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ABSTRACT 

This dissertation is composed of three studies that evaluated the use of precision 

technologies; remote sensing, geographic information systems (GIS), and global positioning 

systems (GPS) for the capture and development of forestry and natural resources information. 

We explored the use of new protocols and procedures to collect data with GPS, estimated urban 

canopy cover with different remotely sensed sources, and assessed the accuracy of the processes.  

In the first study, a statistical design was developed to collect data using a type of 

recreation-grade GPS receiver in the forest, during two different seasons. The dynamically-

collected data were used in conjunction with GIS to assess error and accuracy. The results 

indicated the samples collected in winter showed less variation than the samples collected in 

summer when compared to the true land area. However, statistical test results suggested the 

season was not a significant factor. In the second study, two different sampling approaches, 

random point-sampling and plot/grid were employed for estimating urban tree canopy cover 

within two U.S. cities, using aerial photography and Google Earth imagery. The results indicated 

the two different sampling approaches could produce similar estimates of urban canopy cover, 

although one (point-based) was more time-efficient. Mixed results were observed when 



 

 

considering the imagery sources. In the third study, the urban canopy cover was again assessed 

within same two U.S. cities yet this was a remote sensing study that incorporated LiDAR data 

with high resolution remotely sensed imagery, and urban canopy cover was estimated using the 

pixel-based supervised maximum likelihood classification method. The results suggested using 

LiDAR data along with high resolution remotely sensed imagery or using LiDAR data by itself 

can improve the process of identifying vegetated areas. These tactics increase accuracy of the 

vegetation class, and produce more accurate estimates of land areas when compared to using 

high resolution remotely sensed imagery alone.  

These studies demonstrate the importance in forestry and natural resources fields of 

continuous evaluation of advanced technologies with a variety of experimental designs. The 

results might assist the endeavors of resource managers, the environmental community, 

manufacturers, and policy makers, and contribute to further advance in the field of precision 

forestry. 

 

 

INDEX WORDS: Global positioning systems, geographic information systems, remote 

sensing, forestry, urban forests, urban vegetation, accuracy assessment, sampling, supervised 

classification 

 

 

  



 

 

 

 

APPLICATION OF REMOTE SENSING, GIS, AND GPS IN PRECISION FORESTRY 

PRACTICES 

 

by 

 

ZENNURE UCAR 

BS, Karadeniz Technical University, TURKEY, 2007 

MS, Texas A&M University, 2012 

 

 

 

 

 

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial 

Fulfillment of the Requirements for the Degree 

 

DOCTOR OF PHILOSOPHY 

 

ATHENS, GEORGIA 

2017 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2017 

Zennure Ucar 

All Rights Reserved 

  



 

 

 

 

APPLICATION OF REMOTE SENSING, GIS, AND GPS IN PRECISION FORESTRY 

PRACTICES 

 

by 

 

ZENNURE UCAR 

 

 

 

 

      Major Professor: Pete Bettinger 

      Committee:  Jacek Siry 

         Chris Cieszewski 

         Marguerite Madden 

          

 

 

 

 

 

 

 

 

 

 

Electronic Version Approved: 

 

Suzanne Barbour 

Dean of the Graduate School 

The University of Georgia 

August 2017 



 

iv 

 

 

DEDICATION 

To the loving memory of my father Osman Ucar,  

a smart, honest and caring man  

whom I still miss every day. 

 

 

  



 

v 

 

 

ACKNOWLEDGEMENTS 

 First and foremost, praises and thanks to God for everything that I have today. 

 I would like to express my deep and sincere gratitude to my advisor Dr. Pete Bettinger, 

for giving me the opportunity to pursue my PhD degree and providing me invaluable guidance in 

my dissertation and professional development. I am inspired by his dynamism, vision, sincerity 

and motivation. His performance, original thoughts and encouragements have pushed me to learn 

and grow more and more. Without his guidance and persistent help, this dissertation would not 

have been possible. It was a great privilege and honor to work under his guidance and I am 

extremely grateful for all his efforts. 

 I would like to thank my committee members, Dr. Jacek Siry, Dr. Chris Cieszewski, and 

Dr. Marguerite Madden, for their comments, support and patience on this dissertation, but also 

for their advices which extend and inform my future research perspective. I also express my 

appreciation to Krista Merry, for her constant help in developing the methodology for my 

research, and presenting the research work as clearly as possible. This dissertation would not 

have been possible without her support and assistance. I would also like to thank our research 

team members, Steven Weaver, Ramazan Akbulut, and Shingo Obata for helping me in 

conducting field work and writing-up the research. Their comments and suggestions were useful 

and definitely improve the quality of work.  

 I express my gratitude to all members of Warnell School of Forestry and Natural 

Resources, the University of Georgia (UGA). I had exceptional learning experience during my 

PhD studies, and without your assistance, invaluable resource and friendship, I would not have 



 

vi 

been able to develop as scholar. Special thanks to Dr. Jeff Hepinstall-Cymerman, for giving me 

opportunity to teach FANR 3800 and FANR 4420/6420; Mr. Eric Schmeckpeper, for giving me 

opportunity to work as a GIS Intern at the U.S. Forest Service Region 8. I feel very grateful for 

their support during my studies. 

 I would like to say thanks to all my friends who offer their help, encouragement, 

understanding, and love during this process. To Aysegul and Aynur, thanks for being always 

supportive and believing in me more than I do.  To Tugba and Mutlu, thanks for listening and 

supporting me when I needed to talk to somebody even if I had craziest ideas or irrational 

concerns about my research or daily life, and being always there to make my grad-life endurable. 

I am so grateful to have two of you in my life. Although I cannot mention all their names in this 

limited space, I also had many loving friends; Gulcimen, Gulcin, Merve, Esma, Serap, Bahadir, 

Gulden, Hakan, Ayca, Suravi, Ike, Kubra, whose friendships directly or indirectly improve my 

vision.  

 From the depth of my hearth, I would like to thank my big family, who believed in me, 

taught me to be honest, and always to strive for the best. Special thanks to my oldest brother 

Fahri Ucar, his wife Gulenay Ucar, and my younger sister Kezban Ucar Cifci, for encouraging 

me to begin this long journey. Even though my family is back in Turkey, I always feel their love 

and endless support in my heart. They will never let me alone. 

 

  

 

  



 

vii 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS .............................................................................................................v 

LIST OF TABLES ......................................................................................................................... ix 

LIST OF FIGURES .........................................................................................................................x 

CHAPTER 

 1 INTRODUCTION AND LITERATURE REVIEW .....................................................1 

   Introduction ..............................................................................................................1 

   GPS Receiver Literature Review .............................................................................3 

   Urban Canopy Cover Estimation Literature Review ...............................................4 

   Dissertation Format ..................................................................................................6 

   References ................................................................................................................9 

 2 DYNAMIC ACCURACY OF RECREATION-GRADE GPS RECEIVERS IN OAK-

HICKORY FORESTS .................................................................................................15 

   Abstract ..................................................................................................................16 

   Introduction ............................................................................................................17 

   Methods..................................................................................................................21 

   Results ....................................................................................................................28 

   Discussion ..............................................................................................................34 

   Conclusion .............................................................................................................35 

   References ..............................................................................................................37 



 

viii 

 3 A COMPARISON OF TWO SAMPLING APPROACHES FOR ASSESSING THE 

URBAN FOREST CANOPY COVER FROM AERIAL PHOTOGRAPHY .............41 

   Abstract ..................................................................................................................42 

   Introduction ............................................................................................................43 

   Methods..................................................................................................................49 

   Results ....................................................................................................................58 

   Discussion ..............................................................................................................63 

   Conclusion .............................................................................................................71 

   References ..............................................................................................................72 

 4 ESTIMATION OF URBAN VEGETATION COVER USING MULTISPECTRAL 

DATA AND LiDAR ....................................................................................................77 

   Abstract ..................................................................................................................78 

   Introduction ............................................................................................................79 

   Methods..................................................................................................................83 

   Results ....................................................................................................................95 

   Discussion ............................................................................................................106 

   Conclusion ...........................................................................................................110 

   References ............................................................................................................113 

 5 CONCLUSION ..........................................................................................................120 

REFERENCES ............................................................................................................................126  



 

ix 

 

 

LIST OF TABLES 

Page 

Table 2.1: Results from dynamic study of Garmin Oregon 450t GPS receiver .........................29 

Table 2.2: Ranking of each Garmin Oregon 450t GPS receiver after averaging the areas 

determined during each season ..........................................................................................30 

Table 2.3: Results of the Mann-Whitney statistical test for significant difference amongst seasons 

(n = 40 each season) ...........................................................................................................32 

Table 3.1: Summary statistics for the point-based sampling approach (1,000 randomly-located 

sample points) and the plot/grid sampling approach (1,000 randomly-located sample 

plots) using imagery available through Google Earth and NAIP imagery viewed within 

ArcGIS ...............................................................................................................................61 

Table 4.1: Classification schemes for major classes and subclasses in the two study areas .........92 

Table 4.2: Classification matrices for four scenarios and six major land classes, Tallahassee .....97 

Table 4.3: Difference in land cover between LiDAR-related scenarios (1-3) and using NAIP 

imagery only (Scenario 4), Tallahassee .............................................................................99 

Table 4.4: Classification matrices for two major land classes, Tallahassee ................................100 

Table 4.5: Classification matrices for four scenarios and six major land classes, Tacoma .........102 

Table 4.6: Area difference of land cover between using LiDAR integrated data (Scenario 1, 2, 

and 3) and using NAIP imagery only (Scenario 4) into the classification, Tacoma ........104 

Table 4.7: The summarized accuracy of two classes among five scenarios with Kappa statistic, 

Tacoma, WA ....................................................................................................................105  



 

x 

 

 

LIST OF FIGURES 

Page 

Figure 2.1: A map of the study of the area and the Whitehall Forest GPS Test Site points used in 

this study ............................................................................................................................22 

Figure 2.2: An example of vertices within 1 m buffers around true area with 40 samples in 

winter......... ........................................................................................................................25 

Figure 2.3: An example of overlay of one sample area on top of the true area .............................26 

Figure 2.4: The percentage difference between the true area and simulated areas ........................33 

Figure 3.1: The Tallahassee city boundary (upper left), an example of the random point-based 

sampling approach (upper right), 0.4 ha plots (lower left), and the 1.83 m grid embedded 

within the 0.4 ha plots (lower right)...................................................................................51 

Figure 4.1: Administrative boundaries of (left) Tallahassee, and (right) Tacoma .........................84 

Figure 4.2: Flowchart describing workflow adapted in the study .................................................87 

Figure 4.3: Conceptual model of the stacked images ....................................................................91 

Figure 4.4: Percent area of the major land classes, Tallahassee ....................................................98 

Figure 4.5: Comparison of land area estimated using the classification scenarios, Tallahassee .100 

Figure 4.6: Percent area of the major land classes, Tacoma ........................................................103 

Figure 4.7: Comparison of land area estimated using the classification scenarios, Tacoma .......105 

Figure 4.8: An example of classification results for six major classes (left) Tallahassee, and 

(right) Tacoma .................................................................................................................108 



 

xi 

Figure 4.9: An example of classification results for two major classes (left) Tallahassee, and 

(right) Tacoma .................................................................................................................111 

 

 

 

 



 

1 

 

 

CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

Introduction 

Precision forestry arose based on principles similar to those used precision agriculture, 

where advanced technology and sophisticated analytical tools are used to acquire high spatial 

and spectral resolution information that could be used to assist in the decision making process. 

(Kovácsová and Antalová, 2010; Olivera and Visser, 2014). In 2001, precision forestry was 

defined a process that facilitates site specific decision-making issues that require repeatable 

measurements, activities and procedures to grow and harvest trees, and manage forest in 

conjunction with desire to protect wildlife habitat, water quality, aesthetics, and other 

environmental resources (Bare 2001). The practice of precision forestry therefore offers an 

opportunity to use information of value to research, the environmental community, 

manufacturers and public policy makers.  

Taylor et al. (2006) expanded on the definition of precision forestry in Southeast U.S. as 

a way to plan and conduct “site-specific forest management activities and operations to improve 

wood product quality and utilization, reduce waste, and increase profits, and maintain the quality 

of environment.” According Taylor et al. (2006), precision forestry also consisted of three main 

categories: (1) the use of geospatial information to help forest management and planning, (2) the 

use of information to assist with site specific silvicultural operations, and (3) the use of the 

information and advanced technology to address market demands for higher valued products. In 
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order to actuate these activities, precision forestry uses a variety of new and advanced 

technologies, which include surveying technologies (e.g., Global Positioning Systems (GPS), 

terrestrial scanners), remote sensing technologies (airborne and satellite laser scanners), real-time 

process control scanners (e.g., radio frequency identification, ultrasound decay detectors), 

geographic information systems (GIS), and decision support systems (DSS) (Kovácsová and 

Antalová, 2010). For this study, we will consider the definition of precision forestry by Taylor et 

al. (2006), and employ navigation GPS, remote sensing technologies and GIS.  

A variety of research has been conducted under the guise of precision forestry in order to 

evaluate the use of modern tools and technologies, and their accuracy in forestry because the 

profitability of forestry, and conservation of natural resources depend upon the accurate resource 

information (Holopainen et al., 2014). For example, GPS technologies have been studied in 

many different fields for a variety of purposes, including delineating land ownership and 

management unit boundaries, locating and mapping vegetation samples, mapping roads and 

trails, and measuring other natural resources (Deckert and Bolstad, 1996; Veal et al. 2001; 

Zenner et al., 2007). GPS technologies are also frequently used to monitor the locations of 

wildlife (e.g., Dussault et al., 2001; Gervasi et al., 2006). Laser devices have also been studied 

for their benefit to forest inventory purposes (Weaver et al., 2015). 

 GIS and remote sensing have been widely applied in forestry and natural resource 

management for monitoring, mapping, and management of the resources at multi-temporal, 

multi-spectral, and multi-spatial resolution since the 1980s (Ehlers et al., 1989; Loveland and 

Johnson, 1983; Lyon, 1983; Welch et al., 1988; Wulder et al., 2005). GIS and remote sensing 

have been used for detailed analysis of forest inventory (e.g., within- stand attributes), land cover 

characteristics, change detection, monitoring of forest health and natural disturbances (e.g., 
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insect disturbance, fire, and invasive species, and information update (Franklin, 2001; 

Holopainen et al., 2014; Lachowski, 1996; Wulder et al., 2005). Although the use of advanced 

technology in forestry and natural resources is gradually increasing, it requires continuous 

evaluation in order to determine the social and scientific issues of forestry (Weaver, 2015). The 

social issue includes an assessment to sustainable management, goods, and ecological values; the 

scientific issue involves testing new technologies with application to a variety of experimental 

designs (Farnum, 2001). We take into account these issues while evaluating new technologies 

with different experimental designs in these studies.  

GPS Receiver Literature Review 

For forestry and natural resource management purposes, Global Navigation Satellite 

Systems (GNSS) help address a number of navigational, positioning, and mapping needs of 

managers and scientist. In many areas of the world, these systems are simply referred to as GPS, 

although GPS is shorten version of the United States system, NAVSTAR Global Positioning 

System. Satellite navigation and positioning systems use signals (electromagnetic energy) 

emitted by satellites, received by devices often located inside an automobile or airplane, attached 

to an animal, or held within a person's hand, and decoded to determine a position on the surface 

of the Earth (Bettinger and Merry, 2011). Satellite positioning systems can often provide highly 

accurate locational information when compared to accuracies that might be obtained from 

traditional navigation and mapping techniques (Bettinger and Fei, 2010; Naesset and Jonmeister, 

2002). However, accuracy and precision of position determined by GPS under a forest canopy 

are often relatively low when compared with similar measures captured in open areas 

(Rodriquez-Perez et al., 2006; Rodriquez-Perez et al., 2007). This is important because resource 

managers frequently use information collected with GPS technology to delineate land 



 

4 

boundaries, record inventory plots, define roads, and map other features of interest. The spatial 

accuracy of the devices used (receivers) should be of high interest to both forest managers and 

scientists, as the application of GPS technology within a forested environment is perhaps one of 

the most demanding uses due to multipath, masking, and blocking effects caused by leaves, 

limbs, and boles of trees (Pirti, 2005). Therefore, advances in GPS technology require continual 

research and review to constantly express and information application of the technology when 

used under tree canopies. Since 2000, research in this area has evolved from purely observational 

studies to a blend of observational and hypothesis-driven studies today, as is presented in this 

dissertation. 

Urban Canopy Cover Estimation Literature Review 

An urban forest can be described as the woody vegetation within a city that includes 

street-lined trees located on both public and private lands, trees located in urban parks, and trees 

located on residential properties, commercial land, and other lands (Berland, 2012; Nowak et al., 

2010; Ward and Johnson, 2007). This vegetation resource provides a number of essential 

benefits to human beings, a few of which include enhancing aesthetic values, reducing energy 

use, facilitating cooling effects, improving water and air quality, providing diverse wildlife 

habitat, and increasing human health and well-being (Jensen et al., 2004; Leuzinger et al., 2010; 

McPherson et al., 2011; Myeong et al., 2006; Nowak, 1993; Nowak et al., 2010; Richardson and 

Moskal, 2014). The amount of tree canopy cover, often estimated as the percentage of an area 

covered by the canopies of trees (Richardson and Moskal, 2014), can be used to inform 

management decision and policy makers. The ecosystem services derived from an urban forest 

are often directly related to amount of (percent of land) covered by a tree canopy, ideally 

composed of healthy and well-functioning vegetation (Nowak and Greenfield, 2012). 
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Urban population growth has an important influence on land cover change processes 

around the world (Berland, 2012). Since 1950, the world’s urban human population has grown 

rapidly from 746 million to 3.9 billion people (54% of the total world population), partly due to 

increases in human population and partly due to administrative expansion of urban land 

designations. While urbanization of land can facilitate employment opportunities, it also 

increases the need for infrastructure, such as roads, educational facilities, and cultural amenities 

(Berland, 2012; United Nations, 2015), all of which then exert pressure upon the urban canopy 

cover (McPherson et al., 2011; Nowak, 1993). Hence, accurately quantifying urban vegetation 

cover is crucial for proper management of vegetated areas within a city, and through this we may 

be able to better sustain or improve ecosystem services and our quality of life (Nowak et al., 

2008; Richardson and Moskal, 2014; Walton et al., 2008). 

Two main approaches have been used to estimate the extent of urban forest: those using 

sampling methods and those using remote sensing technology. Both approaches have their own 

advantages and disadvantages in effort to estimate urban tree canopy cover. For example, point-

based sampling approaches are relatively easy to implement, and if conducted well, can provide 

a reasonable estimate of urban forest cover along with a level of confidence. Other sampling 

efforts are not easy to implement (see Merry et al., 2014), yet more effectively capture the 

variability in urban tree cover, therefore need to be investigated. Various remote sensing 

approaches (such as using aerial photography, satellite imagery, or LiDAR (Light Detection and 

Ranging)) have proved useful for estimating tree canopy cover in urban environment. Remotely-

sensed sources of information can be cost-effective when compared to field sampling, and can 

facilitate comparable analyses among different cities (McPherson et al., 2011). However, they 

generally require more effort than sampling approaches. As examples, Nowak and Crane (2002) 
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used advanced very high resolution radiometer (AVHRR) data to estimated carbon storage and 

sequestration by urban tree at different scales (state, regional, and national level), and Myeong et 

al. (2006) also developed a method using Landsat images from three different dates in order to 

quantify aboveground carbon storage of urban trees in Syracuse. However, using these low and 

mid resolution remote sensing images to assess urban canopy cover might not be adequate when 

applied to small scale heterogeneous urban environment. Therefore, with advanced technology, 

high resolution imagery and LiDAR have been begun to use increasingly to determine amount of 

the area covered by trees in urban environment. Irani and Galvin (2003) used 4 m resolution 

remotely sensed imagery to assess tree canopy cover in Baltimore, Nowak and Greenfield (2012) 

conducted a study using paired aerial photographs to determine tree canopy cover changes in 20 

cities in the United States, and Parlin and Mead (2009) used 0.6 m resolution remotely sensed 

imagery to estimate tree cover change in Seattle. In addition, some studies integrated two or 

more remotely sensed data in order to estimate canopy cover in urban areas. Hartfield et al. 

(2011), Singh et al. (2012), and Jia (2015) all conducted studies which used LiDAR to estimate 

tree canopy cover. While efforts have been exerted to understand the value of sampling and 

remote sensing approaches in estimating urban tree canopy cover, more research is necessary to 

fully understand the possibilities of interest for urban land managers to estimate tree canopy 

cover levels. 

Dissertation Format 

This dissertation is written in the manuscript format, and it represents the results of three 

studies. Chapter 1 (this chapter) presents an introduction to the dissertation and a brief summary 

of previous research on GPS receivers and urban canopy cover estimation using sampling and 

remote sensing. In Chapter 2, “Dynamic accuracy of recreation-grade GPS receivers in oak-
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hickory forests,” we designed a study to assess the dynamic (kinematic) accuracy of a single 

model of recreation-grade receiver, within forested conditions, across two seasons of the year 

(winter and summer). The objectives of the study were to assess the area of agreement with a 

relatively small but well-defined closed area, to determine the variation of waypoints recorded 

around true boundaries of the area, and to determine whether significant differences in area 

determination were evident among the two seasons of the year. The following hypotheses were 

tested to evaluate the accuracy of this model of recreational-grade GPS receiver: 

1. Difference in areas estimated by recreational grade GPS units from the true area is the 

same whether the GPS data are collected in winter or in summer.  

2. Differences in the percentage of vertices within 1 m bands (1 m, 2 m, 3 m, etc.) of the 

true area boundary are not different during the two seasons.  

3. The area of agreement between the true sample area and the areas estimated using the 

GPS receiver (using an intersect process in a geographic information systems) is the same 

in winter as in summer. 

In addition to these hypotheses, we simulated larger areas of different sizes (1 to 49 ha) 

using the variation observed around the true boundaries of the sampled. This exercise helped us 

to understand how the effects of the observed error from our small study area might extend and 

affect area measurements when applied to larger land areas. 

 

In Chapter 3, “A comparison of two sampling approaches for assessing the urban forest 

canopy cover from aerial photography,” two different sampling approaches for estimating urban 

tree canopy cover were tested in conjunction with two freely available remotely sensed imagery 

products. The two sampling approaches were (a) the random point-based and (b) the plot/grid 
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approach. The two different remote sensing imagery sources used in this study included (a) U.S. 

Department of Agriculture National Agriculture Imagery Program (NAIP) imagery viewed 

within ArcGIS (ESRI, 2013) and (b) Google Earth imagery (Google, Inc., 2014). The objectives 

of the study were to determine the percentage of tree canopy cover in two United States cities 

using NAIP imagery within ArcGIS and using Google Earth imagery. The goal was to 

understand whether estimated tree canopy cover levels would be comparable when using either 

imagery source, and when using either sampling approach. The following hypotheses were 

developed:  

1. When employing the random point-based sampling approach, there is no significant 

difference in the estimated tree canopy cover derived from using the NAIP imagery in 

ArcGIS and the estimated tree canopy cover derived from using the Google Earth 

imagery.  

2. When employing the plot/grid sampling approach, there is no significant difference in the 

estimated tree canopy cover derived from using the NAIP imagery in ArcGIS and the 

estimated tree canopy cover derived from using the Google Earth imagery.  

 

In Chapter 4, “Estimation of urban vegetation cover using multispectral imagery and 

LiDAR,” we classified urban vegetation cover using a supervised maximum likelihood 

classification method. The data included multispectral aerial imagery with 1 m spatial resolution 

collected in with 4 spectral bands (red, green, blue, and near infrared) and LiDAR data. The 

objective was to assess whether the addition of the LiDAR data increased the accuracy of urban 

vegetation cover estimations when using a pixel-based supervised maximum likelihood 

classification method. The following general hypotheses were developed: 
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1. When employing LiDAR in a supervised classification of urban vegetation, the overall 

accuracy of the resulting vegetation level improves when used in conjunction with high 

spatial resolution remotely sensed imagery. 

2. When employing LiDAR data by itself to identify urban vegetation, the overall accuracy 

of the resulting vegetation level is no different than if it is used in conjunction with high 

spatial resolution remotely sensed imagery. 

 

Finally, Chapter 5 is a conclusion chapter and presents review of each study’s 

conclusions, their contribution to science, and future endeavors associated with each. 
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DYNAMIC ACCURACY OF RECREATION-GRADE GPS RECEIVERS IN OAK-HICKORY 
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Abstract 

The study, using 20 individual instruments of one model of recreational-grade GPS 

receiver, was conducted in a mature predominantly deciduous forest in the southern United 

States. The true area was delineated from the eight test points which were very accurately located 

from monuments using survey grade instrument and protocols, within the Whitehall Forest GPS 

Test Site in northeast Georgia. These same eight test points were used as controls during the 

dynamic horizontal accuracy assessments of GPS technology conducted within the forest. The 

test points are very precise compared to recent published literature. Our hypotheses were that the 

areas determined with the 20 receivers were not significantly different from the true areas, and 

the percentage of the area of agreement and the variation of the vertices around the true boundary 

were not different in winter and summer seasons. Also, based on the distribution of the vertices 

around the true boundary, we conducted simulations for larger areas. The average area of 

agreement was approximately 93% during the winter season, and approximately 84% during the 

summer season. The variation in sample areas was also greater for data collected during the 

summer, and data from the winter had higher association as measured by area of agreement with 

the true study area than data from the summer. A ranking of receivers by average area during 

each season did not reveal significant problems within the set of receivers tested. In conclusion, 

data collected during each season were not significantly different. Given the distribution of 

vertices around the true boundary of the study area, simulations of larger land areas revealed that 

there would be a 2% or less error for mature, deciduous forest greater than approximately 25 ha 

in size in both winter and summer seasons.  
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Introduction 

For forestry and natural resource management purposes, Global Navigation Satellite 

Systems (GNSS) help address a number of navigational, positioning, and mapping needs. In 

many areas of the world, these systems are referred to as Global Positioning Systems (GPS). 

Satellite navigation and positioning systems are based on electromagnetic energy emitted by 

satellites, and received by devices often located inside an automobile or airplane, attached to an 

animal, or held within a person's hand (Bettinger and Merry, 2011). Satellite positioning systems 

can often provide highly accurate locational information when compared to traditional 

navigation and mapping techniques (Naesset and Jonmeister, 2002; Bettinger and Fei, 2010). 

However, accuracy and precision under a forest canopy are often very low when compared with 

similar measures in open areas (Rodriquez-Perez et al., 2006; Rodriquez-Perez et al., 2007). This 

is important because resource managers frequently use the information obtained to delineate land 

boundaries, and inventory plots, roads, and other features of interest. The spatial accuracy of the 

devices (receivers) should be of high interest, as the application of GPS technology within a 

forested environment is perhaps one of the most demanding uses due to masking and blocking 

effects caused by trees (Pirti, 2005). Therefore, advances in GPS technology require continual 

research and review for their application under tree canopies. Research in this area has thus 

evolved from purely observational studies conducted a decade ago to a blend of observational 

and hypothesis-driven studies today. 
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GPS receivers can be divided into three general classes: survey-grade, mapping-grade, 

and consumer-grade (or recreational-grade). Survey-grade GPS receivers are generally able to 

determine locations within 1 cm horizontal position accuracy in open areas and within 1 m 

accuracy in forested landscapes (Wing, 2008). The time required to use them, the cost (roughly 

10,000 to 25,000 U.S. dollars (USD)), and the size of these units make them inappropriate for 

field work in a forested landscape (Bettinger and Fei, 2010). Mapping-grade GPS receivers are 

generally capable of providing accuracy within 1 m in open areas, and 2-5 m accuracy under 

forest canopies (Ransom et al., 2010). These receivers are frequently used in forest management, 

and have a price range of 1,000 to 5,000 USD. Recreation-grade receivers provide the least 

accurate positional information, generally between 5-10 m depending on environmental 

conditions (Wing, 2011). The cost range of recreational-grade GPS receivers is around 100 to 

600 USD. The cost of data collection and the desired accuracy levels of referenced positions 

should be taken into account when choosing a GPS receiver (Bettinger and Fei, 2010; Wing et 

al., 2005). 

It has been shown that precision and accuracy of data collected with GPS receivers 

decrease when used in forested landscapes (Danskin et al., 2009; Deckert and Bolstad, 1996; 

Naesset and Jonmeister, 2002; Rodriquez-Perez et al. 2006; Rodriquez-Perez et al., 2007) 

because GPS uses microwave signals, and forest vegetation and topography might interfere with 

the satellite signals (Veal et al., 2001). The highest accuracy in these types of environments 

requires using expensive and sophisticated equipment. However, some users hesitate to employ 

the highest accuracy equipment in forested areas because they fear they might damage 

equipment that is expensive to replace (Wing, 2011). Recreational-grade receivers have thus 

become popular for a variety of natural resource applications in forested environments because 
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of their affordable prices and their ease of use. While often a concern, measurement accuracy of 

these receivers might be adequate depending upon the goals and applications of a project (Wing, 

2011).  

The techniques employed for the assessment of GPS technology are well-established in 

the forestry field (Bettinger and Merry, 2011). GPS accuracy (often used interchangeably with 

error) is highly important for mapping, record-keeping, and research purposes, and many (e.g., 

McRoberts, 2010) have cautioned users on the potential pitfalls of using the information. The 

two main areas of concern for natural resource management professionals include static 

horizontal position accuracy (for points) and dynamic (kinematic) accuracy (for areas). A 

number of studies have recently illustrated the static horizontal accuracy of recreation-based 

receivers (e.g., Anderson et al., 2009; Bettinger and Fei, 2010; Bettinger and Merry, 2012b; 

Wing et al., 2005; Wing, 2008; Wing, 2009), yet assessments on the dynamic accuracy of 

recreation-grade receivers has been lacking. Most studies concerning GPS accuracy involve 

assessments of commercially-available equipment applied to forest conditions in manners typical 

of common field data collection processes. For dynamic accuracy studies, GPS accuracy and 

precision would ideally be compared against an independent control (Tachiki et al., 2005). 

However, at times the comparison has been reported only against the mean position determined 

from the epochs (waypoints, position fixes) recorded by other GPS receivers positioned at the 

same place (Taylor et al., 2004), against other benchmarks (Holden et al., 2001; Veal et al., 

2001; Buerkert and Schlecht, 2009), or no control was necessary for the purposes of the 

associated studies (Zenner et al., 2007). 

In a dynamic or kinematic mode, GPS has been used to track the movement of forest 

machines (Veal et al., 2001; Zenner et al., 2007). Liu and Brantigan (1995) evaluated whether 
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GPS technology was able to achieve more accurate dynamically-collected data than traditional 

methods (compass and chain) in closed forest stands. A number of advanced methods have also 

been tested in order to seek improvements to GPS accuracy levels, such as the correction of 

satellite orbit and clock errors, the post-processing of data using filters and modeling, and the 

mitigation of other external effects (Beran et al., 2007). Unfortunately, these latter areas of 

concern are rarely addressed by natural resource management professionals due to the added 

time and cost of application. GPS technology is also often used to monitor the locations of 

wildlife of concern (e.g., Dussault et al., 2001; Gervasi et al., 2006). Therefore the value in 

understanding the dynamic accuracy of GPS receivers lies in end uses of the information. For 

example, Kiser et al. (2005) once suggested that GPS could be of value in the design of timber 

sale areas, replacing other field methods that are based on magnetic fields or control points. In 

many cases in the management of forests, the edges (boundary) of an area described by GPS-

collected data, and the subsequent area that is determined, may be used directly in contracts and 

research assessments.  

As a result of these concerns, increased attention to the dynamic accuracy of new 

technology is essential. We therefore designed a study to assess the dynamic accuracy of a single 

model of recreation-grade receiver, the Garmin 450t (Garmin International Inc. 2013), within a 

forested condition, across two seasons of the year (winter and summer). Receivers were supplied 

by the University of Georgia’s Department of Forestry and Natural Resources. The receivers 

were purchased not because of their cost (400 USD each) or their size, but because of their user-

friendliness with respect to classes taught at the university.  

  Our objectives were to assess the area of agreement with a relatively small well-defined 

closed area, to determine the variation of waypoints around true boundaries, and to determine 
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whether significant differences were evident among the two seasons of the year. The following 

hypotheses were tested to evaluate the accuracy of this model of recreational-grade GPS 

receivers: 

1. Difference in areas estimated by recreational grade GPS units from the true area is the 

same whether the GPS data are collected in winter or in summer.  

2. The seasons do not cause differences in the percentage of vertices within 1 m bands (1 m, 

2 m, 3 m, etc.) of the true area boundary regardless of the season.  

3. The area of agreement between the true area and the sample areas (after an intersect 

process) is the same in winter as in summer. 

In addition to these hypotheses, we simulated larger areas of different sizes (1 to 49 ha). 

It helped us to understand how the effects of the observed error from our small study area might 

impact area measurements when applied to larger land areas. 

Methods 

We developed a 0.90 ha (2.22 ac) test area in a mature deciduous (oak-hickory) forest 

that was 60 -70 years old, with 26.2 m
2
 ha

-1
 basal area and 421.7 stems ha

-1
. Ideally, for a 

dynamic accuracy study, independent control would arise from a formal survey of a closed area 

(Bettinger and Merry, 2011).  

The true size of the study area was determined using a closed area that was defined by the 

coordinates of 8 GPS test points located on the Whitehall Forest GPS Test Site near Athens, 

Georgia (USA) (Figure 2.1). In developing the Whitehall Forest GPS Test Site in 2004, positions 

of a set of nearby established survey monuments were determined using a survey-grade GPS 

receiver (Ashtech Locus GPS) according to protocols (static data, 4 hours of data collection, etc.) 

that would allow the determined positions to be considered and accepted as National Spatial  



 

22 

 

Figure 2.1. A map of the study of the area and the Whitehall Forest GPS Test Site points used in 

this study. 

 

Reference System (NSRS) positions. The positions of the monuments were processed using the 

U.S. Department of Commerce, National Oceanic and Atmospheric Administration's Online 

Positioning User Service (OPUS) (www.ngs.noaa.gov/OPUS). The positional precision of these 

monuments was less than 2 cm. The closed traverse network that represents the Whitehall Forest 

GPS Test Site corners was then established by registered surveyors using a Topcon GTS-211D 

instrument and the NSRS monuments as a base. The closure of the points within the Test Site (as 

represented by a closed traverse connecting the points) was estimated to be 1/92,137. Given this 

resource, and for this particular study, we then very carefully delineated a straight line (using 

string) between the Test Site corners in order to provide the best indication of the position of the 

perimeter (boundary) of the area as one might expect in field conditions. We therefore consider 
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the closed area as a highly accurate model around which the recreation-grade GPS equipment 

could be tested.  

In a dynamic horizontal position analysis, data are collected as a field-based receiver 

travels around a fixed course (an area) or along a fixed line. It is therefore important to maintain 

the receiver's antenna as close to the boundary of the area when waypoints or vertices are being 

collected because even tree position can affect positional accuracy (Bettinger and Merry, 2012b). 

If this is not the case, an unknown amount of error (deviations from the boundary or the line) 

may be inherent in the sample simply due to a loss of control. Our effort for controlling and 

understanding the true boundary of the study area is new and unique to the literature published 

thus far regarding the accuracy of dynamically-collected GPS data in a forested environment. 

The data were collected both in winter (leaf-off) and in summer (leaf-on) with 20 

different Garmin Oregon 450t recreational-grade GPS receivers that only utilized satellites 

from the United States Navigation Satellite Timing and Ranging System (NAVSTAR) GPS 

program. These GPS receivers were considered state-of-the-art for recreation-grade equipment at 

the time of the study. Each receiver was used to determine the test area boundary, once per day. 

The availability of the researchers and the likelihood of non-rainy days were taken into account 

to determine the time for leaf-off (January 12-13, 2013) and leaf-on (June 5-6, 2013) data 

collection efforts. Each receiver was randomly chosen and used twice during each season, thus 

40 samples of the test area were collected during each season. Before starting to collect data, a 

warm-up period (3 – 5 min) was required to ensure that each receiver was tracking a sufficient 

number of satellites. In collecting positional information regarding the boundary of the study 

area, the researchers collected waypoints (vertices of the boundary) at about 10 m intervals, 

holding the GPS receiver directly over the string during data collection process.  
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The dynamically-collected GPS data were downloaded to a personal computer using 

Minnesota DNRGPS software (Minnesota Department of Natural Resources, 2012). The data 

were saved in shapefile format to be used in conjunction with a Geographic Information System 

(ArcGIS 10.0, ESRI 2013). The average number of the vertices for the closed area was 50.78 in 

winter and 52.78 in summer. In only one case was a waypoint (boundary vertex) manipulated. In 

this case, the very first vertex of one sample area was obviously well away (50+ m) from the 

actual starting position, while the other vertices were adequately positioned. We can think of no 

reason for this anomaly, thus this vertex was removed from the sample. Using the data collected, 

three measures were reported: difference in areas estimated by the recreational grade GPS units 

from the true area, percent of vertices within x meters of the true boundary (proximity analysis), 

and area of agreement (after intersecting or overlapping sample areas with the true area). To 

calculate the difference in area, the closed area determined with each visit during the two 

different seasons these were compared to true area. 

 

Difference in area = True area – Sample area                                                                               (1) 

 

Through a proximity analysis conducted in GIS, buffers were created using the “generate 

near table,” function, which is a tool in ArcGIS, was used to calculate the nearest distance of 

every point to the study area boundary line. This processes helped us understand the percentage 

of vertices from each sample area that were within 1 m intervals around the true boundary, up to 

4 m (Figure 2.2). The final class included the percentage of vertices 4+ m from the true boundary 

line.  
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Percentage of the vertices = (Number of the vertices within certain distance / Total points)*100 (2) 

 

 

Figure 2.2. An example of vertices within 1 m buffers around true area with 40 samples in 

winter. 

 

To evaluate the area of agreement, sample areas and the true area were overlaid 

(intersected) in ArcGIS to determine the area of agreement between the true area and the sample 

areas. Firstly, data were imported into ArcGIS 10.0 and converted to an area by connecting the 

waypoints. Then the true area was intersected (an overlay process) with each of the samples 

collected during the different seasons (Figure 2.3) to determine the area of agreement. The 

formula below was then used to determine area of agreement.  

 

Area of agreement (%) = (Overlapping area / True area)*100  (3) 
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Figure 2.3. An example of overlay of one sample area on top of the true area. 

 

To examine the accuracy of the GPS receiver, the normality of the data were assessed to 

decide which statistical tests need to be used (parametric or non-parametric). Based on the results 

of this assessment, we determined that the data in general were not normally distributed, which is 

very common among GPS studies. Thus, the Mann-Whitney non-parametric test within Minitab 

16 software (Minitab Inc., 2013) for independent samples collected in winter and summer was 

used to test the differences between 40 samples collected in each season. As noted earlier, the 

hypotheses were (1) that the difference in areas was not significantly different between seasons, 

(2) that the area of agreement between the sample areas and the true area was not significantly 
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different between seasons, and (3) that the dispersion of the vertices around the true boundary 

was not significantly different between seasons.  

Recreational grade receivers are frequently used for natural resource applications. In this 

study, we were able to evaluate only one recreational grade receiver within the small test area 

due to the effort required. However, most of users in the natural resources field are interested in 

how error in using the technology relates to larger-sized areas. Hence, after developing 

information regarding the distribution of observed, field-collected vertices around the true 

boundary of the study area, simulations of larger areas were conducted. The proximity analysis 

results of the summer season (representing a worse case than the winter season because leaves 

affect signals) were used in the development of simulated square areas that were 1, 2, 4, 9, 16, 

25, 36, and 49 ha in size. For every 10 m of boundary distance, a random number was drawn and 

compared to the probability of a vertex falling with the 1-m bands around the true line (up to 5 

m). A second random number was then drawn to estimate where the simulated vertex would lie 

within the 1-m band assuming a normal distribution of distances within each band. Five 

simulations were developed for each of the square areas in order to represent errors outside of 

true boundary line, and five simulations were generated for each of the square areas in order to 

represent errors inside of the true boundary line. These were considered worst-case scenarios, 

suggesting that the incorrect vertices were always either inside or outside of the true boundary, 

when in fact they may oscillate back and forth over the true line. In any event, these simulations 

were meant to help us understand the effects of the observed error (from the small study area) 

when applied to larger land areas. 
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Results 

As we suspected, the sample (n = 40) average of closed areas collected using the 

recreation-grade GPS receiver was closer to the true area during the winter season, when the 

trees in the study area were devoid of leaves (Table 1). Interestingly, the sample average in both 

winter and summer was lower than the true area. The summer average area was only about 91% 

of the true area, while the winter average area was about 97%. The standard deviation of sample 

areas indicates that there was more variation in the summer as well, even though the coefficient 

of variation of areas during this season was only about 6.1%, which was about twice the 

coefficient of variation observed in the winter season. The range of the sample areas during the 

leaf-off season was 0.82 ha to 0.93 ha, while it was 0.67 ha to 0.98 ha during the leaf-on season. 

When the samples areas were intersected with the true area, the average area of agreement was 

92.6% in the winter season, and 84.2% in the summer season. Positional issues related to the 

vertices that represent the boundary were much more evident in the summer season. When the 

percentage of vertices within 1 m bands around the true boundary line was assessed, there 

seemed to be only minor differences among the seasons. However, only the average percentage 

of vertices within 1.00 to 1.99 m and 3.00 to 3.99 m seemed to show large differences among the 

seasons (Table 2.1). This analysis did not take into account the direction of error (inside or 

outside of the true area). 

With multiple receivers, we were able to rank the average performance of each when 

used in winter and spring. The results from ranking of each Garmin Oregon 450t GPS receiver 

after averaging show that with the exception of one, in general receivers did not share the same 

ranking. Receiver number 11 was ranked as 12th (smallest to largest average areas) in both the 

leaf-off and leaf-on seasons (Table 2.2). However, one receiver (no. 16) was in the top five of 
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both season's rankings, representing the smaller average areas estimated during the data 

collection effort. And, two receivers (nos. 15 and 19) were in the bottom five of both season's 

rankings, representing the larger average areas estimated. The differences in rank were very 

small (0.1 to 0.2 ha difference between five or more in the list), and one should bear in mind that 

these seasonal averages arise from a sample size of two per season for each receiver. Therefore, 

we were not overly concerned that differences in areas estimated by receivers were due to the 

receivers themselves. 

 

Table 2.1. Results from dynamic study of Garmin Oregon 450t GPS receiver. 

  Winter Summer 

True area (ha) 0.90 0.90 

Sample average area (ha) 0.88 0.82 

Standard deviation of the sample areas 0.03 0.05 

Range of the sample areas 

 Smallest area (ha)  0.82 0.67 

 Largest area (ha)  0.93 0.98 

   

Average area of agreement (%) 92.6 84.2 

   

Average number of the vertices within < 1. 00 m of the true line (%) 27.4 27.5 

Average number of the vertices within 1.00 - 1.99 m of the true line (%) 25.3 19.6 

Average number of the vertices within 2.00 - 2.99 m of the true line (%) 17.1 17.7 

Average number of the vertices within 3.00 - 3.99 m of the true line (%) 12.1 15.7 

Average number of the vertices within 4.01 + m of the true line (%) 18.1 19.6 
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Table 2.2. Ranking of each Garmin Oregon 450t GPS receiver after averaging the areas 

determined during each season. 

Receiver 

number 

Leaf-on season 

avg. area (ha) Ranking 

Leaf-off season 

avg. area (ha) 

Receiver 

number 

10 0.77 1 0.85 20 

16 0.83 2 0.85 4 

14 0.83 3 0.85 13 

1 0.84 4 0.86 17 

6 0.84 5 0.86 16 

8 0.85 6 0.86 7 

4 0.86 7 0.87 14 

12 0.86 8 0.87 9 

2 0.87 9 0.87 10 

18 0.87 10 0.87 6 

17 0.89 11 0.87 12 

11 0.89 12 0.88 11 

20 0.90 13 0.88 3 

7 0.90 14 0.88 5 

3 0.90 15 0.89 1 

15 0.91 16 0.89 18 

5 0.91 17 0.89 15 

13 0.91 18 0.90 19 

9 0.93 19 0.90 2 

19 0.94 20 0.91 8 

 

Three hypotheses were proposed for this research. The results of the Mann-Whitney non-

parametric tests (Table 2.3) indicate that the difference between areas estimated by the 

recreation-grade GPS receivers and the true area was not significantly different when seasons 

were compared (p = 0.77). Likewise, the percentage of the area of agreement was not 

significantly different between the seasons (p = 0.62). Further, the different seasons did not seem 

to result in significantly different percentages of vertices within the 1 m bands around the true 

boundary line. Hence, while the general results (Table 1) hint that there may be differences 
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among the seasons, based on the non-parametric test results (Table 2.3) no significant differences 

were observed, and all three hypotheses could not be rejected. 

The positional data associated with this study illustrate an interesting situation that has 

heretofore not been described in the literature. It seems as if the recreation-grade receiver may 

perform better during dynamic tests of horizontal accuracy than during static tests of horizontal 

accuracy. The average error of the vertices describing the study area, with respect to the true 

boundary of the test area, and after accounting for vertices that are both inside the area and 

outside the area, was approximately 2.2 m in the winter and 2.3 m in the summer. This of course 

reflects the perpendicular distance between each vertex and the nearest boundary line, and does 

not take into account larger directional error that may have occurred along (parallel to) the 

boundary (rather than perpendicular to the boundary). Regardless, recent studies of similar 

technology (Bettinger and Fei, 2010; Bettinger and Merry, 2012a; Bettinger and Merry, 2012b) 

suggest that static horizontal positional accuracy should be 4-8 m on average, and recent 

unpublished static tests of the same technology used in this research suggest that the static error 

can be perhaps as much as 7-9 m on average. 
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Table 2.3. Results of the Mann-Whitney statistical test for significant difference amongst seasons (n = 40 each season). 

Hypotheses Results P-value 

Ho: Areas not significantly different Not significantly different 0.77 

Ho: Percentage areas of agreement are not significantly different Not significantly different 0.62 

Ho: Percentage of vertices within < 1 m are not significantly different Not significantly different 0.49 

Ho: Percentage of vertices within 1.00 - 1.99 m are not significantly different Not significantly different 0.42 

Ho: Percentage of vertices within 2.00 - 2.99 m are not significantly different Not significantly different 0.96 

Ho: Percentage of vertices within 3.00 - 3.99 m are not significantly different Not significantly different 0.37 

Ho: Percentage of vertices beyond 4.00 +m are not significantly different Not significantly different 0.78 
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After simulating larger areas using the distribution of vertices within 1 m bands observed 

during the summer season, which assumes that the positional error around a true boundary will 

be similar regardless of the size of the area, our results suggest that the difference in area 

(compared to the true area) can be as high as 10 percent for 1 ha forested areas, and as small as 

about 1.3% for 49 ha areas (Figure 4). At around 9 ha, the simulated error was around 3%, and at 

around 25 ha the simulated error in estimated land area was below 2%. The results of these 

simulations were not unexpected. We had assumed that the magnitude of the error in land area 

estimation would dissipate somewhat as the size of the land area increased; this assumes again 

that the distribution of error around true boundary lines would not change when land area sizes 

changed. 

 

 

Figure 2.4. The percentage difference between the true area and simulated areas. 
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Discussion 

The accuracy of GPS-collected data when describing land areas and when collected as a 

person, animal, or vehicle moves is of high importance for some fields of natural resource 

management. In forestry, practitioners want to use new technologies to quickly and effectively 

determine land areas associated with potential timber sales, natural or man-made impacts (fires, 

etc.), and critical habitat. Many people look to GPS as a source of this information. Others (e.g., 

Bettinger and Merry, 2011) have described the differences in GPS technology. In this study we 

solely examined recreation-grade GPS receivers, which are typically the least expensive of the 

vast array of commercially-available devices. While the study was limited to one brand and one 

type of receiver, 20 different receivers were used to assess the quality of data that could be 

developed. As this is one of the first reported dynamic accuracy tests, and given the tight control 

we placed on the boundary of the closed area, we feel that the observational results and the tested 

hypotheses represent a significant contribution to the literature. 

Given the physical effort involved in this research, we considered two options: use one 

receiver multiple times to generate sample areas, or use multiple receivers a few times. With one 

receiver, we run the risk of that one being "different" from the norm. With multiple receivers, we 

were able to observe the average performance of each receiver under forest conditions. Thus, we 

used 20 GPS receivers (all Garmin 450t, and all purchased at the same time) rather than use one 

GPS receiver to collect measurements for all 80 sample areas (40 collected during each season). 

We collected information with each of the 20 receivers only four times, and therefore it was 

difficult to determine whether any one (or more) of the 20 receivers included measurement error 

that was statistically and significantly in contrast with the others. However, we evaluated average 

performance of the each receiver by ranking for both leaf-off and leaf-on season. In general, and 
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given the small sample size, there seemed to be no reason for concern. However, this issue can 

be important, as in one study of recreation-grade GPS technology, Wing (2009) showed that one 

may observe differences in the data obtained from receivers of the same vintage and technology.  

We surmise that results will vary when other technologies are applied to the same forest 

types with similar tests. Obviously, it would be difficult to conduct and report upon every 

significant variation in technology, and therefore we leave open several questions for others to 

pursue. There have been very few examples of dynamic accuracy assessments of GPS 

technology employed in forests and reported in the literature, perhaps due to the difficulties in 

maintaining control of the boundary being mapped. In general, where it is clear and evident in 

the methodology of other studies, the control was established using mean positions determined 

from waypoints recorded by other GPS receivers or through means other than an independently 

established survey. In fact, none of the previous dynamic accuracy studies within forests reported 

contain the level of control we imposed on the collection of data along a true boundary line, 

perhaps with the exception of Tachiki et al. (2005), though the boundary line control in their case 

was unclear. Therefore, our study design seems to advance the science in this manner.  

One could expand on this research by then applying similar study protocol to the 

assessment of current mapping-grade GPS technology. Others could also explore the impact of 

variations in receiver settings on the results obtained. For example, we limited our study to the 

use of the NAVSTAR GPS constellation of satellites because a typical recreation-grade receiver 

used in the United States can only access signals from this system. However, a number of 

mapping-grade and survey-grade GPS receivers are now available to capitalize on the signals 

provided by Russia's GLONASS system, the European Union's GALILEO system, and China's 

COMPASS system. The increase in accuracy and precision that could be achieved using 
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mapping-grade and survey-grade GPS receivers is due to the advanced antenna technology and 

algorithms employed not only to filter out degraded GPS signals (multipathed or otherwise), but 

also to optimize the use of satellites from other systems. These advancements in technology 

typically increase the cost of the equipment, perhaps significantly. A choke-ring antenna, for 

example, which is designed to mitigate the impact of multipathed signals on determined 

positions, can cost over 1,000 USD, twice the cost of a typical recreation-grade GPS receiver. In 

areas where Differential Global Positioning Systems (DGPS) capability is available, one could 

assess whether the near-real time augmentation that these provide will affect the quality of data 

collected while moving through a forested environment. In cases where GPS-related research 

conducted in forested environments is limited due to a lack of funding, well-designed studies 

such as this provide reliable periodic benchmarks for others to compare against.  

Conclusion 

We developed a highly-controlled dynamic accuracy test of recreation-grade GPS 

equipment in a deciduous forest located in an oak-hickory forest of the Southeastern United 

States. The boundary of the test area, which was delineated from accurately located eight points 

by using survey grade instrument and protocols, was clear and precise when data were collected, 

as the line was represented by string extending straight from one corner of our study area to the 

next. When a waypoint (vertex) was collected, the person collecting the data briefly stopped 

walking, held the receiver over the string, and saved the position. The data were analyzed within 

GIS to determine the size of the sample areas, the area of agreement with the true area, and the 

percentage of vertices that were within 1 m bands around the true boundary. While it seemed that 

there were general differences between the samples collected in the summer and the samples that 

were collected in the winter, statistical tests did not reject the three main hypotheses of the study. 
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Therefore, we cannot state with certainty that vegetative conditions associated with a deciduous 

forest in winter and in summer had any effect on the area determined, the area of agreement 

(with the true area), or the distribution of vertices around the true area boundary. 
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CHAPTER 3 

A COMPARISON OF TWO SAMPLING APPROACHES FOR ASSESSING THE URBAN 

FOREST CANOPY COVER FROM AERIAL PHOTOGRAPHY
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Abstract 

Two different sampling approaches for estimating urban tree canopy cover were applied 

to two medium-sized cities in the United States, in conjunction with two freely available 

remotely sensed imagery products. A random point-based sampling approach, which involved 

1,000 sample points, was compared against a plot/grid sampling (cluster sampling) approach that 

involved a 1.83 m square grid of points embedded within 0.04 ha circular plots. The imagery 

products included aerial photography from the U.S. Department of Agriculture National 

Agricultural Imagery Program (viewed within ArcGIS), and Google Earth imagery. For 

Tallahassee, Florida, the estimate of tree canopy cover was 48.6 to 49.1% using Google Earth 

imagery and 44.5 to 45.1% using NAIP imagery within ArcGIS. Statistical tests suggested that 

the two sampling approaches produced significantly different estimates using the two different 

imagery sources. For Tacoma, Washington, the estimated tree canopy cover was about 19.2 to 

20.0% using Google Earth imagery and 17.3 to 18.1% when using NAIP imagery in ArcGIS. 

Here, there seemed to be no significant difference between the random point-based sampling 

efforts when used with the two different image sources, while the opposite was true when using 

the plot/grid sampling approach. However, our findings showed some similarities between the 

two sampling approaches; hence, the random point-based sampling approach might be preferred 

due to the time and effort required, and because fewer opportunities for classification problems 

might arise. Continuous review of urban canopy cover estimation procedures suggested by 

organizations such as the Climate Action Reserve and others can provide society with 

information on the accuracy and effectiveness resource assessment methods employed for 
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making wise decisions about climate change and carbon management.  

 

Keywords: Aerial photography, tree canopy cover, urban forestry, sampling, Google Earth  

 

Introduction 

An urban forest can be described as the woody vegetation within a city that includes 

street trees located on both public and private lands, urban parks, and other trees located on 

residential properties, commercial land, and other lands. This resource provides a number of 

essential benefits to human beings, a few of which include providing aesthetic value, reducing 

energy use, facilitating cooling effects, improving water and air quality, providing diverse 

wildlife habitat, and increasing human health and well-being (Jensen et al., 2004; Leuzinger et 

al., 2010; Nowak, 1993; Nowak et al., 2010; McPherson et al., 2011; Richardson and Moskal, 

2014). The ecosystem services derived from an urban forest are often directly related to the 

amount of tree canopy cover, which is ideally composed of healthy and functioning vegetation 

(Nowak and Greenfield, 2012). Tree canopy cover, generally estimated as the percentage of a 

site covered by tree canopies, is the simplest and most often used metric to quantify urban forest 

extent (Richardson and Moskal, 2014) and can be used to inform management decisions and 

policy analyses. For instance, a tree canopy assessment was conducted for Los Angeles to 

determine the capacity of the city to plant an additional one million trees (McPherson et al., 

2011).  

The human population of the United States increased from 281.4 million to 308.7 million 

between 2000 and 2010, and over 83.7% of the population now lives in metropolitan areas (large 

cities), where the population grew almost twice as fast as micropolitan areas (small cities with 
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10,000 to 50,000 people) (Mackun et al., 2011). Unless the administrative boundaries of cities 

expand, growth in the human population applies certain types of pressure upon the urban forests 

found there (Nowak, 1993; McPherson et al., 2011). For many United States cities, developed 

areas were created from areas once previously forested. In the 1990s, approximately 0.4 million 

hectares (ha) of forested land was converted each year to developed or other uses. Even if tree 

canopy cover increases in association with urban expansion of Great Plains and desert states, it is 

estimated that by 2050, an additional 9.3 million ha of forested area will become some other land 

use in the United States due to urbanization (Alig et al., 2003), thus population growth may 

result in direct or indirect negative impact on the structure, pattern and function of urban 

ecosystems in and around urban areas (Nowak, 1993). 

In recent years, various approaches such as aerial photography interpretation, satellite-

based image analysis, and aerial LiDAR (Light Detection and Ranging) analysis have proved 

useful for estimating tree canopy cover. These remotely-sensed sources of information can be 

both cost-effective when compared to field sampling, and can facilitate comparable analyses 

among different cities (McPherson et al., 2011). As examples, Irani and Galvin (2003) used 4 m 

resolution remotely sensed imagery to assess tree canopy cover in Baltimore. Nowak and 

Greenfield (2012) conducted a study using paired aerial photographs to determine tree canopy 

cover changes in 20 cities in the United States. And Parlin and Mead (2009) used digital land 

cover maps developed from 0.6 m resolution remotely sensed imagery to estimate tree cover 

change in Seattle. Remotely sensed imagery thus provides an opportunity to efficiently and 

effectively measure canopy cover across both space and time. 

Specific tree canopy cover estimates can be developed using several different sampling 

approaches. The most common sampling approach involves random point-based sampling, 
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where random points are located within the boundary of a city, and then are classified through 

aerial photo interpretation as either falling on a tree crown or not falling on a tree crown. The 

observation value from this sampling approach is binary (yes/no or 1/0), indicating presence or 

absence of tree canopy at the sample point, as interpreted from the imagery. As suggested above, 

for 20 cities in the United States, Nowak and Greenfield (2012) used random point sampling to 

assess tree cover change over a five year period. They found that there was a decreasing trend in 

tree cover, about 0.27% per year on average, in these cities. Walton et al. (2008) also used a 

random point sampling approach and compared their results to classified satellite images.  

A second sampling approach for estimating tree canopy cover might be to create random 

polygons and delineate tree crowns within these polygons. Nowak et al. (1996) were perhaps the 

first to use a fixed polygon approach like this for estimating tree cover. Nowak et al. (2008) 

studied the impact of polygon size on urban forest estimates, and noted that an increase in 

polygon size meant (logically) an increase in time required to perform the assessment. For 

Detroit and Atlanta, Merry et al. (2014) used a polygon approach to estimate tree canopy cover 

from aerial photography, and noted that the estimate of tree canopy cover using a polygon 

sampling approach could be slightly different than the estimate derived from using a point-based 

approach. The combined effects of mis-registration, feature displacement, and shadows could 

have imposed minor challenges to either method. 

A third sampling approach may be to create a random polygon and then create a grid of 

points within the polygon in order to estimate canopy cover. Therefore, rather than draw the 

outline of tree canopies within the polygon and compute the proportion of tree canopy cover 

using the tree canopy and non-tree canopy areas (as in Merry et al., 2014), the proportion of grid 

points that fall on tree canopies within the polygon is used as the estimate of canopy cover for 
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the polygon. From this juncture forward we will refer to this cluster sampling process as the 

plot/grid sampling approach. This approach was proposed by the Climate Action Reserve 

(Nickerson, 2014a), in their draft Urban Forest Project Protocol. The Climate Action Reserve is a 

private nonprofit environmental organization and leading entity in the measurement of forest 

resources for carbon policy implementation. Their aim is to provide support to activities that 

decrease greenhouse gas emissions (GHG) by assuring the environmental entirety and economic 

benefits of emissions reduction projects. Along these lines, the Climate Action Reserve has a 

goal of establishing high quality standards for carbon offset projects and supporting activities 

that reduce air pollution, enhance growth in new green technologies, and facilitate the attainment 

of emission reduction goals. Since the cluster sampling approach for estimating canopy cover 

(when proposed) was different than other approaches described in the literature, we embarked on 

a study of its effectiveness for this purpose. 

Interestingly, the cluster sampling process described in the draft Climate Action Reserve 

protocol (Nickerson, 2014a) was absent from the final protocol to allow people involved in these 

assessments the flexibility to respond to improvements in methodological and technological 

tools. However, they refer to desired sampling error in the Quantification Guidance (Climate 

Action Reserve, 2014a) and to verification of tree canopy cover estimates through a point-based 

sampling approach in the final protocol. Comments received with respect to the draft Urban 

Forest Project protocol (Climate Action Reserve, 2014b) suggested that the plot/grid sampling 

approach may have been reasonable for large, contiguous forest areas, but may have been 

unsuitable for urban areas that include a scattered arrangement of trees (street trees and others). 

However, this limitation would also seem to affect a point-based sampling approach. Further, it 

was suggested through feedback on the draft protocol that the processes used for estimating 
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urban canopy cover needed to be less detailed and structured, and needed to allow for the use of 

other equally valid tree canopy cover sampling protocols. While not included in the final 

protocols for urban forest projects by the Climate Action Reserve, the plot/grid sampling 

approach has not heretofore been assessed; therefore, it is the focus of this study.  

Our goal was to compare two sampling approaches for estimating urban tree canopy 

cover in two United States cities (Tacoma, Washington and Tallahassee, Florida), using remotely 

sensed imagery from two different sources. We wanted to determine the feasibility of each 

sampling approach and to compare the results of canopy cover estimates using the two different 

remotely sensed imagery sources. The two sampling approaches are (a) the random point-based 

and (b) the plot/grid approach. The two remote sensing imagery sources used in this study 

included (a) U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) 

imagery viewed within ArcGIS (ESRI, 2013) and (b) Google Earth imagery (Google, Inc., 

2014). The NAIP imagery presents features in natural color (0.4-0.7 μm wavelengths of energy), 

is contained in compressed county mosaic form, and has a 1 m spatial resolution. The imagery is 

provided by the U.S. Department of Agriculture’s Farm Service Agency (U.S. Department of 

Agriculture, 2013), and was captured between September 16
th

, 2013 and October 28
th

, 2013. 

Google Earth imagery arises from a variety of sources such as the U.S. Department of 

Agriculture, DigitalGlobe, GeoEye-1, Ikonos, MODIS Terra, city or state governments, and 

commercial aerial photographers (Taylor, 2014). Thus due to the use of third-party sources of 

imagery contained in Google Earth, and because the imagery is aggregated, the spatial resolution 

varies. The Google Earth imagery was dated as May 5
th

, 2013 and April 1
st
 2013 for Tacoma and 

Tallahassee, respectively. The most recent imagery available through Google Earth also presents 

features in natural color; the historical imagery available through Google Earth may be 

http://www.gearthblog.com/


 

48 

panchromatic. These two imagery sources (NAIP and Google Earth) were selected because they 

are freely available and temporally current. The Google Earth imagery is also temporally 

consistent with the NAIP imagery within the two cities studied. NAIP imagery has been used in 

other recently published assessments of urban tree canopy cover (e.g., McGee et al., 2012; Merry 

et al., 2014), while Google Earth imagery has not. 

  In summary, we conducted a study to determine the percentage of tree canopy cover 

using NAIP imagery within ArcGIS and using Google Earth imagery in order to compare 

whether estimated tree canopy cover levels would be comparable when using either imagery 

source. We also conducted the study in a manner that would allow us to compare the two 

sampling approaches. Statistical tests were employed to determine whether significant 

differences existed. The following hypotheses were developed:  

1. When employing the random point-based sampling approach across Tallahassee, there is 

no significant difference in the estimated tree canopy cover derived from using the NAIP 

imagery in ArcGIS and the estimated tree canopy cover derived from using the Google 

Earth imagery.  

2. When employing the random point-based sampling approach across Tacoma, there is no 

significant difference in the estimated tree canopy cover derived from using the NAIP 

imagery in ArcGIS and the estimated tree canopy cover derived from using the Google 

Earth imagery.  

3. When employing the plot/grid sampling approach across Tallahassee, there is no 

significant difference in the estimated tree canopy cover derived from using the NAIP 

imagery in ArcGIS and the estimated tree canopy cover derived from using the Google 

Earth imagery.  



 

49 

4. When employing the plot/grid sampling approach across Tacoma, there is no significant 

difference in the estimated tree canopy cover derived from using the NAIP imagery in 

ArcGIS and the estimated tree canopy cover derived from using the Google Earth 

imagery.  

Methods 

In the sections below, the study areas (cities) and the remotely sensed data around which 

the study was conducted are described, along with the sampling approaches employed and the 

statistical tests used to address the hypotheses. 

Study Areas 

As we suggested earlier, we selected two United States cities (Tallahassee, Florida and 

Tacoma, Washington) as case studies within which to estimate tree canopy cover using two 

sampling approaches and two imagery sources. We wanted to select two medium-sized cities that 

were located in two different regions of the United States, which contained in theory different 

forms of vegetative cover. These two cities were further selected based on the availability of both 

NAIP imagery and Google Earth imagery for the year 2013, and because Tallahassee and 

Tacoma have similar human population sizes. According to the U.S. Census Bureau (2014), 

Tallahassee was the seventh largest city in Florida with an estimated total population of about 

186,000 people in 2013 and a population density of about 700 people per square kilometer (km
2
). 

Comparably, Tacoma was the third largest city in Washington with an estimated total population 

of about 203,000 people in 2013 and a population density of about 1,541 people per km
2
. The 

percent change in population from April 1, 2010 to July 1, 2013 was 2.5% for Tacoma and 2.8% 

for Tallahassee.  

For both cities, we used NAIP imagery viewed within ArcGIS and Google Earth 
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imagery, both captured in 2013. Google Earth compiles imagery from multiple imagery sources 

including USDA NAIP imagery. However, through visual analysis we confirmed that the 

imagery used when analyzing sampling methods in Google Earth was not NAIP imagery.  

Sampling Approaches for Tree Canopy Cover Estimates 

Two different approaches were employed: a random point-based approach and a plot/grid 

approach. We randomly located 1,000 points each within the boundaries of each city (Figure 

3.1). Suggested minimum samples were 100 per class for a large area by Congalton and Green 

(2009). Our sample size, 1,000 points, goes beyond the minimum requirements presented by 

Congalton and Green (2009) and is comparable to recent studies by Nowak and Greenfield 

(2012) and Richardson and Moskal (2014). These random points were created using the random 

point generator in ArcGIS. They were converted to a .KMZ format for use in Google Earth. For 

the plot/grid approach, the plots were centered on the points of the point-based approach. 

The point-based approach uses binary data that are typically expressed as a proportion or 

percent when reported for an entire population (or sample area). The samples involve a 

determination from a random or systematic dot grid whether tree canopy is present or absent. 

This metric is often reported as the percent canopy cover for the sample area. In this study, 

through aerial photo interpretation we determined whether the location of every single point fell 

onto a tree crown (1), or did not fell onto a tree crown (0) representing a presence / absence type 

of analysis. We used the same 1,000 sample points to assess canopy cover with the NAIP 

imagery in ArcGIS and with the Google Earth imagery.  Points were analyzed simultaneously in 

the two imagery sources in order to make sure they fell on the same location and to limit mis-

classification, but the order of the sample was randomly assigned for each data set, so as to not 

introduce bias into the presence / absence decision. Also, in estimating canopy cover a fixed 
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Figure 3.1. The Tallahassee city boundary (upper left), an example of the random point-based 

sampling approach (upper right), 0.4 ha plots (lower left), and the 1.83 m grid embedded within 

the 0.4 ha plots (lower right). 

 

scale was utilized (1:600 to 1:800) when interpreting NAIP imagery within ArcGIS, and a fixed 

eye altitude was utilized (200 to 300 meters (m)) when interpreting Google Earth imagery. The 

percentage of tree canopy cover (p) was calculated by dividing the number of samples (x) 

indicating tree canopy cover by the total number of sample points (n) within each city (p = x/n). 



 

52 

The standard error (SE) for the tree canopy cover of an individual sample was defined using 

following equation:  

 

SE = (p (1 - p) / n)
 0.5

  (1) 

 

We also derived the pooled sample proportion  

 

p* = ((p1 (1 - p1) / n1) + (p2 (1 - p2) / n2))
 0.5

  (2) 

 

for the estimates of tree canopy cover between NAIP imagery (p1) and Google Earth imagery 

(p2), and the SE of the difference between two samples: 

 

SE* = (p* (1 - p*))((1 / n1) + (1 / n2)))
0.5

 (3) 

 

where p* is the pooled sample proportion, n1 is the size of sample 1, and n2 is the size of sample 

2. 

For the plot/grid (cluster sampling) approach, the original 1,000 randomly sampled points 

were buffered in ArcGIS to create circular polygons of a size (0.04 ha) that was suggested by 

Nickerson (2014a) as appropriate for this type of analysis. A grid of points was then placed 

inside each plot in order to estimate canopy cover. The spacing between the points within the 

circular plots was 1.83 m, and a large number of points (121) were created for each circular plot 

(Figure 1). Thus, 121,000 points were interpreted (1,000 plots x 121 points per plot) for each 

imagery product. Some plots were very quickly interpreted, if all or most points fell inside or 
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outside of tree canopies, thus the average rate of interpretation per point in this method is much 

faster than the per-point rate for the point-based approach. A Visual Basic program was used to 

create the grid of points based on the center location of the plot. A shapefile of these grids was 

created for use in ArcGIS, and a .KMZ file was created for use in Google Earth. The number of 

the points within the circular points that fell on a tree canopy was counted and the percentage 

canopy cover was estimated for each plot by dividing through by the total number of points in 

the grid. While the order of plot assessment was randomized, for consistency, we followed the 

same order for assessing the grid of points within each plot (north to south and laterally west to 

east). Also, some of the circular plots overlapped, overlapping points were not discarded but 

treated as a separate plot/grid sample. After interpretation of the grid within each plot, each plot 

became associated with an observation of the percentage canopy cover that ranged between 0-

100 percent.  

For the plot/grid approach, the mean and standard error for the entire sample within each 

city were calculated, along with 95% confidence intervals for tree canopy cover. We also 

calculated SE for each plot to compare with standard error of the entire sample. Similar to the 

point-based sampling approach, we reordered the sample randomly for each imagery source 

(NAIP and Google Earth) to avoid introducing sampling bias in the tree canopy cover estimation. 

We also used the same fixed viewing scale for the random point-based sampling approach (1:600 

to 1:800 for NAIP imagery within ArcGIS and 200 to 300 m eye altitude for Google Earth 

imagery, respectively). Although Nickerson (2014a) suggests progressive sampling of plots until 

"a confidence estimate for average canopy cover for each urban forest class is achieved at ±10% 

at the 90% confidence interval", we initially used the same number of samples (1,000) as we 

used in the point-based sampling approach. However, we re-analyzed the data collected to 
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determine how many samples would have been required had the stopping point been determined 

where the ±10% range in average canopy cover equaled the 90% confidence interval for canopy 

cover. 

The plot/grid (cluster sampling) approach that we employ is a form of simple random 

one-stage cluster sampling process that involves a geographic sampling frame or cluster (a city) 

in which there are listing units (the 0.10 acre plots) and elementary units (the collection of points 

within the plots) from which we estimate the proportion of tree cover. The clusters (cities) 

however are not selected randomly from the entire population (sampling frame) of cities within 

the United States. The listing units were randomly dispersed (or selected) within each city. Given 

that the plots could differ in tree canopy characteristics by simply shifting them a meter or so in 

any direction, the sampling frame for the plots might be considered infinite or very large. The 

feasibility and economics of cluster sampling have been noted as reasons for using this type of 

sampling process. In our case these reasons may not be viewed as advantages for our sampling 

effort, since the listing units are positioned in the same locations as the random sample points, 

and since more time is required to assess the elementary units (points) within the plots. High 

standard errors within samples have also been suggested as a disadvantage of cluster sampling 

approaches (Levy and Lemeshow 1991). However, an estimate of the percent canopy cover for 

each of the listing units (plots) is obtained from the binary data associated with each elementary 

unit (the points within the plots). This continuous value (range 0-100 percent) is then used to 

determine canopy closure within each city rather than the binary value associated with the point-

based sampling approach noted previously. 
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Statistical Tests Related to Tree Canopy Cover Estimates 

For hypotheses H1 and H2 (referencing the random point-based approach) we tested the 

difference between proportions (H0: p1 = p2, Ha: p1 ≠ p2). We developed the pooled sample 

proportion and the standard error of the sampling distribution difference between two 

proportions. A Z-score was determined using the following equation; 

 

Z = (p1 - p2) / SE* (4) 

 

We then assessed the probability (P-value) associated with the Z-score to determine 

whether significant differences existed, and to determine whether to accept or reject the 

hypotheses. Because the data collected from the plot/grid sampling approach resulted in a 

continuous value estimate (from 0 to 100%) of tree canopy cover (as opposed to the presence / 

absence response from the random point-based sampling approach), to test H3 and H4 we first 

examined the normality of the data by employing the Shapiro-Wilk test, since our data set were 

smaller than 2,000 elements. The results indicated that the tree canopy estimates from the 

plot/grid sampling approach, using both the NAIP imagery viewed within ArcGIS and the 

Google Earth imagery, were not normally distributed. Hence, the non-parametric Wilcoxon 

Signed Rank Test was used to test hypotheses H3 and H4. 

Assessment of Classification Error, Mis-Registration and Feature Displacement 

Inevitably when conducting analysis with two remotely sensed imagery sources, issues 

such as image mis-registration and the resulting mis-classification of a point between imagery 

sources will need to be addressed. As suggested by Nowak and Greenfield (2012) these 

components of image analysis may lead to incorrect estimations of land cover, for example a 
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point may be reported as falling on tree canopy in one imagery source and not falling on a tree in 

a different imagery source. Using a second interpreter can help mitigate this mis-classification; 

therefore, we randomly selected 10% of the points from the 1,000 sampling points in each city 

and with a second interpreter analyzed the presence / absence of trees using the NAIP and 

Google Earth imagery in the two cities. There was a 95 to 98% agreement between the analyses 

of the two interpreters across the two imagery sources and two cities, which is similar to that 

found in Nowak and Greenfield (2012). Differences were due to the subjective nature of the 

classification near the edges of tree crowns. 

For further clarity on the potential for mis-classification of a point due to its proximity to 

a tree canopy edge and potential mis-registration between the two imagery sources on the point 

classification, four independent sets of randomly selected points were generated from the 

original 1,000 point-based sample. For both the NAIP and Google Earth imagery, 100 of the 

points classified as having fallen on a tree were selected. These were not paired points but 100 

unique points for each imagery source. Additionally, 100 points that were classified as having 

not fallen on a tree were selected. For each point, a measurement was made to estimate the 

proximity of the point to the nearest tree canopy edge (those points not classified as having fallen 

on a tree) as well as the proximity of points classified as having fallen on a tree to nearest edge of 

the tree canopy. These measurements were of interest in assessing whether potential mis-

classification by the interpreter may have contributed to the cause of some error. 

For large areas, mis-registration of images may not be very important in estimating tree 

cover for a single point in time. Yet when comparing points between images taken at different 

points in time (e.g., to perform a landscape change analysis), the mis-registration of images may 

lead to false differences. When assessing two temporally different images, ideally an image 
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interpreter may be able to account for mis-registration by locating on the second image the 

original position of each point from the first image. However, this is difficult in circumstances 

where points fall on tree crowns or within groups of trees. Therefore in order to further 

understand mis-registration (or registration inconsistencies) between the imagery sources, 

another 100 independent points of the original 1,000 point sample were randomly selected for 

analysis in both cities. From these points, a linear distance measurement was made to a place on 

a clearly visible, permanent feature using both the NAIP imagery and the Google Earth imagery. 

Since it is impossible to know which of the two imagery sources is correct, the absolute 

difference in the distances between these measurements was used to understand the average mis-

registration distance among the two imagery sources. These estimates of mis-registration 

distances are compared to the distances of points to the nearest canopy edge, using the sub-sets 

of sample points noted in the previous paragraph. 

Finally, feature displacement can be a significant issue along the edges of individual 

aerial images, depending on a number of factors (flying height of the aircraft, focal length of the 

camera or sensor, etc.). With composited images, one would hope that feature displacement 

would be minimized, but through casual observation, the effects can occasionally be seen. 

Unfortunately, feature displacement depends also on the height of the features and the distance 

of the features from the nadir of each individual aerial image, two measurements that are elusive 

for a study such as ours; the image nadir is especially difficult to determine within composite 

images. To determine the nadir, one would need to locate the places in the composite images 

where feature displacement is negligible, which is difficult if these areas include a high density 

of trees, or if tree crowns are rounded (i.e., deciduous trees). For these reasons, we failed to 

provide a process for estimating feature displacement in the study areas. 
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Results 

In evaluating the tree canopy cover of Tallahassee through the use of the point-based 

sampling approach, we estimated that 49.1% of the land within the boundary of the city was 

covered with trees in 2013 when viewed with Google Earth imagery, while 44.5% was covered 

with trees when viewed with NAIP imagery in ArcGIS (Table 1). Therefore, the difference 

between two imagery sources seemed to be about 4.6% in tree canopy cover estimates (standard 

error of the difference = 2.23%). The standard errors employed for the confidence intervals were 

1.50% for the Google Earth and 1.40% for NAIP analyses and the resulting 95% confidence 

intervals were [46.2 to 52.0%] and [41.7 to 47.3%] for Google Earth and NAIP analyses, 

respectively. For Tacoma, through the use of the point-based sampling approach our estimate of 

tree cover in 2013 using the Google Earth imagery was 19.2%. The estimate of tree canopy cover 

was 18.1% when using NAIP imagery within ArcGIS. The estimated tree cover difference 

between Google Earth imagery and NAIP imagery within ArcGIS was thus 1.1% (standard error 

of the difference = 1.74%). The standard errors employed for developing confidence intervals 

were the same (1.20%) for both Google Earth imagery and NAIP imagery within ArcGIS, and 

hence the 95% confidence intervals were [16.8 to 21.6%] and [15.7 to 20.5%] for Google Earth 

imagery and NAIP imagery within ArcGIS, respectively. 

With respect to the point-based sampling approach results, after performing the statistical 

tests associated with the hypotheses, we encountered some interesting findings. For Tallahassee, 

the results suggested that we cannot accept the H1 null hypothesis (p < 0.05). There seemed to be 

a significant difference between the estimated percentage tree canopy cover using the random 

point-based approach with NAIP imagery within ArcGIS and the estimated percentage tree 

canopy cover using the random point-based approach with Google Earth imagery. On the other 
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hand, the results for Tacoma suggested that we can accept the H2 null hypothesis (p > 0.05). 

There seemed to be no significant difference between the estimated percentage tree canopy cover 

with the random point-based approach when using either NAIP imagery within ArcGIS or 

Google Earth imagery. 

In assessing tree cover using the plot/grid sampling approach, we estimated that 48.6% of 

the land within the city boundary of Tallahassee was covered with tree canopy in 2013 when 

viewed with imagery contained within Google Earth, and 45.1% was covered with tree canopy 

when viewed with NAIP imagery within ArcGIS (Table 1). Thus, the difference between the 

estimates of tree canopy cover was 3.5%. The estimate using Google Earth imagery was slightly 

lower than what we found using the point-based approach with Google Earth imagery, and the 

estimate from using NAIP imagery within ArcGIS was slightly higher than the result we found 

from the point-based approach. The standard errors were 1.29% and 1.30% for Google Earth 

imagery and NAIP imagery within ArcGIS, respectively, hence the 95% confidence intervals 

were [46.1% - 51.1%] and [42.7% - 47.7%] for Google Earth imagery and NAIP imagery within 

ArcGIS, respectively. For Tacoma, tree canopy cover was estimated to be about 20.0% in 2013 

when viewed with Google Earth imagery, and 17.3% when viewed with NAIP imagery in 

ArcGIS, a difference in estimated tree canopy cover of 2.7%. Contrary to the Tallahassee results, 

the estimate from using NAIP imagery within ArcGIS was slightly lower than what we found 

using the point-based approach; however, the estimated tree canopy cover from using Google 

Earth imagery was slightly higher than the results we found from the point-based approach. The 

standard errors were 0.92% and 0.93% for the Google Earth imagery and using NAIP imagery 

within ArcGIS, respectively, hence the 95% confidence intervals were [18.2 to 21.8%] and [15.4 

to 19.1%] for Google Earth imagery and NAIP imagery within ArcGIS, respectively. 
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 With respect to the plot/grid sampling approach results, after performing the statistical 

tests associated with the hypotheses, we encountered some unexpected findings. The results 

suggested rejecting the H3 and H4 hypotheses (p < 0.05), since for both cities there seemed to be 

significant differences between the use of Google Earth imagery and NAIP imagery within 

ArcGIS for estimating tree canopy cover. 

In re-analyzing the set of 1,000 samples from the plot/grid approach, we found that the 

point at which the ±10% range in average canopy cover equaled the 90% confidence interval for 

canopy cover was greater when using the NAIP imagery than when using Google earth imagery 

for both cities. Further, the number of plot/grid samples that would have been required in 

Tacoma was greater than the number of plot/grid samples that would have been required in 

Tallahassee using this rule. For Tacoma, the number of plot/grid samples required would have 

been 796 using the NAIP imagery in ArcGIS, and 504 using Google Earth imagery. For 

Tallahassee, the number of plot/grid samples required would have been 200 using the NAIP 

imagery in ArcGIS, and 140 using Google Earth imagery. However, estimates of canopy cover 

using these sample sizes were greater (2-8%) than the estimates of canopy cover using 1,000 

samples.  

From measurements made to a sub-set of sample points, on average for the two cities, 

those points that fell on a tree were within approximately 25 m (Tacoma) to 35 m (Tallahassee) 

of the edge of the canopy when using the NAIP imagery and approximately 15 m (Tacoma) to 24 

m (Tallahassee) when using Google Earth imagery. Those points that were classified as not 

falling on a tree were, on average, approximately 37 m (Tallahassee) to 46 m (Tacoma) from a 

canopy edge when using the NAIP imagery and approximately 24 (Tallahassee) to 69 m 

(Tacoma) from a tree canopy edge when using Google Earth imagery. 
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Table 3.1. Summary statistics for the point-based sampling approach (1,000 randomly-located sample points) and the plot/grid 

sampling approach (1,000 randomly-located sample plots) using imagery available through Google Earth and NAIP imagery viewed 

within ArcGIS. 
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Therefore, the likelihood of a mis-classification due to a point falling on the edge of a tree 

canopy in one image and not in the other was deemed minimal for the point-based sampling 

approach. The variation in these distances to canopy edges was high, however. In Tacoma, when 

points within tree canopies were considered, 12% were within 1 m from the edge of the canopy. 

When points not falling on tree canopies were considered, 1.5% were within 1 m from the 

canopy edge. In Tallahassee, when the sub-sample of points within tree canopies were 

considered, 2.5% were within 1 m from the edge of the canopy. When points not falling on tree 

canopies were considered, 5.5% were within 1 m from the canopy edge. As a result, photo 

interpretation error due to close, subjective classifications along the edges of tree crowns seems 

minimal, but likely contributes to some of the differences observed between sampling systems 

and imagery products. This is particularly of concern with the plot/grid approach where many 

points within a grid imposed within a plot may be close to the edge of a tree canopy. 

The average absolute difference between specific points located on both the NAIP and 

Google Earth imagery, using locations of a sub-sample of paired points, was 1.19 m in Tacoma 

and 1.70 m in Tallahassee. These can be viewed as estimates of image registration differences. 

For Tacoma, using the NAIP imagery, 10% of the previous sub-sampled points classified as 

having fallen on a tree canopy were closer to the edge of the canopy than the corresponding 

image registration difference. Comparatively, none of the previous sub-sampled points classified 

as not being on a tree canopy were closer to the edge of the canopy than the corresponding image 

registration difference. When using Google Earth imagery, these were 20% and 4% of the 

previous sub-sampled points, respectively. For Tallahassee, using the NAIP imagery, less than 

1% of the previous sub-sampled points that fell on a tree canopy were closer to the edge of the 

canopy than the corresponding image registration difference, while 3% of the points classified as 
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not having fallen on tree canopy were closer to the edge of the canopy than the corresponding 

image registration difference. When using Google Earth imagery, these were 12% and 15% of 

the previous sub-sampled points, respectively. As a result of this analysis, it becomes obvious 

that some of the differences in tree canopy classification estimates may be associated with 

registration differences among the two imagery products. Again, this is particularly of concern 

with the plot/grid approach where many points within a grid imposed within a plot may be close 

to the edge of a tree canopy. 

Discussion 

In this study, our findings show similarities to other recent findings (e.g., Merry et al., 

2014) that indicate tree canopy cover estimates can be statistically significantly different when 

different sampling approaches or imagery sources are employed, even when the sample units are 

basically positioned in the same location within the study areas. However, the sampling process 

itself should not be the cause of these differences; as we noted earlier the combined effects of 

mis-registration, feature displacement, and mis-classification could have imposed minor 

challenges to either method. 

Given the large number of sample observations collected (1,000 sample points, which 

exceeded the minimum requirement represented by Congalton and Green (2009)), it should be of 

no surprise that the standard errors are relatively small, and therefore slight differences in sample 

means might be considered statistically significant. For example, when employing point-based 

sampling, the differences in canopy cover between using NAIP imagery and Google Earth 

imagery were 4.6% and 1.1% for Tallahassee and Tacoma, respectively. Statistical test results 

showed that these were significantly different than the estimated tree canopy cover for 

Tallahassee but not Tacoma. However, when the plot/grid sampling approach was employed the 
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differences in canopy cover between using NAIP imagery and Google Earth imagery are 3.5% 

and 2.7% for Tallahassee and Tacoma, respectively, and these were not significantly different. 

This might be a result of the plot/grid sampling approach minimizing the impact of image mis-

registration and feature displacement. The SEs for the plot/grid sampling approach are slightly 

smaller than the SEs for the point-based approach. However, the average SE of each plot within 

the plot/grid sampling approach was 1.80% when using the NAIP imagery and 1.88% when 

using the Google Earth imagery for Tallahassee. For Tacoma, the average SE for the individual 

plots was 1.48% and 1.80% with the NAIP imagery and Google Earth imagery, respectively. 

These are slightly larger than the SEs for the point-based sampling approach. Even though many 

more points were employed in the plot/grid sampling approach, the SE of this approach should 

be similar to the SE of the point-based approach given that the plot is the sample unit, not the 

grid of 121 points used within each plot. Had a smaller number of sample observations been 

utilized, and larger standard errors observed, statistical tests may have suggested that there were 

no significant difference in the mean values of the Tallahassee results when using the point-

based sampling approach. As it stands, the significant differences in results are more likely 

associated with some combination of mis-classification, mis-registration, and feature 

displacement issues of the sampling protocol. 

A number of factors could have introduced bias or error into our findings. These include 

problems inherent in the imagery, such as topographic displacement, spatial resolution, minor 

georeferencing problems, mis-registration, parallax, shadows, image tone and texture issues 

along edges of individual image frames, and other image processing issues for which users are 

unaware. During the image interpretation process, the majority of the differences were attributed 

to points falling on the edge of tree canopies within shadows of one imagery source and not 
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within a shadow on the other imagery source. This was due to differences in the timing of the 

capture of the imagery (time of day, time of year). This was also particularly evident within the 

NAIP imagery. Further, due to the spatial resolution of the NAIP imagery, pixilation at a larger 

scale resulted in some challenges related to the classification of points. Google Earth imagery 

was advantageous in that regard because it has a finer spatial resolution at larger scales. 

Allowing the interpreter to vary the scale may also be beneficial to image interpretation efforts 

and canopy cover assessments using Google Earth imagery, but may have less benefits to similar 

efforts employing NAIP imagery. Finally, while the imagery used for analysis were captured 

within months of each other, the variation in season between the two imagery sources may have 

attributed to the differences in canopy estimates specifically when a point fell on a deciduous 

tree species.  

Without sub-meter accurate horizontal positions to compare against, it is difficult to tell 

which of the two imagery sources had more mis-registration problems. Orthophotos like those 

offered by the USDA, by nature, have been processed and corrected to limit these sorts of issues 

(Lillesand et al., 2004) while the same corrections may not have been applied to the composite 

imagery offered from Google Earth. Overall, a small level of inconsistent registration was 

evident across both imagery sources and cities, and therefore likely had some impact on the point 

classification process. Given that both are composite images, the registration differences are not 

consistent across the landscape, and a correction process employed for an analysis such as this 

(estimating tree canopy cover in urban areas) would be time-intensive. 

Shadows may result in urban trees not being easily distinguishable from other nearby 

features. Shadows can also result in mis-classification of the vegetation because of dense 

appearance of tree canopies (Merry et al., 2014). In addition, we assumed a fixed viewing scale 
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for interpretation purposes, and this may compound the effect of the shadows; hence it may be 

better to change scales in order to more clearly interpret the image. Also, the finer spatial 

resolution of the Google Earth imagery may have played a role in the generally higher canopy 

cover estimates when compared to using the NAIP imagery. Other factors that could have played 

a role in the results we obtained included photo interpretation error caused by fatigue or 

distraction (blunders, random error), and photo interpretation error in the assessment of 

vegetation (e.g., trees vs. bushes). However, it is comforting to know that our estimated tree 

canopy cover for Tacoma was similar to other recent estimates (Nowak and Greenfield, 2012) 

and the results of our mis-registration and mis-classification tests showed that these issues were 

minimal in influencing our analysis.  

Estimation of tree canopy cover using different sampling approaches and different 

imagery sources provides us with an understanding of the time, effort, and complexity of the 

processes. The time required to implement each process associated with this study was 

important, as the use of different sampling approaches and imagery sources required a 

significantly different amount of time for interpretation and determination of tree cover. The 

plot/grid sampling approach may seem to represent a more precise way to estimate tree canopy 

cover, but it also required more time and attention to detail than when simply interpreting 

individual random points - when using the same number of sample. For instance, for the photo 

interpreter associated with this project, the plot/grid approach required approximately one hour 

to assess 100 plot/grid sample locations (1/10 of the sample size), but for the point sampling 

approach about 200 to 250 points were interpreted within same period of time (1/4 of the sample 

size). It may seem that the plot/grid sampling approach would be more time consuming than 

reported but the interpreter did not always have to count each point within each grid. There were 
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many instances when the plot/grid fell completely onto a forested area or the area of canopy 

cover fell within one continuous section of the grid requiring only a portion of the points to be 

interpreted. Conversely, there were instances when the plot/grid fell completely onto a developed 

area or water, so only a minimal number of points within the grid (or no points at all) had to be 

analyzed, allowing the interpreter to move on to the next plot quickly. Had we ceased to sample 

using the plot/grid approach when the point at which the ±10% range in average canopy cover 

equaled the 90% confidence interval for canopy, the time required for sampling (as compared to 

the point-based approach) would have actually been less for Tallahassee, but not for Tacoma. 

This may be related to the lower level of canopy cover in Tacoma and the larger standard error as 

a proportion of the mean canopy cover. In addition, the higher spatial resolution of Google Earth 

imagery may reduce the number of samples required under this rule.  

With regard to viewing scale, the NAIP imagery analysis within ArcGIS provided a fixed 

scale option which made it easier to provide and apply a consistent process for canopy cover 

estimation. However, the Google Earth imagery analysis required more attention on the photo 

interpreter's behalf to the fixed eye altitude in order to maintain a consistent scale while 

interpreting canopy cover for the sample points. Hence, more time was required for tree canopy 

cover analysis with the Google Earth imagery than when using the NAIP imagery within 

ArcGIS.  

Several sampling approaches have been tested recently for their usefulness in assessing 

urban canopy cover in addition to the cluster sampling approach evaluated here. These include 

sampling processes that use satellite or aerial imagery (such as the random point and cluster 

sampling approaches) and integrated tools for field-based assessments of canopy cover. For 

example, the iTree application tool, developed by the U.S. Forest Service and their cooperators, 
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was designed to help users assess and manage the character of urban forests (King and Locke 

2013, Nowak at al. 2008). The iTree application tool allows one to collect field based 

measurements of urban tree canopy cover at sample points and to collect estimates of other forest 

information (tree size, species, etc.) needed for management purposes. In comparing different 

approaches using the iTree application tool, high-resolution land cover data (GIS), and skyward-

oriented hemispherical photographs, King and Locke (2013) found that estimates of canopy 

cover from using these provided similar results. While we did not directly compare the cluster 

sampling approach described here to the use if the iTree application tool or hemispherical 

photographs, one might assume that the cluster sampling approach applied using high-resolution 

aerial imagery might also provide similar canopy cover estimates. If conducted well, a point-

based sample should provide verifiable tree canopy cover estimates for use in carbon credit 

projects and carbon sequestration analyses. It also appears that the very latest versions of two 

freely available imagery products for the United States, Google Earth imagery and NAIP 

imagery, should both be adequate for providing estimates of tree canopy cover. Google Earth 

imagery may be more suitable for this type of analysis in urban areas due to its finer spatial 

resolution at varying scales. However, in using any composite aerial imagery, one must be aware 

of the potential for imagery mis-registration issues and feature displacement issues. In general, 

estimated tree canopy cover using NAIP imagery within ArcGIS and Google Earth imagery are 

similar when we compared the point-based sampling approach to the plot/grid sampling 

approach within the two cities of this study.  

Protocols and procedures for estimating tree canopy cover from remotely sensed imagery 

continue to be tested for their usefulness in providing high quality information to support 

management decisions and policy analyses. The results of this study underline the importance of 
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selecting resource assessment methods (sampling design, intensity, and frequency) for the 

development of protocols for urban forest carbon projects. Sampling costs and their relationship 

to carbon credit prices are essential for the economic feasibility of carbon projects under 

consideration. While some of the tested procedures may seem to advance our ability to provide 

more precise and realistic tree canopy cover estimates, given advances in the resolution (spatial 

and spectral) of remotely sensed imagery, estimates from various sampling approaches seem no 

better than those provided by point-based sampling, and provide no advantages in terms of time, 

effort, or reduction in complexity.  

Clearly, to have a viable carbon market reliable resource assessment methods are 

required in order to generate marketable carbon credits and provide assurances that these 

represent real, meeting specific registry criteria, carbon emission offsets. At the same time, 

carbon credits have relatively low values. While prices of forest or tree-based carbon credits vary 

greatly depending on the trading platform and credit attributes the average price of California 

carbon allowance futures has been in the $12 to 13 per tonne CO2 equivalent range since mid-

2013 (Climate Policy Initiative 2015). Climate Action Reserve carbon offset projects generate 

values of about $10 per tonne CO2 equivalent on average (California Carbon 2015). As of May 

2015, several improved forest management and reforestation projects have been registered with 

the Climate Action Reserve, yet no specific urban forestry projects have been registered, likely 

because of high project development and implementation costs which include carbon verification 

and monitoring efforts. Kerchner and Keeton (2015) also noted that high project development 

and long-term monitoring costs may prevent forest landowners from developing carbon projects. 

While recognizing the differences between urban tree resources and forests in rural 

settings, forest inventories are typically taken at the time of timber sale or purchase and then not 
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more frequently than every five to ten years during the life of a forest stand (Borders et al. 2008). 

For example, planted pine stands in the U.S. South may be inventoried twice or three times 

during their lifetime, at the time of sale and then once or twice during mid-rotation. This 

sampling intensity is considered by and large as appropriate for the resources of such value. It 

can also be argued that timber stumpage prices in the U.S. South and carbon offset prices fall 

into similar ranges. Yet carbon inventories in forestry settings still require higher precision and 

frequency, and supplementary measurements (Holland 2013), which in turn rise project costs and 

may yield carbon project infeasible. Therefore, there is a tradeoff between the stringency of 

project development and implementation rules and the volume of carbon projects that are 

economically feasible. The challenge is, at least in our minds, to find a balance which would 

maximize environmental benefits expressed in additional carbon storage and offsets. It may be 

the case that the current rules may be too restrictive and therefore too expensive (given current 

carbon offset values), and this may prevent environmentally beneficial projects from being 

developed. Further research aimed at developing reliable yet cost-effective resource assessment 

methods may help to address these issues. 

Organizations which are taking proactive leadership in the measurement of forest 

resources for carbon policy implementation should continue to allow their suggested protocols to 

undergo review. Deferring to the expertise of reviewers allows, in the case of the Urban Forest 

Management protocol (Nickerson, 2014b), landowners and agencies to select the process that 

best suits particular conditions. Research results, such as those presented here and elsewhere 

(e.g., Walton et al., 2008; Merry et al., 2014), provide guidance to others and help advance 

society's goals of making informed decisions with respect to climate change and carbon 

management. 
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Conclusion 

The development of an accurate estimate of urban tree canopy cover can be a critical 

aspect of assessments of the carbon sequestration potential of an urban forest and the ecosystem 

services potentially provided by an urban forest (Nowak et al., 2008). Besides the more common 

sampling methods employed (point-based and polygon-based sampling approaches), a cluster 

sampling method was also proposed (Nickerson, 2014a), whose improvement in accuracy was 

heretofore unknown. While comparing point-based sampling approach to the plot/grid sampling 

approach, we found that the estimated tree canopy cover was similar within the two study areas 

(two medium-sized cities). Though with larger land coverage, the plot/grid sampling approach 

may represent actual tree cover better than the point-based sampling approach, yet the plot/grid 

sampling approach requires more time and effort. Like others have suggested, the point-based 

sampling approach may be the preferred method for assessments of tree canopy cover using 

remotely sensed imagery, particularly if fewer than 1,000 samples are collected. However, in 

cities where the average canopy cover is relatively high and the resulting standard error of 

sampled canopy cover in proportion with the mean canopy cover is relatively low, using Google 

Earth imagery and a plot/grid sampling approach may require equal or less time than the point-

based sampling approach if the stopping point for sampling is determined as the number of 

samples required for the ±10% range in average canopy cover to equal the 90% confidence 

interval for canopy cover. However, given a fixed time window within which the assessment 

must be completed, distributing more points to the point-based approach may reduce the SEs 

more quickly, and therefore providing greater confidence in the results. 

In our study, it also seemed that using different remotely sensed sources may influence 

the estimates of percentage tree canopy cover under the two different sampling approaches. 
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While some of the differences are statistically significant, the estimates of tree canopy cover 

were similar, and one should be comforted in knowing that some of the freely available remotely 

sensed data (e.g., airborne and satellite imagery) for the United States can provide reliable and 

repeatable results for purposes such as assessments of urban canopy cover. Remotely sensed 

imagery can help urban forest managers monitor current tree cover change levels and can 

facilitate processes that help to sustain desired tree canopy levels (e.g., McPherson et al., 2011), 

however when used for projects that influence financial outcomes or management policies, an 

explicit description of the sampling methods and data employed seems paramount.  

 

Funding  

This work was supported by the Warnell School of Forestry and Natural Resources at the 

University of Georgia, the Southern Research Station of the United States Forest Service, and 

The Republic of Turkey, Ministry of National Education. We are very grateful for the valuable 

comments provided by the Associate Editor and the anonymous reviewers. 

 

References 

Alig, R.J., Plantinga, A.J., Ahn, S.E., and Kline, J.D. (2003). Land use changes involving 

forestry in the United States: 1951 to 1997, with projections to 2050. General Technical 

Report PNW-GTR-587. U.S. Department of Agriculture, Forest Service, Pacific Northwest 

Research Station, Portland, OR.  

Borders, B.E., Harrison, W.M., Clutter, M.L., Shiver, B.D., and Souter, R.A. (2008). The value 

of timber inventory information for management planning. Can. J. For. Res. 38, 2287–2294. 



 

73 

California Carbon. (2015). California Carbon info. http://californiacarbon.info/ (accessed 

05/28/2015). 

Climate Action Reserve. (2014a). Quantification guidance for use with forest carbon projects, 

January 21, 2014. Climate Action Reserve, Los Angeles, CA. 29 p. 

Climate Action Reserve. (2014b). Summary of comments & responses, draft urban forest project 

protocol version 2.0. Climate Action Reserve, Los Angeles, CA. 18 p. 

Climate Policy Initiative. (2015). California climate dashboard. http://calcarbondash.org/ 

(accessed 05/28/2015). 

Congalton, R.G., and Green K. (2009). Assessing the accuracy of remotely sensed data, 

principles and practices, second ed. CRC Press, Boca Raton, FL. 

ESRI. (2013). ArcGIS. http://www.esri.com/software/arcgis (accessed 09/21/2013).  

Google, Inc. (2014). Google Earth (Version 7.1.2.2041). https://www.google.com/earth/ 

(accessed 12/27/2014). 

Holland, K. (2013). A primer on forest carbon projects under California’s new offset program. 

The Forestry Source 18(3): 7. 

Irani F.M., and Galvin M.F. (2003). Strategic urban forests assessment: Baltimore, Maryland. 

Maryland Department of Natural Resources, Annapolis, MD.  

Jensen, R., Gatrell, J., Boulton, J., and Harper, B. (2004). Using remote sensing and geographic 

information systems to study urban quality of life and urban forest amenities. Ecol. Soc. 9(5), 

5. 

Kerchner, D.C., and Keeton, W.S. (2015). California’s regulatory forest carbon market: Viability 

for northeast landowners. For. Policy Econ. 50, 70–81. 

http://californiacarbon.info/
http://calcarbondash.org/
https://www.google.com/earth/


 

74 

King, K.L., and Locke, D.H. (2013). A comparison of three methods for measuring local urban 

tree canopy cover. Arboric. Urban For. 39, 62–67. 

Levy, P.S., and Lemeshow, S. (1991). Sampling of populations: Methods and applications, 

second ed. John Wiley & Sons, Inc., New York.  

Leuzinger, S., Vogt, R., and Körner, C. (2010). Tree surface temperature in an urban 

environment. Agric. For. Meteorol. 150, 56–62. 

Lillesand, T.M., Kiefer, R.W., and Chipman, J.W. (2004). Remote Sensing and Image 

Interpretation. Seventh ed. John Wiley and Sons: New York, NY.  

Macfie, B.P., and Nufrio, P.M. (2006). Applied statistics for public policy. M.E. Sharpe, Inc., 

Armonk, NY. 

Mackun, P., Wilson, S., Fischetti, T., and Goworowska, J. (2011). Population distribution and 

change: 2000 to 2010. 2010 census briefs. C2010BR-01. U.S. Department of Commerce, 

Economics and Statistics Administration, U.S. Census Bureau, Suitland, MD.  

McGee, J.A. III, Day, S.D., Wynne, R.H., and White, M.B. (2012). Using geospatial tools to 

assess the urban tree canopy: Decision support for local governments. J. For. 110, 275–286. 

McPherson, E.G., Simpson, J.R., Xiao, Q., and Wu, C. (2011). Million trees Los Angeles canopy 

cover and benefit assessment. Landsc. Urban Plan. 99, 40–50. 

Merry, K., Siry, J., Bettinger, P., and Bowker, J.M. (2014). Urban tree cover change in Detroit 

and Atlanta, USA, 1951–2010. Cities. 41, 123–131. 

Nickerson, J. (2014a). Urban forest project protocol, version 2.0 for public comment, March 21, 

2014. Climate Action Reserve, Los Angeles, CA. 58 p. 

Nickerson, J. (2014b). Urban forest management project protocol, version 1.0, June 25, 2014. 

Climate Action Reserve, Los Angeles, CA. 



 

75 

Nowak, D.J. (1993). Historical vegetation change in Oakland and its implications for urban 

forest management. J. Arboric. 19, 313–319. 

Nowak, D.J., Crane, D.E., Stevens, J.C., Hoehn, R.E., Walton, J.T., and Bond, J. (2008). A 

ground-based method of assessing urban forest structure and ecosystem services. Arboric. 

Urban For. 34, 347–358. 

Nowak, D.J., and Greenfield, E.J. (2012). Tree and impervious cover change in U.S. cities. 

Urban For. Urban Greening. 11, 21–30. 

Nowak, D.J., Rowntree, R.A., McPherson, E.G., Sisinni, S.M., Kerkmann, E.R., and Stevens, 

J.C. (1996). Measuring and analyzing urban tree cover. Landsc. Urban Plan. 36, 49–57. 

Nowak, D.J., Stein, S.M., Randler, P.B., Greenfield, E.J., Comas, S.J., Carr, M.A., and Alig, R.J. 

(2010). Sustaining America's urban trees and forests. U.S. Department of Agriculture, Forest 

Service, Northern Research Station, State and Private Forestry, Newtown Square, PA. 

General Technical Report NRS-62. 

Parlin, M., and Mead, M. (2009). Seattle, Washington urban tree canopy analysis: Project report: 

Looking back and moving forward. NCDC Imaging & Mapping, Colorado Springs, CO. 

Richardson, J.J., and Moskal, L.M. (2014). Uncertainty in urban forest canopy assessment: 

Lessons from Seattle, WA, USA. Urban For. Urban Greening. 13, 152 –157. 

Taylor, F. (2014). About Google Earth imagery. Google Earth Blog. 

http://www.gearthblog.com/blog/archives/2014/04/google-earth-imagery.html (accessed 

12/26/2014). 

U.S. Department of Agriculture. (2013). Imagery programs, NAIP imagery. U.S. Department of 

Agriculture, Farm Service Agency, Aerial Photography Field Office, Salt Lake City, UT. 

http://www.fsa.usda.gov/FSA/apfoapp?area=home&subject=prog&topic=nai (accessed 

http://www.gearthblog.com/blog/archives/2014/04/google-earth-imagery.html
http://www.fsa.usda.gov/FSA/apfoapp?area=home&subject=prog&topic=nai


 

76 

03/10/2014). 

U.S. Census Bureau. (2014). State & County QuickFacts from U.S. Department of Commerce, 

Census Bureau, Suitland, MD. https://www.quickfacts.census.gov/qfd/states (accessed 

12.15.2014).  

Walton, J.T., Nowak, D.J., and Greenfield, E.J. (2008). Assessing urban forest canopy cover 

using airborne or satellite imagery. Arboric. Urban For. 34, 334–340. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.quickfacts.census.gov/qfd/states


 

77 

 

 

CHAPTER 4 

ESTIMATION OF URBAN VEGETATION COVER USING MULTISPECTRAL DATA AND 

LiDAR
3
 

  

                                                 
3
 Ucar, Z., Merry, K., Bettinger, P., Akbulut, R., Siry, J. 

To be submitted to the Urban Forestry & Urban Greening, 2017. 



 

78 

 

 

Abstract 

Urban vegetation are an important resource in built up environments, and estimation of 

urban canopy cover arising from trees and shrubs is an important metric in assessments of 

landscape quality. We used an image classification approach to estimate urban vegetation cover 

from trees and shrubs within two medium-sized cities in the United States. Four-band aerial 

imagery with 1 m spatial resolution, a vegetation index derived from this imagery, and two 

LiDAR-derived maps were used to examine the added value of LiDAR for this purpose. The 

classification results showed that using LiDAR derived data along with multispectral data or 

LiDAR derived data by itself improve the process of identifying vegetated areas. For 

Tallahassee, Florida, overall accuracy of six major classes (water, develop, vegetation, bare 

ground, grass and shadow) ranged from 51.3% to 69.3% among all scenarios. The user’s 

accuracy of vegetation class was 69% when using NAIP imagery only. Adding LiDAR derived 

data into the classification increased the user’s accuracy of vegetation class between 16% and 

24%. Aggregating land cover classes into two major classes (vegetation, and non-vegetation) 

resulted in over 80% overall accuracy and user’s accuracy across several scenarios. For Tacoma, 

Washington, the overall accuracy was between 60.3% and 72.8% for six major land cover 

classes. Similar to Tallahassee, using NAIP imagery alone produced the lowest user’s accuracy 

of the vegetation class (67%) while LiDAR integrated scenarios resulted in over 80% of user’s 

accuracy of vegetation class. Additionally, the overall accuracy for two major classes (vegetation 

and non-vegetation) was over 80%. The user’s accuracy of the vegetation class using LiDAR 

integrated data or LiDAR data by itself exceeded 80% while using NAIP imagery alone was 
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70%. For both cities, estimates of vegetation using NAIP imagery alone were greater than the 

estimates of vegetation in other scenarios. Our results also suggest that LiDAR-derived 

information seemed to improve the overall accuracy of the six-class and two-class land cover 

classification results, when compared to using NAIP imagery alone for this purpose but 

improvement was not consistently very significant.  

 

Keywords: Supervised classification, canopy cover, LiDAR, urban forestry 

 

Introduction 

Urban population growth has had an important impact on land cover change processes 

around the world (Berland, 2012). Since 1950, the world’s urban human population has grown 

rapidly from 746 million to 3.9 billion (54% of the total world population), partly due to 

increases in population and partly due to the expansion of the urban land designation. Based on 

the continuing urbanization and overall growth of the world’s population, it is projected that by 

2050, 66% of all people will live in urban areas (United Nations, 2015). In the United States, the 

population increased from 281.4 million to 308.7 million between 2000 and 2010, and over 83% 

now live in urban areas (Berland, 2012; Mackun et al., 2011). While urbanization facilitates 

employment and other opportunities, it also increases the need for infrastructure such as 

educational facilities, health services, roads, and cultural amenities (Berland, 2012; United 

Nations, 2015), and exerts pressure upon the urban forests (McPherson et al., 2011; Nowak, 

1993). For example, many urban areas in the United States were created from landscapes once 

previously forested; in the 1990s about 0.4 million hectares (ha) of forested land was converted 

to urban areas through urbanization (Alig et al., 2003).  
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Urban vegetation refers to all trees and shrubs within an urban area (Berland, 2012; 

Nowak et al., 2010; Ward and Johnson, 2007), and these structures can represent a significant 

component of the urban environment. Urban vegetation provides fundamental biophysical and 

socioeconomic benefits to humans, including recreational opportunities and aesthetic values that 

improve health, improve overall enjoyment, and increase the value of neighborhoods. Urban 

vegetation also can reduce energy use, facilitate cooling effects, improve water and air quality, 

and improve biodiversity (Leuzinger et al., 2010; Mariappan et al., 2015; McGee et al., 2012; 

Mincey et al., 2013; Myeong et al., 2006; Nowak et al., 2001; Nowak et al., 2008; Pasher et al., 

2014; Richardson and Moskal, 2014; Singh et al. 2012; Ucar et al., 2016; Walton et al., 2008). 

Hence, accurately quantifying urban vegetation cover is crucial for proper management of 

vegetated areas within a city to help sustain or improve ecosystem services and quality of life 

(Nowak et al., 2008; Richardson and Moskal, 2014; Walton et al., 2008). 

Remote sensing technologies such as aerial photography, satellite imagery, and airborne 

LiDAR (Light Detection and Ranging) are increasingly used to assess urban vegetation cover. 

When captured at an appropriate spatial resolution during an appropriate time of year, the use of 

these technologies can be more cost and time effective than field based inventories of urban 

vegetation cover (Mariappan et al., 2012; McPherson et al., 2011; Nowak et al., 1996; Singh et 

al., 2012). For instance, Nowak (1993) conducted a study using panchromatic aerial photographs 

spanning nearly 50 years to estimate long-term changes of urban forests in Oakland, California. 

Merry et al. (2014) also used digital aerial photography for a similar long-term change study of 

urban forests in Detroit and Atlanta, the United States. Nowak and Greenfield (2012) estimated 

tree cover change in 20 cities in the United States using stereo pairs of aerial photographs. 
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McGee et al. (2012) also recently estimated urban tree cover in Winchester, Virginia using 

digital aerial photography. 

Aerial photography has a few limitations for these types of assessments that include the 

amount of ground coverage per image (unless bundled into a composite), the temporal revisiting 

periods, and the image acquisition cost. For these reason, some land cover change analyses in 

urban areas have been conducted with satellite imagery (Zhang et al., 2010). While larger areas 

are typically captured per image and while the temporal revisit period may be shorter, the use of 

the satellite imagery for urban canopy cover estimation is not without its limitations, as it may 

lack the spatial detail necessary to identify patchy vegetation cover (Nowak and Greenfield, 

2012; Walton et al., 2008; Zhang et al., 2010). However, advances in satellite technology 

facilitate opportunities to describe urban vegetation cover (Zhang et al., 2010), such as with high 

spatial and spectral resolution satellite imagery provided through the IKONOS, QuickBird, 

GeoEye, and Worldview programs. These types of satellite imagery have been used to estimate 

urban vegetation cover in Seattle, Washington (Parlin and Mead, 2009), Baltimore and 

Annapolis, Maryland (Galvin et al., 2006; Irani and Galvin 2002), Nanjing City, China (Zhang et 

al., 2010), Atlanta, Georgia (Goetz et al., 2003), New York City (Bhaskaran et al., 2010), and 

Phoenix, Arizona (Myint et al., 2011). 

More recently, airborne LiDAR (Light Detection and Ranging) technology has been 

employed for vertical feature description due to its ability to generate 3 dimensional point cloud 

data. Airborne LiDAR is a laser system that compares travel time differences of laser pulses 

emitted by an airborne sensor, interacting with earth objects, and returning to the sensor (Jia, 

2015; Parmehr et al., 2016; Singh et al., 2012; Yan et al., 2015). In addition to describing the 

topographic profile of the Earth’s surface, LiDAR data can be useful in estimating the urban 
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vegetation canopy because it can help eliminate the effects of relief displacement and shadows 

(Yan et al., 2015). Other natural resource applications (estimating forest inventory, deriving leaf 

area index, assessing tree canopy characteristics, etc.) also can benefit from the information 

provided by LiDAR data (Parmehr et al., 2016; Singh et al., 2012; Yan et al., 2015). In 

particular, the LiDAR data can contribute to studies in urban environments, such as estimations 

of impervious surfaces and assessments of infrastructure and environmental quality (Basgall, 

2013; Chen et al., 2012; Hartfield et al., 2011; Jia, 2015; Parmehr et al., 2016), as well as 

individual tree detection, although it may be limited in cases where trees and shrubs of different 

crown classes reside due to decreased penetration of LiDAR through the vegetation profile 

(Hamraz et al., 2017). 

One disadvantage of LiDAR data is that it lacks spectral information common to other 

types of imagery in the visible or near infrared spectrum, which may restrict its usefulness in 

land cover assessments in urban areas (Singh et al., 2012; Yan et al., 2015). Therefore, studies 

have been conducted on integrating LiDAR data with aerial or satellite imagery, providing 

descriptions of both radiometric and geometric data features. Hartfield et al. (2011) assessed the 

feasibility of combining multispectral aerial imagery and LiDAR-derived height information to 

improve a land use / land cover classification in Tucson, Arizona. The overall accuracy of a 

supervised classification process employed, which used only the 4-band multispectral data and 

Normalized Difference Vegetation Index (NDVI), was 84%. By adding LiDAR-derived height 

information to the supervised classification process, a 5% increase in classification accuracy was 

achieved. Singh et al. (2012) used Landsat and LIDAR data to assess large-area urban land cover 

in North Carolina and found that this increased the overall accuracy by 32% when compared to 

only using LiDAR, and by 8% when compared to only using Landsat data. Chen et al. (2012) 
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used NDVI and LiDAR for building detection in an urban area (Nanjing, China), and estimated 

that the total numbers of buildings in the area, 90% were correctly identified in LiDAR. 

Moreover, Jia (2015) conducted a study which combined LiDAR data and multispectral data for 

classification of an urban area in Sweden, and achieved a 95.2% overall accuracy in land cover 

class estimation, which was 6% higher than when only multispectral data was used, and 6.6% 

higher than when only LiDAR data were used.  

Urban areas include impervious surface features such as buildings and roads, along with 

bare ground, open areas and vegetation that consist of trees, shrubs and grass. Our interest is in 

estimating canopy cover provided by urban vegetation (trees and shrubs). Since the use of 

multispectral data (aerial photography or satellite imagery) itself may not be sufficient for 

distinguishing heterogeneous land cover in urban areas, and since LiDAR data seem to add value 

to the classification process, we embarked on a study to utilize both. The objective was to assess 

whether the addition of the LiDAR data increased the accuracy of urban vegetation cover 

estimates when using a pixel-based supervised classification method. 

Methods 

Study Areas 

Tallahassee and Tacoma are located in different regions of the United States (Figure 4.1), 

and contain different forms of vegetation cover. Tallahassee is in the humid, southern part of the 

United States, where prevalent natural tree species are pines (Pinus spp.) and oaks (Quercus 

spp.). Tacoma is in the Pacific Northwest of the United States, where prevalent natural tree 

species are mainly conifers (Douglas-fir (Pseudotsuga menzeiesii) and western hemlock (Tsuga 

heterophylla)). Each city has a variety of trees planted along streets that may not be typical of the 

area. In addition to their different locations, these two cities were selected based on the temporal 
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consistency of multispectral U.S. Department of Agriculture National Agricultural Imagery 

Program (NAIP) and LiDAR data available for this project. Further, each city is comparable in 

terms of population size; the estimated 2010 human population of Tallahassee (181,376) was 

similar to that of Tacoma (198,397), and the projected rates of population growth were similar 

(4.7% in Tallahassee, 4.8% in Tacoma) (U.S. Census Bureau 2010).  

 

      

 Figure 4.1. Administrative boundaries of (left) Tallahassee, and (right) Tacoma. 

 

Aerial Imagery 

The main goal of the NAIP program is to collect aerial imagery during the agricultural 

growing season and then provide the public digital, orthorectified photography with a 1 m spatial 

resolution, within one year of acquisition. NAIP imagery for Tallahassee and Tacoma were 

obtained from the U.S. Geological Survey (2017) National Map Viewer. Imagery for Tallahassee 

was captured between July 21, 2010 and October, 21 2010, while imagery for Tacoma was 

captured between August 26, 2011 and October 7, 2011. These multispectral databases contained 

reflectance values in four bands (red, green, blue, near infrared). More current NAIP imagery 
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may have been available at the time of the study, but we wanted the date of the NAIP imagery to 

coincide as closely as possible with the date of LiDAR data acquisition. 

LiDAR Data 

For Tallahassee, LiDAR data were commissioned by the Northwest Florida Water 

Management District for the Leon County in which the city resides. The LiDAR data were 

captured using a Lecia ALS50 Phase I device, which utilized a pulse rate of 55.4 kHz, a flying 

height of 1,676.4 m mean sea level (MSL), and a scan rate of 30 Hertz, and a scan angle (scan 

field of view) of 30°. The LiDAR data were captured between January 31, 2009 and February 6, 

2009 and acquired from the National Oceanographic and Atmospheric Administration (2017). 

Horizontal and vertical control was used to establish positions and elevations for reference and 

correlation purposes and as input to an aerotriangulation process. Control consisted of Airborne 

GPS/IMU (Inertial Measurement Unit) and ground control points for ground reference. The 

LiDAR data set for this study area consisted of 204 tiles, each with dimensions of approximately 

1,556 m x 1,556 m and an average point spacing of 1 m. 

For Tacoma, LiDAR data were commissioned by Watershed Science, Inc. for Pierce 

County where Tacoma resides. The LiDAR for Tacoma was captured using a Lecia ALS50 

Phase II device, which was utilized with a pulse rate of 83 to 105.9 kHz, a flying height of 900 to 

1,300 m above ground level, and a scan angle of 1/3000th of the flying height above ground 

level. The resulting imagery had a maximum scan angle of approximately 14° from nadir and a 

side lap of 50%. The LiDAR data were captured between October 19, 2010 and September 6, 

2011, and was acquired from the U.S. Geological Survey (2017). Airborne GPS / Inertial 

Measurement Unit and ground control points for ground reference were used as control points, 

similar to the horizontal and vertical control of the Tallahassee LiDAR data. The Tacoma study 
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area was covered by 217 tiles of airborne LiDAR data, each with dimensions of approximately 

914.4 m x 914.4 m and an average point spacing of 0.8 m. 

Urban Canopy Cover Estimation 

For this study, we classified urban vegetation cover in two United States cities 

(Tallahassee, Florida and Tacoma, Washington) using a supervised maximum likelihood 

classification method. The data included multispectral aerial imagery with 1 m spatial resolution 

collected in with 4 spectral bands (red, green, blue, and near infrared) and LiDAR data. The 

workflow of the methodology to classify urban canopy cover included several steps (Figure 4.2) 

that involved (1) generating potential presence / absence data for trees and shrubs from LiDAR, 

(2) creating an impervious surface and water mask using NDVI, (3) performing an accuracy 

assessment of impervious surface and masked impervious surface data from vegetation presence 

/ absence data, (4) stacking the imagery, (5) developing training areas and performing the 

supervised classification, and (6) performing an accuracy assessment of the land cover 

classification. Since the main objective of this research is to determine whether urban canopy 

cover estimates can be improved by incorporating LiDAR data into the supervised classification 

process, we used the LiDAR to both mask impervious surface features, such as buildings and 

roads, from the supervised classification process, and to further separate the classification of 

features during the supervised classification process.  
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Figure 4.2. Flowchart describing workflow adapted in the study. 
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Generation of Potential Presence / Absence Data for Trees and Shrubs  

In order to incorporate the LiDAR point cloud into the supervised classification process a 

presence / absence dataset for trees and shrubs was derived. We converted LAS files into two 

separate point cloud files using ArcGIS 10.4 (ESRI, 2016). The first point cloud file included 

only those points attributed as ground points. These were used to develop a digital elevation 

model (DEM). The second point cloud file included only those points attributed as unclassified. 

To obtain heights of the above-ground unclassified points, the z-values (elevations) of points 

from the ground point cloud were subtracted from the associated z-values of the unclassified 

point cloud. From here, two new point clouds were extracted from the above-ground set based on 

two height intervals: (1) points greater than 0.2 m and less than 6 m, and (2) points greater than 6 

m. A shrub is defined as natural or semi-natural woody vegetation that are commonly less than 6 

m tall (Cowardin et al., 1979). Therefore, the points from the LiDAR dataset that fell between 

0.2 and 6 m were classified as shrubs (although it could be smaller trees that with time will 

exceed this threshold). Points with values below 0.2 m were not included in the shrub point cloud 

in an effort to eliminate any noise in the LiDAR returns that may exist between the ground-level 

and above-ground points. Those points from the above-ground LiDAR point cloud with heights 

greater than 6 m were classified as trees. Using these LiDAR point clouds, two raster datasets 

were created illustrating the potential presence / absence of trees and the presence / absence of 

shrubs. The spatial resolution of the LiDAR-derived data was set to 2 m. When we used 1 m as a 

cell size (similar to average point spacing of LiDAR data in both cities) to match the resolution 

of the NAIP imagery, the results were too fine and many gaps (NoData) were generated on the 

surface. The results were visually compared with the NAIP imagery, and the potential presence / 
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absence of trees and presence / absence of shrubs both seemed to be represented well at a 2 m 

spatial resolution.  

Impervious Surface and Water Mask 

NDVI is a commonly used vegetation index for delineating vegetation, water, bare soil, 

and developed areas (Bandyopadhyay et al., 2013; Chen et al., 2012; Wang et al., 2014). NDVI 

was calculated for each pixel in the NAIP imagery from the near infrared and red reflectance 

values, using following formula (Rouse et al., 1974):  

 

NDVI = (near infrared – red) / (near infrared + red) (1) 

 

NDVI values ranged from -1 to +1 with higher NDVI values representing large amounts 

of green vegetation. In general, a threshold value of NDVI for vegetation is 0.2 or greater (Chen 

et al., 2012; McBride, 2011). However, this threshold value did not clearly distinguish vegetated 

areas from non-vegetated areas in our study areas when we visually compared the mask to the 

original NAIP imagery. Therefore, we used a threshold value of 0.1 for non-vegetated areas in 

this study. Smaller values represented barren rock, soil, roads, buildings, water, shadows, and a 

minimal amount of short grasses. This impervious surface and water database was then used as a 

mask to remove land and water areas from the LiDAR derived vegetation presence / absence 

datasets. This step was necessary following a visual assessment of the above-ground point cloud 

data because through this assessment, we found that some points fell on roof tops that were not 

representative of vegetation. Even with the Tacoma LiDAR data, where prior to acquisition the 

point cloud had been classified to include buildings, a number of points fell on rooftops.  
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In order to ensure that the impervious surface and water datasets was well-developed, we 

performed an accuracy assessment using 1,000 impervious surface and water points randomly 

located within the boundary of each city. This sample size is greater than the minimum samples 

size of 100 points per each class suggested by Congalton and Green (2009). We used Google 

Earth images obtained in January 2011 and August 2011 for Tallahassee and Tacoma, 

respectively, as a reference sources. Sample points were classified as shrub/tree vegetation or 

other land classes (impervious surface or water). The agreement between the impervious surface 

and water database and the Google Earth imagery was 92.5% for Tallahassee and 94.7% for 

Tacoma.  

Image Stacking  

We used an image stacking process (Figure 4.3) to combine the NAIP imagery (red, 

green, blue, near infrared), the NDVI derived from the NAIP imagery, and the potential presence 

/ absence of trees and shrubs databases from LiDAR. We created several scenarios that would be 

subjected to supervised classification of the landscape: 

 Scenario 1: NAIP + NDVI + potential presence / absence of trees and shrubs databases at 2 m 

resolution 

 Scenario 2: NAIP + potential presence / absence of trees and shrubs databases at 2 m resolution 

 Scenario 3: NDVI + potential presence / absence of trees and shrubs databases at 2 m resolution  

 Scenario 4: NAIP imagery at 1 m resolution 

 Scenario 5: Potential presence / absence of trees and shrubs databases vegetation at 2 m 

resolution 
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Figure 4.3. Conceptual model of the stacked images. 

 

Supervised Classification Process 

Based on landscape characteristics of our two study areas, we identified six major land 

cover classes: water, developed (buildings, roads, parking lots, etc.), vegetation (trees and 

shrubs), bare ground / soil, grasses, and shadows. We used a supervised maximum likelihood 

classifier process, which is a common pixel-based method for classifying a landscape (Bhaskaran 

et al., 2010; Campbell and Wynne, 2011). Given spectral heterogeneity in the major classes, 

several subclasses were developed (Table 4.1). A total of 940 training sets were developed for 

each city (24 subclasses  40 training sets per subclass). Congalton (1991) suggested the 

appropriate number of training sets should be between 30 (as an absolute minimum) and 50. Our 

training sets for each subclass exceeds the minimum requirement, yet we could not develop 50 

due to lack of sample areas for some subclasses. The minimum size of the training sets was 25 

pixels; Campbell and Wynne (2011) recommended these should be between 10 and 40 pixels.  

 

NDVI 

Canopy presence / absence of trees 

and shrubs derived from LiDAR 

NAIP Imagery (red, green, 

blue, near infrared) 
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Table 4.1. Classification schemes for major classes and subclasses in the two study areas. 

Major class Tallahassee Tacoma 

Water  

(all water bodies)  

4 subclasses: black; brown; light green; 

and green.  

4 subclasses: light green; black/darkest 

blue; dark blue and green; and green.  

Developed 

(buildings and 

roads) 

5 building subclasses: purple; white; 

red/brown; dark gray; and light 

gray/metallic roof tops.  

7 building subclasses: white; gray; light 

gray; black/darker smoke; brick red; 

brown; and yellowish brown roof tops.  

3 road subclasses: dark brown parking 

lots and weathered asphalt; light gray/ 

white concrete, overpasses, and medians, 

and limestone-surfaced roads; and lighter 

gray asphalt.  

3 road subclasses: dark brown parking 

lots and weathered asphalt; light gray/ 

white concrete, overpasses, and medians, 

and limestone-surfaced roads; and lighter 

grey asphalt.  

Vegetation  

(trees and shrubs) 

4 tree subclasses: light green canopy 

representing young pine; dark green 

canopy representing older pine; two 

hardwood classes.  

2 tree subclasses: light green canopy 

representing mostly hardwoods and 

young trees; and dark green canopy 

representing mostly evergreen and older 

trees.  

 

1 shrub subclass: small bushy vegetation 

mainly in yards and developed areas. 

1 shrub subclass: small bushy vegetation 

mainly in yards and developed areas. 

Bare ground 

2 subclasses: areas of clayey soils, both 

natural and man-made (e.g., infields of 

baseball fields); sandy areas that were 

natural and man-made (e.g., sand traps on 

golf courses), and some recently plowed 

fields. 

2 subclasses: representing areas of silt 

loam soils, both natural and man-made; 

glacial till and alluvium areas that were 

natural and man-made (e.g., sand traps on 

golf courses and infields of baseball 

fields). 

Grass 

4 subclasses: agricultural fields brown in 

color (dead vegetation); agricultural 

fields yellow or light brown in color; 

areas otherwise containing green and 

dark green vegetation; wet agricultural 

fields, wet grassy areas, non-grazed 

fields, medians, and recent clearcuts. 

3 subclasses: dead vegetation areas 

yellow in color found along roads and in 

yards; dead vegetation areas brown in 

color found along roads and in yards; and 

areas otherwise containing green 

vegetation such as wet grassy areas, non-

grazed fields, medians, and golf courses. 

Shadows 
1 class: edges along trees and buildings.  1 subclass: edges along trees and 

buildings.  
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They pointed out the importance of the training set size, noting that sets should include enough 

pixels for trustworthy assessments of the spectral characteristic of each class. With a minimum 

of 25 pixels in each training set, we provide a sufficient training set size for each subclass. 

Training sets were selected so that pixel groupings were as homogeneous as possible in 

order to successfully represent each subclass (Bhaskaran et al., 2010; Campbell and Wynne, 

2011). However, some classes might have variability in their spectral reflectance values (i.e., 

agricultural areas, developed areas). Hence, it is important to have a wide variety of training sets 

within each subclass in order to fully represent the landscape. While delineating the training sets, 

we used the Scenario 1 composite image as our base map.  

 To execute the supervised classification, we created a signature file for each composite 

image using the training sets. The results of the supervised classification using the 24 subclasses 

were then aggregated into six major land cover classes (water, developed, vegetation, bare 

ground, grass, and shadows). In addition, the results were aggregated further into non-vegetated 

(water, grass, developed, shadow, and bare ground) and vegetated (tree and shrub) classes since 

our original objective was to identify the urban vegetation cover. 

Accuracy Assessment 

As Congalton and Green (2009) suggested, one-hundred points were generated for each 

major class using an equalized stratified random sampling strategy in order to assess the 

accuracy of the supervised classification. We used different sets of randomly generated 

validation points for each scenario’s land cover classification, to avoid any bias during decision 

making. As ground reference data, the NAIP imagery, temporally consistent with the study time 

frame, was used. On the rare occasion that the NAIP imagery was difficult to interpret, Google 

Earth imagery was referenced. An error matrix, which provides data on the comparison between 
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the land class assigned to each validation point and classification of that point through the 

supervised classification process (Congalton, 2001) was created, and indicates where confusion 

occurred between classes (Campbell and Wynne, 2011). The error matrix provided descriptive 

(user’s and producer’s accuracy, overall accuracy) and analytical (Kappa analysis) statistical 

summaries related to the ability of the process to assign land classes to the landscape. Overall 

accuracy is the simplest and most commonly used descriptive statistic for accuracy assessment 

(Campbell and Wynne, 2011; Congalton, 2001); it describes the proportion of correctly classified 

samples in the imagery by dividing the total number of correct sample (sum of the diagonal 

entries) by the total number of samples (Campbell and Wynne, 2011; Congalton, 1991; 

Congalton, 2001). The user’s accuracy measures error of commission, and represents how well a 

pixel classified as a certain land cover type in land cover type matches the land cover type on the 

ground. It is calculated by dividing the total number of correctly classified sample points in a 

class by the total number of samples in that class. Producer’s accuracy or omission error, 

measures how well a land cover class can be assigned to the landscape. It is computed by 

dividing number of correctly classified sample points in a class by the total number of sample 

points in that class (Congalton, 1991; Congalton, 2001; Jia, 2015; Peacock, 2014). The Kappa 

statistic represents the difference between actual agreement, and the agreement potentially 

obtained by chance. A Kappa value ranges between 0 and 1 with higher values indicating high 

levels of agreement (Campbell and Wynne, 2011; Congalton, 1991; Foody, 2002; Gómez and 

Montero, 2011; Jia 2015; Lo and Choi, 2004; Peacock, 2014; Yuan et al., 2005).  

In this study, our objective was to obtain an overall accuracy of 70%, with no major class 

less than 70% user’s and producer’s accuracy. In particular, we focused on the accuracy of the 

vegetation class since this was the class of most interest to our work. Our threshold value for 
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accuracy assessment does not meet the minimum acceptable standard value (85%) for 

classification accuracy that was suggested by others (Anderson et al. 1976; Thomlinson et al. 

1999), yet these standard minimum values may not be achievable in practice. The classification 

accuracy can be affected by factors such as characteristics of the remotely sensed data (e.g., 

spatial and spectral resolution), the classification method employed, the training sets constructed, 

and the validation scheme used (Kralova, 2013). For example, McBride (2011) using NAIP 

imagery for land cover classification in the Chicago area, found a wide range of overall 

accuracy, and noted that overall accuracy over 85% may be possible, yet could fall short of 80% 

depending on the situation. Myint et al. (2010) also compared two classification methods (per-

pixel vs object based classification) using QuickBird imagery, and found that overall accuracy 

was about 68% for per-pixel classification (our method), and about 90% for object-based 

classification.  

Results 

Tallahassee, FL 

In estimating the six major land classes in Tallahassee (Table 4.2), Scenario 1 had the 

highest overall accuracy (69.8%) and Kappa statistic (63.8%). This is below our 70% threshold 

value. However, the user’s accuracy (90%) and producer’s accuracy (87%) of the vegetation 

class were both well above our threshold. In Scenario 1 there was significant confusion between 

the water and shadow classes, and the bare ground and developed classes. This was expected due 

to the similar spectral reflectance values between dark water bodies in Tallahassee and the 

numerous shadows across the image. Likewise, the bare ground class (sandy soils) shared similar 

spectral reflectance values as some developed areas (concrete), which affected overall accuracy. 



 

96 

The overall classification accuracy of Scenario 2 was comparable but slightly less 

(67.7%) than Scenario 1, however the highest user's accuracy of the tree and shrub vegetation 

class (93%) was found here. On the other hand, the producer’s accuracy of the vegetation class 

dropped to 74%. In this scenario, tree and shrub vegetation was more frequently confused with 

the grass class than it was in Scenario 1. And similar to Scenario 1, there was significant 

confusion between water and shadows, and bare ground and developed areas. 

The lowest overall accuracy (51.3%) and Kappa (41.6%) were found in Scenario 3 which 

involved NDVI and LiDAR-derived vegetation data. Although the user’s accuracy for the 

vegetation class was over 80%, there was a significant decline in the producer’s accuracy of 

vegetation class (50%). This is likely due to confusion between vegetation and three other 

classes: water, developed, and shadows. The user’s accuracy for the water and bare ground 

classes was 27% and 24%, respectively, which was also a marked decrease from other scenarios. 

Classification confusion for the water class most often occurred between the shadow, grass, and 

vegetation classes, while the bare ground class was often confused with developed areas. 

In Scenario 4 (NAIP imagery only) the classification produced almost the same overall 

accuracy (69.3%) and Kappa statistic (63.2%) as Scenario 1. On the other hand, the lowest user’s 

accuracy for vegetation class (69%) occurred in this scenario. Therefore, when using NAIP 

imagery by itself, other major classes were better identified to the detriment of the vegetation 

class.  
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Table 4.2. Classification matrices for four scenarios and six major land classes, Tallahassee. 

Scenario 1 

Reference 

UA 

(%) 

PA 

(%) Water Developed Vegetation Bare ground Grass Shadow Total 

Water 41 2 0 0 1 56 100 41.0 100.0 

Developed 0 75 1 1 1 22 100 75.0 59.1 

Vegetation 0 0 90 0 2 8 100 90.0 86.5 

Bare ground 0 45 0 35 16 4 100 35.0 92.1 

Grass 0 5 8 2 83 2 100 83.0 80.6 

Shadow 0 0 5 0 0 95 100 95.0 50.8 

Total 41 127 104 38 103 187 600   

Overall accuracy = 69.8%; Kappa statistic = 63.8% 

 

Scenario 2 Water Developed Vegetation Bare ground Grass Shadow Total 

UA  

(%) 

PA 

(%) 

Water 35 3 1 1 1 59 100 35.0 100.0 

Developed 0 77 2 3 3 15 100 77.0 67.5 

Vegetation 0 0 93 0 2 5 100 93.0 74.4 

Bare ground 0 30 7 37 11 15 100 37.0 82.2 

Grass 0 3 17 4 70 6 100 70.0 80.5 

Shadow 0 1 5 0 0 94 100 94.0 48.5 

Total 35 114 125 45 87 194 600   

Overall accuracy = 67.7%; Kappa statistic = 61.2% 

 

Scenario 3 Water Developed Vegetation Bare ground Grass Shadow Total 

UA  

(%) 

PA 

(%) 

Water 27 7 30 0 11 25 100 27.0 93.1 

Developed 1 41 16 1 24 17 100 41.0 36.9 

Vegetation 0 1 85 0 8 6 100 85.0 50.0 

Bare ground 0 52 3 24 8 13 100 24.0 77.4 

Grass 1 6 5 6 70 12 100 70.0 56.0 

Shadow 0 4 31 0 4 61 100 61.0 45.5 

Total 29 111 170 31 125 134 600   

Overall accuracy = 51.3%; Kappa statistic = 41.6% 

 

Scenario 4 Water Developed Vegetation Bare ground Grass Shadow Total 

UA  

(%) 

PA 

(%) 

Water 62 6 0 0 0 32 100 62.0 91.2 

Developed 3 82 1 6 1 7 100 82.0 56.6 

Vegetation 0 1 69 0 18 12 100 69.0 80.2 

Bare ground 0 45 0 46 9 0 100 46.0 70.8 

Grass 0 10 14 13 63 0 100 63.0 69.2 

Shadow 3 1 2 0 0 94 100 94.0 64.8 

Total 68 145 86 65 91 145 600   

Overall accuracy = 69.3%; Kappa statistic = 63.2% 

 

UA = User's accuracy  

PA = Producer's accuracy 
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We compared the area estimates for each major land cover class resulting from each 

scenario. The area of the vegetation class (Figure 4.4) was consistent and comparable between 

Scenarios 2 (42%) and 3 (42%), while the vegetation class in Scenario 1 was 4% greater. 

Scenario 4, using only NAIP imagery, estimated that 53% of Tallahassee was classified as 

vegetation. Scenario 3 estimated the greatest amount of developed areas (29%). 

 

 

Figure 4.4. Percent area of the major land classes, Tallahassee. 

 

Estimates of the developed class using NAIP imagery only (Scenario 4) produced 1,264.8 

ha, 1,118.3 ha, and 4,309.7 ha less area than estimates of developed class in Scenario 1, 2 and 3, 

respectively (Table 4.3). The percentage area coverage of the water class within four scenarios 
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suggested similar relative results to the developed class, with the highest value (7%) from 

Scenario 3 and the lowest value (3%) from Scenario 4. The estimated area of bare ground ranged 

from 2 to 5% of the city. Area in the shadow class in Scenario 4 was greater than Scenarios 1-3, 

indicating that the LiDAR derived data and NDVI helped to minimize this.  

 

Table 4.3. Difference in land cover between LiDAR-related scenarios (1-3) and using NAIP 

imagery only (Scenario 4), Tallahassee. 

Land cover class 

Scenario 1 -  

Scenario 4 (ha) 

Scenario 2 -  

Scenario 4 (ha) 

Scenario 3 -  

Scenario 4 (ha) 

Water 513.5 773.1 1,252.2 

Developed 1,264.8 1,118.3 4,309.7 

Vegetation -2,017.3 -2,944.7 -3,130.5 

Bare ground  477.0 833.5 223.0 

Grass 1,343.2 2,043.5 -892.9 

Shadow -1,588.3 -1,830.9 -1,783.2 

Total -7.1 -7.1 -21.7 

 

When only two classes were estimated (vegetated and non-vegetated), overall 

classification accuracy was over 80.0% in all five scenarios (Table 4.4). This value is greater 

than our minimum acceptable classification accuracy of 70.0%. The highest overall classification 

accuracy (88.0%) and Kappa statistic (76.0%) was produced by Scenario 5, which included only 

LiDAR-derived data. Also, the user’s accuracy of the vegetation class in Scenario 5 was 95.0%, 

which was significantly higher than using only NAIP imagery (Scenario 4) or when combining 

LiDAR-derived data with multispectral data (Scenarios 1-3). Similar overall accuracy 

measurements were found in Scenario 2 and Scenario 4. Scenario 3 had a relatively high overall 

accuracy (87%), and the highest producer's accuracy for the trees and shrubs. 
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Table 4.4. Classification matrices for two major land classes, Tallahassee. 

Classes 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

Non-vegetation 85.0 83.3 81.0 81.0 87.0 87.0 92.0 76.0 81.0 94.2 

Vegetation 83.0 84.7 81.0 81.0 87.0 87.0 71.0 89.9 95.0 83.3 

Overall accuracy 

(%) 84.0 81.0 87.0 81.5 88.0 

Kappa statistic 

(%) 68.0 62.0 74.0 63.0 76.0 

UA = User's accuracy 

PA = Producer's accuracy 

 

In terms of estimating the percentage of urban canopy vegetation area (Figure 4.5), 

Scenario 5 (41.9% of the city), was not significantly different than the percentage of vegetated 

area in Scenario 1 (41.3%), 2 (42.3%), and 3 (41.7%). Though the estimated vegetation area in 

Scenario 4 was higher (53.3%), spectral similarities between grasses and trees / shrubs caused 

misclassification that resulted in an overestimation of the vegetation class.  

 

 

Figure 4.5. Comparison of land area estimated using the classification scenarios, Tallahassee. 
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Tacoma, WA 

Scenario 1 had an overall accuracy of 70.5% and Kappa statistic of 64.6% (Table 4.5). 

The user’s accuracy for tree and shrub vegetation was 86%, while the producer's accuracy was 

75%. Confusion between the bare ground and developed classes led to a low user’s accuracy of 

8% for the bare ground class. Further, except for the developed and shadow classes, the 

producer’s accuracy for other major classes was over 70 percent. Scenario 2’s overall accuracy 

(72.0%) and Kappa statistic (66.4%) were higher, and Scenario 2 produced the highest user’s 

accuracy (87%) for the vegetation and developed classes among all scenarios. However, the 

user’s accuracy of the bare ground class was again 8% due to confusion with the developed 

class. In addition to developed and shadow classes, the producer’s accuracy of the bare ground 

class was below 70%.  

Scenario 3 had the lowest overall accuracy (60.3%) and Kappa statistic (52.4%) of the 

four scenarios. The user’s accuracy of the vegetation class (85%) was similar to that of the 

vegetation class accuracy in Scenario 1 and 2. Again, there was confusion between the bare 

ground class and the developed class. The user’s accuracy of the bare ground class did increase 

to 13%. However, the user’s accuracy of water, developed, grass and shadow classes decreased 

when compared to Scenarios 1 and 2. The producer’s accuracy was only over 70% for the water 

and tree / shrub vegetation classes.  

Scenario 4 resulted in the best overall accuracy (72.8%) and Kappa statistic (67.4%). The 

user’s accuracy of the vegetation class was lower (67%), with confusion occurring between the 

vegetation, grass and shadow classes. Scenario 4 had relatively high user’s accuracy for the 

water, grass, shadow, and bare ground classes compared to the other Scenarios.  
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Table 4.5. Classification matrices for four scenarios and six major land classes, Tacoma. 

Scenario 1 

Reference 

UA 

(%) 

PA 

(%) Water Developed Vegetation Bare ground Grass Shadow Total 

Water 79 0  0 0 0 21 100 79.0 90.8 

Developed 6 92 0 0 0 2 100 92.0 53.8 

Vegetation 0 2 86 0 4 8 100 86.0 75.4 

Bare ground 0 70 3 8 14 5 100 8.0 72.7 

Grass 0 6 12 3 77 2 100 77.0 78.6 

Shadow 2 1 13 0 3 81 100 81.0 68.1 

Total 87 171 114 11 98 119 600   

Overall accuracy = 70.5%; Kappa statistic = 64.6% 

 

 

Scenario 2 Water Developed Vegetation Bare ground Grass Shadow Total 

UA 

(%) 

PA 

(%) 

Water 88 0 0 0 0 12 100 88.0 100.0 

Developed 0 93 0 4 0 3 100 93.0 57.4 

Vegetation 0 0 87 0 0 13 100 87.0 75.7 

Bare ground 0 57 4 8 20 11 100 8.0 57.1 

Grass 0 11 12 2 69 6 100 69.0 77.5 

Shadow 0 1 12 0 0 87 100 87.0 65.9 

Total 88 162 115 14 89 132 600   

Overall accuracy = 72.0%; Kappa statistic = 66.4% 

 

Scenario 3 Water Developed Vegetation Bare ground Grass Shadow Total 

UA 

(%) 

PA 

(%) 

Water 72 7 0 2 0 19 100 72.0 100.0 

Developed 0 77 0 4 15 4 100 77.0 46.4 

Vegetation 0 1 85 0 0 14 100 85.0 73.3 

Bare ground 0 34 10 13 31 12 100 13.0 46.4 

Grass 0 28 0 8 58 6 100 58.0 54.7 

Shadow 0 19 21 1 2 57 100 57.0 50.9 

Total 72 166 116 28 106 112 600   

Overall accuracy = 60.3%; Kappa statistic = 52.4% 

 

Scenario 4 Water Developed Vegetation Bare ground Grass Shadow Total 

UA 

(%) 

PA 

(%) 

Water 95 0 0 0 0 5 100 95.0 96.0 

Developed 1 91 0 3 4 1 100 91.0 55.2 

Vegetation 0 0 67 0 16 17 100 67.0 85.9 

Bare ground 0 60 2 16 20 2 100 16.0 66.7 

Grass 0 7 9 4 79 1 100 79.0 66.4 

Shadow 3 7 0 1 0 89 100 89.0 77.4 

Total 99 165 78 24 119 115 600   

Overall accuracy = 72.8%; Kappa statistic = 67.4% 

 

UA = User's accuracy  

PA = Producer's accuracy 
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Scenario 4, using only NAIP imagery, produced the highest estimates of tree and shrub 

vegetation (20%) (Figure 4.6). The greatest amount of developed areas was estimated in 

Scenario 3 (43%). The estimated area of the water class in Scenarios 1-3 was 3%, 1% greater 

than the estimated area of water class in Scenario 4. Scenario 4 produced the lowest estimated 

area of bare ground (20%) and the highest estimated area of the shadow class (5%). The 

difference in bare ground area between Scenario 2 and Scenario 4 (NAIP only) was relatively 

high (Table 6).  

 

 

Figure 4.6. Percent area of the major land classes, Tacoma. 
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Table 4.6. Area difference of land cover between using LiDAR integrated data (Scenario 1, 2, 

and 3) and using NAIP imagery only (Scenario 4) into the classification, Tacoma. 

Land cover class 

Scenario 1 –  

Scenario 4 (ha) 

Scenario 2 –  

Scenario 4 (ha) 

Scenario 3 –  

Scenario 4 (ha) 

Water 89.3 58.0 87.4 

Developed -1347.3 -1445.2 1051.0 

Vegetation -324.9 -315.1 -424.7 

Bare ground 1365.8 1904.1 355.7 

Grass 413.7 307.5 -683.0 

Shadow -195.4 -508.1 -385.1 

Total 1.3 1.3 1.3 

    

 

The results of overall accuracy by using a two-class classification for Tacoma (Table 4.7) 

were similar to the results of overall accuracy from Tallahassee. The overall accuracy was over 

80% within all five scenarios as well. The best overall classification accuracy, produced by 

Scenarios 2 and 3, was 90.5% with Kappa statistic of 80.1%. The overall accuracy of Scenario 5 

was only 1% less than the best overall accuracy. Also, Scenario 1 resulted in 88.5% overall 

accuracy with Kappa statistic of 77.0%. However, Scenario 4 resulted in lowest overall accuracy 

(83.0%) and Kappa statistic (66.0%). The accuracy of the vegetation classes among the scenarios 

was related to overall accuracy as well. While comparing area coverage of the vegetation classes 

(Figure 4.7), it can be seen that vegetated area in scenario 4 was about 20% greater than the 

vegetated area among scenarios that integrated LiDAR data into the classification. 
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Table 4.7. The summarized accuracy of two classes among five scenarios with Kappa statistic, 

Tacoma, WA 

Classes 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

Non-vegetation 96.0 83.5 96.0 86.5 97.0 85.8 96.0 76.2 95.0 85.6 

Vegetation 81.0 95.3 85.0 95.5 84.0 96.6 70.0 94.6 84.0 94.4 

Overall accuracy 

(%)  88.5 90.5 90.5 83.0 89.5 

Kappa statistic 

(%) 77.0 81.0 81.0 66.0 79.0 

UA = user's accuracy 

PA = producer's accuracy 

 

 

 

 

Figure 4.7. Comparison of land area estimated using the classification scenarios, Tacoma. 
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Discussion 

The quality of outcomes from a supervised classification can be affected by a number of 

factors, including spatial resolution of the imagery, topographic displacement inherent in the 

imagery given characteristics of the landscape and flight mission (focal length, flying height), 

shadows, tone and texture issues along edges of individual image frames within a composite, 

classification method (i.e., pixel based or object-based classification), training dataset quality and 

extent, and classification scheme (number of classes and subclasses) (Alpin et al., 1999; Kralova, 

2013). Several of these may have affected our results. For example, we noticed some tone and 

texture issues along edges of individual frames within the NAIP mosaic for each of the counties 

within which the cities reside. These issues were not adjusted or smoothed prior to the supervised 

classification process. Further, our classification method (6 major classes, 24 subclasses) was 

necessary given that a single major class (e.g., water) could have contained landscape features 

that had several different spectral reflectance ranges. Water areas (ponds, lakes, pools, etc.) in 

Tallahassee, for example, ranged from black to blue. At the onset of the project, we created four 

subclasses with sufficient number of training areas for this major class, and found that the results 

of supervised classification were very poor due to the wide range of spectral values that 

represented water. Shadows were somewhat of a problem, as was found in other work that 

classified NAIP 1 m spatial resolution imagery (Merry et al., 2014). The addition of LiDAR-

derived information seemed to improve the overall accuracy in Tallahassee, but with respect to 

this metric and the estimation of six major classes, using NAIP alone seemed sufficient (albeit 

with the area estimation problem noted above). However, by adding LiDAR-derived vegetation 

presence / absence data to supervised classification, the user's accuracy (how well validation 

pixels classified as vegetation matched the vegetation land cover type on the ground) of the 
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vegetation class (trees and shrubs) increased even though the producer's accuracy (how well the 

vegetation cover types were assigned to the landscape) decreased. 

Based on visual assessment and error matrices, it can be clearly seen that confusion 

between water and shadow class was the main issue in Tallahassee when compared to Tacoma 

(Figure 4.8). The vegetation class was more commonly confused with the shadow class in 

Tacoma than Tallahassee. There were likely differences between the two cities in terms of the 

time of day of imagery acquisition, atmospheric conditions, and shapes and sizes of trees and 

buildings, and natural colors of dominant vegetation. These situations can affect the reflectance 

values of vegetation canopy and areas around the vegetation canopy, thus vegetation can often be 

misclassified as shadow and vice versa (Goetz et al., 2003; Merry et al., 2013). In addition, due 

to similarities between reflectance values of dark building roof tops and shadows, the developed 

class sometimes was confused with the shadow class. Contrary to our expectations, LiDAR 

integrated scenarios could not eliminate shadow effects; using only NAIP imagery (Scenario 4) 

seemed to determine shadow classes better and promoted less confusion of these with other 

classes. 

Moreover, using high spatial resolution imagery for the urban land cover classification 

helps to recognize the detail in complex urban environment where discrete and continuous 

features are found together (Alpin, 2003; Lo and Choi, 2004). However, the high spatial 

resolution imagery reduces mixed pixels that increase spectral variability within-and-between 

classes. Thus, many different land cover in urban environments might be represented with same 

or similar spectral value (e.g., white roof tops, bright sandy soil, cement roads, dirty brown soil, 

and red brick roof top, water, shadow). 

 



 

108 

 
 

Figure 4.8. An example of classification results for six major classes (left) Tallahassee, and (right) Tacoma.
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This can lead to misclassification problems in pixel-based classification methods, which use only 

spectral information (pixel value), and do not consider spatial information between groups of 

pixels (Bhaskaran et al., 2010; Alpin et al., 2003; Lo and Choi, 2004; Myint et al., 2011), even if 

sufficient number of training datasets were created to represent each major class. Additional 

research using different classification methods (e.g., per-field classification, object-based 

classification) might be useful to reduce the confusion between the classes, and increase the 

overall accuracy of the classification.  

Within these urban environments, there was a significant collection of heterogeneous, 

man-made features. In a more natural environment, the results of supervised classification may 

be of higher quality. When we reduced the classification to two simple classes, vegetated (trees 

and shrubs) and non-vegetated (all other classes), our results suggest that using LiDAR-derived 

information alone (Scenario 5) could provide results of comparable quality to the other scenarios. 

Overall accuracy, user's accuracy, and producer's accuracy were all very high (85% or greater) in 

these cases. If our goal was to simply delineate the urban canopy cover in this manner (two 

classes), either using LiDAR-derived data alone or combining it with NDVI or basic four-band 

NAIP imagery would seem to be sufficient. At the two-class level, however, using NAIP 

imagery alone produced results lower in quality than the other scenarios. Therefore, the 

structural information provided by the LiDAR data was of value in reducing many sources of 

confusion (water, shadows, etc.) and assigning land classes more correctly to pixels in the 

imagery. 

Our main focus was to determine vegetation class accurately to assess urban vegetation 

canopy cover for our study areas. The results from our two-class process complements findings 

from previous studies (Hartfield et al., 2011; Jia, 2015; Singh et al., 2012) that suggest 
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integrating LiDAR-derived data into land cover classification may again increase the accuracy of 

the vegetation class. With respect to simply estimating urban canopy cover, our results for these 

two cities using image classification are similar to a previous study where point sampling 

methods were employed (Ucar et al., 2016). In the previous study, urban canopy cover in 

Tacoma was estimated to be roughly 15-20% (95% confidence) depending on the sampling 

approach. In the current study, all five scenarios estimated urban vegetation cover in this range, 

and were similar to other recent estimates (Nowak and Greenfield, 2012) as well. In the previous 

study, urban canopy cover in Tallahassee was estimated to be roughly 41-51% (again 95% 

confidence). In the current study, Scenario 4 (NAIP imagery only) seemed to overestimate 

canopy cover while the other scenarios estimated urban vegetation cover in this range. Therefore, 

in some environments the structural information provided by LiDAR data, and perhaps the use of 

a vegetation index such as NDVI, will be of value in reducing many sources of confusion and 

assigning the land classes more correctly (Figure 4.9). 

Conclusion 

In this study we assessed urban land cover classification using remotely sensed 

multispectral data and LiDAR-derived vegetation presence / absence data. Six major land cover 

classes were estimated under four data scenarios, and in order to assess urban vegetation cover 

across the cities, land cover classes were further aggregated into two land cover classes under 

five scenarios. Twenty-four subclasses informed the development of this classification, given the 

heterogeneity in tone and color of the class features within each major class. For both cities, the 

results suggest that incorporating LiDAR-derived information into supervised classification 

seemed to improve the overall accuracy of the six-class results and the two-class, when 

compared to using NAIP imagery alone, but not significantly. 
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Figure 4.9. An example of classification results for two major classes (left) Tallahassee, and (right) Tacoma.
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However, using LiDAR derived data along with multispectral data or LiDAR data by itself helps 

delineate the boundary of vegetation areas so that the accuracy of vegetation class improves 

compared to using NAIP imagery alone. In addition, estimates of land areas in each class were 

quite different when NAIP alone was used as the source of imagery (Scenario 4). In these cases, 

the extent of land area classified as vegetation (trees or shrubs) was generally greater than the 

other scenarios, even when LiDAR-derived information was used alone (Scenario 5).  

Overall, the methodology of this study was effective in distinguishing vegetated areas 

from non-vegetated areas in an urban environment. However, further examination of this issue 

should be conducted to determine why the accuracy was similar but the land area estimated for 

the major class of interest (vegetation) was different. Also, different land cover class (e.g., 

buildings, roads, bare ground, parking areas) can share same or similar spectral reflectance in 

complex urban environment that can cause low overall accuracy in pixel-based classification. To 

eliminate the limitation of pixel based classification, and increase the overall accuracy of the 

classification, different classification methods (e.g., per-field classification, object based 

classification) that consider relationship between spectral and spatial features of the imagery 

could be addressed in further research. 
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CHAPTER 5 

CONCLUSION 

 

Application of advanced technology in precision forestry and natural resources 

management increases progressively, and endeavors in this field require continuous evaluation in 

order to determine efficiency and accuracy of the technology. In this dissertation, three studies 

have been performed to examine the use of remote sensing technologies, GIS and GPS, and their 

accuracy in precision forestry practices. 

The study described in Chapter 2, “Dynamic accuracy of recreation-grade GPS receivers 

in oak-hickory forests,” presents results of a highly controlled dynamic (kinematic) accuracy of a 

single model of recreation-grade receiver, within deciduous forest, across two seasons of the year 

(winter and summer). The goals of the study were to gauge the area of agreement with a 

relatively small but well-defined closed area, to assess the variation of waypoints recorded 

around true boundaries of the area, and to determine whether there were significant differences 

in area determination among the two seasons of the year. The following hypotheses were tested 

to evaluate the accuracy of this model of recreational-grade GPS receiver: 

1. Difference in areas estimated by recreational grade GPS units from the true area is the 

same whether the GPS data are collected in winter or in summer.  

2. Differences in the percentage of vertices within 1 m bands (1 m, 2 m, 3 m, etc.) of the 

true area boundary are not different during the two seasons.  

3. The area of agreement between the true sample area and the areas estimated using the 
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GPS receiver (using an intersect process in a geographic information systems) is the same 

in winter as in summer. 

In addition to these hypotheses, we simulated larger areas of different sizes (1 to 49 ha) to 

examine how the effects of the observed error from our small study area might impact area 

measurements when applied to larger land areas. This work was published in the journal 

Forestry in 2014. 

A number of studies have been employed in the past for statistical horizontal position 

accuracy while the assessment of the dynamic (kinematic) accuracy of a recreation-grade 

receiver has been lacking. The result of the study showed that there were general differences 

between the samples collected in the summer and the samples that were collected in the winter. 

The average of closed areas collected using the recreation-grade GPS receiver was closer to the 

true area during the winter season (leaf-off), and the range of the sample areas during the winter 

season varied less than summer season (leaf-on). The average area of agreement was greater in 

the winter season than in the summer season as well. It seemed that the percentage of the vertices 

within 1 m bands around the true boundary line illustrated only minor differences among the 

seasons. However, based on the statistical test results, no significant differences were observed, 

and all three hypotheses could not be rejected. Hence, it cannot be stated that vegetative 

conditions associated with a deciduous forest in winter and in summer had any effect on the area 

determined, the area of agreement (with the true area), or the distribution of vertices around the 

true area boundary. Additionally, after simulating larger areas of different sizes (1 to 49 ha), our 

results suggested that areas greater than 25 ha produced 2 percent or less error in both winter and 

summer seasons. This research could be expand by employing similar study protocols to the 
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assessment of current mapping-grade GPS receiver, and exploring impacts of variations in 

receiver settings on the results obtained.  

In Chapter 3, “A Comparison of two sampling approaches for assessing the urban forest 

canopy cover from aerial photography,” we assessed the percentage of the tree canopy cover in 

two United States cities (Tacoma, Washington and Tallahassee, Florida). The main goal of this 

study was to compare two sampling approaches (random point-based and plot/grid) for 

estimating urban tree canopy cover using two different remotely sensed imagery sources (NAIP 

imagery and Google Earth imagery) . The following hypotheses were developed:  

1. When employing the random point-based sampling approach, there is no significant 

difference in the estimated tree canopy cover derived from using the NAIP imagery in 

ArcGIS and the estimated tree canopy cover derived from using the Google Earth 

imagery.  

2. When employing the plot/grid sampling approach, there is no significant difference in the 

estimated tree canopy cover derived from using the NAIP imagery in ArcGIS and the 

estimated tree canopy cover derived from using the Google Earth imagery.  

Assessments of tree canopy cover from remotely sensed imagery using new protocols or 

procedures require continuous testing for their usefulness to support management decisions and 

policy analyses. When comparing a point-based sampling approach (a common sampling 

method) to a plot/grid sampling approach, the estimated tree canopy cover was similar within 

two study areas. The results of the estimates of tree canopy cover in Tallahassee, Florida, were 

48.6 to 49.1 % using Google Earth imagery and 44.5 to 45.1% using NAIP imagery within 

ArcGIS. Statistical tests results showed that there seemed to be significant difference between 

the two sampling approaches using the two different imagery sources. For Tacoma, Washington, 
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the estimated tree canopy cover was about 19.2 to 20.0% using Google Earth imagery and 17.3 

to 18.1% when using NAIP imagery in ArcGIS. The statistical test results suggested that there 

was no significant difference between the random point-based sampling approach using the two 

different image sources but the result of the plot/grid sampling approach showed a significant 

difference. It can be stated that our findings showed some similarities between the two sampling 

approaches; therefore, the random point-based sampling approach might be preferred due to the 

time and effort required, and causing less classification problems. This work was published in 

the journal Urban Forestry and Urban Greening in 2016. 

The study in Chapter 4, “Estimation of urban vegetation cover using multispectral 

imagery and LiDAR,” reports the results of assessing urban vegetation cover using a supervised 

maximum likelihood classification method in two United States cities (Tacoma and Tallahassee). 

The primary goal of this study was to determine whether the incorporation of the LiDAR data 

into a pixel-based supervised maximum likelihood classification method increased the accuracy 

of urban vegetation cover estimations. The following general hypotheses were developed: 

1. When employing LiDAR in a supervised classification of urban vegetation, the overall 

accuracy of the resulting vegetation level improves when used in conjunction with high 

spatial resolution remotely sensed imagery. 

2. When employing LiDAR data by itself to identify urban vegetation, the overall accuracy 

of the resulting vegetation level is no different than if it is used in conjunction with high 

spatial resolution remotely sensed imagery. 

Chapter 4 represents continuous test results of the protocols and procedures associated 

with using remotely sensed data for estimating urban canopy cover within two study areas. In 

order to address hypothesis 1, six major land cover classes were developed under four scenarios. 
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For both cities, the results suggested that incorporating LiDAR-derived information into 

supervised classification seemed to improve the overall accuracy of the six-class results when 

compared to using NAIP imagery alone, but not significantly. In particular, by adding LiDAR 

derived information into the classification, the accuracy of vegetation class increased between 

16% and 24% while comparing to using NAIP imagery only. For hypothesis 2, land cover 

classes were aggregated into two land cover classes under five scenarios. The results of the two 

land cover class were similar to the six-class results. Also, estimated urban vegetation areas in 

Chapter 4 where the supervised classification method was used suggested similarities with the 

results of Chapter 3 where sampling methods were employed. Overall, the results suggested that 

using LiDAR derived information along with high resolution remotely sensed imagery or LiDAR 

data by itself improved the process of identifying vegetated areas so that the accuracy of 

vegetation class increases and the estimates of vegetated land areas were more appropriate, when 

compared to using NAIP imagery alone. 

In general, our methodology was useful for differentiating vegetated areas from non-

vegetated areas in an urban environment. However, further analysis could be conducted to 

determine why the accuracy was similar but the land area estimated for the major class of interest 

(vegetation) was different. Also, land cover class (e.g., buildings, roads, bare ground, and 

parking areas) in heterogeneous urban environment can share same or similar spectral reflectance 

that results in low overall accuracy in pixel-based classification. To eliminate the limitation of 

pixel based classification, and increase the overall accuracy of the classification, different 

classification methods (e.g., per-field classification, object based classification) that consider 

relationship between spectral and spatial features of the imagery could be addressed in further 

research. Additionally, in our study, size of the data was huge, and it took long time to process 
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the data. We sometimes used around 10 computers to process the data. With recent advanced 

technology and tools such as Google Earth Engine (a cloud platform that can be used as both 

data archive and analysis tool), we may not only be able to access imagery from different sources 

in different time periods but also analyze large data sets in a relatively short amount of time 

(Google Inc., 2015).  Thus, new tools like this might require further investigation into their 

usefulness in urban cover assessment at regional, national and global scales. 

 In this dissertation, the three precision forestry studies provided scientific accuracy 

assessments of the application of modern tools and technologies to forestry and natural resource 

management concerns. The studies suggested many reasons inherent to the tools and 

technologies that can affect the accuracy significantly. We hope that developing new protocols 

and procedures with modern technologies and tools will help to reduce undesirable effects and 

produce the most accurate data that can assist foresters, natural resource managers, and policy 

makers in addressing a variety of management issues. 
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