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ABSTRACT 

 Recent Advances in DNA sequencing technologies and the increased availability 

of high density single nucleotide polymorphism (SNP) genotyping platforms provided 

unprecedented opportunities to enhance breeding programs in livestock, poultry and plant 

species and to better understand the genetic basis of complex traits. Using this genomic 

information, more accurate breeding values are obtained. The superiority of genomic 

selection is possible only when high density SNP panels are used to track genes and QTLs 

affecting the trait. Unfortunately, even with the continuous decrease in genotyping costs, 

only a small fraction of the population has been genotyped with these high density panels. 

In order to reduce the cost of genomic selection, it is often the case that a larger portion of 

the population is genotyped with low-density and low-cost SNP panels and then imputed 

a higher density. Accuracy of SNP genotype imputation tends to be high when minimum 

requirements are met. Nevertheless, a certain rate of genotype imputation errors is 

unavoidable. Furthermore, such rate of errors tends to increase with the increase of the 

generational interval between reference and testing generations. Thus, it is reasonable to 

assume that the accuracy of GEBVs will be affected by the imputation errors; especially 



their cumulative effects over time. To evaluate the impact of multi-generational selection 

on the accuracy of SNP genotypes imputation on the reliability of resulting GEBVs, a 

simulation was carried out under varying updating of the reference population, distance 

between training and validation sets, and the approach used for the estimation of GEBVs. 

Using fixed reference populations, imputation accuracy decayed by around .5% per 

generations. In fact, after 25 generations, the accuracy was only 7% lower than the first 

generation. When the reference population was updated by either 1% or 5% of the top 

animals in the previous generations, decay of imputation accuracy was substantially 

reduced. These results indicate that low density panels are useful, especially when the 

generational interval between reference and testing population is small. As the generational 

interval increases, the imputation accuracies decay, although not at an alarming rate. In 

absence of updating of the reference population, accuracy of GEBVs decays substantially 

in one or two generations with a decrease rate of around 20-25% per generation. When the 

reference population is updated by 1 or 5% every generation, the decay in accuracy was 

only 8 to 11% for 7 generations using the true and imputed genotypes. These results 

indicate that imputed genotypes provide a viable alternative, even after several generations, 

as long the reference and training populations are appropriately updated to reflect the 

genetic change in the population.  
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CHAPTER 1 

INTRODUCTION 

 Genomic selection (GS) using dense single nucleotide polymorphism (SNP) 

markers covering the whole genome provides an innovative tool that allows the tracking 

of relevant genes and QTLs affecting traits of interests. Through linkage disequilibrium 

(LD), QTLs effects could be estimated using genotyped SNPs and their joint effects, or 

genomic breeding values (GEBVs), can be easily obtained. Accuracy of genomic selection 

depends on several factors including the size of the raining populations, population 

structure, method of analysis, and the density of SNP marker panel. Recent development 

in high-throughput genotyping technology has made the genotyping at an ever increasing 

density a reality with continuous decreases in costs.  Unfortunately, in several livestock 

applications, the genotyping costs still too high for an extensive use in the population. A 

practical and cost effective alternative that is being adopted by the livestock industry is to 

genotype a fraction of the population with low-density and low-cost SNP panels. However, 

the density in the latter has to be increase in order to produce accurate GEBVs. This has 

been accomplished through the imputation of non-typed SNPs in the low density panel. 

Several methods have developed and high imputation accuracies are often obtained as long 

as minimum requirement are met (size of reference population, genetic distance, number 

and distribution of SNPs in the low density panel, allele frequencies, LD between SNPs in 

the low and high density panels). Although successful, imputation accuracy is expected to 

decay as the generational interval between the reference and testing populations increases. 
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In species with short generation interval, it does not take long to run several rounds of 

selection. Given the extensive use of SNP genotype imputation in livestock applications, it 

is of practical importance to evaluate in long term effectiveness in the implementation of 

genomic selection. The objectives of this study are: 1) to evaluate the decay of imputation 

accuracy over generations, and 2) to investigate the effect of multi-generational decay in 

imputation effectiveness on the accuracy of genomic selection. To reach these objectives, 

several data sets were simulation under varying conditions and were used in the analyses.   
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CHAPTER 2 

LITERATURE REVIEW 

Animal selection: From BLUP to Genomics  

 Animal breeding aims to improve economic productivity of future generations of 

domestic species through selection under changing costs and income scenarios. Most of 

the traits of economic interest in livestock are of a complex genetic nature and are under 

the influence for large number of genes, environmental factors, and their potential 

interactions. The introduction of best linear unbiased prediction (BLUP) represented a 

crucial milestone the field of animal breeding and genetics (Henderson 1975). Using 

BLUP machinery, unbiased estimates of breeding values with reasonable reliability can 

be obtained based on pedigree information across many generations and phenotype 

information collected on candidates to selection and their relatives. Elite individuals are 

selected according to the rank order of their estimated breeding values (EBVs) obtained 

using BLUP. Identifying genes affecting complex traits would greatly enhance our 

understanding of their genetic architecture and will undoubtedly enhance the selection 

process and ultimately the genetic response. Traditionally, the genetics of complex traits 

have been studied without identifying the genes involved. With all its limitations, this 

strategy has proven to be successful for most traits. However, for traits with low 

heritability, sex-limited traits, longevity traits, and traits that are difficult or expensive to 

measure (such as carcass traits), traditional selection methods were less successful. 
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 With the advances in molecular genetics in the past 20 years, genetic markers in 

linkage disequilibrium within families or population wide with quantitative trait loci 

(QTLs) have been identified and several attempts were carried out for their potential use 

in genetic improvement programs (Goddard & Hayes 2009) through the so called  

marker-assisted selection (MAS). Unfortunately, such approach had little to no success 

due to multitude of factors. Chiefly, was the inability to precisely identify enough QTLs 

affecting the traits of interest. Early studies postulated that the number of loci influencing 

a specific trait will be small (Hayes & Goddard 2001) which turned out to be not true. 

(Reed et al. 2008). Additionally, although several statistical approaches have been 

developed to map QTLs (Sillanpaa & Corander 2002; Meuwissen & Goddard 2004), 

their associated effects have been often overestimated (Utz et al. 2000) precluding, thus, 

their confirmation in independent data sets. Additionally, the majority of identified QTLs 

using this approach were in population wide linkage equilibrium which complicated 

further their use in a marker assisted improvement program. Collectively, these and other 

factors have led to the quick demise of MAS in the field of animal breeding and genetics.

 The sequencing of the human genome, completed in 2003, followed by those of 

several animal species as cattle (Bovine Genome et al. 2009), have paved the way to a 

new tool that uses genomic information for animal selection. The idea of using dense 

marker maps to predict the genetic merit was proposed first by Meuwissen et al. (2001) 

and has revolutionized the field of animal breeding and genetics in a way and at a speed 

not shown before. Modern sequencing techniques allow for the genotyping of thousands 

of variants. Currently, it is possible to efficiently generate high density SNP panels at a 

reasonable cost. Contrarily to MAS, the use of high density SNP markers does not require 
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the prior mapping of potential QTLs affecting the trait and thus illuminating all the 

problems indicated before. In fact, all potential QTLs are tracked by their associated SNP 

markers or haplotypes and genomic breeding values can be estimated as a function of 

their joint effects (Meuwissen et al. (2001). Although several authors (Nejati-Javaremi et 

al. 1997; Haley & Visscher 1998; Whittaker et al. 2000) have presented several idea for 

this type of genomic selection (GS), it was the groundbreaking article by  Meuwissen et 

al. (2001) that laid the basis for using dense SNP markers in a simple yet powerful model 

to regress phenotypes on genomic variation. It did not take long since then for the 

proposed approach to become a standard tool for genomic selection in animal (VanRaden 

et al. 2009) and plant breeding (Bernardo & Yu 2007; Crossa et al. 2010).   

SNP marker Arrays   

 The first decade of the 21st century has been a golden time for the advancement 

of genomics, driven by the completion of the Human Genome Project (HGP). Various 

methodologies and technologies have been developed during and after the process of 

building the human genetic blueprint that has been directly transferred into the studies of 

domestic animal genomics (Andersson 2009; Goddard & Hayes 2009). Single nucleotide 

polymorphisms (SNPs) are bi-allelic genetic markers, they are easy to assess and 

interpret, and they are widely distributed across the genome.  With proper coverage and 

density, SNPs could capture the LD information embedded in the genome, which in turn 

could be used to pinpoint genes underlying complex traits. For domestic animals, these 

tools can be used in several applications including: i) a better understanding of  evolution, 

domestication and breed formation, and the development of new theories of  population  
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genetics;  ii) to dissect the genetic mechanisms of complex agricultural traits;  and iii) to 

enhance selection methods for genetic improvement  of  animal  production.  Currently, 

High density SNP arrays with varying number of SNP marker are available for the 

majority of domestic animal species. These SNP arrays are having considerable impacts 

on the theoretical and practical aspects of animal breeding and genetics and they will be 

gaining more importance in the years to come. When Meuwissen et al. (2001) published 

their paper,  it was not clear when appropriate SNP arrays would be available to predict 

genomic breeding values with a level of reliability that is necessary for an application 

under practical circumstances in routine evaluations. In less than ten years and using new 

technologies, it is now possible to genotype individuals for many hundreds of thousands 

of SNPs in one step at reasonable costs. A key issue in a GS program in livestock is the 

optimization of genomic information in breeding programs (Pryce & Daetwyler 2012). 

Low density SNP panels have been developed with the objective of reducing genotyping 

costs. These low density and low cost platforms will increase the number of genotyped 

animals. However, their performance is less than desirable. Consequently, imputation 

methods have been developed to solve this problem. 

Imputation of SNP genotypes 

 Genotype imputation is a powerful tool that allows the inclusion of animals 

genotyped with low density arrays in the genomic evaluation without having to genotype 

them with more expensive HD panels. Additionally, it can be used to impute missing 

SNP genotypes to hybridization problems or quality control issues which will help 
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increase the accuracy of genomic selection (Weigel et al. 2010; Zhang & Druet 2010).  

Imputation is a cost effective in-silico genotyping of missing genotypes.  

 Based on the sources of information used to infer the missing genotype, 

imputation methods can be implemented based on pedigree or/and population 

information. Family based imputation uses linkage and Mendelian segregation rules and 

is the most accurate for animals with genotyped relatives. Population imputation uses 

linkage disequilibrium information between the missing SNP and the observed flanking 

SNPs and is useful for unrelated animals or for animals without genotyped close 

ancestors. Pedigree based approach is more powerful (Hickey et al. 2012b). This is due 

for least two reasons: 1) the phase of HD genotyped individuals can generally be resolved 

more accurately using pedigree rules compared to linkage disequilibrium based phasing 

algorithms, and 2) pedigree information can be used during imputation to significantly 

reduce the number of plausible haplotypes that can be carried by an individual.   

 Various algorithms have been developed for imputation of missing genotypes. 

AlphaImpute (Hickey et al. 2012b), FImpute (Sargolzaei. et al. 2011), and findhap 

(VanRaden et al. 2011) use pedigree information, although the latter is not compulsory 

for FImpute. These imputation software were developed for animals and plants 

applications and can be efficiently implemented even with complex pedigrees. Mainly for 

human applications were pedigree information is seldom available, several population 

based imputation algorithms such as fastPHASE (Scheet & Stephens 2006), IMPUTE 

(Howie et al. 2009), MACH (Li et al. 2010), Beagle (Browning & Browning 2007) were 

developed. In a population of unrelated animals, the shared haplotype stretches are 

shorter, because common ancestors are more distant, and more complex algorithms are 
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required for accurate imputation. This often results in extremely long computing time 

when it is applied to larger data sets. 

 Imputation accuracy can be assessed using several criteria including the 

percentage of correctly imputed genotypes, the percentage of alleles imputed correctly, 

the correlation between true and imputed genotypes, and the proportion of variation 

contained within the true high-density genotypes that is explained by the imputed 

genotypes (R2). Imputation accuracy is influenced by several factors, including the 

number and distribution of markers on the low-density genotyping panel, the number of 

individuals genotyped at high-density and their relationships with the individuals to be 

imputed, allele frequencies, and finally the local linkage disequilibrium between each 

low-density genotype and its surrounding high-density genotypes (Zhang & Druet 2010; 

Hickey et al. 2012b; Huang et al. 2012). Apart from the choice of the program, the size 

and the composition of the reference set are the two factors that mainly influence the 

accuracy of imputation (Pausch et al. 2013). Larger reference sets and a larger number of 

close relatives increase the accuracy; however, the more animals have to be genotyped 

with the higher marker density; the greater is the cost. Thus, one of the strategies that is 

often used is to select key ancestors in a manner to maximize their contribution to the 

gene pool of the actual population (Goddard & Hayes 2009) and to genotype these 

ancestors with the HD chip. Imputation of missing marker genotypes is based on 

available marker data from a given population. The population structure and the 

frequencies of marker genotypes in the given population have influence on the imputation 

accuracy (Druet et al. 2010; Dassonneville et al. 2011; Hickey et al. 2012a). Because of 

differences in algorithms and source of information, the superiority of an imputation 
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method could be data dependent. Therefore, it is necessary to find the optimal imputation 

method and strategy to be used in the population of interest. 

Genomic Selection 

 Genomic selection was the major innovation in the field of animal breeding and 

genetics in the past decade. Rapid development in high throughput sequencing and 

genotyping technologies played major role on its success. Efficiency of GS derives for its 

potential effects of the factors affecting genetic response. Genetic gain (∆𝐺) depends on 

the intensity of selection (𝑖), the accuracy of predictions (𝑟), the additive genetic 

standard deviation of the trait (𝜎𝑔), and the generation interval (𝐿): 

∆𝐺 = (𝑖 × 𝑟 × 𝜎𝑔 )/𝐿 

It is clear that GS has effects on the factors affecting the genetic gain. Using 

genomic information, candidates to selection could be evaluate at early age or even at the 

embryonic stage reducing substantially the generation interval compared to classical 

approach. Theoretically, more young animals could be tested which in turn will increase 

the pool of potential candidates allowing hence for an increase in selection intensity.  It 

increases the prediction accuracy of genetic merit, shortening the generation interval, and 

therefore increasing the rate of genetic gain. Using dense marker maps, it is possible to 

track even QTLs with small effects and to improve the estimation of the additive 

relationships between relatives. This will lead to more accurate estimates of breeding 

values. Although the accuracy of GS depends, among other factors, on the LD between 

SNPs (Calus et al. 2008), high or even medium density arrays often provide enough LD 

between genome segments to trace QTLs affecting traits of interest.  
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Genomic Prediction 

 Deriving accurate predictions of complex traits requires the implementation of 

whole-genome regression models where phenotypes are regressed simultaneously on 

thousands of markers. The principle of genomic selection is to first estimate the effects of 

all markers in a training population consisting of phenotyped and genotyped individuals 

and then use these estimates in a validation population to evaluate their efficiency 

(Meuwissen et al. 2001). Genomic estimated breeding values (GEBVs) are then 

calculated as the sum of estimated marker effects for genotyped individuals. The training 

population consists typically of individuals having reliable dependent variables as well as 

genomic information. Dependent variables could be actual phenotypes, estimated 

breeding values or de-regressed proofs among others (de Roos et al. 2007), (VanRaden et 

al. 2009); (Gonzalez-Recio et al. 2008). By regressing the dependent variables on the 

genomic information, estimates for SNP effects are obtained. The estimates are then used 

on genotyped young selection candidates whose GEBVs are obtained by summing up all 

the relevant SNP effects. Alternatively, GS could be implemented by regressing the 

phenotypes directly on the GEBVs as suggested by (Legarra et al. 2009; Misztal et al. 

2009). 

 Accuracy of GS depends on several factors including the size and structure of the 

training population, the heritability of trait, the density of SNP marker map, quality of the 

dependent variable and genomic information, the genetic relatedness between training 

and validation sets, the LD between marker and QTLs, and the effective population size. 

There is a huge literature on the importance of these factors on GS (Habier et al. 2007; 

Muir 2007; Calus et al. 2008; Solberg et al. 2008; Meuwissen 2009). 
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Implementation of genomic prediction 

Genomic prediction approaches can be categorized as either direct or indirect 

methods. Indirect methods, which include Bayesian approaches, estimate marker effects 

in a reference population and then calculate the GEBVs of genotyped individuals by 

summing the effects of all relevant markers. Direct methods calculate the GEBVs directly 

using mixed model methodology within BLUP framework. Phenotype information of the 

reference population and the genotype information for all the markers from both 

reference and candidate populations are used, and a marker-derived relationship matrix is 

constructed using the high density markers (Zhang et al. 2011) to replace the average 

additive relationship matrix. 

Using indirect methods, that estimate the SNP effects first, often run into the well-

known large (p) and small (n) problem when high density SNP panels are used. The 

number of markers (p) can greatly exceed the number of records (n) where only a few 

thousand individuals are phenotyped and genotyped. To overcome this over-

parameterization, several approaches have been developed and implemented. 

Bayesian Methods 

Bayesian methods, through the prior information on the unknown parameters, 

provide a nature way of dealing with the over-parameterization of the genomic model. In 

fact, genomic selection was first introduced using a Bayesian approach (Hayes & 

Goddard 2001; Meuwissen et al. 2001). Since, several variations of the original approach 

have been presented under different labelling (Gianola et al. 2009; Habier et al. 2010; 
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Fernando et al. 2014). At the theoretical level, all these Bayesian methods are the same 

and differ only on the prior information specified for the unknown parameters. 

 The General model for regressing the phenotype (or Pseudo-phenotype) on the 

genomic information could be written as: 

𝑦𝑖 = 𝜇 + ∑ 𝑋𝑖𝑗𝑏𝑗

𝑝

𝑗=1

+ 𝑒𝑖 

where 𝑦𝑖 is the phenotype for animal i, 𝜇 is an overall mean, 𝑋𝒊𝒋 is the genotype for SNP j 

(j=1,2,…,p) for animal i coded as 0,1, or 2,  𝑏𝑗 and 𝑒𝒊 is the random residual term. 

 

 In a Full Bayesian implementation, prior distributions are needed for all unknown in the 

model. For the different Bayesian methods used in genome wide associations and GS, 

their only difference is on the prior specified for the SNP effects. Specifically, assuming a 

normal with the same variance for all SNPs in the array leads to the BLUP like 

implementation. 

𝑏𝑖~𝑁(0, 𝜎𝑏
2) 

where 𝜎𝑏
2 is a dispersion parameter comment to all SNPs. When the prior variance is 

specific to each SNP, such specification results in the BayesA implementation.  

𝑏𝑖~𝑁(0, 𝜎𝑏𝑖
2 ) 
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Additionally, it is reasonable to assume that not all SNPs in the array are in LD with 

QTLs. Thus, not all SNPs will have non-zero effects. To convey such stage about the 

SNP effects of belief a priori, the following prior could be specified 

𝑏𝑖~𝑁(0, 𝑉) with probability (1 − 𝜋) 

𝑏𝑖~𝐼0 with probability 𝜋 

where 𝐼0 is the degenerate distribution with mass at zero, 𝜋 is the portion of SNPs with 

zero effects, and V is the prior variance for non-zero effect SNPs. If a specific variance is 

specified for each SNP (𝑉 = 𝜎𝑏𝑖
2 ), such prior results in the BayesB implementation. When 

all non-zero effect SNPs have the same prior variance (𝑉 = 𝜎𝑏
2), it will lead to the 

BayesC implementation. Additionally, if 𝜋 was assumed unknown, it will result in the 

BayesCπ method. 

 Several other modifications of the prior have proposed in the literature leading to a 

myriad of Bayesian methods for the implementation of GWAS and GS (de los Campos et 

al. 2012; Vandenplas & Gengler 2012) 

Single-Step Genomic selection 

Single-step genomic selection is a unified approach eliminating the SNP markers 

effects estimation as in the multi-step (Misztal et al. 2009). This approach is based on an 

enhanced relationship matrix, called a genomic relationship matrix which combines 

genomic information and pedigree information as described by Legarra et al. (2009). The 

model used is as follows: 
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y = Xb + Zu +e 

y is a vector of observations, b is a vector of fixed effects and u is a vector of random 

animal effects and e is the residual. The relationship matrix can be modified to H = A + 

AΔ to account for genomic information and AΔ is the deviation from expected 

relationships. Matrix G replaces the numerator relationship matrix for the genotyped 

animals (Legarra et al. 2009). Solving MME is exactly the same as in traditional mixed 

models. A detailed explanation on the construction of the G matrix could be found in 

VanRaden (2008). 

𝐺 = 𝑍𝑍′ [2 ∑ 𝑝𝑖𝑞𝑖]⁄   

Where Z is 𝑛 × 𝑚 genotypes matrix, n is the number of animals and m is the number of 

genotypes and pi and qi are allelic frequencies. Division by [2 ∑ 𝑝𝑖𝑞𝑖] makes G analogous 

to A.  

 Aguilar et al. (2011) implemented a single-step procedure for genomic evaluation using 

national evaluation framework and compared its performance to a multiple-step 

procedure. The single step approach performed similarly to the multi-step approach and 

yielded similar accuracies. It is important to note that the single step approach has many 

advantages compared to the multiple step approach. Multiple step procedure requires 1) 

classical animal model evaluation 2) generation of pseudo phenotypes such as de-

regressed proofs or daughter deviations 3) estimation of a large number of parameters 

(Misztal et al. 2009; Aguilar et al. 2011). Single step eliminates all these steps.  
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Abstract 

Genomic selection requires the direct or indirect estimation of the effect of each 

SNP on the panel within the framework of mixed linear methodology. Several tools are 

already available to implement this step and accuracies of resulting breeding values are 30 

to 70% higher than those obtained using classical quantitative approaches. However, high 

accuracies are achieved only when a reasonable number of SNPs are genotyped for each 

individual. Medium and high density SNP panels are often sufficient to reach such 

objective. Unfortunately, their current cost precludes their extensive use in the majority of 

livestock and poultry applications. Therefore, low-density and low-cost SNP marker chips 

represent a practical viable alternative to reduce the genotyping costs without excessive 

lost in accuracies. However, to use these low density panels in genomic breeding values 

prediction (GEBVs), the missing (non-genotyped SNP markers) need to be inferred. 

Although SNP marker genotype imputation is well studied and resulting accuracies are 

sufficiently high, its performance over time (generations) received little attention. In this 

study, accuracy of imputation over time was evaluated under varying simulation scenarios. 

Using fixed reference populations, imputation accuracy decayed by around 0.5% per 

generations. In fact, after 25 generations, the accuracy was only 7% lower than the first 

generation.  When the reference population was updated by either 1% or 5% of the top 

animals in the previous generations, decay of imputation accuracy was substantially 

reduced. These results indicate that low density panels are useful, especially when the 

generational interval between reference and testing population is small. As the generational 

interval increases, the imputation accuracies decay, although not at an alarming rate. 
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Introduction 

Traditionally, phenotypic and pedigree information were used successfully by 

animal breeders to identify superior animals to be used as parents of the next generation. 

Using this information, unprecedented genetic progress was observed in every specie and 

trait of economic interest.  Although very successful, this approach tends to be time 

consuming, costly and requires a sophisticated logistic network for data collection and 

processing. For many traits, especially those expressed late in the life of an animal or 

having low heritability, the success of the classical approach tends to be limited. More 

importantly, the classical approach is based on using the expected additive relationships 

between individuals to identify superior animals conditionally to the collected phenotypic 

data. As such, the expected additive relationship does not represent the true relationship 

between two individuals. Thus, there is no doubt that better estimates of breeding values 

could be obtained if realized, rather than expected, additive relationships are used in 

inferring the EBVs. High density genotyping for SNP markers provides such opportunity. 

Advances in DNA sequencing technology and the increased availability of high density 

single nucleotide polymorphism (SNP) genotyping platforms provided unprecedented 

opportunities to enhance breeding programs in livestock, poultry and plant species and to 

better understand the genetic basis of complex traits. Using this genomic information in a 

breeding program within the so called genomic selection requires the direct or indirect 

estimation of the effect of each SNP on the high-density panel within the framework of 

mixed linear methodology. In fact, several tools are already available to implement this 

step and accuracies of resulting breeding values are 30 to 70% higher than those obtained 

using classical quantitative approaches (Kapell et al. 2012; Pungpapong et al. 2012; Scutari 
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et al. 2013). In Genomic selection (GS) using dense marker maps covering the whole 

genome allows for the effective tracking of all potential QTLs affecting the trait through 

the linkage disequilibrium (LD) with genotyped SNP markers. Genetic merit of all 

genotyped individuals could be then calculated based on the estimation of marker effects 

(Meuwissen et al. 2001) or on the relationship derived from whole-genome dense markers 

(VanRaden 2008). 

However, high accuracies are achieved only when a reasonable number of SNPs 

are genotyped for each individual. Medium and high density SNP panels are often 

sufficient to reach such objective. Unfortunately, their current cost precludes their 

extensive use in some livestock and poultry applications. For example, selection of 

replacement heifers in dairy and beef herds cannot be conducted using high density SNP 

panels and  low-density SNP chips ( e.g. 3K or 7K) may be the only cost effective option 

available (Pryce & Hayes 2012).  

Therefore, low-density and low-cost SNP marker chips could represent a practical 

viable alternative to reduce the genotyping costs without excessive lost in accuracies. 

However, to use these low density panels in genomic breeding values prediction (GEBVs), 

the missing (non-genotyped SNP markers) need to be inferred. This could be accomplished 

using imputing techniques to predict the missing SNP genotypes resulting, thus, in a denser 

coverage. Genotype imputation technology, a cost effective in-silico genotyping of missing 

SNP markers, allows animal breeders to genotype animals with affordable low-density 

panels and predicts the un-typed genotypes from the high-density panel (Johnston. et al. 

2011). The use of low-density marker panels for genomic evaluation based on the standard 

50K chip requires statistical methods for transferring genotype information from 
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individuals genotyped at a higher density. Imputation can be performed to fill in SNP 

genotypes from a higher density reference panel to lower SNP panel genotypes (Weigel et 

al. 2009; Druet et al. 2010; Zhang & Druet 2010; VanRaden et al. 2011). Based on the 

genomic information used to derive the missing genotypes, imputation methods could be 

divided into two categories: 1) pedigree-based imputation, and 2) population-based 

imputation. Pedigree based imputation uses the correlation of genotypes among relatives 

derived from the sharing of genomic segments identical by descent (IBD) within pedigrees 

and linkage information. In contrast, population-based imputation leverages information 

from the correlation among dense markers due to LD. Population-based imputation is 

useful especially for sets of unrelated individuals or for animals without genotyped close 

ancestors (Cheung et al. 2013). Such features make it possible to impute genotypes at un-

typed markers in a high-density panel of markers from genotypes obtained with a low-

density panel. According to the two different categories of genotype imputation methods, 

there are different genotype imputation programs available. fastPHASE (Scheet & 

Stephens 2006), MaCH (Li et al. 2010), Beagle (Browning & Browning 2007) and 

IMPUTE2 (Howie et al. 2009), which were designed specifically for  human  populations, 

using linkage disequilibrium information. AlphaImpute (Hickey et al. 2012), FImpute 

(Sargolzaei. et al. 2011)  and findhap (VanRaden et al. 2011), which were developed for 

animals and plants applications, use pedigree and linkage information. It is worth 

mentioning that FImpute has an option to impute missing genotypes based on population 

and/or pedigree information. For both approaches, accuracy of genotype imputation is 

influenced by several factors; including the number and distribution of markers on the low-

density panel, the number of individuals genotyped using the high-density chip (reference 
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population) and their genetic relationships with the animals to be imputed, allele 

frequencies at the SNP markers, and the local LD between each low-density genotype and 

its surrounding high-density genotypes (Zhang & Druet 2010; Hickey et al. 2012; Huang 

et al. 2012). Several studies (Badke et al. 2014; Chen et al. 2014; Sargolzaei et al. 2014) 

have been already conducted to evaluate the efficiency of SNP genotype imputation under 

different conditions with special emphasis on the accuracy of imputed genotypes and their 

impact on the quality of the genomic predictions. Results in Jersey cattle indicated that if 

a suitable reference population genotyped with a 50K chip is available, genotyping 

selection candidates with a 3K instead of a 50K chip and then imputing the remaining 

genotypes would result in a loss of predictive ability of only 5% (Weigel et al. 2010a). This 

result is assuring and clearly indicates the practical viability of SNP genotype imputation, 

at least when the high and low density genotyped sub-populations belong to the same 

generation or very close together generations.  However, little attention has been paid to 

the imputation accuracy and its potential impact on genomic selection after several cycles 

of selection.  

The objective of this study was to investigate the decay of imputation accuracy over 

time (generations) under several simulation scenarios mimicking actual livestock 

populations.  

Materials and Methods 

Simulation  

Population structure: Genomic data were simulated using QMSim software 

(Sargolzaei & Schenkel 2009) and consisted of 42,000 SNP markers and 1500 QTLs 

distributed across a 30 Chromosomes genome. Simulating genomic data via QMSim 
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software consists of a two-step process as indicated in Figure 3.1. In the first step, a 

historical population is generated. In our case, a population of 600 individuals was 

maintained through random mating for 200 generations followed by an additional 205, 210 

and 220 generations with population size of 5000, 4000 and 3000 respectively, in order to 

create initial LD and establish mutation-drift equilibrium in the historical generations. The 

sex ratio in the historical generations was maintained and the mating system was based on 

random union of gametes, randomly sampled from both the male and female gamete pools.  

In the second step of the simulation, the founder population is generated and labeled 

as generation 0 (G0). In our case, such population was generated from the last historical 

generation, based on 300 males and 2700 females. The mating of these individuals was at 

random and no selection was considered at this step. Then after the recent population, 9 

generations were simulated and later used to evaluate the imputation process. 

Simulation parameters of the most recent generations were kept as close as possible 

to real beef cattle production system. It was assumed one progeny per dam per year, a sex 

ratio of 50% in the progeny; selection was based on EBV with a replacement rate of 50% 

for sires and 20% for dams. Selected sires and dams were randomly mated. A single trait 

with an overall heritability of 0.40 (QTL=0.2 plus polygenic=0.2) and phenotypic variance 

of 1.0 was simulated. The true breeding value of an individual was equal to the sum of the 

QTL additive effects and the polygenic effects. The phenotypes were generated by adding 

random residuals to the true breeding values. The whole simulation process was repeated 

5 times. The parameters of simulation process are summarized in Table 3.1a.  

Simulated genome: The simulated genome was carried out using QMSim and 

consisted of 30 pairs of chromosomes with 100 centi-Morgan (cM) in length each. Each 
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chromosome harbored 1,400 SNP markers that were evenly distributed. Additionally, 50 

randomly distributed QTLs were simulated per chromosome. Both SNP markers and QTLs 

were assumed to be bi-allelic, and no marker loci overlapped with the QTLs. Further, it 

was assumed that both SNP markers and QTLs have the same allele frequency in the 

historical population. Effects of QTLs were sampled from a gamma distribution with shape 

parameter equal to 0.4. Complete linkage disequilibrium (LD) was simulated between 

markers, between QTLs and between markers and QTLs in the first historical population. 

The parameters used for simulating the genome are presented in Table 3.1b.  

Imputation of SNP genotypes  

Simulated genomic data consisted of the SNP marker genotypes of individuals in 

the last 9 generations. It included 24,300 genotyped animals with a panel of 42,000 SNP 

markers (42K) that were distributed equally (2700 genotyped animals) in each generation. 

To investigate the quality of genotype imputation over generations, genotyped animals 

were divided into a reference and testing (imputation) data sets. Depending on the 

simulation scenario, the reference population consisted of: 1) reference population was 

assumed fixed and included only animals in generations 1 and 2; 2) reference population 

included animals in generations 1 and 2 and was updated with an additional 1% of top 

animals in following generations, and 3) reference population included animals in 

generations 1 and 2 and was updated with an additional 5% of top animals in following 

generations. Thus, the reference population included at least 5,400 genotyped animals for 

42K SNP marker panel. For the first scenario (fixed reference population), the testing 

populations were each of the remaining 7 generations (generations 3 to 9). For scenarios 2 

and 3 (updated reference populations), the testing population consisted only of generation 
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9. In the testing populations, only 3,000 evenly distributed SNP markers were kept and the 

remaining 39,000 SNP genotypes were masked to mimic a scenario of low density 

genotyping with a 3K SNP marker panel. A number of imputation scenarios were carried 

out in this study. The primary goal of these imputation scenarios was to evaluate the 

population based imputation from the low density (3K) to high density (42K) over several 

rounds of selections (generations).  

Imputation procedure  

Imputation from low density (3K) to the high density panel (42K) was carried out 

using FImpute v2.2 (Sargolzaei. et al. 2011). FImpute was developed primarily to carry 

out genotype imputation for applications in animals and plants. It uses both population and 

pedigree information, although the latter is not always required. In absence of family 

information for an individual or if no pedigree file is included, FImpute will use only the 

population parameter to carry out the imputation. FImpute uses overlapping windows to 

reconstruct haplotypes and impute simultaneously. Unlike most population imputation 

software, FImpute assumes that all animals are related to some degree and uses these 

overlapping windows to find segments of haplotypes that are consistent between 

individuals having a common ancestor. The windows tend to be large at first in order to 

find segments of haplotypes derived from more recent ancestors. The window searches 

along each chromosome to find large segments consistent with the reference animals. After 

each chromosome has been covered using large windows, the same process is repeated 

numerous times although with smaller and smaller windows each time to capture consistent 

haplotypes from less recent ancestors. When multiple haplotypes are found in a certain 

window size, haplotype frequency in the reference population and high number are used to 
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determine the most likely haplotype, and fills that haplotype into the imputed animal’s 

genotype.  

Accuracy of Imputation 

The original and the imputed genotypes at a given locus were coded 0, 1, and 2 for 

A1A1, A1A2, and A2A2, respectively. Original and imputed genotypes were deemed 

concordant if they matched perfectly. To access the accuracy of the imputation, the overall 

error rate (OER), and the average concordance rate (CR) were calculated over all imputed 

SNP marker genotypes. The OER consisted of calculating the percentage of the non-

concordant genotypes. The CR was calculated based on the number of errors counted at an 

imputed genotype that was equal to 0 when true and imputed genotypes were identical, 1 

if the true genotype was homozygous and the imputed genotype was heterozygous (or vice 

versa), and 2 if true and imputed genotypes were equal to the alternative.  

𝑂𝐸𝑅 = (1 −
# 𝑜𝑓 𝑛𝑜𝑛 − 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑚𝑎𝑠𝑘𝑒𝑡 𝑆𝑁𝑃𝑠 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠
) 𝑥100 

𝐶𝑅 = (1 −
# 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑚𝑎𝑠𝑘𝑒𝑑 𝑆𝑁𝑃𝑠 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠 𝑥 2
) 𝑥100 

 

Additionally, accuracy was dissected into the two types of imputation errors which 

could have different implications in association and selection studies: major allele 

homozygotes to minor allele homozygotes and vice versa (Miss 2), and homozygotes to 

heterozygotes and vice versa (Miss 1). The former type is potentially riskier as it most 

likely alters the allele frequencies or even switches major with minor alleles (Huang et al. 

2009). All imputation accuracy measurements were based on an average of 5 replicates.  
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Results and Discussion 

Imputation scenarios 

 Table 3.2 presents a summary statistic of the imputation parameters for the different 

simulation scenarios with the fixed reference population. In all cases, generations 1 and 2 

were part of the reference population and consisted of 5,400 individuals genotyped with 

the high density SNP panel (42K chip). The testing data set consisted of generations 3 to 

9. Each of these testing generations included 2,700 individuals. Only the low density SNP 

genotypes (3K panel) were kept for these individuals. The remaining 39,000 SNP markers 

were masked and later used in the evaluation of the imputation process. Consequently, the 

missing rate was 92.86% across the genome and in each one of the 30 chromosomes. 

Imputation was conducted separately for each of the seven testing data set (S3-S9).  In 

other words, in each imputation scenario only the reference population (generations 1 and 

2) and the one of the generations 3 to 9 were included in the analysis.   

Imputation Accuracy  

 Imputation accuracy was evaluated based on the overall error rate (OER), the 

average rate of concordance (CR), and Miss and Miss 2, as defined earlier. Table 3.3 

represents the imputation accuracy, when the reference population was fixed (generations 

1 and 2), for the different scenarios and using the OER criteria. All results are based on the 

average of 5 replicates. As expected, the accuracy of imputing the true SNP marker 

genotypes decreased with the increase of the generational interval between the reference 

and testing data sets. This is largely due to the fact that successive mating events lead to a 
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reduction in size of the LD blocks which in turn will reduce the length of common 

haplotypes between progeny and ancestors. Thus, the remaining SNP markers in the low 

density panel will over time lose their predictive ability of predicting the missing genotypes 

due to the decay in LD. The latter plays a crucial role in the efficiency of the imputation 

performance (Sargolzaei et al. 2008). The results of imputation accuracy are in line with 

the results reported by (VanRaden et al. 2013). In their study, only one chromosome was 

simulated. The reference population consisted of 1,112 animals genotyped for the HP panel 

(777K SNPs). Imputation for lower density panels were carried out using FImpute 

program. Imputation accuracy was 99.96, 99.3, 94.7, and 91.1% when HD, 50K, 6K, and 

3K SNP panels were used, respectively.  The imputation from the 3K panel in VanRaden 

et al. (2013) study is similar to our first simulation scenario (S3) where generation 3 was 

imputed based on genotypes in generations 1 and 2. Within these parameters, our 

imputation accuracy (89.4%) was similar to their results (91.1%). The slight difference 

could be due to the size of the reference population, the level of genetic similarity between 

reference and validation sets, and the much large number of progeny per sire in VanRaden 

et al. (2013) study. Based on our results and those observed in VanRaden et al. (2013) 

study, it is clear that imputation of SNP genotype from a very low density panel (3K) leads 

to acceptable results when the reference and training populations are from adjacent 

generations; reflective of high genetic similarity. Furthermore, the imputation accuracy 

increases significantly with the increase of the coverage in the density panel (i.e. from 50K 

to 777K). This is expected because the higher LD in the low density panel and the shorter 

the haplotypes to be imputed. However, when the generational interval between the 

reference and testing population increases, the imputation accuracy decreases as indicated 
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in Figure 3.2. In this study, the imputation accuracy decreased by an average of 0.5% per 

generation for the first 7 generations following the reference population. Thus, even after 

7 generations, the overall rate to decrease of imputation accuracy was only 2.5%. Similar 

trend was observed when imputation accuracy was evaluated using the CR as presented in 

Figure 3.3.  

The proportion of Miss 1, as defined earlier, was always much greater than Miss 2, 

although the latter tends to increase as the generational interval between reference and 

testing populations increases (Figure 3.4). The increase in Miss 2 is not well captured by 

the OER criteria and could have a substantial effect on the genome wide association studies 

and genomic selection. 

With updated reference populations, the decay in imputation accuracy was much 

smaller over generations as presented in Figure 3.5.  In fact, when the reference population 

consisted of generation 1 and 2 plus an additional 1% of the top animals in the following 6 

generations (generations 3 to 8), the imputation accuracy for the testing population 

(generation 9) increased to 87.97%. This increase translates in a 36% reduction in the decay 

of imputation accuracy between generations 3 and 9 compared to the fixed reference 

population scenario. When the updating of the reference population consisted of an 

additional 5% of the animals in generations 3 to 8, the imputation accuracy for the 9th 

generation increased to 88.74%.  

 These results represent a snapshot of imputation accuracy and although they 

highlight a trend, the absolute numerical values depend on a multitude of factors including: 

1) imputation algorithm and software package used (Browning & Browning 2007; Hao et 

al. 2009; Howie et al. 2009; Nothnagel et al. 2009; Ma et al. 2013), 2) population structure 
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and size and genetic similarity between the reference and testing populations (Druet & 

Georges 2010; Weigel et al. 2010b; Zhang & Druet 2010), and 3) density and distribution 

of SNP markers in the low density panel (Druet et al. 2010; Khatkar et al. 2012). Several 

authors (Berry & Kearney 2011; Hoze et al. 2013; Brondum et al. 2014) have reported 

improved imputation accuracy with the increase of the size of the reference population. 

Although it is the general trend that the more animals genotyped with the high density 

panel, the higher the imputation accuracy from 3k to 50k panels, it seems that the accuracy 

tends to reach a certain plateau after a specific proportion of population has been genotyped 

with the high density panel as reported by Wang et al. (2012). Thus, it does not seem that 

the reference population used in this study will have major impact of the results. However, 

it is very likely that the population structure and the genetic relatedness among animals in 

the reference and testing populations have impacted the results.  

Finally, imputation accuracy is largely data dependent. Thus, trying to compare 

results across studies is difficult.  Never the less general trends could be captured as a 

function of population size, level of messiness of genomic data, MAF distributions, and 

levels of LD between markers. In addition, accuracy reported as correct percentage cannot 

be compared across datasets with different MAF distributions. 

Conclusions 

 Genotype imputation provides an attractive and cost effective tool for large scale 

implementation of GWAS and genomic selection in animal and plant applications. Even 

with low density panels with few thousand SNPs, high accuracies are possible, especially 

when the generational interval between reference and testing population is small. As the 

generational interval increases, the imputation accuracies decay, although not at an 
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alarming rate based on the results of this study. However, under different population 

structure the decay in imputation accuracy could be substantial. More importantly, a 

reasonable updating of the reference population will significantly reduce, or even 

eliminate, the decay in imputation accuracy over generations. At least currently, this tends 

to be the general practice in the industry.    
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Table 3.1a. Parameters of the simulated population structure  

Population structure Simulation parameter 

Step1:Historical population(HP)  

Size of historical populations (number of generations) 
600(0) 600(200) 5000(205) 

4000(210) 3000(220) 

Number of males in the last HP generation  300 

Step2:Recent (founder) population  

Selected males form historical population  300 

Selected female form historical population 2700 

Number of generations 100 

Number of offspring per dam 1 

Proportion of male progeny 0.50 

Replacement ratio for males 0.50 

Replacement ratio for females 0.20 

Selection criteria TBV 

BV estimation method BLUP animal model 

Number of generations genotyped 9 

Number of replicates 5 

Overall heritability  0.4 

OTL heritability 0.2 

Phenotype variance  1.0 

EBV: estimated breeding value; BV: breeding value; QTL: quantitative trait loci; TBV: True breeding value 
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Table 3.1b. Parameters of simulated genome 

Genome structure  

Number of chromosomes 30 

Chromosome length  100 cM 

Number of markers (per chromosome) 1,400 

Marker distribution Evenly spaced 

Marker allele frequency in the first HP Equal 

Number of QTL (per chromosome)  50 

QTL distribution Random 

Additive allelic effects for QTL Gamma distribution (shape = 0.40) 

QTL allele frequency in the first HP Equal 
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Table 3.2. Layout of the different simulation scenarios including the reference and 

testing populations. 

 Chromosome SNP chip individuals 

Reference Population  

Generation 1 30 42K 2700 

Generation 2 30 42K 2700 

Testing populations    

Generation 3 (S3)1 30 3K 2700 

Generation 4 (S4)1 30 3K 2700 

Generation 5 (S5)1 30 3K 2700 

Generation 6 (S6)1 30 3K 2700 

Generation 7 (S7)1 30 3K 2700 

Generation 8 (S8)1 30 3K 2700 

Generation 9 (S9)1 30 3K 2700 

1S3-S9: Generations 3 to 9 were used separately as testing populations. 
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Table 3.3. Imputation accuracy from 3K to 42K SNP panels based on overall error rate 

(OER) for each of the 7 testing populations (S3-S9)1 

  Imputation accuracy 

Testing population  Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Average 

Generation 3 (S3)  89.33 89.05 89.57 89.54 89.54 89.41 

Generation 4 (S4)  89.00 88.70 89.23 89.25 89.23 89.08 

Generation 5 (S5)  88.68 88.45 88.91 88.92 88.93 88.78 

Generation 6 (S6)  88.42 88.19 88.72 88.69 88.63 88.53 

Generation 7 (S7)  88.1 87.78 88.34 88.36 88.24 88.16 

Generation 8 (S8)  87.74 87.40 87.95 87.97 87.90 87.79 

Generation 9 (S9)  87.37 87.06 87.59 87.64 87.57 87.45 

1 results are based on 5 replicates 
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Figure 3.1. A schematic representation of the layout of the simulated populations  
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Figure 3.2. Imputation accuracy across generations using the overall rate of errors (ORE) 

criteria and fixed reference population (generations 1 and 2). 
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Figure 3.3. Imputation accuracy across generations using the concordance rate (CR) 

criteria and fixed reference population (generations 1 and 2). 

 

 

 

 

 

 

 

 

 

 

 

 

94.159
93.977

93.804
93.658

93.446
93.231

93.035

90

90.5

91

91.5

92

92.5

93

93.5

94

94.5

95

Im
p

u
ta

ti
o

n
 A

cc
u

ra
cy

 (
C

R
)

Testing generations

 Generation 3

 Generation 4

 Generation 5

Generation 6

Generation 7

Generation 8

Generation 9



50 

 

 

 

Figure 3.4. Percentage of one (Miss1) and two (Miss 2) allele errors across generations 

using fixed reference population (generations 1 and 2) 
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Figure 3.5. Imputation accuracy of overall rate of errors (ORE) in generation 9 using 

different reference populations 
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CHAPTER 4 

ACCURACY OF GENOMIC SELECTION IN PRESENCE OF IMPUTED SNP 

GENOTYPES2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
2 Toghiani, S. and R. Rekaya. To be submitted to Animal. 
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Abstract 

More accurate breeding values are obtained using genomic information. The 

superiority of genomic selection is possible only when high density SNP panels are used 

to track genes and QTLs affecting the trait. Unfortunately, even with the continuous 

decrease in genotyping costs, only a small fraction of the population has been genotyped 

with these high density panels. In order to reduce the cost of genomic selection, it is often 

the case that a larger portion of the population is genotyped with low-density and low-cost 

SNP panels and then imputed a higher density. Accuracy of SNP genotype imputation 

tends to be high when minimum requirements are met. Nevertheless, a certain rate of 

genotype imputation errors is unavoidable. Furthermore, such rate of errors tends to 

increase with the increase of the generational interval between reference and testing 

generations.  Thus, it is reasonable to assume that the accuracy of GEBVs will be affected 

by the imputation errors; especially their cumulative effects over time. To evaluate the 

impact of multi-generational SNP genotypes imputation on the accuracy of GEBVs, a 

simulation was carried out under varying updating of the reference population, distance 

between training and validation sets, and the approach used for the estimation of GEBVs. 

In absence of updating of the reference population, accuracy of GEBVs decays 

substantially in one or two generations with a decrease rate of around 20-25% per 

generation. When the reference population is updated by 1 or 5% every generation, the 

decay in accuracy was only 8 to 11% for 7 generations using the true and imputed 

genotypes. These results indicate that imputed genotypes provide a viable alternative, even 

after several generations, as long the reference and training populations are appropriately 

updated to reflect the genetic change in the population.  
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Introduction 

With the advance of new technologies it is now possible to efficiently genotype 

animals for thousands of single nucleotide polymorphisms (SNPs), generating high density 

markers maps. These high density maps can enable the identification of markers in 

population-wide disequilibrium with quantitative trait loci (QTLs). Using groups of 

markers, the effects of genomic regions can be estimated and combined to form genomic 

estimated breeding values (GEBV) as suggested by Meuwissen et al. (2001) . In livestock 

and poultry, major advances have been realized in the last few years, and genomic selection 

is becoming a routine technique, mainly due to the decreasing costs of genotyping for high 

density SNP markers panels. Furthermore, several simulation and real data based studies 

have shown that high accuracies for GEBV can be obtained in the absence of large numbers 

of progeny records (Meuwissen et al. 2001; Calus & Veerkamp 2007; Muir 2007). As work 

in developing commercial genotyping platforms continues, marker maps of increasing 

density will become available which in presence of appropriate size training data sets will 

further increase the accuracy of genomic selection.  

The classical approach for estimation of breeding values is based on using the 

expected additive relationships between individuals to identify superior animals 

conditionally to the collected phenotypic data. As such, the expected additive relationship 

does not represent the true relationship between two individuals. Thus, there is no doubt 

that better estimates of breeding values could be obtained if realized, rather than expected, 

additive relationships are used in inferring the EBVs. High density genotyping for SNP 

markers provides such opportunity.  
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Using this genomic information in a breeding program requires the direct or indirect 

estimation of the effect of each SNP. Several analytical approaches have been proposed for 

genome-based prediction of genetic values. They main difference stems from the 

assumptions about the marker effects (Meuwissen et al. 2001; de Los Campos et al. 2009; 

Habier et al. 2011). Genomic selection is currently implemented either through a multiple 

regression (MR) or variance component (VC) based models. MR approach consists in a 

multiple step procedure where SNP effects are first estimated in a training population and 

then validated in separate data set. Several procedures including single marker analyses 

(Kim et al. 2009; Bohossian et al. 2014), ridge regression (Endelman 2011; Ogutu et al. 

2012), non and semi parametric methods (Bennewitz et al. 2009; Perez-Rodriguez et al. 

2012), and Bayesian approaches (Hayashi & Iwata 2013; Fernando et al. 2014) have been 

developed and used to implement the MR. Although these methods have different 

statistical and biological assumptions regarding the data generating process, they tend to 

yield similar results in the majority of the cases and differences are largely due to the 

genetic architecture of the trait, the genetic relationships between individuals in the sample, 

and the chosen prior information. 

Accuracy of breeding values is 30 to 70% higher using genomic information. 

However, such superiority of genomic selection is possible only when a reasonable number 

of SNPs are genotyped for each individual. Unfortunately, high density SNP panels are 

costly which precludes their extensive use. Even with the continuous decrease in 

genotyping cost, it is likely that in the near future, marker genotype data will be sparse and 

only collected in limited number of animals.  
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A lot of effort has been placed in calculating genotype probabilities for non-typed 

animals conditionally on the genotype of typed animals. Iterative peeling, Markov chain 

Monte Carlo techniques, and regression on gene content (Gengler et al. 2007) are some of 

the common techniques being used with varying results depending on the complexity of 

the pedigree and the amount of available information. These genotype imputation methods 

have become a standard tool in the livestock industry in order to reduce genotyping costs. 

In general, accuracies of SNP genotype imputation tend to be high when minimum 

requirements (reasonable size of reference population, numbers of SNPs in low and high 

density, genetic similarity between reference and testing populations) are met. 

Nevertheless, a certain rate of genotype imputation errors is unavoidable. Furthermore, 

such rate of errors tends to increase with the increase of the generational interval between 

reference and testing generations (Toghiani and Rekaya, 2014).  

In presence of imputed SNP genotypes, it is reasonable to assume that the accuracy 

of GEBV will depend on the error rate of the imputation in addition to the method used to 

estimate marker effects (Luan et al. 2009), the heritability of the trait (Calus & Veerkamp 

2007); and (Habier et al. 2007), the population structure (Hayes et al. 2009; Habier et al. 

2010), and the size of the reference population (VanRaden et al. 2009). Furthermore, the 

impact of genotype imputation errors could be different between the different methods used 

in genomic selection (RR vs. VC). 

The objective of this study is to evaluate the impact of multi-generational SNP 

genotypes imputation on the accuracy of GEBV obtained using either regression or 

variance based methods.  
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Material and Methods 

Simulation: 

Population structure: Genomic data were simulated using QMSim software 

(Sargolzaei & Schenkel 2009) and consisted of 42,000 SNP markers and 1500 QTLs 

distributed across a 30 Chromosomes genome as described by Toghiani and Rekaya 

(2014). The founder population (G0) consisted of 2,700 individuals generated through a 

random mating of 300 males and 2,700 females. Following the G0, 9 generations (1-9) 

were generated. It was assumed one progeny per dam per year, a sex ratio of 50% in the 

progeny, and selection was based on EBV with a replacement rate of 50% for sires and 

20% for dams. Selected sires and dams were randomly mated. A single trait with an overall 

heritability of 0.40 and phenotypic variance equal to 1.0 was simulated. The true breeding 

value of an individual was set equal to the sum of the QTL additive effects and polygenic 

effects. The phenotypes were generated by adding random residuals to the true breeding 

values. A detailed description of the simulation process of the population structure is 

presented in Table 4.1.  

Simulated genome: The simulated genome consisted of 30 pairs of chromosomes 

with 100 centi-Morgan (cM) in length each. Each chromosome harbored 1,400 SNP 

markers that were evenly distributed. Additionally, 50 randomly distributed QTLs were 

simulated per chromosome. Both SNP markers and QTLs were assumed to be bi-allelic, 

and no marker loci overlapped with the QTLs. Effects of QTLs were sampled from a 

gamma distribution with shape parameter equal to 0.4. Complete linkage disequilibrium 

(LD) was simulated between markers, between QTLs and between markers and QTLs in 
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the first historical population. The parameters used for simulating the genome are presented 

in Table 4.1.  

Imputation of SNP genotypes: Simulated genomic data consisted of the SNP marker 

genotypes of individuals in the last 9 generations. It included 24,300 genotyped animals 

with a panel of 42,000 SNP markers (42K) that were distributed equally (2700 genotyped 

animals) in each generation. To investigate the effects of genotype imputation over 

generations on the accuracy of GEBVs estimation, the simulated data was divided into 

reference and testing populations. Three scenarios were evaluated: 1) reference population 

was assumed fixed and included only animals in generations 1 and 2; 2) reference 

population included animals in generations 1 and 2 and was updated with an additional 1% 

of top animals in following generations, and 3) reference population included animals in 

generations 1 and 2 and was updated with an additional 5% of top animals in following 

generations. SNP genotypes of testing populations (generations 3 to 9) were imputed from 

the low density panel (3K SNPs) to the high density panel (42K SNPs) using the FImpute 

(Sargolzaei et al. 2014) as described by Toghiani and Rekaya (2014).  

Estimation of GEBVs: In order to evaluate the effect of multigenerational 

imputation of SNP marker genotypes on the accuracy of genomic selection, GEBVs  were 

estimated using true and  imputed genotyped via regression based model (BayesA) and 

variance component based approach (GBLUP). For BayesA, the following model was 

used:  

𝑦𝑖𝑗 = 𝜇 + ∑ 𝑋𝑖𝑗𝑔𝑖 + 𝑒𝑖
𝑝
𝑗=1  [1] 
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where yij is the true BV of animal i in the reference (training) population,  is the overall 

mean, ikX is the genotype for animal i at locus k (k=1,2,..,p), gk is the kth SNP effect, and 

ije is the residual term.  

In matrix notation, the model in [1] can be rewritten as: 

𝒚 = 𝜇𝟏𝑛 + 𝑿𝒈 + 𝑒  [2] 

where y is the vector of observations , g is the vector of SNP effects; X is the matrix of 

SNP genotypes, e is the vector of residual terms, and n is the number of animals in the 

training population. A hierarchical Bayesian implementation was adopted. The first stage 

of the hierarchy consisted of the conditional distribution of the data given the parameters 

of the model and it was assumed to be normal: 
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In the second stage, the following priors will be assumed for the model 
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Finally, prior distributions were specified for the variance of the SNP effects. A 

conjugate prior was assumed. Thus, 

𝜎𝑖
2~𝜒−2(𝜐𝑖, 𝑠𝑖

2) 
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 The hyper-parameters 𝜐0, 𝜐𝑖, 𝑠0
2, 𝑎𝑛𝑑 𝑠𝑖

2 were set equal to 2, 0.6, 4, and 1.41e-5, 

respectively. The implementation of the proposed hierarchical model is straightforward as 

all conditional distributions are in closed form being normal for the position parameters 

and scaled inverted Chi square for the dispersion components.   

When GBLUP was used, the following model was implemented to estimate GEBVs. 

𝒚 = 𝜇𝟏𝑛 + 𝒁𝒖 + 𝒆  [3] 

where u is the vector of genomic breeding values and Z is a known incidence matrix with 

the appropriate dimensions that relates the phenotype to the breeding values. Everything 

else is as defined before. It is worth mentioning that the vector u includes training and 

validation animals. Further, it was assumed that: 
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The hyper-parameters 𝜐0, 𝜐𝑢, 𝑠0
2, 𝑎𝑛𝑑 𝑠𝑢

2 were set equal to 2, 0.6, 2, and 0.4, respectively. 

G is the matrix of genomic (realized) additive relationship between animals in the training 

and validation sets. It was computed based on the observed SNP genotypes (coded 0, 1 and 

2) using the following formulae (VanRaden 2008). 
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𝑮 = 𝑾′𝑾/[2 ∑ 𝑝𝑖

𝑝

𝑖=1

(1 − 𝑝𝑖)] 

where W is the matrix Z of observed SNP genotypes adjusted by the minor allele 

frequencies. 

The implementation of the model in equation [3] is identical to the classical mixed 

linear model, except that the average additive relationship matrix (A) is replaced by G.  For 

both models, a full Bayesian implementation was adopted. A single chain of 100,000 

iterations was implemented where the first 20,000 rounds were discarded as burn-in period.  

Using GBLUP, the GEBVs were directly obtained after solving the system of equations. 

Using BayesA, the estimated GEBV for each animal was computed as the sum (over all 

SNPs) of the product between each SNP effects and its associated genotypes 

k

p

k
iki gxGEBV

^

1



 

Accuracy was calculated based on the correlation between true BVs and GEBVs and was 

averaged over 5 replicates. 

Results and Discussions 

Figure 4.1 presents the accuracies of estimated genomic breeding values of the 

validation animals when the training population was fixed (generations 1 and 2) using the 

true and imputed SNP genotypes implemented via the BayesA method. In all cases, the 

accuracy was, as expected, higher using the true SNP genotypes. Such superiority ranged 

from 12% for generation 3 to 15% for generation 7. However, using either the true or the 

imputed genotypes, the accuracy decayed with the increase of the generational interval 
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between the training and validation populations. In fact, the accuracy dropped from 0.60 

to 0.26 and 0.52 to 0.22 between generations 3 and 9 using the true and imputed SNP 

genotypes, respectively. These results indicate that the decrease of accuracy is mainly due 

to the increase in genetic dissimilarity (distance) between training and validation sets, 

rather than the accuracy of the SNP genotypes. However, it is worth mentioning that in this 

study, the imputation accuracies (Table 4.2) were in the lower range of reported results of 

imputation performance. When the training population consisted of generations 1 and 2 

and was updated with either 1% or 5% of top animals in following generations, the 

accuracy of estimated genomic breeding values in the 9th generation was improved 

substantially (Figure 4.2). In fact, with 1% updating of the training population, the accuracy 

increased to 0.46 and 0.41 from 0.26 and 0.22 using the true and imputed genotypes, 

respectively. It increased to 0.54 and 0.46 when the training population was updated with 

an additional 5% of top animals in generations 3 to 8. These results indicate that the decay 

in accuracy was only 8% and 11% between generations 3 and 9 when a 5% updating 

scheme is adopted using the true and imputed genotypes, respectively. The small difference 

(8 vs 11%) again indicates that with reasonable imputation accuracies, true and imputed 

genotypes perform similarly, as long the training population is appropriately updated to 

reflect the genetic change in the population. Although these results show the importance of 

the size of the training population on the accuracies of GEBV as it has been shown in 

several other studies (Meuwissen et al. 2001; Goddard 2009), they highlight more 

importantly the effect of the genetic architecture of the trait and the LD between markers 

and QTLs. LD is primarily due to selection and recent drift rather than historic mutations 

and consequently the accuracy of unrelated individuals tend to be low. This will be the case 
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if selected candidates descend from a population having an LD structure that is different 

from that in the training data.  

 Comparing both estimation methods, it does not seem to be major difference in 

accuracy using BayesA or GBLUP approach (Figure 4.3). In fact, using either the true or 

imputed SNP genotypes, the accuracies are basically the same between the two methods. 

Theoretically one could postulate the possibility of difference between the two methods in 

their sensitivity of errors in the imputed genotypes due the manner in which they estimate 

SNP effects. However, that was not supported at least by the results of the present study. 

Conclusions 

 Imputed SNP genotypes are being used routine by different segments of livestock 

industry in the implementation of genomic selections. Although several specific variations 

are used in each case, it seems that even when imputation is conducted base on low density 

panel of few thousand SNPs, the accuracy of imputation tends to be acceptable as long as 

the reference population is of sufficient size. More importantly, the use of these imputed 

genotypes in genomic selection will have little to no effects on the accuracy of estimated 

GEBVs as long a reasonable updating of the training population is implemented. This result 

holds true even after a number of selection rounds.  
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Table 4.1. Simulation parameters of population structure and genomic data 

Population structure Information about simulation 

Step1:Historical population (HP)  

Size of historical generation (number of 

generations) 
600(0) 600(200) 5000(205) 4000(210) 3000(220) 

Number of males in the last generation of HP 300 

Step2:Recent (founder) population  

Selecting base male form historical population  300 

Selecting base female form historical population 2700 

Number of generations genotyped 9 

Number of replicates 5 

Overall heritability  0.4 

Phenotype variance  1.0 

Genomic structure  

Number of chromosomes 30 

Chromosome length  100 cM 

Number of markers (per chromosome) 1400 

Marker distribution Evenly spaced 

Number of QTL(per chromosome)  50 

QTL distribution Random 

EBV: estimated breeding value; BV: breeding value; QTL: quantitative trait loci; TBV: True breeding value;  
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Table 4.2. Imputation accuracy from 3K to 42K SNP panels for each of the 7 testing 

populations (S3-S9)1 

  Imputation accuracy 

Testing population  Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Average 

Generation 3 (S3)  89.33 89.05 89.57 89.54 89.54 89.41 

Generation 4 (S4)  89.00 88.70 89.23 89.25 89.23 89.08 

Generation 5 (S5)  88.68 88.45 88.91 88.92 88.93 88.78 

Generation 6 (S6)  88.42 88.19 88.72 88.69 88.63 88.53 

Generation 7 (S7)  88.1 87.78 88.34 88.36 88.24 88.16 

Generation 8 (S8)  87.74 87.40 87.95 87.97 87.90 87.79 

Generation 9 (S9)  87.37 87.06 87.59 87.64 87.57 87.45 

1 results are based on 5 replicates 
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Figure 4.1. Accuracy of GEBVs with true and imputed SNP genotyped based on a fixed reference 

population and using BayesA method.  
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Figure 4.2. Accuracy of GEBV in generation 9 using true and imputed SNP genotypes and different 

training populations 
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Figure 4.3. Accuracy of GEBVs in generation 5 with the true and imputed SNP genotypes using 

BayesA and GBLUP methods 
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CHAPTER 5 

CONCLUSIONS 

  Genomic selection is fast becoming a standard tool in several livestock 

improvement programs. Its superior to classical breeding values estimation methods is 

unquestionable. However, these performances are possible only when a certain set of 

conditions are met. One of these conditions is the availability of dense SNP marker maps. 

In spite of the continuous decrease in genotyping cost, it remains too expensive for large 

scale use in several segments of the livestock industry. To balance these two conflicting 

requirements, imputation of un-typed SNP genotypes in low-density and low-cost SNP 

panels has become an acceptable option. Genotype imputation provides an attractive and 

cost effective tool for large scale implementation of GWAS and genomic selection in 

animal and plant applications. Even with low density panels with few thousand SNPs, high 

accuracies are possible, especially when the generational interval between reference and 

testing population is small. As the generational interval increases, the imputation 

accuracies decay, although not at an alarming rate based on the results of this study. 

However, under different population structure, the decay in imputation accuracy could be 

substantial. More importantly, a reasonable updating of the reference population will 

significantly reduce, or even eliminate, the decay in imputation accuracy over generations.  

  More importantly, the use of these imputed genotypes in genomic selection will 

have little to no effects on the accuracy of estimated GEBVs as long a reasonable updating 

of the training population is implemented. This result holds true even after several round 
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of selection. These results validate to large extend current industry practice of genomic 

selection. However, this will hold true only with a comprehensive updating of reference 

and training populations with new high density genotyped animals. 
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