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Abstract

In this paper we will survey Hill’s estimator, which is one of the most popular
estimators for the tail index of heavy-tailed distributions. Applications are numerous
and include, for example, insurance reliability theory, econometrics, geology and cli-
matology. We will outline how Hill’s estimator is constructed and summarize the
developments of its properties like consistency and asymptotic normality. Therefore,
we will introduce the concept of first- and second-order regular variation. Further-
more, we will give an overview of proposed methods for choosing the number of
order statistics, a very crucial parameter in Hill’s estimator. Graphical tools for the
estimator will be illustrated on the basis of an example.
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Chapter 1

Introduction

Extreme value theory can be applied to various fields of interest. Consider the fol-

lowing situations:

¦ Dams or sea dikes must be built high enough to exceed the maximum water

height. The Dutch government specifies that the probability of a flood in a

given year should be 1/10,000 (de Haan (1994)).

¦ Design strength of skyscrapers must be sufficient to withstand wind stresses

from several directions (Resnick (1987)).

¦ Over a period of time a primary insurer receives k claims. The ECOMOR

reinsurance contract binds the reinsurer to cover (for a specific premium) the

excesses above the r-th largest claim (Teugels (1981a)).

¦ Portfolio managers and regulators are interested in the maximal limit on the

potential losses of a given portfolio (Embrechts et al. (1997)).

The situations described above have a common feature: observational data

already exists or can be collected, and the features of the observations of most

interest depend on either the smallest or the largest values; i.e., the extremes.

In many cases the events of interest even fall outside the range of the data. The

challenge comprises of summarizing the data in appropriate models and making

decisions on the basis of the behaviour of the extreme values.
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In particular, many applied scientists are confronted with one of the fundamental

problems in extreme value statistics: given a sample which one assumes to be inde-

pendent and coming from an unknown distribution F , how can one

• estimate the endpoint of F ,

• estimate large quantiles of F ,

• or determine the probability of extreme events, i.e. the exceedance probability

of high thresholds.

These problems may be considered special cases of the more general question: What

are the features of a tail of a distribution and how can these features be estimated?

Hill (1975) introduced a simple, general approach to draw inference about the tail

behaviour of a distribution. It is not required to specify the underlying distribution

F globally, but merely the form of behaviour in the tail where it is desired to draw

inference. In simpler words, for a given sample of size k we condition upon the r + 1

upper (or lower) order statistics. Then, using the r + 1 upper order statistics the

conditional likelihood for the parameters that describe the tail of the distribution

can be obtained. Based on the conditional likelihood function Hill’s estimator can

be constructed. A more detailed description will be provided in Chapter 2.

Techniques for drawing inference about the tail behaviour of a distribution are

well developed, and alternative methods to Hill’s that are also based on extreme order

statistics have been proposed by Pickands (1975), Weissman (1978), and others.

There are also numerous modifications of Hill’s estimator; one of the best known

is the so called moment estimator proposed by Dekkers et al. (1989). In general

Hill’s estimator compares favourably with other competitors, especially when the

underlying distribution is of strict Pareto law, which is the special case Hill (1975)

considered and that will also be covered in Chapter 2.
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The goal of this paper is to compile the large amount of literature that studied

Hill’s estimator with respect to its asymptotic properties and the optimal choice of

order statistics used in the estimation. Chapter 2 is a basic version of how Hill’s esti-

mator is constructed. In Chapter 3 we will present the developments on consistency

and asymptotic normality of Hill’s estimator, which can be useful for a comparison

with alternative estimators (de Haan and Peng (1998)). Therefore we will introduce

the concept of regular variation, which has proven very useful in establishing results

on consistency and asymptotic normality. Chapter 4 addresses the difficult choice

of the number of order statistics used in Hill’s estimator. We will introduce graph-

ical methods that have been proposed to minimize the difficulty of this choice. The

graphical tools will be illustrated by considering an example.



Chapter 2

Constructing Hill’s Estimator

This section shows step by step how the estimator is developed. It follows the original

paper by Hill (1975). In addition, it provides proofs and explanations of the results.

The following preliminary result on the distribution of order statistics will be needed.

2.1 Rényi Representation

Let X1, . . . , Xk be a random sample of size k from a continuous strictly increasing

distribution F , where F (0) = 0. Let Z(1) ≥ Z(2) ≥ · · · ≥ Z(k) be the corresponding

order statistics, so that Z(1) = max{X1, . . . , Xk}, Z(k) = min{X1, . . . , Xk}, and Z(i)

in general denotes the i-th order statistic. Note this ordering of the order statistics

is not the usual one but is employed to maintain consistency with Hill’s paper.

Also, let Ei
iid∼ Exp(1) for i = 1, . . . , k (i.e., the Ei’s are independent expontentially

distributed random variables, each of which has expectation 1).

Then, by the Rényi (1953) representation theorem

Z(i) d
= F−1(exp{−[

E1

k
+

E2

k − 1
+ · · ·+ Ei

k − i + 1
]}) (2.1)

= F−1(exp{−
i∑

m=1

Em

k −m + 1
}), for i = 1, 2, . . . , k.

Proof. First note that (2.1) is equivalent to

F (Z(i))
d
= exp{−

i∑

m=1

Em

k −m + 1
}, for i = 1, 2, . . . , k.

4
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Let U (1) ≥ U (2) ≥ · · · ≥ U (k) be order statistics of an i.i.d. random sample from the

uniform distribution on [0,1]. Then

(F (Z(1)), F (Z(2)), . . . , F (Z(k)))
d
= (U (1), U (2), . . . , U (k)),

where A
d
= B means equality in distribution of random variables or vectors A and

B. Thus, we further obtain the equivalence

U (i) d
= exp{−

i∑

m=1

Em

k −m + 1
}

⇔ − log U (i) d
=

i∑

m=1

Em

k −m + 1
, for i = 1, 2, . . . , k.

Since the random variable V = − log U has a standard exponential - or, Exp(1) -

distribution with density f(v) = e−v, 0 ≤ v < ∞ and also − log u is a monotonically

decreasing function in u, the relation

V (i) = − log U (k−i+1), 1 ≤ i ≤ k,

holds, where V (i) is the i-th order statistic from the standard exponential distribu-

tion. Hence, we need to show that

V (k−i+1) d
=

i∑

m=1

Em

k −m + 1
, for i = 1, 2, . . . , k,

or equivalently that

(V (k), V (k−1), . . . , V (1))
d
= (

E1

k
,
E1

k
+

E2

k − 1
, . . . ,

E1

k
+

E2

k − 1
+ · · ·+ Ek

1
). (2.2)

It is sufficient to show that the two vectors have the same density function. Therefore,

a general result on the joint density of all k order statistics Z(1), Z(2), . . . , Z(k) is

introduced:

fZ(1),Z(2),...,Z(k)(z(1), z(2), . . . , z(k)) = k!
k∏

s=1

f(z(s)) (2.3)

for −∞ < z(k) < z(k−1) < · · · < z(1) < ∞.
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(Recall that we are employing Hill’s nonstandard indexing for order statistics.)

When the random sample is from a standard exponential distribution, the joint

density of all k order statistics in (2.3) takes the form

fV (1),V (2),...,V (k)(v(1), v(2), . . . , v(k)) = k!
k∏

s=1

f(v(s)) (2.4)

= k!
k∏

s=1

e−v(s)

= k!e−
∑k

s=1
v(s)

, 0 ≤ v(k) ≤ v(k−1) ≤ · · · ≤ v(1) ≤ ∞.

Hence, it is left to show that the vector (E1

k
, E1

k
+ E2

k−1
, . . . , E1

k
+ E2

k−1
+ · · ·+ Ek

1
) has

the same density function as given in (2.4). Let

(Yk, Yk−1, . . . , Y1) = (
E1

k
,
E1

k
+

E2

k − 1
, . . . ,

E1

k
+

E2

k − 1
+ · · ·+ Ek

1
)

Then

Yk =
E1

k
⇔ E1 = kYk,

Yk−1 =
E1

k
+

E2

k − 1
⇔ E2 = (k − 1)(Yk−1 − Yk)

...
...

Y1 =
E1

k
+

E2

k − 1
+ · · ·+ Ek

1
⇔ Ek = Y1 − Y2,

or, more generally,

Ek−j+1 = j(Yj − Yj+1), for j = 1, 2, . . . , k,

where Yk+1 = 0. Note that Yk + Y2 + · · ·+ Yk = E1 + E2 + · · ·+ Ek and

Yk ≤ Yk−1 ≤ · · · ≤ Y1.

Then the density of (Yk, Yk−1, . . . , Y1) can be determined by transformation

method:

fY1,Yk−1,...,Y1(yk, yk−1, . . . , y1) = fE1,E2,...,Ek
(e1, e2, . . . , ek)|J |,

where |J | is the determinant of the Jacobian and the Ej’s are i.i.d. Exp(1).
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Hence,

fE1,E2,...,Ek
(e1, e2, . . . , ek)|J | =

k∏

s=1

e−es|J | = e−
∑k

s=1
es|J |,

where the Jacobian is

J =




∂E1

∂Yk

∂E1

∂Yk−1

∂E1

∂Yk−2
· · · ∂E1

∂Y1

∂E2

∂Yk

∂E2

∂Yk−1

∂E2

∂Yk−2
· · · ∂E2

∂Y1

...
...

∂Ek

∂Yk

∂Ek

∂Yk−1

∂Ek

∂Yk−2
· · · ∂Ek

∂Y1




J =




k 0 0 · · · 0

−(k − 1) k − 1 0 · · · 0

0 −(k − 2) k − 2 · · · 0

...
...

...
. . .

0 0 0 −1 1




.

So the Jacobian is a lower triangular matrix and its determinant is equal to the

product of its diagonal elements. Thus,

|J | = k(k − 1)(k − 2) . . . (1) = k!,

so that the joint density of (Yk, Yk−1, . . . , Y1) is

f(yk, yk−1, . . . , y1) = k!e−
∑k

s=1
es = k!e−

∑k

i=1
yi , for 0 ≤ yk ≤ yk−1 ≤ · · · ≤ y1 ≤ ∞.

Hence, the two vectors in equation (2.2) have the same density function. Thus, the

Rényi representation theorem is proved. A similar proof can be found in Nevzorov

(2001).

2.2 Conditional Likelihood Function

Based on the Rényi representation theorem in (2.1) one can obtain variables distri-

butionally equivalent to an i.i.d. Exp(1) sample. Such an analysis forms the basis

for calculating a conditional likelihood function.
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From (2.1) it follows that,

log F (Z(j−1)) = −
j−1∑

m=1

Em

k −m + 1
, and (2.5)

log F (Z(j)) = −
j∑

m=1

Em

k −m + 1
. (2.6)

Subtracting (2.6) from (2.5) we get

log F (Z(j−1))− log F (Z(j)) = −
j−1∑

m=1

Em

k −m + 1
+

j∑

m=1

Em

k −m + 1

=
Ej

k − j + 1
.

Hence

Ej = (k − j + 1)[log F (Z(j−1))− log F (Z(j))], for j = 1, 2, . . . , k, (2.7)

where by definition F (Z(0)) = 1.

In the next step, it is assumed that for a certain range (in this case the lower

tail) a specified function is valid.

Z(k)       Z(k−r) d    Z(k) 
 

 

 

 

 

 

 

 

 

 

  

x

F(x)

unspecified 

w 

Figure 2.1: Example - lower tail

The range is defined by a known cutoff point d and the specified function of the

form F (x) = w(x; θ) for x ≤ d includes an unknown parameter vector θ. The goal is



9

to estimate θ based only on the portion of the data where the specified function is

valid. See Figure 2.1.

Now, for Z(k) ≤ Z(k−1) ≤ · · · ≤ Z(k−r) ≤ d, i.e. the r lowest order statistics, the

function F (x) = w(x; θ) is assumed to be valid, so that from (2.7) it follows that

Ej = (k − j + 1)[log w(Z(j−1); θ)− log w(Z(j), θ)], (2.8)

for j = k − r + 1, k − r + 2, . . . , k,

and from (2.6) it follows that for j = k − r

log w(Z(k−r); θ) = −
k−r∑

m=1

Em

k −m + 1
.

Define

H = −k log w(Z(k−x); θ) = k
k−r∑

m=1

Em

k −m + 1
, (2.9)

and let h be the observed values of H and denote g the corresponding density

function. The r equations given by (2.8) are the basis for probability statements

used in the conditional likelihood functions. For any event for which Z(k−r) ≤ d, let

z(j) be the observed value of the j-th order statistic for j = k − r, k − r + 1, . . . , k.

Then the conditional likelihood (conditional upon Z(k−r) ≤ d) is

L1(θ) = Pθ(Z
(k) = z(k), . . . , Z(k−r) = z(k−r) | Z(k−r) ≤ d)

=
Pθ(Z

(k) = z(k), . . . , Z(k−r) = z(k−r), Z(k−r) ≤ d)

Pθ(Z(k−r) ≤ d)

where we have taken the liberty to write the joint density in the form of a probability.

Since Z(k−r) ≤ d contains the event Z(k−r) = z(k−r), we can write

L1(θ) =
Pθ(Z

(k) = z(k), . . . , Z(k−r) = z(k−r))

Pθ(Z(k−r) ≤ d)

= fZ(k),...,Z(k−r)(z(k), . . . , z(k−r))/pd,

where pd = Pθ(Z
(k−r) ≤ d).
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Using (2.8) we can apply the transformation method to find the joint density of

the Z(j)’s.

L1(θ) =
k∏

j=k−r

fZ(j)(z(j))/pd =
k∏

j=k−r

fE(j)(e(j))|J |/pd

=
k∏

j=k−r+1

exp{−e(j)} × g|J |/pd

where e(j) = e(j)(z(j), z(j−1)) given in equation (2.8), J is the Jacobian of the trans-

formation and g denotes the density function of H as defined in (2.9). Thus,

L1(θ) =
k∏

j=k−r+1

exp{−(k− j +1)[log w(z(j−1); θ)− log w(z(j); θ)]}×g|J |/pd (2.10)

Let i = k − j + 1 ⇔ j = k − i + 1. Then

L1(θ) = exp{−
r∑

i=1

i[log w(z(k−i), θ)− log w(z(k−i+1); θ)]} × g|J |/pd

where

J =




∂ek−r+1

∂z(k−r)

∂ek−r+1

∂z(k−r+1) · · · ∂ek−r+1

∂z(k)

∂ek−r+2

∂z(k−r)

∂ek−r+2

∂z(k−r+1) · · · ∂ek−r+2

∂z(k)

...
...

...

∂ek

∂z(k−r)
∂ek

∂z(k−r+1) · · · ∂ek

∂z(k)

∂h
∂z(k−r)

∂h
∂z(k−r+1 · · · ∂h

∂z(k)




So,

|J | = kr!
∣∣∣∣

k∏

j=k−r

∂log w(z(j); θ)

∂z(j)

∣∣∣∣ = kr!
∣∣∣∣

r+1∏

j=1

∂log w(z(k+1−j); θ)

∂z(k+1−j)

∣∣∣∣.

To find the density function g of H consider the following: For any i = 1, . . . , k

we have w(z(i); θ) = F (Z(i)) = U (i) ∼ order statistic from uniform (0,1), where

U (k) ≤ · · · ≤ U (i) ≤ · · · ≤ U (1). The density of the i-th order statistic from a uniform

distribution can be written as

f(u) =
k!

(k − i)!1!(i− 1)!
uk−i(1− u)i−1 0 ≤ u ≤ 1.
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Let Beta (a, b) denote a Beta random variable with parameters a and b, and density

function

Γ(a + b)

Γ(a)Γ(b)
ua−1(1− u)b−1.

Then it is easy to obtain that

U (i) ∼ Beta(k − i + 1, i)

and

U (k−r) ∼ Beta (r + 1, k − r).

So g is the density function of a random variable having the distribution of Y :=

−k log Beta (r + 1, k − r).

Using the transformation U (k−r) = e−Y/k we get

fY (y) = fU(k−r)(e−Y/k)|J |

=
Γ(r + 1 + k − r)

Γ(r + 1)Γ(k − r)
(e−Y/k)r+1−1(1− e−Y/k)k−r−1|J |

=
Γ(k + 1)

Γ(r + 1)Γ(k − r)
e−rY/k(1− e−Y/k)k−r−1|J |,

where the determinant of the Jacobian is

|J | =
∣∣∣∣∣
de−Y/h

dY

∣∣∣∣∣ =
∣∣∣∣−

1

k
e−Y/k

∣∣∣∣ =
1

k
e−Y/k.

Therefore,

fY (y) =
Γ(k)

Γ(r + 1)Γ(k − r)
e−(r+1)Y/k(1− e−Y/k)k−r+1

is the density function g of H, so that the factor g in (2.10) reduces to

g =
Γ(k)

Γ(r + 1)Γ(k − r)
e−(r+1)(−k log w(z(k−r);θ))/k(1− e−k log w(z(k−r);θ)/k)k−r−1

=
Γ(k)

Γ(r + 1)Γ(k − r)
[w(z(k−r); θ)](r+1)[1− w(z(k−r); θ)]k−r−1.
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Hence the conditional likelihood can be written as

L1(θ) ∝ exp{−
r∑

i=1

i[log w(z(k−i); θ)− log w(z(k−i+1); θ)]

× [w(z(k−r); θ)](r+1)[1− w(z(k−r); θ)]k−r−1

∣∣∣∣∣
r+1∏

i=1

∂log w(z(k+1−j); θ)

∂z(k+1−j)

∣∣∣∣∣ ,

where ∝ subsumes the constants and the probability pd. The likelihood function

can further be used to obtain conditional maximum likelihood estimates for θ or, if

there exists a prior distribution of θ, for conditional posterior distributions for θ. The

conditional likelihood function is for the general lower tail case where F (x) = w(x; θ)

has no specific form yet. In the next sections, special cases are being presented for

lower-tail and upper tail inference.

2.3 Special Case - Lower tail

Suppose for the region x ≤ d the specified function is of the form w(x; θ) = Cxα,

so the vector of unknown parameters is θ = (C,α), with α > 0, C > 0. Let Ti =

i[log Z(k−i) − log Z(k−i+1)], i = 1, . . . , r. It follows from (2.8) that

Ek+1−i = i[log w(Z(k−i); θ)− log w(Z(k−i+1); θ)] for i = 1, . . . , r,

and after substituting the specified function,

Ek+1−i = i[log CZ(k−i)α − log CZ(k−i+1)α

]

= i[log C + αlog Z(k−i) − log C − αlog Z(k−i+1)]

= αi[log Z(k−i) − log Z(k−i+1)]

= αTi ∼ Exp(1).

Thus,

fT1,...,Tr(t1, . . . , tr, θ) = fEk,...,Ek+1−r
(ek, . . . , ek+1−r)|J |,
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where ek = αt1, ek−1 = αt2, . . . , ek+1−r = αtr and

|J | =
∣∣∣∣∣∣

r∏

j=1

∂ek+1−j

∂tj

∣∣∣∣∣∣
=

∣∣∣∣∣∣

r∏

j=1

α

∣∣∣∣∣∣
= αr,

so that

fT1,...,Tr(t1, . . . , tr, θ) = αr
r∏

i=1

exp{−αti} = αr exp{−α
r∑

i=1

ti}

where ti is the observed value of Ti. Hence, the conditional likelihood is given by

L0(α) ∝ αr exp{−α
r∑

i=1

ti}.

To find the maximum likelihood estimate for α, first take the natural log of L0(α),

then set the first derivative with respect to α equal to zero and finally solve for α:

log L0(α) = rlog α− α
r∑

i=1

ti

∂log L0(α)

dα
=

r

α
−

r∑

i=1

ti

∂log L0(α)

dα

∣∣∣∣
α=α̂0

= 0

⇔ r

α̂0

−
r∑

i=1

ti = 0

⇔ α̂0 =
r∑r

i=1 ti

⇔ α̂0 = [log z(k−r) − r−1
r−1∑

i=1

log z(k−i)]−1 (2.11)

Moment properties of the maximum likelihood estimators α̂0 can easily be derived

E[α̂0|Z(k−r) ≤ d] = E[
r∑r

i=1 ti
] = rE[

1∑r
i=1 ti

]

Since αTi ∼ Exp(1),

r∑

i=1

Ti ∼ Gamma(r,
1

α
)

∼ αr

Γ(r)
tr−1e−αt, for t > 0,
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so that

E[α̂0|Z(k−r) ≤ d] = r
∫ ∞

0
t−1 αr

Γ(r)
tr−1e−αtdt

=
rαr

Γ(r)

∫ ∞

0
tr−2e−αtdt.

Using the form of the gamma density, we get

E[α̂0|Z(k−r) ≤ d] =
rαr(r − 2)!

(r − 1)!αr−1

=
rα

r − 1
.

Thus, α̂0 is biased and its bias is

BIASα̂0 =
rα

r − 1
− α

= (
r

r − 1
− 1)α

=
α

r − 1
.

The variance of α̂0 can be calculated with

V ar[α̂0|Z(k−r) ≤ d] = E[α̂2
0|Z(k−r) ≤ d]− E[α̂0|Z(k−r) ≤ d]2,

so that we first need

E[α̂2
0|Z(k−r) ≤ d] = r2

∫ ∞

0
t−2 αr

Γ(r)
tr−1e−αtdt

=
r2αr

Γ(r)

∫ ∞

0
tr−3e−αtdt.

Again using the form of the gamma density, we get

E[α̂2
0|Z(k−r) ≤ d] =

r2αr(r − 3)!

(r − 1)!αr−2

=
α2r2

(r − 1)(r − 2)
,

so that the variance becomes

V ar[α̂0|Z(k−r) ≤ d] =
α2r2

(r − 1)(r − 2)
− α2r2

(r − 1)2
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=
α2r2(r − 1)− α2r2(r − 2)

(r − 1)2(r − 2)

=
α2r2

(r − 1)2(r − 2)
.

2.4 Special Case - Upper Tail

In order to deal with upper tails we can exploit the results from the lower tail special

case by means of transformations of the random variables. Suppose Y1, . . . , Yk is a

random sample with distribution function G(y) = 1− Cy−α for y ≥ D, where D is

a known constant. Inference about α is now based upon the largest order statistic

for which y ≥ D holds. Note that, if the Y ’s are transformed, such that X = Y −1

and Z(i) = Y (k−i+1)−1
for i = 1, . . . , k, then the theory developed for the lower tail

case is directly applicable, so that

1−G(y) = Cy−α

= 1− Pr{Y ≤ y}

= Pr{Y ≥ y}

= Pr{Y −1 ≤ y−1}

= P{X ≤ x}

= Cxα

for x ≤ d = D−1.

The maximum likelihood estimate for α can be obtained from equation (2.11) by

simply expressing the Z(i) in terms of the Y (i).

α̂0 = r(
r∑

i=1

ti)
−1

= r(
r∑

i=1

i[log z(k−i) − log z(k−i+1)])−1
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= r(
r∑

i=1

i[log y(i) − log y(i+1)])−1

= r(
r∑

i=1

log y(i) − rlog y(r+1))−1. (2.12)

A more general approach can also be made, where G(y) = w(y; θ) is assumed to be

a valid distribution for an upper tail if y ≥ D. Then, conditional upon Y (r+1) ≥ D,

we obtain as in the lower tail case

Ei = (k − i + 1)[log w(Y (i−1); θ)− log w(Y (i); θ)] (2.13)

for i = 2, . . . , r + 1, and

E1 = −klog w(Y (1); θ).

Thus, the conditional likelihood function for θ is

L1(θ) ∝ |J |fE1,...,Er+1(e1, . . . , er+1)

∝ |J | exp{klog w(y(1); θ)−
r∑

i=1

(k − i)[log w(y(i); θ)− log w(y(i+1); θ)]},

where |J | is proportional to
r+1∏
i=1

∂log w(y(i);θ)

∂y(i) .



Chapter 3

Asymptotic Behaviour

Throughout this section we explore the results on asymptotic behaviour of Hill’s

estimator. Asymptotic behaviour of Hill’s estimator can be used to

• compare Hill’s estimator with its competitors,

• construct confidence intervals,

• and determine the optimal number of order statistics used in the estimation.

First we introduce the general class of extreme value distributions, then we will focus

on Pareto-type distributions.

For the latter class of distributions Hill’s estimator α̂ is a popular estimator for

the unknown parameter α, often referred to as the tail index, and Mason (1982) and

Deheuvels et al. (1988) established weak and strong consistency of α̂, respectively.

To show asymptotic normality additional conditions on the underlying distribu-

tion function are necessary. However the different analytic conditions proposed in

numerous papers on the problem of asymptotic normality do not lend themselves to

easy comparison.

To be consistent with the notation used in the other sections, let X1, . . . , Xk be a

sequence of positive independent and identically distributed random variables from

some distribution with distribution function F . As before Zk ≤ · · · ≤ Z1 will denote

the corresponding order statistics. Suppose for some constants ak > 0 and bk ∈ R

17
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and some γ ∈ R

lim
k→∞

P

(
Z1 − bk

ak

≤ x

)
= Gγ(x) (3.1)

for all x where Gγ(x) is one of the extreme value distributions given by

Gγ(x) := exp{−(1 + γx)−1/γ}, (3.2)

where γ is a real parameter and x is such that 1 + γx > 0. (For γ = 0, we interpret

(1 + γx)−1/γ as e−x.) Recall that Z1 = max{X1, . . . , Xk}. F is said to be in the

domain of attraction of Gγ, the generalized extreme value distribution, if (3.1) holds

[notation F ∈ D(Gγ)].

The question is how to estimate the extreme value index γ from the given sample.

If γ is negative, then Hill’s estimator can not be used. If, on the other hand, γ is

positive, then the estimation of γ corresponds to the estimation of the tail index

of a distribution. In this case α̂ is a popular estimator. Therefore, we introduce the

Pareto-type distributions which possess typical heavy tails and which form the basis

for investigation of asymptotic behaviour of α̂.

Without loss of generality, let us assume that F (0) = 0. We say that X has a

heavy tailed distribution if

P (X > x) = 1− F (x) = x−αL(x) for x > 0, (3.3)

for some 0 < α < ∞ and some function L slowly varying at infinity:

L(λx)

L(x)
→ 1 when x →∞ and λ > 0. (3.4)

We say that F is of Pareto-type, and α is often referred to as the Pareto index.

Another way to express (3.3) is to say that 1−F is regularly varying with index

−α. A distribution F concentrating on [0,∞) has a regularly varying tail with index

−α, α > 0 (written 1− F ∈ RV−α) if

lim
t→∞

1− F (tx)

1− F (x)
= x−α, x > 0. (3.5)
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The goal is to estimate the tail index α (or equivalently 1/α, which is the more

common notation which we will follow) and the proposed estimator from (2.12) can

be applied:

α̂k,r :=
1

r

r∑

i=1

log Z(i) − log Z(r+1). (3.6)

We observe that the assumption of regular variation is sufficient to show con-

sistency of α̂k,r. However, in Section 3.2 we will need to introduce a second order

refinement of (3.5) which has proven very useful in establishing asymptotic normality

of Hill’s estimator; i.e., for asymptotic normality we need a more stringent condi-

tion on F , often referred to as the second-order condition which specifies the rate of

convergence in (3.3). In simpler terms, we need to condition on the tail behaviour

beyond the defining condition (3.4).

Throughout Chapter 3 we will assume that r, the number of upper order statistics

used in α̂k,r, is a sequence of positive integers satisfying

1 ≤ r ≤ k − 1, r = r(k) →∞ and r/k → 0 as k →∞. (3.7)

These mathematical conditions are explained intuitively, for example, in Embrechts

et al. (1997):

r(k) →∞: use a sufficiently large number of order statistics, but

r/k → 0: we should only concentrate on the upper order statistics, as we are

interested in the tail property or, let the tail speak for itself.

In order to obtain statistical properties like consistency and asymptotic normality

the assumption (4.7) and in some cases additional conditions on the sequence {r(k)}
are necessary. If r were held to be fixed as k increases, then α̂k,r converges in law to

a gamma distribution; see for example Haeusler and Teugels (1985). Since the choice

of r is crucial to the performance of Hill’s estimator, we will address that problem

in the subsequent chapter.
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3.1 Consistency

Mason (1982) studied necessary and sufficient conditions for which α̂k,r converges in

probability or almost surely to a finite positive constant α. He proved that for any

0 < α < ∞ the following three statements are equivalent:

(i) F has an upper tail of form given in (3.3);

(ii) α̂k,r → α in probability as k →∞ for all sequences r(k) satisfying (3.7);

(iii) α̂k,r → α almost surely as k → ∞ for any sequence of the form r(k) = [kc]

with 0 < c < 1, where [x] denotes the integer part of x.

Statement (ii) implies that Hill’s estimator is weakly consistent for all sequences

satisfying (3.7) if and only if 1 − F ∈ RV−α. If the sequence is of the special form

r(k) = [kc] with 0 < c < 1, then α̂k,r is a strongly consistent estimator of α (state-

ment (iii)). From the equivalence of the first two statements it follows that the weak

consistency of Hill’s estimator characterizes fully the Pareto type distributions in

general. Previous closely related work on the characterization of RV−α can be found

in de Haan (1983), de Haan and Resnick (1980) and Teugels (1981b).

Deheuvels et al. (1988) characterized those sequences r(k) for which Hill’s esti-

mator is strongly consistent. Assuming that F satisfies (3.3) for some 0 < α < ∞,

they prove that whenever r(k)/ log log k →∞ as k →∞ and r(k)/k → 0 as k →∞,

then

lim
k→∞

α̂k,r = α a.s.; (3.8)

i.e., α̂k,r is a strongly consistent estimator of α. According to the characterization

of Pareto type tails due to Mason (1982), it follows that F has an upper tail of the

form given in (3.3) if and only if

(iv) α̂k,r → α almost surely as k → ∞ for all sequences r(k) satisfying (3.7) such

that r(k)/ log log k →∞ as k →∞.
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3.2 Asymptotic Normality

In the preceding section it was stated that consistency of Hill’s estimator is equivalent

to regular variation of 1−F . To establish asymptotic normality of α̂k,r second-order

regular variation of the distribution tail is needed.

A distribution tail 1−F is second-order regularly varying with first-order param-

eter −α and second order parameter ρ (written 1 − F ∈ 2RV−α,ρ) if there exists a

measurable function A(t) with constant sign such that the following refinement of

(3.3) holds:

lim
t→∞

1−F (tx)
1−F (t)

− x−α

A(t)
= cx−α

∫ x

1
uρ−1du, x > 0 (3.9)

for c 6= 0. Note that for ρ < 0

lim
t→∞

1−F (tx)
1−F (t)

− x−α

A(t)
= cx−α xρ − 1

ρ
. (3.10)

We will follow the common notation ρ = −β when the second-order parameter is

assumed to be constant. If 1− F satisfies (3.9), then it is known that

√
r(k)(α̂k,r − α)

D−→ N(0, α2) (3.11)

provided the sequence r(k) satisfies (3.7) and an additional restriction depending on

the second-order condition (see, for example, de Haan and Resnick (1998)). Here,

D−→ denotes convergence in distribution and N(0, α2) denotes a normally distributed

random variable with expectation 0 and variance α2.

The first result on asymptotic normality is due to Hall (1982) who restricted his

attention to “smooth” distributions with slowly varying functions which converge to

a constant at polynomial rate (a special case of (3.10)),

1− F (x) = cx−α[1 + O(x−β)] as x →∞ (3.12)
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where α > 0 and c and β are positive constants. Hall established the existence of an

optimal sequence r(k), in particular

r →∞ and r/k2β(2β+α) → 0 as k →∞, (3.13)

for which (3.11) holds. The sequence r(k) is optimal in the sense that for any norming

constant sk, sk(α̂k,r−α) never converges in distribution to a non-degenerate limit if

r tends to infinity faster than in (3.13).

Hall was partly motivated by Teugels (1981b) and de Haan and Resnick (1980),

who proposed simple asymptotic estimates of the tail index as alternatives to Hill’s

estimator. The estimator they suggested can be used more generally assuming only

first-order regular variation, but the price paid for this generality is a slow rate of

convergence. Hence very large sample sizes would be necessary for the estimator to

be reasonably accurate. For the same set of conditions Hall and Welsh (1984) proved

that α̂k,r converges at a rate which is optimal in the class of all possible estimators

for α. See also, Smith (1987) and Drees (1998).

Moreover Hall (1982) showed asymptotic normality for the special case of (3.9),

1− F (x) = Cx−α[1 + Dx−β + o(x−β)] as x →∞, (3.14)

where α > 0, C > 0, β > 0 and D is a real number. If (3.14) holds and r0 := r(k) ∼
λk2β/(2β+α) for a positive constant λ then

kβ/(2β+α)(α̂k,r − α̂)
D−→ N(DC−β/ααβ(α + β)−1λβ/α, α2λ−1). (3.15)

For the same second-order condition on the underlying distribution function, Hall

and Welsh (1985) constructed an estimate r̂ of r and proved that the estimator α̂k,r̂

shares optimal convergence with α̂k,r0 , the estimator based on the sequence proposed

by Hall (1982). In particular, they proved that (3.15) holds if r = r(k) = [λk2β(2β+α)]

and r̂/r → 1 in probability. No further assumptions about the random sequence r̂

are required. We will get back to this result in Chapter 4.
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Goldie and Smith (1987) investigated the slowly varying function as given in

(3.4) and applied some of their important results to the estimation problem of the

tail index parameter. In accordance with Hall (1982) they proved that if F has a

regularly varying tail as in (3.14) then (3.15) holds. In addition, they extended Hall’s

result since less stringent conditions on the slowly varying part of the underlying

distribution are necessary (see Theorem 4.3.2 in [24]).

Haeusler and Teugels (1985) derived a general condition for 1− F ∈ RV−α from

which it is possible to compute all sequences r(k) for which (3.11) holds, i.e. for

which Hill’s estimator is asymptotically normal. The computation is only possible if

some prior knowledge about the slowly varying function is available. For the basic

condition and simpler, rather manageable forms under appropriate assumptions on

L, the reader is referred to Sections 3 and 4 of [27]. We will concentrate on the

discussion in Section 5, where the main results were applied in several examples.

Suppose the model given in (3.3) satisfies

(i) L(x) = C[1 + O(x−β)] as x →∞; C, α, β > 0,

(ii) L(x) = C[1 + Dx−β + o(x−β)] as x →∞; C,α, β > 0, D ∈ R,

(iii) L(x) = C(log x)β, x large, C, α > 0, β ∈ R\{0}, and

(iv) L(x) = C[1 + O(log x)−β] as x →∞.

All these conditions (i)-(iv) satisfy the general condition proposed by Haeusler and

Teugels, so that the sequences r(k) can be computed for which
√

r(k)(α̂k,r − α) is

asymptotically normal:

(i) and (ii) r(k) →∞ such that r(k) = o(k2β(2β+α)),

(iii) r(k) →∞ such that r(k) = o((log k)2),

(iv) r(k) →∞ such that r(k) = o((log k)2β).
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Note that (i) is equivalent to (3.13) and (ii) corresponds to r0, which were the two

special cases examined by Hall (1982).

For further results on asymptotic normality of α̂k,r and the necessity of some

sort of second-order condition, see Beirlant and Teugels (1986,1987) who extended

the conditions for asymptotic normality to distribution functions in the domain of

attraction of the limit gamma law. Under different sets of conditions on L(x), Davis

and Resnick (1984) also studied the problem of asymptotic behaviour where Hill’s

estimator was applied to estimate the survival function at great age, in case F is in

the domain of attraction of an appropriate extreme value distribution.

Csörgő and Mason (1985) investigated the asymptotic distribution of α̂k,r in yet

another way. First, they define the (left continuous) inverse or quantile function F−1

of F by

F−1(s) = inf{x : F (x) ≥ s}, 0 < s < 1. (3.16)

Now 1 − F ∈ RV−α if and only if F−1(1 − s) = s−αl(s), 0 < s < 1, where l is

a function slowly varying at zero. Using the Karamata’s representation (see, for

example, Bingham et al. (1987)), F−1(1− s) can be expressed as

F−1(1− s) = s−αa(s) exp{
∫ 1

s

b(u)

u
du}, 0 < s < 1, (3.17)

where lims↓0 a(s) = a0 with 0 < a0 < ∞ and lims↓0 b(s) = 0.

To prove asymptotic normality of Hill’s estimator, Csörgő and Mason assumed

a(s) to be constantly a0 in a non-degenerate right neighbourhood of zero. Further-

more let RV ∗
−α denote the class of distribution functions associated with such a(s).

One of their main theorems is that if F ∈ RV ∗
−α and r(k) satisfies (3.7) then

√
r(k)(α̂k,r − αk)

D−→ N(0, α2), (3.18)

where

αk =
k

r(k)

∫ 1

1−(
r(k)

k
)
(1− s)d log F−1(s).
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In order to obtain asymptotic normality when the centering sequence αk is replaced

by the fixed asymptotic mean α, additional assumptions on the underlying distribu-

tion F are necessary.

Assume F is such that for some 0 < α < ∞, 0 < C < ∞ and 0 < β < ∞,

F (x) = Ce−x/α{1 + O(e−βx)} as x →∞. (3.19)

Csörgő and Mason (1985) proved that for every sequence r(k) of positive integers

satisfying (3.7)
√

r(k)(α̂k,r − α) is asymptotically normal. For further investigation

of asymptotic normality of Hill’s estimator following this approach, the reader is

referred to Csörgő and Viharos (1995), who were able to obtain even more general

results. To do so, they had to change the norming sequence
√

r(k) to sequences

depending also on the unknown slowly varying function l(s) in complicated ways.

Additionally, Csörgő and Viharos showed that while the weak consistency of α̂k,r

for all sequences r(k) satisfying (3.7) fully characterizes Pareto-type distributions

as stated earlier in this section as a result by Mason (1982), Hill’s estimator is

not universally asymptotically normal over RV−α. In particular they constructed

distribution function F ∈ RV−α for which α̂k,[k2/3] does not have a non-degenerate

asymptotic distribution for any centering and norming sequence (see also Csörgő

and Viharos (1997)).

However, it is known that second-order regular variation plays an important role

in establishing asymptotic normality of α̂k,r. Geluk et al. (1997) showed that under

a strengthening of (3.3) called the von Mises condition, namely,

lim
x→∞

xF ′(x)

1− F (x)
= α, (3.20)

second-order regular variation is equivalent to asymptotic normality of Hill’s esti-

mator. De Haan and Resnick (1998) studied whether the von Mises condition for the

distribution tail could be weakened. They proved that it is too strong in order to
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have asymptotic normality of
√

r(k)(α̂k,r−ᾱk,r), where ᾱk,r is a non-constant asymp-

totic mean; they also give minimal condition on the distribution so that normality

holds. Nonetheless, if the non-constant asymptotic mean is replaced by a constant

centering like α, a somewhat stronger assumption like second-order regular variation

is necessary.

The asymptotic behaviour of Hill’s estimator was and still is broadly studied.

We have seen that in order to establish consistency and asymptotic normality, first-

order and second-order regular variation are of particular importance, respectively.

Furthermore, the properties and performance of Hill’s estimator crucially depend on

the number of order statistics used in estimation. The next chapter will address the

question on how to choose r.



Chapter 4

Optimal Choice Of The Sample Fraction

As seen in Chapter 3 the performance of Hill’s estimator depends crucially on the

number of order statistics used in the estimation. Therefore considerable interest has

been shown in methods for choosing r. For a special class of marginal distributions,

adaptive methods for determining r were proposed by Hall (1982), Hall and Welsh

(1985) and Hall (1990), among others. The criterion for an optimal choice of the

number of order statistics is minimization of the asymptotic mean squared error

(AMSE). Unfortunately, the optimal choice of r depends mainly on the unknown

slowly varying part of the distribution tail. Thus, it is difficult to obtain a practical

strategy for minimizing AMSE through an appropriate choice of r.

In practice, there exist several graphical tools which not only suggest the optimal

number of order statistics used in estimation, but also can be used directly to esti-

mate α. The most common graphical method is the Hill plot, which plots r against

α̂k,r. Resnick and Stărică (1997), for example, explored graphical methods based on

this plot that can minimize the difficulty of choosing r. In order to visualize graph-

ical possibilities to simplify the determination of r and also the choice of α̂k,r, we

will present an example.

We will conclude this introduction by giving an analytic method to choose r that

was proposed in Hill’s (1975) seminal paper and that was motivation for further

investigation of this problem.

A subjective choice of the cutoff point d (or equivalently D), which corresponds

to the choice of r, is often very difficult or inappropriate. In the original paper Hill

27
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(1975) proposed some data analytic techniques which can be useful in the choice

of r. Let us consider the special case for the lower tail as in Section 2.3, where the

function of the form w(x; θ) = Cxα was assumed to be valid for the region x ≤ d,

but no longer assume that d is known. It follows from (2.8) that, conditional on

Z(k−r) ≤ d, the αTi’s are Exp(1).

Now, if r has been chosen sufficiently small, so that in fact z(k−r) ≤ d, then the

αTi’s should behave like a random sample from Exp(1), at least for i = 1, 2, . . . , r.

On the other hand, if r has been chosen too large, so that z(k−r) turns out to

be ≥ d, then the αTi’s should exhibit a behaviour particularly different from a

standard exponential distribution. In this case, one (Z(k−r)) or perhaps more order

statistics have values where the approximation of w(x; θ) by Cxα is poor. Based on

this observation, one could test the hypothesis that the αTi’s have an exponential

distribution for i = 1, . . . , r, using, for example, the chi-square goodness-of-fit test.

To determine the optimal ropt, one could choose a particular (small) r, for which the

hypothesis is accepted, and then increase r step by step until the hypothesis is being

rejected.

Hall and Welsh (1985) showed that the simple and attractive sequential decision

procedure proposed by Hill results in using too many order statistics. Hill’s method

is based on the fact that the αTi’s are approximately distributed as centered expo-

nential variables. This is a very good approximation if r is close to 1, but worsens

as r increases. The sequence of goodness-of-fit tests, as suggested by Hill, is stopped

at ropt which is equal to the largest value of r which provides a satisfactory expo-

nential fit. The problem that arises is the following. Since the deterioration of the

exponential approximation is very gradual as r increases past the optimal threshold,

the hypothesis of exponentiality will still be accepted. Therefore a large number of

non-exponentials must be added before the hypothesis will be rejected. By using

this sequential procedure, r tends to be overestimated. Hall and Welsh extend this
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heuristic argument by showing the inappropriateness of this method for the special

class of marginal distributions, namely,

1− F (x) = Cxα[1 + Dxβ + o(xβ)]

and investigated how to choose r minimizing the AMSE of α̂.

4.1 Minimizing Asymptotic Mean Squared Error

Minimizing the AMSE as a criterion to choose r is very intuitive. If too many order

statistics are used in estimation, then the estimator might have a large bias. If, on

the other hand, too few order statistics are included, then the variance is large.

Hence, depending on the precise choice of r and on the slowly varying function L,

there is an important trade-off between bias and variance possible. In particular the

second order behaviour of the underlying distribution plays an important role; i.e.,

the asymptotic behaviour beyond the defining property L(λx)/L(x) → 1, as x →∞.

Balancing the variance and bias components will lead to an optimal choice of r.

Hall (1982) showed that this balance can be established by minimizing the AMSE,

in particular if one chooses r(k) by

ropt(k) := arg min
r

AsyE(α̂k,r − α)2 (4.1)

:= arg min
r

[AsyV ar(α̂k,r) + AsyBias2(α̂k,r)].

Then
√

ropt(k)(α̂k(r0(k))− α)
d−→ N(b, α2), (4.2)

so that the optimal sequence ropt(k) results in an asymptotic bias b. When the first-

and second-order conditions of the underlying distribution are known, it is possible

to evaluate ropt(k) asymptotically.

First we will follow de Haan and Peng (1998), who studied the asymptotically

optimal value of r comparing Hill’s estimator to other estimators of the tail index.
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Apart from (3.3) we will assume a special case of the second-order condition as given

in (3.10). Suppose there exists a function A of constant sign such that

lim
t→∞

1−F (tx)
1−F (t)

− x−α

A(t)
= x−α xρ − 1

ρ
(4.3)

for x > 0, where (ρ ≤ 0) is the second order parameter, governing the rate of

convergence of 1−F (tx)
1−F (t)

to x−α. We can rephrase (4.3) in terms of the inverse function

of the distribution F . Let U be the right (or left) continuous inverse of the function

1/(1−F ) and write a(t) = α−2A(U(t)). The function |a(·)| is regularly varying with

index ρ, i.e. |a(·)| ∈ RVρ. Relation (4.3) is equivalent to

lim
t→∞

U(tx)
U(t)

− x1/α

a(t)
= x1/α xρ/α − 1

ρ/α
(4.4)

locally uniformly for x > 0.

From here it is possible to determine the AMSE and then the asymptotic optimal

value of r(k).

Suppose (4.4) holds. Let r = r(k) be a sequence of integers with r(k) → ∞,

r(k)/k → 0 as k →∞. If

lim
k→∞

√
ra(

k

r
) = λ ∈ (−∞,∞), (4.5)

then we have
√

r(α̂k,r − α)
d−→ N

(
α3λ

ρ− α
, α2

)
as k →∞.

Hence the AMSE of α̂k,r equals

1

k

(
α2 +

α6λ2

(ρ− α)2

)

From (4.5) it follows that for r tending to infinity sufficiently slowly, i.e. using a

moderate number of order statistics in Hill’s estimator, λ = 0 will follow. In this case

α̂k,r is asymptoticaly unbiased. On the other hand, if we take r as large as possible,
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then the asymptotic variance will decrease, but when doing so, a bias might enter.

Let us consider the special case

1− F (x) = Cx−α(1 + x−β),

where c, α and β are positive constants. Notice that ρ = −β. Then it follows from

(4.5) that

r ∼ Ck(2β)/(2β+α)

where C is a constant, depending on α, β, c and λ. Moreover, λ = 0 if and only if

C = 0, hence r = o(k(2β)/(2β+α)) (see for example Embrechts et al. (1997)). A more

general result can be found in de Haan and Peng (1998).

Hall and Welsh (1985) proved that the AMSE of Hill’s estimator is minimal for

ropt(k) =

(
C2ρ(1− ρ)2

2D2ρ3

)1/(2ρ+1)

× k2ρ/(2ρ+1)

where ρ = β/α, if the underlying distribution satisfies

1− F (x) = Cxα[1 + Dxβ + o(xβ)].

But since the parameters α, β (and hence ρ), C > 0 and D 6= 0 are unknown, this

result can not be applied directly to determine the optimal number or order statistics

for a given data set without additional assumptions on ρ. A preliminary result was

presented by Hall (1982), who showed for the above mentioned model it is optimal

to choose r = r(k) tending to infinity at a rate of order o(k(2β)/(2β+α)).

More generally, Hall and Welsh (1985) showed that if one wants to estimate the

optimal sequence ropt(k) solely on the basis of the sample, i.e. determine an estimator

r̂0 such that
√

r̂opt(k)(α̂k(r̂opt(k))− α)
d−→ N(b, α2) (4.6)

then it is sufficient to prove

r̂opt(k)

ropt(k)
→ 1, (4.7)
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in probability. To find such a r̂opt several authors have suggested bootstrap methods

(Hall (1990), Gomes (2001), Danielson et al. (2001), among others). The basic idea

of the bootstrap method to find the optimal number of order statistics adaptively is

the following.

In the proposed methods above, the asymptotically optimal choice of r via min-

imization of the mean squared error depends on the unknown parameter α and the

function a(t) (see Dekkers and de Haan (1993)). To overcome this problem it is

possible to estimate the

AMSE = [AsyV ar(α̂k,r) + AsyBias2(α̂k,r)] (4.8)

by a bootstrap procedure. Then one can minimize the estimated AMSE to find the

optimal r. We will give a short overview of how to apply the bootstrap and state

some important results of this procedure.

First, resamples {X∗
1 , . . . , X

∗
k1
} are drawn from the original sample {X1, . . . , Xk}

with replacement, where the resample size k1 is of smaller order than k, i.e. k1 < k.

Let Z∗
(k1) ≤ · · · ≤ Z∗

(1) denote the order statistics corresponding to the resample and

define

α∗k1
(r1) :=

1

r1

r1∑

i=1

log Z∗
(i) − log Z∗

(r1+1).

Hall (1990) assumed that the underlying distribution is of the special form F (x) =

Cxα (as in Hill’s lower tail special case) and proposed the bootstrap estimate of

AMSE

̂AMSE(k1, r1) = E((α∗k1
(r1)− αk(r))

2|X∗
1 , . . . , X

∗
k1

). (4.9)

However, in this setup r needs to be chosen such that αk(r) is consistent, so Hall

assumed that the asymptotically optimal r is of the form ckγ, where 0 < γ < 1 is a

known constant but c is unknown. Now, if r̂1 is asymptotic to ckγ
1 then

r̂ = r̂1(k/k1)
γ
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is asymptotic to cnγ.

The problem is that r, or its form, is generally unknown. Therefore Danielson et

al. (2001) suggested to replace αr(k) in (4.9) with a more suitable statistic. Define

Mk(r) =
1

r

r∑

i=1

(log Z(i) − log Z(r+1))2,

then it is known that Mk(r)/(2αk(r)) is a consistent estimator of α, which also

balances the bias and variance components if r → ∞ with optimal rate (see, for

example, Gomes and Martins (2002)). Danielson et al. proposed the bootstrap esti-

mate of AMSE

̂AMSE
∗
(k1, r1) := E((M∗

k1
(r1)− 2(α∗k1

(r1))
2)2|xk),

where

M∗
k1

(r1) =
1

r1

r1∑

i=1

(log Z∗
(i) − log Z∗

(r1+1))
2.

We will summarize the procedure of choosing the optimal r according to Danielson

et al.(2001):

1. For a given choice of k1 draw bootstrap resamples of size k1.

2. Calculate ̂AMSE
∗
(k1, r1), i.e., the bootstrap AMSE, at each r1.

3. Find the r∗1,opt(k1) which minimizes this bootstrap AMSE.

4. Repeat this procedure for an even smaller resample size k2, where k2 = k2
1/k.

This yields r∗2,opt(k2).

5. Subsequently, calculate r̂opt(k) from the formula

r̂opt(k) =
(r∗1,opt(k1))

2

r∗2,opt(k2)

(
(log r∗1,opt(k1))

2

(2 log k1 − log r∗1,opt(k1))2

)(log k1−log r∗1,opt(k1))/ log k1

.

6. Finally, estimate α by α̂k(r̂opt(k)).
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The number of bootstrap resamples is determined by the computational facilities.

For further suggestions on how to choose the number of resamples and how to

determine the bootstrap sample size, see Danielson et al. (2001).

The above mentioned results on how to choose r via minimization of AMSE or

̂AMSE are useful mainly from a methodological point of view. As seen in Chapter

3 the properties of Hill’s estimator crucially depend on the higher order behaviour

of the underlying distribution tail 1 − F . However, in practice we rarely verify this

behaviour, for example conditions like (4.3), which was assumed throughout this

section. Hence, there is a need for useful tools in practice, which can be applied more

generally to determine r. The next section will present some graphical methods to

overcome the problem of choosing r.

4.2 Graphical Tools

The preceding section showed that under suitable second-order conditions, an

optimal ropt(k) can be determined such that the AMSE of Hill’s estimator is min-

imized. The practical usefulness of this theoretical method is limited. Asymptotic

results as k → ∞ provide little guidance about finite sample behaviour. Addi-

tionally, ropt(k) depends on the unknown parameters of F , like the second-order

condition which is rarely verifiable in practice. Data-driven alternatives to estimate

r by r̂opt(k), like the presented bootstrap method, also require choices of certain

parameters, and the choices are arbitrary. In the bootstrap procedure, for example,

one has to choose the number of resamples and the resample size.

Hence, there is a need for computationally less challenging methods for a variety

of applied purposes and for the purpose of checking whether the above mentioned

procedures provide reasonable choices of r. Therefore, the analysis of the tail
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behaviour of a distribution function based on Hill’s estimator is often times sum-

marized graphically. In this section we will present a few graphical methods to

determine the optimal r, and which, moreover, can be used to obtain α̂ directly.

We will illustrate the techniques and plotting strategies on a particular data

set, the Danish data on large fire insurance losses [46], which was the basis for a

very fundamental case study of extreme value techniques by McNeil (1997). Resnick

(1997) pointed out several alternate statistical techniques and plotting devices that

support McNeil’s conclusions and that can be employed with similar data sets. The

2156 observations in the Danish data are large fire insurance losses of over one million

Danish Krone (DKK) from the years 1980 to 1990, inclusive. See Figure 4.1. The

loss figure is a total loss figure for the event concerned, and includes damage to

buildings, furnishing and personal property, as well as loss of profits.
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Figure 4.1: Danish Data on fire insurance losses

(1) The Hill plot. Let

α̂k,r := Hk,r =
1

r

r∑

i=1

log
Z(i)

Z(r+1)

denote Hill’s estimator. The most basic instrument is the so called Hill plot, graphing

{(r,Hk,r), 1 ≤ r ≤ k − 1}. (4.10)
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In order to choose an appropriate number of order statistics on which the esti-

mation of α will be based, one has to look for a stable region in the Hill plot. From

the stable region of the plot one can infer a value of r and α.
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Figure 4.2: Hill plot

The example, Figure 4.2, shows a stable region for about r ∈ [500, 1500]. In this

particular case we suggest about 500 order statistics to be an appropriate choice,

since the graph is volatile when fewer order statistics are used and moderation is

advised. The corresponding Hill estimate of α is approximately 0.7.

In general, it is known that if the underlying distribution is Pareto or close to

Pareto, then then the Hill plot is a very powerful tool for determining α (see, for

example Drees et al. (2000)). The Danish insurance data seem to follow a Pareto-

type distribution (Embrechts et al (1997)). Whether F follows a Pareto-type dis-

tribution can be detected by Pareto quantile plots which are the basis for testing

the goodness-of-fit hypothesis of strict Pareto behaviour. A broad discussion on

Pareto-type models and quantile plots can be found in Beirlant et al. (1996) and its

references.
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In the example the choice of the stable region was rather obvious. However, in

other cases the Hill plot can have a high volatility and hence the practitioner is

confronted with two important and difficult decisions: first, determining a sensible

range of r, and second, deciding on a specific value of r inside the range.

Resnick and Stărică (1997) introduced a computational as well as a graphical

technique to reduce the difficulty of choosing the number of order statistics used to

calculate Hill’s estimator. The first method reduces the volatility of the Hill plot in

the predetermined sensible region and hence assists the practitioner in deciding on

the specific value of r. It is an averaging technique where values of Hill’s estimator

are “smoothed”.

(2)Averaged or smoothed Hill plot. Let

avHk,r :=
1

(u− 1)r

ur∑

p=r+1

Hk,p, (4.11)

where u > 1. Once one has determined a suitable range for r, say [r1, r2], avHr,k can

be calculated and the avHill plot

{(r, avHk,r), r ∈ [r1, r2/u]}

can be graphed.

In the selected region Hill’s estimator values are smoothed, so that we have less

volatility in our graph. Hence, it is less important to select the optimal r, since the

estimate will not be as sensitive to the choice of r in comparison to the classical

Hill plot. For a good choice of u Resnick and Stărică suggest taking a value between

k0.1 and k0.2 in order to reach an equilibrium between variance reduction and a

comfortable number of points used for the plot. We used u = 3 (≈ k0.14) and decided

to limit r not to be greater than 1800, so that r1 = 1 and r2 = 1800. Due to the fact

that u = 3, the averaging stopped at r = 600. See Figure 4.3. Through averaging,

the variance of Hill’s estimator can be considerably reduced and the volatility of
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the plot tamed. The importance of selecting the optimal r diminishes and we can

observe α ≈ 0.7
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Figure 4.3: Smoothed Hill plot

(3) Alternative Hill plot. The second method to overcome the difficulty of

choosing r is an alternative to the classical Hill plot, graphing

{(θ, Hdkθe,k), 0 ≤ θ ≤ 1},

where dye is written for the smallest integer greater or equal to y ≥ 0. As with the

classical Hill plot one tries to find a stable region of the graph.

The reason why the alternative Hill plot is more helpful in detecting such a

region is simple. The significant part of the graph, i.e. the part corresponding to a

relatively small number of order statistics, is displayed bigger in relation to the less

important part of the graph. On the other hand, the part corresponding to a large

number of order statistics gets rescaled, now covering less displayed space than in

the traditional Hill plot. The region of interest is shown more precisely, thus making

the interpretation of the graph easier and more accurate. See Figure 4.4. The stable

region of the graph is θ ∈ [0.8, 0.9], which corresponds to r ∈ [464, 1000]. As before,
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we observe α ≈ 0.7. Note that the high volatility when too few order statistics are

used now covers a larger portion of the graph.
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Figure 4.4: Alternative Hill plot

It is also possible to combine the two proposed methods: first, calculate the

smoothed version of Hill’s estimator and, second, plot the alternative Hill plot for

avHill. Due to the fact that u = 3 the averaging stopped at θ = 0.8. See figure 4.5.
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Figure 4.5: Alternative smoothed Hill plot
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In spite of the relativly clear results, simulations have shown that there are finite

sample cases in which the plots and Hill’s estimator can not be trusted; see, for

example, the “Hill horror plot” in Embrechts et al. (1997, fig. 4.1.13). If the slowly

varying part of (3.3) happens to be constant, then we are dealing with the exact

Pareto model 1−F (x) = Cx−α, the special case considered in 2.3. In this case Hill’s

estimator behaves well. However, if the ratio L(tx)/L(x) converges to 1 at a slow

rate, a large bias may be present.

Finally, we would like to note that we assumed throughout the discussion that

the given sample is i.i.d. Hill’s estimator can also be applied to dependent data, and

its behaviour has been studied, for example, by Resnick and Stărică (1998) and its

references.
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