

ONLINE GAMING AND SPAM

by

BRANDON DOUGLAS TREADWAY

(Under the Direction of Kang Li)

ABSTRACT

With the rise of interactions between players around the world through online gaming,

there are many security issues in the games causing problems for the players. The issue of in-

game spamming is typically overlooked by the development studios but can have a substantial

impact on the game for both the players and the developers. The purpose of this thesis will be to

identify the different types of spam, new and old, found within online games, the legal issues

they present, the problems they create for developers and players. It will then discuss a few

tactics to counter the issue of spam.

INDEX WORDS: Spam, Security, Gaming, Massively Multiplayer Online Role Playing

Game

ONLINE GAMING AND SPAM

by

BRANDON DOUGLAS TREADWAY

B.S., The University of Georgia, 2007

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTERS OF SCIENCE

ATHENS, GEORGIA

2010

© 2010

Brandon Douglas Treadway

All Rights Reserved

ONLINE GAMING AND SPAM

by

BRANDON DOUGLAS TREADWAY

Major Professor: Kang Li

Committee: Shelby Funk

Maria Hybinette

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

July 2010

 iv

DEDICATION

To anyone who has had his or her account hacked in any MMO.

 v

ACKNOWLEDGEMENTS

Thank you to Dr. Li for his guidance through the research process. Thank you to Farhan

Jiva for helping me with the survey website. Thank you to my older sister Jessica Sisson, and

brother-in-law, Joel Sisson, for their assistance in proofreading this document. Thank you to my

younger sister Larissa Treadway for her help in making my life easier while conducting my

research. Thank you to my girlfriend Amy for pushing me to get things accomplished. Most of

all, thank you to my mother and father, James and Diana Treadway, for their love and support as

I worked to complete my Master’s program.

 vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

1 INTRODUCTION ...1

Purpose of the Study ..1

Related Work ...2

2 SPAM ...3

What is Spam? ...3

Game Spam versus Traditional Spam ...4

3 TYPES OF SPAM ...6

In-Game Mail ..6

Chat and Macros ..12

Bots ..13

Game Mechanics ...17

Game Exploits ...18

4 ISSUES CREATED FROM SPAM ..21

Legal Issues ...21

Player Annoyances ..21

Developer Issues ..25

 vii

5 COUNTERMEASURES ...26

Game Masters ..26

The Warden ...26

Chat Spam Filters ..27

Proposed E-Mail Filter ..28

6 CONCLUSION ..32

REFERENCES ..33

APPENDICES ...34

A WEB SCRAPER CODE ..34

B BLACKLIST PROGRAM SOURCE CODE ..48

C FULL TABLE FROM WEB SCRAPING ...56

D DATA FOR CORPSE SPELLING ..62

 viii

LIST OF TABLES

Page

Table 1: Types of Spam Found in Popular MMORPGs ..5

Table 2: Results from Web Scraping ...10

Table 3: Results from Second Life bot ...15

Table 4: Creating Corpse Messages ...19

Table 5: Differences and Similarities between Game SPAM and Traditional SPAM20

Table 6: Results from Blacklisting ..31

 ix

LIST OF FIGURES

Page

Figure 1: Add-on for Data Collection ..8

Figure 2: A Data Collection Web Scraper ...10

Figure 3: Number of Guilds Matched to Number of Players Scraped ...11

Figure 4: Setup of a Spam Bot ...13

Figure 5: Screenshot of the configuration window ..14

Figure 6: Screenshot of the Second Life bot interface ...15

Figure 7: Using Corpses to Spell a Website ..18

Figure 8: Chat Spam in Star Wars Galaxies ..22

Figure 9: “Man in the Middle” Diagram ..24

Figure 10: Spam E-mail in World of Warcraft ..29

Figure 11: Blacklist Program ...30

 1

CHAPTER 1

INTRODUCTION

Purpose of the Study

 With online games rapidly becoming the most popular applications on the internet [8],

security issues in these games are quickly becoming more evident. Game Studios tend to spend

the majority of their time enhancing the game mechanics and reducing the latency of the game,

yet game security seems to fall by the wayside. Due to the lack of time spent on increasing

security, spam is prevalent in every online game. Spam messages within games are typically an

attempt to offer services to the players, most of which go against the game‟s terms of use. The

purpose of this study is to present the game studios with the issues that cause frustration for the

players and trouble for the developers. While there are several different online game genres, all

of which contain some sort of spam, this thesis will focus on Massively Multiplayer Online Role

Playing Games (MMORPG). A MMORPG is a game that creates a virtual online community in

which thousands of people interact with each other and includes virtual economies, professions

and organizations. Other non-MMORPG games usually connect a small number people together

to play a game; an example of this type of game is online poker. Most, non-MMORPG games

do not require a subscription fee in order to play and can be accessed through the internet for

free, whereas most MMORPGs require a monthly charge in order for the game player to

continue to play the game. In order to better demonstrate the security issues within a

MMORPG, this paper will focus mainly on the game World of Warcraft, created by Blizzard

Entertainment, and its security issues, as The Guinness Book of World Records lists this game

the most popular Massively Multiplayer Online Role Playing Game [6]. World of Warcraft

currently has over eleven million subscribers [3] and is certainly susceptible to spam issues. Yet,

 2

even though World of Warcraft is the focus of most of the examples in this study, other games

will be discussed, along with spam‟s effects on their game-play and development.

Related Work

Several papers and books have been written dealing with the security issues in online

games, yet the issue of spamming is consistently omitted from these studies, as many do not

consider it to be a threat to the game‟s security. However, spam can be used to obtain user

identifications and passwords, making it a valid form of cheating and can lead to security issues

within a game player‟s account. This type of security threat can be defined as Compromising

Passwords or Social Engineering [10]. Several other related works deal with security issues on

various other types of websites, but there is not a lot of current direct work relating to spam and

security issues within online gaming. The majority of the research used in this thesis is original

research conducted by playing the online games and experiencing and analyzing the spam issues

firsthand.

 3

CHAPTER 2

SPAM

What is Spam?

 Spam messages are disruptive commercial messages posted on computer networks or

sent out through e-mails. The most traditional forms of spam utilize a list of e-mail addresses to

send a message that advertises a good or service to each person on the list.. These e-mail

addresses are usually obtained when consumers sign up on a website. Many of the spam

companies that generate spam messages share their e-mail list with partner spam companies,

which allows the partner companies to send their own spam messages to the people on the list.

While most of these e-mail messages contain links to remove your e-mail address from the list,

selecting the link does not always remove your address from the list. However, most e-mail

providers or other e-mail applications do provide some level of spam prevention or protection.

This security measure is accomplished when the e-mail provider moves the messages to a

separate spam or a junk mail folder. While this is a temporary fix, the user must maintain these

folders by clearing them when the mailboxes become full.

 One of the biggest security issues of spam e-mail is the threat of virus files or websites

contained in the message. Some spam messages contain attachments with viruses embedded

within, while others contain links to outside websites containing spyware or viruses. Again,

many of the e-mail providers and applications have a built-in check for these files; however, this

check is not guaranteed to always work.

 Another form of spam is found in “spam bots,” which are associated with some form of

instant-messaging program. The term “bot” is derived from robot, which is essentially what

these programs represent. These bots generate messages periodically and send them out to chat

 4

rooms in order to advertise a good or service. There are also bots that will provide a “human”

response to questions from the chat room user in order to carry on a conversation and draw in the

user. While the bots that constantly spam the same message are easy to detect and block, the

humanlike bots are harder to combat due to the similarity to a normal conversation these bots

create.

Game Spam versus Traditional Spam

In truth, game spam is not much different from traditional spam; the main difference is

the type of mailing list system in the game. Spam messages in online games are sent to the

players using either a mailing list or a chat bot. These messages are meant to entice players to

spend actual money on virtual items that can be used within the game. However, unlike the

traditional spam system, messages sent through the game do not give the recipient the ability to

remove his name from the mailing list. Once the spam company has the username it is never

removed from the list, unless the player changes his username. Yet, the process for changing a

username can be costly, or even impossible, making it unlikely that the player will be able to

change the username at all. This gives the spammer the upper hand, as they are able to have

continuous access to the username on the mailing list.

Furthermore, game spammers can also reach the user‟s e-mail address in order to

advertise their products. This occurs when a game site requires one to sign up in order to view

specific pages like game guides or hints to help the player succeed in the game. The e-mail

address is then added to a traditional spam mailing list; however it is possible to be removed

from this mailing list.

Chat bots are another very common practice used by spammers in online games. The

idea behind this process is to position a character in a high population area and, through the

 5

process of macros, generate spam messages, which are sent to all the players through the general

chat systems. Macros are a built in feature of the game that allows the user to create a list of

commands which can be repeated easily, usually with the press of one button. In addition, these

chat bots can also be adapted to send the same spam messages through the private chat systems

to individual users in order to entice them to spend money on virtual tools that can be used in the

game. Some online games have mechanics built into the game that can be exploited for the

purposes of spam. These mechanics can include a virtual billboard that has a message placed on

it or even an item that can be bought or made, and this item can send spam out for the purchaser.

Table 1: Types of Spam Found in Popular MMORPGs

 World of

Warcraft

Warhammer

Online

Star Wars

Galaxies

Second

Life

Aion

Chat and Macros X X X X X

Bots X X X X X

In-Game Mail X X X X X

Game Mechanics X X X

Game Exploits X

 6

CHAPTER 3

TYPES OF SPAM

In-Game Mail

 Every MMORPG has a setup for the exchange of messages and items between users

through a mail delivery system. Like traditional e-mail spam, in-game mail spam begins by

creating a list of character names and distributing spam messages through those lists. Once a

spammer has the character name on a list, the player will continue to receive messages until he

changes his character name, whereas most traditional e-mail spam messages provide a link to

remove the address from the list. Some MMORPGs support name changes through a paid

service, but most games will not let the user change his character name after the user has

established his account. Another problem with MMORPGs and in-game spam mail is a lack of

any kind of spam filter, spam folder, or junk mail folders, like those in a traditional e-mail

account to catch these spam messages.

 The MMORPG itself also creates a major difference in the delivery of these spam

messages from that of traditional e-mail spam. The games are a closed environment and require

an account and access to the game to be able to send messages. This means that the spam

companies must be registered with the studio and logged into the system in order to get their

messages out. Since the spam companies must be registered with the game, they are susceptible

to the consequences of being caught, the punishment for which is most likely banishment from

the game. However, the spam companies have means they can use to keep from getting caught,

and they can continue to send out their in-game spam messages. In contrast, traditional e-mail

spammers do not have to register with the same type of service or game as the user in order to

send out their spam messages..

 7

Another difference between in-game mail spam and traditional mail spam is how the

users are added to the list. For traditional spam, the spam companies obtain an e-mail address

through some other medium or some process of data mining. However, within a game a

spammer can obtain the user‟s name by simply logging in and seeing the player online and

adding the character name to a list; the process of adding user names to a list is slow but

effective. This method of gathering user names is found in games that do not allow the user to

use custom add-ons or scripting with the user interface. However, some games, like World of

Warcraft and Warhammer Online, allow one to change the way the user interface appears

through the use of Lua scripting, which has the ability to access certain game events and data

storage, allowing the spammer to create a username list to be used for spamming during the

game. In World of Warcraft, for example, there is a command in the game called the “/who”

command. This command will allow the user to pass search parameters such as a major city,

name, or location in the world, in order to create a list of players that meet a particular criterion.

The game event thrown is called, “WHO_LIST_UPDATE,” and changes a variable in the

client‟s game state. This list can then be accessed to get certain types of information, such as

character or guild name. Lua scripting also allows the add-on to output data to a saved variables

folder for persistent data storage. Figure 1 illustrates how an add-on can be used in order to

access a list of names and store them.

 8

Figure 1: Add-on for Data Collection

This type of data collection can also be paired with a website provided by the game developers to

gain access to even more user information. Some MMORPGs have a website setup in order to

access information about characters, such as a gear or profession. Blizzard has provided a setup

called “The Armory” for use in World of Warcraft, which can easily be accessed by using a Web

Scraper. A web scraper is a program that will access a website, parse the code for data, and store

the results for later use.

Yet, instead of using character names as a way to gather information, it is simpler for the

spammer to do a web crawl by using guild names. A guild is a group of players that form an

organization within the game and work together under one name. By using the add-on program

described above, spammers can alter the programming to parse out guild names instead of

character names, and then use a scraper throughout the hosting website to obtain user

information. There are currently over 237 servers, also known as realms, used for World of

Warcraft and many of the guild names are duplicated across the realms. By making the

 9

adjustment to the add-on to include the guild names, it is easier, and quicker, to obtain large

mailing lists to use for spam messaging.

 The process of data collection through web scraping on the websites run by the game

studios would also be fairly simple method for the spammer to use to gain the character names of

the users. In order for the spammer to be successful, the scraper would need to start with a list of

guild names used in the game and go through all of the guild names individually. For each guild

name, the scraper would perform a search for all guilds containing that particular name. The

guild list created by the scraper is then set to parse out the guild name, the faction
1
, the URL to

follow, and the realm name. Once the scraper obtains a guild page, it can then access the list of

all players who are in that particular guild. The number of player names in a guild can vary, and

a decent sized guild can easily be around fifty or more members. The scraper can then save the

names to a file thus creating a mailing list for spam messages. After the character list for one

guild is obtained, the scraper will then move to the next match for the guild name on the list.

When all guild matches have been checked for a particular name, the scraper moves to the next

guild name on the input list and repeats the process. Figure 2 shows a flowchart of a web

scraping program for World of Warcraft.

1
 World of Warcraft contains two factions that are at war, the Horde and Alliance. The faction is

important as World of Warcraft does not allow intercommunication between different factions.

 10

Figure 2: A Data Collection Web Scraper
2

With an extensive guild-listing file, the scraper could easily obtain thousands of names in a

matter of minutes. Table 2 shows the first ten results of this program using the names of the top

two hundred ranked guilds.
3

Table 2: Results from Web Scraping

Search Strings Number of Guilds Number of Players Time (ms)

Premonition 123 1417 828

Adept 38 609 811

blood legion 223 1437 759

deus vox 60 235 268

cuties only 87 327 341

Exodus 216 4256 676

Vigil 53 743 221

Vodka 2 153 76

Might 56 634 223

Juggernaut 132 1299 520

Totals 990 11110 4723

2
 The source code for this program can be found in Appendix A

3
 Ranking based on Player verse Environment (PvE) according to www.wowprogress.com. The

full table can be found in Appendix C

 11

Using the table, the spammers will then want to get a list of guilds names that are more

common as usually the more guild names you match, the more usernames you get for the

spamming list. This is not always true, however, as the table above violates this hypothesis with

the search strings „exodus‟ and „blood legion.‟ However, Figure 3 below displays the results of a

scatter plot showing that, in general, that the more guilds you match the more names you get.

This scatter plot is generated using the full table found in Appendix C and shows a linear trend

upward.

Figure 3: Number of Guilds Matched to Number of Players Scraped

Once the spammers have created a large mailing list, they can use an add-on
4
, macro, or

bot to distribute their spam messages. Since there is no way for the user to unsubscribe from the

spammer‟s list, a character will continually be spammed until the player moves servers or

changes the character‟s name. However, these temporary fixes will not always protect the user

as the same web scraping tactics described above can be used to add the player to a new list.

4
 “Add-ons” are the common term for user customizations

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250

N
u

m
b

e
r

o
f

P
la

ye
rs

Number of guilds

 12

Chat and Macros

 One of the purposes of an MMORPG is to provide a sense of community among the

players. To do this, the MMORPG provides chat channels for the exchange of messages and

socialization between players. However, spammers can use these chat channels to advertise their

goods and services to everyone at once. In most cases, a spammer will create a character and

then position their character in a large population area, such as a capital city in the realm, and

spam the other players in the area. In order to make the task easier, the spammers setup a game

mechanic called macros. Macros are used in games to provide a way for the player to easily

chain together a series of commands that are then repeated to achieve maximum results. Some

games also allow for macros to call themselves as a command, which allows for the continuous

looping of the macros. Using these game mechanics, or macros, the spammer can spam his

message to multiple channels with the press of one button. The player does have the ability to

turn off certain chat channels, but by doing this the player is cut off from the other players in the

game and is unable to communicate with their characters.

 The chat system can also be exploited by spammers through the use of private messaging.

MMORPGs have a system for personal messaging between two users; these systems are

sometimes called a “tell” or “whisper.” Spammers can use the web scraper data collection

method to send spam messages to users through the private messaging system. Some spammers

will even try to disguise what they are doing by starting up a normal conversation about the

game before sending their advertisements to the players. While this method of exploitation can

be a slow process, it can be accelerated by automation through the use of bots.

 13

Bots

 Similar to macros, bots are used by the spammer to quickly distribute an advertisement;

however, bots do not require a person to physically be at the computer. These bots contain a

program that is run outside of the game and sends commands to message the spam to the players

within the game ,and “are regarded as the most commonly-used and difficult-to-handle

exploit.”[5] These commands can be used in conjunction with the data collection methods listed

above to spam individual users without the press of a button. Some more advanced bots are able

to examine the memory space the game is occupying in order to access data from the game itself.

Figure 4 below shows the setup for a chat spam bot that can be obtained for free from the

Internet.

Figure 4: Setup of a Spam Bot [11]

Second Life is one of the few games that allows users to connect to the game system by

using an open source version of the game, making it easier for spammers to create a bot that can

access game data directly. Using the Radegast distribution of Second Life [9], a bot can easily be

created that can directly access the game state variables. During my research, I created a bot

using the Radegast distribution to perform tests on different styles of chat spam. The bot that I

created has three different options for spamming messages: Barking, Private Message, and

Follow. Figure 5 shows the configuration window for the bot.

 14

Figure 5: Screenshot of the configuration window

In barking mode, the bot will teleport to a location and send a message out with a shout,

viewable to everyone within 100 meters of the bot. The bot can be configured to set how many

times it needs to „bark‟ at each location and the duration between „barks‟. The second option for

spammers to use is to send private messages through the bot. The bot teleports to a location and

obtains a list of everyone in the simulation region. A personalized message is then sent to each

of the avatars, after which the bot moves to a new location. Finally, the third option for a

spammer is a follow bot. This mode teleports the bot to a location, similar to the barking and

private messaging bot, however, once there, the follow bot will attempt to search for avatars

within fifty meters of the bot‟s location. Once the bot finds an avatar, it will move to a location

within five meters of the avatar and will send a personalized message through the whisper

channel. The follow bot will then attempt to contact each avatar within a fifty mile range of the

bot individually. However, if an avatar is beyond fifty meters from the bot, the bot will then

teleport to the avatar‟s location and send the message, thus displaying its “following” function,

as it can follow the avatars around the game in order to send them a private spam message

through the whisper channel. Figure 6 below shows a view of the bot interface.

 15

Figure 6: Screenshot of the Second Life bot interface

To further test the effects of this bot on gameplay, I created website with a survey for

visitors to the game to take and describe which style of bot approached them during the game.

The spam bot would approach the avatar and then direct them to the website that I created. A hit

counter was also placed on the website to measure the number of visits by unique visitors. The

experiment ran three bots in the same mode at the same time for three hours. Hits were

measured in-between the modes as were the results. In the barking mode, the bot configuration

was set to three „barks‟ at a single location with an interval of thirty seconds between each one.

The private messaging bot was set to appear at a location within a game to obtain a list of every

character within that region of Second Life. Finally, the follow bot was set to teleport around

different regions of the game and attempted to “whisper” message avatars within five meters of

the bot. Table 3 shows the results from this experiment.

Table 3: Results from Second Life bot

Bot Mode Number of

Places Traveled

Number of

Possible People

Number of Hits Number of responses

Barking Mode 228 2515 23 11

Private

Message Mode

788 7808 250 89

Follow Mode 138 1114 60 10

 16

The results above show that the private messaging bots move quickly, as it does not take

long to send the private message out to everyone in the region before moving on. This bot

spamming method allows more people to be spammed in a shorter time frame. As a result, more

people visited the website and responded to the survey. The follow bot is a newer type of bot

designed specifically for this experiment. It is not common to see a bot walk up to your

character and address it by name, due mainly to the game‟s built-in limitations, such as a

difficulty in directly accessing game data. While it is the slowest moving of all three bot modes,

it was effective in getting a larger number of hits on the website then the traditional barking

mode. This response could be due to the personalized message delivered and the direct contact

with the bot.

However, the downside to the follow bot is that people can send direct communications

to the game studio about the spamming follow bot. As a result, during the three hours, the

follow bot had two accounts banned by the game studio, whereas the barking mode bot only had

one. The private message bot, while being the fastest moving bot, and most effective in reaching

people, did have numerous suspensions, making it difficult to keep the bot running, and even

more time consuming to start the bot back up. When an account is banned, a new account must

be created in order to continue sending the spam. This is a slow process and requires that the

spammer physically be at the computer.

My research demonstrates just how easy it is for the spammer to set up a spam bot and

effectively send out their spam messages to the players in the game. As each bot mode has its

pros and cons, it is up to the spam company to decide how to effectively deliver their messages.

Based on the results of my experiment, the private message bot would most likely be the most

effective method of sending out the spam.

 17

Another purpose bots serve is to automate the process of farming or power leveling by

the spam companies. Power leveling, also referred to as grinding, is a very time consuming

process; yet bots can be used to increase the character levels while the provider is not present at

the computer. Faming is a similar concept as it is the process of doing the same task repeatedly

in order to accomplish something in the game. These leveling bots can also be used for the

processes of farming or repeating the same task multiple times in order to acquire something of

value. These are some of the services that spam companies will provide for payment.

Game Mechanics

 Some spammers simply use the built in features of the game to get their message out to

the players. Star Wars Galaxies, by Sony Online Entertainment, provides the ability to make

vendors whose purpose is to allow players in the game to sell the items they make in their virtual

professions. These vendors are activated by moving in close proximity to a character and are set

up to display a message to the player when there are within the vendor‟s area. Spammers can

utilize this game feature to their advantage by using it to advertise their websites.

 Second Life, by Linden Research, Inc, is another game where the game mechanics allow

spammers easy access for their messages. Within Second Life, there are numerous billboards and

walls that contain advertisements for in-game and out-of-game services. Second Life also

contains a large amount of dynamic loading, especially in relation to graphics; however, this

creates latency issues when a player attempts to load a specific zone. All flat surfaces within the

game can have customized content applied to them, including videos, pictures, and websites.

Spammers can use this function to display advertisements for their own products. While Linden

Research is working hard to monitor these signs, Second Life only has one server and has a vast

virtual landscape making it difficult to catch all of the spam within the game.

 18

Game Exploits

 Game studios are beginning to take strides at reducing the amount of spam contained in

their games, thus forcing spammers to get creative with their methods. Some spam companies

have resorted to finding exploits or bugs within the games in order to get around the spam filters.

Most recently, an exploit has been discovered in World of Warcraft that keeps the bodies of a

dead character in the game until the character has resurrected; these bodies are still present even

if the character is deleted. Figure 7 displays how the spammers are using this exploit to get their

website names out to the players.

Figure 7: Using Corpses to Spell a Website
5

By exploiting the “dead body bug,” spammers can continuously delete and create new

characters in order to use the bodies to spell out spam messages. The figure above is a screenshot

of one such spam message located within a capital city. This figure illustrates that if one method

of spamming is blocked, the spam companies will find a new way around the security measure.

While this is a slow process, it is very effective when done in a high population zone. Table 4

shows the approximate time needed to accomplish this task.

5
 Screenshot taken from the MMORPG World of Warcraft. The chat logs have been blocked out

for privacy reasons.

 19

Table 4: Creating Corpse Messages

Average Travel

Time
6
 (seconds)

Average Bodies

per Letter
7

Bodies per

Period

Average time to Create

website in figure 7

363.25 6 2 13803.5 (~ 4 Hours)

While it takes some time to position the characters and repeat the process, a bot can be written to

automate the process. This puts a lot of pressure on the game studios to develop even newer

counter-measures to protect their players from spamming. Blizzard has recently attempted to fix

this bug, thus preventing this method to be used anymore. The fix causes the corpse to disappear

after a character logs out of the game, and, if the character logs back in, the corpse is only visible

to that player. While the corpse messages are still possible, it would require more than a hundred

computers working together to accomplish the task of creating the spam message. This is one

way that the game studios are trying to combat the game exploitations that the spam companies

are using to get their spam messages into the game.

 Though many of these types of spam can be found outside of the game client, either

through e-mail or instant messaging clients, there are a few differences which place game spam

into its own category. Table 5 illustrates both the similarities and the differences between

traditional spam and game spam. It illustrates that, while there are some similarities between the

two different forms of spam, online game communities provide a more closed-off environment.

This closed environment forces the spam companies to become more creative in their tactics in

order to get their spam out to the game players.

6
 Time to get from where the character is created to the nearest major city. Times located in

Appendix D
7
 Letter breakdown can be found in Appendix D

 20

Table 5: Differences and Similarities between Game SPAM and Traditional SPAM

Type of

SPAM

Online Game Spam Traditional Spam (IM, E-Mail)

Mail  Commercial messages sent out

through in-game mail

 Closed environment that requires a

subscription to the game

 Commercial messages sent out

through E-mail

 Only requires an e-mail provider

Chat  Chat channel abuse

 Closed environment within the game

 Chat room abuse

 Semi-closed environments

Bots  Used to repeatedly send out

messages without user interaction

 Ability to locate a person, move to

them, and directly address them

 Used to send out messages

without user interaction

 Unable to move around and

directly address the user

Game

Mechanics

 Uses mechanics of the game to get

out messages

 Banner type advertisements on a

website or within an instant

messenger client

Game

Exploits

 Use of bugs or unexpected results in

the game to send out messages (i.e.

dead bodies)

 Not Present

 21

CHAPTER 4

ISSUES CREATED FROM SPAM

Legal Issues

 The majority of spam received during the game is related the selling of game resources

and accessories, the purpose of which is primarily to make a profit for someone not connected

with the creators of the game. However, for most online games, this is a direct violation of the

terms of agreement to which every player in the game must agree. Section 2, part B of the World

of Warcraft Terms of Use states that gamers are not allowed to:

B. exploit the Game or any of its parts, including without limitation the Service, for any

commercial purpose, including without limitation (a) use at a cyber cafe, computer

gaming center or any other location-based site without the express written consent of

Blizzard; (b) for gathering in-game currency, items or resources for sale outside the

Game; or (c) performing in-game services in exchange for payment outside the Game,

e.g., power-leveling; [4]

Other MMORPGs have a similar statement within their terms of use, rules of conduct, or other

form of legal agreement made between the player and the game studio. The End User License

Agreements also mention that any accounts found to violate or cheat the game will be banned

from the game. This gives the studio the right to close and remove the spammer‟s accounts if

they are found in violation of any part of the agreement. However, most of the spam companies

are located in other parts of the world, making the pursuit of a legal action against these

companies very difficult.

Player Annoyances

 The purpose of a role-playing game is to provide people with a form of entertainment in

which a person can become someone that they are not. Spammers, however, can change the way

the game appears to the players. Chat spam can cause players to miss out on an activity they

want to participate in during the game by filling up a player‟s chat windows and hiding messages

 22

sent between players and used to invite people to groups or other game events. In Star Wars

Galaxies, chat messages appear above the heads of the characters. Figure 8 illustrates that

multiple people spamming outside of a major area can cause an annoyance to the players by

taking up the entire screen.

Figure 8: Chat Spam in Star Wars Galaxies
8

Some games allow the player to turn off the chat bubbles above the characters heads, but the

spamming can still block the chat frame window located in the user interface.

 Virus infestations are another risk that players face, which can lead to an annoyance.

Most of the spam messages that players receive contain website addresses for the players to visit

in order to purchase the goods and services. Some of these websites contain viruses and spyware

that can infect a person‟s computer. The primary type of virus found on these websites is a key

logger virus that records the keyboard input and saves it to an encrypted file; this file is then

returned to the person who distributed the virus. This type of virus is used to steal bank

8
 Screenshot obtained from http://swgblog.net/?m=200708

 23

information or someone‟s identity. In the gaming industry, these viruses are created to target the

acquisition of player‟s account information.

 Within the game realm, account theft is the same concept as identity theft
9
. While this is

a prevalent issue in games, the game studios put the account security in the hands of the player.

Section 10 of the World of Warcraft terms of use states: “You are responsible for maintaining the

confidentiality of the Login Information, and you will be responsible for all uses of the Login

Information, whether or not authorized by you,” [4]. Blizzard Entertainment does have a service

that can be used to recover a stolen account; however, this process is very time consuming and

can take several weeks. This recovery process is very frustrating to a player who is paying for a

service he cannot access because the studio is researching the lost items.

Blizzard Entertainment has made an attempt to combat this type of identity theft. This

protection is accomplished by the Blizzard Authenticator, which generates a six-digit pin number

to be entered along with the password. While the actual encryption algorithm is kept secret, it is

known that the supported types of algorithms are: DES, 3DES, and AES. In addition, every

authenticator has a built-in clock and unique serial number used in the DIGIPASS algorithm.

While this significantly reduces the number of accounts that are hacked, it still requires the

player to purchase an additional piece of hardware in order to play the game. Recently Blizzard

has acknowledged that a new virus has been released, using a different kind of attack method

called a “Man in the Middle.” This attack grabs the information typed by the player and sends it

to the distributor of the virus, who then sends the information on to Blizzard. Figure 9 below

illustrates how this attack is performed.

9
 During the process of my research, this account theft method actually happened to my own

World of Warcraft account.

 24

Figure 9: “Man in the Middle” Diagram

Since the information is correct, Blizzard logs the character in, and the player does not even

know he has been hacked. The hacker, however, has only approximately sixty seconds in order

to login to Battle.net
10

, change the password and put a new authenticator on the account. While

this still reduces the amount of accounts that are hacked, it is still possible for the player‟s

account to be hacked without his knowledge.

The reason that account theft is important to spammers is that it provides a large source

of in-game currency faster than farming would provide. When an account is hacked, all the

character‟s items are sold, the gold (or currency) is split between the characters, and the

characters are then transferred to the servers on which the spam companies need the currency

most; in essence, the spammers gain control of the player‟s characters. The currency is then

routed through many others characters as a form of embezzlement. This makes it difficult for

game studios to discover where everything goes, making it difficult to block the spammer.

 In addition to websites containing viruses, some of the websites that come through the

spam are designed to look like the websites owned by the game studio. These websites are also

sent to a player‟s personal e-mail address in a form that looks exactly like an official e-mail from

the game studio. These websites appear to be entirely legitimate with the exception of where the

10

 Battle.net is the central location for all of a player‟s Blizzard Games. All the account

management to change passwords and add and remove authenticators is done through this

website.

 25

data is sent. Yet, through simple investigation of the headers contained in the e-mail, the source

code reveals that these messages are not legitimate. Still, the average player is not able to view

and understand the source code in the headers, or on the websites, and the player falls prey to the

spam companies.

Developer Issues

 Spam within video games can cause problems for the development studios. Exploits and

bugs used to cheat and spam within the game cause the game studios to spend more time on

fixing older parts of the games instead of developing new content for the game. This can slow

down the development cycle of the game and upset the players, as they are not given anything

new to play; this can lead to the loss of players as they become bored with the game.

 Spam can have a negative monetary impact on the game studios. If the clients are upset

about the issues in the game, developers will see an increase in customer complaints to the

customer service representatives. As a result, the studio must hire more representatives and

extend the hours of the services in order to handle the larger quantity of complaints. In extreme

cases, some players will get so upset because of these issues that they will stop playing the game

entirely, thus cancelling their subscription fee. This loss of revenue is the worst possible

situation that can happen to the gaming studio and can result in a loss of income or even the

eventual death of the game.

 26

CHAPTER 5

COUNTER-MEASURES

Game Masters

 Game masters are a part of every online game; these are not professional players of the

game but are actual employees of the studio. They serve as customer service representatives

within the game to resolve issues that may arise. Essentially, they make up the police force of

the game studio. The game masters also monitor certain types of spam they encounter in the

game. Primarily, they monitor the game for the use of bots and macros used to generate spam.

The game masters‟ characters cannot be seen within the game, thus the players never know

where he is located. Game masters monitor major population areas and ban players who send

spam messages through the chat channels. They can also remove the spam caused by

exploitation of programming flaws and bugs. However, the virtual worlds in the more popular

MMORPGs are very large, and game masters cannot be in all places at once.

 While game masters can take care of spam issues they visually observe, spam issues can

also be reported through the in-game ticketing system. This ticketing system is a way to petition

the game studio for help. This is frequently the only way to directly contact game masters, as

their identities remain private. The downside to this ticketing system, is that most studios do not

have large amounts of game masters, so the response time to a ticket can be very long.

Currently, game masters are not the best counter-measure to combat the spam found in chat

messages.

The Warden

Blizzard has also implemented a controversial form of monitoring its game, known as the

warden. The warden‟s sole purpose is to police the game and watch for cheating and the use of

 27

third party software to gain an advantage in the game. However, the warden borders on the lines

of spyware, as it not only monitors the memory space of World of Warcraft, it also monitors

other processes running on the player‟s computer [7]. Section six of the World of Warcraft end

user license agreement contains a clause giving consent for Blizzard to monitor the random

access memory on the computer during game play, in order to watch for third party cheats [2].

Therefore, in order to play the game, the player must give Blizzard permission to access other

processes on the player‟s computer, thus making it similar to spyware.

Every now and then the warden will activate on a player‟s computer and will scan all the

open processes in memory for the title of open windows, URLs that may be opened in browsers,

and even the code for other programs that are running [7]. This information is then sent back to

Blizzard to investigate if the player is using a cheat. Primarily, the warden is a counter-measure

used to detect bots and other programs running outside of the game that could be altering the

game‟s memory or sending commands to the game for an automation process.

Chat Spam Filters

 The best way to combat spam found in the chat system is to apply a filter. This method is

one that should be implemented by the developers; however, most game studios do not have such

a spam filter in place. Aion, by NCSoft, is a game that was flooded with gold spam when it was

released in the United States. Yet, this MMORPG was one of the first to implement an effective

chat spam filter in the game. By using this spam filter, the developers have practically

eliminated spam messages found in the public channels.

 Another way to filter spam is by using the ignore list built-in to most games. This is a list

of character names from which one does not see any messages, private or public. However, most

games have a limitation on how many names you can have on this list. Spammers are constantly

 28

creating new character names when old ones are blocked, thus it is a never-ending cycle of one

spammer name being ignored while a new spammer name is created. Therefore, this method of

spam filtering is not very effective in blocking spam messages in the game.

 World of Warcraft has added a feature to the chat system that allows a player to report

another character as spam. However, this only puts the person on a twenty-four hour ignore,

while Blizzard‟s game masters investigate the character. If Blizzard does not complete the

investigation of the reported character within the twenty-four hours, the name is removed from

the ignore list, and the player can continue to receive spam messages from that name. This is a

temporary fix to a larger problem and puts the majority of the work on the player to actually

report the spammer.

 Games with customizable features, like World of Warcraft, have one other way to combat

spam through the use of a third party add-on. These add-ons monitor the incoming messages the

chat window receives and filters out messages based on keywords commonly used by spammers.

The add-on also takes other factors into account, such as the level of the character sending the

message and blacklisting, in order to block incoming spam messages. Still, these add-ons are not

perfect and can actually block messages that are legitimate and ones the player would want to

see.

Proposed E-mail Filter

 With every MMORPG, e-mail is the best way to send spam messages, as no MMORPG

has a filter on these messages. World of Warcraft has added a way to report spam e-mail

messages similar to the way a player reports chat spam. Just like the chat report system, this

method puts the reported character name on a twenty-four hour ignore while the game masters

investigate.

 29

 When looking into different types of filtering systems, two options present themselves,

Bayesian filtering and blacklisting. Spam blockers for traditional e-mail services often use

Bayesian filtering. This type of filtering involves calculating the possibility of a message being

spam by checking each word in the message and the probability of each word being contained in

a spam message. This method can be difficult to implement to protect against game spam sent

through e-mail, especially in a game where spammers use words commonly included in

legitimate messages. Also, extensive research must be done in order to calculate all the

probabilities used in the equation. The calculation process can also be time consuming

depending on the depth of the word dictionary and the time it takes to check each words

probability. Figure 10 shows an example of a spam mail message received in World of Warcaft,

and the difficulty the Bayesian filter might have when trying to calculate and parse out the

words. For Bayesian to work effectively, every word must be parsed and weighted before the

calculations can be made.

Figure 10: Spam E-mail in World of Warcraft

 A simpler filtering system can be implemented without putting too much strain on the

game studio, and this system is called blacklisting. All of the spam e-mail messages sent through

 30

the game contain a website for the player to visit. While the spam companies are devising new

ways to present the website, it is still fairly simple to extract a website from a string variable. By

using blacklisting, the website can be checked against a list of known websites to determine

whether or not the messages should be blocked. In the event the website is not on the blacklist,

the filter can then get the source for the index page on the website and extract the Title and Meta

data tags. These tags contain information about the material contained in the website. By

looking for certain key words and phrases, the system can either add the website to the blacklist

or allow the website to continue sending messages. In the event that the content of the webpage

cannot be determined, the system can submit the web address to the game masters for approval

or blocking. While this could delay the delivery of a legitimate message, it would greatly reduce

the amount of spam messages that are delivered to the player. Figure 11 depicts a program that

uses blacklisting and HTML tag checking to block certain websites.

Figure 11: Blacklist Program
11

While testing this program, sixteen different websites were analyzed using the HTML keyword

checking. Ten known gold selling and power leveling websites were used, as well as three

11

 The source code for this program can be found in Appendix B

 31

personal websites and three websites containing information about gold. Table 6 shows the

results from running these websites through the program shown above in Figure 10.

Table 6: Results from Blacklisting

 Known Websites for

Selling gold

Personal Websites Similar Websites

Involving Gold

Total Sites Tested 10 3 3

Allowed 0 3 2

Blocked 10 0 0

Investigate 0 0 1

Table 5 illustrates that blacklisting is an effective form of blocking spam messages from

getting through to the player. However, there are some drawbacks to the blacklisting filter; these

drawbacks are the delay in the blocking of a message due to a large blacklist and the occasional

false positive. Yet, if the game studio has a powerful enough system, the delay issue can be

overcome, as the blacklist can be scanned at a faster rate. This method can also be effectively

applied to chat messages sent within the game, as long as the delay between the blacklist scan

and the blocking of the message is minimal.

 Both the Bayesian and blacklist methods would help to reduce the amount of spam

messages received by the player. Bayesian filtering can be effective but very slow as the system

has to determine the probability of each word and then do a complex calculation. While this

method would be effective for in-game mail messages, it would not be efficient for instant

messages. Blacklisting is the better option for the game studios to implement, as it provides a

similar and more efficient way to successfully block spam messages both in-game mail and

instant.

 32

CHAPTER 6

CONCLUSION

 Spam has become an ever-present problem in online gaming. As long as there is a

demand for online game programs, there will great supply of spammers ready to take advantage

of the players. This thesis has identified the immediate issues with spam and the problems they

can cause for both the player and the game studio. Blizzard Entertainment has taken steps to

stop spamming services by monitoring transactions conducted during the game in an effort to

find non-legitimate sources of items and users dealing in online gold. Blizzard has stated the

following: “Players who buy gold are supporting spamming, botting, and keylogging – activities

that diminish the gameplay experience for everyone,” [1]. Yet, the current counter-measures are

only temporary fixes to a larger problem. In-game mail spam is also a security issue that most of

the game studios have yet to take any action to prevent. Two different forms of filtering have

been presented and should be investigated in order to observe the effects they have on the game

itself. One such method of filtering, blacklisting, has been shown as a viable option to help

reduce the amount of spam sent through the in-game mail system.

The only way that studios can protect their players from spamming is to invest the money

and time necessary to create anti-cheating and spam-blocking programs. By creating a more

secure environment, the players will be more likely to continue their accounts. Therefore, if the

game studios spend more time on the prevention of spam and cheating, the studios will be able to

create a better and more secure game environment for their players, thus giving the players a

better experience overall.

 33

REFERENCES

[1] Blizzard, “Gold Selling: Effects and Consequences”, available at http://www.wow-

europe.com/en/info/faq/antigoldselling.html.

[2] Blizzard, “World of Warcraft End User License Agreement”, available at

http://www.worldofwarcraft.com/legal/eula.html.

[3] Blizzard, “World of Warcraft subscriber Base Reaches 11.5 Million Worldwide”, available

at http://eu.blizzard.com/en/press/081223.html.

[4] Blizzard, “World of Warcraft Terms of Use”, available at

http://www.worldofwarcraft.com/legal/termsofuse.shtml.

[5] Steven Gianvecchio and Zhenyu Wu, et al. “Battle of Botcraft: fighting bots in online

games with human observational proofs”, in Proceedings of the 16
th

 ACM conference on

Computer and communications security, November, 2009

[6] Guinness, “Guinness World Records Gamer‟s Edition”, available at

http://gamers.guinnessworldrecords.com/records/pc_gaming.aspx.

[7] Greg Hoglund and Gary McGraw, Exploiting Online Games: Cheating Massively

Distributed Systems, Boston: Pearson Education Inc, 2008.

[8] S McCreary and K Claffy, “Trends in Wide Area IP Traffic Patterns: A View from Ames

Internet Exchange”, in Proceedings of the ITC Specialist Seminar on IP Traffic Modeling,

Measurement, and Management, Montery, CA, USA, Sept. 2000.

[9] “Radegast Openmetaverse Client”, available at http://radegastclient.org/wp/

[10] Jeff Yan and Brian Randell, “A Systematic Classification of Cheating in Online Games”,

in Proceedings of 4
th

 ACM SIGCOM workshop on Network and system support for games,

October, 2005.

[11] “WoW Chat Spammer”, available at http://www.wowbootybay.com/2009/02/21/wow-

chat-spammer/

http://radegastclient.org/wp/
http://www.wowbootybay.com/2009/02/21/wow-chat-spammer/
http://www.wowbootybay.com/2009/02/21/wow-chat-spammer/

 34

APPENDIX A

WEB SCRAPER SOURCE CODE

/**

 * GuildScraper.java

 *

 * Part of the software tool that will scrape data

 * from the wow armory in order to obtain player names

 */

package wowarmoryscraper;

// imports

import java.io.BufferedReader;

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.net.MalformedURLException;

import java.util.ArrayList;

import javax.xml.parsers.SAXParser;

import javax.xml.parsers.SAXParserFactory;

import org.xml.sax.Attributes;

import org.xml.sax.SAXException;

import org.xml.sax.helpers.DefaultHandler;

/**

 * This files scrapes the guild names from the search page

 *

 * @author Brandon Treadway

 */

public class GuildScraper extends DefaultHandler

{

 ArrayList<Guild> guilds; // list of guilds parsed

 ArrayList<String> guildList; // list of guilds to search

 ArrayList<Results> resultsList; // list of results

 private Guild tempGuild; // placeholder object

 public int count; // counts the number of names scraped

 /**

 * Default constructor. Intializes lists and sets counter variable to 0

 */

 public GuildScraper()

 {

 guilds = new ArrayList();

 guildList = new ArrayList();

 resultsList = new ArrayList();

 count = 0;

 }

 35

 /**

 * Parses the guild listing file and then generates the search. Search each

 * guild namein the file

 */

 public void getGuilds()

 {

 // get the guilds from the file listing

 try

 {

 // open file for reading

 File guildListing = new File("GuildListing.dat");

 FileReader fr = new FileReader(guildListing);

 BufferedReader reader = new BufferedReader(fr);

 // line read from file

 String line = null;

 // read all the names from the file

 while((line=reader.readLine()) != null)

 {

 guildList.add(line); // add to the guild list

 }

 // close the files

 reader.close();

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 // loop through the guild list and parse each one.

 for(int i = 0 ; i < guildList.size() ; i++)

 {

 GuildScraper gsTemp = new GuildScraper(); //create a new scraper

 double startTime = System.currentTimeMillis(); // start time

 gsTemp.parseDocument(guildList.get(i)); // parse the search page

 double endTime = System.currentTimeMillis(); // end time

 gsTemp.printData(); // print results

 Results rs = new Results(); // create an empty results object

 rs.search = guildList.get(i); // set the search string

 rs.numberOfPlayers = gsTemp.count; // get player count

 rs.numberOfGuilds = gsTemp.guilds.size(); // get guild count

 rs.timeToParse = endTime - startTime; // get time to parse

 resultsList.add(rs); // add to results list

 }

 printHTML(); // print the HTML result file

 }

 36

 /**

 * This is the method that actually uses a SAX XML parser to get the

 * character tag from the document and parse the attributes.

 */

 private void parseDocument(String guildName)

 {

 //get a factory

 SAXParserFactory spf = SAXParserFactory.newInstance();

 try

 {

 // get a new instance of parser

 SAXParser sp = spf.newSAXParser();

 // parse the search page from the website

 sp.parse("http://www.wowarmory.com/search.xml?searchType=all&" +

 "searchQuery=" + guildName + "&selectedTab=guilds", this);

 }

 catch (Exception e)

 {

 //e.printStackTrace();

 // keep attempting to get the page if the server rejects the request

 parseDocument(guildName);

 }

 }

 /**

 * Prints the data results from the parsing

 */

 private void printData()

 {

 // total number of guilds found that match the seach

 System.out.println("No of guilds: " + guilds.size());

 // loop through each guild in the list

 for(int i = 0 ; i < guilds.size() ; i ++)

 {

 // delay to avoid connection refusal

 try

 {

 Thread.sleep(1000);

 }

 catch (InterruptedException ex)

 {

 ex.printStackTrace();

 }

 // get a new player scraper object for the guild object

 PlayerScraper ps = new PlayerScraper(guilds.get(i));

 // print the guild data

 System.out.println("GUILD NAME: " + guilds.get(i).getName());

 System.out.println("REALM NAME: " + guilds.get(i).getRealm());

 System.out.println("FACTION: " + guilds.get(i).getFaction());

 // parse the player names from the guild page

 37

 ps.getPlayers();

 // spacers

 System.out.println("**");

 System.out.println();

 // increment count

 count = count + ps.getSize();

 }

 // display the total number of players scraped

 System.out.println("TOTAL PLAYERS SCRAPED: " + count);

 }

 /**

 * Prints the result list to an html file for easier viewing

 */

 public void printHTML()

 {

 // try to write to the html file

 try

 {

 // open the file for writing

 FileWriter fw = new FileWriter("results.html");

 // write the basic html title stuff

 fw.write("<html><title>Scraping Results</title>\n");

 fw.write("<body>\n");

 // start the tables

 fw.write("<table border=3>\n");

 // table headers

 fw.write("<tr>\n<td>SEARCH STRING</td>\n<td>NUMBER OF GUILDS</td>" +

 "\n<td>NUMBER OF PLAYERS</td>\n<td>TIME (MS)</td></tr>\n");

 int totalGuilds = 0; // total number of guilds in the results

 int totalPlayers = 0; // total number of players in the results

 double totalTime = 0.0; // total time to complete all parses

 // Loop through the result list and print the table rows

 for(int i = 0 ; i < resultsList.size() ; i ++)

 {

 // write the table row to the file

 fw.write("<tr><td>" + resultsList.get(i).search + "</td>" +

 "<td>" + resultsList.get(i).numberOfGuilds + "</td>" +

 "<td>" + resultsList.get(i).numberOfPlayers + "</td>" +

 "<td>" + resultsList.get(i).timeToParse +

 "</td></tr>\n");

 // increment the counting variables

 totalGuilds = totalGuilds + resultsList.get(i).numberOfGuilds;

 totalPlayers = totalPlayers + resultsList.get(i).numberOfPlayers;

 totalTime = totalTime + resultsList.get(i).timeToParse;

 }

 38

 // close the table

 fw.write("</table>

\n");

 // print the total stats

 fw.write("<h2>TOTAL SEARCHES: " + resultsList.size() + "
\n");

 fw.write("TOTAL NUMBER OF GUILDS: " + totalGuilds + "
\n");

 fw.write("TOTAL PLAYERS SCRAPED: " + totalPlayers + "
\n");

 fw.write("TOTAL TIME: " + totalTime + " milliseconds
\n");

 // close all other tags

 fw.write("</h2></body></html>");

 // close the file to save it

 fw.close();

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

 /**

 * OVERRIDE METHOD

 * gets the start of an element with the provided name

 * @param uri

 * @param localName

 * @param qName

 * @param attributes

 * @throws SAXException

 */

 public void startElement(String uri, String localName, String qName,

 Attributes attributes)

 throws SAXException

 {

 // find the guild tags in the xml document

 if(qName.equalsIgnoreCase("guild"))

 {

 // create a new instance of guild

 tempGuild = new Guild();

 // extract the attributes from the tag

 tempGuild.setFaction(attributes.getValue("faction"));

 tempGuild.setName(attributes.getValue("name"));

 tempGuild.setRealm(attributes.getValue("realm"));

 tempGuild.setURL(attributes.getValue("url"));

 // add the guild to the list

 guilds.add(tempGuild);

 }

 }

 39

 /**

 * Main Method for running the application

 * @param args

 * @throws MalformedURLException

 * @throws IOException

 */

 public static void main(String[] args)

 throws MalformedURLException, IOException

 {

 // pretend to be firefox browser so we get the actualy XML and not

 // the HTML

 System.setProperty("http.agent",

 "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.6; en-US; " +

 "rv:1.9.2.3) Gecko/20100401 Firefox/3.6.3");

 // create a new guild scraper object

 GuildScraper gs = new GuildScraper();

 // get the data

 gs.getGuilds();

 }

}

 40

/**

 * PlayerScraper.java

 *

 * Part of the software tool that will scrape data

 * from the wow armory in order to obtain player names

 */

package wowarmoryscraper;

// imports

import java.io.File;

import java.io.FileWriter;

import java.util.ArrayList;

import javax.xml.parsers.SAXParser;

import javax.xml.parsers.SAXParserFactory;

import org.xml.sax.Attributes;

import org.xml.sax.SAXException;

import org.xml.sax.helpers.DefaultHandler;

/**

 * This files scrapes the player names from the guild page

 *

 * @author Brandon Treadway

 */

public class PlayerScraper extends DefaultHandler

{

 ArrayList<Player> players; // list of players

 private Player tempPlayer; // place holder class

 private Guild theGuild; // the guild object we are scraping

 /**

 * The default constructor. Takes a guild object and creates a player

 * scraper

 *

 * @param g The guild object we are scraping

 */

 public PlayerScraper(Guild g)

 {

 players = new ArrayList();

 theGuild = g;

 }

 /**

 * Method to actually parse the players from the xml sheet

 */

 public void getPlayers()

 {

 parseDocument(); // parse the document and get characters

 printData(); // print results

 }

 /**

 * Gets the number of characters in the list

 *

 41

 * @return the size of the list

 */

 public int getSize()

 {

 return players.size();

 }

 /**

 * This is the method that actually uses a SAX XML parser to get the

 * character tag from the document and parse the attributes.

 */

 private void parseDocument()

 {

 //get a factory

 SAXParserFactory spf = SAXParserFactory.newInstance();

 try

 {

 // get a new instance of parser

 SAXParser sp = spf.newSAXParser();

 // parse the xml document with the character listing on it

 sp.parse("http://www.wowarmory.com/guild-info.xml?"

 + theGuild.getURL(), this);

 }

 catch (Exception e)

 {

 //e.printStackTrace();

 // keep trying if the server rejects it.

 parseDocument();

 }

 }

 /**

 * Write the names to the files based on their faction and realm

 */

 private void printData()

 {

 // print the number of characters in the list

 System.out.println("No of players: " + players.size());

 try

 {

 // create the horde directory if it doesn't exist

 File f = new File("Horde");

 if(!f.exists())

 f.mkdir();

 // create the alliance directory if it doesn't exist

 f = new File("Alliance");

 if(!f.exists())

 f.mkdir();

 // Open the file for appending

 42

 FileWriter fw = new FileWriter(theGuild.getFaction() + "/"

 + theGuild.getRealm() + ".dat", true);

 // write the names to the file

 for(int i = 0 ; i < players.size() ; i++)

 {

 fw.write(players.get(i).getName() + "\n");

 }

 // close the file

 fw.close();

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

 /**

 * OVERRIDE METHOD

 * gets the start of an element with the provided name

 * @param uri

 * @param localName

 * @param qName

 * @param attributes

 * @throws SAXException

 */

 public void startElement(String uri, String localName, String qName,

 Attributes attributes)

 throws SAXException

 {

 // get the character tag

 if(qName.equalsIgnoreCase("character"))

 {

 // create a new instance of guild

 tempPlayer = new Player();

 // extract the attributes from the tag

 tempPlayer.setFaction(theGuild.getFaction());

 tempPlayer.setName(attributes.getValue("name"));

 tempPlayer.setRealm(theGuild.getRealm());

 // add the object to the list

 players.add(tempPlayer);

 }

 }

}

 43

/**

 * Player.java

 *

 * Part of the software tool that will scrape data

 * from the wow armory in order to obtain player names

 */

package wowarmoryscraper;

/**

 * This file represents a player object

 *

 * @author Brandon

 */

public class Player

{

 String name; // name of the character

 String faction; // name of the faction

 String realm; // name of the realm

 /**

 * Gets the faction of the player object

 *

 * @return faction name

 */

 public String getFaction()

 {

 return faction;

 }

 /**

 * Sets the faction of the player object

 *

 * @param faction

 */

 public void setFaction(String faction)

 {

 this.faction = faction;

 }

 /**

 * Gets the name of the player object

 *

 * @return player name

 */

 public String getName()

 {

 return name;

 }

 44

 /**

 * Sets the name of the player object

 *

 * @param name

 */

 public void setName(String name)

 {

 this.name = name;

 }

 /**

 * Gets the realm name of the player object

 *

 * @return realm name

 */

 public String getRealm()

 {

 return realm;

 }

 /**

 * Sets the realm name of the player object

 *

 * @param realm

 */

 public void setRealm(String realm)

 {

 this.realm = realm;

 }

}

 45

/**

 * Guild.java

 *

 * Part of the software tool that will scrape data

 * from the wow armory in order to obtain player names

 */

package wowarmoryscraper;

/**

 * This file represents a guild object

 *

 * @author Brandon

 */

public class Guild

{

 String Name; // name of the guild

 String Realm; // name of the realm the guild is on

 String Faction; // name of the faction for the guild

 String URL; // url to the guild page

 /**

 * Gets the URL of the guild

 *

 * @return guild url

 */

 public String getURL()

 {

 return URL;

 }

 /**

 * Sets the url for the guild object

 *

 * @param URL

 */

 public void setURL(String URL)

 {

 this.URL = URL;

 }

 /**

 * Gets the faction for the guild object

 *

 * @return guild faction

 */

 public String getFaction()

 {

 return Faction;

 }

 46

 /**

 * Sets the faction for the guild object

 *

 * @param Faction

 */

 public void setFaction(String Faction)

 {

 this.Faction = Faction;

 }

 /**

 * Gets the name of the guild object

 *

 * @return guild name

 */

 public String getName()

 {

 return Name;

 }

 /**

 * Sets the name of the guild object

 *

 * @param Name

 */

 public void setName(String Name)

 {

 this.Name = Name;

 }

 /**

 * Gets the name of the realm the guild is located on

 *

 * @return realm name

 */

 public String getRealm()

 {

 return Realm;

 }

 /**

 * Sets the realm name for the guild object

 *

 * @param Realm

 */

 public void setRealm(String Realm)

 {

 this.Realm = Realm;

 }

}

 47

/**

 * Results.java

 *

 * Part of the software tool that will scrape data

 * from the wow armory in order to obtain player names

 */

package wowarmoryscraper;

/**

 *

 * @author Brandon

 */

public class Results

{

 String search;

 int numberOfGuilds;

 int numberOfPlayers;

 double timeToParse;

}

 48

APPENDIX B

BLACKLIST PROGRAM SOURCE CODE

/**

 * BlackListFilter.java

 *

 * This program simulates the filtering system using blacklisting. It first

 * checks the blacklist to see if the website is already contained in it. If it

 * is not, then the program checks the html title and meta tags for search

 * strings.

 */

package blacklistfilter;

// imports

import java.io.BufferedReader;

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.URL;

import java.util.ArrayList;

import java.util.Locale;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

/**

 * Main class of the prgram and represnets a filter object

 *

 * @author Brandon Treadway

 */

public class BlackListFilter

{

 ArrayList<String> blacklist; // the blacklist

 ArrayList<String> websites; // list of websites to check

 ArrayList<String> mainSearchStrings; // main search stings list

 ArrayList<String> secondarySearchStrings; // other search stings

 ArrayList<String> investigate; // the further investigation list

 final int THRESHOLD = 2; // threshold value for investigation

 /**

 * Default Constructor - Initializes lists

 */

 public BlackListFilter()

 {

 // Initialize list

 blacklist = new ArrayList();

 websites = new ArrayList();

 49

 mainSearchStrings = new ArrayList();

 secondarySearchStrings = new ArrayList();

 investigate = new ArrayList();

 // populate the main searh strings

 mainSearchStrings.add("wow gold");

 mainSearchStrings.add("cheap wow gold");

 mainSearchStrings.add("warcraft gold");

 mainSearchStrings.add("power level");

 // populate the secondary search stings

 secondarySearchStrings.add("gold");

 secondarySearchStrings.add("wow");

 secondarySearchStrings.add("cheap");

 secondarySearchStrings.add("leveling");

 }

 /**

 * Load the blacklist from a file into a local list

 */

 public void LoadBlackList()

 {

 try

 {

 // open the file for reading

 File blackL = new File("blacklist.dat");

 FileReader fr = new FileReader(blackL);

 BufferedReader br = new BufferedReader(fr);

 // input string

 String line = null;

 // read the file

 while((line = br.readLine()) != null)

 {

 line = line.trim(); // remove whitespace and new line chars

 blacklist.add(line); // add to the black list

 }

 // close the file

 br.close();

 fr.close();

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

 50

 /**

 * Write the blacklist to the file

 */

 public void writeBlackList()

 {

 try

 {

 // open file for friting

 FileWriter fw = new FileWriter("blacklist.dat");

 // write the entries in the blacklist

 for(int i = 0 ; i < blacklist.size() ; i++)

 {

 fw.write(blacklist.get(i) + "\n");

 }

 // close the file

 fw.close();

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

 /**

 * write the investigation list

 */

 public void writeInvestigateList()

 {

 try

 {

 // open the file for appending

 FileWriter fw = new FileWriter("NeedInvestigation.dat", true);

 // write the entries in the investigation file

 for(int i = 0 ; i < investigate.size() ; i++)

 {

 fw.write(investigate.get(i) + "\n");

 }

 // close the file

 fw.close();

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

 51

 /**

 * Chec the blacklist for matches

 * @param s - the url to check

 * @return - true if the url is in the blacklist, false if not

 */

 public boolean checkBlackList(String s)

 {

 // iterate through the blacklist and check for matches

 for(int i = 0 ; i < blacklist.size() ; i++)

 {

 if(blacklist.get(i).equalsIgnoreCase(s))

 return true;

 else if(blacklist.get(i).toLowerCase().contains(s.toLowerCase()))

 return true;

 else if(s.toLowerCase().contains(blacklist.get(i).toLowerCase()))

 return true;

 }

 // not contained in the blacklist

 return false;

 }

 /**

 * Check the html code from the website for key words and phrases

 * @param s - the url to check

 * @return - true if a match is found, false if not

 */

 public boolean checkHTMLCode(String s)

 {

 // append the http:// if it is not present

 String header = "http://";

 String newURL = s.toLowerCase();

 if(!s.contains(header.subSequence(0, header.length())))

 newURL = header + s;

 // whether we need mor investigation

 boolean doInvestigate = false;

 // check html code

 try

 {

 // create the url

 URL url = new URL(newURL);

 // get the connection

 HttpURLConnection connection = (HttpURLConnection)

 url.openConnection();

 // get the input stream from the connetion

 BufferedReader reader = new BufferedReader(new InputStreamReader

 (connection.getInputStream()));

 // input strings

 String html = "";

 String temp = "";

 52

 // read the input stream

 while((temp = reader.readLine()) != null)

 {

 html += " " + temp;

 }

 // close the input stream

 reader.close();

 // clarify the whitespace

 html = html.replaceAll("\\s+", " ");

 // create the regex pattern for looking for the title

 Pattern p = Pattern.compile("<title>(.*?)</title>");

 // create the matcher

 Matcher m = p.matcher(html);

 // look for matches

 while(m.find() == true)

 {

 // get the matching string

 String check = m.group(1);

 // convert to lowercase

 check = check.toLowerCase(Locale.US);

 // check for the main search strings and return a match if found

 for(int i = 0 ; i < mainSearchStrings.size() ; i++)

 {

 if(check.contains(mainSearchStrings.get(i)))

 return true;

 }

 // initialize the score value

 int score = 0;

 // check the alternative search values

 for(int j = 0 ; j < secondarySearchStrings.size() ; j++)

 {

 if(check.contains(secondarySearchStrings.get(j)))

 score++; // increment the score value

 }

 // check the threshold

 if(score >= THRESHOLD)

 {

 doInvestigate = true; // need to investigate

 investigate.add(s); // add to investigate list

 }

 }

 // create the regex pattern for finding meta data tags

 Pattern p2 = Pattern.compile("<meta (.*?)>");

 // create a matcher for the pattern

 53

 Matcher m2 = p2.matcher(html);

 // look for matches

 while(m2.find() == true)

 {

 // get the matching string

 String check = m2.group(1);

 // convert to lowercase

 check = check.toLowerCase(Locale.US);

 // check for the main search strings and return a match if found

 for(int i = 0 ; i < mainSearchStrings.size() ; i++)

 {

 if(check.contains(mainSearchStrings.get(i)))

 return true;

 }

 // initialize the score value

 int score = 0;

 // check the alternative search values

 for(int j = 0 ; j < secondarySearchStrings.size() ; j++)

 {

 if(check.contains(secondarySearchStrings.get(j)))

 score++; // increment the score value

 }

 // check the threshold

 if(score >= THRESHOLD)

 {

 doInvestigate = true; // need to investigate

 investigate.add(s); // add to investigate list

 }

 }

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 // if we are investigating, print the results, or print allowed

 if(doInvestigate)

 System.out.println("RESULT: " + s + " - SENT FOR INVESTIGATION");

 else

 System.out.println("RESULT: " + s + " - ALLOWED");

 // return false for not blocking

 return false;

 }

 54

 /**

 * Load the website to check from a file

 */

 public void loadWebsites()

 {

 try

 {

 // open the file for reading

 FileReader fr = new FileReader("websites.dat");

 BufferedReader br = new BufferedReader(fr);

 // input string

 String line = null;

 // read the file

 while((line = br.readLine()) != null)

 {

 websites.add(line);

 }

 // close the file

 br.close();

 fr.close();

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

 /**

 * Main Method to run, checks the websites in the list for blacklisting

 */

 public void checkSites()

 {

 // iterate through the list

 for(int i = 0 ; i < websites.size() ; i++)

 {

 // if it is not in the blacklist

 if(!checkBlackList(websites.get(i)))

 {

 // blocked because of html code

 if(checkHTMLCode(websites.get(i)))

 {

 blacklist.add(websites.get(i)); // add to blacklist

 // print results

 System.out.println("RESULT: " + websites.get(i) +

 " - BLOCKED and added to blacklist");

 }

 }

 // already in the blacklist

 else

 {

 // print results

 System.out.println("RESULT: " + websites.get(i) +

 55

 " - BLOCKED in the blacklist");

 }

 }

 }

 /**

 * Main Method - creates a BlackListFilter object and executes the methods

 * @param args the command line arguments

 */

 public static void main(String[] args)

 {

 // pretend to be firefox browser so we don't appear to be a robot

 System.setProperty("http.agent",

 "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.6; en-US; " +

 "rv:1.9.2.3) Gecko/20100401 Firefox/3.6.3");

 // create a new black list filter object

 BlackListFilter blf = new BlackListFilter();

 blf.LoadBlackList(); // load the black list

 blf.loadWebsites(); // load the website list

 blf.checkSites(); // check the websites

 blf.writeBlackList(); // write the black list

 blf.writeInvestigateList(); // write the investigation list

 }

}

 56

APPENDIX C

FULL TABLE FROM WEB SCRAPING

 The table below was generated by passing an input list of the top two hundred ranked

guilds according to www.wowprogress.com. These rankings are determined based on Player

versus Environment progression.

SEARCH STRING

NUMBER OF

GUILDS

NUMBER OF

PLAYERS TIME (MS)

premonition 123 1417 828

adept 38 609 811

blood legion 223 1437 759

deus vox 60 235 268

cuties only 87 327 341

exodus 216 4256 676

vigil 53 743 221

vodka 2 153 76

might 56 634 223

juggernaut 132 1299 520

tsunami 54 550 1633

gentlemens club 133 1191 694

forlorn legacy 97 976 481

eternal reign 134 612 575

casual 93 1288 1233

phoenix 192 4674 2013

midwinter 20 125 581

no chicks allowed 2 107 165

gong show 4 138 141

tasty beverage 179 218 589

raiding rainbows 2 189 153

fusion 193 3382 614

uprising 142 2581 2051

mediocrity 42 1484 149

pie chart 5 52 143

edge 78 717 1275

drow 29 234 147

tupan techno 25 306 377

incite 20 934 936

escaper 5 271 418

 57

bad news bears 73 532 449

surprise mutiny 3 150 271

infallible 40 535 1618

obsidium 20 201 142

huge in japan 31 367 144

gigantor 7 181 840

fh 8 158 1176

vamo feder 3 225 2767

spike flail 141 283 1400

assent 16 189 424

not steamboat 5 163 176

seriously casual 44 749 261

elitist jerks 59 796 305

critical mass 105 1416 609

riot act 14 247 180

legions 46 987 1093

alpha 77 890 1518

acquired taste 33 326 234

incarnate 35 494 858

avast 16 323 670

out of line 12 169 175

nurfed 31 665 937

iron 18 228 928

call of dusk 6 187 172

void 138 1960 352

downtime 26 635 797

simple math 11 222 171

arathian knights 2 448 138

odyssey 109 2585 1176

rush 86 821 1509

just do work 4 108 164

demise 149 3050 1526

ropetown 17 393 337

fused 17 460 868

tan do li ga 2 279 166

just crusade 102 299 346

play 16 231 1079

a team 99 1015 754

rage 205 1711 693

elementium 20 510 961

dark pact 52 671 307

 58

whatever were awesome 11 352 194

blades of wrath 45 390 283

intent 31 942 142

foundation 84 1490 279

tg 32 677 163

the dark ministry 8 482 160

ahh 21 212 1040

enigma 196 2651 1822

fallen 198 2561 1866

obscure reference 8 233 202

gwen stefani 6 320 324

integrity 79 2148 1664

warpath 104 1202 1332

predestined 31 798 575

temerity 40 532 147

something novel 20 110 277

angry 20 469 916

og 47 591 1022

ebayed raiders 54 187 316

titan 120 1175 528

aftermath 208 3963 672

hallowed 54 568 1329

crisis 93 1456 1344

eiysium 3 100 188

afterlife 164 2717 729

fever 31 328 1077

dawn of valor 10 131 172

trismegistus 39 288 765

encore 76 1420 1287

unholy trinity 40 828 308

intrepid 74 1163 1131

the flying hellfish 26 294 187

remedy 51 532 1036

keepers of the faith 37 951 279

burning sensations 4 323 170

redux 41 782 1608

quantum 63 810 325

impulse 140 2173 487

reawaken 23 707 376

stygian 26 341 142

space people 4 81 169

 59

superiority complex 47 775 708

vanquisher 17 268 1010

fallout 150 2189 1969

legends 207 1948 1972

defenestrate 7 238 930

we know girls 61 314 409

scripted encounters 3 6 171

dark nemesis 36 916 350

ascension 216 4204 767

khazuals 14 304 194

hero 164 2075 813

irregulars 18 365 274

tyanny 0 0 174

voracity 19 527 621

reckoning 177 3506 1665

delirium 150 2218 477

halcyon 75 1331 3532

raiding robots 3 295 154

dark bane 13 95 159

flavour country 4 291 155

insomniax 19 597 560

the renamed 3 113 201

damage networks 116 317 432

iniquity 58 797 1036

handlebarz 9 79 640

hat 6 241 148

resurgence 77 3425 302

zephyr 30 267 880

civilian 56 720 825

temporary insanity 58 1287 359

prominence 52 817 802

fatum imperium 4 151 211

scandalous 28 331 811

eternal 196 2115 1533

bad 63 795 1900

clique 27 510 848

red sun 19 289 143

insomnia 200 3924 694

contempt 82 552 1343

tribunal 59 1045 933

roadrunners 30 162 247

 60

makaveli 23 247 1058

anguish 119 1607 2778

reckoning 177 3506 1565

yarg 21 206 775

plaguechill 2 232 180

cadia 16 355 652

stalk and kill 36 548 183

overwhelming 6 109 140

roll initiative 8 294 173

singularity 83 902 995

heretic 64 1029 1120

insurrection 175 3105 1526

reanimated 28 644 951

in the mountains 45 720 320

simplicity 86 1843 286

excessive gaming 1 141 93

did it for whitney 1 128 162

exigence 24 356 435

licious only 2 36 89

tba 21 380 557

death jesters 68 946 347

vindicatum 15 290 344

ainur 8 439 644

the fabled 14 291 161

talisman 41 661 926

ladies of destiny 6 316 163

ascent 102 1205 1081

parnoia 0 0 170

whar lewts plz halp 7 357 136

meteor 91 293 1270

promethean 18 232 463

cryhavoc 20 348 143

ethos 45 761 705

renegade soldiers 15 412 179

casually addicted 31 393 172

risen 148 2653 1480

mors certa 12 130 162

intolerance 40 810 753

paradox 201 3235 1713

synergie 15 223 488

too soon 27 301 236

 61

resurrected 83 1652 1139

void 138 1960 1297

bipolar 26 658 1656

dota ar br banlist on 2 516 145

inertia 73 1333 1387

taint invaders 23 109 183

Totals 11479 171787 137748

 62

APPENDIX D

DATA FOR CORPSE SPELLING

Bodies per letter

Letter Number of Bodies

A 7

B 9

C 5

D 6

E 5

F 5

G 6

H 6

I 4

J 5

K 5

L 4

M 8

N 8

O 7

P 7

Q 9

R 7

S 7

T 4

U 6

V 4

W 8

X 4

Y 4

Z 6

Average 6

 63

Travel Times from Starting Zone to Nearest Major City (Draenei and Blood Elf are not included

as they require purchase of the expansion pack and are not eligible under trial accounts)

Race Starting Location Major City Travel Time (seconds)

Night Elf Shadowglen Dalaran 369

Human Northshire Valley Stormwind City 206

Gnome Coldridge Valley Ironforge 358

Dwarf Coldridge Valley Ironforge 358

Orc Valley of Trials Orgrimmar 400

Troll Valley of Trials Orgrimmar 400

Tauren Camp Narache Thunderbluff 482

Undead Deathknell Undercity 333

 Average 363.25

	Brandon Treadway Thesis.pdf
	brandon thesis final

