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Abstract

SiZer (SIgnificant ZERo crossing of the derivatives) is a scale-space visualization tool

for statistical inference that is originally developed by Chaudhuri and Marron (1999). It is

an exploratory data analysis tool that uses local linear smoothing and convolutions with

Gaussian kernel weights for inference and takes its views across a range of bandwidths. A

number of authors also later go on to develop versions of this visualization tool that can

account for two regression curves, instead of only one, and also dependent data. Motivated

by these works, in this dissertation we will introduce a graphical method for the test of

the equality of the mean of multiple time series based on SiZer. We will conduct a broad

numerical study to demonstrate the sample performance of the proposed tool. In addition,

we will investigate asymptotic properties of SiZer for the comparison of two time series.

As an extension of this original one dimensional SiZer, Godtliebsen et al. (2004) propose

a two dimensional SiZer. This creates a tool that gives analysts the ability to look at images

at a number of different resolutions, or bandwidths. We will introduce an inferential tool,

called Spatial SiZer, that takes into account the detection of trends within datasets that have

spatially dependent error structure. Also, we will compare several multiple testing adjustment

procedures by a simulation study. Finally, we will display the performance of Spatial SiZer

through several numerical studies for simulated and real datasets.
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Chapter 1

Introduction

SiZer, SIgnificant ZERo crossing of the derivatives, is developed by Chaudhuri and Marron

(1999), as an exploratory data analysis tool. It provides a way to look at data, in one or

multiple populations, so that one may be able to uncover underlying structure in the data,

test it against underlying assumptions or potential models, and detect possible anomalies.

SiZer is a more advanced version of a basic statistical graphic, such as a plot or chart, that can

simultaneously look at data across a range of different bandwidths. It takes a nonparametric

approach at smoothing curves and is a color coded tool that can provide still frame slides,

or interactive movies to show the progression of information provided by varying levels of

resolution in scale-space. Scale-space is proposed by Lindeberg (1994) as a formal theory

which can handle image structures at different scales, by representing an image as a one-

parameter family of smoothed images. The scale-space representation is parameterized by

the size of the smoothing kernel used for suppressing fine-scale structures. SiZer assists in the

determination of which features are “really present” in a dataset by constructing a so-called

SiZer map, which visualizes statistical inference. It resolves the difficulty of gray areas, where

the significance of certain features is debatable, and thus allows for informed inferences.

SiZer is based on scale-space ideas that provide kernel estimation across an extensive

range of bandwidths. Looking at this entire range sidesteps a common statistical problem

of attempting to find an optimal bandwidth for smoothing. Instead, statistical inference can

be done and all the information that is available at each individual level of resolution can be

detected. This way, the emphasis is changed from finding significant features in noisy data of

the “true underlying curve” to finding them in the “curve at that given level of resolution”.

1
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SiZer helps us to detect which features in a smooth actually represent a trend and which

ones are just sampling noise artifacts. It detects the precise location of local extrema, peaks

and valleys. These significant features are determined by the zero crossings of the derivative

and marked by color changes when this slope is deemed to be significantly increasing or

decreasing.

The original SiZer investigates densities and single regression curve estimation under

the assumption of independent errors. The regression estimation uses local linear smoothing

(Fan and Gijbels, 1996) and convolutions with Gaussian kernel weights. SiZer constructs

confidence intervals for its statistical inference and the original tool uses the quantile based

on the idea of the number of independent blocks. This quantile is later improved by Hannig

and Marron (2006) using advanced distributional theory.

Park et al. (2004) propose a dependent SiZer that does not assume independent errors

and can detect which apparently significant features in the SiZer are attributable to the

presence of dependence in the dataset. This dependent SiZer extends the methodology to

time series data and uses an assumed autocovariance function when performing goodness of

fit tests. Although this allows one to see how the data differ from the assumed model, it is

often difficult to know the autocovariance structure that should be used as the true model.

This leads Rondonotti et al. (2007) to propose a time series SiZer, that uses an estimated

autocovariance function to detect significant features while still considering the dependence

structure. Park et al. (2009) develop an improved version of the time series SiZer by using

the extreme value theory. They also propose a new autocovariance estimator that does not

use pilot bandwidths and residuals from an estimate, but instead uses a differenced time

series to further decrease the spurious pixels in a SiZer map.

Park and Kang (2008) extend SiZer to look at two independent regression curves and

thus shift the focus away from the derivative of a curve and onto the differences in two

curves. When looking at SiZer maps, the need for causality of the creation of extrema states

that when progressing to a higher level of smoothing, peaks and valleys should disappear
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monotonically. To aid in the development of the independent multiple regression curves case

here, in this dissertation we will propose some asymptotic properties that deal with the need

for causality of the creation of extrema and weak convergence of the empirical scale surface.

The problem of testing the equality of nonparametric regression curves with independent

errors has been widely studied in the literature. Relevant work in this area includes Härdle

and Marron (1990), Hall and Hart (1990), Delgado (1993), Kulasekera (1995), Bowman and

Young (1996), Kulasekera and Wang (1995), Neumeyer and Dette (2003), Munk and Dette

(1998), Dette and Neumeyer (2001), and Pardo-Fernandez et al. (2007). Koul and Stute

(1998) and Li (2006) study fitting a regression function in the presence of long memory.

In this dissertation, we will develop a SiZer tool which is capable of comparing multiple

time series. In order to compare multiple time series, a SiZer tool based on regression function

estimation is needed. This is an extension of the existing SiZer for time series (Rondonotti et

al., 2007, and Park et al., 2009) since they are applicable to only one time series. Moreover,

this is also an advancement of Park and Kang (2008) since they consider only the inde-

pendent case. This proposed tool provides insight to the differences between the curves by

combining statistical inference with visualization. The method presented here not only keeps

the advantages of the original SiZer tools, but also extends their usefulness to a broader

range of scientific problems.

Our view of SiZer is also expanded from one to two-dimensions. The statistical inference

of image analysis becomes difficult here since overlays are no longer possible. Godtliebsen

et al. (2004) propose a two-dimensional version that replaces the focus on derivatives, or

slopes of a curve, with the partial derivatives, or local slopes of a surface. However, this tool

does not take into account the possible spatial dependence structure. In this dissertation,

a SiZer tool is developed which can achieve this goal. Several multiple testing adjustment

procedures are also considered, as are the performance of various levels of spatial dependence

and bandwidths. This tool will aid statisticians in solving a much wider variety of tangible
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problems, such as functional Magnetic Resonance Imaging (fMRI) data and Satellite image

data.

Chapter 2 reviews SiZer tools, including the original, dependent, and time series SiZer.

Chapter 3 introduces the comparison of two or more regression curves, including the inde-

pendent and dependent cases; simulations when the dependence structure is known and

unknown; real data analysis; and asymptotic results. Chapter 4 covers a two-dimensional

SiZer, which includes review of the independent case, introduction of the dependent case,

and addresses multiple comparisons with a look at several different quantiles in order to com-

pare the control of Type I error rates within the original and proposed SiZer cases. Chapter

5 discusses the ideas that have been proposed and the performance of the tools which are

presented.



Chapter 2

Review of SiZer Tools

In this chapter, three SiZer tools are reviewed: original SiZer, dependent SiZer, and SiZer

for time series.

2.1 Original SiZer

Curve estimation using nonparametric smoothing techniques is an effective tool for

unmasking important structures from noisy data. The usual approach in the statistics

literature, focuses on the “true underlying function,” f(x). Let f̂h(x) be a kernel function

estimator of f(x) with a bandwidth h. A problem in nonparametric kernel estimation is that

E[f̂h(x)] is not necessarily equal to f(x), so there is an inherent bias. This problem does not

appear in classical parametric statistics, where one assumes a “correct” parametric model

for f(x) with parameters that can be unbiasedly estimated.

SiZer shifts the attention away from the “true underlying curve,” f(x), to the “true curves

viewed at different scales of resolution”, which is E[f̂h(x)]. Here, E[f̂h(x)] is a “smoothed

version” of the function f(x) and can be viewed as the theoretical scale-space surface if

f̂h(x) is considered as the empirical scale-space surface. The empirical version here is by

definition unbiased for the theoretical version. For a given function f (that is, underlying

signal), various amounts of signal blurring (at least some is present in any real visual system)

are represented by the convolution f ∗ Kh for different values of h. In fact, this family of

convolutions (family of smooths) becomes the focus of the analysis, with the idea that this

is all of the information that is available from a finite amount of data in the presence of

noise at that resolution. This is very different from the classical statistical approach, where

5
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the focus is f . Confidence intervals are sought for the scale-space version f
′
h(x) ≡ Ef̂ ′h(x).

(For regression, this E is taken to be conditional on a set of predictor variables.) The center

point of such intervals is automatically correct.

The methodology is motivated by “scale-space” ideas from computer vision (Lindeberg,

1994), with the idea that this contains all the information available in the data when working

within that bandwidth. Instead of trying to find the optimum bandwidth for smoothing the

data, a problem in classical statistics, SiZer focuses simultaneously on a wide range of values

of the smoothing parameter, h. Different levels of smoothing may reveal different pieces of

useful information. A large value of the smoothing parameter models “macroscopic or distant

vision”, where one can hope to resolve only large scale features. Similarly, a small value of

the smoothing parameter models “microscopic vision” that can resolve small scale features.

The smoothed version of the target curve is used to figure out which features visible in a

smooth are “really there”.

Local extrema (peaks and valleys) of the curve f̂h(x) for fixed h are determined by the

zero crossings of the derivative [df̂h(x)/dx]. It is important that as one moves from lower

to higher levels of smoothing, these structures should disappear monotonically in the scale-

space surface. The smoothing method should not create “spurious structures” when going

from a finer to a coarser scale. One-dimensional kernels should have the property that they

do not increase the number of local extrema in any signal under convolution. Any structure

that would appear at a higher level of smoothing than was previously viewed would be a

falsely discovered local extremum.

SiZer can be used for both kernel density estimation and regression function estimation.

The kernel density estimator based on univariate data X1, X2, . . . , Xn is

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)

where K is a kernel function, which is usually taken to be a smooth density symmetric

around zero. The fact that the number of peaks in a kernel density estimate based on a

Gaussian kernel K(x) = (1/
√

2π) exp(−x2/2) decreases monotonically with the increase in
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the bandwidth, where the Gaussian kernel is the only kernel to always possess such a property,

(for example, see the proof of Theorem 1 in Section 3.2) makes it especially necessary to use

as the kernel here, because of the desire to not create spurious structures. The regression

problem is based on data (X1, Y1), (X2, Y2), . . . , (Xn, Yn). In the regression case, use can be

made of either the Priestley-Chao (Priestley and Chao, 1972) estimate; the Gasser-Müller

(Gasser and Müller, 1984) estimate; or the local linear estimate (Wand and Jones, 1995),

among others. Among these options SiZer utilizes the local linear smooths since they have

some preferable properties, for example, boundary adjustment (Fan and Gijbels, 1996).

Suppose that the nonparametric regression model is given by

Yi = f(Xi) + σ(Xi)εi, i = 1, . . . , n

where εi’s are independent errors with mean 0 and variance 1 and σ2(x) = V ar(Yi|Xi = x).

In the local linear approach, the regression function is approximated by a series of local

weighted least squares fits. That is, at a particular point x0, the estimates are obtained by

minimizing
n∑

i=1

[Yi − (β0 + β1(x0 −Xi))]
2Kh(x0 −Xi)

over β = (β0, β1)
T , where Kh(·) = K(·/h)/h. Using a Taylor expansion, it is easy to show

that the solution of the regression function above provides estimates of a regression function

and its first derivative at x0 for different bandwidths; that is, β̂0 ≈ fh(x0) = Kh ∗ f(x0), and

β̂1 ≈ f ′h(x0) = K ′
h ∗ f(x0) where * denotes the convolution. More specifically,

β̂ = (XT WX)−1XT WY

where Y = (Y1, . . . , Yn)T , the design matrix of the local linear fit at x0 is

X =




1 (x0 −X1)

1 (x0 −X2)

...
...

1 (x0 −Xn)




,
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and W =diag(Kh(x0 −Xi)). From this solution, the family of smooths parameterized by

h can be constructed, in addition to the confidence intervals that underlie the SiZer anal-

ysis which determine the presence of significant structures. In order to achieve reasonable

computational speed, fast binned implementation of the smoothers and the corresponding

hypothesis tests are used. Binning allows for the repeated calculations of smoothers to become

a rapidly computed discrete convolution when the data used are bin counts on an equally

spaced grid. SiZer does allow for simple binning and linear binning to be done along a grid

of 401 grid points where each value is replaced by the nearest grid point or midpoint of the

bin. The number of grid points is originally chosen by Fan and Marron (1994), where they

find that fewer than 400 grid points often results in distracting granularity in the image and

greater than 400 grid points give negligible improvements in the resolution.

The confidence intervals used in SiZer are of the form

f̂ ′h(x0)± q(h)ŜD(f̂ ′h(x0))

where q(h) is an appropriate Gaussian quantile, which is discussed below. The proposed

estimate of SD is motivated by the fact that the derivative estimator is a weighted sum of

the observed responses, and the conditional (given X1, · · · , Xn) weighted sample variances

are used; that is,

V ar(f̂
′
h(x)|X1, . . . , Xn) = V ar(n−1

n∑
i=1

Wh(x, Xi)Yi|X1, . . . , Xn) =
n∑

i=1

σ2(Xi)(Wh(x,Xi))
2

where

Wh(x, Xi) =
{ŝ2(x; h)(x−Xi)− ŝ1(x; h)}Kh(x−Xi)

ŝ2(x; h)ŝ0(x; h)− ŝ1(x; h)2

and

ŝr(x; h) =
1

n

n∑
i=1

(x−Xi)
rKh(x−Xi).

SiZer visually displays the statistical significance of features over both location x and

scale h, in a SiZer map. As one moves down the y axis from top to bottom, the scale

decreases, that is, the bandwidth, h, gets smaller. As one moves along the x axis from left to
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right, the sequential value of the observation (e.g. time) increases. The SiZer map is either

a gray-scale or a color map, reflecting statistical significance of the slope at (x, h) locations

in scale-space. At each (x, h) location, the curve is blue (color map)/black (gray-scale) if

it is significantly increasing (corresponding confidence interval > 0), red/white where it is

decreasing (corresponding confidence interval < 0), and purple/intermediate gray when the

curve cannot be concluded to be either decreasing or increasing (corresponding confidence

interval contains 0). Finally, if there is not enough information in the data set to make

statements about significance at this scale-space (x, h) location, then no conclusion can be

drawn, so gray/darker shade of gray is used to indicate that the data are sparse. Sparse data

means that the effective sample size in the window is less than 5, where the effective sample

size is defined as

ESS(x, h) =

∑n
i=1 Kh(x−Xi)

Kh(0)
.

The original SiZer uses an approximate quantile that provides simultaneous confidence

limits based on the “number of independent blocks”. This quantile is based on the fact that

when x1 and x2 are sufficiently far apart, so that the kernel windows centered at x1 and x2 are

essentially disjoint, the estimates f̂
′
h(x1) and f̂

′
h(x2) are essentially independent, but when x1

and x2 are close together, the estimates are highly correlated. The simultaneous confidence

limit problem is then approximated by m independent confidence interval problems, where

m reflects the number of independent blocks. Here m is defined as

m = m(h) =
n

avgx∈Dh
ESS(x, h)

where Dh is the set of x locations where the data are dense, Dh = {x : ESS(x, h) ≥ 5}.
This aforementioned quantile is later found to be part of the cause of many spurious

pixels in the SiZer maps, highlighting significant sections where there in fact were none. To

counteract this problem, Hannig and Marron (2006) develop some advanced distributional

theory in order to bring the number of spuriously highlighted pixels down to the desired

α100% of cases. They propose a row-wise and a global adjustment in order to reduce the
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number of false positives to α100% of the row or α100% of the map, respectively. The

row-wise adjustment, they recommend, due to the significant loss of power for the global

adjustment, uses the quantile

q(h) ≡ CR = Φ−1

((
1− α

2

)1/(θg)
)

, (2.1)

where θ, the cluster index, is defined as

θ = 2Φ

(√
3 log g

∆̃

2h

)
− 1.

Here, ∆̃ is the distance between the pixels of the SiZer map, g is the number of pixels on

each row, h is the bandwidth used for the fixed row studied, and Φ is the standard normal

distribution function. Suppose each Ti represents the hypothesis test statistic (modeled as

a random variable) at each pixel location in the SiZer map. If the data contains no signal,

then the probability that there is a spurious color on the jth row is

P [Ti < −CR or Ti > CR for some i = 1, . . . , g]

≤ P [min(T1, · · · , Tg) < −CR] + P [max(T1, · · · , Tg) > CR]

= 2(1− P [max(T1, · · · , Tg) < CR])

≈ 2(1− Φ(CR)θg)

= α

Thus, no more than about α100% of the rows will have spurious colors, as desired.

Figure 2.1 shows examples of SiZer plots. In each panel the top plot shows the original

data points in green and smooths of the data at different bandwidths in blue. The individual

thin blue curves in the top graph display the family of smooths; which are the kernel regres-

sion estimates of the curves viewed at different resolutions or bandwidths. Those smooths

range from nearly raw data (small h, very wiggly thin line), to the limit as the window

width goes to infinity (large h, nearly the simple least squares fit line). The solid black line

is the optimal data-driven bandwidth as chosen by the method of Ruppert et al. (1995).
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Figure 2.1: Family of smooths plots (top panels) and SiZer maps (bottom panels) of some
regression models.
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The bottom plot in each panel is the SiZer plot for that data set, colored according to the

description above. In each set of graphs, the horizontal locations in the graphs are the same

in the top (family of smooths) and bottom (SiZer maps) panels, while the vertical locations

in the SiZer maps correspond to the logarithm of bandwidths of the family of smooths.

Where each curve in the top graph represents a different bandwidth, the range of these dif-

ferent bandwidths are plotted along the log scaled vertical axis in the SiZer maps below. The

white dotted curves in the SiZer maps show effective window widths for each bandwidth,

as intervals representing ± 2 bandwidths (that is, ± 2 standard deviations of the Gaussian

kernel). Changes in color in the SiZer maps on the bottom are determined to occur when

there is a zero crossing of the derivative, marked by a change in the sign of the slope. Again,

the color scheme in the SiZer maps is blue (red) in locations where the curve is determined

to be significantly increasing (decreasing), purple where the curve cannot be concluded to

be either decreasing or increasing, and gray in regions where the data are too sparse to make

statements about significance.

In Figure 2.1 (a), with no signal and normal errors, the SiZer map correctly identifies no

significance (only noise) and marks the entire map as purple. In Figure 2.1 (b), the regression

line shows in the smaller bandwidths as a constant increase. In Figure 2.1 (c), the sine curve

has an estimate with a significantly increasing (blue) slope on the left, changes according to

every turn in the sine curve, and then the slope ends by significantly decreasing (red) on the

right edge of the graph. In Figure 2.1 (d), the sine curve is detected at moderate bandwidths;

at the largest bandwidth, only the overall decrease of the linear trend can be detected.

2.2 Dependent SiZer

The dependent SiZer proposed by Park et al. (2004) compares the observed data with a spe-

cific null model being tested by using an assumed autocovariance function. This approach

flags statistically significant differences between the data and a given null model. It uses a
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goodness of fit test to validate the null hypothesis without specifying an alternative hypoth-

esis.

The original SiZer is not effective at differentiating between deterministic trends and

natural variation by dependence in the time series. By adjusting the statistical inference

with an autocovariance function, the dependent SiZer can account for this type of time

series fluctuation and color the map appropriately. In this way, the dependent SiZer not only

provides a goodness of fit test for an assumed model but also gives visual insight into how

the data differ from the assumed model.

A time series model can be viewed in the regression setting as

Yi = f(i) + εi. (2.2)

But the critical difference is that now the εi’s are no longer independent, and thus

Cov(εi, εj) = γ(|i− j|).

Here, γ is an autocovariance function. In this case, the variance of the local linear estimator

at i0 is given by,

V ar(β̂) = (X ′WX)−1(X ′ΣX)(X ′WX)−1, (2.3)

where, for the assumed correlation structure, Σ is the kernel weighted covariance matrix of

the errors with generic element

σij = γ(|i− j|)Kh(i− i0)Kh(j − i0). (2.4)

When we take a look at time series models, they can contain autoregressive, moving

average terms, or both. In combination, an autoregressive moving average model of

Xt = εt +

p∑
i=1

φiXt−i +

q∑
i=1

θiεt−i

has p autoregressive terms and q moving average terms. Here, φ1, ..., φp are the parameters

for the autoregressive terms, θ1, ..., θq are the parameters for the moving average terms, and

εt are the error terms.
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Figure 2.2: (a) Original SiZer plot of simulated AR(1) errors. The SiZer map in the lower
panel flags some dependence artifacts as significant. (b) Dependent SiZer of simulated AR(1)
errors when φ = 0.5. (c) Dependent SiZer of simulated AR(1) errors when φ = −0.5.

When the ε′is are drawn from AR(1), autoregressive dependency with lag of order 1 and a

medium φ coefficient of 0.5 as an example, a careful look at the original SiZer map in Figure

2.2 (a) reveals some small unexpected colored regions that have mistakenly been identified

as significant. In Figure 2.2 (b), when the dependence structure in the data is accounted for,

almost all of these spuriously highlighted pixels have been corrected. In Figure 2.2 (c), when

φ = −0.5, the SiZer map reflects that the dependence structure has again been correctly

detected with almost no spurious pixels present. This confirms that the dependent SiZer can

successfully conduct a goodness of fit test for AR(1).

Figure 2.3 is given to point out the performance of the SiZer map at varying levels of

dependence. In Figure 2.3 (a) when φ=0.50, the SiZer performs very well and has only a

few highlighted pixels. In Figure 2.3 (b) when φ=0.90, again the SiZer correctly identifies

almost the map in its entirety, with only a few spuriously highlighted pixels. In Figure 2.3

(c) when φ=0.95, the SiZer map does begin to show a weakness in identifying this level
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Figure 2.3: (a) Dependent SiZer of simulated AR(1) errors when φ = 0.50. (b) Dependent
SiZer of simulated AR(1) errors when φ = 0.90. (c) Dependent SiZer of simulated AR(1)
errors when φ = 0.95.

of strong dependence in the map correctly. In the simulation, we use the given coefficient

values, but in real data analysis we should estimate them. See Brockwell and Davis (2002)

for the estimation.

2.3 SiZer for Time Series

Although the dependent SiZer can handle time series data, it assumes that the autocovariance

function is known. Unlike in dependent SiZer, a new SiZer for time series, by Rondonotti et

al. (2007), estimates γ by using the sample autocovariance function of the observed residuals

from a “pilot smooth”.

Let the same regression approach in (2.2) be used for SiZer for time series. The local

linear fit approximates the regression function f(i) and a sensible estimate of the variance is

based on estimating γ by the sample autocovariance function of the observed residuals from
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a pilot smooth, using the pilot bandwidth hp. A pilot bandwidth is used in order to estimate

the function, then when a range of bandwidths is used to also estimate the function, graphs

of the residuals between these two estimates can be obtained. One could take hp = h, which

means that hp varies with h, but this would lead to a confounding of the different notions of

scale and dependence structure. A small hp assumes i.i.d. or weakly correlated errors, and a

large one corresponds to strongly correlated errors. Because h and hp are treated separately,

another dimension needs to be added to the SiZer plot. This is approached through a series

of SiZer plots, 11 total, 4 of which are chosen for viewing based on an Indicator of Residual

component IR, which is a numerical ratio measure between the sum of the squared residuals,

indexed by the pilot bandwidth hp, to the sum of the squared residuals at the maximum

pilot bandwidth. This residual measure represents the different trade-offs available between

trend and dependence. When the pilot bandwidth is large, the dependence component of the

data appears strongly in the residuals as noise and the IR is close to its maximum of 1 and

when the pilot bandwidth is small, the dependence component of the data appears strongly

in the pilot smooth as trend and the IR is close to its minimum of 0.

An example of these SiZer plots is shown in Figure 2.4. This is a generated MA(1),

moving average of order 1 with a medium coefficient of θ = 0.5, time series with signal

f(i) = sin(6πi/n) where n = 401. The first panel in the first row shows the generated

data. The second panel includes the data with pilot smooths. The last panel gives the IR

for the 11 pilot bandwidths; of these, four are chosen to be displayed in the following rows

of the plot. The chosen four always include the second plot, for which IR is close to 0%,

and the plots that correspond to where IR is 25%, 50% and 75%. The smallest bandwidth

is always excluded because it often contains too much noise. Further right on the top of

Figure 2.4 is the bar diagram using this information and in this case, the second, fourth,

sixth, and seventh bandwidths are selected. The series of plots in the second and third rows

represent, respectively, the local linear fits and the residuals corresponding with the selected

bandwidths.
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The first SiZer map (corresponding to hp(2)) shows significant features along the sine

curve. Note that as we move to the other SiZer maps (that is, hp(4), hp(6), and hp(7)), an

increasing amount of correlation appears in the error component, so that fewer features are

significant at every level of resolution. Also, at the fine levels of resolution of the third and

fourth maps there is less perceived useful information in the data, which means more data

sparsity, thus more bottom lines of the SiZer plots are shaded gray. Since MA(1) is weakly

correlated, it is reasonable to interpret the first or second SiZer map.

While this original SiZer for time series is useful, there is still room for improvement.

The estimation of the quantile for the confidence interval relies on a heuristic idea rather

than on theory, and the estimation of the autocovariance function is not accurate in some

situations. Theoretical properties of the proposed method are also not provided. Park et al.

(2009) aim to remedy these problems in a moderately correlated time series. They propose

to estimate the quantile by extreme value theory and the autocovariance function based on

differenced time series in scale-space. Weak convergence of the empirical scale-space surface

to its theoretical counterpart is established in their paper under appropriate regularity con-

ditions. These improvements should also help in reducing the number of spurious features

that are flagged as significant.

In order to improve the quantile estimator, Park et al. (2009) extend the result of Hannig

and Marron (2006). They use the same quantile as in (2.1), but now the cluster index is

θ = 2Φ

(√
I log g

∆̃

h

)
− 1, (2.5)

where

I =

∫
γ(sh/∆) e−s2/4 12−12s2+s4

16
ds∫

γ(sh/∆) e−s2/4
{
1− s2

2

}
ds

.

Park et al. (2009) also propose a new autocovariance estimator to fix spurious features

when a time series has moderate correlation. Since the proposed estimator does not require a

pilot bandwidth, there is no need to select bandwidths to display. The original SiZer for time

series uses residuals obtained from pilot bandwidths to estimate an autocovariance function,
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with weights in a local linear estimate of f . This leads to an autocovariance estimate γ∗ from

the residuals which is not equal to the original γ, which is responsible for leftover spurious

features.

To address this issue Park et al. (2009) do not estimate the covariance from the estimated

residuals ε̂i. Instead, they estimate the covariance structure directly from a (possibly several

times) differenced time series to remove a trend in the data. One of the advantages of this

approach is that the estimator of the covariance no longer depends on the pilot bandwidth.

This is a big advantage because it is not necessary to interpret several SiZer maps at the

same time nor to select some bandwidths for further investigation. Let ei be the differenced

time series, that is, e = Ay where A is the difference matrix, e.g.,

A =




−1 1 0 0 · · · 0 0

0 −1 1 0 · · · 0 0

0 0 −1 1 · · · 0 0

...
...

...
. . . . . .

...
...

0 0 0 0 · · · −1 1




if the first difference is used. A simple calculation shows for all i, j that

Cov(ei, ej) =
n∑

k=1

ai,kaj,kγ(0)+
n−1∑

k=1

(ai,kaj,k+1+ai,k+1aj,k)γ(1)+ ...+(ai,1aj,n +ai,naj,1)γ(n−1).

From this we can set

eiej =
n∑

k=1

ai,kaj,kγ(0) +
n−1∑

k=1

(ai,kaj,k+1 + ai,k+1aj,k)γ(1) + ... + (ai,1aj,n + ai,naj,1)γ(n− 1) + δij,

where Eδij ≈ 0. Thus, there are n2 equations and n variables. Estimating γ by least squares

fails because the above equation does not lead to a stable solution. Therefore, it is necessary

to regularize the problem. First, since γ(0) ≥ |γ(i)| for each i, one must consider only such

solutions. Additionally, Park et al. (2009) regularize the least squares problem by introducing

the penalty λ
∑n−1

i=1 iγ(i)2. The weight i is motivated by the belief that the covariance γ(i)

should be decaying as i increases.
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This leads to the following constrained ridge regression

arg min
γ∈R

{∑
i,j

(
eiej −

n∑

k=1

ai,kaj,kγ(0)−
n−1∑

k=1

(ai,kaj,k+1 + ai,k+1aj,k)γ(1)

− · · · − (ai,1aj,n + ai,naj,1)γ(n− 1)

)2

+ λ

n−1∑
i=1

iγ(i)2

}
,

where R = {γ : γ(0) ≥ |γ(i)|, i = 1, . . . , n−1}. They investigate several choices of λ and find

that λ = 1 works well as long as the time series is weakly to only moderately dependent.
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Figure 2.5: Fewer spurious features appear in the SiZer maps based on Park et al. (2009)
new proposed quantile and autocovariance estimator.

Comparing the plot on the left in Figure 2.5 to the one in Figure 2.4, much improvement

is seen. In Figure 2.4, the SiZer map flags the sine trend fairly well, however, there are some

spurious features that are highlighted where the global downward trend, due to MA(1) with

θ=0.5 dependence, is flagged as significant in the red color that appears at large resolutions.

In Figure 2.5 (a), this dependence structure is correctly accounted for and the spurious pixels

are no longer highlighted. In Figure 2.5 (b), the SiZer map also correctly colors the entire
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map purple with no spuriously highlighted pixels since there is no deterministic trend, just

MA(1) with θ=0.5 errors.



Chapter 3

SiZer for the Comparison of Multiple Regression Curves

In this chapter, an important problem in statistical inference will be addressed, namely

comparing two or more populations. Here, in the spirit of SiZer, the comparison will be done

nonparametrically and using a scale-space approach. The statistical challenge in this problem

is in testing whether there is any statistically significant differences of the population curves.

Section 3.1 reviews Park and Kang (2008) for the comparison of two curves and Section 3.2

provides theoretical justification newly developed in this dissertation. Section 3.3 proposes a

SiZer for the case of two time series and demonstrates the performance of SiZer both when

the dependence structure is known and when it must be estimated. Also newly presented

are two asymptotic properties to support the convergence of the empirical and theoretical

scale-space surfaces. In Section 3.4, a SiZer for the analysis of more than two time series is

newly proposed and its performance is evaluated.

3.1 Review of the Independent Case: Two Regression Curves

Suppose that there are two different samples and n = n1 +n2 independent observations from

the following regression models:

Yij = fi(Xij) + σi(Xij)εij, j = 1, . . . , ni, i = 1, 2, (3.1)

where Xij’s are covariates, the εij’s are independently distributed random errors with mean

0 and variance 1, fi(Xij) = E(Yi|Xij) is the unknown regression function of the ith sample

and σ2
i (Xij) = V ar(Yi|Xij) is the conditional variance function of the ith sample (i = 1, 2).

22
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Park and Kang (2008) expand SiZer to consider the nonparametric comparison of two

regression curves f1 and f2. Within this context, SiZer represents the SIgnificant ZERo

crossing of the differences, since now significance is determined by the difference of two

smoothed functions. Hypothesis tests are for

H0 : f1,h(x0) = f2,h(x0) vs. H1 : f1,h(x0) 6= f2,h(x0)

for a fixed point x0. SiZer visually displays the significance of differences between two regres-

sion functions in families of smooths f̂i,h(x), i = 1, 2 over both location x and scale h, using

a color map. It is based on confidence intervals for f̂1,h(x) − f̂2,h(x). The formula for these

confidence intervals is

f̂1,h(x)− f̂2,h(x)± q(h) · ŜD(f̂1,h(x)− f̂2,h(x)),

where q(h) is an appropriate quantile, using the advanced theory developed by Hannig and

Marron (2006) discussed previously. The quantile is as in (2.1) and here θ is the cluster index

given by

θ = 2Φ

(√
log g

∆̃

2h

)
− 1.

For the estimation of the standard deviation, f̂i,h(x) can be written as

f̂i,h(x) =
1

ni

ni∑
j=1

Wi,h(x,Xij)Yij

where

Wi,h(x,Xij) =
{ŝ2(x; h)− ŝ1(x; h)(x−Xij)}Kh(x−Xij)

ŝ2(x; h)ŝ0(x; h)− ŝ1(x; h)2

and

ŝr(x; h) =
1

ni

ni∑
j=1

(x−Xij)
rKh(x−Xij).

Then,

V ar(f̂1,h(x)− f̂2,h(x)) = V ar(f̂1,h(x)) + V ar(f̂2,h(x)),

and

V ar(f̂i,h(x)) =
1

n2
i

ni∑
j=1

σ2
i (Xij)(Wi,h(x,Xij))

2.
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To estimate σ2(x), we use a simple smooth of the residuals; for example,

σ̂2(x) =

∑n
i=1 ê2

i Kh(x−Xi)∑n
i=1 Kh(x−Xi)

,

where êi = Yi − f̂h(Xi).

To demonstrate this SiZer for two regression curves, we present the following three exam-

ples. In these examples X1 and X2 are generated from a U(0, 1) distribution and we take

n1 = 1000 and n2 = 2000. In Figure 3.1, graphs (a) through (f) show the original data series

of the three examples. The first example, in Figures 3.1 (a) and (d), has the same constant

mean 0 with independent N(0, 1) errors:

Yij = εij, j = 1, ..., ni, i = 1, 2,

where εij ∼ N(0, 1) for i = 1, 2. In the top panel of (g), the thin curves display the family of

smooths, which are the differences of the two local linear smooths, f̂1,h(x) − f̂2,h(x). These

differences are located around 0 because both samples have zero constant functions and the

same noise distribution. The SiZer map in the lower panel correctly shows no significant

difference and displays the solid color of purple. In the second example, Figures 3.1 (b) and

(e), one sample has a mean of 2 and the other has mean 0 with both having error distribution

N(0, 1):

Y1j = 2 + ε1j, and Y2j = ε2j

where again, εij ∼ N(0, 1) for i = 1, 2. The upper panel of plot (h) shows the difference of two

smooths is approximately 2, which corresponds to the difference of the two true regression

functions. The SiZer map shows positive differences, colored blue, across almost all scales

since the mean of the first sample is greater than that of the second sample by 2. In the

third example, the regression functions are:

Y1j = sin(6πX1j) + ε1j and Y2j = ε2j

where εij ∼ N(0, 0.25) for i = 1, 2. The difference of the two smooths clearly reveals the

sine curves in the top panel of Figures 3.1 (c) and (f), and the SiZer map in plot (i) shows
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Figure 3.1: Original data from the first example ((a) and (d)), the second ((b) and (e)), and
the third ((c) and (f)). SiZer plots for comparing two regression curves. The two samples
are drawn from (g) normal errors with the same mean ((a) and (d)), (h) normal errors with
different means ((b) and (e)), and (i) normal errors with a sine curve versus a constant mean
((c) and (f)).
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positive (blue) and negative (red) differences along the sine curve. These graphs show that

SiZer can successfully detect differences between two regression curves in various settings.
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Figure 3.2: SiZer plots for comparing two regression curves when the errors have very different
variances. The two samples are drawn from (a) normal errors with the same mean, (b) normal
errors with different means, and (c) normal errors with a sine curve versus a constant mean.

Figure 3.2 demonstrates the performance of the SiZer with the same regression curves

viewed in Figure 3.1, now with very different error variances. In Figure 3.2 (a), there are

the same constant means, but now with ε1j ∼ N(0, 1) and ε2j ∼ N(0, 16). The SiZer map

again correctly identifies no significant difference as in Figure 3.1 (a). In Figure 3.2 (b),

one sample has a mean of 2 and the other has a mean of 0, now with ε1j ∼ N(0, 1) and

ε2j ∼ N(0, 16). The SiZer map again shows positive differences, colored blue, across almost

all scales denoting only the greater mean of the first sample and not the noise of the second

sample. In Figure 3.2 (c), one sample has a sine curve and the other has a constant mean of

0, now with ε1j ∼ N(0, 0.25) and ε2j ∼ N(0, 16). The SiZer map displays its ability to detect

the trend and not the noise and shows the alternating color scheme along the sine curve.
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Figure 3.3: The third example with various t distributions.

In order to see the effect of non-normal errors a redisplay of the third example with the

sine curve trend is given now with various t distributions. In Figure 3.3 (a), although we use

the t distributions with the degrees of freedom 3 and 4, SiZer map flags the sine curve as

significant, which demonstrates robustness of the tool. However, as we decrease the degrees of

freedom (equivalently, as the tail parts of the distribution get thicker), it is more challenging

for SiZer to capture the trend as can be seen in Figures 3.3 (b) and (c).

3.2 Asymptotic Properties: Independent Case

This section discusses the development of the theoretical justification for the method pro-

posed by Park and Kang (2008) described in 3.1. One of the main focuses in nonparametric

curve estimation is that of structures, such as peaks and valleys. When performing this type of

estimation, it is important that as one goes from lower to higher levels of smoothing within

the scale-space surface, these structures should disappear monotonically. The smoothing

method should not create spurious structures when going from a finer to a coarser scale.
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There must be a “causality” for the creation of extrema, and new structures should not be

produced with additional smoothing. In what follows, it is assumed that x varies in a subin-

terval J of (−∞,∞) and h varies in a subinterval H of (0,∞). The data are binned to give

new data values (vj, Ỹij) where the vj’s (j = 1, . . . , m) are the midpoints of each bin and the

Ỹij’s are the bin averages. Note that one can choose between the simple binning and linear

binning (Fan and Marron, 1994) in running a SiZer code, but we use the simple binning in

the proof for simplicity. Using the binned values,

ĝh(x) ≡ f̂1,h(x)− f̂2,h(x) =
1

mh

m∑
j=1

Ỹ1jK

(
x− vj

h

)
− 1

mh

m∑
j=1

Ỹ2jK

(
x− vj

h

)

=
1

mh

m∑
j=1

(Ỹ1j − Ỹ2j)K

(
x− vj

h

)

=
1

mh

m∑
j=1

ZjK

(
x− vj

h

)

where Zj = Ỹ1j − Ỹ2j and K(x) = (1/
√

2π) exp(−x2/2). Silverman (1981) proves that con-

volutions with Gaussian kernels have the number of their zero crossings of the derivative

smooth is always a decreasing function of h. Presented here is a theorem parallel to that of

Silverman’s (1981) for the difference between two nonparametric regression problems.

Theorem 1. Assume that the scale-space surface f̂i,h(x) arises as a local linear regression

problem, ĝh(x) using Ỹij’s, binned values, and a Gaussian kernel K. Then for each fixed

h ∈ H and i = 1, 2, the number of zero crossings of ĝh(x) will be a decreasing and right

continuous function of h. Furthermore, the same result holds for E{ĝh(x)} of the theoretical

scale-space surface.

Proof.

Let us denote the theoretical scale-space surfaces E[ĝh(x)] by gh(x).

Note that for the Gaussian kernel K(x) = (1/
√

2π) exp(−x2/2),

[ĝh1(x)] ∗K(x/h2) = ĝ√
h2
1+h2

2
(x) and [gh1(x)] ∗K(x/h2) = g√

h2
1+h2

2
(x)
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for all h1, h2 > 0. Here * denotes the usual convolution, and note that the fact that Kh1 ∗
Kh2(x) = K√

h2
1+h2

2
(x) is used. Now it follows from total positivity of the Gaussian kernel

and the variation diminishing property of functions generated by convolutions with totally

positive kernels [see Schoenberg (1950), Karlin (1968)] that the number of sign changes in

ĝh(x) will be a monotonically decreasing function of h. Suppose next that ĝh0(x) has k ≥ 0

sign changes for some fixed h0 > 0. Then arguing as in Silverman (1981), it is easy to see

using the continuity of ĝh(x) as a function of h and x that there exists ε > 0 such that for

all h ∈ [h0, h0 + ε), ĝh(x) will have at least k sign changes. Hence the monotonic decrease in

the number of sign changes as h increases implies that the number of sign changes in ĝh(x)

will be exactly equal to k for all h ∈ [h0, h0 + ε) . An identical argument can be given for

the number of sign changes in gh(x). This completes the proof of right continuity.

We now consider the statistical convergence of empirical scale-space surfaces to their the-

oretical counterparts. Consider regression problems based on independent (binned) observa-

tions (v1, Ỹi1), (v2, Ỹi2), · · · , (vm, ˜Yim) and assume that f̂i,h(x) has the form

m−1
∑m

i=1 ỸiWm(h, x, vi), where Wm is a smooth weight function that arises from the kernel

function in usual kernel regression or kernel weighted local polynomial regression with band-

width h. Thus, ĝh(x) = m−1
∑m

j=1 ZjWm(h, x, vj) where Zj = Ỹ1j − Ỹ2j, and Eĝh(x) =

m−1
∑m

j=1 E(Zj)Wm(h, x, vj).

The following Theorem yields the weak convergence of the empirical scale-space surfaces

under the i.i.d. setting. It is worth noting that the conditions assumed on the weight function

in Theorem 2 are satisfied for many standard kernel regression estimates and kernel weighted

local polynomial estimates for suitable distributions (X,Y ).

Theorem 2. Assume that

E{|Zj − E(Zj)|2+ρ} < ∞, j = 1, . . . , m
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for some ρ > 0 and I and H are compact subintervals of (−∞,∞) and (0,∞) respectively.

Assume that as m →∞,

m−1

m∑
j=1

V ar(Zj)Wm(h1, x1, vj)Wm(h2, x2, vj)

converges in probability to a covariance function cov(h1, x1, h2, x2) for all (h1, x1) and (h2, x2)

∈ H × I, and

m−(1+ρ/2){ max
1≤j≤m

|Wm(h, x, vj)|ρ}
m∑

j=1

{Wm(h, x, vj)}2 → 0

in probability for all (h, x) ∈ H × I. Also, assume that as h varies in H and x varies in I,

V ar(Zj){Wm(h, x, vj)}2 will be uniformly dominated by a positive function M(vj) such that

supj≥1 M(vj) < ∞. Then as m →∞, the 2-parameter stochastic process

m1/2[ĝh(x)− Eĝh(x)]

with (h, x) ∈ H × I converges weakly to a Gaussian process on H × I with zero mean and

covariance function cov(h1, x1, h2, x2).

Proof.

First fix (h1, x1), (h2, x2), · · · , (hl, xl) ∈ H × I and t1, t2, · · · , tl ∈ (−∞,∞). If we let

m1/2

l∑
j=1

tj[ĝhj
(vj)− Eĝhj

(vj)] = Vm

which has zero mean, and variance

m−1

l∑
j=1

l∑

k=1

tjtk

m∑
p=1

V ar(Zp)Wm(h1, xj, vp)Wm(h2, xk, vp),

which converges in probability to
∑l

j=1

∑l
k=1 tjtkcov(hj, xj, hk, xk) as m →∞. Also, uniform

boundedness of the (2+ρ)-th central moment of Zp and the condition that

m−(1+ρ/2){ max
1≤j≤m

|Wm(h, x, vj)|ρ
m∑

j=1

{Wm(h, x, vj)}2 → 0
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in probability as m → ∞ together imply that Lyapunov’s condition holds for Vm, and

consequently its limiting distribution must be normal. Finally, it follows using the Cramer-

Wold device that as m →∞, the joint limiting distribution of

m1/2[ĝhi
(xi)− Eĝhi

(xi)] = Um(hi, xi)

for 1 ≤ i ≤ l is multivariate normal with zero mean and cov(hj, xj, hk, xk) as the (j, k)-th

entry of the limiting variance covariance matrix for 1 ≤ j, k ≤ l.

Next, fix h1 < h2 in H and x1 < x2 in I. Then the last condition assumed in the statement

of the theorem implies that

E{Um(h2, x2)− Um(h2, x1)− Um(h1, x2) + Um(h1, x1)}2

= m−2

m∑
j=1

V ar(Zj){Wm(h2, x2, vj)−Wm(h2, x1, vj)−Wm(h1, x2, vj) + Wm(h1, x1, vj)}2

≤ C2(h2 − h1)
2(x2 − x1)

2{m−1

m∑
j=1

M(vj)} ≤ C3(h2 − h1)
2(x2 − x1)

2

for some constants C2 and C3 > 0.

It now follows [see Bickel and Wichura (1971)] that the sequence of processes

m1/2[ĝh(x)− Eĝh(x)]

on H × I will have the tightness property, and consequently the assertion in the theorem

follows.

The following theorem involves the difference between the behavior of the empirical and

the theoretical scale-space surfaces under the supremum norm on H × I and the uniform

convergence of the empirical version to the theoretical one as the sample size grows. One

more condition is needed:

Condition A. In the setup of Theorem 2, as h varies in H and x varies in I, both

V ar(Zj){Wm(h1, x1, vj)}2 and V ar(Zj){Wm(h2, x2, vj)}2 are uniformly dominated by a pos-

itive function M∗(vj) such that supj≥1 M∗(vj) < ∞, which will provide bounds for the

variance of Zj.
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Theorem 3. Assume Condition A as well as the setup of Theorem 2. Then as m →∞,

sup
x∈I,h∈H

m1/2|ĝh(x)− E{ĝh(x)}|

converges weakly to a random variable that has the same distribution as that of

supx∈I,h∈H |Z(h, x)|. Here Z(h, x) with h ∈ H and x ∈ I is a Gaussian process with zero

mean and covariance function cov(h1, x1, h2, x2) as defined in Theorem 2 so that

Pr{Z(h, x) is continuous for all (h, x) ∈ H × I} = 1,

and consequently Pr{supx∈I,h∈H |Z(h, x)| < ∞}=1. It immediately follows from the pre-

ceding theorem that we have

sup
x∈I,h∈H

|ĝh(x)− E{ĝh(x)}| = Op(m
−1/2) as m →∞.

Proof. For (h1, x1) and (h2, x2) in H × I,

E{Z(h2, x2)− Z(h1, x1)}2 = cov(h2, x2, h2, x2) + cov(h1, x1, h1, x1)− 2cov(h2, x2, h1, x1)

≤ C4(h2 − h1)
2 + (x2 − x1)

2

for some constant C4 > 0. This follows straight away from the fact that

E{Um(h2, x2)− Um(h1, x1)}2 ≤ C4(h2 − h1)
2 + (x2 − x1)

2

for all m≥ 1 with some appropriate choice of C4 if Condition A holds. Here Um is as in the

proof of Theorem 2. Next, consider the compact metric space H × I metrized by the pseudo

metric

d{(h2, x2), (h1, x1)} = [E{Z(h2, x2)− Z(h1, x1)}2]1/2,

which the canonical metric associated with the Gaussian process Z(h, x). Let N(ε) be the

smallest number of closed d-balls with radius ε > 0 in this metric space that are required to

cover H × I. So, log{N(ε)} is the usual metric entropy of H × I under the metric d. Note

that for any ε > diameter(H×I), N(ε) = 1 and N(ε) = O(ε−2) for 0 < ε ≤ diameter(H×I).

Hence, using an analogous argument in Adler (1990)
∫∞

0
[log{N(ε)}]1/2dε < ∞ is necessary
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so that the size of the metric space does not explode. This ensures the continuity of the

sample paths of the process V (h, x) as well as the finiteness of supx∈I,h∈H |V (h, x)| with

probability one [see Adler (1990, pp. 104-107)]. The proof of the theorem is now complete in

view of the weak convergence of the centered and normalized empirical scale-space process

to the Gaussian process V (h, x) on H × I established in Theorem 2.

3.3 SiZer for the Comparison of Two Time Series

This section addresses the problem of comparing two populations to the case where errors

are not independent. Unlike in previous work, we do not assume the independence structure.

Here, the goal is to discover meaningful structures in two populations by comparing two time

series based on the differences of two kernel estimates.

A statistical challenge in this problem is testing whether there are any statistically signif-

icant differences between the trends of these time series. Suppose that we have two regularly

spaced time series with the same length, and thus there are 2n observations from the following

regression models:

Yij = fi(j) + εij, j = 1, . . . , n, i = 1, 2, (3.2)

where the εij’s are dependent random errors with mean 0, variance σ2, Cov(εij, εik) = γi(|j−
k|) for all i=1, 2, j, k = 1, . . . , n, fi is the unknown regression function of the ith sample

(i=1,2). It is assumed that ε1j and ε2j are independent of each other.

The main concern here is to develop a graphical device for testing the hypothesis of the

equality of mean regression functions:

H0 : f1(x) = f2(x)

when the errors are weakly correlated.

Again, confidence intervals for f1,h(x)− f2,h(x) are of the form

f̂1,h(x)− f̂2,h(x)± q(h) · ŜD(f̂1,h(x)− f̂2,h(x)), (3.3)
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where q(h) is a quantile which, for significance level α, defined as

q(h) = Φ−1

((
1− α

2

)1/(θg)
)

, (3.4)

where Φ is the standard normal distribution function and g is the number of bins. The

“cluster index” θ is given by

θ = 2Φ

(√
I log g

∆̃

h

)
− 1

where now

I =

∫
(γ1(sh/∆) + 2−s2

8
γ2(sh/∆))e−s2/4ds∫

(γ1(sh/∆) + γ2(sh/∆))e−s2/4ds
. (3.5)

The design points in time series are equidistant, and thus we can assume that without loss

of generality that the ith point is in the location i∆ for some ∆ > 0. Here, ∆ denotes the

distance between design points. Let ∆̃ denote the distance between the pixels of the SiZer

map and p = ∆̃/∆ denote the number of data points per SiZer column. Also, γ1 and γ2 are

the autocovariance functions of the first and second time series, respectively. This quantile

(3.4) is used in our implementation and it can be derived as follows.

SiZer uses the local linear smoother defined by

n∑
j=1

{Yij − (βi0 + βi1(x0 − j))}2Kh(x0 − j).

To color the pixels SiZer checks whether the difference of the estimates of the two regression

functions

β̂i0 = c−1
i

[
n∑

j=1

Kh(x− j)Yij

][
n∑

j=1

(x− j)2 Kh(x− j)

]

− c−1
i

[
n∑

j=1

(x− j) Kh(x− j)

][
n∑

j=1

(x− j)Kh(x− j) Yij

]
, (3.6)

ci =

[
n∑

j=1

Kh(x− j)

][
n∑

j=1

(x− j)2 Kh(x− j)

]
−

[
n∑

j=1

(x− j) Kh(x− j)

]2

,

for i = 1, 2, is significantly different from 0. Suppose that T1, ..., Tg are the test statistics in

the SiZer map. Note that

Tk ≈
n∑

q=1

wh
kp−q(Y1,q − Y2,q).
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The form of the wh
kp−q is given in the first term of (3.6). Note that wh

kp−q is proportional to

Kh/∆(kp−q) and thus the weights wh
q are proportional to the Gaussian kernel with standard

deviation h/∆.

Let γ1 be the autocovariance function of the first time series and γ2 be the autocovariance

function of the second. The full joint distribution of T1, ..., Tg also depends on the correlation

between the Tk’s. This correlation is approximated by

ρj−i =corr(Ti, Tj)

=

∑
q

∑
r wh

ip−qw
h
jp−r(γ1(q − r) + γ2(q − r))∑

q

∑
r wh

q wh
r (γ1(q − r) + γ2(q − r))

≈
∫∫

Kh/∆(ip− x) Kh/∆(jp− y) (γ1(x− y) + γ2(x− y)) dxdy∫∫
Kh/∆(x) Kh/∆(y)(γ1(x− y) + γ2(x− y)) dxdy

=

∫
(γ1(s) + γ2(s))

∫
Kh/∆(ip− s− y) Kh/∆(jp− y) dy ds∫

(γ1(s) + γ2(s))
∫

Kh/∆(s + y) Kh/∆(y) dy ds

=

∫
(γ1(s) + γ2(s)) e−(ip−jp−s)2∆2/(4h2) ds∫

(γ1(s) + γ2(s))e−s2∆2/(4h2) ds

=

∫
(γ1(s) + γ2(s)) e−[(i−j)∆̃−s∆]2/(4h2) ds∫

(γ1(s) + γ2(s))e−s2∆2/(4h2) ds
.

Here the third line follows by replacing the sums by integral approximations and the last

step follows by observing that p∆ = ∆̃. Thus

ρj,g =

∫
(γ1(s) + γ2(s)) e−(Cj/

√
log g−s)2/4 ds∫

(γ1(s) + γ2(s)) e−s2/4 ds
.

Finally, since γi(s) is an even function, we get by dominated convergence theorem

lim
g→∞

log g(1− ρk,g) = k2C2
∫

(γ1(s) + γ2(s))
2−s2

8
e−s2/4 ds∫

(γ1(s) + γ2(s)) e−s2/4 ds
.

Therefore just as in Hannig and Marron (2006), we conclude that

P

[
max

i=1,...,g
Ti ≤ x

]
≈ Φ(x)θg,

where the cluster index

θ = 2Φ

(√
I log g

∆̃

h

)
− 1



36

and

I =

∫
(γ1(sh/∆) + γ2(sh/∆)) 2−s2

8
e−s2/4 ds∫

(γ1(sh/∆) + γ2(sh/∆)) e−s2/4 ds
.

The local linear estimate f̂i,h(x) can be written as

f̂i,h(x) =
1

n

n∑
j=1

wn(h, x, j)Yij. (3.7)

where

wn(h, x, j) =
{ŝ2(x; h)− ŝ1(x; h)(x− j)}Kh(x− j)

ŝ2(x; h)ŝ0(x; h)− ŝ1(x; h)2

and

ŝr(x; h) =
1

n

n∑
j=1

(x− j)rKh(x− j).

Then, by independence

V ar(f̂1,h(x)− f̂2,h(x)) = V ar(f̂1,h(x)) + V ar(f̂2,h(x)),

and

V ar(f̂i,h(x)) =
σ2

i

n2

n∑
j=1

(wn(h, x, j))2 +
2

n2

∑∑

j<k

wn(h, x, j)wn(h, x, k)γi(k − j).

In order to construct the confidence interval in (3.3) the estimate of the autocovariance

function γi in (3.5) is needed. These γi’s are estimated as explained previously in Section

2.3.

3.3.1 Two time series: Simulation

The first part of this subsection illustrates simulated examples when the dependence struc-

ture is known and the second part deals with cases when the dependence structure is unknown

for two time series. Real data analysis on two time series is done in the third part of this

subsection, and the final part of this subsection contains two asymptotic results.
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Two time series: Simulation when the dependence structure is known

Here we explore the performance of SiZer when the autocovariance function is given in

advance. This is an extension of Park et al. (2004) for two time series, and it is particularly

useful when the dependence structure is known from previous studies.

In these simulations various combinations of error structures and mean regression func-

tions are considered. Six simulated examples are provided and each example has sample size

n = 100. The first example has the same constant mean 0 for both samples:

(i) Yij = εij, j = 1, . . . , n, i = 1, 2.

For the second example, one time series has a sine curve as a regression function and the

other has mean 0:

(ii) Y1j = 4 sin(6πj/n) + ε1j, and Y2j = ε2j.

The third example studies two different regression functions:

(iii) Y1j = 4 sin(6πj/n) + 3j/n + ε1j, and Y2j = 4 sin(6πj/n) + ε2j.

The fourth example has constant mean of 2 in the first model and constant mean of 0 in the

second model:

(iv) Y1j = 2 + ε1j, and Y2j = ε2j.

For the fifth example, one time series has an exponential trend as a regression function and

the other has mean 0:

(v) Y1j = exp(j/n) + ε1j, and Y2j = ε2j.

Finally, the sixth example studies two different regression functions:

(vi) Y1j = 4 sin(6πj/n) + exp(j/n) + ε1j, and Y2j = exp(j/n) + ε2j.

Three combinations of error structures are considered, MA(1) versus AR(1), MA(1) versus

MA(5), and AR(1) versus MA(5) for situations where there are two short-term correlated
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datasets or where one dataset is correlated long-term. The φ for AR(1) is 0.5, the θ for

MA(1) is 0.5, and the θs for MA(5) are 0.9, 0.8, 0.7, 0.6, and 0.5. The correct SiZer plots

would show no significant difference for the first example, a sine trend for the second, and

a linear trend for the third. The fourth example would have a linear trend for a constant

value, an exponential trend for the fifth, and a sine trend for the sixth.
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Figure 3.4: Comparison of two time series with MA(1) and AR(1) errors. Autocovariance
functions are given in advance.

Figure 3.4 displays SiZer plots with MA(1) and AR(1) for the first three examples. In

the top two panels, the green dots are actual data points and the thin colored curves display

the family of smooths; that is, f̂i,h(x) for i = 1, 2 and where h is the bandwidth. The SiZer

maps in the third panels report the equality test of the two time series by investigating the

confidence intervals in (3.3) at each (x, h). The horizontal locations in the SiZer map are the

same x values as in the top panels, and the vertical locations in the SiZer plot correspond to
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the logarithm of bandwidths of the family of smooths shown as thin colored curves in the top

panels. The SiZer map in Figure 3.4 (a) shows only purple, meaning no significant difference,

as expected. When the two regression curves are different, the SiZer maps correctly capture

the differences: the SiZer map in Figure 3.4 (b) shows positive (blue) and negative (red)

differences along the sine curve, but also has some spurious pixels present; and the map in

Figure 3.4 (c) flags a rough linear trend as significant. From these three simulations, SiZer

has shown that for the comparison of two time series, it performs well in its ability to detect

significant trends through assumed dependence structure for weakly correlated data.
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Figure 3.5: Additional comparisons of two time series with MA(1) and AR(1) errors. Auto-
covariance functions are given in advance.

Figure 3.5 displays SiZer plots with the weak dependence structure of MA(1) and AR(1)

for the last three examples. SiZer flags a roughly constant trend for Figure 3.5 (a) and thus

the entire top of the map is blue to denote the positive difference between the constant and
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the mean of 0. In Figure 3.5 (b) the SiZer map also catches the important trend given by an

exponential curve, and although it is not quite as clearly delineated as is desired, because

the exponential trend at the beginning is indistinguishable from the natural variation, the

presence of this difference is marked clearly. In Figure 3.5 (c), the SiZer plot detects a strong

difference that is attributed to the sine trend from the upper family plot, with only a few

spurious pixels in the upper left hand corner.
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Figure 3.6: Comparison of two time series with MA(1) and MA(5) errors. Autocovariance
functions are given in advance.

Figure 3.6 displays SiZer plots with MA(1) and MA(5) for the first three examples. The

results are similar to Figure 3.4, with (a) being correctly marked completely purple and (b)

having the sine trend marked even more clearly here with no spurious pixels. In Figure 3.6

(c), once again, a general linear trend is detected, with a couple of spurious pixels near the

center of the picture. Thus, SiZer performs reasonably well for cases in which either of the
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time series has a short or a long-term correlation, but it does need some improvement in

clearly delineating the linear trend as the significant signal. Such improvement may include a

more accurate estimation of an autocovariance function for the case of long-term correlation.

1 50 100
−3

6

Family Plot 1

1 50 100
−3

6

Family Plot 2

l
o

g
1

0
(
h

)

SiZer Plot

1 50 100

1 50 100
−3

4

Family Plot 1

1 50 100
−3

4

Family Plot 2

l
o

g
1

0
(
h

)

SiZer Plot

1 50 100

1 50 100
−4

7
Family Plot 1

1 50 100
−4

7
Family Plot 2

l
o

g
1

0
(
h

)

SiZer Plot

1 50 100

(a) constant vs. zero mean (b) expon vs. zero mean (c) sine plus expon vs. expon

Figure 3.7: Additional comparisons of two time series with MA(1) and MA(5) errors. Auto-
covariance functions are given in advance.

Figure 3.7 displays SiZer plots with MA(1) and MA(5) for the last three trend examples.

Figure 3.7 (a) is correctly colored blue in the top portion of the SiZer map for the presence

of the constant trend and Figure 3.7 (b) also shows that the rough exponential trend from

the first regression model is identified by the SiZer map. In Figure 3.7 (c), the SiZer map

captures all of the changes in the sine trend.

Figure 3.8 displays the first three SiZer plots that have AR(1) and MA(5) as their corre-

lation structure. Even though the bottom family plot for (a) is very wiggly due to the MA(5)

error, the SiZer map can correctly identify this as error structure and not a significant signal
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Figure 3.8: Comparison of two time series with AR(1) and MA(5) errors. Autocovariance
functions are given in advance.
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or trend. The SiZer map shows all purple as desired. In Figure 3.8 (b), it can again detect the

difference between changes in the plot that should be attributed to the sine curve and that

which is MA(5) error structure and highlights the sine structure in the bottom plot. There

are a few spurious pixels in the top right hand corner that are undesirable, but all changes in

the sine trend are correctly detected with no gaps in the signal differences. Finally, in Figure

3.8 (c), a rough linear trend is correctly mapped out in the bottom plot as the difference

between the top plot which has a sine and a linear trend and the plot in the middle, which

is a sine trend only.
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Figure 3.9: Additional comparisons of two time series with AR(1) and MA(5) errors. Auto-
covariance functions are given in advance.

In Figure 3.9 (a), the positive difference from the constant trend is modeled roughly by

the blue portion in the top of the SiZer map. In Figure 3.9 (b), the exponential trend is

reflected accurately by the upper positive portion highlighted blue in the SiZer map. Finally,
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in Figure 3.9 (c), SiZer does an accurate job in finding the difference between the two family

plots’ regression functions with every change over in the sine trend detected and no spurious

pixels highlighted.

These simulated examples have shown that SiZer is able to correctly differentiate between

the actual signal and the dependence structure in the difference between two time series.

Although there is still room for improvement when it comes to the clear changeover points

in the trends which are close to linear, the SiZer maps do correctly detect various types of

regression structure, even when both weak and strong dependence structure are present, and

correctly identifies only true trend as significant.

Two time series: Simulation when the dependence structure is unknown

In the real world, one can rarely assume the true autocovariance structure in advance. There-

fore, the performance of our new approach will be examined with the nonparametrically

estimated autocovariance functions in Section 2.3 by repeating the simulation studies in the

first part of Section 3.3.1. The results will be compared with those in the first part of Section

3.3.1 in order to assess the performance of the autocovariance function estimator, which does

not require knowledge of the order of the autocovariance structure.

Figure 3.10 displays SiZer plots with MA(1) and AR(1) for the first three examples. In

Figure 3.10 (a), there is no signal in either of the family plots and thus only the MA(1) and

AR(1) autocorrelations are present. As one can see from the plots, similar to Figure 3.4,

SiZer flags no trend for Figure 3.10 (a) and thus the entire map is purple. In Figure 3.10

(b) the SiZer map also catches all of the important trends given in a sine curve although it

is not quite as clearly partitioned as is desired, with some spurious pixels in the upper left

hand corner. Figure 3.10 (c), is very similar to Figure 3.4 which has the true autocovariance

function, and it does detect a strong difference in the upper portion of the map that is

attributed to the linear trend.
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Figure 3.10: Comparison of two time series with MA(1) and AR(1). Autocovariance functions
are estimated from the time series.
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Figure 3.11: Additional comparisons of two time series with MA(1) and AR(1) errors. Auto-
covariance functions are estimated from the time series.
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Figure 3.11 displays SiZer plots with MA(1) and AR(1) for the last three examples. As

one can see from the plots, similar to Figure 3.5, SiZer flags a roughly constant trend for

Figure 3.11 (a) and thus the entire top of the map is blue to denote the positive difference

between the constant and the mean of 0. In Figure 3.11 (b) the SiZer map also catches

the important trend given by an exponential curve, and although it is not quite as clearly

delineated as is desired, the presence of this difference is marked clearly. Figure 3.11 (c) is

very similar to Figure 3.5 which has the true autocovariance function, and it does again

detect a strong difference in the portion of the map that is attributed to the sine trend.
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Figure 3.12: Comparison of two time series with MA(1) and MA(5). Autocovariance functions
are estimated from the time series.

Figure 3.12 displays SiZer plots with MA(1) and MA(5) for the same first three trend

examples. Here again, almost the same conclusions can be made as from the plots in Figure

3.6. Figure 3.12 (a), is correctly colored purple for the presence of no trend. In Figure 3.12
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(b), the SiZer map captures all of the changes in the sine trend; the only misdiagnoses are in

the top right hand corner where there are some spurious pixels. Figure 3.12 (c) also shows

again that the positive linear trend from the first plot is identified by the SiZer map.
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Figure 3.13: Additional comparisons of two time series with MA(1) and MA(5) errors. Auto-
covariance functions are estimated from the time series.

Figure 3.13 displays SiZer plots with MA(1) and MA(5) for the last three trend examples.

Here again, almost the same conclusions can be made as from the plots in Figure 3.11. Figure

3.13 (a) is correctly colored blue in the top portion of the SiZer map for the presence of the

constant trend and in Figure 3.13 (b), also shows again that the rough exponential trend

from the first plot is identified by the SiZer map. In Figure 3.13 (c), the SiZer map captures

all of the changes in the sine trend and the only misdiagnoses are in the top hand corners

where there are some spurious pixels.
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Figure 3.14: Comparison of two time series with AR(1) and MA(5). Autocovariance functions
are estimated from the time series.
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Figure 3.14 presents plots that have AR(1) and MA(5) for the same first three trends.

Here, it can be seen that Figure 3.14 (a) again, as in Figure 3.8 (a), correctly detects the fact

that there is no signal in either plot, and colors the SiZer map completely purple. In Figure

(b), it catches all changes within the sine trend very cleanly. For Figure 3.14 (c), like Figure

3.8 (c), it highlights the appropriate linear trend after the difference between the signals of

the two plots is taken. With these three figures it can be seen that SiZer succeeds in capturing

the important differences in two correlated time series while estimating the autocovariance

function. In addition, it also does a very fair job of highlighting the differences in trend

whether both time series have weak correlation or if one of the two time series has a stronger

correlation.
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Figure 3.15: Additional comparisons of two time series with AR(1) and MA(5) errors. Auto-
covariance functions are estimated from the time series.



51

From Figure 3.15 (a), the positive difference from the constant trend is modeled roughly

by the blue portion in the top of the SiZer map. From the first plot in Figure 3.15 (b), the

exponential trend is reflected accurately by the upper positive portion highlighted blue in

the SiZer map below. Finally, in Figure 3.15 (c), SiZer does an excellent job in estimating

the difference between the two family plots’ regression functions with a sine trend and only

a few spurious pixels. These simulated examples have shown that while there may still be

some need for improvement when it comes to cleanly delineating the difference between two

time series, the SiZer maps do correctly detect various types of dependence structure and

correctly identify only true trend as significant.

3.3.2 Two time series: Real data analysis

This subsection is devoted to illustrating our procedure applied to two time series with real

data.

Example 1. This first example involves the weekly yields of the 3-month, 6-month, and 12-

month Treasury bills. The data set was taken from July 1959 to August 2001 and can be

seen in sources such as Fan and Yao (2003). In order to reduce computational burden in

estimating the autocovariance function, we have taken the average of every 2 consecutive

months and used that as our data, causing no change in trend. The almost identical structure

can be seen in the family plots of all 3 time periods. In Figures 3.16 (a), (b), and (c) the

almost identical trend of the yields is accurately detected by the SiZer maps, all of which are

purple, indicating no significant difference between any pair of the time periods. Therefore,

we conclude that there is no statistical difference in terms of their mean functions in the

three time series.

Example 2. This example displays the monthly long-term interest rates for US, Canada and

Japan from January 1980 to December 2000 (Christiansen and Pigott, 1997). Before plotting,

the global mean has been taken out for each country so that all of the data are centered in
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Figure 3.16: Comparison of the yields of the 3-month, 6-month, and 12-month Treasury bills
measured as the bi-monthly average from July 1959 to August 2001.
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Figure 3.17: Comparison of the trends for long term target interest rates for US, Canada,
and Japan from January 1980 to December 2000.
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order to compare the relative trends of interest rates between the countries. In Figure 3.17

(a), we see that the long-term interest rates for the US and Canada moved quite closely

together from approximately 1993-1995, despite different business cycle positions at those

times. This is indicated by the purple marking of no significance between the red and final

blue highlighted portions. Also confirmed in the SiZer map are the events of the fall of the

Canadian rates to just below the US rates for the first time in over a decade around 1996,

indicated by the final blue difference section in the map.

In Figure 3.17 (b), in the period from 1982 to mid 1984, US rates rise as the Japanese

rates fall, believed by Christiansen and Pigott (1997) to be caused in part by the effects of

US fiscal expansion in raising the demand for domestic savings relative to its supply. This is

indicated by the blue highlighted pixels to the left of the graph indicating this early 1980’s

time period. In Figures 3.17 (a) and (b) there are significant divergences in the interest rates

in the late 1980’s: as US rates begin to fall back, rates in Canada and Japan are increasing.

In both plots, the larger values of Canada and Japan cause a significant negative difference,

denoted red in the middle of both plots. This short-term similarity between Canada and

Japan can be seen in Figure 3.17 (c); however the graph is clearly dominated by the more

rapid descent of the Canadian rates through the overall decrease of both countries.

3.3.3 Two Time Series: Asymptotic results

In this subsection, the statistical convergence of the difference between the empirical and the

theoretical scale-space surfaces is proposed; this provides theoretical justification of SiZer for

the comparison of two time series in scale-space. Chaudhuri and Marron (2000) address this

issue for one independent sample and Park et al. (2009) extend it to single correlated data.

In Section 3.2, we gave newly presented asymptotic properties two independent samples.

Here, the results are extended to the case of comparing two time series.

The first theorem provides the weak convergence of the empirical scale-space surfaces and

their differences with their theoretical counterparts. The second theorem states the behavior
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of the difference between the empirical and the theoretical scale-space surfaces under the

supremum norm and the uniform convergence of the empirical version to the theoretical one.

Let I and H be compact subintervals of [0,∞) and (0,∞), respectively. Let

ĝh(x) =
1

n

n∑
j=1

Zjwn(h, x, j)

where Zj = Y1j−Y2j. The following set of assumptions are needed for the following theorems.

(A.1) The errors (εi1, εi2, ...) in (3.1) are stationary, φ-mixing with the mixing function

φ(j) satisfying
∑∞

j=1 φ(j)1/2 < ∞. To define φ-mixing, let {Xi;−∞ < i < ∞} be a

stationary sequence of random variables. If M k
−∞ and M∞

k+j are the sequences generated

by {Xi; i ≤ k} and {Xi; i ≥ k + j}, respectively and E1 ∈ M k
−∞ and E2 ∈ M∞

k+j. Then

if there exists a sequence φ(1), φ(2), ... such that

|P (E2|E1)− P (E2)| ≤ φ(j), φ(j) ≥ 0,

where 1 ≥ φ(1) ≥ φ(2) ≥ · · · , j ≥ 1, (−∞ < k < ∞), and limj→∞ φ(j) = 0,

then {Xi;−∞ < i < ∞} is called φ-mixing. That is, in φ-mixing sequences, the lag-

i covariance γ(i) = Cov(Xk, Xk+i) → 0 as i increases. Intuitively, X1, X2, ..., Xn is

φ-mixing if Xi and Xi+j become essentially independent as j becomes large.

(A.2) The errors have a bounded moment E{|εij|2+ρ} < ∞ for some ρ > 0.

(A.3) For an integer n ≥0, as n →∞

1

n

[
n∑

j=1

n∑

k=1

(γ1(|j − k|) + γ2(|j − k|))wn(h1, x1, j)wn(h2, x2, k)

]

converges to a covariance function cov(h1, x1, h2, x2) for all (h1, x1) and (h2, x2) ∈ H×I.

This assumption is fair to assume for short-term to moderate dependence, which is what

is needed for Qn that is defined below.

(A.4) n−(1+ρ/2){max1≤j≤n |wn(h, x, j)|ρ}∑n
j=1 wn(h, x, j)}2 → 0 for all (h, x) ∈ H × I.

(A.5) wn(h, x, j)wn(h, x, k) are uniformly dominated by a positive finite number M .
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(A.6) {
∂wn(h, x, j)

∂x

}{
∂wn(h, x, k)

∂x

}
,

{
∂wn(h, x, j)

∂h

}{
∂wn(h, x, k)

∂h

}

and {
∂wn(h, x, j)

∂x

}{
∂wn(h, x, k)

∂h

}

are uniformly dominated by a positive finite number M∗.

Theorem 4. Suppose that assumptions (A.1)-(A.5) are satisfied. Define

Un(h, x) = n1/2[ĝh(x)− E{ĝh(x)}], (h, x) ∈ H × I.

As n →∞, Un(h, x) converges to a Gaussian process on H×I with zero mean and covariance

function cov(h1, x1, h2, x2).

Proof. It is enough to show that all the finite dimensional distributions of the process

converge weakly to the normal distribution, and that the process satisfies the tightness

condition.

Fix (h1, x1), (h2, x2), ..., (hl, xl) ∈ H × I and (t1, ..., tl) ∈ (−∞,∞). Define

Qn = n1/2

l∑
j=1

tj[ĝhj
(xj)− E{ĝhj

(xj)}]

= n−1/2

n∑
p=1

(ε1p − ε2p)
l∑

j=1

tjwn(hj, xj, p).

Then E(Qn)=0 and

V ar(Qn) =
1

n

l∑
j=1

l∑

k=1

tjtk

[
n∑

p=1

n∑
q=1

(γ1(|p− q|) + γ2(|p− q|))wn(hj, xj, p)wn(hk, xk, q)

]

→
l∑

j=1

l∑

k=1

tjtkcov(hj, xj, hk, xk) (3.8)

as n →∞ by assumption (A.3).

Assumptions (A.2) and (A.4) imply that Lyapunov’s and hence Lindeberg’s condition

hold for the terms in Qn. This and assumption (A.1) verify the conditions of the main theorem
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in Utev (1990), which states that for a sequence of series of φ-mixing random variables

X1,n, ..., Xkn,n with zero means and finite variances and for φn(·) that is a mixing coefficient

corresponding to the nth series, Sn = X1,n+. . .+Xkn,n, σ2
n = E(S2

n), the distribution of Sn/σn

tends weakly to normality. This allows us to conclude that Qn converges in distribution to

a normal random variable with variance given by (3.8). By the Cramer-Wold device, the

limiting distribution of Un(hj, xj) (j = 1, ..., l) is the multivariate normal distribution with

zero mean and cov(hj, xj, hk, xk) as the (j, k)th entry of the limiting variance-covariance

matrix.

Now, fix h1 < h2 in H and x1 < x2 in I. Then, by Bickel and Wichura (1971) the second

moment of the increment of Un is defined by

E{Un(h2, x2)− Un(h2, x1)− Un(h1, x2) + Un(h1, x1)}2

=
1

n

n∑
j=1

n∑

k=1

(γ1(|k − j|) + γ2(|k − j|))DjDk (3.9)

where

Dj = wn(h2, x2, j)− wn(h2, x1, j)− wn(h1, x2, j) + wn(h1, x1, j).

Then, by assumption (A.5), (3.9) is bounded by

C1(x2 − x1)
2(h2 − h1)

2 1

n

n∑
j=1

n∑

k=1

(γ1(|j − k|) + γ2(|j − k|)),

which is again bounded by C2(x2 − x1)
2(h2 − h1)

2, since conditions (A.1) and (A.2) imply

that supn n−1
∑n

j=1

∑n
k=1(γ1(|j−k|)+γ2(|j−k|)) < ∞ by use of Doukhan (1994). Doukhan

states that if we let X = (Xt)t∈Z be a real valued stationary centered at expectation and

mixing random process, the central limit theorem problem is to provide explicit sufficient

conditions on X for a central limit theorem to hold. Set Sn = X1 + ...+Xn, then convergence

of σ2
n

n
holds if the sequence X is φ-mixing,

∑∞
n=0 φ

δ+1
2+δ
n < ∞ and E|X1|2+δ < ∞ for some

δ > 0 and σ2
n = E|Sn|2. Then the tightness property of the sequence of processes

n1/2[ĝh(x)− E{ĝh(x)}]

on H × I is implied by Theorem 3 in Bickel and Wichura (1971).
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Bickel and Wichura (1971) state that if we let T1, · · · , Tq be subsets of [0,1], each of which

contains 0 and 1, then T = T1 × · · · × Tq. Then suppose that each Xn vanishes along the

lower boundary of T , and that there exist constants β0 > 1, γ0 > 0 and a finite nonnegative

measure µ on T with continuous marginals such that (Xn, µ) is said to satisfy condition

(β0, γ0) for each n if

P{min{|X(B)|, |X(C)|} ≥ λ} ≤ λ−γ(µ(B ∪ C))β

for all λ > 0 and every pair of neighboring blocks B and C in T . Then the tightness condition

is in force. Together with the finite dimensional convergence property, this implies that the

theorem holds.

Theorem 5. Suppose that assumptions (A.1)-(A.6) are satisfied. As n →∞

sup
x∈I,h∈H

n1/2|ĝh(x)− E{ĝh(x)}|

converges weakly to a random variable that has the same distribution as that of

supx∈I,h∈H |G(h, x)|. G(h, x) is a Gaussian process with zero mean and covariance function

cov(h1, x1, h2, x2) so that

P{G(h, x) is continuous for all (h, x) ∈ H × I} = 1,

and consequently P{supx∈I,h∈H |G(h, x)| < ∞}=1.

Proof. Let D∗
j be

D∗
j = wn(h2, x2, j)− wn(h1, x1, j).

Then,

E{Un(h2, x2)− Un(h1, x1)}2 =
1

n

n∑
j=1

n∑

k=1

(γ1(|j − k|) + γ2(|j − k|))D∗
jD

∗
k

≤ C3{(h2 − h1)
2 + (x2 − x1)

2}.

The rest of the proof proceeds as in Theorem 3 in Section 3.2, by defining the pseudo metric

d here by d{(h2, x2), (h1, x1)} = [E{G(h2, x2)−G(h1, x1)}2]1/2.
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3.4 SiZer for the Comparison of More than Two Time Series

This section is devoted to testing the equality of k time series. The model is

Yij = fi(j) + εij, i = 1, . . . , k, j = 1, . . . , n.

Consider testing the scale-space version of the hypotheses:

H0 : f1,h(x) = f2,h(x) = · · · = fk,h(x) vs. H1 : not H0. (3.10)

The extension of the approach in Subsection 3.3 is not straightforward because the pairwise

comparison would not be sufficient for this testing problem. Therefore, we instead propose

to compare two sets of residual time series under the null and alternative hypotheses, respec-

tively. First individual local linear estimates are fit under the alternative hypotheses in (3.10),

then the set of residuals found from taking the individual datapoints from their respective

group estimates are computed, composing the first set of residuals. Next, all of the datasets

are combined together and one common local linear estimate is approximated, and the resid-

uals found from every data value and this common function are computed, composing the

second set of residuals. If the null hypothesis is true, then the residuals from the combined

estimate and the residuals from the subdivided estimates should be roughly the same. In

this way, the comparison of multiple time series is converted into the comparison of two time

series. A similar idea is used in Park and Kang (2008) for the independent case.

For obtaining the residuals, one could use a pilot bandwidth hp to estimate the mean

function, that is different from the bandwidth h used for constructing the SiZer map. For

simplicity, however, hp = h is taken in this analysis.

We summarize our procedure as follows:

1. Using k response sets, Y1j, Y2j, . . . , Ykj, create an estimated function that is a fit to its

own data. Thus, f̂1,h, f̂2,h, . . . , f̂k,h are obtained where

f̂i,h(x) =
1

n

n∑
j=1

wn(h, x, j)Yij

for i = 1, 2, . . . , k.
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2. Compute the residuals for these k sets, take each and compute Yij − f̂i,h(j) as the

estimate of the errors εij’s from the ith population.

3. Obtain f̂h(·), the local linear estimator of the common scale-space regression function

fh(·) under H0, which has the form:

f̂h(x) =
1

kn

k∑
i=1

n∑
j=1

wn(h, x, j)Yij, (3.11)

where wn(h, x, j)’s are the local linear weights.

4. Compute the residuals for this one combined set, let Yij − f̂h(j) be the estimate of the

errors ε̃ij’s under the null hypothesis in (3.10).

The idea is that if H0 is true, Yij − f̂i,h(j) and Yij − f̂h(j) would be similar time series.

Hence, the equality of k time series can be verified by comparing these two sets of residual

time series with the tool proposed in Section 3.3 to see whether or not their means are

actually equal.

3.4.1 More than two time series: Simulation

In this subsection, some simulated examples are presented to compare three different time

series. In each example, three time series are generated from either N(0, 1), MA(1) with

θ = 0.5 , MA(5) with θ′s = 0.9, 0.8, 0.7, 0.6, 0.5, or AR(1) with φ = 0.5, with the length

n = 100. In the first example, the mean regression functions are all zero. Therefore, each

graph should demonstrate that there is no signal and if the time series structure can be

estimated accurately, the behavior of residuals under each of the three estimation functions

should be the same as that of the commonly estimated function. These two mean functions

of residuals should thus leave a difference of nothing and the lack of trend would leave us

with three SiZer maps of no significant trend.

In Figure 3.18, the first column of graphs shows the generated time series and their family

of smooths. Here, the dependence structures of the time series are known; the case where the
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Figure 3.18: SiZer plots for comparing three time series with the same zero mean. Family
Plot 1 has no signal and Normal errors. Family Plot 2 has no signal and MA(1) errors. Family
Plot 3 has no signal and AR(1) errors.
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time series structures are estimated is given in the next subsection. The second column shows

the SiZer maps constructed by comparing two sets of residual time series. In other words,

for i = 1, 2, 3, the ith row of the second column corresponds to the SiZer map comparing

Yij− f̂i,h(j) and Yij− f̂h(j). All purple colors indicate that the mean functions of the residual

time series are indeed similar according to SiZer analysis.

In the second example, the error structures remain the same as in the first, but the sine

curve f1(x) = sin(6πx) is added to the first sample. The last two samples remain with no

signal, only the correlated error structure.
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Figure 3.19: SiZer plots for comparing three time series with different mean functions. Family
Plot 1 has a Sine signal and Normal errors. Family Plot 2 has no signal and MA(1) errors.
Family Plot 3 has no signal and AR(1) errors.

Figure 3.19 shows some significant features in the SiZer maps, which implies the dif-

ferences of the mean functions. The first one shows far more significant trends since it is
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different from the others, and the trend clearly suggests the presence of the sine curve that

is inserted into the first sample.

For illustration purposes, Figure 3.20 displays two sets of residuals in the SiZer maps

in Figure 3.19. For example, we compare the two sets of residuals in Figures 3.20 (a) and

(b), and create the SiZer map in the first row in Figure 3.19. Multiple lines in the plots

correspond to different bandwidths. In Figures 3.20 (a) and (b), they look similar for large

bandwidths, but show some differences for small bandwidths, whose significance appear in

the first SiZer map of Figure 3.19. The rest of the plots look very similar each other, and

their corresponding SiZer maps show only purple in Figure 3.19.

In Figure 3.21 we can see that the SiZer maps flag some significant differences between

the mean functions of the family plots, where the top plot has a sine and linear signal and

the bottom two are again both just correlated noise and have no signal. These SiZer maps

show that unlike what the null hypothesis proposes, these three functions are not equal and

should not be combined into one single function because their residuals are not equal to

those residuals where each set has its own representative function.

The next simulation examines the situation where all three samples have different depen-

dent structures. In these three examples, the first family plot will have AR(1) errors, plot 2

will have MA(1) errors, and the third and final plots will have MA(5) errors. This will also

allow a look at the SiZer maps’ behavior and ability to detect differences between multiple

time series when weak and strongly correlated errors are present and mixed together.

In the first sample here, Figure 3.22 correctly shows that all SiZer maps are purple, that

there is no difference between the mean of the two residual sets. These functions could all

be combined because each one of them has an equal signal, that of no signal at all. This

detection is correctly identified despite the strong correlation of MA(5) errors in the bottom

family plot.

In Figure 3.23, when the sine signal is present in the first sample and no signal is in

the last two samples, the first SiZer plot correctly identifies the difference between the two
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Figure 3.20: Two sets of residual plots in the SiZer maps in Figure 3.19.
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Figure 3.21: SiZer plots for comparing three time series with different mean functions. Family
Plot 1 has a Sine plus Linear signal and Normal errors. Family Plot 2 has no signal and MA(1)
errors. Family Plot 3 has no signal and AR(1) errors.
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Figure 3.22: SiZer plots for comparing three time series with the same mean function and
different dependent error structures. Family Plot 1 has no signal and AR(1) errors. Family
Plot 2 has no signal and MA(1) errors. Family Plot 3 has no signal and MA(5) errors.
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Figure 3.23: SiZer plots for comparing three time series with different mean functions. Family
Plot 1 has a Sine signal and AR(1) errors. Family Plot 2 has no signal and MA(1) errors.
Family Plot 3 has no signal and MA(5) errors.
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residual sets when this individual function has a sine trend. These highlighted portions in this

first and the few in the second and last SiZer map show that there are significant differences

between these three datasets, besides that of their time series correlation structure.
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Figure 3.24: SiZer plots for comparing three time series with different mean functions. Family
Plot 1 has a Sine + Linear signal and AR(1) errors. Family Plot 2 has no signal and MA(1)
errors. Family Plot 3 has no signal and MA(5) errors.

In Figure 3.24, all three SiZer maps indicate that there is a significant difference between

the two residual sets. Due to the fact that a sine plus linear signal is added to the first plot,

highlighted pixels can be seen in all of the plots, indicating that it detects the difference

between the residuals of the single function and when each dataset gets its own individual

function. It has denoted that because of this first signal, these two sets of residuals are not

equal, and thus the null hypothesis should be rejected.
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3.4.2 More than two time series: Real data analysis

This subsection is devoted to illustrating the procedure for more than two time series applied

to real data.
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Figure 3.25: Multiple comparison of the trends for the yields of the 3-month, 6-month, and
12-month Treasury bills measured as the bi-monthly average from July 1959 to August 2001.

Instead of doing pairwise comparison for the real dataset examples used earlier, the

previous approach is taken again to look at multiple comparison of time series, now with

real datasets. In Figure 3.25, almost identical returns for 3, 6, and 12 month treasury bills are

depicted in all of the SiZer maps, and all are colored purple as a result. This mimics the earlier

decision that none of the pairs of yields are significantly different from one another, and here

again there is no significant difference between the two sets of residuals. This indicates that,

in line with the null hypothesis, these three time series have equal mean functions and could
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be combined together into one single common function of Treasury bills using (3.11) that

does not indicate the span of months.

1 126 252

−5

12

US

1 126 252

−5

12

Japan

1 126 252

−5

12

Canada

log
10(

h)

SiZer Map

1 126 252

log
10(

h)

SiZer Map

1 126 252
log

10(
h)

SiZer Map

1 126 252

Figure 3.26: Multiple comparison of the trends for long term target interest rates for US,
Canada, and Japan from January 1980 to December 2000.

Also we compare the three interest rate trends for the three countries looked at previ-

ously in Figure 3.17. In Figure 3.26, there are differences that occur within each SiZer map,

denoting that there are significant differences present. Seen before in Figure 3.17, there exist

pairwise differences between all of the countries. The presence of these differences is also

correctly detected when we compare each set of residuals from each country’s individual

estimated function to the residuals from the overall estimation.



Chapter 4

Two Dimensional SiZer

In this chapter, we propose to extend the original one-dimensional SiZer to two dimensions,

thereby allowing us to take spatial correlation structure into account in image analysis. In

one dimension, the scale-space is viewed as an overlay of curves. In two dimensions, overlays

are no longer possible, so Godtliebsen et al. (2004) propose a movie version that shows

the progression through various bandwidths instead. The most challenging part becomes

the statistical inference, which previously was based on where the derivatives of a curve

had statistically significant increases and decreases. In two dimensions, the derivative, or

slope, is replaced by partial derivatives, or gradients, and thus a new approach is required.

Godtliebsen et al. (2002) and Duong et al. (2008) study multivariate kernel estimation in a

scale-space. In this chapter we will focus on a regression setting.

4.1 Review of the Two Dimensional SiZer with Independent Errors

Godtliebsen et al. (2004) propose what they refer to as S3, Significance in Scale-Space.

They combine scale-space, statistical inference, and visualization methodology using the full

scale-space (that is, all levels of resolution of the image) to try and separate out important

underlying structures from spurious noise artifacts.

The statistical model that underlies S3 is

Yi,j = s(i, j) + εi,j,

where i = 1, . . . , n and j = 1, . . . , m index pixel locations, s represents the underlying non-

random signal (thought of as a smooth, deterministic function evaluated at a rectangular

71
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grid), and the εi,j’s are the noise, assumed to be independent random variables with E(εi,j) =

0 and V ar(εi,j) = σ2
i,j. Note that the variance can be different at each location. The gray level

scale-space slices are simply Gaussian smooths; that is, discrete two-dimensional convolutions

of a spherically symmetric Gaussian density, with the data, denoted

ŝh(i, j) =
n∑

i′=1

m∑

j′=1

Yi′,j′Kh(i− i′, j − j′),

or in matrix notation

ŝh = Kh ∗ Y

where * denotes bivariate discrete convolution, and

Kh(i, j) = Kh(i)Kh(j),

for i = (1− n), . . . , (n− 1) and j = (1−m), . . . , (m− 1), where

Kh(i) =
exp(−(i/h)2/2)∑n−1

i′=1−n exp(−(i′/h)2/2)
.

Using ŝh above can cause the severe boundary effects due to a result of averaging in zeros

from outside the image. To overcome this problem they subtract the mean of the Yi,j before

smoothing. Therefore, the estimate becomes

ŝh = A(Y ) + Kh ∗ (Y − A(Y )),

where A is the matrix operator which returns the constant matrix whose common entries

are the average of the entries of its matrix argument; that is, each

A(Y )i,j =
1

nm

n∑

i′=1

m∑

j′=1

Yi′,j′ .

Another consideration is again the number of points that should be inside each kernel

window, where the effective sample size here is given as

ESS = (Kh ∗ 1)/(Kh(0, 0)).
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Here 1 is the n by m matrix having a one in each entry and the denominator of Kh(0, 0) is the

rescaling that assigns value one to the pixel in the center, and appropriately down-weights

the values assigned to other pixels. When h is large, ESS(i, j) is large and when h is small,

ESS(i, j) is small. In boundary regions, the boundary effect yields an appropriately small

value of ESS(i, j). To make S3 inferences simultaneously across location, Godtliebsen et al.

(2004) use an average effective sample size of

ESS2 =

(
n∑

i=1

m∑
j=1

ESS(i, j)

)
/(nm).

In their paper, they point out that data sparsity issues need much more attention because of

possible large regions with no data. Therefore, data sparsity issues need much more attention.

The idea of an effective sample size in image analysis is to take a kernel weighted count of

the number of points in each window and give us a guideline for when the data is too sparse

for inference. Because there are nm independent data points, the smoothing process can be

viewed as averaging in groups of size ESS2. Therefore, the number of independent averages

is approximately

` =
nm

(ESS2)
. (4.1)

In estimating the noise level, or the variance of εi,j, one must decide if it is reasonable

to assume that σ2
i,j is constant. In the case of heteroscedasticity, Godtliebsen et al. (2004)

estimate σ2
i,j by smoothing the squared residuals and subtracting the mean of the squared

residuals out to take into account any boundary issues:

σ̂2
h = ESSQ · {A(CS(Y − ŝh)) + Kh ∗ [CS(Y − ŝh)− A(CS(Y − ŝh))]}

where ESSQ is the matrix with

ESS(i, j)

ESS(i, j)− 1

in entry (i, j), the operator · denotes element by element matrix multiplication, CS is the

matrix operator which squares all entries of its matrix argument, and A is the matrix operator

which returns the constant matrix whose common entries are the average of the entries of
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its matrix argument. In the homoscedastic case, these estimates are pooled to estimate the

common σ2. Since interior points have a more stable σ2
h(i, j), an ESS weighted average is

used,

σ̂2
h =

(
n∑

i=1

m∑
j=1

ESS(i, j)σ̂2
h(i, j)

)
/

(
n∑

i=1

m∑
j=1

ESS(i, j)

)
.

The gradient of the underlying signal s at any given (i, j) location is

G(s) = [(s1)
2 + (s2)

2]1/2,

where s1 is the partial derivative in the vertical direction (indexed by i) and s2 is the partial

derivative in the horizontal direction (indexed by j). The corresponding estimate of the

gradient is

Ĝh(s) = [(ŝh,1)
2 + (ŝh,2)

2]1/2,

where the partial derivatives are estimated by

ŝh,1 = Kh,1 ∗ Y ,

ŝh,2 = Kh,2 ∗ Y ,

where

Kh,1(i, j) = K ′
h(i)Kh(j),

Kh,2(i, j) = Kh(i)K
′
h(j),

and

K ′
h(i) = (−i/h)Kh(i).

Note that they use the Nadaraya-Watson (e.g. see Nadaraya (1964)) type estimator rather

than computing a numerical derivative for simplicity. Two dimensional derivatives using the

local linear estimator can be developed, but we suggest it as future work.

The gradient version of S3 flags pixels with arrows as significant when Ĝh(s) is higher

than the noise level, rejecting a null hypothesis of the form

H0 : Gh(s) = 0.
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The null distribution of this test is based on the bivariate Gaussian distribution


 ŝh,1

ŝh,2


 ∼ N





 0

0


 ,


 σ2

1 σ2
12

σ2
12 σ2

2





 ,

which is exact if the noise terms εi,j have a Gaussian distribution or follow the Central

Limit Theorem. Godtliebsen et al. (2004) use the independent case in their paper, therefore

σ2
12 ≈ 0, and the approximate distribution is

ŝ2
h,1

σ2
1

+
ŝ2

h,2

σ2
2

∼ χ2
2,

so the null hypothesis is rejected for pixels where

ŝ2
h,1

σ̂2
1

+
ŝ2

h,2

σ̂2
2

> qχ2
2
(α′).

Here α is the nominal level that is commonly used and α′ is the value of the significance level

that is used to make the inference simultaneous across all pixels. The estimates σ̂2
1 and σ̂2

2

for the independent case can be found in Godtliebsen et al. (2004). Doing an approximation

based on the number of independent blocks, ` in (4.1), they propose using

qχ2
2
(α′) = −2 log(1− (1− α)1/`).

as the quantile for determining significance. This quantile is calculated based on the equation
(
P (χ2

2 ≤ qχ2
2
(α′))

)l

= 1− α.

Their approach to highlighting significant features in an image is to use arrows to point

in the direction of a significant gradient. If the gradient, that is, the local slope at each pixel

in the image is found to be statistically significant, they use green arrows, overlaid on the

scale-space gray level image, to point in that direction. A statistically significant extreme is

therefore surrounded by a ring of significant gradients pointing towards the peak or valley. In

addition to the MPEG movie versions of the image that can be viewed progressing through

many different levels of resolution, their paper chooses different slices of the scale-space

that represent several scales. The images begin with a substantial noise component still
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present, which can lead to not very clearly defined outlines of the images and few arrows

that appear to indicate statistically significant features. These images end their progression

with a blurring of the outlines of the images and many structures marked as significant,

which is not particularly useful, since features of interest are typically not visible at this

scale. Some slice choice in between the beginning and end of the movie is therefore obviously

typically the optimal choice of resolution.

4.2 Incorporation of the Variogram

This section provides a brief introduction of spatial statistics. See Cressie (1991) for more

details. Spatial data are distinguished by observations that are obtained at spatial locations.

A random field, or random process, is denoted by Z(s̃) indexed by spatial location s̃ in

d-dimensional Euclidean space. The process Z(s̃) may exhibit spatial correlation, similar to

time series where the correlation between different time points must be taken into account.

Looking at

{Z(s̃) : s̃ ∈ D},

D is a fixed subset of Rd. Observing {Z(s̃1), ..., Z(s̃n)} at known spatial locations {s̃1, ..., s̃n},
the most common way to model the correlation structure is with the variogram, 2γ̃ =

V ar[Z(s̃1 − Z(s̃2)].

A random process Z(·) which has E (Z(s̃)) = µ and cov (Z(s̃1), Z(s̃2)) = C(s̃1 − s̃2)

is defined to be second-order, or weakly, stationary because the mean is constant over the

spatial domain and the covariance depends on the separation between points but not on their

absolute location. These conditions imply that the mean is constant across all locations and

that the function C(·), the covariogram, is a stationary covariance function. Additionally, if

C(·) is a function only of ||s̃1− s̃2||, then C(·) is called isotropic. This implies that the process

is uniform in all directions and it is only the distance between two spatial locations that is of

importance. Likewise, if {Z(s̃) : s̃ ∈ D} satisfies E (Z(s̃)) = µ and V ar (Z(s̃1)− Z(s̃2)) =

2γ̃(s̃1−s̃2) then Z(·) is said to be intrinsically stationary, which is similar to weak stationarity,
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but is instead concerned that the variance of the differences of Z at pairs of locations only

depends on the distance between their locations. If 2γ̃(s̃1 − s̃2) is also a function only of

||s̃1 − s̃2||, then 2γ̃(·) is called isotropic.

If we replace locations, s̃1 and s̃2 with u and u+v, we have a covariogram Cov(Z(u), Z(u+

v)) = C(v), where the function depends only on v, the distance between the two locations.

In time series, this is often referred to as the autocovariance function. Having a stationary

process is beneficial because it is more general and the process behaves the same at any

location, but it also makes it easier to carry out spatial prediction, or kriging. Again, if a

spatial process is intrinsically stationary, it has a constant mean and the variance of the

differences of Z at pairs of locations only depends on v, the displacement between locations.

In this case there is what is called a semivariogram

γ̃(v) =
1

2
V ar (Z(u + v)− Z(u)) .

The semivariogram is often the most preferred tool for characterizing spatial processes.

Related to this is the variogram, which is a function of the spatial dependence of variance.

It is given with the following equation

2γ̃(v) = V ar (Z(u + v)− Z(u)) .

Let (i′, j′) be the location (u + v), and (i′′, j′′) be the location u and let Yi,j ≡ Z(u), then it

can be said that

2γ̃(v) = V ar (Z(u + v)− Z(u)) = V ar (Yi′,j′ − Yi′′,j′′)

and if the lag v only depends on the difference between the two locations, then

2γ̃ (d((i′, j′), (i′′, j′′))) = V ar (Yi′,j′ − Yi′′,j′′) ,

where d is the value of the Euclidean distance between the coordinates (i′, j′) and (i′′, j′′).

To mimic the true variogram, it is necessary to calculate the empirical variogram in data

analysis. Because some estimators of the variogram, such as the method of moments, do
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not yield a valid variogram model, empirical variograms are often approximated by model

functions such as exponential and Matern. The exponential variogram is given as

2γ̃(v) = c0 + c1(1− exp (−v/b))

and the Matern variogram is given as

2γ̃(v) = c0 + c1

(
1− (v/2b)ν

2Γ(ν)

)
Bν(v/b)

where c0 is the nugget, the height of the jump of the discontinuity at the origin; c1 is the sill,

the limit of the variogram tending to infinity lag distances; ν is a parameter that controls

the smoothness of the random field; b represents the range, or the distance in which the

difference of the variogram from the sill becomes negligible; and Bν is a modified Bessel

function of the second kind. If ν = 0.5, it is a special case of exponential variogram and if

ν →∞ then the Matern converges to the Gaussian variogram.

4.3 Review of Multiple Comparison Procedures

Multiple hypothesis testing is a difficult process that attempts to perform individual infer-

ences on null hypotheses, while maintaining an acceptable Type I error rate control. This can

be daunting if the data include numerous locations, such as when testing for the presence

of a signal in spatial data. One choice is whether it is desirable to test each voxel location

separately, or focus on testing clusters of data for signal presence. Historically, the approach

has been to test each location separately and then adjust the level of the test to the multi-

plicity of locations in order to control what is known as the familywise error rate (FWER).

A classic way of controlling for the FWER has been done by the Bonferroni correction,

which is known to be conservative. Another concern is the significant loss of power that

typically comes along with this and other multiple hypothesis testing procedures. Because

of its difficulty and loss of power, many practitioners decide to circumvent doing controls for

multiple testing altogether. In multiple testing problems, it is also often difficult to identify

a threshold that will control a measure of false positives across the entire image. In this
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section, we explore some newer procedures that perform multiple tests and compare their

performances.

The most commonly used correction is the Bonferroni, which is a standard fixed threshold

procedure where the p-values are assessed according to

p(i) ≤ T.

Here p(i) is an ordered p-value and T will typically correspond to a threshold test by which

any test statistic that leads to a p-value which is less than the given threshold will be declared

significant. This threshold for Bonferroni is

T = α/N

where N is the total number of locations tested, or hypotheses performed, and α is again

the nominal level α. Bonferroni normally overcorrects and because it is so tight, it is too

conservative, declaring few individual locations to be significant.

The first method to be looked at as a Bonferroni alternative is Holm’s method, which,

similar to Bonferroni, makes no assumptions on the dependence of the tests. Holm (1979)

compares the smallest p-value, p(1), to α/N and if one rejects the corresponding hypothesis,

then move on to the next smallest p-value, p(2), which is compared to α/(N − 1) and so

on. This is referred to a step-down method and it starts at i=1 and stops the first time the

inequality below is violated. It then rejects all hypotheses that have smaller p-values. The

inequality for comparison is

p(i) ≤ α
1

N − i + 1
.

Although it is nice that Bonferroni and Holm do not make assumptions on dependence since

this makes them flexible and hence more applicable in a wide variety of situations, they also

do not make use of the spatial structure that may exist in certain datasets.

The second criterion is control of FDR (False Discovery Rate), which involves the pro-

portion of errors among the rejected hypotheses, not just the probability of getting even a

single false positive, such as in the FWER. Benjamini and Hochberg (1995) propose FDR
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as a way to look at the number of errors committed in independent multiple-comparison

problems and also only be concerned about the probability of a false rejection given that

a rejection has occurred. Again, the ordered p-values, p(1) ≤ p(2) ≤ ... ≤ p(N) and Hi their

corresponding H0’s are used. Let k be the largest i for which

p(i) ≤ α
i

N
,

then all Hi, i = 1, . . . , k are rejected. This will control the FDR, the proportion of rejected

H0’s which are erroneously rejected, at rate α.

The next procedure, proposed by Pavlicova et al. (2003), is p-value adaptive thresholding

(PAT), an adaptation of FDR. This procedure also uses N tested hypotheses and their

ordered p-values. PAT, however, has two steps,

(1)N0 = max{i : p(i) ≤ α

N − i + 1
}

(2)k = max{i : p(i) ≤ (i−N0 + 1)α

N −N0 + 1
; i = N0, . . . , N}.

The PAT procedure rejects those null hypotheses whose p-values are p(1) ≤ ... ≤ p(k). In

step (1), the number of hypotheses is reduced using the Holm’s procedure and then FDR is

applied to the remaining hypotheses in step (2). Note that if N0 is set equal to 1, the PAT

procedure reduces to the original FDR.

Another adaptation to the FDR procedure is presented by Benjamini and Yekutieli

(2001), which shall here be called dFDR, since it can be applied to data that has positively

dependent test statistics. Their proposal is to replace α with α

(
∑N

i=1
1
i
)

in

k = max{i : p(i) ≤ i

N
α}.

Let H0(i) be the hypothesis corresponding to p(i). Then one would reject the null hypotheses

H0(1), . . . , H0(k) according to their ordered p-values. This procedure obviously increases the

range of problems that can be evaluated by a FDR-type procedure. Now, better assessments
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can be performed on data that possess positive dependency instead of possibly avoiding the

issue of multiple testing altogether.

In addition to these four thresholding procedures, the quantile that uses independent

blocks is tested here. This was previously used in several versions of SiZer and it will be used

for Original 2-d SiZer and a new SiZer that allows for dependence. In the next section, the

use of these quantiles will be incorporated into our new version of SiZer, the Spatial SiZer,

which takes the dependent structure of an image into account.

4.4 Spatial SiZer

In this section, we introduce a dependent two-dimensional SiZer which accounts for the case

when the εi,j’s are not assumed to be independent random variables. This Spatial SiZer

provides the benefit of performing statistical analysis on spatially correlated data. Most

commonly, data with spatial dependence structure come from images that are difficult to

model because of the additional dimension and the usually high level of noise. This tool

can circumvent these problems and provide informative and understandable analysis with

visualizations for a vast range of statistical problems. One of those types of problems can

include PET analysis where additional tests cannot be run on a patient because of the safety

levels of radiation the patient can be exposed to. SiZer can take these types of images that

are noisy and determine whether a vague feature is in fact a significant structure.

In this Spatial SiZer, we too use the green arrows to point in the direction where there are

significant gradients on the image so that a statistically significant local slope is surrounded

by a ring of arrows pointing towards its peak. Again, views are taken of the images at various

levels of signal blurring, which is represented via the convolution of s∗Kh for different values

of h.

As in the independent version, the signal estimate used is

ŝh(i, j) =
n∑

i′=1

m∑

j′=1

Yi′,j′Kh(i− i′, j − j′),
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but now the εi,j’s can have dependent structure and 2Cov(εi,j, εi′,j′) = σ2
i,j + σ2

i′,j′ −
2γ̃(d((i, j), (i′, j′))) where d is the Euclidean distance and γ̃ is the semivariogram. Then, the

variance for the partial derivative in the vertical direction, indexed by 1, is

σ̂2
1 = V ar(ŝh,1(i, j))

= Cov

(
n∑

i′=1

m∑

j′=1

Yi′,j′Kh,1(i− i′, j − j′),
n∑

i′′=1

m∑

j′′=1

Yi′′,j′′Kh,1(i− i′′, j − j′′)

)

=
n∑

i′=1

m∑

j′=1

n∑

i′′=1

m∑

j′′=1

Kh,1(i− i′, j − j′)Kh,1(i− i′′, j − j′′)Cov(Yi′,j′ , Yi′′,j′′)

=
n∑

i′=1

m∑

j′=1

n∑

i′′=1

m∑

j′′=1

Kh,1(i− i′, j − j′)Kh,1(i− i′′, j − j′′)×
[
σ2

i′,j′ + σ2
i′′,j′′

2
− γ̃ (d((i′, j′), (i′′, j′′)))

]

=

(
n∑

i′′=1

m∑

j′′=1

Kh,1(i− i′′, j − j′′)

)(
n∑

i′=1

m∑

j′=1

Kh,1(i− i′, j − j′)(σ2
i′,j′)

)

−
n∑

i′=1

m∑

j′=1

n∑

i′′=1

m∑

j′′=1

Kh,1(i− i′, j − j′)Kh,1(i− i′′, j − j′′) [γ̃ (d((i′, j′), (i′′, j′′)))]

Similarly, the variance in the horizontal direction is

σ̂2
2 = V ar(ŝh,2(i, j)) =

(
n∑

i′′=1

m∑

j′′=1

Kh,2(i− i′′, j − j′′)

)(
n∑

i′=1

m∑

j′=1

Kh,2(i− i′, j − j′)(σ2
i′,j′)

)

−
n∑

i′=1

m∑

j′=1

n∑

i′′=1

m∑

j′′=1

Kh,2(i− i′, j − j′)Kh,2(i− i′′, j − j′′) [γ̃ (d((i′, j′), (i′′, j′′)))]
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and the covariance between the partial derivatives in the horizontal and vertical directions

is

σ̂2
12 = Cov(ŝh,1, ŝh,2)

=
1

2

(
n∑

i′′=1

m∑

j′′=1

Kh,1(i− i′′, j − j′′)

)(
n∑

i′=1

m∑

j′=1

Kh,2(i− i′, j − j′)(σ2
i′,j′)

)

+
1

2

(
n∑

i′′=1

m∑

j′′=1

Kh,2(i− i′′, j − j′′)

)(
n∑

i′=1

m∑

j′=1

Kh,1(i− i′, j − j′)(σ2
i′,j′)

)

−
n∑

i′=1

m∑

j′=1

n∑

i′′=1

m∑

j′′=1

Kh,1(i− i′, j − j′)Kh,2(i− i′′, j − j′′) [γ̃ (d((i′, j′), (i′′, j′′)))] .

Here, σ2
i,j can be estimated using the formulas introduced in Section 4.1, and γ̃ can

be estimated using a parametric model as explained in Section 4.2. In our analysis, we

assume that the variance of εi,j is a constant but this assumption can be released to the

case of heteroscedasticity. Once these pieces are computed, they are put together to form

the covariance matrix

Σ̂ =


 σ̂2

1 σ̂2
12

σ̂2
12 σ̂2

2


 .

We no longer assume that there are independent errors, that is σ2
12 6=0. This leads to the

need for a new test statistic and resulting distribution, that can be seen as


 σ̂2

1 σ̂2
12

σ̂2
12 σ̂2

2



−1/2 

 ŝh,1

ŝh,2


 =


 t̂h,1

t̂h,2


 ∼ N





 0

0


 ,


 1 0

0 1





 .

The sum of the squares of these two test statistics results in

t̂2h,1 + t̂2h,2 ∼ χ2
2(α

′).

Thus, the null hypothesis

H0 : Gh(s) = 0.

is rejected for those pixels which have values

t̂2h,1 + t̂2h,2 > qχ2
2
(α′).
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This qχ2
2
(α′) represents the appropriate quantile from the χ2

2 distribution and it is chosen via

one of the six thresholding techniques described in Section 4.3. The nominal level of α used

in all of the examples within this dissertation is α=0.05 and the α′ is chosen so that the

inference is made simultaneously across all pixel values, and therefore, all hypothesis tests

at the overall level α.

For pixels whose null hypothesis is rejected, we determine that pixel location to have a

gradient significantly higher than those of its surrounding area. To denote this significance,

an arrow is drawn in that gradient direction using the corresponding vertical and horizontal

direction vector 
 ŝh,1

ŝh,2


 .

4.5 Numerical Study

The first part of this section illustrates simulated examples with a signal involving cosine

and either an exponential or Matern dependence structure. The second part deals with real

data analysis on datasets that were also previously analyzed by Godtliebsen et al. (2004).

4.5.1 Simulation

In the simulation, we generate a signal of image sizes of 20× 20 from the following equation

for i = 1, ..., n and j = 1, ..., m

s(i, j) = 3

[
cos

(
180× 10

π

(
i− n

2

))
· cos

(
180× 10

π

(
j − m

2

))]

+

. (4.2)

Here, n is the length in the vertical direction, m is the length in the horizontal direction,

(·)+ indicates the positive part of the function (the negative pieces are set to zero).

Then, an error with mean zero and with either an exponential or Matern covariance

function is generated in order to construct a covariance matrix for the error field. The

exponential covariance function is

Σ = a× exp

(−d

b

)
(4.3)



85

where d represents a Euclidean distance, a represents the level of covariance, and b is the

spatial range, or how long the correlation lasts. We show a’s of 0.01 and 0.1 in the tables of

results. Values for b are 3, 10, and 30. The bandwidths at which the data are viewed include

h=1.5, 2, 3, 4. All of the thresholding quantiles mentioned in the previous section are also

used, and are represented by q=1, Holm’s FWER; q=2, FDR; q=3, PAT; q=4, dFDR; q=5,

independent blocks with the Spatial SiZer; and q=6, independent blocks with the Original

SiZer.

In addition to the exponential covariance, a Matern covariance function is used:

Σ = (a(d/b)ν)× besselK

(
ν,

d

b

)
(4.4)

where d is again a Euclidean distance; besselK is a modified Bessel function of the second

kind; a represents the sill parameter, the height at which the variogram flattens out and the

range is obtained; b is the spatial range parameter, the distance at which the difference of

the variogram from the sill gets negligible; and ν is a parameter representing smoothness.

The Matern simulation uses the same values for a and b that are used for the exponential

covariance function, and the values for ν include 0.5, 1, 2.

For example, Figure 4.1 (a) has the signal that is generated with no error added to the

image. The next three figures, (b)-(d), have the simulated data, where now error has been

added to the signal to create the new images with either exponential or Matern covariance

functions.

The tables at the end of Chapter 4 show the effectiveness of the multiple comparison

procedures using the various thresholding procedures and the Spatial versus Original SiZer.

To evaluate the effectiveness of these procedures, Type I error, Type II error, and the pro-

portion of pixels identified correctly, are all used. The performance of the cases given include

the Matern covariance function and the exponential covariance function, which is a special

case of the Matern, when ν=0.5.

Table 4.1 shows Type I errors for the Matern covariance structure and a = 0.01. Here

when q=5, the independent blocks quantile with Spatial SiZer is by far the best performer
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(a) No Error (b) Exponential Error, a=0.1, b=3
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(c) Matern Error, a=0.01, b=3, ν=1 (d) Matern Error, a=0.1, b=3, ν=1

Figure 4.1: Original Signal (a) and simulated data, which consists of the signal + error (b-d)
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in every scenario. No matter what the level of b or ν or h, q=5 is always the lowest level

of Type I error and it is drastically lower than the Original SiZer, where the differences

within the same combination of parameters can be very commonly as different as 0.0000 for

the Spatial and 0.2237 for the Original. In Table 4.2, with a=0.1 and a Matern covariance

function, there exists the same type of performance, with q=5 having the lowest Type I error

rate for every combination of the parameters, and when the error rate is 0 it can also tie

with other quantiles within the Spatial SiZer. Again, the performance of the Original SiZer

is dismal, with its Type I error rate ranging between 0.1988 and 0.2374. In Table 4.3 with

the exponential covariance function, the same type of performance is exhibited. The lowest

values for the Type I error rate are when q=5 for all outcomes, regardless of b or h. The

performance of the Original SiZer, q=6, is also very disappointing at all combinations of a,

b and h.

In Tables 4.4, 4.5, and 4.6 looking at the Type II error performance, often q=2, Holm’s

FWER with the Spatial SiZer, does the best. If q=6, the Original SiZer with independent

blocks does fairly well, but as a caveat, as has been seen, the Original SiZer always has a large

number of spurious pixels in it, this means that it is quite prone to easily declaring pixels to

be significant. Thus, the cases where it would declare something to not be significant when

it actually is, are expected to be very few. In Tables 4.5 and 4.8, the Spatial SiZer has higher

type II errors and lower correct proportions when a=0.1. This occurs more specifically when

q=5, but, that quantile and the Spatial SiZer still have significantly achieved the lowest Type

I error. Since we are more concerned about controlling for Type I error, we prefer q = 5 even

though the method sometimes produces high Type II error (equivalently low power). This

means that the method q = 5 may miss important features in the image, which shows the

limitation of the proposed method. We propose the increase of power as future work. This

can be achieved by improving a quantile that can account for spatial dependence in the data.

In Table 4.7, at the smaller bandwidths, where h=1.5 or 2, the independent blocks

quantile with the Spatial SiZer, q=5, is consistently the best across the board when it
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comes to correctly identifying pixels’ statistical significance. This proportion identified cor-

rect includes those that were significant and deemed significant and those insignificant and

deemed insignificant. When moving into the larger bandwidths, other quantiles begin to per-

form better. At h=3 with the smaller value of b, q=4, PAT (p-value adaptive thresholding)

performs the best within the Spatial SiZer and q=5 performs the best at larger values of

b=10 or 30. At the largest value of h, now various quantiles, including q=4 are performing

the best with the Spatial SiZer, and at all values within the table, the Original SiZer, q=6, is

always outperformed. In Table 4.9, when a=0.01, we see the same pattern as at the smaller

bandwidths, where h=1.5 or 2, the independent blocks quantile with the Spatial SiZer, q=5,

is consistently the best across the board when it comes to correctly identifying pixels’ sta-

tistical significance. Then when moving into the larger bandwidths, other quantiles begin to

perform better. However, when a=0.1 in Table 4.9, the independent blocks quantile with the

Spatial SiZer, q=5, does not perform well and another quantile should be chosen.

These results imply that if the proportion of correctly identified pixels is one’s main

priority, instead of reducing Type I error, the independent blocks quantile with the Spatial

SiZer, q=5, may be preferred for smaller resolutions and at the larger bandwidths, various

methods should be evaluated to see which performs best under the present scenario. As

previously mentioned, however, the quantile which takes spatial correlation into account will

improve the performance even more. We propose its development and theoretical justification

as future work.

Figure 4.2 presents plots that have the signal mentioned above in equation (4.2), along

with error generated with the exponential covariance function (4.3). In this Figure, all of

the graphs in the left panel are using q=5, which is the independent blocks quantile in the

Spatial SiZer and the right panel are graphs with q=6, the independent blocks quantile with

the Original SiZer. In Figures 4.2 (a) and (c), a=0.01 and the midrange view of bandwidth

h=2 are used. Both graphs seem to have a few spurious pixels out around the edges, but the

number of these pixels is quite small in comparison to those of the Original SiZer in (b) and
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(a) a=0.01, b=3, h = 2, q=5 (b) a=0.01, b=3, h = 2, q=6
alpha = 0.01, beta = 30, qtype = 6, h = 2
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(c) a=0.01, b=30, h = 2, q=5 (d) a=0.01, b=30, h =2, q=6
alpha = 0.1, beta = 3, qtype = 6, h = 2
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(e) a=0.1, b=3, h = 2, q=5 (f) a=0.1, b=3, h = 2, q=6
alpha = 0.1, beta = 30, qtype = 6, h = 2
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(g) a=0.1, b=30, h = 2, q=5 (h) a=0.1, b=30, h = 2, q=6

Figure 4.2: SiZer maps with the simulated signal and exponential covariance function.
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(d). Figures 4.2 (e) and (g) use a=0.1, which is the higher of the two a’s used and thus denotes

that there is a higher level of correlation here. When there is a higher degree of dependence

or correlation present, it is harder to determine what should be declared actual trend and

what should be attributed to the error structure. Thus, there are fewer pixels highlighted as

significant than in Figures 4.2 (a) and (c) as an increasing amount of variation is attributed

to the error structure and not real trend.

In Figure 4.2 (e), we see that although the Spatial SiZer clearly focuses correctly on the

center, there is a corner where pixels seem to be missing where one would expect significant

pixels to be. On the other hand, the Original SiZer in Figure 4.2 (f), albeit it encompasses the

signal in the center completely, has highlighted a large number of spurious pixels. Because

Figures 4.2 (b),(d),(f), and (h) have a number of spuriously highlighted pixels in the corners

of the Figures and the range that is declared significant is also falsely enlarged, this shows

that the Spatial SiZer does a much better job at accounting for the level of dependent

structure than the Original SiZer.

Figure 4.3 presents plots that also have the signal mentioned above in equation (4.2),

now with error generated with the Matern covariance function (4.4). Again in this Figure, all

of the graphs in the left panel are using q=5, which is the independent blocks quantile in the

Spatial SiZer and the right panel are graphs with q=6, the independent blocks quantile with

the Original SiZer. In Figures 4.3 (a) and (c), a=0.01 and the midrange view at bandwidth

h=2. Similar to those with the exponential covariance function in Figure 4.2, both graphs

seem to have a few spurious pixels out around the edges, especially when b=30, but the

number of these pixels is still smaller than for the Original SiZer in (b) and (d). Figures 4.3

(e) and (g) have an a=0.1, which indicates the higher level of correlation here, therefore it is

harder to detect trend. Thus, there are fewer pixels highlighted as significant than in Figures

4.3 (a) and (c). Figure 4.3 (g) does have a few spurious pixels in its corners, but in the

comparative figure, Figure 4.3 (h), there is a much larger number of spuriously highlighted

pixels in the corners of the figure and around the circumference of the signal in the center,
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(a) a=0.01, b=3, ν=1, h = 2, q=5 (b) a=0.01, b=3, ν=1, h = 2, q=6
alpha = 0.01, beta = 30, nu = 1, qtype = 6, h = 2
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(c) a=0.01, b=30, ν=1, h = 2, q=5 (g) a=0.01, b=30, ν=1, h = 2, q=6
alpha = 0.1, beta = 3, nu = 1, qtype = 6, h = 2
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(e) a=0.1, b=3, ν=1, h = 2, q=5 (f) a=0.1, b=3, ν=1, h = 2, q=6
alpha = 0.1, beta = 30, nu = 1, qtype = 6, h = 2
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(g) a=0.1, b=30, ν=1, h = 2, q=5 (h) a=0.1, b=30, ν=1, h = 2, q=6

Figure 4.3: SiZer maps with the simulated signal and Matern covariance function.
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showing again that the Spatial SiZer does a much better job at accounting for the dependent

structure than does the Original SiZer.

In Figure 4.4 are the SiZer maps of the cases where the Original SiZer, q=6, and Spatial

SiZer, q=5 are used to assess a situation where there is in fact no signal present, merely

error. In these maps, the Spatial SiZer’s performance is exemplary, with not a single pixel

erroneously highlighted. In the Original SiZer, however, there are numerous green arrows,

denoting that there is a significant trend present, where in fact there is not. Looking at both

a=0.01 and a=0.1 and both extremes of the b, where it is 3 or 30, in all circumstances,

the Spatial SiZer can correctly differentiate between the dependent error structure and true

significant trend, while the Original SiZer cannot. In Figure 4.5, the Spatial SiZer with the

Matern covariance function has identical performance to that of the exponential in Figure

4.4 with no pixels highlighted as significant. Also in Table 4.10 are the baseline references

for Type I error for when there is no signal. The table uses an exponential covariance, which

also coincides for the case where Matern covariance has ν=0.5. Again the Spatial SiZer with

independent blocks, q=5, has a greatly reduced level of Type I errors when compared to the

Original SiZer with independent blocks, q=6.

4.5.2 Real data analysis

This subsection will focus on three datasets that were analyzed by Godtliebsen et al. (2004)

method S3, Significance in Scale-Space, discussed in Section 4.1. In all of these results, the

data are fit using a Matern variogram with a weighted least squares method. A Matern model

is used since it has a general form. The weights used for the fitting are those of Cressie (1991),

which apportions more weight to lags that are closer to zero, and the values for a, b, and ν

are given below for each analysis. Presented in Figure 4.6 are the original three datasets.

In this first example, Figures 4.7 and 4.8 are SiZer plots created from raw data of confocal

microscopy, courtesy of Havard Rue. These data have a low noise level, but the original 80×80

image has a dim elliptical figure in its bottom left hand corner, thus still making it difficult



93

alpha = 0.01, beta = 3, qtype = 6, h = 2

5 10 15 20

2

4

6

8

10

12

14

16

18

20

alpha = 0.01, beta = 3, qtype = 7, h = 2

5 10 15 20

2

4

6

8

10

12

14

16

18

20

(a) a=0.01, b=3, h = 2, q=5 (b) a=0.01, b=3, h = 2, q=6
alpha = 0.01, beta = 30, qtype = 6, h = 2
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(c) a=0.01, b=30, h = 2, q=5 (g) a=0.01, b=30, h = 2, q=6
alpha = 0.1, beta = 3, qtype = 6, h = 2
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(e) a=0.1, b=3, h = 2, q=5 (f) a=0.1, b=3, h = 2, q=6
alpha = 0.1, beta = 30, qtype = 6, h = 2
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(g) a=0.1, b=30, h = 2, q=5 (h) a=0.1, b=30, h = 2, q=6

Figure 4.4: SiZer maps with no signal and exponential covariance function.
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(a) a=0.01, b=3, h = 2, q=5 (b) a=0.01, b=3, h = 2, q=6
alpha = 0.01, beta = 30, nu = 1, qtype = 6, h = 2
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(c) a=0.01, b=30, h = 2, q=5 (g) a=0.01, b=30, h = 2, q=6
alpha = 0.1, beta = 3, nu = 1, qtype = 6, h = 2
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(e) a=0.1, b=3, h = 2, q=5 (f) a=0.1, b=3, h = 2, q=6
alpha = 0.1, beta = 30, nu = 1, qtype = 6, h = 2
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(g) a=0.1, b=30, h = 2, q=5 (h) a=0.1, b=30, h = 2, q=6

Figure 4.5: SiZer maps with no signal and Matern covariance function.
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(a) Confocal dataset (b) Gamma Camera dataset (c) MRI dataset

Figure 4.6: Original real data.

to distinguish whether the object is a true feature or noise similar to that of other nearby

gray areas. The parameter estimates here in the Spatial SiZer are a=55.859, b=0.01, and

ν=1. The Spatial SiZer also clearly denotes the object to be significantly different from its

neighboring gray areas by surrounding the ellipsoid with green arrows. The Original SiZer,

although its arrows do converge to the center of the object, marking its peak as the significant

focal point, has a number of surrounding spurious pixels. The smaller bandwidths, especially

1.5 and 2 in Figure 4.7 (a) and (c), do a good job of marking the oval shape of the object

and nothing else extraneous.

Figures 4.9 and 4.10 are SiZer plots from a gamma camera image of a phantom designed

to reflect structure expected from cancerous bones. The gray levels show radiation counts

and the radioactive isotope accumulates in regions with bone cancer, so the bright spots on

these ribs indicate cancerous regions. Because the image is so noisy, it is especially difficult to

identify which brighter spots actually depict cancer. At the center of these figures is the most

questionable spot. Using Original SiZer, although the ribbed structures are clearly marked

as visible, as the bandwidth h increases, the image becomes oversmoothed and the arrows
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Figure 4.7: Confocal SiZer maps using the quantile with independent blocks in the Spatial
SiZer (left panels) and the Original SiZer (right panels), h=1.5, 2.
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Figure 4.8: Confocal SiZer maps using the quantile with independent blocks in the Spatial
SiZer (left panels) and the Original SiZer (right panels), h=3, 4.
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(a) h = 1.5, Spatial (b) h = 1.5, Original
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Figure 4.9: Gamma camera data SiZer maps using the quantile with independent blocks in
the Spatial SiZer (left panels) and the Original SiZer (right panels), h=1.5, 2.
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Figure 4.10: Gamma camera data SiZer maps using the quantile with independent blocks in
the Spatial SiZer (left panels) and the Original SiZer (right panels), h=3, 4.
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can barely be separated enough to mark the different ribs. For the parameter estimates in

our Spatial SiZer, a=48.382, b=0.02, and ν=1 are used. Although at finer scales, smaller

h’s, there is a large amount of noise present, it can still be seen that the arrows of the

Spatial SiZer point inward toward the center of the bright features. This indicates that the

highlighted spots we see in these bones are indeed to be considered cancerous. These Figures

also offer a great look at the tradeoff between different levels of resolution and the amount

of detail that is detectable at either the macroscopic or microscopic view of an image.

Figures 4.11 and 4.12 are data derived from a time series of perfusion MR images. Here

for the parameter estimates in our Spatial SiZer, a=16.985, b=0.02, and ν=1 are used. The

Spatial SiZer highlights the borderline of the image rather cleanly and the most prominent

feature of interest is in the top half of the image where the lighter regions are present. These

data, although evaluated in Godtliebsen et al. (2004) were originally presented in Chu et

al. (1998). There are a couple of other bright pixels in the image, but they are known to

be non-Gaussian sampling artifacts and are correctly not highlighted as significant in the

Spatial SiZer here. The Spatial SiZer clearly outperforms the Original again because of the

greatly reduced number of spuriously highlighted pixels. The smaller bandwidths also seem

to delineate the outline of the object more precisely and at these small scales, structures

that are observed are deemed actually there in the dataset.

4.6 Future Work

As discussed in Section 2.1, the idea of using independent blocks to aid in approximating

a quantile is recently updated by Hannig and Marron (2006) to the idea of estimating a

quantile using advanced distributional theory that provides row-wise or global adjustments

to reduce the number of spuriously highlighted pixels. We will propose an updated version

of the two-dimensional SiZer which incorporates this improvement, using a form of the

global adjustment. Although the independent blocks quantile performs quite well in our
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Figure 4.11: MRI data SiZer maps using the quantile with independent blocks in the Spatial
SiZer (left panels) and the Original SiZer (right panels), h=1.5, 2.
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alpha = 16.985, beta = 0.02, nu = 1, h = 3
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(a) h = 3, Spatial (b) h = 3, Original
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(c) h = 4, Spatial (d) h = 4, Original

Figure 4.12: MRI data SiZer maps using the quantile with independent blocks in the Spatial
SiZer (left panels) and the Original SiZer (right panels), h=3, 4.
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Spatial SiZer, we are optimistic that what spurious pixels do occur may be removed with

this advancement.

In addition to the arrows, Godtliebsen et al. (2004) have versions of their 2-dimensional

SiZer that use streamlines and curvature. The streamlines are curves that indicate the gra-

dient direction. These interpret the structure of a surface by indicating the physical path

that a drop of water would take in flowing downhill. Where significant structures are deemed

to occur, the streamlines are found to run together. Curvature is indicated by using different

colored dots overlaid on the image. The color of the dots is based on the eigenvalues of the

Hessian matrix. At a specific location, whether one or both of its eigenvalues are positive

or negative, a different array of colors is used to mark the significance of the points. These

alternate versions are proposed in case analysts feel they have better intuition interpreting

one of the methods over the others and also a specific method may show particular features

better than the other two. We also propose incorporating these types of visualizations into

our Spatial SiZer in the future.

Similar to what was introduced in Section 3.4, with the concept of the comparison of

multiple time series, we would like to be able to test the equality of multiple images. This

would compare k images at multiple locations and resolutions. An ANOVA type test statistic

might be developed for the comparison and if some differences are found among the images,

multiple pairwise comparisons could then be performed. For the comparison of two images

one can obtain a difference image by subtracting two images and apply a modified Spatial

SiZer to the difference image. Here, the modified Spatial SiZer estimates and tests the mean of

images rather than the partial derivatives. In this case one needs to reestimate the variogram

and recalculate a quantile.

As we are mainly interested in difference images, the pixel intensities take on both posi-

tive and negative values and tests will be conducted to determine the statistical significance

of the signs with spatial correlation taken into account. Different colors will then be used to

indicate areas of positive and negative pixel values. Smoothing amounts to local weighted
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averaging of the pixel intensities, which means that a new SiZer will analyze the images in dif-

ferent resolutions. At the smallest scale smoothing, differences in individual pixels or average

differences in very small neighborhoods of pixels are considered. Raising the smoothing level

corresponds to analyzing the average differences in increasingly large neighborhoods of pixels.

Then, the changes in isolated pixels will tend to be smoothed out and what should remain

are just large scale mean changes.

A very challenging extension will be to expand SiZer into more than two dimensions.

The statistical inference part of Spatial SiZer extends in a straightforward way, but the

visualization will require some creative ideas. Scott (1992) provides a good discussion of a

number of interesting possibilities in this direction for density estimation.
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Table 4.1: Type I errors and (standard errors) of a signal with Matern covariance, a=0.01

a=0.01
b=3 b=10 b=30

h q ν=0.5 ν=1.0 ν=2.0 ν=0.5 ν=1.0 ν=2.0 ν=0.5 ν=1.0 ν=2.0
1.5 1 0.1700 0.1737 0.1617 0.1702 0.2117 0.2200 0.2141 0.2329 0.2250

(0.0094) (0.0094) (0.0090) (0.0093) (0.0115) (0.0119) (0.0117) (0.0126) (0.0122)
2 0.2251 0.2299 0.2193 0.2275 0.2558 0.2603 0.2567 0.2672 0.2601

(0.0012) (0.0011) (0.0015) (0.0010) (0.0005) (0.0002) (0.0005) (0.0002) (0.0001)
3 0.2194 0.2235 0.2118 0.2207 0.2536 0.2589 0.2549 0.2667 0.2599

(0.0011) (0.0012) (0.0016) (0.0010) (0.0006) (0.0003) (0.0006) (0.0002) (0.0000)
4 0.2105 0.2144 0.2024 0.2113 0.2494 0.2560 0.2507 0.2657 0.2590

(0.0012) (0.0012) (0.0016) (0.0011) (0.0007) (0.0004) (0.0006) (0.0002) (0.0002)
5 0.0464 0.0391 0.0385 0.0496 0.0711 0.0911 0.0719 0.1743 0.0840

(0.0010) (0.0011) (0.0011) (0.0009) (0.0014) (0.0018) (0.0015) (0.0009) (0.0007)
6 0.1985 0.2010 0.2008 0.2001 0.1996 0.1997 0.1997 0.1996 0.1986

(0.0009) (0.0010) (0.0012) (0.0009) (0.0006) (0.0006) (0.0005) (0.0004) (0.0002)
2 1 0.1171 0.1126 0.0905 0.1164 0.1684 0.1785 0.1769 0.2122 0.1834

(0.0066) (0.0065) (0.0051) (0.0065) (0.0091) (0.0097) (0.0093) (0.0115) (0.0099)
2 0.1963 0.1961 0.1723 0.1997 0.2313 0.2361 0.2347 0.2544 0.2332

(0.0015) (0.0016) (0.0020) (0.0013) (0.0006) (0.0004) (0.0005) (0.0003) (0.0002)
3 0.1766 0.1743 0.1459 0.1799 0.2233 0.2293 0.2272 0.2530 0.2299

(0.0019) (0.0020) (0.0023) (0.0017) (0.0010) (0.0007) (0.0008) (0.0003) (0.0002)
4 0.1660 0.1648 0.1377 0.1687 0.2151 0.2224 0.2207 0.2495 0.2271

(0.0019) (0.0019) (0.0020) (0.0018) (0.0012) (0.0008) (0.0008) (0.0003) (0.0002)
5 0.0011 0.0012 0.0012 0.0013 0.0328 0.0504 0.0414 0.1594 0.0464

(0.0003) (0.0003) (0.0003) (0.0003) (0.0010) (0.0012) (0.0010) (0.0007) (0.0004)
6 0.2212 0.2216 0.2242 0.2215 0.2224 0.2204 0.2207 0.2207 0.2218

(0.0012) (0.0012) (0.0013) (0.0012) (0.0011) (0.0012) (0.0010) (0.0007) (0.0005)
3 1 0.0485 0.0422 0.0102 0.0502 0.1001 0.1032 0.1189 0.1934 0.1056

(0.0027) (0.0025) (0.0011) (0.0030) (0.0051) (0.0053) (0.0060) (0.0096) (0.0053)
2 0.1414 0.1287 0.0782 0.1425 0.1805 0.1839 0.1943 0.2378 0.1862

(0.0018) (0.0018) (0.0021) (0.0017) (0.0009) (0.0008) (0.0009) (0.0004) (0.0003)
3 0.1113 0.1020 0.0552 0.1148 0.1655 0.1701 0.1818 0.2318 0.1699

(0.0019) (0.0019) (0.0019) (0.0019) (0.0011) (0.0010) (0.0011) (0.0004) (0.0004)
4 0.0956 0.0827 0.0317 0.0993 0.1452 0.1478 0.1616 0.2262 0.1458

(0.0018) (0.0017) (0.0016) (0.0017) (0.0012) (0.0010) (0.0011) (0.0004) (0.0004)
5 0.0001 0.0001 0.0000 0.0001 0.0145 0.0161 0.0273 0.1364 0.0175

(0.0001) (0.0001) (0.0000) (0.0001) (0.0007) (0.0006) (0.0007) (0.0008) (0.0003)
6 0.2177 0.2190 0.2199 0.2183 0.2164 0.2175 0.2153 0.2106 0.2091

(0.0013) (0.0010) (0.0012) (0.0011) (0.0009) (0.0009) (0.0010) (0.0007) (0.0004)
4 1 0.0175 0.0105 0.2339 0.0196 0.0325 0.0279 0.0515 0.1283 0.0238

(0.0012) (0.0011) (0.0132) (0.0017) (0.0024) (0.0021) (0.0035) (0.0073) (0.0019)
2 0.0873 0.0599 0.0194 0.0905 0.0935 0.0844 0.1159 0.1929 0.0821

(0.0012) (0.0013) (0.0010) (0.0011) (0.0011) (0.0012) (0.0009) (0.0005) (0.0008)
3 0.0654 0.0518 0.2651 0.0690 0.0861 0.0774 0.1073 0.1883 0.0774

(0.0011) (0.0012) (0.0049) (0.0012) (0.0012) (0.0014) (0.0010) (0.0005) (0.0007)
4 0.0430 0.0284 0.2642 0.0449 0.0597 0.0511 0.0842 0.1719 0.0455

(0.0009) (0.0011) (0.0053) (0.0012) (0.0012) (0.0013) (0.0011) (0.0006) (0.0005)
5 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0032 0.0613 0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0001) (0.0004) (0.0009) (0.0000)
6 0.2210 0.2215 0.2237 0.2217 0.2215 0.2211 0.2197 0.2196 0.2188

(0.0006) (0.0005) (0.0006) (0.0006) (0.0006) (0.0005) (0.0005) (0.0004) (0.0003)
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Table 4.2: Type I errors and (standard errors) of a signal with Matern covariance, a=0.1

a=0.1
b=3 b=10 b=30

h q ν=0.5 ν=1.0 ν=2.0 ν=0.5 ν=1.0 ν=2.0 ν=0.5 ν=1.0 ν=2.0
1.5 1 0.0294 0.1534 0.1407 0.1575 0.1474 0.1484 0.1524 0.1867 0.1477

(0.0019) (0.0093) (0.0089) (0.0089) (0.0082) (0.0082) (0.0083) (0.0101) (0.0081)
2 0.0492 0.2003 0.1832 0.2087 0.2069 0.2074 0.2080 0.2407 0.2050

(0.0012) (0.0041) (0.0057) (0.0020) (0.0015) (0.0015) (0.0014) (0.0009) (0.0006)
3 0.0484 0.1987 0.1828 0.2058 0.1983 0.1973 0.2000 0.2357 0.1963

(0.0012) (0.0041) (0.0053) (0.0020) (0.0015) (0.0014) (0.0015) (0.0010) (0.0006)
4 0.0394 0.1878 0.1713 0.1935 0.1880 0.1873 0.1899 0.2282 0.1876

(0.0012) (0.0041) (0.0048) (0.0020) (0.0014) (0.0013) (0.0014) (0.0010) (0.0005)
5 0.0085 0.1195 0.1034 0.1023 0.0500 0.0479 0.0563 0.0476 0.0341

(0.0005) (0.0036) (0.0041) (0.0021) (0.0014) (0.0018) (0.0015) (0.0013) (0.0006)
6 0.1988 0.2124 0.2174 0.2057 0.2085 0.2025 0.2024 0.2015 0.1994

(0.0017) (0.0016) (0.0019) (0.0016) (0.0015) (0.0015) (0.0015) (0.0010) (0.0008)
2 1 0.0047 0.0657 0.0596 0.1215 0.0864 0.0823 0.0944 0.1220 0.0656

(0.0021) (0.0055) (0.0054) (0.0084) (0.0051) (0.0052) (0.0054) (0.0066) (0.0036)
2 0.0016 0.0858 0.0781 0.1641 0.1545 0.1516 0.1658 0.2046 0.1371

(0.0003) (0.0052) (0.0048) (0.0061) (0.0020) (0.0020) (0.0015) (0.0011) (0.0004)
3 0.0068 0.0851 0.0758 0.1624 0.1410 0.1344 0.1500 0.1874 0.1173

(0.0019) (0.0052) (0.0049) (0.0060) (0.0020) (0.0022) (0.0015) (0.0014) (0.0004)
4 0.0087 0.0780 0.0694 0.1524 0.1253 0.1207 0.1356 0.1746 0.1042

(0.0023) (0.0050) (0.0044) (0.0058) (0.0019) (0.0020) (0.0015) (0.0015) (0.0005)
5 0.0000 0.0413 0.0370 0.0843 0.0092 0.0076 0.0120 0.0051 0.0004

(0.0000) (0.0038) (0.0032) (0.0044) (0.0008) (0.0009) (0.0009) (0.0008) (0.0001)
6 0.2097 0.2149 0.2247 0.2143 0.2196 0.2214 0.2194 0.2223 0.2202

(0.0017) (0.0020) (0.0018) (0.0018) (0.0019) (0.0015) (0.0014) (0.0013) (0.0011)
3 1 0.0000 0.0104 0.0011 0.0082 0.0734 0.1134 0.0274 0.0293 0.2298

(0.0000) (0.0030) (0.0011) (0.0030) (0.0108) (0.0131) (0.0024) (0.0022) (0.0135)
2 0.0002 0.0104 0.0011 0.0104 0.0750 0.0583 0.0931 0.1118 0.0335

(0.0001) (0.0029) (0.0011) (0.0034) (0.0022) (0.0022) (0.0021) (0.0017) (0.0008)
3 0.0001 0.0103 0.0011 0.0102 0.1186 0.1548 0.0892 0.0887 0.2607

(0.0001) (0.0029) (0.0011) (0.0034) (0.0086) (0.0106) (0.0021) (0.0018) (0.0057)
4 0.0000 0.0102 0.0015 0.0099 0.1034 0.1440 0.0572 0.0643 0.1719

(0.0000) (0.0029) (0.0011) (0.0033) (0.0106) (0.0125) (0.0018) (0.0019) (0.0132)
5 0.0000 0.0000 0.0000 0.0063 0.0001 0.0000 0.0001 0.0000 0.0000

(0.0000) (0.0000) (0.0000) (0.0022) (0.0001) (0.0000) (0.0001) (0.0000) 0.0000
6 0.2170 0.2219 0.2302 0.2222 0.2249 0.2245 0.2227 0.2205 0.2179

(0.0018) (0.0015) (0.0017) (0.0015) (0.0013) (0.0011) (0.0011) (0.0009) (0.0008)
4 1 0.0000 0.0063 0.0048 0.0000 0.2302 0.2420 0.2266 0.2203 0.2420

(0.0000) (0.0028) (0.0024) (0.0000) (0.0128) (0.0131) (0.0119) (0.0135) (0.0131)
2 0.0000 0.0071 0.0048 0.0000 0.2608 0.2750 0.1027 0.0200 0.2750

(0.0000) (0.0026) (0.0024) (0.0000) (0.0043) (0.0000) (0.0042) (0.0015) (0.0000)
3 0.0000 0.0071 0.0048 0.0000 0.2605 0.2750 0.2567 0.2498 0.2750

(0.0000) (0.0026) (0.0024) (0.0000) (0.0044) (0.0000) (0.0048) (0.0072) (0.0000)
4 0.0055 0.0071 0.0048 0.0000 0.2609 0.2750 0.2559 0.2329 0.2750

(0.0027) (0.0026) (0.0024) (0.0000) (0.0045) (0.0000) (0.0053) (0.0097) (0.0000)
5 0.0000 0.0000 0.0000 0.0000 0.0066 0.0000 0.0085 0.0000 0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0019) (0.0000) (0.0021) (0.0000) (0.0000)
6 0.2243 0.2277 0.2374 0.2291 0.2285 0.2308 0.2273 0.2233 0.2220

(0.0011) (0.0011) (0.0013) (0.0011) (0.0010) (0.0010) (0.0009) (0.0007) (0.0007)
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Table 4.3: Type I errors and (standard errors) of a signal with exponential covariance, a=0.01
and a=0.1

a=0.01 a=0.1
h q b=3 b=10 b=30 b=3 b=10 b=30

1.5 1 0.2014 0.2165 0.2491 0.0607 0.1756 0.1759
(0.0013) (0.0014) (0.0006) (0.0059) (0.0014) (0.0012)

2 0.2319 0.2439 0.2593 0.0774 0.2058 0.2120
(0.0011) (0.0010) (0.0003) (0.0061) (0.0017) (0.0015)

3 0.2271 0.2390 0.2579 0.0763 0.2007 0.2038
(0.0011) (0.0011) (0.0004) (0.0061) (0.0017) (0.0013)

4 0.2179 0.2308 0.2546 0.0686 0.1899 0.1935
(0.0012) (0.0012) (0.0005) (0.0060) (0.0016) (0.0013)

5 0.0458 0.0492 0.0847 0.0331 0.0897 0.0509
(0.0011) (0.0012) (0.0016) (0.0053) (0.0016) (0.0013)

6 0.1999 0.1981 0.1993 0.2002 0.2034 0.2027
(0.0009) (0.0008) (0.0005) (0.0017) (0.0017) (0.0015)

2 1 0.1435 0.1631 0.2106 0.0046 0.1510 0.1049
(0.0023) (0.0021) (0.0008) (0.0015) (0.0026) (0.0015)

2 0.2060 0.2181 0.2393 0.0065 0.1870 0.1662
(0.0015) (0.0013) (0.0005) (0.0016) (0.0029) (0.0017)

3 0.1888 0.2049 0.2336 0.0063 0.1832 0.1483
(0.0019) (0.0015) (0.0006) (0.0016) (0.0029) (0.0018)

4 0.1778 0.1943 0.2273 0.0051 0.1692 0.1344
(0.0020) (0.0017) (0.0006) (0.0015) (0.0027) (0.0017)

5 0.0016 0.0093 0.0575 0.0035 0.0668 0.0073
(0.0003) (0.0007) (0.0012) (0.0012) (0.0027) (0.0008)

6 0.2222 0.2240 0.2226 0.2117 0.2178 0.2219
(0.0012) (0.0011) (0.0011) (0.0017) (0.0014) (0.0016)

3 1 0.0731 0.0842 0.1527 0.0000 0.0648 0.0177
(0.0016) (0.0015) (0.0009) (0.0000) (0.0062) (0.0013)

2 0.1533 0.1605 0.2064 0.0004 0.0747 0.0855
(0.0016) (0.0013) (0.0006) (0.0002) (0.0073) (0.0023)

3 0.1297 0.1407 0.1955 0.0003 0.0744 0.0748
(0.0018) (0.0017) (0.0007) (0.0001) (0.0073) (0.0023)

4 0.1111 0.1198 0.1777 0.0000 0.0687 0.0448
(0.0017) (0.0016) (0.0007) (0.0000) (0.0066) (0.0019)

5 0.0009 0.0036 0.0443 0.0000 0.0436 0.0000
(0.0002) (0.0004) (0.0009) (0.0000) (0.0042) (0.0000)

6 0.2181 0.2166 0.2154 0.2177 0.2222 0.2220
(0.0012) (0.0011) (0.0009) (0.0017) (0.0013) (0.0012)

4 1 0.0336 0.0293 0.0819 0.0000 0.0008 0.2750
(0.0009) (0.0009) (0.0012) (0.0000) (0.0006) (0.0000)

2 0.0950 0.0815 0.1350 0.0000 0.0009 0.0761
(0.0012) (0.0013) (0.0007) (0.0000) (0.0007) (0.0053)

3 0.0778 0.0734 0.1258 0.0000 0.0009 0.2750
(0.0012) (0.0013) (0.0008) (0.0000) (0.0007) (0.0000)

4 0.0576 0.0484 0.1048 0.0000 0.0009 0.2750
(0.0012) (0.0011) (0.0010) (0.0000) (0.0007) (0.0000)

5 0.0006 0.0004 0.0143 0.0000 0.0005 0.0027
(0.0001) (0.0001) (0.0006) (0.0000) (0.0004) (0.0000)

6 0.2208 0.2219 0.2202 0.2244 0.2285 0.2251
(0.0005) (0.0005) (0.0005) (0.0011) (0.0009) (0.0009)
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Table 4.4: Type II errors and (standard errors) of a signal with Matern covariance, a=0.01

a=0.01
b=3 b=10 b=30

h q ν=0.5 ν=1.0 ν=2.0 ν=0.5 ν=1.0 ν=2.0 ν=0.5 ν=1.0 ν=2.0
1.5 1 0.0111 0.0087 0.0123 0.0098 0.0055 0.0055 0.0050 0.0052 0.0062

(0.0007) (0.0005) (0.0009) (0.0005) (0.0003) (0.0003) (0.0003) (0.0003) (0.0004)
2 0.0069 0.0054 0.0074 0.0063 0.0044 0.0046 0.0044 0.0043 0.0050

(0.0003) (0.0002) (0.0003) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0000)
3 0.0079 0.0062 0.0086 0.0071 0.0049 0.0049 0.0046 0.0045 0.0051

(0.0003) (0.0002) (0.0003) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0000)
4 0.0091 0.0072 0.0104 0.0081 0.0055 0.0054 0.0051 0.0048 0.0053

(0.0003) (0.0002) (0.0004) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
5 0.0634 0.0550 0.0700 0.0637 0.0130 0.0092 0.0125 0.0075 0.0076

(0.0008) (0.0008) (0.0008) (0.0008) (0.0003) (0.0002) (0.0003) (0.0000) (0.0000)
6 0.0231 0.0222 0.0216 0.0209 0.0172 0.0171 0.0175 0.0143 0.0142

(0.0005) (0.0005) (0.0005) (0.0005) (0.0003) (0.0004) (0.0004) (0.0002) (0.0001)
2 1 0.0217 0.0199 0.0292 0.0204 0.0100 0.0087 0.0094 0.0066 0.0072

(0.0013) (0.0011) (0.0019) (0.0012) (0.0006) (0.0005) (0.0005) (0.0004) (0.0004)
2 0.0153 0.0138 0.0189 0.0146 0.0083 0.0076 0.0079 0.0071 0.0075

(0.0003) (0.0003) (0.0004) (0.0003) (0.0001) (0.0001) (0.0002) (0.0001) (0.0000)
3 0.0179 0.0170 0.0236 0.0170 0.0088 0.0081 0.0084 0.0073 0.0075

(0.0004) (0.0004) (0.0005) (0.0003) (0.0002) (0.0001) (0.0002) (0.0001) (0.0000)
4 0.0194 0.0183 0.0251 0.0184 0.0094 0.0086 0.0090 0.0074 0.0075

(0.0004) (0.0004) (0.0005) (0.0003) (0.0002) (0.0002) (0.0002) (0.0001) (0.0000)
5 0.0939 0.0964 0.1258 0.0905 0.0420 0.0370 0.0384 0.0174 0.0366

(0.0012) (0.0015) (0.0011) (0.0012) (0.0005) (0.0005) (0.0005) (0.0003) (0.0002)
6 0.0183 0.0172 0.0182 0.0172 0.0158 0.0156 0.0159 0.0151 0.0150

(0.0004) (0.0003) (0.0004) (0.0003) (0.0002) (0.0001) (0.0002) (0.0000) (0.0000)
3 1 0.0397 0.0422 0.0671 0.0395 0.0302 0.0297 0.0286 0.0158 0.0305

(0.0022) (0.0024) (0.0039) (0.0021) (0.0017) (0.0016) (0.0016) (0.0009) (0.0017)
2 0.0297 0.0322 0.0450 0.0297 0.0251 0.0245 0.0229 0.0155 0.0269

(0.0004) (0.0004) (0.0005) (0.0004) (0.0004) (0.0004) (0.0003) (0.0002) (0.0004)
3 0.0353 0.0367 0.0514 0.0351 0.0280 0.0272 0.0260 0.0166 0.0310

(0.0004) (0.0004) (0.0006) (0.0004) (0.0003) (0.0003) (0.0003) (0.0001) (0.0002)
4 0.0379 0.0397 0.0595 0.0377 0.0308 0.0303 0.0290 0.0174 0.0324

(0.0004) (0.0004) (0.0006) (0.0004) (0.0003) (0.0002) (0.0003) (0.0001) (0.0001)
5 0.1619 0.1815 0.2352 0.1598 0.1261 0.1278 0.1014 0.0518 0.1218

(0.0007) (0.0010) (0.0010) (0.0009) (0.0008) (0.0009) (0.0007) (0.0003) (0.0004)
6 0.0163 0.0161 0.0152 0.0155 0.0157 0.0158 0.0164 0.0162 0.0166

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0002) (0.0002)
4 1 0.0793 0.1091 0.0067 0.0781 0.0973 0.1077 0.0789 0.0454 0.1059

(0.0041) (0.0056) (0.0033) (0.0038) (0.0050) (0.0054) (0.0040) (0.0023) (0.0053)
2 0.0461 0.0572 0.0847 0.0454 0.0479 0.0526 0.0410 0.0274 0.0507

(0.0004) (0.0005) (0.0007) (0.0003) (0.0004) (0.0004) (0.0003) (0.0002) (0.0002)
3 0.0530 0.0608 0.0031 0.0522 0.0515 0.0560 0.0443 0.0296 0.0551

(0.0005) (0.0005) (0.0015) (0.0004) (0.0004) (0.0005) (0.0003) (0.0003) (0.0004)
4 0.0654 0.0819 0.0046 0.0646 0.0759 0.0840 0.0621 0.0390 0.0850

(0.0005) (0.0008) (0.0023) (0.0006) (0.0006) (0.0007) (0.0005) (0.0002) (0.0003)
5 0.2962 0.3319 0.4339 0.2950 0.3340 0.3612 0.3017 0.1904 0.3632

(0.0005) (0.0008) (0.0016) (0.0006) (0.0011) (0.0009) (0.0014) (0.0005) (0.0004)
6 0.0043 0.0045 0.0048 0.0045 0.0041 0.0044 0.0038 0.0033 0.0030

(0.0001) (0.0002) (0.0002) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001)
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Table 4.5: Type II errors and (standard errors) of a signal with Matern covariance, a=0.1

a=0.1
b=3 b=10 b=30

h q ν=0.5 ν=1.0 ν=2.0 ν=0.5 ν=1.0 ν=2.0 ν=0.5 ν=1.0 ν=2.0
1.5 1 0.1004 0.0874 0.1192 0.0592 0.0291 0.0199 0.0268 0.0059 0.0190

(0.0064) (0.0058) (0.0126) (0.0037) (0.0018) (0.0013) (0.0018) (0.0004) (0.0003)
2 0.0681 0.0549 0.0833 0.0381 0.0174 0.0118 0.0163 0.0050 0.0079

(0.0023) (0.0018) (0.0068) (0.0010) (0.0006) (0.0005) (0.0006) (0.0002) (0.0002)
3 0.0697 0.0576 0.0828 0.0405 0.0200 0.0138 0.0190 0.0054 0.0095

(0.0023) (0.0019) (0.0067) (0.0011) (0.0006) (0.0005) (0.0006) (0.0002) (0.0003)
4 0.0956 0.0771 0.1062 0.0522 0.0238 0.0160 0.0227 0.0058 0.0115

(0.0030) (0.0031) (0.0070) (0.0013) (0.0007) (0.0006) (0.0007) (0.0002) (0.0003)
5 0.4825 0.3985 0.5310 0.2532 0.1200 0.0938 0.1123 0.0296 0.0886

(0.0072) (0.0092) (0.0101) (0.0054) (0.0015) (0.0014) (0.0015) (0.0006) (0.0005)
6 0.0411 0.0297 0.0250 0.0297 0.0231 0.0219 0.0245 0.0200 0.0176

(0.0013) (0.0008) (0.0008) (0.0008) (0.0006) (0.0005) (0.0007) (0.0004) (0.0004)
2 1 0.1509 0.1062 0.1954 0.0786 0.0551 0.0470 0.0470 0.0163 0.0554

(0.0089) (0.0063) (0.0138) (0.0045) (0.0030) (0.0025) (0.0030) (0.0010) (0.0006)
2 0.1420 0.0729 0.1448 0.0513 0.0362 0.0292 0.0306 0.0116 0.0312

(0.0021) (0.0022) (0.0076) (0.0010) (0.0008) (0.0007) (0.0007) (0.0002) (0.0003)
3 0.1370 0.0754 0.1680 0.0537 0.0419 0.0347 0.0357 0.0134 0.0388

(0.0028) (0.0027) (0.0099) (0.0010) (0.0009) (0.0009) (0.0008) (0.0003) (0.0005)
4 0.1538 0.1013 0.1977 0.0692 0.0484 0.0400 0.0414 0.0148 0.0436

(0.0041) (0.0029) (0.0087) (0.0012) (0.0010) (0.0010) (0.0009) (0.0003) (0.0005)
5 0.5329 0.4737 0.6456 0.3243 0.1919 0.1731 0.1652 0.0841 0.1800

(0.0075) (0.0094) (0.0047) (0.0067) (0.0019) (0.0016) (0.0017) (0.0017) (0.0008)
6 0.0277 0.0231 0.0192 0.0217 0.0188 0.0175 0.0194 0.0168 0.0160

(0.0009) (0.0006) (0.0007) (0.0007) (0.0004) (0.0004) (0.0004) (0.0003) (0.0002)
3 1 0.2802 0.1926 0.3479 0.1531 0.0802 0.0631 0.0846 0.0511 0.0078

(0.0155) (0.0140) (0.0215) (0.0107) (0.0071) (0.0074) (0.0048) (0.0029) (0.0031)
2 0.2902 0.1676 0.2993 0.1331 0.0723 0.0776 0.0577 0.0356 0.0783

(0.0017) (0.0065) (0.0099) (0.0033) (0.0009) (0.0011) (0.0008) (0.0005) (0.0004)
3 0.2962 0.1910 0.3309 0.1421 0.0550 0.0411 0.0601 0.0396 0.0048

(0.0020) (0.0100) (0.0108) (0.0068) (0.0030) (0.0036) (0.0007) (0.0005) (0.0019)
4 0.3086 0.1946 0.3634 0.1585 0.0702 0.0521 0.0756 0.0446 0.0419

(0.0020) (0.0089) (0.0100) (0.0065) (0.0044) (0.0050) (0.0008) (0.0005) (0.0054)
5 0.5574 0.5384 0.6377 0.4762 0.3852 0.4135 0.2880 0.2135 0.4104

(0.0042) (0.0074) (0.0014) (0.0065) (0.0043) (0.0045) (0.0020) (0.0008) (0.0011)
6 0.0171 0.0148 0.0132 0.0146 0.0145 0.0132 0.0144 0.0152 0.0150

(0.0005) (0.0005) (0.0005) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0003)
4 1 0.4723 0.4574 0.5049 0.3882 0.0158 0.0001 0.0152 0.0148 0.0002

(0.0242) (0.0260) (0.0261) (0.0204) (0.0053) (0.0001) (0.0053) (0.0053) (0.0002)
2 0.5040 0.4908 0.5270 0.3798 0.0123 0.0000 0.0838 0.0860 0.0000

(0.0040) (0.0114) (0.0084) (0.0061) (0.0037) (0.0000) (0.0020) (0.0009) (0.0000)
3 0.5232 0.5128 0.5313 0.4195 0.0132 0.0000 0.0105 0.0080 0.0000

(0.0034) (0.0107) (0.0083) (0.0058) (0.0040) (0.0000) (0.0028) (0.0023) (0.0000)
4 0.5138 0.5134 0.5529 0.4075 0.0160 0.0000 0.0148 0.0220 0.0000

(0.0033) (0.0110) (0.0072) (0.0058) (0.0051) (0.0000) (0.0041) (0.0051) (0.0000)
5 0.6336 0.6387 0.6342 0.5964 0.6658 0.7245 0.5248 0.4588 0.7250

(0.0030) (0.0056) (0.0023) (0.0041) (0.0030) (0.0003) (0.0027) (0.0011) (0.0000)
6 0.0075 0.0070 0.0072 0.0069 0.0063 0.0065 0.0058 0.0054 0.0047

(0.0003) (0.0003) (0.0004) (0.0003) (0.0003) (0.0003) (0.0003) (0.0002) (0.0002)
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Table 4.6: Type II errors and (standard errors) of a signal with exponential covariance,
a=0.01 and a=0.1

a=0.01 a=0.1
h q b=3 b=10 b=30 b=3 b=10 b=30

1.5 1 0.0102 0.0072 0.0063 0.0918 0.0551 0.0244
(0.0004) (0.0002) (0.0001) (0.0024) (0.0014) (0.0007)

2 0.0058 0.0047 0.0044 0.0536 0.0308 0.0128
(0.0002) (0.0002) (0.0001) (0.0018) (0.0009) (0.0004)

3 0.0063 0.0052 0.0048 0.0558 0.0343 0.0149
(0.0002) (0.0002) (0.0001) (0.0018) (0.0010) (0.0005)

4 0.0074 0.0059 0.0054 0.0720 0.0420 0.0183
(0.0003) (0.0002) (0.0001) (0.0023) (0.0012) (0.0005)

5 0.0529 0.0263 0.0101 0.3759 0.1974 0.0958
(0.0008) (0.0006) (0.0002) (0.0065) (0.0042) (0.0012)

6 0.0217 0.0193 0.0167 0.0371 0.0274 0.0237
(0.0005) (0.0005) (0.0003 (0.0011) (0.0007) (0.0006)

2 1 0.0214 0.0154 0.0090 0.1540 0.0777 0.0459
(0.0004) (0.0003) (0.0002) (0.0028) (0.0013) (0.0009)

2 0.0134 0.0102 0.0076 0.1222 0.0440 0.0259
(0.0003) (0.0002) (0.0001) (0.0023) (0.0010) (0.0006)

3 0.0159 0.0115 0.0079 0.1234 0.0469 0.0311
(0.0003) (0.0002) (0.0001) (0.0024) (0.0010) (0.0006)

4 0.0172 0.0124 0.0082 0.1405 0.0607 0.0348
(0.0003) (0.0002) (0.0001) (0.0028) (0.0012) (0.0007)

5 0.0805 0.0578 0.0339 0.4188 0.2536 0.1476
(0.0014) (0.0010) (0.0004) (0.0081) (0.0051) (0.0014)

6 0.0180 0.0165 0.0159 0.0258 0.0209 0.0192
(0.0003) (0.0003) (0.0002) (0.0008) (0.0005) (0.0004)

3 1 0.0408 0.0381 0.0305 0.2942 0.1210 0.0883
(0.0004) (0.0003) (0.0003) (0.0017) (0.0040) (0.0010)

2 0.0288 0.0275 0.0195 0.2718 0.0851 0.0541
(0.0004) (0.0004) (0.0003) (0.0013) (0.0040) (0.0007)

3 0.0328 0.0311 0.0224 0.2748 0.0872 0.0581
(0.0003) (0.0003) (0.0003) (0.0016) (0.0041) (0.0007)

4 0.0362 0.0344 0.0261 0.2873 0.1079 0.0722
(0.0009) (0.0012) (0.0006) (0.0030) (0.0053) (0.0020)

5 0.1453 0.1450 0.0839 0.4796 0.3695 0.2607
(0.0016) (0.0017) (0.0009) (0.0072) (0.0089) (0.0029)

6 0.0168 0.0161 0.0160 0.0217 0.0179 0.0146
(0.0006) (0.0009) (0.0006) (0.0050) (0.0036) (0.0004)

4 1 0.0897 0.1106 0.0762 0.4905 0.3643 0.0000
(0.0008) (0.0009) (0.0005) (0.0021) (0.0064) 0.0000

2 0.0443 0.0504 0.0375 0.4626 0.3200 0.0842
(0.0004) (0.0004) (0.0002) (0.0022) (0.0054) (0.0023)

3 0.0506 0.0548 0.0403 0.4849 0.3459 0.0000
(0.0005) (0.0004) (0.0003) (0.0022) (0.0068) 0.0000

4 0.0607 0.0760 0.0547 0.4811 0.3456 0.0000
(0.0005) (0.0007) (0.0004) (0.0021) (0.0056) 0.0000

5 0.2886 0.3206 0.2709 0.5932 0.5462 0.5163
(0.0008) (0.0008) (0.0011) (0.0024) (0.0051) (0.0023)

6 0.0043 0.0042 0.0038 0.0068 0.0064 0.0055
(0.0001) (0.0001) (0.0001) (0.0003) (0.0003) (0.0002)



111

Table 4.7: Proportion identified correctly and (standard error) of a signal with Matern covari-
ance, a=0.01

a=0.01
b=3 b=10 b=30

h q ν=0.5 ν=1.0 ν=2.0 ν=0.5 ν=1.0 ν=2.0 ν=0.5 ν=1.0 ν=2.0
1.5 1 0.6989 0.6977 0.7061 0.7000 0.6628 0.6546 0.6609 0.6419 0.6489

(0.0378) (0.0380) (0.0381) (0.0381) (0.0360) (0.0355) (0.0358) (0.0348) (0.0352)
2 0.7680 0.7648 0.7733 0.7663 0.7399 0.7352 0.7390 0.7286 0.7349

(0.0012) (0.0011) (0.0014) (0.0010) (0.0005) (0.0003) (0.0005) (0.0002) (0.0001)
3 0.7727 0.7704 0.7796 0.7722 0.7416 0.7362 0.7406 0.7289 0.7350

(0.0011) (0.0012) (0.0015) (0.0010) (0.0006) (0.0003) (0.0005) (0.0002) (0.0001)
4 0.7804 0.7785 0.7872 0.7807 0.7451 0.7385 0.7442 0.7295 0.7357

(0.0013) (0.0012) (0.0015) (0.0011) (0.0007) (0.0004) (0.0006) (0.0002) (0.0002)
5 0.8903 0.9059 0.8915 0.8868 0.9160 0.8997 0.9157 0.8182 0.9084

(0.0011) (0.0008) (0.0010) (0.0008) (0.0013) (0.0017) (0.0015) (0.0009) (0.0007)
6 0.7784 0.7769 0.7776 0.7790 0.7832 0.7832 0.7828 0.7861 0.7872

(0.0012) (0.0012) (0.0014) (0.0011) (0.0008) (0.0008) (0.0008) (0.0005) (0.0003)
2 1 0.8037 0.8080 0.8218 0.8051 0.7632 0.7554 0.7562 0.7241 0.7518

(0.0731) (0.0732) (0.0734) (0.0731) (0.0724) (0.0722) (0.0724) (0.0717) (0.0721)
2 0.7885 0.7901 0.8089 0.7857 0.7604 0.7563 0.7575 0.7385 0.7594

(0.0015) (0.0016) (0.0020) (0.0013) (0.0006) (0.0005) (0.0006) (0.0003) (0.0002)
3 0.8056 0.8088 0.8306 0.8031 0.7679 0.7626 0.7644 0.7397 0.7626

(0.0018) (0.0019) (0.0021) (0.0016) (0.0010) (0.0007) (0.0008) (0.0003) (0.0002)
4 0.8146 0.8169 0.8372 0.8129 0.7756 0.7690 0.7703 0.7431 0.7654

(0.0019) (0.0019) (0.0019) (0.0017) (0.0012) (0.0008) (0.0009) (0.0003) (0.0002)
5 0.9050 0.9025 0.8731 0.9082 0.9252 0.9126 0.9202 0.8232 0.9170

(0.0012) (0.0014) (0.0011) (0.0012) (0.0008) (0.0010) (0.0009) (0.0008) (0.0004)
6 0.7606 0.7609 0.7576 0.7613 0.7618 0.7639 0.7636 0.7643 0.7631

(0.0011) (0.0013) (0.0013) (0.0011) (0.0011) (0.0012) (0.0010) (0.0007) (0.0005)
3 1 0.7918 0.7956 0.8036 0.7915 0.7518 0.7487 0.7346 0.6743 0.7461

(0.0430) (0.0433) (0.0434) (0.0429) (0.0408) (0.0406) (0.0398) (0.0366) (0.0404)
2 0.8289 0.8391 0.8769 0.8278 0.7944 0.7917 0.7829 0.7467 0.7869

(0.0017) (0.0017) (0.0019) (0.0015) (0.0010) (0.0009) (0.0008) (0.0005) (0.0005)
3 0.8534 0.8614 0.8935 0.8501 0.8066 0.8028 0.7923 0.7516 0.7991

(0.0017) (0.0017) (0.0016) (0.0017) (0.0011) (0.0010) (0.0010) (0.0005) (0.0005)
4 0.8665 0.8776 0.9088 0.8630 0.8240 0.8219 0.8094 0.7565 0.8218

(0.0017) (0.0015) (0.0014) (0.0015) (0.0012) (0.0011) (0.0011) (0.0004) (0.0004)
5 0.8380 0.8184 0.7648 0.8402 0.8595 0.8561 0.8714 0.8118 0.8608

(0.0007) (0.0010) (0.0010) (0.0009) (0.0008) (0.0009) (0.0006) (0.0007) (0.0006)
6 0.7660 0.7649 0.7650 0.7662 0.7680 0.7668 0.7683 0.7733 0.7743

(0.0013) (0.0011) (0.0014) (0.0012) (0.0010) (0.0011) (0.0011) (0.0007) (0.0005)
4 1 0.8011 0.7787 0.6582 0.8006 0.7673 0.7618 0.7666 0.7225 0.7675

(0.0388) (0.0377) (0.0318) (0.0388) (0.0372) (0.0369) (0.0370) (0.0350) (0.0372)
2 0.8667 0.8829 0.8960 0.8642 0.8587 0.8630 0.8431 0.7797 0.8673

(0.0011) (0.0011) (0.0010) (0.0010) (0.0010) (0.0010) (0.0008) (0.0005) (0.0008)
3 0.8817 0.8875 0.7318 0.8788 0.8625 0.8666 0.8483 0.7822 0.8675

(0.0009) (0.0010) (0.0034) (0.0011) (0.0010) (0.0011) (0.0009) (0.0005) (0.0007)
4 0.8917 0.8897 0.7312 0.8906 0.8645 0.8650 0.8537 0.7892 0.8696

(0.0008) (0.0009) (0.0030) (0.0009) (0.0010) (0.0011) (0.0009) (0.0006) (0.0004)
5 0.7038 0.6681 0.5661 0.7050 0.6658 0.6388 0.6951 0.7483 0.6368

(0.0005) (0.0008) (0.0016) (0.0006) (0.0010) (0.0009) (0.0011) (0.0008) (0.0004)
6 0.7747 0.7741 0.7715 0.7739 0.7745 0.7745 0.7765 0.7771 0.7782

(0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0004) (0.0004) (0.0003)
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Table 4.8: Proportion identified correctly and (standard error) of a signal with Matern covari-
ance, a=0.1

a=0.1
b=3 b=10 b=30

h q ν=0.5 ν=1.0 ν=2.0 ν=0.5 ν=1.0 ν=2.0 ν=0.5 ν=1.0 ν=2.0
1.5 1 0.7502 0.6392 0.6201 0.6634 0.7035 0.7117 0.7008 0.6874 0.7155

(0.0407) (0.0347) (0.0322) (0.0358) (0.0381) (0.0386) (0.0379) (0.0373) (0.0388)
2 0.8828 0.7448 0.7336 0.7532 0.7757 0.7809 0.7757 0.7543 0.7871

(0.0025) (0.0040) (0.0051) (0.0022) (0.0016) (0.0014) (0.0016) (0.0010) (0.0005)
3 0.8819 0.7438 0.7344 0.7537 0.7817 0.7889 0.7810 0.7590 0.7943

(0.0025) (0.0040) (0.0056) (0.0022) (0.0016) (0.0013) (0.0017) (0.0010) (0.0005)
4 0.8650 0.7351 0.7225 0.7543 0.7882 0.7967 0.7875 0.7661 0.8009

(0.0031) (0.0039) (0.0061) (0.0023) (0.0015) (0.0012) (0.0017) (0.0010) (0.0004)
5 0.5090 0.4820 0.3656 0.6445 0.8300 0.8583 0.8314 0.9229 0.8773

(0.0072) (0.0091) (0.0097) (0.0062) (0.0017) (0.0016) (0.0017) (0.0011) (0.0007)
6 0.7602 0.7579 0.7577 0.7646 0.7684 0.7757 0.7732 0.7786 0.7830

(0.0021) (0.0019) (0.0022) (0.0018) (0.0017) (0.0016) (0.0019) (0.0013) (0.0011)
2 1 0.7875 0.7691 0.6902 0.7415 0.8010 0.8132 0.8005 0.8030 0.8265

(0.0727) (0.0727) (0.0719) (0.0724) (0.0731) (0.0732) (0.0729) (0.0732) (0.0735)
2 0.8565 0.8413 0.7771 0.7846 0.8093 0.8192 0.8036 0.7839 0.8317

(0.0021) (0.0047) (0.0064) (0.0057) (0.0018) (0.0016) (0.0015) (0.0012) (0.0005)
3 0.8563 0.8396 0.7563 0.7839 0.8171 0.8310 0.8143 0.7993 0.8439

(0.0021) (0.0049) (0.0083) (0.0057) (0.0018) (0.0017) (0.0014) (0.0014) (0.0006)
4 0.8375 0.8207 0.7329 0.7784 0.8263 0.8393 0.8230 0.8106 0.8523

(0.0027) (0.0045) (0.0073) (0.0053) (0.0018) (0.0015) (0.0014) (0.0014) (0.0008)
5 0.4671 0.4850 0.3175 0.5915 0.7989 0.8193 0.8229 0.9109 0.8197

(0.0075) (0.0077) (0.0034) (0.0068) (0.0019) (0.0014) (0.0017) (0.0015) (0.0007)
6 0.7627 0.7621 0.7562 0.7638 0.7616 0.7615 0.7612 0.7609 0.7638

(0.0017) (0.0019) (0.0019) (0.0016) (0.0018) (0.0015) (0.0014) (0.0013) (0.0011)
3 1 0.5998 0.6781 0.5310 0.7185 0.7306 0.7067 0.7691 0.8009 0.6451

(0.0325) (0.0381) (0.0302) (0.0394) (0.0406) (0.0399) (0.0412) (0.0433) (0.0349)
2 0.7097 0.8221 0.6997 0.8566 0.8526 0.8642 0.8492 0.8526 0.8882

(0.0017) (0.0077) (0.0098) (0.0028) (0.0020) (0.0019) (0.0018) (0.0014) (0.0008)
3 0.7037 0.7988 0.6680 0.8477 0.8264 0.8041 0.8507 0.8717 0.7346

(0.0020) (0.0107) (0.0107) (0.0064) (0.0057) (0.0071) (0.0018) (0.0016) (0.0038)
4 0.6914 0.7952 0.6352 0.8317 0.8264 0.8039 0.8672 0.8911 0.7863

(0.0020) (0.0096) (0.0097) (0.0061) (0.0064) (0.0076) (0.0019) (0.0016) (0.0079)
5 0.4426 0.4617 0.3623 0.5175 0.6148 0.5865 0.7119 0.7865 0.5896

(0.0042) (0.0074) (0.0014) (0.0052) (0.0043) (0.0045) (0.0021) (0.0008) (0.0011)
6 0.7659 0.7634 0.7567 0.7632 0.7606 0.7623 0.7630 0.7643 0.7672

(0.0017) (0.0015) (0.0018) (0.0014) (0.0013) (0.0011) (0.0012) (0.0011) (0.0010)
4 1 0.4281 0.4347 0.3896 0.5109 0.6515 0.6542 0.6564 0.6629 0.6542

(0.0207) (0.0222) (0.0197) (0.0253) (0.0316) (0.0316) (0.0320) (0.0325) (0.0316)
2 0.4961 0.5021 0.4682 0.6202 0.7270 0.7250 0.8135 0.8941 0.7250

(0.0040) (0.0108) (0.0076) (0.0061) (0.0008) (0.0000) (0.0027) (0.0009) (0.0000)
3 0.4768 0.4801 0.4639 0.5806 0.7264 0.7250 0.7329 0.7422 0.7250

(0.0034) (0.0100) (0.0074) (0.0058) (0.0006) (0.0000) (0.0021) (0.0049) (0.0000)
4 0.4808 0.4795 0.4423 0.5925 0.7231 0.7250 0.7293 0.7452 0.7250

(0.0031) (0.0103) (0.0060) (0.0058) (0.0009) (0.0000) (0.0013) (0.0047) (0.0000)
5 0.3664 0.3613 0.3658 0.4036 0.3276 0.2756 0.4667 0.5412 0.2750

(0.0030) (0.0056) (0.0023) (0.0041) (0.0020) (0.0003) (0.0017) (0.0011) (0.0000)
6 0.7682 0.7654 0.7554 0.7640 0.7652 0.7628 0.7669 0.7714 0.7734

(0.0012) (0.0012) (0.0014) (0.0012) (0.0011) (0.0011) (0.0009) (0.0007) (0.0007)
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Table 4.9: Proportion identified correctly and (standard error) of a signal with exponential
covariance, a=0.01 and a=0.1

a=0.01 a=0.1
h q b=3 b=10 b=30 b=3 b=10 b=30

1.5 1 0.7884 0.7763 0.7446 0.8476 0.7694 0.7997
(0.0013) (0.0014) (0.0006) (0.0053) (0.0022) (0.0013)

2 0.7623 0.7514 0.7363 0.8690 0.7634 0.7752
(0.0011) (0.0010) (0.0004) (0.0056) (0.0021) (0.0015)

3 0.7666 0.7559 0.7373 0.8679 0.7651 0.7813
(0.0011) (0.0011) (0.0004) (0.0056) (0.0021) (0.0014)

4 0.7747 0.7634 0.7401 0.8595 0.7682 0.7883
(0.0012) (0.0012) (0.0005) (0.0054) (0.0022) (0.0013)

5 0.9014 0.9245 0.9052 0.5911 0.7130 0.8534
(0.0011) (0.0011) (0.0015) (0.0061) (0.0047) (0.0014)

6 0.7785 0.7827 0.7841 0.7627 0.7693 0.7736
(0.0011) (0.0011) (0.0007) (0.0020) (0.0020) (0.0018)

2 1 0.8352 0.8215 0.7805 0.8415 0.7713 0.8492
(0.0022) (0.0021) (0.0009) (0.0020) (0.0029) (0.0015)

2 0.7806 0.7718 0.7531 0.8713 0.7690 0.8079
(0.0015) (0.0013) (0.0005) (0.0014) (0.0029) (0.0016)

3 0.7953 0.7836 0.7585 0.8703 0.7699 0.8206
(0.0018) (0.0016) (0.0006) (0.0014) (0.0029) (0.0016)

4 0.8050 0.7933 0.7645 0.8545 0.7702 0.8308
(0.0020) (0.0018) (0.0006) (0.0019) (0.0027) (0.0016)

5 0.9180 0.9329 0.9086 0.5778 0.6796 0.8452
(0.0013) (0.0010) (0.0010) (0.0075) (0.0063) (0.0014)

6 0.7598 0.7595 0.7615 0.7625 0.7613 0.7590
(0.0012) (0.0011) (0.0011) (0.0016) (0.0014) (0.0015)

3 1 0.8860 0.8776 0.8167 0.7056 0.8140 0.8936
(0.0019) (0.0018) (0.0012) (0.0017) (0.0031) (0.0020)

2 0.8179 0.8120 0.7742 0.7278 0.8402 0.8605
(0.0015) (0.0013) (0.0007) (0.0013) (0.0041) (0.0018)

3 0.8376 0.8283 0.7822 0.7251 0.8386 0.8673
(0.0017) (0.0017) (0.0008) (0.0016) (0.0040) (0.0019)

4 0.8537 0.8469 0.7968 0.7150 0.8263 0.8849
(0.0016) (0.0016) (0.0007) (0.0016) (0.0034) (0.0017)

5 0.8528 0.8502 0.8712 0.5151 0.5828 0.7369
(0.0009) (0.0009) (0.0007) (0.0055) (0.0052) (0.0013)

6 0.7657 0.7681 0.7692 0.7656 0.7635 0.7633
(0.0013) (0.0012) (0.0011) (0.0016) (0.0014) (0.0013)

4 1 0.8767 0.8602 0.8420 0.5095 0.6349 0.7250
(0.0009) (0.0008) (0.0011) (0.0021) (0.0061) (0.0000)

2 0.8607 0.8682 0.8276 0.5375 0.6792 0.8397
(0.0012) (0.0012) (0.0007) (0.0022) (0.0051) (0.0032)

3 0.8716 0.8719 0.8339 0.5151 0.6532 0.7250
(0.0011) (0.0012) (0.0008) (0.0022) (0.0065) (0.0000)

4 0.8817 0.8756 0.8406 0.5190 0.6536 0.7250
(0.0012) (0.0009) (0.0009) (0.0021) (0.0053) (0.0000)

5 0.7092 0.6770 0.7137 0.4053 0.4512 0.4786
(0.0008) (0.0008) (0.0007) (0.0024) (0.0048) (0.0023)

6 0.7749 0.7739 0.7761 0.7688 0.7652 0.7694
(0.0005) (0.0005) (0.0005) (0.0011) (0.0010) (0.0008)
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Table 4.10: Type I Errors and (standard errors) of no signal with exponential covariance,
a=0.01, 0.1

a=0.01 0.1 0.01 0.1 0.01 0.1
h q b=3 b=10 b=30

1.5 1 0.5093 0.6139 0.6988 0.6715 0.6743 0.6717
(0.0411) (0.0387) (0.0314) (0.0338) (0.0323) (0.0323)

2 0.4910 0.6007 0.6954 0.6666 0.6714 0.6757
(0.0407) (0.0389) (0.0313) (0.0339) (0.0321) (0.0317)

3 0.5115 0.6160 0.7013 0.6731 0.6770 0.6743
(0.0409) (0.0384) (0.0310) (0.0336) (0.0319) (0.0319)

4 0.6142 0.7028 0.7759 0.7489 0.7438 0.7364
(0.0387) (0.0343) (0.0235) (0.0275) (0.0262) (0.0273)

5 0.0089 0.0085 0.0066 0.0057 0.0065 0.0065
(0.0009) (0.0010) (0.0009) (0.0008) (0.0011) (0.0011)

6 0.5746 0.5787 0.7350 0.7300 0.7706 0.7703
(0.0092) (0.0089) (0.0080) (0.0085) (0.0080) (0.0078)

2 1 0.8153 0.8162 0.7611 0.7625 0.7445 0.7462
(0.0034) (0.0038) (0.0037) (0.0037) (0.0036) (0.0037)

2 0.8157 0.8164 0.7613 0.7626 0.7440 0.7462
(0.0034) (0.0038) (0.0037) (0.0037) (0.0036) (0.0037)

3 0.8157 0.8164 0.7613 0.7626 0.7440 0.7462
(0.0034) (0.0038) (0.0037) (0.0037) (0.0036) (0.0037)

4 0.8078 0.8085 0.7539 0.7551 0.7360 0.7386
(0.0088) (0.0090) (0.0085) (0.0085) (0.0082) (0.0083)

5 0.0074 0.0075 0.0088 0.0085 0.0094 0.0087
(0.0073) (0.0074) (0.0088) (0.0085) (0.0094) (0.0087)

6 0.6841 0.6869 0.8367 0.8245 0.8590 0.8624
(0.0098) (0.0101) (0.0077) (0.0082) (0.0066) (0.0071)

3 1 0.7371 0.7546 0.5072 0.5104 0.7067 0.7071
(0.0190) (0.0141) (0.0341) (0.0343) (0.0053) (0.0055)

2 0.7373 0.7546 0.5072 0.5104 0.7067 0.7071
(0.0189) (0.0141) (0.0341) (0.0343) (0.0053) (0.0055)

3 0.7371 0.7546 0.5072 0.5104 0.7067 0.7071
(0.0190) (0.0141) (0.0341) (0.0343) (0.0053) (0.0055)

4 0.7371 0.7546 0.5840 0.5684 0.7067 0.7071
(0.0190) (0.0141) (0.0295) (0.0314) (0.0053) (0.0055)

5 0.0009 0.0004 0.0021 0.0020 0.0000 0.0000
(0.0004) (0.0002) (0.0002) (0.0002) (0.0000) (0.0000)

6 0.7727 0.7839 0.9062 0.8961 0.9227 0.9227
(0.0116) (0.0117) (0.0059) (0.0070) (0.0050) (0.0052)

4 1 0.7298 0.7387 0.7240 0.7309 0.6934 0.6897
(0.0133) (0.0077) (0.0071) (0.0074) (0.0097) (0.0097)

2 0.7298 0.7387 0.7240 0.7309 0.6934 0.6897
(0.0133) (0.0077) (0.0071) (0.0074) (0.0097) (0.0097)

3 0.7298 0.7387 0.7240 0.7309 0.6934 0.6897
(0.0133) (0.0077) (0.0071) (0.0074) (0.0097) (0.0097)

4 0.7434 0.7387 0.7240 0.7309 0.6934 0.6897
(0.0084) (0.0077) (0.0071) (0.0074) (0.0097) (0.0097)

5 0.0004 0.0003 0.0000 0.0000 0.0001 0.0001
(0.0001) (0.0001) (0.0000) (0.0000) (0.0001) (0.0001)

6 0.8025 0.8195 0.9269 0.9186 0.9401 0.9403
(0.0132) (0.0129) (0.0052) (0.0061) (0.0049) (0.0043)



Chapter 5

Discussion

In this dissertation, SiZer, Significant ZERo Crossings of the derivative has been taken from

its original form to some new advancements that will make it applicable to a wider range of

scientific problems. To aid in the advancement provided by Park and Kang (2008), the first

offering here was to derive and prove asymptotic properties. Park and Kang (2008) provided a

SiZer that could be based on differences instead of derivatives. This allows for the scale-space

analysis to be performed on two independent regression curves. To enhance the foundation

of their proposal, we have provided here three asymptotic properties that address the need

for causality of the creation of extrema and weak convergence of the empirical scale-space

surface.

Also proposed is a new SiZer tool that can compare multiple time series. This device

provides inference for not only two independent regression curves, but two or more regression

curves with a dependent error structure. This approach combines the ideas behind the work

of authors that worked with time series and the SiZer for two regression curves. The SiZer

that is proposed here works with time series and takes the difference between two time series

to denote any meaningful differences between the two. The performance of this proposed

instrument was found to have a few spurious pixels on occasion, but as a whole performed

well with different regression models, various types of dependent structure, and with known

or estimated autocovariance functions. To support this development, asymptotic properties

have also been newly given for the weak convergence of the empirical and the theoretical

scale-space surfaces in the case when comparing two time series.
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Another SiZer was also proposed that can evaluate more than two time series. This

takes an approach where residuals are calculated under the null hypothesis, that supposes

each individual times series can be approximated by the same local linear estimator. Using

this common function, residuals are then calculated. Under the alternative hypothesis, we

compute a different estimator for each. Then, a second group of residuals are computed

between each data value and the set function from which it came. These two groups of

residuals are then compared as two sets of time series with the tool that was proposed

previously. Again the performance of this tool is demonstrated with simulation and real

data analysis, with various types of dependence correlation structure. The performance of

this SiZer shows that it is able to detect whether or not there is significant difference present

between the sets of residuals and thus whether there should be individual function estimators.

The final version of SiZer proposed is that of a two-dimensional SiZer that can analyze not

only independent data, but data that possesses spatial correlation structure. Now, instead

of focusing on derivatives, or differences between curves, we look at the partial derivative

or gradient at any specific location. This two-dimensional SiZer is also an advancement

upon one that could analyze independent data only. The accounting of this covariance has

also led us to propose a new covariance matrix, and resulting test statistic. We investigate

its performance with a number of multiple comparison procedures and find that once the

spatial correlation is taken into account, the independent blocks quantile, used previously

by a number of other authors, performs quite well at the task of reducing Type I error rates.

This Spatial SiZer was found to perform extremely well in simulated and real datasets with

greatly reduced Type I error rates and few spuriously highlighted pixels in comparison with

the Original SiZer, which did not account for the dependence structure in a dataset.

We believe that these new proposals have assisted in strengthening the foundation of

proposals by other authors by providing some accompanying asymptotic properties to their

work. Also, the ability to address two or more time series and two-dimensional images with
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spatial structure is an advancement that will allow numerous scientific problems to be ana-

lyzed by the visualization techniques provided by SiZer that could not have previously been.
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