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ABSTRACT

We consider multiprocessor partitioned scheduling of real-time systems of periodic or sporadic

tasks. Prior to execution, tasks are partitioned onto the processors using the First-Fit Decreasing

algorithm. We demonstrate methods of allocating tasks onto processors even without complete

information about the task. We propose two new models to answer two general questions:

1. Given the description of a task set, how many processors should our system have to ensure

that the actual task set can be partitioned onto the system?

2. Given the description of a task set and a specific number of processors, how large can our

total utilization be?

Answers to these are useful to system designers who make design decisions before fully developing

tasks. A task set is characterized using maximum utilization, umax and utilization binder, γ in our

first model and a cumulative utilization function Ucum(i) in our second model. Compared to the

current method, we reduce the number of processors a task set requires by up to 90% and nearly

double utilization bound for a fixed number of processors.
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CHAPTER 1

INTRODUCTION

Real time systems are different from general operating systems because correct operation of these

systems require that they are timely, dependable and predictable. All real-time jobs have deadlines

which must be met in order to ensure correct operation of the system. Often, real-time systems

are used in embedded systems - i.e., computer systems designed to perform a small number of

dedicated functions, often with real-time computing constraints. Unlike a normal personal com-

puter which is flexible and meets a wide range of end-user needs, embedded systems are part of a

complete device often including hardware and mechanical parts . With the advent of multicore sys-

tems, multiprocessors are more prevalent and are used in many embedded systems. The real time

community has increasing desire to use these types of systems. Unfortunately, many algorithms

that work well on uniprocessors do not work as well in a multiprocessor environment.

Consider, for example, the Earliest Deadline First algorithm (EDF), a scheduling algorithm

which gives higher priority to jobs with earlier deadlines. This algorithm can schedule any set of

jobs to meet their deadlines on a uniprocessor if it is possible to do so [2]. However, on multipro-

cessors, EDF is known to require the processors to idle for as much as half the time [3, 4, 5].

Often real-time jobs execute repeatedly and at regular intervals. We call these repeating jobs as

periodic tasks, if the jobs arrive at regular intervals, or sporadic tasks if the intervals between jobs

may vary. An apt example would be an airplane auto-pilot system which has to regularly receive

signals from ground-based Air Traffic Controller (ATC), update its speed, check on its altitude,

steer in the right direction and all these tasks have to done periodically and regularly. The task set

of an auto-pilot contains the afore mentioned set of tasks. These tasks are executed periodically and
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regularly. These tasks periodically generate jobs and these jobs cannot miss their deadlines. To be

able to meet their deadlines, they have to be scheduled on processor(s) using efficient algorithms.

Three main scheduling strategies are:

1. Global Scheduling: For m processors, there is a single queue of jobs. Processors execute

the next available job from the job queue when they are done with executing the current job.

2. Partitioned Scheduling: For m processors, there are m job queues. Tasks are allocated to

processors before executing the jobs of tasks,

3. Restricted Scheduling: Tasks can only migrate at job boundaries. If a job is preempted, it

must restart on the same processor. However, the next job of the same task may execute on a

different processor.

We consider partitioned scheduling of task sets on multiprocessors. Partitioned scheduling

means tasks are partitioned (i.e. allocated) to processors prior to execution and scheduled locally

on each processor using a uniprocessor scheduling algorithm. While tasks are executed online, the

partitioning of the task sets is done off-line. Allocating or partitioning of tasks is primarily done

off-line using the First Fit Decreasing (FFD) the allocation algorithm which tries to find the first

processor that can schedule a given task by sequentially checking the available processors in a

fixed order.

One important parameter of a task is its utilization (i.e., the average proportion of processor

time a task requires to execute). We can use task utilization values to determine how many tasks can

safely be allocated to a single processor. For example, when using the EDF algorithm to schedule

each processor, we need only ensure that the total utilization of the tasks assigned to any processor

never exceeds 1.

The process of partitioning the tasks onto processors is similar to the bin packing problem [6]

which is NP-Complete. NP-Complete problems can be verified quickly, but there is no known way

to locate a solution efficiently. Hence, the allocation that uses the minimum possible number of

processors could take an reasonably long time to determine. Nonetheless, it is desirable to keep the
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number of required processors as small as possible. Fortunately we know that allocating tasks using

the First Fit Decreasing algorithm will not cause us to exceed the minimum number of processors

by more than a factor of 11
9

[7].

The goal of our research is to aid designers who need to make hardware and software decisions

with incomplete knowledge of the total system. In particular, designers may need to specify the

required number of processors before all tasks are fully developed. Alternatively, they may need to

tailor task functionality to a given processing platform.

In this research, we address the following two questions:

1. Given incomplete knowledge of tasks, how many processors must we have to ensure suc-

cessful partitioning of all the tasks of a task set τ using FFD?

2. Given incomplete knowledge of tasks and a fixed number of processors m, how large can

τ ’s total utilization be while still ensuring the successful partitioning of τ onto m processors

using FFD?

Keeping the number of processors as small as possible brings the system costs down. Making

total utilization to be as large as possible allows extra features to be added to the system. Thus

finding accurate answers to these questions could allow designers to add features to a system while

still keeping costs down. Our approach to answeringquestions is to find a lower bound on the

number of processors and an upper bound on the total utilization. We call these two bounds System

bounds.

This problem is similar to the bin-packing problem in which objects of different volumes must

be packed into a finite number of bins of finite capacity in a way that minimizes the number of

bins used. In our case, because the uniprocessor utilization bound is 1, we can place tasks onto

processors as long as their total utilization does not exceed 1. In [1], Lopez, et al., modeled task

sets using two parameters, umax, and Usum, where umax is the maximum utilization value of all

tasks and Usum is the sum of all the utilization values. While the method suggested by Lopez, et

al., is easy to use, it is overly pessimistic in calculating the bounds on the number of processors

and the processor utilization.
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In [8], Mohan, et al., state the importance of making system architecture decisions in the design

phase rather than integration phase. They explain how a coarse approximation of required results

may be wasteful and how an overly optimistic approximation of required resources may lead to

undesirable surprises. To this end they have developed a method of determining a fairly accurate

description of the worst case behavior of the tasks during the design time. The research presented

in this thesis exploits the more accurate task descriptions.

Mohan, et al., in [8] provide a tool for finding how more information about a task set for

use during the design time. Using this work in [8], we know we can get more detailed infor-

mation about a task set than just umax and Usum even before they are fully developed. We show

that restricting our understanding to umax and Usum gives overly pessimistic understanding of the

system. Correct analysis using such restricted information must assume that all the tasks of a task

set have the same large utilization value, namely umax. This assumption increases the system costs

by requiring an excessive number of processors and degrades the utility of the system by imposing

a small system load (i.e., reduced functionality).

In short, designers who need to make software and hardware decisions must base their decisions

on incomplete information of the task set. In [1], Lopez, et al., approach the problem by modeling

task sets using just their maximum utilization, umax, and total utilization Usum. On the other hand,

in [8], Mohan, et al., claim that we will have more information than just umax and Usum. In reality,

we can have a close estimation of the worst-case execution time(WCET) and the utilization values

of tasks. In this thesis, we reduce the pessimism of the approach suggested by Lopez, et al., and

present two new task models which are more accurate than only using umax and Usum:

1. The Utilization Binder γ: For a task set τ , the utilization binder γ can be used to find the

upper bound on utilization value of each task. The utilization binder is used in conjunction

with umax.

2. The Cumulative Utilization Function, Ucum(i): A function that provides an upper bound

for the sum of utilization values of first the i tasks where the tasks are sorted by their utiliza-

tion values in descending order.
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Using the methods described by Mohan, et al., in [8] and Christian, et al., in [9], we can

describe our task sets using either of these models. We show that each of these models can greatly

improve the system bounds. The bounds on the number of processors required to schedule a given

task set can be reduced up to 65% using the utilization binder and 50% using the cumulative

utilization function. The bounds on the total utilization can be improved up to 98% using the

utilization binder and 80% using the cumulative utilization function.

The remainder of this thesis is organized as follows: Chapter 2 presents the models and defini-

tions, Chapter 3 presents results that are related to this work, Chapter 4 provides a detailed analysis

of our utilization binder model, Chapter 5 provides detailed analysis of the cumulative utilization

function. Finally Chapter 6 concludes the thesis.



CHAPTER 2

MODEL AND DEFINITIONS

This Chapter defines all important terms and provides a more detailed description of our assumed

system model. This research considers partitioning n periodic or sporadic tasks ontom processors,

denoted ρ0, ρ1 . . . ρm−1. Let τ = {T0, T1, . . . , Tn−1} denote a set of n periodic or sporadic tasks

sorted in the non-increasing order by their utilization values. Each task Ti in τ is described using

the 2-tuple Ti = (pi, ei), where pi is its period, and ei is its worst case execution time. Each task

Ti generates a sequence of jobs Ji,0, Ji,1, . . . , Ji,k, . . .. If Ti is a periodic task, then each job Ji,k

arrives at time ai,k = k × pi. If Ti is a sporadic task then Ji,0 can arrive at any time t ≥ 0 and all

jobs must arrive at least pi time units apart – i.e., ai,k ≥ ai,k−1 + pi for every k > 0. Each job Ji,k

has deadline di,k = ai,k + pi. Any correct schedule must execute Ji,k for ei time units during the

interval [ai,k, di,k).

The utilization, ui, of task Ti is the proportion of processing time the task requires and is equal

to ei/pi. The maximum and total utilization of a task set are denoted

umax = max
0≤i<n

{ui} and Usum =
n−1∑
i=0

ui.

Utilization can be a very useful tool in analyzing task sets. For example, if a periodic or sporadic

task set τ has utilization Usum ≤ 1, then EDF will schedule τ to meet all deadlines on a unipro-

cessor [2]. This result is important for our research because we assume the local scheduler on each

processor is EDF. Therefore we can assign tasks Ti, Ti+1, . . . to a processor ρ as long as the total

utilization of the tasks assigned to each processor does not exceed 1. Similarly we can add β tasks

{Ti+j|j = 0, 1, . . . β − 1} to a processor whenever

i+β−1∑
j=i

uj ≤ 1.

6
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Because τ is sorted by utilization, we know

i+β−1∑
j=i

≤ βui.

Therefore, if
∑i+β+1

j=i ≤ 1 then
1

β
≤ ui.

Because β ∈ Z, we can conclude

β ≥
⌊

1

ui

⌋
.

Thus the minimum number of tasks that can be assigned to a processor before the processor fills

up is a function of the utilization of the first task assigned to that processor. For each processor ρj ,

we let Uβj denote the total utilization of tasks assigned to processor ρj is Uρj While adding tasks

to a processor, we say the gap on the processor ρj is

gap(ρj) = 1− Uρj = 1−
∑

Ti∈A(ρj)

ui

where, A(ρj) is the set of tasks already assigned to ρj . Thus, after assigning the tasks in A(ρj)

to ρj , no additional task assigned to ρj can have utilization larger than gap(ρj). If a task Ti has

ui ≤ gap(ρj), we say Ti fits onto ρj .

We use two methods in our research to model a task set, namely:

1. The utilization binder, γ, and the maximum utilization, umax.

2. The cumulative utilization function Ucum(i).

Given a task set τ composed of n tasks, if ui ≤ umax × γi for i = 0, 1, . . . n − 1, then we

can use umax and γ to model τ . Value of γ can be derived easily if fair estimates of Worst Case

Execution Times (WCET) of tasks are available. As discussed in Chapter 1, methods suggested in

[9] and [8] can provide reasonable estimates of WCETs of tasks.

The example below shows how umax and γ can be used effectively to characterize a task set.

Example 1. Assume we know our task set will have five tasks with utilization in the following

ranges:
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• 1 task with uiε[0.3, 0.4] (umax ≥ 0.4)

• 2 tasks with uiε[0.25, 0.3] (umax × γi ≥ 0.3 for i = 1, 2)

• 2 tasks with ui ≤ 0.2 (umax × γi ≥ 0.2 for i = 3, 4)

Thus with partial information about τ , we can select appropriate values for γ and umax. If we

let umax = 0.4, we need to find γ such that γ ≥ (0.3/0.4)frac12 and γ ≥ (0.2/0.4)1/4 – i.e.,

γ ≥ max{0.87, 0.84}. Letting umax = 0.4 and γ = 0.87 for i = 0, 1, 2, 3, 4, we have umax · γi =

0.4, 0.348, 0.3027, 0.2633, 0.2291 which satisfies our assumptions about the task set.

For this model, we define Ψ(umax, γ) and Γumax,γ as follows.

Definition 1. Let τ be a task set with maximum utilization ≤ umax such that Ti ∈ τ and ui ≤

umaxγ
i. Then we say τ ∈ Ψ(umax, γ). We let Γumax,γ = {T0,Γ, T1,Γ, . . .} be the ”maximal” task

set in Ψ(umax, γ) – i.e., for all i ≥ 0, the utilization of the ith task is uΓ
i = umaxγ

i. Hence,

uΓ
i /u

Γ
i−1 = γ for all i > 0 and Γ(umax, γ) is assumed to have an unlimited number of tasks.

Rather than bounding individual task utilizations, our second method uses cumulative utiliza-

tion function to model a task set τ . A task set τ can be described using a cumulative utilization

function Ucum, if Ucum(i) ≥
∑i

k=0 uk∀i = 0, 1, . . . n − 1. While Ψ(umax, γ) bounds every task’s

utilization, Ucum does not, as illustrated in the following example.

Example 2. Assume a task set τ containing tasks with utilization values and cumulative utilization

values as shown in Table 2.1. Even though Ucum(i) ≥
∑i

k=0 uk for all k = 0, 1, 2, 3, 4, we cannot

use Ucum to define individual task utilization values. For example u1 = 0.4 ¿ Ucum(1)− Ucum(0).

For the purposes of our analysis we often need to know how many tasks are assigned to a

processor ρj when ρj becomes full (i.e, when the first task is unable to fit onto ρj). Also we let Bj

be the upper bound of tasks assigned to the processors ρ0, ρ1, ...., ρj

We will begin to present our bounds in Chapter 4 and Chapter 5 assuming that tasks are sorted

in weakly decreasing order. First, though, we discuss work related to our research.

A table containing all the symbols used in this thesis is given in Table- 2.2
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Table 2.1: Example of a task set, the cumulative utilization values and corresponding values
returned by Ucum(i) function

Task-id (i) Task utilization value Cumulative utilization value Ucum(i)
0 0.5 0.5 0.6
1 0.4 0.9 0.95
2 0.4 1.3 1.4
3 0.3 1.6 1.7
4 0.3 1.9 1.9

Table 2.2: Table containing the symbols and notations used throughout this thesis
Symbol Meaning

τ A task set
n Number of tasks in τ
m Number of processors required to schedule a task set τ
ρj The (j + 1)th processor where j = 0 to (m− 1)
Ti The (i+ 1)th task of a task set τ where i = 0, 1, ...(n− 1)
T τi The (i+ 1)th task of a task set τ where i = 0, 1, ...(n− 1)
Ji,j The (j + 1)th job of a task Ti
pi The exact (minimum) time period between two consecutive jobs of periodic (sporadic) task Ti
ei The worst case execution time (WCET) of each job of task Ti
ui The average proportion of CPU time ( ei

pi
) that a task Ti of requires

umax The maximum value of utilization of tasks in τ umax = max{u0, u1, ...., un−1}
Usum The maximum total utilization value of all tasks of τ : Usum =

∑
ui

γ Utilization binder such that ui = umax × γi for i = 0, 1, ..., (n− 1)
Ψ(umax, γ) Set of all task sets τ such that ui ≤ umax × γi ∀Tiετ .

Γumax,γ Maximal task set of Ψ(umax, γ) – i.e., ui = umax × γi for all i ≥ 0
βj The minimum number of tasks on processor ρj when the first task is assigned to processor ρi+1

Bj Number of tasks on processors ρ0, ρ1, .., ρj
mL Number of processors required by the method described by Lopez, et al.
βτj Number of tasks on processor ρj while scheduling tasks from τ
bj The jth bin in the bin-packing problem
Ii The ith item in the bin-packing problem
sj The size of jth bin in the bin-packing problem



CHAPTER 3

RELATED WORK

Preemptive multiprocessor scheduling algorithms of periodic or sporadic tasks can be divided into

3 basic categories according to their migration strategies [10].

• Full Migration: A preempted task can restart execution on any processor.

• Restricted Migration: Tasks can only migrate at job boundaries. If a job is preempted, it

must restart on the same processor. However, the next job of the same task may execute on a

different processor.

• Partitioned: Each task is assigned to a processor. All jobs of a given task can execute only

on the processor to which the task is assigned.

This research is concerned with partitioned scheduling on identical multiprocessors, in which

all processors are the same – i.e., a task’s behavior (in particular its worst case execution time) does

not depend on the processor that executes the task. For each of the task models, we will present two

bounds – one bound determines the number of processors required, and another bound presents the

maximum utilization associated with a given number of processors that guarantees partitioning is

possible.

We assume that each processor executes tasks using the Earliest Deadline First (EDF)

scheduling algorithm, which always schedules the job with the earliest deadline. Liu and Lay-

land [2] proved that a task set can execute on a uniprocessor if its total utilization is at most 1.

Dertouzos and Mok [11] proved the same bound holds for sporadic tasks.

The question of whether a task set can be partitioned on m processors may be restated as

follows: Can we divide the tasks in τ into m subsets τ1, τ2, . . . , τm such that each task is in exactly

10



11

one subset and each subset has total utilization at most 1? This is, essentially, the bin packing

problem, which considers whether a set of items I1, I2, . . . , In with sizes s1, s2, . . . , sn can be

placed into m equally sized bins without any bins overflowing (i.e., the total size of the items

placed in each bin must be less than or equal to the size of the bin). Without loss of generality, all

sizes are normalized so that the bins all have size 1 and the item sizes must be at most 1.

This problem was studied extensively by Johnson [12, 6], who proved that it is NP-complete.

Fortunately, polynomial time approximate solutions to this problem exists. Johnson [7] proved that

a number of simple strategies will require less than 11
9
×opt+4 where opt is the minimum number

of bins required for the given set of items. An algorithm is online if each item is placed in a bin

without considering any other items. One of the bin packing algorithms Johnson [12, 6] explored

is the First Fit (FF) algorithm. This algorithm numbers the bins b1, b2, . . .. Each item Ij is placed

in the first bin bi (i.e., the one with the lowest index) such that 1 − S(bi) ≤ sj , where S(bi) is the

total size of all items that have already been assigned to bin bi. Hence, we expect that any efficient

method we devise to determine whether a task set can be partitioned onto m processors will give

some “false negatives”.

Lopez, et al., [1] considered a related problem in which the only information known about a

task set τ is its total utilization, Usum, and its maximum utilization umax. Because there is no further

information about the utilization values of the tasks in τ , Lopez, et al., must make the worst case

assumption that all the tasks of τ have a utilization value of umax. Their work observes that every

processor must have at least β = b1/umaxc tasks assigned to it before adding any additional task

would cause the total utilization on that processor to exceed 1. Hence, if β or fewer tasks have been

assigned to some processor and the tasks are scheduled using EDF, then those tasks will meet all

their deadlines. Moreover, if τ is comprised of β×m or fewer tasks, then we are guaranteed that τ

can be partitioned onto m processors. (This conclusion relies on the results of Liu and Layland [2]

and Deterzous and Mok [11] mentioned above.)

Figure 3.1 represents β as a function of umax. When umax is larger than 1
2
, we can only guar-

antee 1 task per processor. As the value of umax increases, the minimum number of tasks per
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Figure 3.1: Representation of β as a function of umax [1]

processor increases. Each range also shows the maximum number of tasks. For example, if umax

is in the interval (1/3, 1/2] then β = 2. In this case, the task set τ can be partitioned if it has 2×m

tasks or less.

Using this observation Lopez, et al., proved the following theorem.

Theorem 1. Let τ = {T0, T1 . . . Tn−1} be any task set with maximum utilization umax and total

utilization Usum. Let β =
⌊

1
umax

⌋
. If either of the following conditions hold

Usum ≤
βm+ 1

β + 1
, or n ≤ β ·m (3.1)

then τ can be FFD partitioned onto m processors.

This theorem has the advantage of being quite flexible – as long as umax and Usum do not

change, the tasks in τ can be modified without requiring further analysis. Lopez, et al., observed

that for most processors ρj , when ρj is unable to fit some task, its total utilization may be only

slightly larger than β/(β + 1).

The graph in Figure 3.2 shows the normalized worst case utilization (average level of utiliza-

tion per processor) for FFD partitioning as a function of the number of processors for different
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values of β. The worst case achievable utilization is the maximum utilization guaranteeing the

tasks can be partitioned onto the given number of processors. If β = 1, then on each processor

there could be up to one task whose utilization may be slightly higher than 1
2
. Therefore, the lower

bound on the maximum value of the utilization per processor of the task is ui = 0.5 + ε. However,

this analysis assumes all of the task have utilization equal to 0.5 + ε which is very pessimistic

because the number of processors returned by Lopez method is nearly twice as much as actually

needed and nearly all the processors are utilized only 50%

By EDF uniprocessor utilization bound, if there is just one processor, then it can be utilized to

the fullest. Thus, while all the other processors have a utilization bound of β
β+1

, we give the last

processor a utilization bound of 1. If β = ∞, then utilization value of each task is infinitesimal

value. Thus the gap on each processor is also infinitesimal – i.e., gap(ρi) < ε or 1 − Uρi < ε. We

see that in this case the maximum total utilization per processor is close to 1.

Lopez, et al., [1] also developed a functionmL(n, Usum, β) such that any task set τ with at most

n tasks with total utilization at most Usum and maximum utilization at most 1/β is guaranteed to

be partitioned successfully onto mL(n, Usum, β) processors where

mL = min

{⌈
n

β

⌉
,

⌈
(β + 1)Usum − 1

β

⌉}
(3.2)

Example 3. Let us see an example task set with 35 tasks. The first task with a utilization value of

0.6 and all the other tasks of utilization values 0.1. According to Lopez, et al., for such a task set

β = 1. The total utilization Usum = 4 and the number of tasks n = 35. Substituting the parameters

for this task set in Equation 3.2 gives

mL = min

{⌈
35

1

⌉⌈
(1 + 1)4− 1

1

⌉}
V mL = 7

Thus a designer using Lopez, et al., would require 7 processors.

Figure 3.3(a) illustrates the minimum utilization allocated to each of the 7 processors. Because

β = 1, nearly all the processors have an utilization bound of 50%. Figure 3.3(b) illustrates that

tasks can fully utilize 4 processors.
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Figure 3.2: Worst-case achievable utilization for EDF-FF [1]

(a) Utilization bound for each processor using Lopez method

(b) Utilization bound for each processor using FFD

Figure 3.3: Utilization bound for each processor using Lopez method and FFD

Because the Lopez method considers only the maximum utilization they derive a very pes-

simistic bound. If they had taken into account the fact that nearly all the tasks have a much smaller

utilization, they would be able to reduce the derived number of processors by almost 50%.

Our work is similar to that of Lopez, et al., but, instead of using Usum and umax to build

our tests, we use umax and γ or Ucum. When designing a system, there will generally be more

information available than just umax and Usum. Methods to find the WCET of tasks, such as those
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given in [8] and [9] illustrate that we can get better approximate descriptions of task sets using

automatic code generators. Even though it can which can be used to find good approximations for

the tasks’ WCET, this code needs to be optimized. The code automatically generated using tools

are less efficient than the actual code. In [8], Mohan, et al., propose a method to calculate the

worst-case execution time for all of the tasks in a task set.

1. Devise a high-level, functional model with a modeling tool like Simulink [13].

2. Automatically generate code using Real-Time Workshop [14] or Real-Time Embedded

Workshop [15].

3. Pass the generated code through an analysis suite developed by Mohan, et al.

Ferdinand, et al., [9], have also developed a detailed method to find the WCET of a task called

USES approach. They tested their approach by analyzing the timing behavior of the Motorola

ColdFire 5307 processor. Airbus provided the authors with a benchmark system which resembles

actual avionics software. The USES estimates for the WCETs of this benchmark were used to

design a system at the Airbus Toulouse plant. The initial assessment carried out by the verification

specialists at Airbus found that USES reported WCETs that werevery close to the actual WCETs.

The steps involved in the USES approach are:

1. The task for which WCET has to be determined is divided into sequential subtasks which

can be executed in isolation. Doing this aids in a more precise estimation of the WCET of

the task as different methods tailored to the subtask can be used in the analysis.

2. Then the cache analysis, pipeline analysis and value analysis were done using a semantics

based method for static programming. Path analysis was done by integer linear program-

ming.

3. While the benchmark was designed for the Motorola ColdFire 5307 processor, generic and

generative methods were used so that the WCET can be estimated for any architecture.
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The results of Mohan, et al., and of Ferdinand, et al., confirm that we can acquire more infor-

mation about a task set than just umax and Usum. Though we cannot get the exact information ahead

of time, we can get more detailed information about a task set τ . Using the available information,

we model task sets more accurately than Lopez, et al. We describe a task set τ using:

1. The utilization binder, γ: For a task set τ , the utilization binder γ is a value such that ui ≤

umax × γi for each task Ti when the tasks are sorted in the non-increasing order of their

utilization values.

2. The cumulative utilization function, Ucum(i) : A function that returns an upper bound for

cumulative value of utilization values of first the i tasks when the tasks are sorted in the

non-increasing order of their utilization values.

The next two chapters illustrate how using this additional information can provide us with

much better estimates of design requirements.



CHAPTER 4

USING γ TO IMPROVE THE BOUNDS

This paper presents a new method to find a tighter bound on the number of tasks required to

partition the tasks of task set τ . We observed that the bound presented in Equation 3.1 can be

very pessimistic if umax is significantly larger than other task utilizations. While we may not have

complete information, we will often have more information than just umax and Usum. To this end,

we incorporate γ, a term to bound the utilization values of task set, as defined .

Recall Ψ(umax, γ) is a set of all task sets τ such that ui ≤ umax × γi ∀Tiετ and Γumax,γ is the

”Maximal task set” of the set of task sets Ψ(umax, γ) i.e. ui = umax × γi. For simplicity we use

the notation Γ whenever the values of umax and γ are clear. It may seem intuitive that our maximal

task set Γumax,γ will exhibit worst case behavior of any task set τ ∈ Ψ(umax, γ). The next example

illustrates that in some cases FFD may place more tasks of Γumax,γ than of some τ ∈ Ψ(umax, γ)

onto same processor ρi

Example 4. As stated in chapter 2, we use superscript to distinguish between τ ’s and Γ’s behavior.

For example βτj indicates the number of tasks of τ assigned to processor ρj . consider a case where

γ = 0.75 and umax = 0.85. The tasks in the actual task set and the maximal task set can be as

shown in the Table 4.1. Using First Fit Decreasing(FFD) algorithm, The task T τ2 in the actual task

set τ with utilization uτ2 = 0.3 can be scheduled on processor ρτ0 along with T τ0 . The processor

ρτ0 can thus have a maximum of two tasks using the actual task set which means βτ1 = 2. As the

number of tasks increases and i increases, we are going to have tasks in maximal task set Γ which

have really small utilizations like 0.003. The processor ρΓ
0 will be able to schedule T Γ

0 , T Γ
6 and T Γ

10

which means βΓ
1 = 3

17
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Table 4.1: Example of an actual task set τ and its corresponding maximal task set Γ
Maximal task set Γ Actual task set τ

0.85 0.7
0.6375 0.6
0.478 0.3
0.359 0.05
0.26 0.05

0.195 0.05
0.146 0.05
0.11 0.05
0.08 0.05
0.06 0.04

0.003 0.001

The above example shows that the number of tasks on ρΓ
i and ρτi for any i ≥ 0, using task set

τεΨ(umax, γ) and maximal task set Γ respectively is incomparable when the scheduling is done

by FFD. As noted in the discussion regarding Equation 3.1 and illustrated in Figures 3.2 and 3.1,

the calculation of utilization bound depends on the number of tasks on a processor ρi. In order to

ensure an accurate utilization bound, we need to assume mτ
i ≥ mΓ

i , where mτ
i and mΓ

i are the

number of tasks on the processor ρi using the task sets τ and Γ. Hence we use Next Fit Decreasing

(NFD) to partition Γ when finding the FFD utilization bound for τ .

Below, we show how to use umax and γ to find a bound on the number of processors required

by any τ ∈ Ψ(umax, γ) and a bound on the total utilization for any such τ , beginning with the

processor bound.

4.0.1 BOUNDING THE REQUIRED NUMBER OF PROCESSORS

We begin by presenting a method for finding a bound on the number of processors m(umax, γ, n).

Any task set τ ∈ Ψ(umax, γ) can be partitioned onto m(umax, γ, n) processors using the First Fit

Decreasing (FFD) algorithm. If γ = 1 then the number of tasks, n must be provided. If γ < 1, this

parameter is optional. We can still find an upper bound on the number of processors by observing
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that when γ < 1,
∞∑
i=0

umaxγ
i =

umax
1− γ

<∞.

Thus, we findm(umax, γ,∞) if n is not known. However, even when γ < 1, specifying nwill allow

us to provide a tighter bound on the required number of processors. We show that incorporating γ

into the analysis can only improve the bounds – i.e, the bounds developed below cannot be worse

than the corresponding bounds presented by Lopez, et al . [1].

We use an iterative method to find m(umax, γ, n). Given umax and γ we find the value βi such

that βi tasks of Γ(umax, γ) can fit onto processor ρi, but βi + 1 tasks cannot. This value varies by

processor because the largest task utilization assigned to each processor decreases as the number

of processors increases if γ < 1, and remains constant if γ = 1.

Lemma 1. Let the task set Γumax,γ be the maximal task set for some umax and γ such that 0 <

umax, γ < 1. Then

a) If umax ≤ 1− γ then let β0 =∞.

b) If umax > 1− γ, let β0 be defined as follows

β0 =

⌊
logγ

(
1− 1− γ

umax

)⌋
. (4.1)

Then for all 0 ≤ i < β0, the NFD algorithm will assign task Ti,Γ to processor ρ0. Further-

more, when umax > 1− γ task Tβ0,Γ will be assigned to processor ρ1.

Proof. To prove (a), note that
∞∑
i=1

umaxγ
i =

umax
1− γ

.

Therefore, if umax ≤ 1− γ implies the total utilization of all the tasks in Γumax,γ is not more than

1. Hence, all the tasks can fit onto a single processor.

To prove (b), we observe that if Tβ0,Γ is the first task to be assigned to the second processor

then β0 satisfies the following inequalities.

β0−1∑
i=0

umaxγ
i ≤ 1 <

β0∑
i=0

umaxγ
i.
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Equivalently,
umax(1− γβ0)

1− γ
≤ 1 <

umax(1− γβ0+1)

1− γ
.

Multiplying by (1− γ)/umax gives

1− γβ0 ≤ 1− γ
umax

< 1− γβ0+1.

Isolating the γ terms gives

γβ0 ≥ 1− 1− γ
umax

> γβ0+1.

Taking the log base γ gives

β0 ≤ logγ

(
1− 1− γ

umax

)
< β0 + 1.

Thus, Equation 4.1 holds because β0 ∈ Z.

Note that once the first β0 tasks have been assigned to processor ρ0, we know that the tasks

T0,Γ through Tβ0−1,Γ have already been assigned to a processor. Hence, the problem of determining

how many processors the remaining tasks require can use the same approach using a smaller value

for umax, namely, umax · γβ0 . Thus, we can find β1 using Equation 4.1, but replacing umax with

umax · γβ0 , viz.

β1 =

⌊
logγ

(
1− 1− γ

umaxγβ0

)⌋
. (4.2)

After assigning tasks to the first 2 processors, we have accounted for β0 + β1 tasks. Hence, we

can find the number of tasks that can fit on processor ρ2 using Equation 4.1 replacing umax with

umax · γβ0+β1 . More generally, for i ≥ 1, if Bi−1 tasks are assigned to processors ρ0 through ρi−1

and

βi =

⌊
logγ

(
1− 1− γ

umax · γBi−1

)⌋
(4.3)

we assign tasks TBi−1,Γ through TBi−1+βi−1,Γ to processor ρi, thereby letting Bi = Bi−1 + βi.

The value β0 is used in a similar manner as the value β in [1]. In that work, Lopez, et al., set β

to b1/umaxc. Assuming all tasks have utilization umax, β is the number of tasks that can fit onto a

single processor before the next task won’t fit. Thus, the value of β used by Lopez, et al. provides
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Algorithm 1 Find-m(umax, γ, n)

Require: 0 < umax, γ ≤ 1 and 1 ≤ n ≤ ∞. If γ = 1, then n must be finite.

1: if γ < 1 then
2: Usum ← umax

1−γ
3: else
4: Usum ←∞
5: Urem ← Usum
6: m← B0 ← 0
7: while Urem > 1 and B < n do
8: m← m+ 1
9: Bm ← Bm + βm

10: if γ < 1 then
11: βm ←

⌈
logγ(1− (1− γ)/(umaxγ

B))
⌉

12: Urem ← Urem − (umaxγ
β)/(1− γ)

13: else
14: β ← b1/umaxc
15: Urem ← Urem − β/(β + 1)
16: if Bm, < n then
17: m← m+ 1
18: return m

the same measurement as the β0 using our method. The use of γ, however, allows us to put more

tasks onto the next processor. Furthermore, it is easy to see that β0 cannot be smaller than β. Once

all tasks T Γ
i with utilization ui have been assigned to processors, the number of tasks per processor

increases.

Algorithm FIND-m (Algorithm 1) illustrates our iterative strategy to find m(umax, γ, n). The

algorithm iteratively assigns βi tasks to each processor. On each iteration, the value of β is deter-

mined using a smaller value for umax.

The algorithm continues to iterate until the remaining utilization is less than 1 or the number

of tasks B has exceeded the input n. If the remaining utilization is less than or equal to 1, all

the remaining tasks can fit onto a single processor, so the algorithm increments m and returns. If

B ≥ n, then all tasks have been assigned to processors, so the algorithm returns.

While Algorithm FIND-m finds the number of processors required for Γumax,γ we need to

assure ourselves that any τ in Ψ(umax, γ) will use no more than the number of processors returned
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by this algorithm when partitioned using FFD. We begin by showing that for each processor ρj ,

Γumax,γ allocates its first task no later than τ does.

Lemma 2. Let τ be any task set in Ψ(umax, γ). Assume Tωj is the first task assigned to processor

ρi when τ is partitioned using FFD. Let Bj be the value of B (i.e., the number tasks assigned to

processors ρ0, . . . rhoj−1) when Algorithm 1 enters the loop for the jth time. Then ωj ≥ Bj .

Proof. The proof is by induction on the number of processors. Both τ and Γumax,γ place their first

task on processor ρ0. Hence ω0 ≥ Ω0.

Assume ωj ≥ Bj for all j ≤ k and consider processor ρk+1. Because ωk ≥ Bk, we know

that uωk ≤ uBk ≤ uBk,Γ. Moreover, we know that uωk+i ≤ uBk+i,Γ for all i ≥ 0. Algorithm 1

determines βk, the number of tasks starting with TBk,Γ that can be assigned to processor ρk and

then moves on to processor ρk+1. Because the βk tasks of Γumax,γ starting with TBk,Γ have total

utilization at most 1 and uωk+x ≤ uBk,Γ+x for 0 ≤ x ≤ βk, we know that the total utilization of

the βk tasks of τ starting with Tωk cannot exceed 1. While we do not know which processors these

tasks will be assigned to, we can conclude that NFD will not need to start a new processor before

task Tωk+βk .

Theorem 2. Let τ be any task set in Ψ(umax, γ) and let m(umax, γ, n) be the value returned by

Algorithm 1. Then when τ is partitioned using FFD, no more than m(umax, γ, n) processors will

be required.

Proof. By Lemma 2, the first task of τ assigned to any processor using FFD has an index no

smaller than the first task of Γumax,γ assigned to the same processor by Algorithm 1. Therefore, if

n <∞, the Theorem must hold. If n =∞ then Algorithm 1 assigns tasks whose total utilization is∑∞
i=0 umaxγ

i. Hence, any number of tasks in τ will have corresponding tasks accounted for in the

derivation of m(umax, γ, n). Thus, τ will be successfully partitioned onto these m(umax, γ, n) pro-

cessors and any task set τεΨ(umax, γ) will use at most m(umax, γ, n) processors when partitioned

using FFD.
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Algorithm 2 Find-Ubound(umax, γ,mmax)

Require: 0 < umax, γ ≤ 1 and 1 ≤ m ≤ ∞. If γ = 1, then n must be finite.

1: if γ < 1 then
2: if mmax > umax/(1− γ) then
3: return umax/(1− γ)
4: B ← Ub ← 0
5: m← 1
6: while m < mmax do
7: if γ < 1 then
8: β ←

⌈
logγ(1− (1− γ)/(umaxγ

B))
⌉

9: Ubound ← Ubound + (1− γβ)/(1− γβ+1)
10: else
11: β ← b1/umaxc
12: Ubound ← Ubound + β/(β + 1)
13: m← m+ 1
14: B ← B + β
15: Ubound ← Ubound + 1
16: return Ubound

4.0.2 BOUNDING THE TOTAL UTILIZATION

We now present a method for finding a utilization bound Ubound(umax, γ,m). Any task set τ ∈

Ψ(umax, γ) with total utilization Usum ≤ Ubound, then τ is guaranteed to be partitioned onto m

processors using FFD.

Note that because Γumax,γ is the maximal task set in Ψ(umax, γ), its utilization does not provide

a lower bound on the utilization of τ ∈ Ψ(umax, γ). Consider the following example.

While Γumax,γ’s utilization does not provide us with the information we need, the values of βi

can be used to derive a utilization bound. Lemma 1 above observed that βi is the minimum number

of tasks NFD assigns to ρi for any τ ∈ Ψ(umax, γ). We use this observation to find a bound on the

total utilization of any such τ . Specifically, we want to determine what the smallest utilization can

be if βi tasks are assigned to a processor and some task cannot fit into the remaining gap.

Theorem 3. Let τ be any task set in Ψ(umax, γ). Assume FFD has assigned βj tasks to processor

ρj . Let Uρj be the total utilization of these tasks. If the next task Ti ∈ τ that FFD attempts to assign

to ρj that will not fit then
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a) If γ = 1 then

Uρj >
βj

βj + 1
.

b) If γ < 1 then

Uρj >
1− γβj

1− γβj+1
.

Proof. Let Ti be the next task that FFD attempts to assign to ρj . Observe that the worst case occurs

when ρj has a gap only slightly smaller than the task’s utilization, viz. Uρj = 1 − ui + ε. Hence,

our goal is to find the smallest value of Uρj such that Uρj = 1 − ui for some task ui. Because we

assume FFD partitioning, we know ui ≤ uk for all Tk assigned to ρj . Let Tk1 , . . . , Tkβj be the tasks

assigned to ρj and assume that Uρj is as small as it can be while still having some unassigned task

Ti satisfy ui = 1− Uρj . We consider the two cases separately.

Case 1 : γ = 1.

We wish to minimize Uρj =
∑βj

h=1 ukh with the restriction that uk1 ≥ uk2 ≥ . . . ukβj ≥ ui

and 1 − Uρj > ui. Because 1 − Uρj > ui, the value of Uρj is minimized when the value at ui is

maximized i.e. when ui = ukβj . Also because Uρj =
∑βj

h=1 ukh , the value of Uρj is minimized

when the values of ukh are minimized - i.e. when ukh = Ukh+1
for h = 1, 2, ...βj − 1. Thus Uρj is

minimized when uk1 = uk2 = .... = ukβj = ui Thus,

Uρj =

βj∑
h=1

ukh = βj × ui (4.4)

also ui > 1− Uρj = 1− βj × ui Therefore,

ui >
1

βj + 1
(4.5)

Plugging Equation- 4.5 into Equation- 4.4 gives Uρj >
βj
βj+1

Case 2 : γ < 1.

We wish to minimize Uρj =
∑βj

h=1 ukh with the restriction that uk1 ≥ uk2 ≥ . . . ukβj ≥ ui

where ukx ≤ uk1 × γ and 1 − Uρj > ui. Because 1 − Uρj > ui, the value of Uρj is minimized

when the value at ui is maximized i.e. when ui = ukβj × γ. Also because Uρj =
∑βj

h=1 ukh =
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∑βj
h=1 uk1 × γh−1, the value of Uρj is minimized when the values of ukh are minimized - i.e.

when ukh × γ = Ukh+1
for h = 1, 2, ...βj − 1. Thus Uρj is minimized when uk1 × γ = uk2 ,

uk2 × γ = uk2 , ...., ukβj × γ = ui Thus,

Uρj =

βj∑
h=1

uk1γ
h−1 = uk1 × γ

β
j (4.6)

=⇒ 1− uk1(1− γβj)
1− γ

= uk1γ
βj

⇒ 1− uk1(1− γβj)
1− γ

= uk1γ
βj

⇒ uk1

(
1− γβj
1− γ

+ γβj
)

= 1

⇒ uk1 =
1− γ

1− γβj+1

Therefore,

Uρj =

βj∑
h=1

uk1γ
h

=
1− γ

1− γβj+1
· 1− γβj

1− γ

This proves the second case.

Algorithm FIND-Ubound (Algorithm 2) illustrates our iterative method for finding the utilization

bound for any τ ∈ Ψ(umax, γ). We initially check if m > umax/(1−γ). If so, that is the utilization

bound by Lemma 1. Otherwise, we iteratively find how many tasks Γumax,γ would place on the

next processor and adjust Ubound accordingly. We iteratem−1 time and add 1 to our bound because

the final processor, being a uniprocessor, has a utilization bound of 1.

Note that the utilization bound presented by Lopez, et al., follows directly from the above

result, as the following corollary demonstrates.1

1The proof of Corollary 1 below is an alternate and (much simpler) proof of the bound presented by
Lopez, et al.
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Corollary 1. Let τ be any task set with maximum task utilization equal to umax. If γ = 1 or if γ is

unknown, then the utilization bound for m processors determined by Theorem 3 is

β ·m+ 1

β + 1
,

where β = b1/umaxc.

Proof. Because we must assume the worst case scenario, we assume the maximum utilization on

each processor is umax. Therefore Algorithm 2 will assign total utilization bound of β
β+1

to the first

m − 1 processors. The last processor is assigned the uniprocessor utilization bound of 1. Hence,

the derived bound will be

(m− 1) · β

β + 1
+ 1

=
(m− 1)β + β + 1

β

=
β ·m+ 1

β
.

The results presented in this chapter can aid designers in building a system when each task’s

utilization can be bounded. the next chapter relaxes the requirement that each individual task’s

utilization can be bounded and instead illustrates that similar analysis can still be applied when we

are provided with a function that bounds the cumulative utilization of the tasks.

4.0.3 EVALUATION

In this section, we compare the bounds determined by our work using the utilization binder, γ,

to the corresponding bounds developed by Lopez, et al., [1]. We calculated m(umax, γ,∞) and

Ubound(umax, γ,m) for values of umax and γ ranging from 0.1 to 0.99.

We also determine the utilization bound and the number of processors developed by Lopez, et

al., [1]. Our algorithm runs for O(m) while Lopez, et al., runs for O(1). Assume umaxγ denotes

the maximum utilization used in our method and umaxL is the maximum utilization used in the
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Figure 4.1: Our results compared to Lopez, et al., bounds.
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Figure 4.2: Our results compared to Lopez, et al., for fixed number of tasks

Lopez, et al., method. In practical situations where you cannot approximate the task utilization

values correctly, increase umaxγ value slightly to bound the utilization values properly. In cases

where you want to save more increase umaxγ slightly and decrease γ a little in such a way that

utilization calculated using umaxγ and γ still bounds the actual utilization. We will still be able to

have tasks that are tighter (i.e. smaller utilization) than the ones Lopez, et al., implicitly uses.

Figure 4.1, Figure 4.2 and Figure 4.3 present the resulting savings. The values of umax and γ

presented are 0.6, 0.7, 0.8, 0.9, 0.95 and 0.99. The graphs demonstrate that, even for very large

values of umax and γ, our iterative method can significantly reduce the required number of proces-

sors. That is, even if the tasks have utilizations nearly equal to each other and γ is almost equal to
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Figure 4.3: Our results compared to Lopez, et al., for fixed values of alpha and gamma

1, our method reduces the number of processors up to 65% and increases the utilization bound up

to 98%. Thus, even if the approximate value of γ is significantly larger than an actual task set’s γ

value (e.g., 0.99), we can still reduce the number of processors and increase the utilization quite a

bit.

Figure 4.1(a) shows the maximum reduction in the number of processors we get using our

method. For each umax and γ we found the maximum percent savings determined as follows.

Percent savings =
mL −mγ

mL

,

where mL is the number of processors indicated by Lopez, et al., and mγ is the number of proces-

sors derived by our algorithm. Similarly, the graph in Figure 4.1(b) was drawn with percent savings

of the utilization bound determined as follows.

Percent savings =
Ubound,γ − Ubound,L

Ubound,L
.

We observe that we achieve savings in many scenarios. In general, our utilization bound fares better

compared to Lopez as the number of tasks increases and as the maximum utilization decreases

(though for very small utilizations we our savings decline). By contrast, the reduction in processors

improves as γ increase and as umax increase. For small values of umax and γ, we see that the

savings can be fairly eratic. This occurs because the required number of processors is small and

the total utilization assigned to the last processor can have a big impact.
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For example, when umax = 0.8 and γ = 0.6, our method requires 2 processors and the utiliza-

tion bound for those processors is 2 – i.e., the 2 processors can be 100% utilized without having

to put any tasks on a 3rd processor. The Lopez utilization bound for umax = 0.8 and m = 2 is

1.5. When umax = 0.9 and umax = 0.6, our method needs 3 processors and the utilization bound

is 2.25, so the system idles 25% of the time. This idle time diminishes the savings. The Lopez

utilization bound for umax = 0.9 and m = 3 is 2.

Figure 4.2(a) shows the percentage savings and Figure 4.2(b) calculated with fixed number of

tasks (10, 25, 50, ∞). In Figure 4.2(a) and Figure 4.2(b), the results for 10 tasks and 25 tasks

completely overlap and result for 50 tasks partially overlaps with results for 10 and 25 tasks.

Using a small value for γ means the task utilization depreciates quickly. This is desirable as

the number of processors required to schedule tasks with small utilization is lesser than or equal

to schedule the same number of tasks of relatively large utilization values. To be able to use a

smaller γ value than what is needed, umax can be slightly increased. Let α is the factor by which

we want to decrease γ. We have also experimented with umaxγ = αumax
L where α = 1, 1.01, 1.10.

α is restricted to small values because bigger values of α may dramatically increase umaxγ or even

make it greater than 1. Figure 4.3(a) shows the reduction in number of processors we get using

umax
γ in our method compared to using umaxL in Lopez, et al., method. Figure 4.3(b) shows the

percentage increase in utilization bound calculated in a similar way.

In Figure 4.3(a), though the values of α are different, the percentage savings for same γ overlap

significantly with each other. In Figure 4.3(b), the values for α = 1.01 & γ = 0.9 and α = 1 &

γ = 0.9 overlap. the rest of the lines in Figure 4.3(b) except α = 1.1 & γ = 0.99 also overlap with

each other.

All the graphs exhibit non-uniformity in growth. It curves up and down for different values of

gamma depending on umax. The irregularity in both the cases has been explained below. Erratic

behavior is exhibited in scenarios requiring a small number of processors. Therefore, a small

change in mL that does not also occur in mΓ will appear to be a very large change in percentage

reduction. For instance consider 4.1(a), for the same value of γ = 0.8 and infinite number of tasks,
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the savings is 57% when γ = 0.6 while savings reduce to 50% when umax = 0.7. For umax = 0.6

and γ = 0.8, the number of processors required required using the method suggested by Lopez, et

al., is 7 but our method requires only 3. When umax increases to 0.7, both the method requires an

additional processor which makes Lopez, et al., method use 8 processors and ours to use 4 proces-

sors. This brings down the savings from 57% to 50%. Similar reasoning applies to erratic points in

the improvement of the utilization bound.

The value of γ does not have to be small to benefit from our method. Conversely, when γ

is high and close to 1, we get better savings. As the number of tasks increases, the number of

processors required by both our method and Lopez, et al., method increases. This in turn increases

the gap on each processor. As the measured gap increases, more tasks can be scheduled on the

gaps. Since our method keeps an account of gap on each processor, the savings on the number

of processors increases with the increase in γ. Which means, even when the γ value cannot be

estimated correctly, using γ = 0.99 can result in lot of savings.



CHAPTER 5

USING CUMULATIVE UTILIZATION FUNCTION

We now present another method of developing utilization bounds and determining a number of

processors that guarantees a task set can be partitioned using FFD. In this chapter, we bound the

cumulative utilization values rather than the individual task’s utilization values. The tasks of τ are

sorted in the non-decreasing order according to their utilization values. A task τ can be described

by the cumulative utilization function Ucum(.) if, for each i = 1, 2, . . . , n, the value of Ucum(i) is

greater than or equal to the total utilization the i tasks in τ with the largest utilization values.

As in the previous chapter, our analysis of relies on determining the minimum number of tasks

that can be assigned to each processor. Because EDF’s utilization bound on a single processor is 1,

when partitioning using FFD we will assign the first i tasks to processor ρ0 as long as Ucum(i) ≤ 1.

Hence, we let

β0 = bUcum−1(1)c.

Our first inclination is to determine the number of tasks assigned to ρ1 by considering the values

of Ucum(.) after the first β0 tasks. Specifically, we might want to approach this recursively, letting

Ucum,1(i) = Ucum(i)− Ucum(β0),

and using Ucum,1 to find β1 accordingly, viz.

β1 = bUcum−1
,1 (1)c.

This approach is illustrated in Figure 5.1.
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Figure 5.1: Hop over the curve to find the number of processors

Unfortunately, our intuition leads us astray in developing this approach. As the following

example illustrates, using the analysis described above may cause us to underestimate the number

of processors a given task set may require.

Example 5. Consider a function Ucum(i) whose first 5 values are 0.5, 1.0, 1.4, 1.8 and 2.0.

According to the method described above, we would conclude that a task described by Ucum(i)

would require only 2 processors.

Now consider the task set containing 5 tasks, all of which have a utilization of 0.4. This task set

is correctly described byUcum(i) becauseUcum(i) ≥ 0.4×i for 1 ≤ i ≤ 5. Even so, partitioning the

task set requires 3 processors instead of just 2. This discrepancy occurs because Ucum(i) bounds

the cumulative utilization values of the tasks at every instance but not the individual utilization

values of the tasks.

Example 6. Let umax = 0.95 and γ = 0.9, then the total utilization of Γumax,γ on 2 processors

would be 0.95 + 0.855 = 1.805. However, if τ tau has 3 tasks with utilization .6, .54, and .486,

then τ cannot be partitioned onto 2 processors even though τ ’s total utilization is 1.626 < 1.805

as shown in Figure 5.2.
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Utilization values of tasks in  Г Utilization values of tasks in  τ
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(a)

Figure 5.2: Number of processors required does not depend on the total utilization

This example indicates that our approach needs a slight change to accommodate such cases.

Rather than starting our next “hop” from the point where the last hop ended, we must account for

the worst-case behavior of any task set described by Ucum and start our hop from that point. By

Theorem 3 in Chapter 4, we know that if βj tasks are assigned to processor ρj when some task

does not fit onto the processor, then the total utilization of tasks assigned to that processor must be

at least βj/(βj + 1). We use this expression to determine a bound on the total utilization of tasks

assigned to a processor ρj .

Theorem 4. Let Ucum be a cumulative utilization function. Assume that for any task set τ described

by Ucum, when a task is assigned to processor ρj , there must be at least Bj−1 tasks assigned to

processors ρ0 through ρj−1 and the minimum total utilization of these tasks is at least mintot. Let

Ucum,j(i) = Ucum(i)−mintot. Then at least

Bj = bUcum−1
,j (1)c

tasks of τ will be assigned to processors ρ0 through ρj before the first task is assigned to processor

ρj+1.
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Now let βj = Bj −Bj−1. When the first task of τ is assigned to processor ρj+1, there will be at

least βj assigned to ρj and the total utilization of tasks assigned to processors ρ0 through ρj must

be at least

mintot+
βj

βj + 1

.

Proof: The proof is by induction. Because no tasks can have been assigned to any processor

before the first task is assigned to ρ0, we start with Ucum,0(i) = Ucum(i) and mintot = 0. Let

β0 = bUcum−1(1)c. By definition of Ucum, for any task τ described by Ucum the β0 tasks of τ with

largest utilization cannot have a cumulative utilization larger than Ucum(β0), which is at most 1.

Hence, when partitioning τ , there will be at least β0 tasks assigned to processor ρ0 before any task

is assigned to processor ρ1. Furthermore, by Theorem 3, when the first task is assigned to processor

ρ1, the total utilization of tasks assigned to processor ρ0 must be at least β0/(β0 + 1). Thus, the

base case holds.

Now assume the theorem holds for processors ρ0 through ρk−1 for some k ≥ 1 and consider

processor ρk. By the induction hypothesis, when the first task of τ is assigned to processor ρk there

are at least Bk−1 task assigned to processors ρ0 through ρk−1 and their total utilization is at most

mintot. Consider any i > Bk−1 such that Ucum(i) ≤ mintot+ 1. By the induction hypothesis, we

can partition the first Bk−1 tasks on processors ρ0 through ρk−1. Moreover, the total utilization of

those tasks is at least mintot. Therefore, the total utilization of the remaining βk tasks is at most 1.

Hence, after partitioning the first Bk−1 tasks onto processors ρ0 through ρk−1, we can assign all of

the next βk tasks to processor ρk.

Let Ti be the first task assigned to processor ρk. When Ti is assigned to processor ρk, at least

Bk−1 tasks have been assigned to processors ρ0, ρ1 . . . ρj−1 and the total utilization of tasks Ti

through Ti+βk−1 cannot exceed 1. Because tasks are sorted by utilization, any set of βk tasks with

index greater than or equal to i must have total utilization less than or equal to 1. Hence, there

will be at least βk tasks assigned to processor ρk before any task is assigned to processor ρk+1. By
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Theorem 3, the total utilization of these tasks will be at least βk/(βk + 1). Thus, the theorem is

proved.

Figure 5.3, illustrates the approach described in Theorem 4. In Figure 5.3(a), the minimum

number of tasks assigned to ρ0 is determined by finding the largest value β0 such that Ucum(β0) ≤

1. The minimum total utilization of the tasks assigned to ρ0 is then determined. In Figure 5.3(b),

we see that β1 is determined by considering the vertical offset starting at ρ0’s minimum total

utilization. In Figure 5.3(c), we see how βj is determined after finding β0 through βj−1. As opposed

to Figure 5.1, we see that the steps formed in this manner no longer touch the graph of Ucum.

We can actually improve our analysis by making two observations. First, the values of βj

cannot decrease as j increases. Second, when finding Bj , we are not taking advantage of the gap

on processors ρ0 through ρj−1. We now address each of these issues.

Lemma 3. Let βj be the number of tasks assigned to processor ρj when the first task is assigned

to processor ρj+1. Then, for all k > j there will be at least βj tasks assigned to ρk before the first

task is assigned to processor ρk+1.

Proof: Because tasks are sorted by utilization, we know that any tasks that are assigned to a

processor ρk where k > j must have utilization small than or equal to the utilization of any of

the βj tasks assigned to ρj before when the first task was assigned to ρj+1. Therefore, the total

utilization of any βj tasks assigned to ρk cannot be larger than the total utilization of the first βj

tasks assigned to ρj . Because these βj tasks fit onto ρj , their total utilization must be at most 1.

Therefore, at least βj tasks can fit onto ρk before any tasks are assigned to ρk+1.

By Lemma 3, if Ucum(Bj−1 + βj−1) > 1 + mintot, we can let βj = βj−1 rather than using

Theorem 4 to find βj .

We now address our second observation. Because we are determining the bounds for FFD, we

can assign tasks to a processor ρj even after tasks have been added to processor ρj+1. Because

Ucum does not tell us the individual task utilization values, we cannot know the maximum total

utilization assigned to any individual processor. Even so, after finding Bj , Ucum does tell us the

maximum total utilization of the first Bj tasks. By construction, all those tasks must be assigned
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to processors ρ0, ρ1 . . . ρj . Hence, after assigning the first Bj tasks, weknow the total gap on those

processors is at most (j + 1) − Ucum(Bj). Thus, while we cannot know the actual gap on any

processor, we do know that the average gap is at least

j + 1− Ucum(Bj)

j + 1
= 1− Ucum(Bj)

j + 1
.

Clearly, the actual maximum gap cannot be smaller than this average. Hence, if we can guarantee

the next tasks’ utilization is smaller than the minimum average gap, then we know that FFD will

assign that task to one of the first (j + 1) processors rather than assigning it to ρj+1.

Even though we cannot know a task’s actual utilization, we can once again use avegrages to

determine the largest utilization the next task can have. Specifically, the utilization of the (Bj+1)th

task cannot be larger than the average utilization of the first (Bj+1) tasks. Nor can it be larger than

the maximum average utilization of the tasks assigned to processor ρj . These observations lead us

to our next lemma.

Lemma 4. Assume the first Bj = Bj−1 +βj tasks are assigned to processors ρ0 through ρj and let

mintot be the minimum total utilization of the tasks assigned to processors ρ0 through ρj−1. Then

• The average gap on processors ρ0 through ρj after partitioning the first Bj tasks is at least

1− Ucum(B+j)
j+1

.

• The utilization of the (Bj + 1)th task is not larger than Ucum(Bj + 1)/(Bj + 1).

• The utilization of the (i+ 1)th task is not larger than Ucum(i)−mintot
βj

.

Thus, if

min

{
Ucum(Bj + 1)

Bj + 1
,
Ucum(Bj)−mintot

βj

}
≤ 1− Ucum(Bj)

j + 1
(5.1)

the (Bj + 1)th task will be assigned to some processor ρk, where k ≤ j.

Proof. We show each case separately.

1. Because Bj = Bj−1 + βj , we know the first Bj tasks will be partitioned onto processors

ρ0 through ρj . After partitioning these tasks, the total gap on these processors is at least

(j + 1)− Ucum(i), which means the average gap is at least 1− Ucum(Bj)

j+1
.
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2. The total utilization of the first (Bj+1) tasks is at most Ucum(Bj+1). Therefore, the average

utilization of these tasks is at most Ucum(Bj+1)

Bj+1
. The (i+ 1)th task has the smallest utilization

value of all of these tasks. Therefore, its utilization cannot exceed the average.

3. The total utilization of the βj tasks of τ ending with the Bth
j task is at most Ucum(Bj) −

mintot. Therefore, the average utilization of these tasks is at most Ucum(Bj)−mintot
βj

. The

utilization of the (Bj + 1)th task cannot exceed this average.

Therefore, if Equation 5.1 holds then the (i+1)th task will not need to be assigned to processor

ρj+1.

Algorithm 3 finds the required number of processors for a given any task set bounded by a

function Ucum and its utilization bound for a fixed number of processors, m. The running time of

this algorithm is O(m).

5.0.4 EVALUATION

In this section, we compare the bounds determined by our work using the cumulative utiliza-

tion function, Ucum(i) to the corresponding bounds developed by Lopez, et al., [1]. We used

about 800 randomly generated task sets with maximum utilization ranging from 0.01 to 0.99 to

form the cumulative utilization functions. Using these functions we found m(Ucum, umax, n) and

Ubound(Ucum) using the method introduced in this chapter. The value of n i the size of the domain of

Ucum. We also determine the utilization bound and the number of processors developed by Lopez,

et al., [1]. Using maximum and total utilization values Ucum(1) and Ucum(n), respectively. The

maximum utilization, umax, for a given task set is the value denoted by Ucum(o).

The graphs demonstrate that, for large values of umax and larger values of cumulative uti-

lization, our iterative method reduces the required number of processors by as much as 50% and

increases the utilization bound by as much as 85%.

We tested for task sets containing n tasks for n = 10, 25, 50, 100,∞ and report the average

savings for each scenario. Figure 5.4 compares our results to the Lopez results for fixed values of
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Algorithm 3 Find-bounds(Ucum(i),mmax)

Require: Ucum() is a valid cumulative utilization function of task-id.mmax (an optional argument)
is the maximum processor id.

1: B−1 ← 0
2: m← 0
3: if mmax > 0 then
4: mintot← β0

β0+1

5: else
6: mintot← 1
7: while (mintot ≤ Usum) and (m < mmax) and (Bm < size(Ucum)) do
8: if m = mmax then
9: mintot← mintot+ 1

10: else
11: find βm ∈ Z such that Ucum(Bm−1 + βm) ≤ 1 +mintot < Ucum(Bm−1 + βm + 1)
12: if βm < βm−1 then
13: βm = βm−1

14: Bm ← Bm−1 + βm
15: mintot← mintot+ βm

βm+1

16: min util sup← min
{
Ucum(Bm+1)

Bm+1
, Ucum(Bm−mintot)

βm

}
17: avgGap← Ucum(Bm)

j+1

18: if min util sup ≤ avgGap then
19: k ← bavgGap/min util supc
20: Bm ← Bm + k
21: mintot = mintot+ avgGap · k

k+1

22: m← m+ 1
23: return m,mintot

n. Figure 5.4(a) shows the percent reduction in the number of processors and Figure 5.4(b) shows

the percent increase in the utilization bound we get using our method. For each Ucum, we determine

the savings in the number of processors as follows.

Percent savings =
mL −mUcum

mL

,

wheremL is the number of processors indicated by Lopez, et al., andmUcum is the average number

of processors derived by our algorithm. For each Ucum, we determine the savings in the number of

processors as follows.

Percent savings =
U
bound,Ucum − Ubound,L

Ubound,L
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where Ubound,L is utilization bound indicated by Lopez, et al., and U
bound,Ucum is the utilization

bound derived by our algorithm.

We tested for different ranges of total utilization values for Usum < 5, 5 ≤ Usum < 50, 50 ≤

Usum < 150, 150 ≤ Usum < 500, Usum ≥ 500 and report the average savings for each scenario.

Figure 5.5 compares our results to the Lopez resultsfor different ranges of Usum. Figure 5.5(a)

shows the percentage reduction of the number of processors required and Figure 5.5(b) shows the

percentage increase of the utilization bound.

In all the graphs in this section, we aggregated the results based on umax i.e., the percentage

savings corresponding to umax = 0.5 is actually the average of percentage savings for task sets

with 0.4 < umax ≤ 0.5. It is evident from the graphs that savings are high when 0.5 < umax ≤ 0.6.

This is because, when umax > 0.5, Lopez, et al., allocate only one task to each processor. The gap

on each processor increases when maximum utilization of tasks decreases. Thus the gap on each

processor is largest when Lopez, et al., allocate a single task on each processor and the utilization

value of the task is only a little over 0.5. Unlike Lopez, our method makes use of the average gap

available on the previous processors. Thus, we get very high savings of up to 80% on the processor

utilization and up to 50% on the required number of processors.
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CHAPTER 6

CONCLUSION

We have presented a new method of developing utilization bounds and determining a number of

processors that guarantees a task set can be partitioned using FFD when each processor schedules

tasks using EDF. Using the parameter γ instead of Usum, we are able to reduce the number of pro-

cessors and increase the utilization bound.The utilization binder reduces the number of processors

by as much as 65% for values of umax near 1
2

and up to 50% for larger values of umax. These sav-

ings continue to hold when the utilization binder γ, is close to 1. When γ = 1, the utilization binder

produces same results as the current state of art method and they improve as γ decreases. While

the method using the utilization binder produces excellent results for larger values of umax, the

cumulative utilization function produces very good results for umax ranging between 0.5 and 0.6.

Our experimental results found that when umax ranges from 0.5 to 0.6, the savings on utilization

bound is as large as 80% and the savings on required number of processors goes up to 50%.

Decisions made during the design phase are critical and being judicial is as important as being

cautious in determining the quantity of resources. Making judgements based on restricted infor-

mation – i.e., only umax and Usum can cost us a lot. Mohan, et al., in [8] and Ferdinand, et al., in

[9] give us methods to find more detailed information about tasks than just umax and Usum. In this

thesis we show that taking advantage of this extra knowledge can lead to much less wasteful (and

hence less expensive) systems. We conclude by saying that we should take advantage of informa-

tion whenever it is available, so we can determine the amount of resources required to achieve an

efficient system.
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