  

2. BLUP 

 Marker effects in the model are assumed to be independent and randomly distributed with 

a constant variance. The resulting mixed model allows the simultaneous estimation of the marker 

effects and to a higher accuracy of breeding values estimations (Goddard and Hayes, 2007). 

Furthermore, the model could be implemented using Henderson’s mixed model equations: 
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Where λ  refers to ratio of the residual and marker effects variances. Although this approach 

could lead to a more accurate estimates, several reports (Meuwissen et al., 2001, and ???) found 

that it could be out performed using Bayesian approaches which employ prior information on 

QTL effects.  

3. Bayesian approach 

 The Bayesian approach differs from the previous method (BLUP) mainly through its 

ability to assign prior information for the marker effects. Depending on that prior information 

several Bayesian methods have been proposed and implemented. Additionally, the Bayesian 
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approach relies of inferring the model parameters including marker effects through the repetive 

updating from their respective conditional distributions. In the animal breeding field, three main 

Bayesian implementations: BayesA, BayesB and BayesC (Dekkers et al., 2009; Fernando et al., 

2007; Jack Dekkers, 2009; Meuwissen et al., 2001).  

 Bayesian methods assume that marker effects are random and depending on the prior 

information, varying number of elements of the vector ig are assigned large probability of being 

zero or very close to zero. Contrarily to the BLUP approach were only one source of information 

is used, the Bayesian approach combines the data and prior information and all inferences are 

based on the resulting joint posterior distribution. For the model in [1], the Bayesian 

implementation requires prior specification for μ , ig  and e and sometimes their hyper-

parameters. It is often assumed that:  

                        Parameters                                                          Priors 

                             μ                                                              constant 

                            ig                         ( ig | πσ ,2
gi ) ~ N( 2,0 giσ ); 2

giσ ~ scaled inverse chi-square distribution 

         je  (the j-th element of e )        ~ N( 2,0 eσ ) ; 2
eσ ~ scaled inverse chi-squared distribution 

 

 For BayesA, the genetic variances of marker are assumed locus specific and they would 

be updated in each iteration by Gibbs sampler. But although most of the marker effects are very 

close to zero, their variances are not zero. In contrast, BayesB assumes that not all of the marker 

could capture QTL variances; therefore for a large portion of SNP markers, their genetic 

variances are exactly equal zero thereby no effects. The prior for BayesB is that with a high 
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proportionπ , loci have no variance and the rest of the loci with density of ( π−1 ) have nonzero 

variance (Meuwissen et al., 2001). It can be referred as: 

02 =gjσ              with probability π , 

),(~ 22 Sgj νσ −Χ  with probability π−1 , 

For parameters of the prior which follows scaled inverse chi-square distribution, 

Meuwissen et al. (2001) presented 012.4=ν  and 0020.0=S as the degree of belief and scale 

factor of 2
gjσ  when 2

gjσ  is nonzero. Comparatively, Xu (2003) defined as no prior information 

which is 0=ν  and 0=S . π  is defined as 0.95 in most situations. Furthermore, Gibbs algorithm 

is not appropriate no longer due to the zero variances for most markers. Metrololis-Hastings 

sampler is implemented for Bayesian analysis (Meuwissen et al., 2001).  

The choice of priors could be either arbitrary or according to experiential learning. 

However, the results from BayesA and BayeB methods are dependent on prior which means the 

accuracy of genomic selection based on such approaches is affected by values of π , ν  and S . 

Especially for the value of π , if we use incorrect scaled factor as the prior, the correlation 

between TBV and GEBV would be largely dependent on how close the π  chosen to the true 

value(Dekkers et al., 2009). To solve this problem, BayeC approach was implemented to search 

for an appropriateπ . BayesC approach is different from the other two Bayesian methods in two 

aspects. On the one hand, the priors for BayesC are changed as: 

( ig | πσ ,2
g ) ~ N ( 2,0 gσ ) 

π  is a prior but no longer with a fixed value of BayesB but following uniform distribution which 

generated samples from 0 to 1. Therefore, for each locus π  is specific. And π  is sampled from 

beta distribution in the conditional likelihood (Dekkers et al., 2009). On the other hand, the 
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genetic variance for each marker is the same. This means, genetic variances of markers are not 

locus specific as BayeA analysis. Consequently, for BayesA and BayesB approach, shrinkage 

thought is applied and one would fail to know which markers were really informative and able to 

capture QTL variances. But BayeC method will be less dependent on priors and can estimate the 

true value of π  to detect the markers with effects. The comparison of different methods is 

presented in one paper of Meuwissen et al. (2001) as: 

 Methods SEr EBVTBV +;  SEb EBVTBV +;  
LS 
BLUP 
BayesA 
BayesB 

018.0318.0 ±  
030.0732.0 ±  

798.0  
012.0848.0 ±  

024.0285.0 ±  
045.0896.0 ±  

827.0  
018.0946.0 +  

 

4. Bayesian LASSO 

 LASSO method is presented as “posterior mode estimates when the regression 

parameters have independent and identical Laplace priors”; it combines the good features of 

variable selection with the coefficient shrinkage produced by Bayesian regression and 

acknowledges at most (number of animals -1) nonzero regression coefficients (de los Campos et 

al., 2009; Park and Casella, 2008). Bayesian LASSO (i.e. BL) is its Bayesian version 

implemented with Gibbs sampling; compare with ridge regression of Gaussian prior, Bayesian 

LASSO, which uses Laplace (i.e. double-exponential) prior can make a faster shrinkage of 

weakly related parameters to 0 (de los Campos et al., 2009). The most essential parameter of BL 

is λ  which is selected by marginal maximum likelihood (Park and Casella, 2008).        

 GS is a straightforward approach to predict the young animals but still have some 

problems (Dekkers et al., 2009; Hayes et al., 2008). On one side, the knowledge for informative 

and uninformative loci is not always complete and one can not promise given SNPs in sufficient 

LD with QTL; this means the correct model equation is a precondition of all the other analysis 
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procedures and it will be difficult to prove its correctness. On the other, if the marker effects are 

assumed random, the variances for the informative marker loci and residual are actually 

unknown. However, in recent study, they are just arbitrarily assigned some values from 

experiences. And Meuwissen et al. (2001) had referred the accuracy of GS will be decreasing in 

the following generation. Therefore, whether it will be benefitable or profitable from a long-term 

point of view is still pending. 

Low-density panel and feature selection 

 High density SNP markers are available due to feasibility of reliable and cost efficient 

genotyping platform at commercial level. But genotyping all candidates of GS with density 

makers is still expensive for animals. Actually, not all the makers are strongly associated with 

loci which could affect corresponding traits. According to BayesC methodology, only a small 

part of SNPs are informative and able to capture some additive variances due to QTL. Therefore, 

separated low-density panels can be selected with subset of relevant SNPs in strong LD with 

QTL for different traits and populations (Habier et al., 2009a; Habier et al., 2009b). There are 

several approaches to attain the low-density panel selection: variable selection strategy in least 

squares regression, evenly-spaced low-density panel , Bayesian analysis and machine learning 

approaches (Habier et al., 2009b; Long et al., 2007).  

 Habier et al. (2009) presented that for evaluating loss of accuracy of low-density panels 

selected based on high-density SNPs, results from BayesB analysis showed reasonably sound 

quality with smallest loss and was superior to other methods of evenly-spaced low-density panel 

and forward least squares regression which is the worst always. But evenly-spaced low-density 

panel has advantage in accordance with reality and independent of number of QTL; moreover, it 

can be used across the traits and population instead of single trait or only within family. For 
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machine learning approach, Long et al. (2007) concluded two-step feature selection method 

which consisted of filter and wrapper. Filtering and wrapping steps are executed sequentially to 

remove irrelevant features to a small arbitrary number then use a classifier to achieve the 

optimization of feature subset performance. It is promising and effective but limited due to 

potentially inappropriate model. 

Summary 

Genomic selection is gaining a lot of popularity in the field of animal breeding and 

genetics due to it efficiency, ease of implementation and its ability to produce a breeding value 

that can be used directly in selection. Schaeffer (2006) concluded that compared with current 

progeny test approach, 3 to 4 times more genetic gain would be obtained from GS scheme 

however the cost was only 3% of today’s expense. International dominance will be achieved if 

more countries implemented extensively genotyping and GS approach. More packages and 

software will be available for estimating the GEBV and validating selection work. Because 

nucleus/consortium herds with high quality and complete data would be feasible and widely used 

for all manner of traits in future, genetic evaluation will be implemented with different strategies 

in distinct herds (Schaeffer, 2006).   
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Table 1. Technical requirements and characteristics. (Vignal, 2002 } 

  Technical requirements Technical characteristics 

Marker 

name 

Restriction 

Enzyme 

PCR Specific 

Primers 

Gel Develop- 

ment Effort 

Genotyping 

Effort 

Reproducibility1 Accuracy2 

RFLP yes no no3 yes High High High Very High 

RAPD no yes no yes Very Low Very Low Low Very Low 

AFLP yes yes no yes Low Very Low High Medium 

Micros-

atellite 

no yes yes yes High Low High High 

SNP no yes yes yes/no4 High Variable4 High Very High 

1 Refers to the genotyping error rate of the method: results may vary from one experiment to 

another. 

2 Refers to the precision at which true allele recognition can be performed. 

3 However, the RFLP technique relies on the use of a specific probe for the Soutnern-blot 

techinique. Nowadays, RFLPs are ususally genotyped by PCR-RFLPs, requiring specific primers. 

4 According to the genotyping technique used. 
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Figure 1. Milk for Holstein or Red & White (USDA, April 2009) 
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A 

 

B 

Figure 2. QTL effect distribution for pig and dairy cattle and estimated proportion of variance. A. 

Gamma distribution of QTL effect distribution for pig and dairy cattle (fitted with maximum 

likelihood).  B. Estimated proportion of variance contributed by the QTL above a size of the true 

QTL effects (Hayes, 2001). 
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Figure 3. Average linkage disequilibrium (r2) as a function of average genomic distance for 

Dutch black-and-white Holstein–Friesian bulls (HF_NLD), Dutch red-and-white Holstein–

Friesian bulls (RW_NLD), Australian Holstein–Friesian bulls (HF_AUS), Australian Angus 

animals (ANG_AUS), New Zealand Friesian cows (HF_NZL), and New Zealand Jersey cows 

( JER_NZL) for distances between 0 and 100 kb. Each data point was based on 200 marker pairs, 

resulting in standard errors 0.03. (A. P. W. de Roos et al. 2008) 
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Figure 4.  Genotyping on DNA microarrays procedure (Buzdin, 2007): Amplification of genomic 

DNA (gDNA) generates fragments that are hybridized to specific and sensitive oligonucleotide 

probes on microarray. An allele-specific primer extension (ASPE) reaction scores the captured 

SNP targets by incorporating multiple biotin-labeled dNTP (deoxynucleotide triphosphate) 

nucleotides into the appropriate allelic probe. For a given SNP on a give strand, two or more 

different allele-specific oligonucleotide probes are designed to capture different SNPs, since 

polymerase extension occurs preferentially from matched 3’-termini, enabling appropriate 

scoring of the SNP.  
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CHAPTER 3 

 

IMPUTING MISSING GENOTYPES USING AN ANT COLONY APPROACH1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1 Huiyu Wang, R. Rekaya. To be submitted to the Journal of Animal Science 
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Abstract 

Availability of reliable genotyping platforms for single nucleotide polymorphism markers (SNP) 

has made the possibility for genomic breeding values estimation in several livestock species a 

reality. Unfortunately, at above two hundred dollars per animal this technology is still too 

expensive for massive use at the commercial level. Currently, this technology is mainly used for 

genotyping top animals and then used in two step procedure for estimating genomic breeding 

values. For its use at the population level, the SNP genotypes of non-typed animals have to be 

inferred somehow from the already genotyped animals and their relationships. In fact, several 

attempts have been proposed ranging from the calculation of gene content to the construction of 

a covariance matrix similar to the classical additive relationship matrix. However, in all cases the 

only information used is the one available from the allele frequencies and the relationships 

between animals. This information could be limited especially in pedigrees that span several 

generations as it is the case in food producing animals. In this study, we propose using low-

density chips with few hundred SNPs for large scale genotyping. This low cost chip will provide 

an additional source of information, linkage disequilibrium, in inferring genotypes of non-typed 

animals. For that purpose a simulation was conducted where 1,000 and 2,000 animals were 

genotyped for the 50 K SNPs and 500, 1,000 and 2,000 SNPs were selected jointly using an ant 

colony algorithm. The results showed an increase in the probability of predicting the true SNP 

genotypes. In fact, the percentage of alleles known after the sampling process (AK) and the 

average probability of the true genotype being identified for every animal and locus 

(APTG) were 0.79 and 0.61, respectively. 

INDEX WORDS: SNP, Ant Colony, Low density, High density, Genotype imputation 
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Introduction 

Many algorithms have been developed to predict breeding values in livestock 

applications, to classify disease types and to identify causative mutations based on the SNP 

genotypes and significant gains have been made in the accuracy of prediction and of disease 

classification. In addition many studies have shown that improved performance can be achieved 

when using a selected subset of features, as opposed to using all available data. Increases in 

accuracy achieved through the selection of predictive features can complement and enhance the 

performance of classification algorithms, improve the understanding of biologically relevant 

features, and reduce the cost. Ideally, one would like to select an optimal sub-set of features that 

would yield maximum predictive power. In the case of high-dimensional data sets, such as SNP 

genotypes, this can be very computationally demanding. Furthermore, several studies (Coutinho 

et al., 2007; Barendse et al., 2007) have found that gene interactions may play important roles in 

many complex traits. Unfortunately, due to the high density of SNP maker maps, it is 

computationally infeasible to examine all possible interactions. As a result studies examining 

gene interactions tend to focus on a small number of SNP, previously identified as having strong 

marginal associations.  

While this approach has shown some success, simulation studies conducted by Marchini 

et al. (2005) and Pickrell et al. (2007) showed that, in the presence of several types of gene 

interactions, there is reduced power to detect causative loci with models estimating only 

marginal effects. Using an exhaustive search of all two-way interactions, Marchini et al. (2005) 

achieved greater power to detect causative mutations when compared to models estimating only 

marginal effects. However, due to the high computational cost of this approach, a two-stage 

model was proposed, in which SNP were selected in the first stage based on marginal effects and 
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then tested for interactions in the subsequent stage [Marchini, et al. 2005]. Such an approach 

represents a compromise that could result in the failure to detect important regions of the genome 

in the first stage of the model. As such, there is a need for methodologies capable of identifying 

important genomic regions in the presence of potential gene interactions when large numbers of 

markers are genotyped. 

In order to overcome the problems associated with the classical approach based on the 

marginal effects for reducing the dimensionality of SNP data and its inability to account properly 

for the potential interactions, we propose a two stage procedure based on (1) SNP tagging and 

(2) marker identification using Ant colony algorithm. The specific objective of this study was to 

develop a combined ant colony algorithm and peeling process to select a low density SNP 

marker panel that will maximize the probability for imputing the non-typed loci. 

 

Material and Methods 

SNP Tagging and Genotyping 

 SNP tagging provides a mean to both reduce collinearity and dimensions of genotype 

data. Use of these methods can reduce genotyping cost without substantially decreasing the 

coverage of the genome, in terms of LD between adjacent SNP. For applications in association 

studies, a multiple linear regression (MLR) approach developed by He and Zelikovsky (2006) 

was modified and integrated into our optimization and feature selection software suite. The 

modified procedure was implemented in a wrapper scheme using the ACA for selection of 

tagged SNP. The selected SNP will be evaluated using MLR: 

yi=Xβ +e            e ~ N(0,σ2⊗ I)                                               (1) 
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where X is an n by k incidence matrix with n rows corresponding to n genotypes or haplotype 

blocks and k rows corresponding to k tagged SNP; yi is a vector containing genotypes for the 

non-tagged SNP i; and e is a vector of random residuals. The accuracy in which the tagged SNP 

predict the untagged SNP will be used to update pheromone in the ACA to find subsets of SNP 

that reduce dimension to an acceptable degree while minimizing the loss of LD.  

 

Ant colony algorithm for SNP data 

The ACA employs artificial ants that communicate through a probability density function 

(PDF) that is updated each iteration with weights or “pheromone levels”, which are analogous to 

the chemical pheromones used by real ants. In the case of SNP association studies, the weights 

can be determined by the strength of the association between selected genotypes and the 

response of interest (in case the ability to impute missing genotypes). Using the notation of 

Dorigio and Gambardella (1997) and Ressom et al. (2006), the probability of sampling SNP m at 

time t is defined as: 

                                
∑
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                                                      (2) 

where  )(tmτ  is the amount of pheromone for SNP m at time t; mη is some form of prior 

information on the expected performance of SNP m; α  and β  are parameters determining the 

weight given to pheromone deposited by ants and a priori information on the features, 

respectively 

Using the PDF as defined in equation (2), each of j artificial ants selects a subset kS  of n 

SNP from the sample space S  containing all SNPs. Given the relationship between adjacent 

SNP, ants randomly change SNP selections following a multinomial distribution, with changes 
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being limited to the three adjacent SNP on either side of the originally selected SNP marker. The 

pheromone level of each feature m in kS  is then updated according to the performance of kS as:   

                  )()(*)1()1( ttt mmm ττρτ Δ+−=+                                                           (3) 

where ρ  is a constant between 0 and 1 representing the rate at which  the pheromone trail 

evaporates;  )(tmτΔ  is the change in pheromone level for feature m based on the sum of 

accuracy of all kS  containing SNP m, and is set to zero if SNP m was not selected by any of the 

artificial ants.  

The procedure can be summarized in the following steps: 

1) Each ant selects a predetermined number of SNP markers. 

2) Using the selected SNP markers, accuracies are computed using regression on 

genotypes. 

3) The pheromone for each selected group of SNP, kS , is calculated as:  

pheromonek=acc(1-acc)  (acc=accuracy)   

4) The change in pheromone at time t is then calculated using equations (3) . 

5) Following the update of pheromone levels according to equations (3), the PDF was 

updated and the process is repeated until pheromone levels have converged.   

   

Once the optimal small set of SNPs of the low density panel have been identified by the 

ACA procedure, it will be combined with the allele frequencies and the pedigree relationship in a 

peeling algorithm similar to Qian and Beckmann (2002), Tapadar et al. (2000) and Spangler et 

al. (2009). Once the peeling process is completed, the number of animals with one or two alleles 

known and the probability of inferring the true genotype at each marker locus, igjPTG , will be 

computed as:  
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samples ofnumber  total
j locusat  assigned  was genotype  timesofnumber 

PTG ij

jig

g
=  

where genotype ijg  is the true genotype for animal i at locus j. 

 

Peeling process 

Given that genotypes in this study were assigned at random in the population, it is 

possible to extract additional genotypic information from the pedigree.  Animals with missing 

genotypic information can be assigned one or both alleles given parental, progeny, or mate 

information.  Given this trio of information sources and following an algorithm similar to Qian 

and Beckmann (2002) and Tapadar et al. (2000), imputation on missing genotypes were made 

and additional genotypic information was garnered.  As indicated before, it was assumed that 

there were no errors in the recorded pedigree resulting in all animals having known paternity and 

maternity.   

For genotypes that were correctly inferred by the ACA, homozygous provided the major 

additional information for the peeling process as the origin of both alleles is known. However, 

for the heterozygous genotypes the origin of both alleles was unknown after ACA step and their 

usefulness in the peeling process depended on the ability of resolving the phase situation. For 

that purpose, information on relatives, mates and Mendelian inconsistency was used to determine 

the origin of each allele. Similarly, genotypes imputed with a probability greater than .8 during 

the ACA step were used in the peeling process. Those genotypes were assumed correct unless 

they conflict with Mendelian rules of segregation. In that case, that genotype was ignored and the 

next best genotype (the second highest probability) will be assumed as true and the process  
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described earlier was repeated.  In the cases where the parental origin of an allele was unclear, 

then allele was arbitrarily assigned as either the paternal or maternal allele.   

At the end of the peeling process those animals that had either one or two alleles known 

were retained to be used in an iterative procedure in order to infer the remaining unknown alleles 

in the population.  A Gibbs sampling procedure using those animals having one or two known 

alleles, used as prior information, was carried out in order to impute the remaining unknown 

alleles in the population. 

For the base population animals, the unknown allele(s) were randomly sampled given the 

allele frequencies in the population and the assumption of Hardy-Weinberg equilibrium.  

Unknown alleles for non-base population animals were randomly sampled from the parent’s 

genotypes according to Mendelian rules.  An equal probability was assumed for inheriting either 

the first or second allele from a parent.  For a non-base population animal that had only one 

unknown allele, the unknown allele was sampled approximately half of the time from the sire’s 

genotype and the remaining time from the dam’s genotype.   

At the end of the sampling process and following Spangler et al. (2009), a benefit 

function that described the total number of alleles known in the population was computed.  This 

function combines known alleles and the probability of unknown alleles assigned during the 

sampling process.  In order to be included in the benefit function, it is not enough that the 

genotype at a locus include the allele in question. In fact, an allele in a particular position had to 

be equal to the true allele of the same position   The probability of allele jia , , (j = 1 or 2) being 

assigned as the true allele j for animal i was calculated as: 

iterationsofnumber 
assigned  was  timesofnumber 

)( ,
,

ji
ji

a
ap = . 
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Using )( , jiap  and the number of known alleles, the benefit function at a locus k was computed 

as:       

∑ ++∑ ++×=
==

32
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where 1n , 2n , and 3n  were the number of animals with 2, 1 or 0 alleles known, respectively. The 

percentage of alleles known after the Gibbs sampling process, AK , was computed as:  

q
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i
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1
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=

, 

where ibenefit  was the benefit function for locus i, an was the total number of animals in the 

pedigree, and q was total number of loci in the panel. 

At every round of the sampling process only one true genotype was assigned at each 

locus and each animal.  Thus, at the end of the sampling process every animal had a probability 

of having the true genotype at locus j, igjPTG , assigned as  

samples ofnumber  total
assigned  was genotype  timesofnumber 

PTG j
ig

g
j
= , 

where genotype jg  was the true genotype for animal i  for locus j.  The average probability of 

the true genotype being identified for every animal and locus (APTG)  was computed using the 

following equation:   

xqna

n

i
ig

a

j
∑∑

= = =1

q

1j
PTG

APTG , 

where an and q are the total number of animals and loci, respectively. 
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Data Simulation 

A simulation was carried out where all animals in the pedigree were assigned SNP 

genotypes. No errors or missing genotypes were assumed. A pedigree with four over-lapping 

generations was simulated.  The base population included 500 unrelated animals and subsequent 

generations consisted of 5000 animals with a total of 15,500 animals generated.  Genotypes of 

the base population animals were assigned based on allele frequencies and linkage 

disequilibrium.  For the subsequent generations, genotypes were randomly assigned using the 

parent’s genotype, where an equal chance of passing either the first or second allele was 

assumed. 

 Two experimental factors were investigated: 1) number of animals (1,000 or 2,000) fully 

genotyped using the 50 K SNP chip; and 2) number of SNPs in the low density panel being 

either 500, 1,000 or 2,000 SNPs. In total there have been 6 (2x3) simulation scenarios.  Five 

replicates of the simulated data were generated for each simulation scenario. A full description of 

the simulation parameters could be found in Table 1. 

 

Results and Discussion 

The percentages of SNP genotypes correctly imputed and those identified with a probability 

greater than 0.8 at the end of the ant colony step are presented in Table 2. They range from 7 to 

21% for the completely known genotypes and from 24 to 42% for genotypes identified with 

probability greater than 0.8. As expected, both percentages increased with the increase of the 

number of SNPs in the low density panels and the number of fully genotyped animals. 

Furthermore, it seems that the increase of the number of SNPs in the low density panels has more 

influence in imputing the true genotypes than the number of fully genotyped animals. In fact, the 
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percentage of correctly imputed genotypes almost doubled (7% vs. 12%) when the number of 

SNPs in the low density panel was increased from 500 to 1,000 SNPs. This could be due to the 

fact that the larger the number of SNPs in the low density panel, the higher is their linkage 

disequilibrium with the missing genotypes.  

Table 3 presents the percentages to genotypes imputed with a probability smaller than 0.2 

at the end of the ant colony step. They ranged between 5 and 14% with a clear tendency of 

decreasing with the increase of the number of SNPs in the low density panel. However, very 

little change was observed when the number of fully genotyped animals was increased from 

1,000 to 2,000. This could be due to some SNPs with high minor allele frequency that the ant 

colony algorithm could not converge on a good solution. 

After adding the peeling and the sampling steps, the percentages of correctly imputed genotypes 

have increased significantly as presented in Table 4. The percentages of correctly imputed and 

those identified with a probability greater than 0.8 ranged between 13 to 32% and 47 to 63%, 

respectively, with greater increase with the increase of the number of SNPs in the low density 

panel. These results indicate, as before, that an increase of the number of SNPs in the low density 

panel is more beneficial in imputing the missing genotypes. For the genotypes imputed with a 

probability smaller than 0.2 after the sampling step (Table 5), there has been only modest 

improvement likely indicating that there are few loci that are hard to impute either due to their 

weak linkage disequilibrium with the SNPs in the low density panel or/and their high minor 

allele frequencies. Finally, the percentage of alleles known after the sampling process (AK) and 

the average probability of the true genotype being identified for every animal and locus 

(APTG) were 0.79 and 0.61, respectively. 
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Conclusions 

The results of this study suggest that the ant colony algorithm is a powerful tool for 

selecting low density SNP markers panel that will maximize the probability of imputing the 

missing genotypes, especially when combined with a peeling step. Furthermore, it appears that 

the probability of imputing missing SNP genotypes is more influenced by the number of alleles 

in the low density panel than the number of fully genotyped animals very likely due to the effect 

of linkage disequilibrium. With almost a third of the missing genotypes imputed correctly and 

two thirds with probability greater than 0.8, the proposed procedure could provide a cost 

effective tool for large scale genomic evaluation in livestock. However, it is necessary to 

evaluate the effects of the imputed genotypes in the accuracy of the estimated breeding values in 

order to access the practical usefulness of the proposed procedure. 
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Table 1: Mean, minimum and maximum of the minor allele frequency (MAF) and linkage 

disequilibrium (LD) for the 50 K SNP panel used in the simulation 

 Mean Min Max 

MAF 

LD 

.37 

0.54 

0.11 

0.32 

0.49 

0.93 
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Table 2: Percentages of genotypes correctly imputed (FK), and those identified with a probability 

greater then .8 (Pr.>.8) after the ant colony step.    

1000 animals 2000 animals Fully genotyped 

Selected SNPs FK Pr>.8 FK Pr.>.8 

500 

1000 

2000 

7 

12 

18 

24 

32 

39 

8 

14 

21 

27 

36 

42 
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Table 3: Percentages of genotypes imputed with a probability smaller then .2 (Pr.<.2) after the 

ant colony step.    

1000 animals 2000 animals Fully genotyped 

Selected SNPs Pr.<.2 Pr.<.2 

500 

1000 

2000 

14 

8 

5 

12 

7 

5 
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Table 4: Percentages of genotypes correctly imputed (FK), and those identified with a probability 

greater then .8 (Pr.>.8) at the end of the sampling process.    

1000 animals 2000 animals Fully genotyped 

Selected SNPs FK1 Pr>.8 FK1 Pr.>.8 

500 

1000 

2000 

13 

21 

29 

47 

52 

61 

15 

24 

32 

49 

57 

63 

1 defined based on a probability of having the true genotype at locus j, igjPTG   greater than 0.95  
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Table 5: Percentages of genotypes imputed with a probability smaller then .2 (Pr.<.2) at the end 

of the sampling process.    

1000 animals 2000 animals Fully genotyped 

Selected SNPs Pr.<.2 Pr.<.2 

500 

1000 

2000 

13 

6 

5 

12 

6 

5 

 

 

 



  49 

 
 

CHAPTER 4 

 

COMBINING HIGH AND LOW DENSITY SNP PANELS TO IMPUTE GENOTYPES FOR 

NON-TYPED ANIMALS WITH APPLICATION IN GENOMIC BREEDING VALUE 

ESTIMATION1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1 Huiyu Wang, R. Rekaya. To be submitted to the Journal of Animal Science 
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Abstract 

The cost of genotyping using high density markers panel has precluded its use at a large 

scale in livestock applications. In order to reduce cost and extend the use of this new technology, 

a procedure that optimizes the use of existing information and with the ability to impute missing 

genotypes for non-typed animals is of interest to the industry. For that purpose we proposed 

combining genotyping information from high and low density SNP panels for genomic 

evaluation. Under several simulation conditions, the proposed procedure was evaluated on its 

ability of estimating the true breeding values.  The results showed that the proposed procedure 

was successful in increasing accuracy of estimated GBVs by 3 to 12% depending on the number 

of SNPs and genotyped animals. These results suggest that this procedure could provide a cost 

effective tool for large genomic evaluation. 

INDEX WORDS: SNP, Low density, High density, Genotype imputation, Genomic selection 

 

Introduction 

The advent of new technologies makes it possible to efficiently genotype animals for 

thousands of SNP in order to identify genomic regions associated with phenotypes of interest. 

Through the identification of genomic ‘hot spots’, marker coverage could be allocated 

accordingly, with markers placed more densely on ‘hot regions’ and more sparsely in regions 

with no apparent associations. Genetic variation present in sparse marker areas could then be 

accounted for by including a polygenic effect (Calus and Veercamp, 2007). One issue associated 

with this approach is the lack of power due to high-dimensions and small additive effects. When 

dealing with complex traits, the underlying genetic mechanisms are often complex involving 

several interacting genes (Barense et al., 2007; Coutinho et al., 2007). Under such scenarios, 
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several simulation studies have show there is little power to detect important genomic regions 

when looking at marginal effects only (Marchini et al., 2005; Pickrell et al., 2007). Piyasatian et 

al. (2007) found that when including only markers with significant effects, there was reduced 

accuracy for prediction of expected breeding values when compared to genomic selection 

utilizing full genome coverage. Given the high dimensions of SNP data sets traditional statistical 

methodologies cannot estimate the parameters needed to explore all potential interactions. In 

such scenarios, machine learning methodologies have been shown to be effective. These 

methodologies are capable of efficiently searching large sample spaces for optimal solutions. 

Robbins et al. (2008a) showed that, when using genomic features selected by the ant colony 

algorithm, substantial increases in prediction accuracy were obtained when compared to 

methodologies selecting features base on marginal effects. In applications to SNP studies we 

have found that the ACA has far greater power to detect important genomic regions for traits 

controlled by interacting genes. 

When we applied to the Ant colony Algorithm (ACA) to several high-dimensional data 

sets, it was able to identify small subsets of highly predictive and biologically relevant features 

without the need for extensive pre-selection. Using the selected features to train a predictive 

model yielded substantial increases in prediction accuracy when compared to several rank based 

methods and results obtained in previous studies. When applied to the often noisy and high 

dimensional expression data, our results (Robbins et al., 2008a) showed that the performance of 

the ACA was superior, not only to the filter based methods but to several reported results using 

the GCM data set that has been a benchmark to compare the performance of classification and 

feature selection and it consists of 198 samples collected from 14 tumor types. The ACA 

consistently yielded higher accuracies than the filter based methods, for which ranks varied 
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across replications. Furthermore, the breaks in pheromone levels observed with the most 

predictive genes also provided more objective selection criteria for identifying top features, 

unlike the filter methods used in this study, in which truncation points were somewhat arbitrary. 

More recently, our group has developed and tested a modified ACA for use in association 

analysis involving complex traits (Robbins et al., 2008b). The ACA has been applied to genotype 

data from the HapMap ENCODE project and a simulated binary trait under the control of two 

interacting loci.  

The ACA was implemented with logistic regressions on haplotypes and genotypes as the 

evaluation function for pheromone deposition and compared to single locus genotype and sliding 

window haplotype methods of analysis. As with previous applications, the ACA’s ability to 

account for complex data structures, in this case epistasis, allows it to achieve substantial 

increases in power over models accounting for only marginal effects. 

Furthermore, plots of the pheromone can then be used to select relevant markers for use 

in evaluations. Since markers are analyzed in groups, as opposed to evaluating a single marker 

region at a time, the ACA is able to efficiently account for gene interactions without any prior 

knowledge of gene networks underlying traits of interest. 

 Our group has an extensive expertise in developing alternative methods of selecting 

animals to be genotyped using Ant Colony algorithms (ACA). Using simulated and real beef 

cattle data, Spangler et al. (2009) suggest that ACA is the most desirable method of selecting 

candidates for genotyping, particularly after a peeling step.  From these results it appears that the 

number of offspring and the number of mates along with the homozygosity of the genotyped 

animals is critical in the selection process.  Consequently, in application it will be critical to have 

good estimates of allele frequencies prior to implementing our genotype sampling strategy.  
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Differences in performance of ACA do exist between the explored pedigrees. This is due to the 

proportion of sires and dams that have large numbers of offspring and/or mates.  In the dairy 

industry, for example, there may be only a small number of sires in a pedigree but they may all 

be used heavily as in the case of the simulated pedigrees in the current study.  In contrast, a 

pedigree from the beef industry may have a larger proportion of sires but a large number of them 

may be used less frequently.  Furthermore, pedigrees from field data or from research projects 

will also have innate structural differences.  Research projects may be limited by the size of the 

population and thus only use a small number of sires.  In this scenario it would also be possible 

for higher rates of inbreeding and larger numbers of loops in a pedigree due to a large number of 

full sibs.  Ant colony optimization offers a new and unique solution to the optimization problem 

of selecting individuals for genotyping.  However, the heuristics, such as the number of ants, 

number of iterations, and the evaporation rate have to be chosen carefully. 

Recent interest in marker-assisted selection (MAS) and genome wide selection for 

livestock populations has increased greatly due to improvement in genotyping techniques and 

development of theoretical framework for dealing with such information. Yet, it may not be 

viable to genotype each animal due to cost, time or lack of availability of DNA. Furthermore, for 

some traits such as N and P retention, the situation is even more complex due to the fact that the 

collection of those phenotypes requires individual feeding and fecal collection protocols which 

will present logistical problems. Consequently, we believe that it is of crucial practical 

importance to carefully address two main issues: 1) identification of a set of animals to genotype 

that maximizes the information on non-genotyped ones, and 2) to develop a low density and low 

cost marker panel that will maximize the information on imputing non-genotyped loci or/and 

animals. By combining both procedures, we will be in a position to maximize the use of 



 
 

 

54

information, reduce cost and genotype a much large portion of the population.  As such, a 

method that could select a small subset of size “n” of features (animals or loci) for genotyping, 

which in turn, could be used to infer, with high probability, the genotypes for the remaining 

animals in the population or loci high density panel could be beneficial. By using such a method, 

fewer animals in a population and SNPs would be needed for genotyping which would decrease 

the time and cost of genotyping. Theoretically the problem at hand is simple to solve. If it were 

possible to evaluate every possible subset of animals in the population or loci in the low density 

panel equal to the desired size (e.g. 5% of the total number of features) the optimal solution 

could be found.  Unfortunately, such an approach is computationally impossible at the current 

time. Consequently a more feasible solution is needed.  Spangler et al. (2007 and 2009) 

presented an alternative approach for selective genotyping, viewing the problem as one of 

optimization using an ant colony approach. The “path” chosen by an artificial ant is a subset of 

features selected from a larger sample space, and the “distance” traveled is some measure of the 

features performance. In the case of genotyping, the ACA should select a subset of animals that, 

when genotyped, should give an optimal performance in terms of extrapolating the alleles of 

non-genotyped animals. 

In this study we will extend the ant colony algorithm presented by Spangler et al. (2007 

and 2009) with the specific objectives of: 1) selecting a low density panel from a high density 

chip and evaluate its effectiveness in imputing missing genotypes and 2) evaluate the accuracy of 

GBV estimated by combining low and high density panels. The proposed procedures will be 

evaluated using simulated data. 
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Material and Methods 

Data Simulation 

A simulation was carried where all animals in the pedigree were assigned 50 K SNP 

genotypes. A pedigree with four over-lapping generations was simulated.  The base population 

included 500 unrelated animals and subsequent generations consisted of 5000 animals with a 

total of 15,500 animals generated.  Genotypes of the base population animals were assigned 

based on allele frequencies.  For the subsequent generations, genotypes were randomly assigned 

using the parent’s genotype, where an equal chance of passing either the first or second allele 

was assumed.  

Three experimental factors were investigated: 1) number of animals (1,000 or 2,000) 

fully genotyped using the 50 K SNP chip; 2) number of SNPs in the low density panel being 

either 500, 1,000 or 2,000 SNPs; and 3) the percentage of animals genotyped using the low 

density chip being either 10 or 25%. In total there have been 12 (2x3x2) simulation scenarios.  

Five replicates of the simulated data were generated for each simulation scenario.  

 

Estimation of the SNP effects 

The following mixed linear model was used to estimate the SNP effects 

∑
=

++=
q

i 1

eaX1y iiμ   [1] 

where y is the vector of phenotypes of size n, μ is the overall mean, ia is the SNP effects at 

position i, iX is a known incidence matrix, and e is the vector of residual terms. The summation 

term, i, is over all possible SNPs.  
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For a Bayesian implementation of the model in equation [1], prior distributions for all parameters 

are required. In this study, the following prior distributions were assumed 

tconsp tan)( ∝μ  
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Where aiν , and eν are the prior degrees of belief for the SNP and residual variance respectively, 

and 2
as and es are the correspondent scaling factors. This formulation is similar to the BayesA 

method presented by Meuwissen et al. (2001). 

The resulting joint posterior distribution of all unknown parameters in the model is the product 

of densities in equation [1] and the prior distributions. Because conjugate priors were used, the 

joint posterior distribution was in closed form. For implementation via Gibbs sampling the full 

conditional distributions were needed. In the case, all conditional distributions were in closed 

form being normal for the position parameters (overall mean and the SNP effects) and scaled 

inverted Chi square for the variance components 
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Analyses 

Training: Fully genotyped animals were used in the training step. Depending on the simulation 

scenario, either 1,000 or 2,000 animals were used. In order to evaluate the adequacy of 

combining low and high density panels and the imputation of missing genotypes, the training 

was conducted using both the high and low density panels. In other words, if 1,000 animals were 
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considered to be fully genotyped, two training analyses were conducted: 1) using the high 

density panel, and 2) using the low density panel (500 -2,000 SNPs). 

In all training analyses, Gibbs sampler with a single chain of 10,000 to 20,000 iterations was 

implemented. Convergence was assessed by graphical inspection of the trace plot of the sampling 

process. The burn-in period ranged from 2,000 to 3,000 iterations. 

Validation: Animals genotyped using the low density panel (10 or 25% of the population) were 

used in the validation step. When the high density panel was used in the training step, the 

missing genotypes for the animals genotyped with the low density panel were imputed.    

Comparison of estimated breeding values  

Genomic breeding values were computed as the sum of all the SNP effects. Accuracies of 

estimated breeding values for animals in the validation set obtained using the low density panel 

and the high density panel with imputed genotyped were computed and compared in order to 

quantify the potential advantage of combining low and high density panels. 

 

Results 

The proposed procedure was successful in increasing the probability of inferring the true 

SNP genotypes for the non-typed animals by 12 to 18% depending of the simulation parameters. 

This increase was observed even for animals with loose to no relationships with fully genotyped 

animals due to the use of linkage disequilibrium between loci in the low and high density panels. 

Furthermore, the proposed method increased the accuracy of the estimated breeding values by 2 

to 12% depending on the number of SNPs in the low density panel and the number of genotyped 

animals. When only 1,000 animals were fully genotyped using the 50 K panels, the percentage 

increase in accuracy for breeding value estimation for the non-fully typed animals ranged from 2 
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to 9% as indicated in Table 1. As expected, increase in accuracy improved with the increase of 

the number of SNPs in the low density panel and the number of partially genotyped animals (10 

or 25%).  However, it worth mentioning that the marginal increase from 1,000 to 2,000 SNPs is 

smaller than from 500 to 1,000 SNPs. This could be due to fact that 1,000 SNPs will contain the 

majority of most influential genome segments and increase the number to 2,000 will add only 

marginally to the accuracy of breeding value estimation. When 2,000 animals were fully 

genotyped a similar trend was observed. However, with the increase in the accuracy of breeding 

values estimation is higher than in the case when only 1,000 animals were genotyped (Table 2). 

 

Conclusions 

The results of this study suggest that for some livestock industries, such as dairy cattle, 

the proposed procedure could offer a practical and cost effective tool for large scale use of 

genomic information in the genetic evaluation where animals of high use (i.e. bulls) will be 

genotyped with the high density SNP panel and the rest of animals (especially females) will be 

genotyped using the low density panel. It seems that genotyping a small fraction of the 

population with a high density panel (50 K SNPs) could provide reasonable information to infer 

the missing genotypes from animals genotyped with low density panels or non genotyped at all. 

It is worth mentioning that two issues have to be considered while contemplating an approach 

similar to the one presented on this study: 1) the SNPs in the low density panel have to selected 

based on either ability in inferring the missing genotyped for the non-typed loci mainly through 

the linkage disequilibrium and 2) the subset of animals to be fully and partially genotyped have 

to be selected carefully in order to maximize the information content about non-typed SNPs. For 

both issues, the Ant colony algorithm proved to be robust yet practical and cost effective.  
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Table 1: Increase in accuracy for partially genotyped animals using 1000 fully genotyped 

 and phenotyped animals (average over 5 replicates). 

Low density panel Percentage 

genotyped animals 500 1,000 2,000 

10 2.42 4.28 5.71 

25 5.18 7.44 8.57 
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Table 2: Increase in accuracy for partially genotyped animals using 2000 fully genotyped  

and phenotyped animals (average over 5 replicates). 

Low density panel Percentage 

genotyped animals 500 1,000 2,000 

10 2.96 5.70 8.57 

25 7.14 10.0 11.42 
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CHAPTER 5 

CONCLUSIONS 

The results of this study showed that the ant colony algorithm is an efficient tool for 

selecting a low density SNP markers panels to impute the non-typed loci. When combined with a 

peeling like procedure, it increased the probability of predicting the true SNP genotypes. In fact, 

the percentage of alleles known after the sampling process (AK) and the average probability of 

the true genotype being identified for every animal and locus were 0.79 and 0.61, respectively. 

When combining low and high density SNP markers panels with missing genotyped being 

imputed, the proposed method increased the accuracy of the estimated breeding values by 3 to 

12% depending on the number of SNPs in the low density panel and the number of genotyped 

animals. These results suggest that for some livestock industries, such as dairy cattle, the 

proposed procedure could offer a practical and cost effective tool for large scale use of genomic 

information in the genetic evaluation where animals of high use (i.e. bulls) will be genotyped 

with the high density SNP panel and the rest of animals (especially females) will be genotyped 

using the low density panel.  
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APPENDIX A 

ABBREVIATIONS 

AFLP:   Amplified Fragment Length Polymorphism 

GS:       Genomic Selection 

GWAS: Genome-Wide Association Studie s 

HGP:  Human Genome Project 

LOD:   Logarithm of Odds 

RAPD:  Random Amplified Polymorphic DNA 

RFLP:   Restriction Fragment Length Polymorphism 

SCAR:   Sequence Characterized Amplified Region 

STS:      Sequence Tagged Site 

SNP:     Single Nucleotide Polymorphism 

SSRs:   Simple Sequence Repeats 
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