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Abstract

Understanding how populations, and the ecosystems of which they are a part, respond to

fluctuations in the environment is paramount for conservation, sustainable management of

natural resources, and perpetuation of ecosystem function. In this dissertation, I evaluated

the role of source components of variability as statistical indicators of large-scale ecologi-

cal shifts, assessed the impact of age truncation on frequency signals in catches of a prey

population over time, and investigated how a fish community has responded to a suite of

environmental drivers. An analysis of variability in standardized fish catch data showed

that spatial and temporal components of variability can be responsive major perturbation,

offering finer-scale information about ecological reorganization than a mean response or to-

tal variability alone. This analytical framework is flexible and could be broadly applicable

to questions about population responses to a changing climate, physiographic differences,

or monitoring program efficacy, for example. In the next chapter, I evaluated demographic

changes to test the hypothesis that predation can induce similar effects as fishing. Age trun-

cation of an important prey fish was associated with increased variability in recruitment and

biomass, and greater correlation between these population metrics and temperature indices.

These results suggest that the relative abundance of a fish population could be tracking the



environment more closely due to the loss of a buffering capacity otherwise associated with

a broader reproducing age structure. Lastly, I went beyond single-species assessment by

evaluating data for a fish community in relation to environmental fluctuations. Using gradi-

ent forest methods, I was able to quantify the influence of different environmental signals on

community indicators and identify thresholds along gradients of those environmental signals.

Collectively, this research highlights tools and approaches to disentangle variability in stan-

dardized fish catch data. The findings illustrate the complexity of patterns and correlative

relationships that may exist between populations and their environment, which may change

over time, and which are likely consequential for effectively managing dynamic ecological

systems.
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Chapter 1

Introduction

The Laurentian Great Lakes are the largest group of freshwater lakes in the world, comprising

25% of the Earth’s freshwater by surface volume. The ecosystems of the Great Lakes have

undergone major changes throughout history due to overexploitation, pollution and nutrient

loading, habitat degradation and loss, the introduction of non-native species, and shifts in

climatic patterns (Christie, 1974; Chapra and Robertson, 1977; Bunnell et al., 2013). It is

estimated that the region has been affected by more than 180 invasive and non-native species

(Mills et al., 1993; Ricciardi, 2006; Sturtevant et al., 2014).

The Great Lakes Water Quality Agreement (1972), a joint commitment between the

United States and Canada to promote science and governance to improve the water quality

and ecosystem health of the Great Lakes, was instrumental in improving water quality

through reductions in phosphorous inputs (Millard et al., 1996; Binding et al., 2015). In 2012

the agreement was updated with annexes that identified areas of concern and addressed non-

native species, habitat and species protection, and climate change, with a focus on ecosystem

services. Great strides have been made to improve water quality, manage fishing effort, and

control non-native species; however, the ecosystems of today are markedly different from

those of decades and centuries prior.

In moving forward, it is important to determine clear objectives for management of

fisheries resources, identify important drivers of change, understand how populations are

responding to those drivers, and to evaluate how different management actions can be used

to affect desired outcomes. In this dissertation, I sought to use information contained within
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the variability in fish catch data to better understand how fish populations are responding

to changing environments. Specifically, I used data from three different systems to address

the following questions:

1. Can spatial and temporal components of variability in fish catch data be used as an

indicator of response to perturbation?;

2. Have changes to the age-structure of a prey fish population in Lake Michigan changed

the population’s response to environmental signals?; and

3. Are environmental drivers influencing the fish community of the Bay of Quinte, and

if so, are there thresholds along gradients of the environmental variables that are

important in structuring the community?

A common theme that threads the following chapters together is one of characterizing

variability associated with fish population response to changing environments. Variability

can be defined as displacement or deviation from the mean. Ecological systems are inherently

variable due to natural variation as well as our imperfect ability to observe natural processes.

Sources contributing to variability are many, yet these deviations are often treated as noise

that is separate from the true processes of interest. We are learning that understanding

variability can have great value (e.g., Kratz et al., 1995; Brock and Carpenter, 2006; Vasseur

et al., 2014), be it variability in time, space, the environment, or biological responses. In

each chapter of this dissertation, I focused specifically on variability and examined ways to

extract, decompose, and interpret the information contained within it.

Population-level variability

In Chapter 2, I focused on a population-level response to major ecological perturbations

associated with the invasion of non-native mussels and an increase in abundance of a top

predator. I hypothesized that the spatial and temporal source components of variability

would be responsive to these large-scale ecological shifts. The motivation for this analysis
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was rooted in the regime shift literature, and the development of generalizable statistical

indicators of systems in flux. Ecological systems do not exist in perfect equilibria; however,

resilient systems tend to remain in relatively stable states, or ‘basins of attraction’, for

extended periods of time (Scheffer et al., 2001; Folke et al., 2004; Walker et al., 2004).

Basins of attraction can be defined by the structure, function, identity, and feedbacks of a

system (Walker et al., 2004). It is possible for a system to switch from one stable state into

another, often resulting in major ecological shifts or bifurcations. Such shifts can manifest

from gradual changes over time that reduce the capacity of the system to reorganize to the

present state, or from more abrupt perturbations. Both gradual and abrupt perturbations

can propel a system beyond a threshold (Carpenter, 2003; Guttal and Jayaprakash, 2008),

resulting in the transition to a new state with different characteristics and feedbacks from

the previous state. Identification of reliable indicators of ecosystem dynamics as it relates to

the state space (Walker et al., 2004) is an important area of research because although some

systems may exhibit stochastic switching between basins of attraction (Drake, 2013), in other

systems, the transition into a new basin of attraction may represent a unidirectional shift

into an alternate, long-term stable state. These shifts matter because alternate stable states

may represent undesirable conditions relative to conservations goals, management objectives,

and socio-economic dynamics (Biggs et al., 2012).

In other systems, statistical indicators of ecological shifts, other than a mean response

(e.g., increased total variability, autocorrelation, and skewness) have shown promise as early-

warning signals (Brock and Carpenter, 2006; Carpenter and Brock, 2006; Van Nes and Schef-

fer, 2007). Even so, the ability to reliably forecast large-scale ecological shifts remains limited.

I was interested in investigating whether variance, partitioned into its spatial and temporal

source components, could offer a new indicator associated with large-scale ecological shifts

and finer-scale information about the nature of ecological reorganization.

I evaluated the Walleye Sander vitreus population in Oneida Lake, New York, using

an index of relative abundance from a long-term, standardized, fixed-site gillnet survey.

3



Variability in Walleye catches was partitioned into temporal and spatial source components

to determine if these quantities were responsive to major perturbations associated with the

invasion of non-native dreissenid mussels and an increase in the abundance of a piscivorous

bird species. The results suggested that variance components shifted at a time consistent with

large-scale perturbations observed in Oneida Lake, and that by decomposing variability we

were able to gain finer-scale insights into the spatial reorganization of the system following

the perturbations, than would be possible from evaluating a mean response alone. We

conducted a retrospective analysis with known timing of major perturbations to evaluate

if source components of variability could be used as quantitative metrics of system shifts.

Extending this approach more broadly to address uncertainty surrounding areas such as

climate induced shifts in communities and species distributions, effects of invasive species,

sustainability of exploitation, pollution, and habitat degradation, would be a valuable next

step.

Population-environment interactions

In Chapter 2, the putative drivers of the major ecosystem shifts and their timing were largely

known. For Chapter 3, I examined long-term data for alewife to test the hypothesis that

age-truncation increases correlation between population dynamics and environmental drivers.

alewife, a non-native prey fish, are of interest because they serve as the primary forage base

for Chinook salmon Oncorhynchus tshawytscha, a non-native but recreationally important

fish species, in Lake Michigan. In recent years the alewife population has been alarmingly low,

and evidence of age-truncation has been documented (Madenjian et al., 2014). Predation

by Chinook has largely been credited with the alewife decline (He et al., 2014; Tsehaye

et al., 2014), but despite efforts to reduce the Chinook population, the alewife have failed

to rebound (Madenjian et al., 2014). Additionally, several of the largest recruitment events

of the past 40 years were in the mid to late 1990s, a time when the population had declined

dramatically. I was interested in evaluating if there was evidence of increased correlation
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between environmental signals and endogenous oscillations of the alewife population when

those large recruitment events occurred.

Selective mortality (e.g., through fishing) can alter the demographic structure of fish

populations, changing the way a population responds to environmental signals (Hsieh et al.,

2010). The underlying theory comes from signal processing and the concept of resonance

(Bjørnstad et al., 1999; Bjørnstad and Grenfell, 2001). Resonance is a phenomenon that

causes the amplification of a signal due to interaction with another signal at a similar fre-

quency. This behavior has been shown to influence population dynamics (Cazelles et al.,

2008; Hidalgo et al., 2011; Botsford et al., 2014). I used wavelet analysis to decompose

the variability in time series data into oscillatory components that can vary through time.

The wavelet analysis illustrated that with truncation of the age structure, the frequency

of spawning stock biomass (SSB) dynamics began to approximate the mean spawner age.

Although we saw only weak correlation between SSB and the environmental time series, we

expect this signal to increase, as age truncation has become very pronounced and biomass

remains critically low.

I supplemented the wavelet analysis with more traditional stock-recruit modeling to quan-

tify the relationship between recruitment, SSB, and the temperature indices. The top models

included an index of summer temperatures, and indicated that the effect of temperature on

recruitment increased through time. These results support observations from the wavelet

analysis, that the sensitivity of the population to environmental signals has increased as the

overall population size has declined and the number of reproducing age classes has been

reduced.

Community-level analysis

The analyses from the first two research research chapters offer novel ways to analyze long-

term survey data to better understand population dynamics, but both remain rooted in

single species assessments. The limitations of single species assessments are many, but a
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major one is that inter-specific interactions are neglected. For example, it would not be

possible to simultaneously achieve maximum sustainable yield (MSY) for all species in a

system (Link, 2002); the ecosystem MSY would be lower because of the interactions and

dependencies. For these reasons, I was interested in the effects of climate-related changes

on an entire fish community in the Bay of Quinte for chapter 4. The fish community data

were aggregated into indicator metrics representative of the overall community (e.g., mean

trophic level, proportion of native species, mean fish length; Jennings, 2005). This analysis

enabled monitoring of transitions in the community indicators as a suite of environmental

signals evolved through time. I hypothesized that the emerging ecosystem would reflect

a shift towards non-native, warmer water species due to warming water temperatures. I

used gradient forest, an extension of random forest, to partition the variability in a suite

of community indicator variables using multivariate climate and environmental predictor

variables. Random forests are the foundation for gradient forests and represent powerful,

computationally efficient algorithms with high prediction accuracy.

The results indicated that the mean trophic level was most responsive to observed envi-

ronmental changes, increasing positively with Secchi depth. Secchi depth was most important

in predicting the fish community, followed by cumulative spring and mean summer temper-

atures. A negative trend in water clarity was observed throughout the time series, while

water temperatures indicated a general warming trend, but with substantial inter-annual

variability. An analysis of beta diversity, the spatial or temporal variability among species

assemblages, was used to evaluate which species were driving the community changes. I found

that three individual species were most influential in driving fluctuations in the indicator

variables. Two of the three species have increased over time, both of which are non-native

species with a warm thermal preference. The third influential species was a native, cool-

water species, which has precipitously declined through time. These results suggested that

although the overall predictive power of the gradient forest model was low, water clarity and

warming temperatures are correlated with changes in the structure of the fish community

6



in the Bay of Quinte. With predicted warming trends, the transition away from cold-water

species towards species with a warmer thermal preference may continue to alter the compo-

sition, structure, and function of aquatic ecosystems. It will be imperative to understand

how ecosystems respond to climate change in order to inform management decisions aimed

at conserving ecosystem function and services.
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Abstract

We present a case-study evaluation of gill-net catches of Walleye Sander vitreus to assess

potential effects of large-scale changes in Oneida Lake, New York, including disruption of

trophic interactions by double-crested cormorants Phalacrocorax auritus and invasive dreis-

senid mussels. We used the empirical long-term gill-net time series and a negative binomial

linear mixed model to partition variability into spatial and coherent temporal variance com-

ponents, hypothesizing that variance partitioning can help quantify spatiotemporal variabil-

ity and determine whether variance structure differs before and after large-scale perturbation.

We found that the mean catch and the total variability of catches decreased following per-

turbation, but that not all sampling locations responded in a consistent manner. There

was evidence of some spatial homogenization concurrent with a restructuring of the relative

productivity of individual sites. Specifically, offshore sites generally became more productive

following the estimated break point in the gill-net time series. These results provide sup-

port for the idea that variance structure is responsive to large-scale perturbations; therefore,

variance components have potential utility as statistical indicators of response to a changing

environment more broadly. The modeling approach described herein is flexible and would

be transferable to other systems and metrics. For example, variance partitioning could be

used to examine responses to alternative management regimes, compare variability across

physiographic regions, and to describe differences among climate zones. Understanding how

individual variance components respond to perturbation may yield finer-scale insights into

ecological shifts than focusing on patterns in mean responses or total variability alone.
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Introduction

Perturbation, due to anthropogenic or natural forces can disrupt stable ecosystem condi-

tions. Understanding how ecological systems respond to large-scale perturbations, both

gradual and abrupt, has important implications for management and monitoring of natu-

ral resources. Ecological systems include dynamic networks of complex interactions, within

which organisms vary over space and time, but in far more complex ways than independent

deviations from a constant mean. Although variability has often been viewed as something

to minimize through adequate sampling, it may also provide valuable information about eco-

logical processes (Kratz et al., 1995). Ecosystems are influenced by many drivers (Scheffer

et al., 2001), which can induce changes in an ecosystem state rapidly (e.g., invasive species)

or more gradually over a longer period of time (e.g., climate change). The ways in which a

system responds to perturbations depend upon complex interactions between physical (e.g.,

climate and hydrology) and biological processes (e.g., demographic and trophic). In resilient

systems, there is a high capacity to reorganize after a disturbance such that the state-space

remains essentially unchanged; whereas, in less resilient systems, the organization following

disturbance can substantially differ from the predisturbance ecological state. State-space can

be defined as the function, structure, identity, and feedbacks that characterize an ecosystem

state (Walker et al. 2004). Reorganizations are important phenomena to understand be-

cause they may be undesirable relative to conservation goals, management objectives, and

socioeconomic dynamics.

The idea that perturbation elicits a response in the variability of a state variable was set

forth by Odum et al. (1979), who defined an ecosystem perturbation as “any deviation, or

displacement, from the ‘nominal state’ in structure or function at any level of organization.

The nominal state is the normal operating range, including expected variance.” In recent

decades, attention has been dedicated to the identification of generalizable indicators (e.g.,

changes in mean, variance, and skewness in variables including: pollutants, climatic moisture,
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greenhouse gases, and chlorophyll) to detect and even predict major ecological shifts (Brock

and Carpenter, 2006; Scheffer et al., 2009; Carpenter et al., 2011).

We propose that shifting variance structure can be used as an indicator of perturbation-

induced ecological reorganization. Partitioning total variability into dominant source com-

ponents (e.g., spatial and temporal) may provide quantifiable indicators of population-level

responses associated with major ecosystem shifts, and on time-scales relevant to monitoring

and management of fishery resources. Changes in variance structure may even indicate cas-

cading effects of perturbations attenuating through a food web (e.g., via species interactions).

Similarly, Underwood (1991, 1994) proposed using temporal change in variance as an indica-

tor of perturbation-induced change, although his proposed approach was flawed because the

“variance” estimates in his tests combine systematic and chance temporal variation, sampling

error, and autocorrelation (Stewart-Oaten and Bence, 2001). Variance partitioning allows

variability to be partitioned into component sources, such as spatial (site-to-site), coherent

temporal (year-to-year), ephemeral temporal (site x year), trend, and observational error

(VanLeeuwen et al., 1996; Urquhart et al., 1998; Wagner et al., 2013). Irwin et al. (2013)

applied such a variance-partitioning framework to fish count data, and they quantified the

contribution of each component by using a negative binomial mixed modeling approach. If

it can be shown that source components of variability are sensitive to how populations re-

spond to ecological shifts, then this approach may prove valuable by identifying or improving

measurable attributes of responses to large-scale perturbation.

Our objective was to examine whether indirect effects of a large-scale ecological per-

turbation could be quantified as a response, retrospectively, in the structure of variation

(e.g., spatial and temporal variation) in a target population monitored using standardized

sampling. We present a case study analysis of long-term monitoring data to explore the

idea that an ecological perturbation may induce a shift in a populations underlying variance

structure. Specifically, we analyzed count data from a fishery-independent gill-net survey

targeting Walleye Sander vitreus in Oneida Lake, NY. Sustained monitoring of Oneida Lake
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provides one of the most complete data sets on freshwater fish populations in the world,

and data from this system have been used to advance understanding of food webs, fish pop-

ulations, and fisheries (Forney, 1980; Nate et al., 2011; Rudstam et al., 2016). We chose

to use Oneida Lake because it is a well-studied system that underwent a major ecological

shift during the early 1990s, when an increase in the double-crested cormorant Phalacro-

corax auritus (hereafter, cormorant) population (Coleman et al., 2016) and an invasion of

dreissenid mussels (i.e., zebra Dreissena polymorpha and, later, quagga mussels Dreissena

bugensis) occurred. We predicted that these disturbances would be a strong enough pertur-

bation to the ecosystem that their effects would be detectable in the variance structure of

time series data produced by fishery-independent surveys. Specifically, we were interested

in three questions: (1) Can we detect a statistical signal to support the timing of perceived

transitions related to these perturbations? (2) Do the magnitudes and relative contributions

of the variance components change in response to perturbation? (3) Is there evidence of

spatial reorganization as a result of the perturbations? We used a model-based evaluation

with time-period-specific parameters to address these questions.

Methods

Study site.— Oneida Lake has the largest surface area (206.7 km2) of any lake entirely inside

the borders of New York State, and it supports important recreational fisheries, including

for Walleyes. Major changes to this ecosystem occurred during the early 1990s, including

increased cormorant abundance (Rudstam et al., 2004; Irwin et al., 2008a), and the es-

tablishment of nonnative dreissenid mussels. The cormorant population increase is largely

attributed to reductions in environmental organochlorines (e.g., DDT) and release from hu-

man persecution (Weseloh et al., 1995; Rudstam et al., 2004). Acting as a top-predator in

Oneida Lake, cormorants have exerted strong predation pressure on the fish populations,

in some cases a pressure comparable to angler harvest for adult fish, and exceeding angler

impact on subadult fish (VanDeValk et al., 2002; Rudstam et al., 2004; DeBruyne et al.,
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2013). At the same time, dreissenid mussels altered the ecosystem through increased water

clarity (Secchi depth increased from approximately 2.6 m prior to the invasion to 3.5 m

after), disruptions to trophic dynamics, and significant habitat modifications (Mayer et al.,

2002; Zhu et al., 2006).

The Oneida Lake ecosystem in recent decades has been thought to be fairly ecologically

distinct from that in the years prior to major perturbations (Zhu et al., 2006; Irwin et al.,

2016). The early 1990s have previously been identified as the approximate break point in

the time series associated with the major changes in the lake (Mayer et al., 2000; Irwin et al.,

2008b). It should be noted that other ecological changes have likely also had influence on

Oneida Lake during the past several decades. For instance, nutrient loadings were reduced

following the signing of the Great Lakes Water Quality agreement in 1972, and invasive White

Perch Morone americana and Gizzard Shad Dorosoma cepedianum periodically contribute

high-production of young (Fitzgerald et al., 2006) which can alter Walleye forage behavior

and potentially their catchability. Angler harvest is also likely to vary over time. Even

so, cormorant predation and dreissenid mussels have been thought to be major drivers of

change, including contributing to the decline of some fish populations (Coleman et al., 2016;

Irwin et al., 2016). For example, the average densities of Walleyes remained below historical

averages for a number of years following the establishment of dreissenid mussels and increased

cormorant abundance during the early 1990s (Rudstam et al., 2004; Irwin et al., 2008a).

Data sources.— We used data from a long-term (1958-2014; [except 1974, as data were

unavailable]) fishery-independent survey of Oneida Lake by researchers at Cornell University

(Rudstam and Jackson 2015). This is a fixed-site, annual survey conducted with standard-

ized, variable mesh, multifilament gill nets. The sampling gear is comprised of four gangs

(i.e., a string of nets) of six 7.6 m panels sewn together, for a total net length of 183 m long

by 1.83 m deep. The mesh sizes within a gang consist of one panel at each of the following

stretched mesh sizes: 38, 51, 64, 76, 89, and 102 mm. The gill nets were set around sunset

and hauled around 0730. The survey spans from June through mid-September, with one site
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sampled per week in a standardized sequence, for a total of 15 sites sampled annually. All

fish captured in the nets were identified to species and enumerated, resulting in 15 spatially

explicit observations of Walleye catch per survey year.

Statistical analyses.—We used a negative binomial linear mixed model to evaluate hy-

potheses as to how variance structure responds to perturbation. The negative binomial

distribution was assumed for the response variable because the variability in predicted Wall-

eye catches was greater than the mean (i.e., the data were overdispersed), thereby violating

the assumptions of the Poisson distribution. (The negative binomial is an extension of the

Poisson distribution with a shape parameter that makes it suitable for overdispersed count

data, which are characteristic of ecological survey data.) Parameter estimation was based

on the 1958-2014 time series; however, an indicator variable (p) was used to identify years

associated with the pre- and postperturbation periods and allow for period-specific param-

eter estimates. All analyses were performed using AD Model Builder (Fournier et al., 2012)

and R (R Development Core Team, 2015).

We used a log link function to determine expected Walleye catch, such that the natural

logarithm of the expected catch (ηtj) in year t at site j would be a linear function of the

predictors:

ηtj = νp + λ · t+ atp + bjp

where νp was the period-specific intercept and λ was the fixed slope for the temporal trend

using year (t) as the covariate, and atp and bjp are period-specific estimates of random effects

(VanLeeuwen et al., 1996) associated with year and site, respectively. The year covariate

was centered on the mean year to improve convergence and increase the interpretability of

the intercept parameter. The global trend (λ) was assumed to be influenced by longer-term

processes and therefore was estimated as a single parameter applied to the full time series.

Random effects provide a way to quantify the effect of a grouping level (year or site) in

relation to the mean effect of all groups combined. All random effects were assumed to be

independent and identically distributed according to a Gaussian distribution with a mean of
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0 and a variance of σ2
x, where x represents the distinct random effects (spatial or temporal).

Specific parameters were allowed to vary by time period based on our prediction that variance

structure would be responsive to perturbation, such that the mean and variance components

were time-period specific.

The remaining two equations in the model are

µtj = exp(ηt,j)

Ytj ∼ NegBinom(µtj, κp)

where µtj was the expected Walleye catch in year t at site j on the original (nonlogarithmic)

scale, Ytj is the observed Walleye catch in year t at site j, and κp is the period-specific shape

parameter of the negative binomial distribution. In each year, κ determines how much extra

(above-Poisson) variation there is among sites through its relationship with µ. The variance

of the negative binomial distribution is assumed to be a quadratic function of the mean,

with the quadratic term dependent on the shape parameter, that is,

vartj = µtj +
µ2
tj

κp
.

Thus, the relationship of the variation to the mean is allowed to differ between periods.

Model fit was evaluated using Anscombe residuals (Anscombe, 1953; Hilbe, 2011).

Likelihood profiling was used to determine the year in which the change from the pre-

to the postperturbation period occurred. We evaluated the above model at every possible

change-point year for the available data (i.e., all years except the first and last in the time

series) using the log-likelihood. All models were equally parsimonious, so that the change

point associated with the model with the largest log-likelihood was deemed most appropriate.

Subsequent results are based on the single, optimal change point.

We then used the linear mixed model with the optimal change-point year to evaluate the

magnitude and structure of variability in gill-net catches prior to and following the dreis-
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senid invasion and cormorant population increase. We compared the relative proportions of

coherent temporal and spatial variability between periods to evaluate whether the structure

of variability changed after perturbation.

In mixed models, random effects are often used to account for clustering in the data,

but they can also offer additional information about the behavior of the individual grouping

variables (e.g., sites and years). In this case study, we were specifically interested in un-

derstanding whether all sites have proportionately declined from historical catch levels, or

whether there has been a disproportionate shift among sites. A large positive site random

effect would indicate that a site contributed more than average for a particular time period,

and a large negative random effect would indicate a that a site contributed less than average.

If there were no changes in the relative contributions of sites following the perturbations,

we would not expect a shift in the site random effect rankings even if a decline in the mean

response was observed due to lower overall catch rates.

Results

The likelihood profiling indicated that 1989 was the optimal change-point year for separating

the gill-net time series into pre- and postperturbation periods. There was a distinct peak

in the log-likelihood surrounding the perceived timing (1988-1991) of the ecological shifts in

Oneida Lake (Figure 2.1). The minimum, mean, and maximum annual catches of Walleyes

were lower during the latter time period. The mean catch was reduced by about 50%, and

the maximum catch was about 40% of the preperturbation period (Figure 2.2, Table 2.1).

Importantly, we also observed a reduction in variability in catch rates over time, as high

catches at individual sites became less frequent (Figure 2.2). The shape parameter of the

negative binomial was slightly higher during the postperturbation period (Table 2.1), indi-

cating a small reduction in the rate that variance in gill-net catches changed with the mean.

Thus, in addition to the reduction in the total variability, the structure of the variability also

changed following 1989, particularly spatial variability (Figure 2.3, Table 2.1). The predicted
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catches from the negative binomial mixed model were in general agreement with the observed

data, for both the pre- and postperturbation periods (Figure 2.4). The Anscombe residuals

that were used to further evaluate model fit appeared to be approximately normally dis-

tributed across the range of the predicted values; there was no indication of extreme outliers

(Figure 2.5).

In the model, the maximum likelihood estimate for spatial variability (σ2
b ) was 0.35 for

the years prior to the break point, declining to 0.10 in the postperturbation period (Fig-

ure 3) a 72% reduction in estimated among-site variability (Table 2.1). By contrast, the

temporal variability remained relatively stable between the two time periods (pre σ2
a=0.10;

post σ2
a=0.12). Additionally, the decline in spatial variability reflected proportionally differ-

ent relative changes at different sites, as indicated by the shifting rank order of site-specific

random effects (Figure 2.6A). The difference between the post- and preperturbation random

effects provided a relative measure of the contributions of individual sites that might help us

understand these patterns by pinpointing the relevant site-specific attributes. This analysis,

however, was not designed to investigate specific causal mechanisms operating within this

system but to investigate the potential for variance structure to serve as a statistical indica-

tor of some complex responses to large-scale perturbation. Purely for illustrative purposes,

we performed post hoc analyses to evaluate the site characteristics (i.e., substrate type,

depth, and distance from shore) of the survey locations vis-à-vis the difference in spatial

random effect values between the pre- and postperturbation time periods. This exploratory

analysis indicated that Walleye catches at the inshore sites have generally declined more

severely than the offshore sites (Figure 2.6B). The mean catches at the inshore sites (n=9)

all declined following the perturbations, while one third of the offshore sites (n=6) improved

slightly. Even so, some of the highest overall catches continue to come from the inshore sites.

Coherent temporal variability (σ2
a) was relatively unchanged between time periods (Figure

2.3) and represented a relatively small component of total variability during the prepertur-

bation period (about 23%). Due to the decline in spatial variability, however, the estimates
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of coherent temporal and spatial variability were about the same in the postperturbation

period (Table 2.1).

Discussion

We were able to objectively detect a change point in the time series of Walleye catches

that is consistent with the timing of perceived ecological shifts in Oneida Lake (e.g., Mayer

et al., 2000; Irwin et al., 2008b; Coleman et al., 2016; Irwin et al., 2016) and quantify

shifts in the variance structure using a mixed modeling approach. In this lake, there has

been a marked decline in gill-net catches of Walleyes over time. Concurrent with a decline

in the average catch of Walleyes, a reduction in the site-to-site variability was observed,

suggesting homogenization across sites in terms of relative catches. Additionally, we have

shown that variance structure was time sensitive; therefore, variance partitioning appears

useful for providing additional, finer-scale information about responses to ecological shifts—

information that provided by the changes in means or total variability.

Disentangling the spatial and temporal components of variability provides information

about how a system is changing across space and through time, a property that could be

useful for adaptation of management and monitoring to dynamic ecosystems. For example,

random effects could be used to evaluate differential growth rates due to geographic location

or gradual shifts over time. Increasing variance has been proposed as a signal associated with

the transition between stable states (Brock and Carpenter, 2006; Scheffer et al., 2009; Car-

penter et al., 2011), but the responsiveness of variance components to large-scale ecological

change appears to be a relatively new development (however, see Guttal and Jayaprakash,

2009). By decomposing variability into time-varying component sources, we were able to

identify spatially-explicit changes (e.g., a disproportionate diminishing of high-catch events)

beyond those that could have been inferred from a mean response alone. In this study, we

were interested in the general behavior of variance structure in response to perturbation;

however, this analytical approach could be extended to investigate other questions, such
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as examining responses to alternative management regimes, comparing variability across

physiographic regions, or describing differences among climate zones.

Our mixed modeling approach provided evidence that the sources of variability associated

with a response variable can change in relative importance over time and in response to

perturbation. In our study, temporal variability remained relatively unchanged, whereas,

the spatial variance component was reduced by 72%. In addition to the fact that the overall

spatial variance parameter was reduced in the latter part of the time series, the individual

sampling sites did not respond in a consistent manner. Generally, there was a homogenization

across sites towards lower Walleye catches, with a reduction in spatial patchiness of catch

rates and a reorganization of the rankings of site-level random effects.

The estimated timing of the change point as determined through likelihood profiling

(1989) was generally consistent with the observed timing of important changes in Oneida

Lake. Expansion of the cormorant colony throughout the 1980s and 1990s led to increased

consumption of percids (Coleman et al., 2016), while the dreissenid invasion increased water

clarity, thereby altering the food web structure (Mayer et al., 2002) and perhaps altering

predator-prey and species-gear interactions. Following the establishment of dreissenid mus-

sels, the mortality of larval Walleyes increased, possibly as a result of higher predation due

to increased water clarity (Jackson et al., 2016; Rudstam et al., 2016). Additionally, compe-

tition with littoral predators (Fetzer et al., 2016; Jackson et al., 2016) has increased, likely

due to a loss of the Walleyes’ competitive advantage in more turbid waters. Cormorants

and dreissenid mussels are considered the putative drivers of change in Oneida Lake, but

other factors are likely to have contributed changes in Walleye abundance (e.g., abundance

of White Perch, a predator of larval percids). The optimal change-point year was fairly

robust to the length of the time series; when we re-profiled the likelihood with truncated

time series the change-point was estimated to be between 1988 and 1991 for each analysis

(Figure 1). The long-term trend was estimated to be approximately 0 and therefore was

not likely to influence the timing of the change point. However, modeling multiple change
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points and trends would be possible with this framework (assuming sufficient data to avoid

overparameterization).

The shift in site rank order suggests that Walleyes have transitioned away from the lit-

toral zone into more offshore habitats. The mechanisms driving this shift are unknown,

but the changes to water clarity and cormorant predation may have made the littoral zone

less suitable as Walleye habitat. The observed shifts also could be partly a consequence of

changes in gill-net catchability in the different habitats. For example, the sampling gear may

have been more visible to Walleyes in the clear, inshore waters, enhancing their avoidance

strategies. If catchability has changed, this bifurcation in the time series is important with

respect to possible inferences about population trends. There is some evidence of a rebound-

ing of the Walleye population and increasing spatial variability toward the latter portion of

the time series, which may be a response to a cormorant control program that intensified in

2004, combined with a reduced creel limit in 2001 (Coleman et al., 2016).

Understanding major ecological shifts is important to the management of natural re-

sources (Folke et al., 2004; Brock and Carpenter, 2006; Scheffer et al., 2009). Continued

development of quantifiable signals of such shifts was the motivation for this study. Our

model provides some evidence that variance components can be responsive to perturbations

and thus they may serve as indicators of large-scale ecological reorganization. This approach

could also help reveal patterns that may not otherwise be obvious, prompting investigation

into the mechanisms driving population-level responses or even ecological shifts. Likewise,

the variance-partitioning approach may help managers more fully consider what types of

changes would be desirable or acceptable. For instance, the loss of rare top-performers (e.g.,

abundant species; high-catch locations) might be undesirable, even if a decline, on average,

is not significant.

Additional research on shifting variance structures for different systems and dynamics

will help confirm whether reliable, general behavior of variance components will emerge as

an improved technique for quantifying responses to large-scale perturbation and detecting
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shifting dynamics in a changing environment. Understanding how ecosystem dynamics are

shifting through time, and in response to environmental conditions will require a commitment

to spatially and temporally consistent data collection over the long term. Even at Oneida

Lake, which is a well-studied system with rich biological data from long-term monitoring

programs, there are important data limitations. For instance, the basic data structure (one

observation per site per year) prevented us from assessing ephemeral-temporal variability

(Kratz et al., 1995; Irwin et al., 2013). Proper sampling design is therefore paramount to

addressing specific research questions.

The approach described in this article could be extended to address the uncertainties sur-

rounding other important issues, such as climate-induced shifts in communities’ and species

distributions, the effects of invasive species, the sustainability of exploitation, pollution, and

habitat degradation. For example, climate models have predicted that extreme events (e.g.,

drought, above average temperatures, high precipitation events) will increase in prevalence

and intensity (Rahmstorf and Coumou, 2011; Rummukainen, 2012), thereby potentially al-

tering the variance and variance structure of natural phenomena irrespective of changes to

the mean response. Additionally, as species’ distributions change other consequences will

manifest themselves through changes in food web dynamics and competition for habitat re-

sources as well as through potential shifts in vital rates for species that approach their range

limits, either geographic or thermal. Any of the aforementioned disturbances can create

instability in the state-space of a system— instability that could eventually lead into a new

nominal state, perhaps necessitating new monitoring and management measures.
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Tables

Table 2.1: Summary statistics (sample sizes, minimum, mean, and maximum Walleye gill-net
catches) aggregated across all sites and parameter estimates (SDs in parentheses) from the linear
mixed model for the pre- (1958-1988, except 1974) and postperturbation (1989-2014) periods in
Oneida Lake, New York. Slope was not modeled as time-period specific.

Observed catches Pre Post

Sample size 450 390

Minimum 1 0

Mean 32 17

Maximum 220 90

Parameter estimates Pre Post

Fixed effects

Intercept (µ) 3.267 (0.186) 2.709 (0.148)

Slope (λ) 0.002 (0.006) 0.002 (0.006)

Shape parameter (κ) 2.091 (0.155) 2.346 (0.203)

Random Effects

Coherent temporal (σ2
a) 0.102 (0.039) 0.117 (0.045)

Spatial (σ2
b ) 0.345 (0.133) 0.096 (0.043)
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Figures

Figure 2.1: Log-likelihood values of Walleye catch plotted across possible change-point years. The
solid black line represents the full time series; the colored lines represent likelihood profiles from
truncated time series (i.e., with the removal of early and/or latter years in the time series). The
change-point was robust to time series length. The log-likelihood values are not shown on the
y-axis owing to scaling differences among the four time series; the peak around 1989 indicates the
optimal change point.
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Figure 2.2: Observed Walleye catch by site and year for fifteen fixed sites in Oneida Lake, NY
from 1958 to 2014 (data were not available for 1974). The black solid line represents the mean
catch over time, the green dots represent the catches ay individual sites in the preperturbation
period, and the blue dots represent the catches at individual sites in the postperturbation period.
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Figure 2.3: Normal density plots showing the shifts in (A) spatial and (B) temporal variability
relative to the period-specific mean catch, during the pre- and postperturbation time periods
(represented by the green and blue areas, respectively).
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Figure 2.4: Observed (green and blue areas) versus predicted (white areas) Walleye catch during
(A) the preperturbation period and (B) the postperturbation period. Catches are aggregated
across sites and years for display.
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Figure 2.5: Plot of Anscombe residuals based on fitting a negative binomial mixed model to the
catches of Walleyes. Green dots depict values from the preperturbation period, blue dots values
from the postperturbation period.
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Figure 2.6: Boxplots showing (A) the spread of the individual-site random effects in the pre- and
postperturbation periods and (B) the change in site random effects (i.e. postperturbation less
preperturbation) for inshore and offshore sites. The circles in panel (A) represent individual sites;
the lines connect the individual site random effects between the two time periods to show how a
site’s rank changed relative to the other sites in terms of catch magnitude.
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Chapter 3

Demographic structure influences oscillations of

the alewife population in Lake Michigan

Vidal, T.E., Irwin, B.J., Wagner, S.J, and Madenjian, C.P. To be submitted to Journal of Great Lakes
Research
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Introduction

The importance of interactions between age structure and environmental signals in fish

populations has been elevated in recent decades as evidence mounts that selective harvest

can change the way in which populations respond to external drivers (Berkeley et al., 2004;

Hsieh et al., 2010). Fisheries often harvest in a size selective manner, which can lead to

a truncated age structure in the targeted population when larger, often older, individuals

are disproportionately removed. In populations with several reproducing age classes, there

exists a sort of storage capacity that helps to buffer against transient adverse environmental

conditions (Hsieh et al., 2010; Planque et al., 2010; Hidalgo et al., 2011), but when the

age structure becomes truncated, the population becomes increasingly reliant on younger

age classes to produce offspring. In addition, both over-exploitation and strong predation

pressure have the ability to reduce the genetic and spatial structure of a population, which

can further reduce a population’s resilience to environmental perturbations. In both cases

the net result can be a strengthening of the linkage among population dynamics, recruitment

and environmental variability (Anderson et al., 2008; Hidalgo et al., 2011). Previous effort

has focused on understanding how fishing may alter a population’s response to environmental

drivers in marine systems (Bjørnstad et al., 2004; Hidalgo et al., 2011; Botsford et al., 2014),

but less attention has been given to freshwater fishes.

In fish species with iteroparous reproduction, populations can exhibit cycles due to inter-

cohort interactions resulting from multiple age-classes contributing to the offspring in a

given year (Bjørnstad et al., 2004). These cycles can arise from age-structured interactions

‘echoing’ stochastic recruitment. This inter-cohort interaction is one facet to a phenomenon

identified as ‘cohort resonance’ (Bjørnstad and Grenfell, 2001; Bjørnstad et al., 2004; Worden

et al., 2010; Botsford et al., 2014). Resonance, in general, is the concept that any signal

exposed to noise containing a similar frequency component will be amplified at that common

frequency, regardless of the coupling strength. For example, the Bay of Fundy experiences
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the most extreme tides in the world because of the coupling between the resonant frequency

in the bay, or the amount of time it takes for water to move up and back down out of the bay,

and the frequency of the principal lunar semi-diurnal gravitational tidal constituent (i.e., the

M2 tide). Both the bay resonance and the M2 tide have a frequency of approximately 1/12

hours (frequency is equal to 1/periodicity), thereby amplifying the overall signal (Silvert,

1997). The concept of resonance may also be informative for understanding dynamic fish

populations.

In this analysis, I focus specifically on one type of inter-cohort interaction: the association

between recruitment and the multiple age classes that comprise the spawning stock. Alewife

Alosa pseudoharengus, an anadromous Clupeid native to the Atlantic coast of the United

States, has established in Lake Michigan as an important prey fish. Chinook salmon On-

corhynchus tshawytscha are the dominant predator and an important recreational fish species

that brings valuable revenue to the region. The viability of the alewife population has been

threatened, largely due to strong predation pressure (He et al., 2014; Tsehaye et al., 2014).

Fishery managers are interested in better understanding the drivers of alewife recruitment

to encourage sustainable predator-prey dynamics. I hypothesized that alewife recruitment

success in Lake Michigan is influenced by both endogenous (i.e., internal population oscil-

lations) and exogenous drivers (e.g., predation and environmental variability). Recruitment

is notoriously variable and difficult to predict in fish populations; however, the ability of a

population to produce strong year classes while on the brink of collapse, deserves attention.

Empirical evidence has shown increased recruitment variability in exploited fish populations

(Brander, 2005; Ottersen et al., 2006; Hsieh et al., 2010), and although exploitation has

been shown to contribute to these recruitment dynamics, recent studies have illustrated that

in some cases it is the interaction between external drivers that are influencing population

trends (Bjørnstad et al., 2004; Hidalgo et al., 2011; Botsford et al., 2014). I investigated

whether the endogenous oscillations of the alewife population have been altered due to the

truncation of the age structure, and if, as a result, population fluctuations are tracking en-
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vironmental signals more closely. Water temperature was chosen to represent environmental

variability because it is an important driver of many ecosystem and population level pro-

cesses. I explored the idea that coherence, or correlation, between the alewife population

and an environment signal could shift through time following changes to the alewife age

structure.

Study site

Our analysis is focused on Lake Michigan because understanding recruitment variability is

important to fishery managers striving to maintain a viable alewife population to provide

forage for ecologically and recreationally important fish species. During recent decades of low

alewife abundance, recruitment has been characterized by high variability. Poor recruitment

has been the norm, yet relatively large year classes have occasionally been observed (Figure

3.1), despite relatively low total abundance.

The Laurentian Great Lakes comprise unique ecosystems which have been highly altered

through time. Many native fish populations have been reduced or extirpated due to over-

fishing, habitat destruction, nutrient loadings, and competition with non-native species. As

native species have declined non-natives have filled in niche gaps becoming important com-

ponents of the ecosystem function and predator-prey dynamics (Eshenroder and Burnham-

Curtis, 1999). Alewife, an anadromous fish native to the Atlantic coast of the United States,

ranging from Newfoundland to the Carolinas, were introduced into the Great Lakes as early

as 1873 (Lake Ontario; Miller, 1957) and represent one of the many perturbations to these

ecosystems. After establishing in Lake Ontario, alewife subsequently spread into each of the

remaining lakes throughout the mid-1900s. When alewife arrived in Lake Michigan in the

1940s the abundance of top piscivores (namely lake trout Salvelinus namaycush) was severely

depressed, due to overexploitation and sea lamprey Petromyzon marinus induced mortality.

In the absence of predators and with an abundance of food, the alewife population exploded,

composing more than half of the total fish biomass by 1968 (Ludwig, 2013). Alewife were
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affecting native fish species through competition and predation on eggs and larvae, and they

were also affecting the human population as mass die-off events were occurring with dead

alewife washing up on the shores of Lake Michigan (Brown Jr, 1968). Fishery managers, in

response to the alewife situation, developed a piscivore stocking program aimed at simulta-

neously controlling the non-native populations, rehabilitating native piscivorous fish species,

and creating recreational fishing opportunities (Claramunt et al., 2012). Chinook salmon

emerged as the preferred species to stock given their fast growth, low production costs, value

as a recreational fishery, and high predation rate on alewife (Hansen et al., 2002).

Chinook salmon have established successfully in Lake Michigan, and are now supported

through natural reproduction and continued, yet reduced, stocking efforts (FWS/GLFC,

2010). Alewives serve as the preferred and dominant prey species for the salmonids in the

lake, with the majority of alewife mortality thought to be from Chinook predation (Maden-

jian et al., 2002). Throughout the history of the stocking program, reaching an appropriate

predator-prey balance has been a management concern. Overstocking in the 1980s led to a

crash of the alewife, and a subsequent decline of Chinook (Hansen et al., 2002; Benjamin

and Bence, 2003). The release from predation pressure allowed the alewife to rebound, and

to this day, managers are working to maintain viable populations of both predator and prey,

native and non-native. The interest in maintaining the Chinook population is largely due to

the economic and recreational benefits it supports. In recent years, the alewife population in

Lake Michigan has declined substantially, accompanied by signs of a truncated age structure.

Predation has been identified as the dominant force driving the decline (He et al., 2014; Tse-

haye et al., 2014), with evidence of preference for larger alewife by adult Chinook (Rybicki

and Clapp, 1996). Historically, eight year old fish were observed in the age composition of

survey catches with some fish reaching nine years of age; since 2012, age five has been the

maximum observed age (Madenjian et al., 2014). Stocking of Chinook has been reduced to

promote alewife growth and survival, yet the population has failed to rebound.
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Methods

Data and preliminary calculations

Using survey indices of abundance-at-age obtained from standardized annual bottom trawl

surveys conducted by the U.S. Geologic Survey Great Lakes Science Center (USGS GLSC),

I analyzed alewife recruitment dynamics through time with respect to spawning stock size,

age structure of the population, and environmental indices. Wavelet analysis was used as a

descriptive tool to decompose the variability in the index of alewife biomass into oscillatory

components with the potential to vary across time in both frequency and amplitude, revealing

dominant signals or oscillations in the time series. To evaluate correlation between alewife

population fluctuations and environmental signals at common frequencies, I used wavelet

coherence analysis. A strong correlation between two signals indicates a common frequency

at which signals could be amplified due to resonant behavior. I then performed more tra-

ditional stock-recruit analyses to predict recruitment based on spawning stock biomass and

temperature indices for comparison with the exploration of shifting resonance.

Environmental variability

Climate has been identified as one of the most important drivers of change in a wide range of

systems, including freshwater ecosystems, primarily due to associated temperature changes

(Rosenzweig et al., 2007). It was assumed that the time-series of water temperatures was rep-

resentative of large-scale environmental variation able to affect alewife populations. Water

temperature profiles, obtained from NOAA’s Great Lakes Environmental Research Labora-

tory (GLERL), are the predicted temperatures at depth based on a model of evaporation and

thermal fluxes (Croley, 1989, 1995). The model incorporates measurements of air tempera-

ture, humidity, wind speed, and cloud cover to generate estimates of mean water temperature

at depth in 1 meter increments. These data include daily profiles from 1973-2011, averaged to

obtain a monthly mean temperature, and were used to characterize environmental variability
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and long-term temperature trends in the Lake Michigan.

Summer temperatures were hypothesized to have a positive effect on alewife recruitment

due to optimal growing conditions for spring hatches, while colder winter temperatures were

predicted to have a negative effect on recruitment due to overwinter mortality (Madenjian

et al., 2005; Collingsworth et al., 2014). I evaluated the effects of summer and winter tem-

peratures individually, as well as the combination of the two in predicting recruitment. For

each year, a value for the summer index was calculated as the mean water temperature

between May 1 and August 31. The winter index was calculated as the mean temperature

(◦C) between December 1 and April 30.

Alewife catch data

Alewife abundance-at-age indices were derived from the annual USGS GLSC bottom trawl

surveys (1973-2014). Each fall, the bottom trawl survey samples sites along seven transects

throughout Lake Michigan, with nine transects in some years. The sampling protocol is

to tow the trawl net along depth contours at 9-m depth increments for 10 minutes per site

(Madenjian et al., 2014). The survey gear has low detection of age one and two fish; therefore,

when assessing trends I evaluated data for those ages thought to be fully recruited to the

sampling gear: fish aged three and older (Madenjian et al., 2005). Throughout this paper,

when I refer to ‘recruits’ I am referring an index of recruitment based on age-3 abundance,

lagged three years to align with the year in which that cohort of fish would have been age-

0. For example, the abundance of age-3 alewife in the year 1983 is used as an index of

recruitment for the 1980 year-class. Spawning stock biomass is the aggregate biomass of all

fish aged three and older in a given year. Catches from the seven transects were combined

and used as the catch-at-age index.
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Analyses

Time series analysis

I used wavelet analyses to identify patterns in the recruitment and spawning stock biomass

time series. Wavelet analysis decomposes variability in time series into oscillatory compo-

nents localized in the time and frequency domains (Cazelles et al., 2008). I was interested in

how the dominant frequency spectra of the signal (i.e., time series of alewife recruitment or

biomass) were changing over time, and how those signals behaved in relation to temperature

fluctuations. For this analysis, I chose the Morlet mother wavelet because of my interest in

quantitatively assessing the phase interactions between different time series (Cazelles et al.,

2008). Wavelet coherency analysis was then used to evaluate the evolution of the correlation

between the alewife time series (biomass) and the seasonal temperature indices; coherence

(R2
w) is constrained between 0 and 1 (Cazelles et al., 2008). Phase arrows in the coherence

plots are used to indicate whether the two signals being compared are in phase or out of

phase when strong correlation exists (Gouhier and Grinsted, 2012). Arrows pointing to the

right indicate the signals are in phase with one another, whereas arrows pointing to the

left suggest that the signals are in anti-phase. Arrows pointing upward suggest that alewife

recruitment or biomass is lagging the temperature signal, and downward arrows indicate the

alewife signal is leading the respective time series. Readers are referred to Torrence and

Compo (1998) and Cazelles et al. (2008) for a detailed description of the wavelet analysis.

These analyses were conducted with the R package biwavelet (Gouhier and Grinsted, 2012).

Stock-recruit modeling

The spawning stock of a population, comprised of reproductively mature individuals, is

often estimated as the biomass of those individuals as opposed to abundance, especially

when considering stock-recruit relationships. The consideration of maternal effects is one

of the main reasons for considering a metric that extends beyond abundance alone. Older
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females tend to be larger and more fecund, with the potential for higher quality eggs (Hilborn

and Walters, 1992). Alewife in Lake Michigan mature at about age 3; however, reproductive

potential doesn’t peak until about age 7 (Lake and Schmidt, 1997). To account for the

disproportionate egg production by age class, and potential effects of age-truncation on

recruitment, I modeled spawning stock biomass (SSB) as the abundance at age Na multiplied

by the average weight-at-age Wa. Catch-at-age data were converted to catch-at-length and

then used an allometric growth equation with parameters from Madenjian et al. (2003) to

generate biomass estimates. Because I do not have data for the most recent years, I assumed

the length-weight relationship from the terminal year in their study has remained constant

throughout the most recent years.

Wa = αLβa

Because SSB is an aggregate of age classes, it provides only a very coarse picture of

population structure.

SSBy =

amaxy∑
a=3

Na,yWa,y

For fish populations, stock-recruit models are used to predict recruitment strength based

on the size of the spawning stock. The Ricker stock-recruit model (Ricker, 1954) is one of

several commonly used models to estimate the relationship between spawning stock size and

recruits in fish populations, and was chosen for this analysis because alewife recruitment in

Lake Michigan has been shown to decline at high spawner biomass (O’Gorman et al., 2004;

Madenjian et al., 2005). The general Ricker model

Ry = αSSBye
(−βSSBy+εy)

predicts recruitment (R), in each year (y), as a function of spawning stock biomass (SSB)

where α is the density-independent parameter, and β is a measure of density-dependence.

This equation can be linearized by taking the natural logarithm of both sides, assuming
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lognormal error structure.

ln(Ry/SSBy) = a− bSSBy + εy

εy ∼ N(0, σ2)

I evaluated the standard Ricker model as well as multiple modified models to evaluate the

predictions that recruitment varies in response to temperature, and that the relationship

between recruitment and temperature is not constant over time. To address the prediction

that recruitment is influenced by temperature, I included a linear effect of temperature (both

summer SUM and winter WIN indices).

ln(Ry/SSBy) = a+ bSSBy + cSUMy + εy

ln(Ry/SSBy) = a+ bSSBy + cWINy + εy

ln(Ry/SSBy) = a+ bSSBy + cSUMy + dWINy + εy

The effects of the environment on population dynamics rarely conform to assumptions of

linearity; I therefore evaluated the possibility of nonlinear temperature effects on recruitment

by using generalized additive models. The smoothing function f applied to temperature is a

penalized regression spline; the R package mgcv (Wood, 2006) was used to fit these models.

ln(Ry/SSBy) = a+ bSSBy + f(SUMy) + εy

ln(Ry/SSBy) = a+ bSSBy + f(WINy) + εy

To evaluate whether the relationship between recruitment and temperature varied through

time, I considered a model with a linear effect of temperature and a linear trend (i.e., effect
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of year), following Ottersen et al. (2013).

ln(Ry/SSBy) = a+ bSSBy + c(SUMy) + d(Y EARy) + εy

ln(Ry/SSBy) = a+ bSSBy + c(WINy) + d(Y EARy) + εy

A separate model was used to further evaluate the interaction effect between year and tem-

perature.

ln(Ry/SSBy) = a+ bSSBy + c(SUMy) + d(Y EARy) + e(SUMyY EARy) + εy

ln(Ry/SSBy) = a+ bSSBy + c(WINy) + d(Y EARy) + e(WINyY EARy) + εy

In total, I evaluated a set of 10 candidate models that represented our hypotheses about

how the potential factors influenced recruitment. Akaike’s information criterion, corrected

for small sample size (AICc),

AICc = 2k − 2logLik +
2k(k + 1)

n− k − 1

was used as the model evaluation criterion, where k is the number of estimated parameters, n

is the number of observations, and logLik is the log-likelihood from the fitted model (Akaike,

1973; Burnham and Anderson, 2002). All covariates were standardized for the stock-recruit

modeling, to improve convergence and interpretability of the parameters.

To address parameter uncertainty, a nonparametric bootstrap technique was employed,

resampling the data 500 times, to generate distributions of parameters estimates from each

model iteration. The basic idea for this bootstrapping approach is to fit a model to observed

data and obtain the predictions (or fitted values). The residuals from the model are then

sampled (with replacement) and added to each fitted value from the original model. The

model is refit to the new data, and parameter estimates obtained. This is repeated many
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times, yielding a distribution of parameter values that can be used to evaluate parameter

uncertainty. This was done for each of our top models.

Results

From the early-2000s on, the age structure of the alewife population became noticeably

truncated with most of the fish aged five and younger (Figure 3.2). However, individuals from

the strong 1998 year class persisted to the older age classes. The recent alewife population

dynamics are characterized by greater variability, boom and bust recruitment years, than has

been observed historically (Figure 3.3). The summer and winter temperature indices both

displayed a step change towards warmer conditions during the late 1990s which persisted

through the end of the time series (Figure 3.3).

Alewife recruitment lacked a strong oscillatory signal until about the early 1990s at which

point a strong 3-4 year periodicity developed and persisted through the mid-2000s (Figure 3.4

A). Additionally, a weak low frequency (∼11 year) oscillation was observed. In the wavelet

plots, the color gradients indicate the power of different frequencies through time (dark red

indicating a strong signal and dark blue indicating virtually no signal); the right-hand plots

depict the global wavelet spectrum which shows the frequencies that dominate throughout

the entire time series (Figure 3.4). A periodic signal in the alewife spawner biomass time

series wasn’t detected until the mid-1990s when a 4-6 year periodicity emerged and persisted

through the cone of influence (Figure 3.4 B). The cone of influence is the white shaded area

along the bottom and outer portions of the wavelet plots; the accuracy of this region is

reduced due to the estimation procedure, length of the time series, and periodicity of signal

(Torrence and Compo, 1998). For that reason, I have described results from the wavelet plots

only for the region inside the cone of influence. The summer index showed a consistent signal

at a 4-year cycle as well as low frequency 11-12 year signal (Figure 3.4 C). Transient signals

were also apparent at approximately 2 and 7-year cycles. The winter index, on the other

hand, showed several, more ephemeral peaks: 2, 4, and 7-year periodicities which developed
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during the 1990s and persisted for about a decade (Figure 3.4 D). Prior to the 1990s, strong

periodic oscillations in the winter signal were lacking.

Wavelet coherence analysis revealed strong in-phase coherence (R2
w ≈ 0.8-1) between

alewife recruitment and the summer index throughout the 1990s and 2000s at periodicities

ranging from 2-5 years (Fig. 3.5 A), and moderate coherence at the leading edge of the cone

of influence from about 8-12 years, with little coherence prior. There was strong coherence

(R2
w ≈ 0.7-0.9) between alewife recruitment and winter temperatures at high frequencies

during the mid-1990s, as well as lagged coherence (R2
w ≈ 0.6-0.8) around a 4 year oscil-

lation throughout the 1990s (Figure 3.5 B). The coherence between recruitment and the

temperature indices, over the past decade, appears to be most prominent at a frequency

that approximates the mean age of the spawning stock (Figure 3.3), however there is con-

siderable uncertainty in that signal. There was less coherence between spawner biomass and

the temperature indices (Fig. 3.5 C, D); however correlation begins to develop during the

mid-2000s, but remains weak within the region of inference.

Out of the candidate set of stock-recruit models, four models emerged as superior based

on our model selection criterion (lowest AICc; Table 3.1). The top model included spawning

stock biomass, an additive effect of the summer temperature index, and a linear temporal

trend in the intercept, explaining 34% of the variability in the recruitment (Table 3.2).

Warmer summer temperatures had a positive effect on recruitment (δSUM = 0.56) while

mean recruitment declined over time (δY EAR = −0.44). The second best model was similar

to the top model, with the addition of an interaction term between summer temperatures

and year, suggesting a positive trend in the effect of temperature through the time series

(δY EAR∗SUM = 0.33). The remaining models indicated similar parameter estimates in their

shared regression coefficients. The winter temperature index was included in one model and

showed a negative effect, suggesting that warmer winter temperatures were less favorable for

alewife recruitment (δWIN = −0.37). Nonlinear temperature effects did not appear in any

of the top models. The bootstrapped parameter estimates indicated that the estimates from
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the top stock-recruit models were reasonably robust (Appendix A).

All four of the top models were able to predict the mean recruitment fairly well (Figure

3.6). Even so, no model was able to capture the rare high recruitment events with much

success. The residuals from the stock-recruit model were reasonably normally distributed (on

the log scale). When back-transformed to the original scale a few large residuals associated

with the 1995, 1998, and 2010 year classes stood out. Analysis of the residuals against the

age structure metrics (MA and H) failed to explain remaining variation in the recruitment

time-series. There was very little correlation between the residuals and both MA and H

(corr < |0.15|).

Discussion

In Lake Michigan, alewife biomass has generally been declining over time, although infrequent

strong year classes have been observed, substantially boosting biomass. In recent decades,

the age composition reflects fewer old fish. Predation pressure in a freshwater ecosystem

has been an important driving force in inducing similar changes to the population structure

of a prey species, as fishing has been shown to do to harvested populations in the marine

environment (Anderson et al., 2008; Hsieh et al., 2010), through reduced abundance and a

truncation of the age structure. The wavelet analysis conformed largely to the hypothesis,

that with a truncated age structure the endogenous population oscillations can strengthen,

and tend to approximate the mean spawner age.

Cohort resonance is a phenomenon where the population begins to echo the stochasticity

in recruitment due to a reduction in the ability to smooth that variability on account of

several reproducing age classes. Multiple reproducing age classes can help to stabilize or

buffer the population against variability in the environment, thereby dampening the effects

of individual cohort contributions on subsequent recruitment. When a source of mortality has

a disproportionate effect on older ages in a targeted population, the life cycle is accelerated

due to reduced longevity. In the wavelet analysis, a strengthening of a periodic signal at
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approximately the mean spawner age develops during the latter years of the time series, first

in the recruitment series then spawner biomass. As these signals develop, greater coherence

with temperature at a similar frequency is observed. During the mid-1990s two very strong

year classes were observed during the time period of strong coherence with temperature.

In the latter years, the development of a signal in the spawner biomass begins to develop

at approximately the mean spawner age, a potentially important observation that could

have influence on the population in the years following. Although I have observed patterns

supportive of my hypothesis, the most severe age truncation doesn’t begin until about 2012,

years that extend beyond the cone of influence. As a result, the ability to make inference

from about the population is inhibited by the length of the time series, and the proximity

of major shifts to the terminal years in the data.

These results offer some support for the theoretical behavior of an age truncated popula-

tion, which pose important questions about the vulnerability of this population to environ-

mental fluctuations in the most recent years. From 2012 on no fish older than age five has

been observed in the trawl survey (Figure 3.2). If the linkage between the alewife population

and the environment strengthens, the alewife population could become more vulnerable to

adverse conditions. The interest in resonant behavior in fish populations is typically associ-

ated with concerns of decline and even extinction risk, and less so, potential positive effects

of the synchrony; however, despite continued low abundance and loss of older ages, another

strong recruitment pulse was observed in 2010. A retrospective analysis in a few years, with

additional data, could shed light on this prediction.

Hidalgo et al. (2011) showed that in European hake exploitation of the stock shifted the

index of biomass from an internally generated 12-year oscillation, postulated to arise from

density-dependent mechanisms, to a higher frequency signal. The higher frequency oscilla-

tions indicate greater reliance on recruitment strength. They also found through simulation,

that with a truncated age structure, biomass began to track the environmental signal (i.e.,

white and red noise) more closely. Running the simulations for 200 years allowed for the
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evolution of hypothesized changes to be observed, while the patterns in the empirical data

support their findings. The alewife time series is barely long enough to detect lower fre-

quency signals, but there is evidence of a small region with increased strength at about a

7-8 year period, a signal that would correspond to a 2T signal that has been attributed to

overcompensation (Botsford and Wickham, 1978).

Temperature can be influenced by large-scale climate processes as well as local weather

conditions (Stenseth et al., 2003). Identification of variability at different time scales, re-

vealed through wavelet analysis, does not provide insight into the mechanisms driving vari-

ability, but this information can be used to uncover linkages between physical and biological

processes (Ménard et al., 2007). The indices of temperature used in this analysis were

considered important exogenous drivers influencing the alewife population; however, I recog-

nize that temperature is but one exogenous driver of population dynamics, yet can influence

recruitment success through many pathways (e.g., survival and growth, phenology and abun-

dance of prey resources, availability of alternate prey items for alewife predators).

The stock-recruit modeling suggested that temperature was an important factor in pre-

dicting recruitment, and that the influence of summer temperatures in particular has become

stronger over time. The increase in the effect of temperature could be due to a step change

to warmer, more favorable conditions as well as an amplification of the favorable conditions

due to moderate synchrony between biomass and the summer temperature oscillations in

the most recent years. The stock-recruit model indicated that warmer summer temperatures

had a positive effect on recruitment, corroborating the results from Madenjian et al. (2005)

and Collingsworth et al. (2014) and explaining a similar amount of recruitment variability

(Collingsworth et al., 2014); however, I found no evidence of a clear temperature signal associ-

ated with the large recruitment events. Because I used age three as an index of recruitment,

temperature could be influencing growth and survival at multiple earlier life stages, from

hatch to age three. Warmer summer temperatures and colder winters both being favorable

for recruitment seem at odds with one another, and in other studies the positive correlation
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between recruitment and winter temperatures has been described as spurious (Madenjian

et al., 2005; Collingsworth et al., 2014). Underlying mechanisms of population dynamics are

often elusive and difficult to identify; however, distinguishing patterns in empirical data can

serve as a tool to develop more informed hypotheses.

The presence of cohort resonance effects from this analysis does not appear strong. Our

ability to make inferences about cohort resonance was somewhat limited because age trunca-

tion appears more pronounced towards the end of the time series. Although the time series

represents decades of monitoring effort, it remains relatively short for detecting periodic

signals developing in the most recent years. Evaluating additional covariates, as tempera-

ture is unlikely to be the only environmental signal influencing population dynamics, could

prove valuable in disentangling the drivers of alewife dynamics. For management to make

use of these patterns additional work will be required to elucidate the mechanisms driving

recruitment success. For example, are these banner years driven by spawning success, initial

growth due to food abundance and phenology, reduced competition or reduced predation

rates because of the availability of other fish species? These are important questions that

remain unanswered.

Incorporating age structure into analyses developed to predict recruitment and popula-

tion dynamics may sometimes lead to finer-scale insights than aggregate measures. It will be

interesting to evaluate the changes over the next few years to determine if the intrinsic cycle

at the generational time perpetuates as total abundance remained low, and if synchrony with

environmental variables is correlated with strong recruitment pulses. A report from Lake

Ontario has documented that despite regional warming trends in recent years (13 of the last

20 years have been above average), the winters of 2014 and 2015 were both colder than the

long-term average, and the summer temperatures were below average (Ontario Ministry of

Natural Resources and Forestry, 2016). Observations of the fully recruited age-3 alewife in

the years 2017 and 2018 may help to further elucidate the effects of temperature on this pop-

ulation. A similar analysis with Lake Huron data could also provide insight into the effects
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of age-truncation and environmental response to evaluate if synchrony with the environment

played a role in the collapse of that population.
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Tables

Table 3.1: Summary of the top Ricker stock-recruit models, the recruitment variability explained
(R2), and model selection criteria. Models within two AICc units from the top model were
considered indistinguishable. SSB = spawning stock biomass; SUM and WIN, the seasonal
temperature indices; YEAR is the year covariate used detect a linear trend; and YEAR*SUM, the
interaction between year and summer temperatures.

Model Rank Model R2 AICc ∆AICc

1 SSB + SUM + YEAR 0.33 125.93 0.00

2 SSB + SUM + YEAR + YEAR*SUM 0.37 126.27 0.34

3 SSB + SUM + WIN 0.32 126.77 0.84

4 SSB + SUM 0.26 127.02 1.09

Table 3.2: Model parameter estimates from the top four Ricker stock-recruit models (in rank
order). α and β are the standard parameters of the Ricker model. δx indicates regression
coefficients associated with the additional covariates. x = not included in the model

Parameter Model 1 Model 2 Model 3 Model 4

α -4.22 (0.28) -4.38 (0.30) -4.42 (0.26) -4.43 (0.27)

β
9.56e-5

(2.73e-5)

9.56e-5

(2.68e-5)

7.12e-5

(2.37e-5)

6.95e-5

(2.43e-5)

δSUM 0.57 (0.20) 0.53 (0.20) 0.55 (0.21) 0.38 (0.19)

δWIN x x -0.35 (0.21) x

δY EAR -0.44 (0.23) -0.50 (0.23) x x

δY EAR∗SUM x 0.34 (0.23) x x
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Figures

Figure 3.1: Alewife biomass (gray shaded area) is plotted alongside normalized recruitment (age-3
alewife) to show relationship across the time series.
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Figure 3.2: Bubble plot showing the relative proportion of each age class through time. The size
and color of the circles represent the relative proportion of each age class. Larger darker circles
represent a larger proportions while smaller, light circles represent smaller proportions.
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Figure 3.3: Time series of the observed recruitment index (number of age 3 fish), index of alewife
biomass (thousands of kg), mean spanwer age, summer temperature and the winter temperature
indices (◦C; SUM and WIN, respectively).
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B

C

D

Figure 3.4: Graphically representation of the univariate wavelet analysis for (A) alewife
recruitment, (B) alewife biomass, (C) summer temperature index, and (D) the winter
temperature index for 1973-2011. The plots on the left-hand side show the strength of different
periodic signals throughout the time series, ranging from a weak or non-exist signal (dark blue) to
a strong signal (dark red). The plots on the right-hand side depict the global wavelet spectrum,
or the dominant periodicities present throughout the aggregated time series.
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A B

C D

Figure 3.5: Wavelet coherence plots illustrate the strength of the correlation between two
univariate time series: alewife recruitment and the summer and winter indices (A and B,
respectively); and alewife biomass and the summer and winter indices (C and D, respectively).
The colors indicate the strength of the correlation with dark blue representing no to very low
correlation and dark red representing a strong correlation.
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Figure 3.6: Observed recruitment over time, plotted with predicted recruitment from the top four
models.

69



Figure 3.7: Mean stock-recruit relationships predicted by each of the top models. The points
represent observed data.

70



Appendix 3.A

Figure 3.A1: Bootstrapped parameter estimates from Model 1. The solid dot represents the
median and the bars represent the first and third quartiles.
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Figure 3.A2: Bootstrapped parameter estimates from Model 2. The solid dot represents the
median and the bars represent the first and third quartiles.
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Figure 3.A3: Bootstrapped parameter estimates from Model 3. The solid dot represents the
median and the bars represent the first and third quartiles.
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Figure 3.A4: Bootstrapped parameter estimates from Model 4. The solid dot represents the
median and the bars represent the first and third quartiles.
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Appendix 3.B

Wavelet analysis example

Ecological processes observed through time (e.g., biomass or abundance) can be composed

of different oscillatory signals, some transient and short-lived, as well as trends and random

noise. This variability can be driven by various processes, both known and unknown. Be-

low is an example illustrating the creation of a synthetic time series by combining different

oscillatory components and random noise. I then use the wavelet analysis to decompose

the variability, demonstrating how signals known to be present can be detected using this

approach.
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Figure 3.B1: Illustration of a synthetic time-invariant time series of abundance (top), a
decomposition of the oscillatory signals used to create variability in the time series (center), and
the wavelet decomposition of the time series highlighting the dominant signals in darker shades of
red. There are three different cyclic signals: a 3 year (red), 8 year (blue), and an 11 year (green).
The 8 year cycle has the largest amplitude and is the dominant, while the other two are weaker.
In the wavelet heat map the dark orange at the 8 year cycle is constant throughout the time
series, while the three year is present, but not always obvious. The 11 year signal is barely
detectable given the relatively short length of the time series relative to the periodicity of that
signal. Additionally, very high frequencies are detected (dark red); these regions are likely
indicative of random noise.
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Figure 3.B2: In this example, the oscillatory signals creating variability in the abundance time
series are allowed to vary between two time periods. For the first 25 years (for example) there is a
dominant 8 year cycle (blue) with a weaker 3 year cycle (red). At year 26, the 8 year cycle all but
fades away while the 3 year cycle increases in amplitude and becomes the dominant periodicity.
This shift is seen in the wavelet analysis as the dark red shading at the 8 year periodicity fades
around the time series’ mid-point, giving way to a strong high-frequency signal at the 3 year
periodicity.
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R code:

# Load biwavelet package

library(biwavelet)

# TIME-INVARIANT SIGNALS

# Create a time sequence (years, perhaps)

t=seq(1,50,.3)

# Define desired periodicities

p1 = 3 # periodicity of 3 (units depends on time scale)

p2 = 8 # a second periodicity of 8

p3 = 11 # a third periodicity of 11

# Setting a mean value for the univariate time series

mu = 100

# Adding white noise to the mean

p.eps = rnorm(t,0,2)

# Create wave signals

w1 = mu + sin((2*pi*t)/p1)

w2 = mu + sin((2*pi*t)/p2)

w3 = mu + sin((2*pi*t)/p3)

# Plot the signals individually (with different amplitudes)

# y = amp*sin((2*pi*t)/period)
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# 8 year cycle; amp=5

plot( w2 $<$- mu + 5*(sin((2*pi*t)/p2)), type="l" , ylab="", col="blue")

# 3 years cycle; amp=2

lines( w1 $<$- mu + 2*(sin((2*pi*t)/p1) ), type="l", col="red")

# 11 yr cycle; amp=1

lines( w3 $<$- mu + sin((2*pi*t)/p3), type="l", col="green")

# Now, imagine a time series is comprised of the 3 signals plus noise

# this is something we might observe

plot( y $<$- mu + 5*sin((2*pi*t)/p2) + 2*sin((2*pi*t)/p1) +

sin((2*pi*t)/p3) + p.eps, type="l", ylab="")

# Plot results from wavelet analysis

plot.biwavelet( wt (cbind(t,y), mother="morlet"), type="power.corr.norm")
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# TIME-VARYING SIGNALS

y $<$- w1 $<$- w2 $<$- w3 $<$- c()

# Alter the strength of the signals by time period (t1 \& t2)

t1=seq(1,24.1,.3)

p.eps = rnorm(t1,0,4)

for(i in 1:length(t1)){

y[i] $<$- mu + 2*sin((2*pi*t1[i])/p1) + 6*sin((2*pi*t1[i])/p2) + p.eps[i]

w1[i] $<$- mu + 2*sin((2*pi*t1[i])/p1)

w2[i] $<$- mu + 6*sin((2*pi*t1[i])/p2)

}

t2 = seq(24.4,50,.3)

p.eps = rnorm(t2,0,4)

for(i in (length(t1)+1):(length(t1)+length(t2)) ) {

y[i] $<$- mu + 5*sin((2*pi*t2[i-length(t1)])/p1) +

sin((2*pi*t2[i-length(t1)])/p2) + p.eps[i-length(t1)]

w1[i] $<$- mu + 5*sin((2*pi*t2[i-length(t1)])/p1)

w2[i] $<$- mu + sin((2*pi*t2[i-length(t1)])/p2)

}
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Chapter 4

Fish community fluctuations in response to

environmental variability in the Bay of Quinte

Vidal, T.E., Irwin, B.J., Holden, J.P, and Wenger, S.J. To be submitted to Canadian Journal of Fisheries
and Aquatic Sciences
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Introduction

In the Laurentian Great Lakes region, changing climatic conditions represent near and long-

term uncertainties including how freshwater ecosystems may respond to those changes. The

Great Lakes are the largest group of freshwater lakes in the world, and they provide impor-

tant ecosystem services. Regional observations suggest that changes to climate regimes are

already having effects through increased air and water temperatures, changing precipitation

patterns, decreased ice cover, and reduced water levels. Climate models predict a contin-

uation of the warming trend observed over the past century (Smith et al., 2005; Kirtman

et al., 2013), with an expected global increase in mean surface air temperatures of between

0.3 and 0.7◦ C by year 2035 (Kirtman et al., 2013). The northern latitudes, however, are

expected to experience the most significant warming of air temperatures due to melting of

sea and winter ice formations. In the Great Lakes, surface temperatures are expected to

increase by between 0.6 and roughly 4.6◦ C by 2039 (Ruosteenoja et al., 2003), and in Lake

Superior there has been an observed increase of 2.5◦ C between 1979 and 2006 (Austin and

Colman, 2007). Temperature increases likely mean shorter winters. Declining winter ice re-

sults in an earlier stratification of the water column, which contributes to a longer warming

period, decreased dissolved oxygen in the deep water habitats (Kling et al., 2003), and more

dramatic water temperature changes than would be expected from rising air temperatures

alone. These warming trends are expected to impact the composition and distribution of

fish species, potentially altering overall ecosystem function.

Ecosystems are stochastic, yet most have some capacity to reorganize following distur-

bance. This reorganization is reliant on the interconnected biotic and abiotic processes, as

well as diversity in functional roles. Warming trends and increased hydrologic variability

may prove deleterious to the native fish populations, especially cold-water species approach-

ing thermal thresholds. Non-natives unable to invade due to environmental constraints may

be released from limitations, posing further challenges to native fish communities and de-
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sired ecosystem structure (Britton et al., 2010). In many parts of the world, biodiversity is

declining, causing changes to the structure, function, and resilience of ecosystems (Butchart

et al., 2010; Oliver et al., 2015).

Aquatic resources have largely been exploited and managed to maximize economic gains

through selective harvesting. In response to these selective harvest strategies, fisheries man-

agement has traditionally been rooted in single-species approaches (Hilborn and Walters,

1992). Managing single species, as isolated entities within a system neglects the intercon-

nectedness and fails to manage for the benefit and integrity of the system as a whole. Effec-

tively sampling whole ecosystems to evaluate change is generally unrealistic, but ecological

indicators can be used as proxies to assess ecosystem condition and to evaluate how the

system is responding to changes in the environment (Jennings, 2005; Rochet and Trenkel,

2009). Ecosystem or community based assessments go beyond single-species approaches to

evaluate changes to species composition and community function in response to changing

environmental conditions; approaches that are imperative for crafting effective management

strategies.

To bridge this gap between single-species assessments and full ecosystem-based analyses,

I used ecological indicators to represent the structure, function, and composition of the fish

community. I then evaluated how these indicators responded along gradients of multiple en-

vironmental drivers. Just as species don’t exist in isolation, nor do environmental variables,

so simultaneously evaluating multiple environmental pressure variables was important. This

analysis was focused on the Bay of Quinte (BOQ), located on the northeastern shore of Lake

Ontario in the Laurentian Great Lakes. The BOQ is representative of the lower Great Lakes,

yet is small enough to allow for intensive sampling which has produced rich, long-term data

sets. In 1987, the Canadian government identified the BOQ as one of the areas of concern

(AOC; http://www.ec.gc.ca/raps-pas/) because of severely degraded water quality and en-

vironmental health. Research showed that agricultural runoff, wastewater discharge, and

shoreline development were large factors influencing the state of the system. In addition,
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large-scale shifts in the BOQ were detected following the dreissenid mussel invasion, resulting

in a reorganization of the four main biological communities: phytoplankton, zooplankton,

benthos, and fish (Nicholls et al., 2011). The new regime had negative effects on some native

species, yet species diversity and native fish abundance and biomass all increased during the

recent time period (Hoyle et al., 2012). In 2016, an evaluation of the BOQ fish community

was performed using an index of biotic integrity (IBI), the results of which showed that

remediation efforts in the bay have improved the IBI score, suggesting improved ecosystem

health and diversity (Hoyle and Yuille, 2016). In this chapter, I explored whether environ-

mental drivers have influenced the structure and composition of the BOQ fish community

over recent decades. I hypothesized that there would be a shift towards higher abundance of

species tolerant of warmer water and indications of non-natives expanding while cold water

natives declined. I report on a random forest analysis applied to the long-term fish commu-

nity data from the BOQ. Improving our understanding of how environmental variability has

contributed to changes in the fish community may enhance managers’ ability to manage for

ecosystem integrity under changing environmental conditions.

Methods

I evaluated how the fish community in the BOQ has responded along environmental gradients

over the past couple decades using gradient forest methods, an extension to random forests

(Breiman, 2001; Ellis et al., 2012). Random forests, the foundation for gradient forest, is an

ensemble learning algorithm that uses a collection of regression trees (i.e., the forest), with

modified bagging (bootstrap aggregation) to improve prediction accuracy. In a regression

tree, quantitative response variables are recursively partitioned based on a set of explanatory

variables. Regression trees are able to capture complex structure in the data, including

nonlinearities and interactions between predictor variables. These gradient forest approach

is useful to explore patterns in the shape and magnitude of a community response along

gradients of environmental drivers. Once broad community-level patterns are detected, one
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can further identify the individual species within the indicator groups that had the greatest

contribution to the observed changes in species composition. I assessed individual species

contributions using an analysis of temporal beta diversity. Together these analyses were used

to investigate whether changes in the species composition of the BOQ could be explained

by environmental drivers and to identify threshold values along the environmental gradients,

associated with community response.

Fish community indicators

Indicators of the BOQ fish community were selected and developed based on observations

and predictions about how the fish community has changed over time as well published

literature using community indicators (e.g., Link, 2005; Large et al., 2015). The data on the

species present in the bay, their relative abundance, and biomass, were obtained from the

annual, fixed-site gillnet survey from 1995-2015. The gillnet gear is made from monofilament

and is set along bottom contours at fixed sampling location. Mesh sizes varied by net panel,

ranging from 38-152 mm stretched in 13 mm increments, for a total of ten panels in a single

gillnet gang (Hoyle et al., 2012). I used samples from July and August (the months of

greatest sampling effort) for a total of 698 net sets throughout the time series. These gillnets

sample larger-bodied fish and are used to sample the offshore areas (>5 m; Hoyle et al.,

2012). A total of 41 species from 17 families were included in this analysis. Catches from

the gillnet survey were aggregated by year for an annual index fish abundance and biomass.

I used species characteristics from Hoyle and Yuille (2016) to develop indicator variables

representative of the fish community structure and function to include: 1) habitat prefer-

ence (benthic, benthopelagic, pelagic), 2) trophic niche (invertivore, piscivore, planktivore),

3) origin (native or exotic), and 4) thermal preference (cold, cool, warm). Specifically, I cal-

culated the proportion, abundance, and biomass of native, piscivorous, benthic, and warm

water species. I chose the aforementioned reference levels for the four community categories

described above as the response indicator variables based on hypotheses about how the sys-
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tem has changed. I hypothesized that benthic species increased over time due to increased

water clarity caused by expansion of dreissenid mussels. I predicted that consequences of

these changes would mean a shift towards more benthic species due to the reallocation of

energy from the water column to the benthos. I hypothesized an increase in warm-water

species due to increased water temperature; warm-water species also tend to be non-native.

In addition, I evaluated mean trophic level and mean fish length. The trophic level for each

species was obtained from FishBase (www.fishbage.org), weighted by each species’ annual

biomass, and then averaged across species to obtain an annual estimate of the mean trophic

level. Trophic level was included as a measure of energy flow and functional composition of

the fish community. To estimate proportion, biomass, and abundance of warm water species,

we assigned a categorical preferred thermal regime (i.e., cold < 15 ◦ C; cool ≈ 15-25 ◦C; and

warm > 25 ◦C; Casselman et al., 2011) to each species collected. Indicator variables for the

fish community were developed as annual metrics weighted by species biomass (excepting

abundance based indicators), and aggregated to an annual level to align with resolution of

the environmental indicators. It should be noted that each species is included in several in-

dicator groups. For example, an exotic warm water species could also be grouped as pelagic

and piscivorous, thus included in multiple indicator variables. For a complete description of

the indicator variables used in this analysis see Table 4.1.

Environmental variables

A set of environmental indicators, thought to influence the composition of the fish commu-

nity through time, were developed as the predictor variables. These indicators were selected

to be representative of large-scale patterns in precipitation, water levels, primary produc-

tion and turbity, and thermal fluctuations that could influence vertical mixing and present

physiological thresholds. Specifically, the environmental variables were cumulative spring

temperature (March - June), mean summer (May - August) and winter (December - March)

temperatures (◦C), Secchi depth (m) in BOQ, precipitation (mm), and water level (meters

86



above sea level). The environmental data available for the region were of a coarser spatial

scale than the fish community data; therefore, all indicator variables were aggregated to the

annual level, all sampling locations combined. Table 4.2 provides additional descriptions of

the six environmental variables and the associated data sources.

Statistical analyses

Gradient forest (Ellis et al., 2012), an extension of random forest, was used to evaluate the

importance of the suite of environmental predictors in explaining the structure and function

of the fish community in the BOQ. Random forest approaches are a type of machine learning

algorithm, the foundation of which is a regression tree. In regression trees, the response

variables are partitioned on split values for the predictor variables, minimizing the sum

of the squared deviations from the group mean. Splits are dichotomous partitions of the

response variable observations. The subgroups created by the splits are then recursively

partitioned until additional partitions do not improve fit or there are a minimum number of

observations in the resulting groups; these groups are referred to as terminal nodes. Random

forests are an ensemble of many regression trees (i.e., the forest; 5000 trees were used in this

analysis), where each tree is fit to a bootstrapped sample of the full data set (Breiman, 2001).

Observations not included in the bootstrapped samples for an individual tree are referred

to as the out-of-bag (OOB) sample. Predictions for each observation are calculated as the

average prediction from all trees in which the observation was omitted; these observations

provide a measure of the expected variance of the residuals for new observations (i.e., cross-

validated estimate of the generalized error; Ellis et al., 2012). The tree partitions at each

node are determined using a random subset of the predictor variables, ensuring that the trees

in the ‘forest’ are independent from one another (i.e., decorrelated). Additionally, potential

correlation among predictor variables is controlled for by using conditional permutation

(Strobl et al., 2008; Ellis et al., 2012). The resulting regression forest predictions are made

by averaging the predictions from each tree in the forest. Gradient forest approaches allow
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for an assessment of how response variables behave along predictor gradients, and where

thresholds occur, if they exist. Thresholds, or change points, can emerge due to directional

changes in environmental variables leading to biological shifts. For example, an increase in

water temperature may exceed an individual species’ thermal tolerance, resulting in reduced

growth and increased mortality. This threshold would likely show up in the gradient forest

as a bifurcation in the abundance of that species around that thermal threshold, assuming

abundance was used as a response variable. The R package gradientForest (Ellis et al., 2012)

was used to perform these analyses.

A random forest yields several measures to interpret the importance of the environmental

variables in predicting the fish community response: the goodness of fit R2
f for fish community

indicator f , the importance Ifp of environmental indicator (i.e., predictor variable) p in

predicting indicator f , and the raw importance values Ifpts at every split s from each tree t

in the forest (Ellis et al., 2012; Large et al., 2015). The goodness of fit for each indicator f

is calculated as

R2
f = 1−

∑
i

(Yfi − Ŷfi)2

(Yfi − Ȳf )2

where Yfi is the ith observation of the fth indicator, Ŷfi is the OOB prediction, and Ȳf is

the mean value for indicator f .

Importance Ifp of each environmental variable is a measure of improved model fit with

the inclusion of the predictor, evaluated by a comparison of prediction error between the

full and reduced model (Ellis et al., 2012). R2
f can be partitioned across all environmental

predictor R2
fp proportional to the conditional predictor importance Ifp (Strobl et al., 2008).

R2
fp =

R2
fIfp∑
p

Ifp

Therefore, the sum of the R2
fp will equal the R2

f for a community indicator f . To evaluate

splits s associated with each predictor p, the raw importances Ifpts from every tree t in the
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forest are standardized by the density of predictor values and normalized to sum to R2
fp

(Ellis et al., 2012). Peaks in the split densities along predictor gradients provide support

for thresholds. Values of the environmental predictors repeatedly chosen to partition the

community data may represent ecological thresholds the fish community is responsive to.

Gradient forest methods were used to integrate the results of the random forest models

across multiple response variables, to determine a community level response curve based

on partitions from all explanatory variables, free from parametric assumptions. The overall

importance of a predictor R2
p is calculated by averaging the predictor importance across the

community indicators, where N ind is the number of community indicator variables (i.e., 14).

R2
p =

1

N ind

∑
f

R2
fp

The importances for each predictor are aggregated across community indicators to yield a

combined importance density Ips for each value of the predictor, at different splits. The com-

bined importance provides insight into community response threshold values along predictor

gradients.

Beta diversity

The gradient forest analysis of community indicators reveals which indicators are most re-

sponsive to environmental drivers. Beta diversity was used as a complementary tool, to

decompose the evolution of the species assemblage over time to evaluate the relative contri-

bution of individual species to total assemblage diversity. Indicators are useful because they

integrate information about an entire community or ecosystem, but one of the caveats is

that they can be overwhelmed by abundance or biomass of individual species. Beta diversity

is typically defined as differentiation of species composition across space (Whittaker, 1960).

Space was replaced with time to evaluate changes in the BOQ species composition across

years in the BOQ long-term fish community data.

89



The analysis of beta diversity was used to complement our results from the gradient forest

and provide inferential context. Beta diversity is a measure that has been conceptually and

computationally defined in many different ways (Anderson et al., 2013). I am using the

definition from Legendre and De Cáceres (2013), in which beta diversity is defined as the

total variance in an i x j species matrix where each element sij is the squared deviation

from the mean for each of the j species in year i. Raw biomass values yij were transformed

using the hellinger transformation prior to calculating beta diversity metrics (Legendre and

Gallagher, 2001).

y′ij =

√√√√√ yij
p∑
j=1

yi

sij = (y′ij − ȳ′j)2

SSTotal =
I∑
i=1

J∑
j=1

sij

BD = V ar(Y) = SSTotal/(n− 1)

Temporal beta diversity, calculated in this way, is a measure of the difference in species

assemblages through time. I partitioned total beta diversity, by dividing the sum of squares

for the j species by SSTotal, to evaluate the relative contribution of individual species to

overall beta diversity.

SSj =
n∑
i=1

sij

Results

Indicator time series

There was little contrast in the fish community indicators over the time period analyzed

(Figure 4.1). A decline in mean fish length was observed through time, from a mean total

length of 150 mm to mean fish length of 118 mm, as well as a reduction in the proportion of
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cold and cool water species from the gillnet catches (Figure 4.2). The proportion of native,

piscivorous, and benthic species remained relatively unchanged although there was a slight

increase in the proportional biomass of native and piscivorous fish towards the end of the

time series, concurrent with an increase in abundance of warm water species.

Both summer and winter temperature indices showed a warming trend throughout the

time series, excepting the winters of 2014 and 2015, which were below average (Figure 4.3).

Cumulative spring temperatures also showed a slight warming trend, but with substantial

interannual variability. Secchi depth increased during the 1990s, but generally declined

following the peak around 1998. Precipitation and water levels were highly variable from

year to year, with no discernible trend.

Random and gradient forest

The mean importance of the environmental predictors (R2
p) in explaining community re-

sponse, ranged between <0.001 and 0.062. Secchi depth stood out as the most important

predictor followed by cumulative spring and mean summer temperatures. Water level and

mean winter temperatures had an R2
p < 0.001 (Figure 4.4), explaining very little of the com-

munity variability. Individual predictor importance ranged between <0.001 and 0.099, with

Secchi depth having the greatest individual importance for predicting community response.

Mean prediction performance (R2
f ) from the random forest model was highest for mean

trophic level, followed by proportion of biomass attributed to piscivores, and abundance

of warm water species (R2
f = 0.031, 0.017 and 0.011, respectively). The remainder of the

community variables were not predicted by the model (R2
f = 0). Thresholds in the fish com-

munity response were identified as peaks in the cumulative importance distributions of model

improvement based on split location along environmental gradients, scaled by R2 weighted

importance and standardized by the density of the observations (Figure 4.5), where the ratio

is greater than one (Large et al., 2015). The peaks indicate values along the environmental

gradients that were selected repeatedly in the random forest analyses as a break point for the
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response variables. Secchi depth and mean summer temperatures had well defined thresh-

old values, whereas cumulative spring temperatures and the weaker predictor variables had

multiple peaks in the density ratios, indicating a lack of clear thresholds (Figure 4.5). Mean

trophic level and proportion biomass associated with piscivores indicated a similar threshold

response to cumulative Secchi depth (∼2.5 m) and mean summer temperatures (∼21◦C; Fig-

ure 4.6), whereas abundance of warm water species indicated multiple thresholds associated

with cumulative spring temperatures (∼1400 and 1700◦C), but to no other predictor. The

cumulative importance is the cumulative sum of split importance values along the observed

range of environmental predictors. When the cumulative importance jumps dramatically (as

in the Secchi depth plot) there is an indication that a split at that level of the predictor

is important in predicting the response variables. Figures 4.5 and 4.6 are essentially illus-

trating the same information, but in different ways. It is important to note, that although

the Secchi depth threshold is pronounced, there are only three years with observed Secchi

depths greater than 2.5 m.

Beta diversity

Temporal beta diversity from 1995-2015 was estimated to be 0.12; the differences in species

composition were overwhelmingly attributed to three species: alewife Alosa pseudoharengus,

yellow perch Perca flavescens, and white perch Morone americana. Alewife explained 40% of

total beta diversity, while yellow perch and white perch explained 21% and 13%, respectively.

Alewife and white perch abundance has increased through the time series; whereas yellow

perch has declined dramatically (Figure 4.7). This restructuring of the species assemblages

represents a shift away from a dominant native, cool-water species (yellow perch) towards

increased presence of non-native, warm water species (alewife and white perch) that operate

at a lower trophic level (Figure 4.8).
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Discussion

The results from these analyses suggest that measures of water clarity, followed by indices

of water temperature, were most influential in the structuring of the fish community in

the BOQ. Environmental fluctuations over recent decades didn’t appear overly influential

in structuring species composition, and observed changes were likely due to fluctuations in

a few key species as opposed to systemic shifts driven by changing conditions. Although

prediction performance was low, the model was able to detect a shift in the community

indicator variables along environmental gradients.

Evaluating the influence of climate drivers and environmental variables is of broad inter-

est (e.g., Stenseth et al., 2002; Walther et al., 2002; Lehodey et al., 2006). This analysis,

focused on evaluating how climate drivers and environmental variability were influencing

this post-regime shift community (Nicholls et al., 2011). I hypothesized that warming water

temperatures, and short winters would stand out as important predictors shaping the species

composition during the post-dreissenid era. The results, however, indicate that fluctuations

in water clarity remain a primary driver of species composition in the gillnet catches from

the BOQ, and although temperature was a important predictor, the effect of Secchi depth

was of greater magnitude. Threshold response in the indicator of trophic structure existed

towards the upper end of observed Secchi depth values, suggesting a shift in the species

composition and functional characteristics of the community at Secchi depths greater than

about 2.7 m. Empirical data showed a slight decline in Secchi depth during this time period.

So, although water clarity remains an important driver, the direction of change during this

recent time period has reversed from the 1990s when dreissenid mussels (i.e., zebra Dreissena

ploymorpha and quagga mussels Dreissena bugensis) were rapidly increasing water clarity.

A gradual decline in water clarity could in part be attributed to the goby invasion.

Round gobies (Neogobius melanostomus) are voracious benthic predators, that feed largely

on zebra mussels. Their foraging may have important implications for water clarity due to
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a reduction in the abundance of zebra mussels, and thus, filtering capacity (Nicholls et al.,

2011). Warming water temperatures are also predicted to increase intensity and duration

of precipitation events, the result of which could be increased runoff, including phosphorous

inputs, into the bay (Kunkel et al., 1999).

Shifts in the species assemblages from the 1995 on has trended towards a greater pres-

ence of non-native, smaller-bodied species with a warmer thermal preference, and higher

tolerance of eutrophic conditions (e.g., alewife and white perch). The invasion of non-native

species combined with changes in habitat and environmental conditions can result in novel

restructuring of inter-specific interactions. For example, alewife have been shown to nega-

tively impact recruitment of yellow perch by preying on newly hatched larval fish (Brandt

et al., 1987). Alewives typically live in the open waters of the Great Lakes, but they migrate

to the littoral areas and embayments to spawn in the spring. The spawning migration can

overlap with the spring hatching of yellow perch; typically occurring within two weeks of

the hatch (Brandt et al., 1987). White perch have been shown to negatively impact walleye

recruitment through predation on the larval stages (Hurley and Christie, 1977), and has a

diet that overlaps significantly with the yellow perch diet, especially in the summer (Parrish

and Margraf, 1990).

Globally, environmental and climate-related changes are forecasted to be one of the great-

est threats facing ecosystems (Pimm, 2009), with many ecosystems already showing signs of

response to climate changes through poleward species range expansions (Chen et al., 2011;

Sunday et al., 2012), phenological shifts (Parmesan, 2006), and reduced body size, in aquatic

systems (Daufresne et al., 2009). In the Great Lakes region there is considerable uncertainty

about how changing climatic conditions will affect aquatic ecosystems. This community-level

analysis revealed that the functional characteristics of the community, as described by the

community indicator variables, have tended to oscillate through time in response to increases

and decreases in water clarity. However, there are important directional changes detected,

associated with warming conditions, changes that may be setting the groundwork for larger
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fish community shifts if temperatures continue to rise, as expected (Kirtman et al., 2013).

In this analysis, the evidence for a clear persistent association between fish community

indicators and environmental indicators is lacking; however, even if environmental shifts

have small direct or indirect effects on a few species, a restructuring of species interactions

may promote cascading effects. The gillnet survey data used for this analysis provide useful,

long-term, and detailed biological data; however, the resolution of associated environmental

observations is at a much coarser level, which is why indicator metrics were aggregated

annually. This loss of spatial and temporal resolution has likely hampered our ability to

detect finer scale relationships, and has likely reduced predictive power.

As assessment of aquatic systems moves towards greater incorporation of environmental

variability and ecosystem-based approaches, efficient and powerful tools such as those pre-

sented in this chapter will be important. Gradient forest can not only identify relationships

between environmental drivers and community response variables, but can also identify crit-

ical values along gradients of the predictor variables. Identification of such critical values

could provide useful reference points for management. Further investigation into the mech-

anisms driving these shifts, as well as into the utility of additional environmental drivers

in predicting biological community response, is warranted. Combining approaches, such as

those presented here, with improved monitoring of environmental variables at similar spatial

and temporal scales of biological monitoring, will help to inform decisions about resource

management, evaluate potential consequences, and identify sources of uncertainty under

changing environmental conditions.
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Legendre, P. and De Cáceres, M. (2013). Beta diversity as the variance of community data:

dissimilarity coefficients and partitioning. Ecology Letters, 16(8):951–963.

Legendre, P. and Gallagher, E. D. (2001). Ecologically meaningful transformations for ordi-

nation of species data. Oecologia, 129(2):271–280.

Lehodey, P., Alheit, J., Barange, M., Baumgartner, T., Beaugrand, G., Drinkwater, K.,

Fromentin, J.-M., Hare, S., Ottersen, G., Perry, R., et al. (2006). Climate variability, fish,

and fisheries. Journal of Climate, 19(20):5009–5030.

Link, J. S. (2005). Translating ecosystem indicators into decision criteria. ICES Journal of

Marine Science: Journal du Conseil, 62(3):569–576.

Nicholls, K., Hoyle, J., Johannsson, O., and Dermott, R. (2011). A biological regime shift in

the Bay of Quinte ecosystem (Lake Ontario) associated with the establishment of invasive

dreissenid mussels. Journal of Great Lakes Research, 37(2):310–317.

Oliver, T. H., Heard, M. S., Isaac, N. J., Roy, D. B., Procter, D., Eigenbrod, F., Freckleton,

R., Hector, A., Orme, C. D. L., Petchey, O. L., et al. (2015). Biodiversity and resilience

of ecosystem functions. Trends in ecology & evolution, 30(11):673–684.

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual

Review of Ecology, Evolution, and Systematics, pages 637–669.

98



Parrish, D. L. and Margraf, F. J. (1990). Interactions between White Perch (Morone
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Table 4.1: Descriptions of the fish community indicator variables used as the response variables in
the gradient forest analysis, and the data sources.

Indicator Description Data source

Fish length (mean)
Average fish length (mm) from all fish measured in a

given year
Quinte fish survey data

Trophic level (mean) Mean trophic level, weighted by biomass FishBase www.fishbage.org

Abundance of benthic species
Combined abundance of all species that primarily

utilize the benthic habitat to all fish species observed
Hoyle et al. (2012)

Abundance of native
Combined abundance of all native species to all fish

species in the community
Hoyle et al. (2012)

Abundance of piscivorous
Combined abundance of all piscivorous fish species to

all fish species in the community
Hoyle et al. (2012)

Abundance of warm water

species

Combined abundance of all species with a warm

thermal preference to all fish species in the

community (thermal regimes: warm > 25 ◦C; cool ≈

15-25 ◦C; and cold < 15 ◦ C; Casselman et al., 2011)

Hoyle et al. (2012)

Biomass of benthic species
Combined biomass of all species that primarily

utilize the benthic habitat to all fish species observed
Hoyle et al. (2012)

Biomass of native
Combined biomass of all native species to all fish

species in the community
Hoyle et al. (2012)

Biomass of piscivorous
Combined biomass of all piscivorous fish species to

all fish species in the community
Hoyle et al. (2012)

Biomass of warm water

species

Combined biomass of all species with a warm

thermal preference to all fish species in the

community (thermal regimes: warm > 25 ◦C; cool ≈

15-25 ◦C; and cold < 15 ◦ C; Casselman et al., 2011)

Hoyle et al. (2012)

Proportion benthic species
Ratio of species that primarily utilize the benthic

habitat to all fish species observed
Hoyle et al. (2012)

Proportion native
Ratio of native species to all fish species in the

community
Hoyle et al. (2012)

Proportion piscivorous
Ratio of piscivorous fish species to all fish species in

the community
Hoyle et al. (2012)

Proportion warm water

species

Ratio of species with a warm thermal preference to

all fish species in the community (thermal regimes:

warm > 25 ◦C; cool ≈ 15-25 ◦C; and cold < 15 ◦ C;

Casselman et al., 2011)

Hoyle et al. (2012)
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Table 4.2: Descriptions of the environmental indicator variables used to predict the fish
community indicators, and the respective data sources.

Indicator Description Rationale Data source

Cumulative spring

temperature

Cumulative sum of daily

water temperature ◦C

between March and June

The timing and duration of

spring warming can influence

phenology of food resources,

critical to spring hatched fish

Temperature gauge at the

intake pipe for the Bellville

water treatment facility

Precipitation
Amount of annual

precipitation in mm

Precipitation was predicted to

influence water levels in

addition to altering runoff and

nutrient loadings

https://www.glerl.noaa.gov//data/

dash-

board/data/hydroIO/precip/

Secchi depth Measure of water clarity
Secchi depth can be used as a

proxy for primary production

BOQ survey data from July

and August net sets

Summer water

temperatures

Mean water temperature

between May and

September, based on daily

temperature observations

Summer temperatures can

influence phenology of food

resources, growth rates and

metabolic demand

Temperature gauge at intake

pipe for the Bellville water

treatment facility

Water level
Bay water level in meters

above sea level

Water levels can affect

spawning habitat and success

in nearshore waters

Stationary water level gauge

at Cobourg, Lake Ontario

Winter water temperature

Mean water temperature

between December and

March, based on daily

temperature observations

Winter water temperatures

can influence many processes

including overwinter

mortality, reproductive

success, and thermal

stratification

Temperature gauge at the

intake pipe for the Bellville

water treatment facility
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Figure 4.1: The five panels illustrate the time series of the fish community indicator variables
generated from the gillnet survey data. The top panel illustrates the abundance of benthic ‘b’,
native ‘n’, piscivorous ‘p’, and warm water species ‘w’; the second panel from the top shows
biomass (kg) of those same indicator groups. These four indicator groups represent habitat
preference, trophic niche, orgin, and thermal preference. The third panel shows mean fish length
(cm), all species combined, through time. The fourth panel shows the proportion of the biomass
associated with the benthic, native, piscivorous, and warm water species groups. The last panel
indicates mean trophic level of all species combined, weighted by biomass, in a given year. Note:
in some of the figures it is difficult to see the benthic ‘b’ group due to overlap with the other
indicator groups.
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Figure 4.2: The stacked barchart shows the proportion of survey catch biomass, aggregated by
thermal preference. The red bars indicate species with warm thermal preference, the light blue is
a preference for cool water, and the darker blue, cold water.
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Figure 4.3: The panel plot illustrates the time series for the aggregate environmental indicator
variables, in each year. The observed data are represented by the black points. The blue line is a
loess polynomial regression line through the points, while the gray represents the standard error
around the predicted relationship.
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Figure 4.4: Weighted predictor importance R2
p of the environmental variables in predicting the

community response variables from the gillnet data.
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Figure 4.5: Split importance along predictor gradients, where the solid lines are the estimated
density of split importance at each value of the predictor variables, standardized to the density of
observations. The dashed line represents a ratio of unity, above which are locations along the
predictor gradients associated with change in the community response. The peaks represent
predictor threshold values where a community shift is expected.
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Figure 4.6: Cumulative importance of four environmental indicators in predicting a suite of fish
community indicators. Separate lines are shown for the abundance of warm water fishes (orange),
mean trophic level (green), and the proportion piscivorous (purple). The three colors represent
the community indicator variables that were predicted by the environmental variables (fish
community indicators not predicted by the environmental variables are not displayed). A steep
slope in the indicator line is an indication of the presence of a threshold along the associated
environmental gradient. All panels are scaled to have the same y-axis, illustrating the relative
strength of cumulative spring temperatures over all other environmental signals.
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Figure 4.7: Bubble plot showing relative gillnet catch (biomass) by species through the time series
(1995-2015). The larger and darker bubbles indicate larger biomass values. Species that made up
less than 5% of the total gillnet biomass through time were excluded, for aesthetics.
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Figure 4.8: Dotchart showing the approximate trophic level of the seven species that were the
main contributers to beta diversity through the time series. The x-axis show the approximate
trophic level and the species are grouped by their origin.
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Appendix 4.A

Table 4.A1: List of species encountered in the gillnet surveys, their origin (E= exotic, N=native),
thermal preference, trophic niche and level, as well as habitat association.

Species Origin Thermal
pref

Trophic niche Trophic
level

Habitat

Alewife Alosa pseudoharengus E warm planktivore 3.29 pelagic
Atlantic salmon Salmo salar N cold piscivore 4.5 benthopelagic
Black crappie Pomoxis nigromaculatus N cool invertivore 3.81 benthopelagic
Bluegill Lepomis macrochirus N warm invertivore 3.53 benthopelagic
Bowfin Amia calva N warm piscivore 3.81 benthopelagic
Brook trout Salvelinus fontinalis N cold piscivore 3.31 benthopelagic
Brown bullhead Ameiurus nebulosus N warm invertivore 3.28 benthic
Brown trout Salmo trutta E cold piscivore 3.36 benthopelagic
Burbot Lota lota N cold piscivore 3.84 benthic
Channel catfish Ictalurus punctatus N warm invertivore/piscivore 3.4 benthic
Chinook salmon Oncorhynchus tshawytscha E cold piscivore 4.4 pelagic
Common carp Cyprinus carpio E warm invertivore/detritivore 3.06 benthopelagic
Freshwater drum Aplodinotus grunniens N warm invertivore 3.36 benthic
Gizzard shad Dorosoma cepedianum N warm herbivore 2.4 pelagic
Golden shiner Notemigonus crysoleucas N cool invertivore/herbivore 2.65 benthopelagic
Greater redhorse Moxostoma valenciennesi N warm invertivore 3.32 benthic
Lake herring Coregonus artedi N cold planktivore/invertivore 3.35 pelagic
Lake trout Salvelinus namaycush N cold piscivore 4.29 benthopelagic
Lake whitefish Coregonus clupeaformis N cold invertivore 3.23 benthic
Largemouth bass Micropterus salmoides N warm piscivore 4.42 benthopelagic
Longnose gar Lepisosteus osseus N warm piscivore 4.19 benthopelagic
Mooneye Hiodon tergisus N warm invertivore 3.72 pelagic
Northern pike Esox lucius N cool piscivore 4.07 benthopelagic
Pumpkinseed Lepomis gibbosus N warm invertivore 3.27 benthopelagic
Rainbow smelt Osmerus mordax E cold invertivore 3.44 pelagic
Rainbow trout Oncorhynchus mykiss E cold piscivore 4.08 benthopelagic
Rock bass Ambloplites rupestris N warm invertivore 3.33 benthopelagic
Sea lamprey Petromyzon marinus E cold parasite 4.37 benthopelagic
Shorthead redhorse Moxostoma macrolepidotum N warm invertivore 3.13 benthic
Silver redhorse Moxostoma anisurum N cool invertivore 3.01 benthic
Smallmouth bass Micropterus dolomieu N warm invertivore/piscivore 3.56 benthopelagic
Trout-perch Percopsis omiscomaycus N cool invertivore 3.38 benthopelagic
Walleye Sander vitreus N cool piscivore 4.16 benthopelagic
White bass Morone chrysops N warm invertivore/piscivore 4.04 benthopelagic
White perch Morone americana E warm invertivore 3.14 benthopelagic
White sucker Catostomus commersonii N cool invertivore/detritivore 2.46 benthic
Yellow perch Perca flavescens N cool invertivore 3.67 benthopelagic
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Chapter 5

Synthesis and Conclusions

This dissertation has focused on approaches to quantify variability in standardized fish catch

data to 1) evaluate if variance components are responsive to large-scale perturbation, and

therefore have potential as statistical indicators of ecological shifts; 2) decompose the vari-

ability in age-structured time series data using wavelet analysis to evaluate if age truncation

could alter the endogenous population oscillation, and as a result sensitivity to environ-

mental signals; and 3) partition the variability in multivariate community data to evaluate

response to multiple environmental drivers thought to be representative of changing climatic

conditions. All three chapters relied on fish survey data from the Great Lakes Basin. Vari-

ability represents departures from the mean, and is often treated as a quantity to control

or minimize through carefully designed sampling programs (Kratz et al., 1995), but we are

learning that deviations from the norm may represent important behaviors or phenomena

associated with ecological processes. It is not global averages that organisms respond to, but

regional and local conditions, which are spatially and temporally heterogeneous (Walther

et al., 2002). This work has tested theoretical behavior with empirical data to approach long

standing questions about population dynamics from different perspectives. Our results have

highlighted different modeling tools that have promise for questions more broadly, yet have

uncertainty and limitations as well. Advancing a field such as fisheries science requires ex-

ploration of new techniques and applications to enhance the toolbox of approaches required

to address these very complex problems. This work is a contribution to that endeavor.
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Variance components as statistical indicators

There is a growing body of literature dedicated to the detection and prediction of regime

shifts. Ecosystem regime shifts are unidirectional shifts that result in a new stable state with

different characteristics and feedbacks from the previous stable state (Walker et al., 2004).

Shifts of this nature may represent undesirable conditions relative to conservations goals,

management objectives, and socio-economic dynamics (Biggs et al., 2012), and therefore

identification of reliable signals to detect and ideally predict when a system is approaching

a critical transition point is an important area of research (May, 1977; Lluch-Belda et al.,

1989; Scheffer et al., 2001; Kuehn, 2011; Drake, 2013). From this literature several indicators

have been developed as generalizable signals, one such indicator is variability. It has been

shown through simulation and experimentation that variability in a response variable tends

to increase as a system is approaching a critical transition (Brock and Carpenter, 2006;

Scheffer et al., 2009; Carpenter et al., 2011). This increased variability is a chaotic state

when the system is oscillating between responding to the current state and the conditions of

the new, potential, steady state.

The idea that variance could indicate major ecological shifts led to the conjecture that

source components of variability may also be indicative of systems in transition. We sought

out a system with long-term biological data and a history of major ecological shift, po-

tentially a regime shift. The fish community of Oneida Lake presented itself as a viable

option. The perceived shift observed in Oneida Lake was rather abrupt, due in large part

to the invasion of a non-native species. To address the abrupt nature of the ecologcal shift,

a pre- and post-perturbation analysis with an estimated change point to delineate the time

periods was adopted. With this approach, we evaluated the hypothesis that the structure

of variability would be responsive to the observed changes; our results supported that hy-

pothesis. A point of interest that arose while contemplating variability, and the components

of variability, as indicators of major shifts in a fish population, related back to the general

behavior of increased variability when approaching a major transition. With fish count data,
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all observations were positive integers, and therefore there is a lower limit of possible obser-

vation values, i.e., zero. In Oneida Lake, the response to the ecological perturbations was

an overall reduction in catches and the variability among catches from different sampling

locations. For variability to have increased, the transition time period would have produced

some exceptionally high catches and many low catches during the transition to overall lower

catches. Observing this behavior seems unlikely, which raises questions about the type of

response variables that could exhibit these general signals of regime shifts, and if different

signals could arise in those that may deviate from the predicted response.

The approach we have laid forth can offer insight into ecological patterns that may be

obscured through modeling of fixed effects alone. For example, in our study, total variability

declined following the perturbations as did the mean Walleye catch. Modeling this time series

with a linear regression, with a fixed year effect would have suggested that the population

has declined and the rate at which catches were reduced. Using a mixed model, as we have

shown, illustrated that although overall catches declined, that reduction was not uniform,

and it was the inshore sites that were reduced most severely. The model is not a mechanistic

one, but the detection of fine-scale spatial and temporal patterns can inform the development

of new hypotheses. This analysis has spawned many new questions regarding this inshore/

offshore restructuring that we observed. For instance, is this shift the result of water clarity

(e.g., the nets are easier for Walleye to see and avoid), evasion of predation in deeper waters,

or an alternate explanation? This approach is simple enough to implement, yet flexible

enough to adapt to many different research questions, and for those reasons it is anticipated

to be a useful tool.

Adapting this approach to monitor the behavior of variance components in response to

gradual perturbation could provide additional insights. For example, if there was interest in

shifting spatial distribution due to warming temperatures, one could use a similar approach

but allow the spatial variance term to vary through time as an autoregressive process. This

would allow the among-site variability to vary in each time step, and the sites would be
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random draws from that distribution in each year. This approach could shed light on the

gradual behavior of variance components, and may offer potential early warning signals sim-

ilar to the indicators developed for regime shift detection, assuming sufficient data collected

at appropriate scales are available.

Another potential application for this variance partitioning framework is to make logis-

tical decisions about monitoring efforts. Imagine, that the funding for an annual survey

has been reduced by half. As a scientist or manager, a decision about how to continue the

most representative survey, yet with half the funds, becomes an important decision. Possible

options might include to continue the survey on an annual basis, but only sample half the

sites, whereas an alternate option could be to survey every other year and sample all the

sites. Based on the results from this analysis, the latter might be the more reasonable option

because we observed very little interannual variability, and much greater variability among

sites. This example is an oversimplification of such decisions, but is used for illustrative

purposes. For example, the gillnet gear used for this survey is capable of capturing the same

cohort over multiple seasons, potentially reducing temporal variability. These considerations

are important to note of course, but will vary by project, system, and sampling gear.

Wavelet analysis

In marine systems, selective harvest through fishing has been shown to alter age and size

structure of fish populations, and as a result has increased variability and sensitivity to

environmental signals (Berkeley et al., 2004; Hsieh et al., 2010). Predation, when preference

for larger individuals is detected, can act in a similar way, especially when supplemental

stocking of the predator is taking place. As discussed in chapter 2, the result can be a

truncation of the age structure and tightening of the link between population dynamics and

environmental variability. Our results were consistent with expected behavior of an age-

structured population experiencing severe age truncation. Analyzing population dynamics

with signal processing methodologies is not new (Bjørnstad et al., 1999; Bjørnstad and
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Grenfell, 2001; Bjørnstad et al., 2004; Worden et al., 2010), but is gaining traction in the

ecological literature (Cazelles et al., 2008; Hidalgo et al., 2011; Botsford et al., 2014).

Wavelet analysis is a powerful tool to detect patterns at scales that are not as obvi-

ous using standard analytical tools; tools that assume stationarity and linearity. However,

pattern detection does not indicate mechanistic drivers. Lack of mechanistic inference is

an issue that extends to many commonly used models in fisheries, and discussions around

which models are better, mechanistic or phenomenological, and how to distinguish between

the two continue to this day (Hilborn and Mangel, 1997; Bolker, 2008). Wavelet analysis is

a descriptive tool, and although not a model it offers insights in more of a phenomenologi-

cal way than a mechanistic one. As mentioned in chapter 3, the development of the mean

spawner age oscillation is important, and it suggests that alewife could be more sensitive to

environmental signals at that frequency. That is not to say that signal has to be tempera-

ture, and in fact it may not be. There are many exogenous drivers that have potential to

influence fish populations. It is also challenging to predict how the alewife population will

respond if another signal at a similar frequency does interact. Those questions will require

additional research, but even so, the alewife behavior over the next few years may improve

the understanding of the role of age structure in determining the response to environmental

forcing.

The results from the stock-recruit modeling in chapter 3 suggested that temperature is

an important factor in influencing recruitment success in the alewife population in Lake

Michigan. Our results also suggested that the effect of temperature has increased through

the time series. At the time of the development of this signal, there was only weak correla-

tion with the frequency of the temperature indices. As a result, although some echoing of

stochastic recruitment was observed in the empirical data during the latter years of the time

series, an amplification of that signal wasn’t observed. These observations highlight concern

about the future of the population. Specifically, it has been shown that truncation of the age

structure has continued and even worsened in recent years (Madenjian et al., 2014); what
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remains unknown is whether the anomalous recruitment events in recent years (both high

and low) were influenced by an interaction with oscillatory environmental signals.

The extremely large recruitment events of the 1990s, did not appear to arise from corre-

lation with temperature indices at a similar frequency, but was likely the result of amenable

conditions during a brief period of relatively broad age structure. Specifically, during the

high recruitment in the mid-1990s, there were fish as old as 8 and 9 in the population, and

only a weak oscillatory signal in the alewife spawner biomass. As a result, it is unlikely that

cohort resonance was influential in those recruitment events. It was not until the mid-2000s

that the dominant frequency of the alewife population approximated the mean spawner age.

The shift to a strong signal at the mean spawner age, concurrent with truncation of the age

structure, is compelling, and potentially important for managers to incorporate demography

into management decisions as opposed to biomass or abundance alone.

Community analysis

In the Bay of Quinte (BOQ), a recent study synthesizing changes in the aquatic community

showed high biotic integrity and a rebounding of native fishes (Hoyle and Yuille, 2016). In

that analysis, the influence of large-scale environmental signals were not included, and with a

rapid pace of climate induced changes, evaluating the community response to environmental

sifts stood out as an important research priority. The gradient forest approach combined

with the estimate of species contribution to beta diversity suggested that the community as a

whole was most sensitive to changes in Secchi depth, yet only a small portion of the variability

in the community was predicted by the environmental signals. Overall there haven’t been

tremendous fluctuations in the community indicators we evaluated, over the relatively short

time scale extending back to the mid-1990s. However, our analysis did reveal some important

shifts consistent with predictions about aquatic community response to climate change.

Native cold-water species declined throughout the time series, while non-native warm

water species abundance are on the rise. In addition, the mean trophic level declined with
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reductions in water clarity. Many piscivores rely on visual cure for predation, cues that are

likely obscured when the water clarity declines. Water clarity itself could be influenced by

various procesess. Wind and turbulence can stir up sediment and cause reductions in water

clarity, but in the Great Lakes, much of this shift is due to phytoplankton production. In

the BOQ, the phytoplanoton biovolume has been relatively stable, but the composition is

changing, shifting towards greater abundance of eutrophic diatoms and cyanobacteria, many

of which are inedible (Estepp and Reavie, 2015). Despite a relatively robust and diverse fish

community, the base of the trophic structure has changed and continues to be representative

of eutrophic conditions (Munawar et al., 2012). In addition, reduced light penetration can

impact submerged aquatic vegetation, which can impact habitat and refugia for larvae and

juvenile fish. The interconnectedness of ecosystems poses many challenges to whole system

level assessments; modeling tools that can synthesize complex information, such as gradient

forest, are important to progress ecosystem-based approaches. Future research could apply

a similar methodology but move beyond the assessment of the fish community, and include

phytoplankton, zooplankton, and benthos, and include more direct anthropogenic drivers

such as phosphorous levels, human population density, and exploitation.

Limitations and data needs

With interest in understanding how climate-related shifts may impact fish communities in

the Great Lakes, we have sought out established, long-term data sets for use in our analyses.

Even so, observations of coupled biological and physical variables, at similar resolution, were

often lacking. Some analyses we have presented would not have been possible with more

limited data sets. We are aware that many constraints contribute to a gap between ideal

data collection and feasible data collection, but careful thought should be given to expand

monitoring programs with climate change in mind. It is extremely challenging to identify

correlative or causal links between environmental signals and changing fish distributions due

to the scarcity of sufficient and long-term data sets, especially those that include relevant
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covariate measures (Booth et al., 2011). The Oneida Lake data we presented, spanned back

to 1958, yet some would argue that this is still a relatively short time scale (Izzo et al., 2016),

as some researchers have found fish populations to cycle between collapse and recovery at 60-

100 year cycles (Baumgartner et al., 1992). A commitment to consistent collection of spatial

and temporal biological and physical data, alongside the development of novel and innovative

modeling approaches is imperative to confronting these challenging questions regarding how

ecological systems will respond to different climate scenarios.
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