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1. Introduction

1.1 Background and motivation

According to U. S. President John F. Kennedy (19&@pecial study by the Joint
Atomic Energy Committee of Congress pointed uprésponsibility of U.S. school
mathematical and scientific education:

The teaching of the physical sciences and mathesatiour secondary schools has
declined; about half of those with talents in thiéskels who graduate from high
school are either unable or uninterested in gangptlege; and of the half who enter
college, scarcely 40 percent graduate. The tas&versing these disturbing trends is
in large measure up to our public schools and teachers. It is up to our teachers'
colleges and their graduates. (para. 5)

Middleton and Spanias (1999) pointed out that

National assessment data from the 1980s (Carp&ebjtt, Kepner, Lindquist, &
Reys, 1981; Dossey, Mullis, Lindquist, & Chambdr888) have indicated that
American children tend to enjoy mathematics ingheary grades but that this level
of enjoyment tends to fall dramatically when chéidiprogress into and through high
school. In addition, although students feel thathrmatics is important, the number
of students who want to take more mathematicshn@as declining steadily
(Dossey et al., 1988). These statistics seem atgrmhen coupled with the fact that
children do not possess the mathematical knowlédaiethey will need to function
smoothly in our increasingly technological socid€py.65)

“In the 1960s, we sought to motivate the mathersaiicthe 1990s, we seek to
motivate the students” (Foley, 1998, p.87).

Encouragingly, “[e]very child is now promised alegle education. ... A new surge
of students is entering higher education expedtnglty to prepare them in their
discipline and provide the background for futureeeas.” (MAA, 2001, p. 1). Venezia,

Kirst, and Antonio (2003) cited the national st@tishat 88% of 8th graders expect to



participate in some form of postsecondary educatiod approximately 70% of high
school graduates actually do go to college withia years of graduating. They also
reported that 88% of all students (cutting acraessat and ethnic lines) surveyed for the
Stanford University’s Bridge Project intend to atlesome form of postsecondary
education.

Unfortunately, most high schools have not met tbdents’ heightened educational
aspirations and are not doing a good job in pregastudents well for college and the
labor market. The content of the last 20 years ath@matics has been ambiguous, and as
a consequence, a sizable percentage of studenlisagea from the so called “shopping
mall high school” (Chazan, 2008, p. 20) with norgegaic training in mathematics. In
addition, Venezia, Kirst, and Antonio (2003) rearthat many students do not have a
good sense of what is expected of them in collagd,most educators do not know how
to help students gain an understanding of thoselatds. The courses and tests students
are taking to graduate from high school and attai@ége have little to do with the
academic expectations that students face in tinsiryear in college. A study conducted
for Achieve, Inc. (2005) showed that substantialyartions of high school graduates
identify gaps between the education they receimddgh school and the overall skills,
abilities, and work habits that are expected ofrtlteday in college and in the workforce.
Additionally, 42% college students feel that thare some gaps in their mathematics
preparation (13% large gaps), and 300 intervievadiége instructors (with margin of
error £5.6%) and 400 interviewed employers (withrgmaof error +4.9%) estimate,
respectively, that 42% and 45% of recent high sthaaluates are not adequately

prepared for the skills and abilities they needdwance beyond entry level jobs. The



survey also provides data evidence that, in contoathe opinion that high school
students would resist changes that would force tteework harder, those current high
school graduates, knowing what they know now, bay tvould have worked harder.
Like their college instructors and employers, thioiggn school graduates say higher
expectations, more rigorous curricula and tougbguirements for high school
graduation would leave them better prepared foreaéchallenges they are now facing
in college and the work world.

The NCTMCurriculum and Evaluation Standar@$989) had “an overarching
theme of ‘Mathematics as Reasoning” (Foley, 19287) as evidence by the
expectation that “high-school students should lednout ... mathematical systems and
their structural characteristics, ... difference dmmes, the complex number system,
elementary theorems of groups and fields, and diver@ and purpose of axiomatic
systems” (p. 87). Also according to Foley (1998 American Mathematical
Association of Two-Year College€rossroads in Mathemati¢4995) contains similar
calls for the content of college-preparatory matages.

From the angle of the education of mathematicsweac Ferrini-Mundy and Findell
(2001) expressed the same concern:

For secondary mathematics teachers, it is iroradt; #xcept for occasional concepts

that might be called upon in calculus, the entingrfyears of an undergraduate

mathematics major address content that is, onutface, unrelated to the topics of
the high school curriculum. ... More substantialhe kinds of integration of
mathematical ideas and connections that are negaada@aching a coherent

secondary program are unlikely to be obvious tdestts on the basis of their
undergraduate program. (p. 33)

The issues identified above call for effective instion in mathematics classrooms

to help students see connections in mathematicdelpdhem build bridges as they



make different transitions in mathematics learninghis thesis | will concentrate on this
idea by introducing some connections between higbd algebra and abstract algebra
to help high school teachers and students seeotireections between them. | hope to
illustrate challenging but doable tasks to engagk chool students in algebra and
mathematical thinking. To be clear, by saying “sktehere in this thesis, | mean an
activity or a problem on which students may be dskework or the directly related raw
material from which teachers could construct a igdask for students. For instance, to
find the quantitative pattern between the sides @gular polygon and the rotations of
symmetry (c.f., Chapter 4.2) could be a task, ajive a reason why a polynomial can be
factored or not in a certain context could alsmbe (c.f., Chapter 3 and 5.3). Some of
the questions listed in next section (Chapter do2)d also be developed into classroom
activities, such as to develop a way to enumehaedtional numbers (c.f., Question 21),
to find how many ways are there to label an irragtriangle using the different letters of
the alphabet (c.f., Question 12), to use FermatitelLTheorem to create your own
coding method for integers (c.f., Question 11)xheck whether a big number is a perfect
square (c.f., Question 4), to show whether 0.9991 (&f., Question 14), and to find out
a few differences between the rational numberstlaadeal numbers (c.f., Question 25).
Henningsen and Stein (1997) classify the cognifiemands of mathematical tasks
into: (i) memorization; (ii) the use of formuladgarithms, or procedures without
connection to concepts, understanding, or mealiighe use of formulas, algorithms,

or procedures with connection to concepts, undedstg, or meaning; (iv) and cognitive



activity that can be characterized as “doing mattes”, including complex
mathematical thinking and reasoning activities sagimaking and testing conjectures,
framing problems, and looking for patterns. The ta® ((iii) and (iv)) are considered as
placing high-level demands on students, and thes t@scluding the relevant raw
material) | explore in this thesis fall into thessegories.

High-level thinking involves being able to conneatltiple ideas and stretch ideas
beyond the immediate context, which is challengmgtudents. Students who think
mathematically with the help of a teacher or peeay be able to confront a problem
where the solution path is not immediately obviand figure out what to do (perhaps in
more advanced way). They are also able to usemeasto decide if their conjecture or
solution is sensible or not. The tasks | presetitigthesis are meant to foster students’
disposition of curiosity and perseverance towaapéiully, deep and significant)
mathematics.

Another of my motivations for pursing this thegipit is the general opinion of
students enrolled in abstract algebra coursestikas is little or no connection between
abstract algebra and high school algebra. For elearastudent posed the following
guestion about abstract algebra on Yahoo! Ansvf89) “...If | did average on algebra
in my high school, how well will | be able to und&nd this?”. The main answers to that
guestion on line were: (1) “There's no comparisetween high school algebra and
abstract algebra. The former is mostly just comjpariaand graphs. The latter is algebraic

structures and proofs about them.” (2) “You'll pably want to be fairly well grounded



in discrete math, set theory, and number theorgredbking abstract algebra on. It's
almost completely unrelated to high school algesoago into it expecting that kind of
math.” (3) “[T]his killed my university degree inath, but looking back, the error | made
was to make it "math"” (like calculus; this and thggals this). It's more logic than

mathematics.”

Abstract algebra can be “a course of an encyclapeature dealing critically with
the field of elementary mathematics from the higstandpoint” (International
Commission on the Teaching of Mathematics, 19111Bp14, as cited in Ferrini-Mundy
& Findell 2001, p. 32). In mathematics educatidrsteact algebra courses can help pre-
service and in-service teachers refine and expaddienand high school algebra
concepts and can provide experiences in posingigneghat encourage student-directed
learning in the exploration of the mathematics icutum. Some textbooks (e.g., Shifrin,
1996) have been written with this purpose in miligebra courses should motivate
students to ask questions such as “What algebe#tiog is given?”, “If | change the
parameters or initial conditions, how will thatextt the problem and its framework and
solution?”, or “How do these algebraic and geometleas mesh?”. | believe drawing
connections from abstract algebra to high schamlak can help enhance students’
algebraic understanding or even mathematical thinks mathematics learners and “help
them become better mathematical doers and thinkelexiningsen & Stein, 1997, p.
524).

The National Council of Teachers of Mathematics TG (2000) encourages

making connections, noting that



Instructional programs from prekindergarten throggide 12 should enable all

students to—

* Recognize and use connections among mathemumtezed

» Understand how mathematical ideas interconnestbaiid on one another to
produce a coherent whole

* Recognize and apply mathematics in contexts deitsi mathematic§. 354)

Some teachers do realize that they have “comelteve that the act of building
connections and relationships is at the heart ahemaatical proficiency” (Boaler &

Humphreys, 2005, p. 11). Boaler and Humphreys (R60Bmented that

‘[i]f curriculum and instruction focus on mathentias a discipline of connected
ideas, students learn to expect mathematical idelas related’ (NCTM, 2000, p.
275). As students make these connections and geuelterstanding of these
relationships for themselves, the fabric of theatnematical proficiency becomes
ever more flexible and sturdy. (p. 11)

“Teaching mathematical topics as disconnectediestibr as a sequence of ‘tricks of
the day’, may lead to high quiz scores at the drileweek but rarely will lead to long-
term understanding (Steen 1999). Rather, in-degloeations of the relationships
among representations and ideas help studentsogeaehore reliable and sustainable
capacity to use, transfer, and understand matheah&deas and procedures” (Martin,
2007, p. 26)Thus, effective mathematics teachers actively eagagdents in tasks that
enable them to see mathematics as a coherent andated endeavor rather than as a
series of disconnected rules and procedures thgtttust memorize (Martin, 2007). A
further perspective expressed by Lang (1985a) hats t

In most school books, the topics are usually tekate way which | find incoherent.

They pile up one little thing on another, with ghbwing the great lines of thought

in which technique can be inserted, so that it bexboth appealing and meaningful.

They don’t show the great mathematical lines, sintid musical lines in a great

piece of music. And it's a great pity, becausedothathematics is a lively and
beautiful activity. (p. xi)



Again, my goal in writing this thesis is to illunate some connections between
abstract algebra and high school algebra, and #yel wrganize my thesis also respects
that mathematics should be viewed from a connesmedexploratory standpoint. All the
abstract algebra books | have seen (e.g., Shiféia6; Birkhoff & MacLane, 1941) are
written in a quite mathematically sophisticatedestgnding to present concepts and
proofs in an articulate, but somewhat succincgnogs, elegant way, sometime even
leaving parts of some arguments for the studefill in. To make the illumination as
plain as | can, in this thesis | first elaboratddea from abstract algebra and then
identify related mathematical ideas with which hggihool students may be able to
grapple. In some cases | start with a context witich high school students are familiar
and then talk about the abstract algebra ideadeshta it. These connections and the
tasks embedded in them involve analyzing strucfutesling with functions, making
choices about representation, and manipulatingesspyns, all of which are intrinsic to
mathematics, and particularly to algebra (as aiaplemguage itself having its own set of
grammatical rules that are not intuitive but mustdarned and practiced (MacGregor &
Price, 1999)). Although this thesis mainly invohagebra knowledge, sometimes | also
use the ideas from calculus and geometry, becactmesider calculus as "algebra with
limits” and geometry as “algebra with figures.”ivg the proofs for most theorems in a
relatively plain and narrative way, which is exgetto be easier for high school students

to follow than reading those succinct ones writtgrhigh-achieving mathematicians.



1.2 Can we answer these questions for our students?

The following list of questions that high schoald#nts might ask are answered in
this thesis, and this thesis also provides a doe¢tvith some possible questions or tasks
as well as an awareness of some aesthetic aspectgleematics) for teachers to
challenge the students to think of mathematicsbrgger picture.

Questions students might ask include:

(1) What is a function? (Throughout this thesis, esgdcCh.2 (def. in 2.1))

(2) Where are exponential and logarithmic functiongl@s@.2)

(3) Why do complex roots of a polynomial with real da@énts come in conjugate pairs?
(2.3)

(4) How can | check whether a very big number is agoergquare? (2.4)

(5) How do you know34x" +16¢ - 8= 103= (has no integer solution? (2.4)?

(6) You said a yo-yo and the train of a peacock coeldnathematical metaphors. What
are they? (2.4)

(7) 1 keep forgetting the binomial formula. Is therevay to help me memorize it or
develop it by myself? (3)

(8) What does it mean to solve an equation? (2.1;33; 5.

(9) How do you know these equatio¥’ -27X° -6= C X’ -32=0,
X"+’ + X+ x+1=0 have no rational solutions fof? (3: 5.3)

(10) You said if we can factor a polynomiél(x) [into QX ] then we can also factor

F(X+1) [into AX . why? (3)
(11) I always wonder how mathematics is useful in diex. i heard that Fermat’s Little

Theorem is the basis of modern cryptography. Aretriember when we learned the



binomial theorem, you said we can use it and mastieal induction and the
meaning of divisibility to prove Fermat’s Little €brem. How? And how is it
related to coding? (3)

(12) How many ways are there to label a triangle usnegdifferent letters of the
alphabet? (4.1)

(13) If | rotate a square, how many different ways &exe to take it back to its original
position? What about a pentagon or a cube? (432; 4.

(14) Does 0.999... really equal 1? Then why does my callcushow

(0.999999999)= 0.9999999;, (3: 5.2; 6.4)

(15) Can you prove there are an infinite number of ridtaumbers? (5.1)

(16) Why is the number of even or odd numbers not Hath® natural numbers? (5.1)

(17) Are there infinitely many prime numbers? (5.1) Hiswhe concept of prime
numbers useful? (3)

(18) I believe that every positive integer greater thaa can be factored into positive
prime factors. But is there only one unique wafatdor? (5.1)

(19) What is a rational number? (5.2; 5.4) Particulaniat is 1h? (5.2; 1.3)

(20) Are there as many rational numbers as natural ntsfl{g.1)

(21) Now | see why there are as many rational numbera@sal numbers, because we
can enumerate the rational numbers by finding atedigt them each one
corresponding to a different natural number. Caremgmerate the real numbers
like that? (5.1; 5.3)

(22) How do we know there is a one-to-one correspondbateeen the real numbers

and the points on a straight line? (5.2)

10



(23) What is the previous (or next) number before (terafl/2 [in a specific number
system]? (5.2)

(24) How do we add (or multiply) two (positive) infinitiecimals? (5.2)

(25) What differentiates the real numbers from rationahbers? Is it that a rational
number can be written in terms of a pair of integehereas an irrational number
cannot? (5.2; 5.3; 6.3)

(26) Is the X" in a polynomial a “variable” or an “unknown”? &.

x* -25
=~(x+5)
(27) Why do you say that for this equatio®~ X we may or may not need

the "as long aX does not equal 5" part? (5.3)

(28) What is an algebraic number? Are algebraic numéeusnerable? (5.3)

(29) What is meant by/E ? Is it a real number? How would you describe it®vidlo you
know V2 Is not equal to 2? (5.2; 5.3)

(30) Is V2 a rational number? / Is there any rational nurmlhxaiﬂlrsatisfies/E ?(5.3;6.3)

(31) If there is not a rational number that satisﬁé, is there a number in some other

number system that will satisf%E ?(5.2;6.4)

(32) Are algebra and geometry related to each otherih{yng 5.4)
(33) I know how to construct a segment of Ieng(ﬁ , but then can | use a straightedge

and compass to construct a segment of Ieri/gil? (6.4)

(34) We are toldL# 2 [where 2=1+1 as natural numbers]. Is it reallg@Why is that
important? (6.4)

(35) Why can we not divide a number by 0? What abou? (804)

(36) Why does a negative times a negative equal a pe3i(b.2; 6.4)

11



1.3 Algebraic structure

Rickart (1996) addressed two aspects of teachiddemrning school algebra: “the
degree of understanding of the background subjattemleading up to the immediate
subject of interest, and ... the formalism associati¢l the subject” (p. 293). However,
sometimes the teaching is reduced to nothing nine teaching the formalism;
mastering some formal algebraic operations witlasgbciation with the concept of an
algebraic system somehow replaces the desiredralgebcept with the relatively
superficial structure of the associated formal laage. When a student’s understanding
or conception of the underlying algebraic strucisrimadequate it will be problematic
for him/her to deal with the more advanced topicenathematics (Rickart, 1996).
“Teachers of mathematics in Grades 11-14 must statedt algebraic groups, rings,
fields, and the associated theory. ... in keepintpwie NCTM curriculum standards for
college-intending students, high-school teacheeslite be able to convey such
understanding to their upper level students” (Fol®P8, p. 88). “The teacher’s objective
in algebra should include a constant awarenedseadésirability of helping the student to
supply or develop the basic understanding of aetablysystem” (Rickart, 1996, p. 294).
Therefore, in this section, | elaborate on thepbagure in terms of some basic algebraic
structure concepts (e.g., ring, field, group) istedct algebra. These concepts appear
throughout this thesis and are compatible or baxypdith the concepts of functions (e.g.,
isomorphism). In particular, ring and field theawgals with solutions to polynomial
equations in a precise and systematic way.

Therefore, at first, | consider the following nibasic algebraic laws (favery

element in the given set):

12



(1)  Additive Commutative Law

(2) Additive Associative Law

3) Multiplicative Associative Law

(4) Additive Identity Existence

(5) Multiplicative Identity Existence

(6) Multiplicative Commutative Law

(7) Distributive law

(8) Additive Inverse Existence

(9) Multiplicative Inverse Existence

Integers (denoted by¥ ) can be added and multiplied, subject to the &rght algebraic
laws. All high school students know the fact thairaeger plus its inverse is 0. O here is

the additive identity ofZ , satisfying Law (4) above. And we can find anotimeger for

an integer such that the sum of them equals Zeishows Law (8) foZ . The product

of 1 and any integer is still the integer itselfiiF means 1 is the multiplicative identity of

Z , satisfying Law (5) above. But nobody can find thieo integer for an integer (except

1 and -1) such that the product of them equal®lintegers do not have Law (9).
However, we all know rational numbeg, in terms ofm with m,nJ N (natural
n

numbers), have not only the first eight algebraigd, but also have the ninth law. So
now we see there is some difference betweand Q with the operations + and x.

Here we define atructure as a set of elements with respect to certain dpeca)
satisfying some rules or axioms. We call a setushbbers or even objects with operations

+ and x aing if they have the laws (3)(5), (7), and (8), and call a ring “commutative
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ring” if it also satisfies Law (6), and call a coratative ring dield if Law (9) also works
for every nonzero element in the set of numbeisbgects.

We can see the specialty of the 9th law, so weacatihzero element of a ring that
has a multiplicativénverseaunit. Hence we can define a ring is a field if evernzrero
element of the ring is a unit.

If there are nonzero elemerflsandP of a ring such tha®P=0 then we say x and y
arezero-divisors in the ring. We define that a nontrivial ring(j.G#1) is adomain if it
contains no zero-devisors, and that a commutativeaih is arnintegral domain. Note
that the trivial ring is commutative. And note tleaery field is an integral domain,

because if is a unit and@0 =0, thenP =10= (878 b= a'(ah= &'0=0. ot eyery

integral domain is a field, for example, the integ€ .

In mathematics history, some great mathematiciemgs, (Galois, Lagrange, Cauchy,
and Abel) worked on the study of solutions of palgmals. They found only considering
some laws of a set of objects for one operationweag helpful and interesting, so the
concept of group arose.

A group is a set G with an operatioIH (note that we can define the operation as we
need), such that

(O) for all a,b0 G, albO G (Closure)
(1) Foralla b,cO G, (alb)[c=al(blc) (Associativity)
(2) There is an elememt] G, such that for ala[0 G ela= a andalé= a (Identity)

(3) For allad G there exista” 0G such thata[&™ = e anda™ (&= e (Inverse)
If a group G satisfies the law of commutativitg,.j.for alla b0 G, alb= bl[ha, we

say the group G is abelian (or commutative). Ferititerest of some school students, the
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adjective “abelian” was derived from noted Norwegmathematician Niels Abel (1802-
1829) who invented (independently of Galois) ameaxely important invaluable branch
of mathematics known as group theory.

Thus, we knowmZ, +,%) is a ring, but not a field. But no¥Z,+) is a group if we
only consider one operation +, whi{&,x) is not (but do not forget that the set of units

in a commutative ring forms a group under multiglion, for instance({l, -1}, ¥) ). One

more example(Q, +,%), or (R,+,x), or (Z,+,x) is aring, and also is a field. For

instance, we all know that#a=a, 1xa=a, a+(-a)= a, andaB]lzl for all all R.
a

If we use the terminologies in abstract algebka We did forZ , 0 is the additive

identity, 1 is the multiplicative identity;2 is the additive inverse dt, and1 is the
a

multiplicative inverse of, for ring (R, +,x). Similarly, (Q,+), (Q,%), (R+), (R,%)
are all groups. For instance, when students sagrtiduct of two rational numbers is still

a rational number, they essentially use the clostiggoup (Q, ) .

However, things will become less regular as we ntbveugh various number
systems. Moreover, the transition from basic nunslygstems to more sophisticated
algebraic systems is not a minor step in studemdérstanding. Thus, students need to
study properties and possibilities of importaneaigic structures associated with
functions in order to discern their similaritiegdahifferences, such as isomorphism
(homomorphism plus bijection and some other releeancepts such as congruence and
symmetry in certain contexts), modular operati@rgg(otient ring), ordered field, field
extension, typical polynomial rings and fields, amhstructively important properties for

the real numbers.
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2. Isomorphism

Most of the current research in mathematics edoicateats functions as "a certain
type of procedure” or "a process that transforrpstivalues to an output value in a
predictable way" (Cuoco, 1990, p. 19). This conicgpputs the accent on the specific
foreseeable relation between individual elementsvofsets rather than a powerful
relation connecting two structures, the perspedtiva which the notion of isomorphism
is construed in this chapter. | develop the disomss four sections with several
different contexts.

The first section mainly defines an isomorphisnitbywo properties associated with
two algebraic structures: it preserves algebraerajons and it corresponds elements
one-to-one and onto. A few examples are includatiustrate the concepts.

Then, in the second section, | connect the notfasamorphism directly to
logarithmic and exponential functions and somehefdpplications, the important
concepts in high school algebra which are virtuaitypedded in a larger picture of
mathematics.

In the third section | introduce the concepts efdiextension and automorphism (a
special isomorphism), as well as symmetry, so @ivi® an in-depth discussion about the
proof of the conjugate zeros theorem from an ade@standpoint.

The fourth section centers around modular arithenétcause as an equivalence

relation it is a good example of homomorphism. antigular, the concept of

16



homomorphism is a weaker variation of isomorphismvaith even more powerful
applications than isomorphism because there are metances of homomorphisms than
isomorphisms, and a homomorphism sometimes siraplifie problem whereas an
isomorphism does not. At the end of this sectinrgrder to inspire some students’
interest in further pursuit of mathematics | biyafitroduce the Fundamental Group
Homomorphism Theorem and its sophisticated conmed¢ti the Cartesian Product.

In addition, the topics in the other chapters #se eelated to isomorphism in some
way. Because they have different points of focusydver, | organized them into

individual chapters.

2.1 What is an isomorphism?

I had never seen the word “isomorphism” when | waschool. That word must look
complicated and maybe a little bit scary to almesry school student, and even to me
when |, as an international student, was startinglkte abstract algebra course. If we
search the word online, we will see that in Greisks” means "equal” and “morphe”
means “shape.” But what does “equal shape” meathenatically? High school
students should be familiar with the term “isossdtéangle,” which shares the prefix
“is0” with “isomorphism”. The following is a destion of the purpose of the study of
isomorphism:

Isomorphisms are studied in mathematics in ordextend insights from one

phenomenon to others: if two objects are isomorghien any property which is

preserved by an isomorphism and which is true efafithe objects is also true of
the other. If an isomorphism can be found fromlatieely unknown part of
mathematics into some well studied division of neatltics, where many theorems

are already proved, and many methods are alreadlable to find answers, then the
function can be used to map whole problems ounédmiliar territory over to “solid
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ground” where the problem is easier to understaveork with. (“Isomorphism”,
n.d., “Purpose”)

Students may get some flavor of the magic rolesofmiorphism in mathematics but
must still feel uncomfortable with the conceptsdmorphism. | could give a few
examples with which high school students are faandis motivation and then introduce
the relevant technical definitions used in abstadgébra. But after giving a second
thought of this | decide to state those definitiahghe beginning, because the notion of
isomorphism itself is pretty fundamental in algef@aen in mathematics), and it is worth
an independent consideration like we do for algelstiuctures while both of them are
compatible with each other. | think after correathyderstanding the basic definitions it
will be easier for students to understand the upegraxamples better.

There are two basic and important isomorphism$gtract algebra — ring
isomorphism and group isomorphism. Before we deBoenorphism we need to first

define function, and then homomorphism and bijecte special cases of functions.

A function A~ B is a relation or mapping betweéh a given set of elements

called thedomain and B a set of elements called thedomain The function associates
each element (often denoted by the leffeand called thindependent variableor
argument or input of the function) in the domain witkxactly oneslement (often
denoted by the lette¥ and calleciependent variableor value at X orimage of X or
output of the function) in the codomain. The elementsedated can be any kind of
things, for example, numbers, polynomials, funaitilemselves, sets, real-life objects,

words, etc., but typically mathematical objects. ¥da think of a function as a set of

ordered paird® ¥), but usually we use equatioh™ XX to define a function.
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Incidentally, we define aaquation as a mathematical statement that asserts theityqual
of two expressions. It usually involves some unknawmber(s), and solving it means
finding the number(s) that make(s) the statemest BBut sometimes depending on the
context we may or may not be able to find the sohfs), several instances of which will

be shown in the following chapters (especially Gba@.3, 2.4, 3 and 5). For any
function #* A = B thekernel of the function is defined bYfer¢={xU A &(X = €}
where €' is the additive identity oB (say, 0 inR) or multiplicative identity ofB (say,

1in theR), i.e., the kernel gives the elements from thgipél setA which are mapped
to identity in setB by the function. S&€'? is a subset oh. The relatedmage of this
function is defined byM?={#X: XU A e the image is the elements in Bet
which are got by mapping the elements originalyrfrsetA by the function. sdM? s

a subset o . Usually the image of the domat of the function? is also called the

range of the function. The function issurjection if the range of the function is equal to

the codomainB . The function is amjection if it maps distinct argument¥ to distinct

images ofX under?. These concepts should not be perplexing to hihba students,
but they may look pretty technical to most studeneachers can make efforts to engage
students in progressive practice with various eXamef functions.

A ring homomorphism is a function between two rings, which preserhes t
operations of addition and multiplication.
More precisely, if (R, +, -) and (S, +,-) are rintyen a ring homomorphism is a

n »R-'S |a,bDR’

functio such that for al

(1) Aatb)=¢(a+uDH
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(2) alb)=¢(8 KD

(Note that the so-called “addition” and “multipltaan” on the left-hand side are in R,
while those on the right-hand side are in S. Thayloe any operation in the groups as
defined.)

A group homomorphismis an operation-preserving function between twaugs.
More precisely, if (G, +) and (K, -) are groupgrnha group homomorphism is a
function #°C ~ K such that for al®:PH G,

Pa+b)=g(a) (b
(Note that the so-called “addition” operation om taft-hand side is in G, while the so-
called “multiplication” operation on the right-hasdle is in K. They can be any

operations in the groups as defined.)

9:A- Big abijection (namely, one-to-one (injective) and onto (surjeztiv

correspondence) if and only if for evelyin B there is a uniqué in A with X =Y
Thus we say arsomorphismis abijective homomorphism
Before we move to the examples that students nay& heen anxious to see, please

allow me to introduce two useful lemmas.

Lemma 2.1(c.f., Shifrin, 1996, p. 125):

A ring homomorphisn#: A = B is one-to-one (not necessarily onto) kerg=(e)

Where<e> is theideal generated by(defined in Shifrin, 1996, p. 117) the additive
identity € of A.

Lemma 2.2(c.f., Shifrin, 1996, p. 182):
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Given #- A~ B 4 group homomorphisnK®'? is a subgroup of G, anfl is one-to-one

(not necessarily ontoy K€r#=1{8 \yhere® is the identity ofA.

(To verify these two lemmas will be a good exerémestudents to get more familiar
with the concepts of subgroup, identity, inversenbmorphism, injection, and kernel,
and also the interaction between the necessaryitcamédnd the sufficient condition in

the proof.)

Now let us check whether the typical quadratic fiomc#- R~ R defined by
Y=#X =X is an isomorphism as follows.

2 2 2 2 _ 2 2
(X1+X2) EXEX ; (XlD<2) =X % ,s0?is only a group homomorphism from

2 —
group (RD o (RD gy kerg=1{l, -1}#1 since(ﬂ) =1 50 byLemma 2.2above?

IS not injective. Henc is not an isomorphism.

Remember that if there exists an isomorphism betwse ringsR and R,, then we
say R and R, are isomorphic. Denot® [ R,. So to speak, the two rings essentially are

“the same”, similar for groups. More generally,nsmrphic structures, despite of
notations, essentially are identical. In other vgpta/o structures having “different
outfits” can be essentially “the same” if they arathematically isomorphic.

Does the above example mean that the gri@up not isomorphic to itself?
Definitely not! But what was wrong there? Please®eful that we said “if there exists
an isomorphism”. In other word, if we could find @omorphism which mapR to R

then we proved thaR is isomorphic to itself. One obvious ring/grouprisorphism is
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@R~ R gefined by®¥) = X_ Incidentally, this is essentially consistent wigid
motions in Cartesian plane ov&.

To help students get acquainted with this basicrtiegtie we consider the following
examples. By the way, | suggest that teachersrassiglents to collect two or three
functions to decide if each of them is a homomaphor even an isomorphism and give
the reasons.
el - Z
Q) If @(X) =5x
Px+ %) =5(%+ %) =5%+5%= g X)+¢( %)
gut (4% %) =5(xx %) =5xx % # ¢ X)xg( %)

So%isnota ring homomorphism.

() If AX) =X

A%+ %) = @( %)+ %)

A% % %) =@ %) x@( %)

p1)=1

So AX) = X is a ring homomorphism.

And %X = X s also a bijection, blemma 2.1above sincd®€¢= {0}
We call this functiorf is a ring isomorphism.

e . Z - R

#AX) =% is also a ring homomorphism.
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A%,) =% is injective., but not surjective, so this functi is not a ring isomorphism.

« #:C - C the complex conjugatioﬁ(z) = Z for 20C is also a ring isomorphism.

« 9L~ 7, is a surjective homomorphism but not injectiveegi\byqﬂ(a) = a(mod m)'

i.e., ? assigns to each integer the equivalence class témainder via division by |
will later in use a particular section (Chapter)2attalk about the modular equivalence

relation.

From the above examples, we seer C is, of course, isomorphic to itself, while

Z0 Zm Z IR (since there is no bijection existing betweeand Zn (c.f., Chapter

2.4), Zand R (c.f., Chapter 5)). Moreover, all integers andratlonal numbers are not
“the same” structure of numbers either, though thatyr are “countable” (which | will

talk about later in Chapter 5.3). Neverthelessalweegard the complex number of the
form (X, 0) and the real numbgras being identical, because, in this case, weidenthe

real numbers as being embedded/included in the lesnmpmbers by the

embedding/inclusion map E=(x, 0) from R to C, and there between(namely, the
domain of mapping E) and,(0) (namely, the image of mapping E) is estabtishe
isomorphism. Later in Chapter 3 we will see anothemple of isomorphism between

polynomials.

2.2 Logarithmic and exponential functions
Connections with concepts that students alreadykrlay an important role in

engaging students in high-level thinking proceskesry high school student learns the

" with TXOR

exponential function in the form of =" and knows that it is the inverse

23



of a logarithmic function in the form of = log, (¥) with T OR™ and XU R; and vice

versa. In particularly, the exponential functiorttwhase® Y = ex, also written as

y =eXp(X) s the inverse of the natural logarithmic funati = "(X): and vice versa.
Students are generally told, at most, that, givemains and ranges, exponential
functions or logarithmic functions are one-to-ome anto functions, or mappings, or
correspondences. Students may also intuit this flegraphs of the functions, through
which students can visualize algebraic conceps®toe extent, and which | think is
really important. Martin (2007) confirms that statee“need opportunities to model
concepts concretely and pictorially” (p. 35).

However, teachers have an opportunity to help stisdealize more about
exponential functions and logarithmic functionsrtlilaey are inverses of each other.
Being inverses of each other means that each of tha bijection, which is part of the
conditions to be an isomorphism. Are exponentiatfions and logarithmic functions

homomorphisms? An important feature of exponenisatbat they reduce multiplication

to addition, by the formulaf™ (8¢ =r *"* ‘which by taking logarithm with bade

implies a corresponding important feature of lotpanis that they also reduce

(%g%4) —
multiplication to addition, by the formulz;(.)gr = log, (x;)+log (X4). Surprisingly,
the two formulas just show they are group homomismk. Thereforel **™ =r 0

expresses a group isomorphism between the additotg of real numbers (denoted by

(R+) N N £R>°,[)] .
) and the multiplicative group of positive real noens (denoted b ), while

(%%4) —
log, ™™ = log, (x;)+ log (x,) expresses a group isomorphism between the muakiple
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>0
group of positive real numbers (denoted(Ey ’[)]) and the additive group of real

+ . .
numbers (denoted b@/R’ )). In other words, we say exponential functionsthee
continuous isomorphisms from the additive groupeal numbers to the multiplicative
group of positive real numbers; logarithmic funosaare the continuous isomorphisms

from the multiplicative group of positive real nuerb to the additive group of real
numbers. Symbolic notions for this would be tHafR*) - (R°.0 given by AX) =1

is a group isomorphisnf’: (R?.0~ (R+) given byw(x) =log, (x) is also a group
isomorphism. In fact, in order to check they ammsrphisms, teachers may also guide
students first to check they are group homomorpsjsand then udeemma 2.2above

to check they are injections and check they anestiwns by definition.

In the above example, a group isomorphism connectspecific groups. To figure
out what the isomorphism is and what the two grarpsunderscores the need for
students to consider the operations, the domainmamge of the function and to identify
the meaning of the function’s inverse for that sifi@somorphism. Nevertheless, if
students justify the meaningless nature of a foniiinverse regarding the desired
domain and range, they will realize that the fumtits not an isomorphism. Again, |
suggest teachers pointing out these mathematictsl fa students so that students will
not be intimidated when they meet abstract alg&brthe first time at colleges.

We all agree that meaningful contexts help studee¢sthe important features of a
concept. Next | give two contextualized examplesttow how useful exponential

functions and logarithmic functions are as groumbmorphisms. | will briefly mention
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the application of them as bijections at the enthefsecond example because most
students are acquainted with it.
If a certain principal (denoted by) is invested at an annual rate (denoted Ly

terms of decimal) compoundédttimes a year, then the amount (denoted¥jyin the

r nt
A=PQ1+—)
account at the end dfyears is given by N Usually andn are set by

the bank, and the depositor can only make decisidhthe number of years the

r n
M =P@A+—) t
principal is put in the bank. So if we let n° we haveA = M " which can

be considered as an exponential function with teeM , the independent variable
tUN | and the dependent variabfe Once we know the value & we know the value
of M ' for everyt N This specific functional relationship is the hamarphism

property of exponentials because

t1's tM*ts t M's

Mi=M®=MB5 =M im0 M =M M 0. OM . If the annual rate is

—_ t
compounded continuously thef = Pe . Due to the same homomorphism property, if

t t
: (¢') A=Pd = P &)
we know € then we know , and so we know . Some
student may understand the formula for compoundisgretely but may not understand

the origin of the formula for compounding contingtyu Considering the formula of

A=P@L+)"  m=2
compounding discretely n . Let I, then
r 1.1 1
A=P@l+-)" = P[(1+—)m} 1+=)" - e
n m ,Where M asM - % proved in Calculus. In
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high school mathematics class teachers may guidiests using spreadsheet to observe

1

(1+=)"
the values of ™M whenM gets very large, or using some graphing softwaudraw
=@+
the graph of the function M and then observe the trend of the graph wien

gets very large, as shown in the following figure.

Figure 2.2.1Partial view of the graph of the function m
It is important for teachers to be cautious ab@ingitechnology in the classroom by
noting that all the values displayed by softwaeeraunded to rational numbers, which

never equaFf because it is an irrational number. Neverthelisstrend of the graph

above shows that the great8ris, the greate? is (in Calculus we can prove
1.,

y=@+=)y . . . . .
M js an increasing function). So the gredleis, the greateM is and soA is.

In other words, the greater the number of timegdlte is compounded per year, the
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greater the interest is if the principal, rate, gadrs are fixed. Thus the depositor would
benefit more from the continuous compound intemgktle some banks compound
interest quarterly or monthly.

One advantage of logarithms is to make a largegafigqumbers manageable. The
decibel is a logarithmic unit of measurement thgiresses the magnitude of a physical
guantity (such as intensity of sound) relative g&pacified or implied reference level

(usually in terms of ratio). When referring to maasnents of amplitude, the decibel (dB)

is defined by evaluating ten times the base-10rltdga of the ratio of the squares éf

_ A® . _
s =10log(-L; )= 20l é]
A og(pb ) ogpb _

(measured amplitude) arf%’ (reference amplitude), i.e.,

When we want to calculate the overall decibel gdithe consecutive amplifiers (a multi-
component system), we can simply compute the suiomatf the decibel gains of the

individual amplifiers (components of the systemafher than multiplying amplification

factors A/A . Essentially this is because of the homomorphisopgrty of logarithms,

n A _ n A
lo —) =) log(—
ie., g(|T| Ab) Z‘ g(A) ). Hence, if we want the product of the large angaiion

factors, we can simply exponentiate the sum ofrtlazidual decibels that we have

because exponential functions are inverses of iitgaic functions.

2.3 Conjugate zeros theorem
We sayK is afield extensionof F , if (K, F are fields) andK containsF , i.e.,
F O K). We have already known th@t and R are fields, andR[J C, soC is a field

extension ofR. Similarly, C is a field extension of . And Ris a field extension 0.
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In other words, we extend the field of rational roers to the field of real numbers by

adjoining irrational numbers, and extend the figldeal numbers to the field of complex

numbers by adjoining=+/~1. What if we do not adjoin all irrational numbegsrational

numbers? In abstract algebra, for example, we uwe@[*/z] is a field extension of
by only adjoining\/E to @ (c.f., Shifrin, 1996, p. 54, Example 4), so ialk the
smallest possible enlargement%f(a number system) in which a given equation like

2x* 1= 0 has roots. These are all numbers systems higtosshalents are familiar

with. Nonetheless, students just do not take thethis way, instead, they merely think

Q, R, C are different set of numbers, and know one setaiasithe previous one.
Furthermore, in high school no student takesis anR -vector space. Every high

school student learns every elemenCircan be written uniquely as+ bi with a,b0 R,

but teachers hardly tell studerdas bi=all1+ b, and sofl, i} is a basis folC as anR—

vector space, and then the degre€obver R, denoted byC: R, equals 2, which is

the dimension ofC as anR—vector space, i.e., the number of elements inrRHegasis of

C. This basic fact can be related to the followmgposition:

SupposeK is a field extension oF anda K is the root of polynomialf (x) 0 F[ Y

which is irreducible inF[X] . Then[F[a]: F] = degree off (X) .

Clarification: for instance, if we say a polynomisilin R ¥ , we mean all the coefficients

of the polynomial are all iR, i.e., the coefficients are all real numbers;l&ter use in
Chapter 3, if we say a polynomial is not irredueitsi R ¥ , it means the polynomial

cannot be factored into polynomials with coeffidgeall in R.
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Let us still observe the example[@: R . Given f (x) =x*-2x+3, the two roots of
f(X) arel++/2 , which are not irR, so f(x) isirreducible inR[ ¥ (c.f., Chapter 5.3).
C is afield extension oR, anda, =1+/2 or a, =1-+/2i is contained irC. So
[Ra]: R=deg(f k)= zor[Ra,]: R =deg(f &))= z But~/20R, so actually as
mentioned above we only need to adjoito R to getC, i.e.,, Ha,] =Ra,] =R =C,
therefore,[C: R =deg(f &))= 2

In high school, students are taught that for arlyrpmmial in R[ ¥ , non—real roots

come in complex conjugate pairs (namely, the catgigeros theorem). What teachers
usually do in class is telling students the faat age specific examples to demonstrate it.
| think this reality is decided by students’ capiépiof understanding abstract
mathematical concepts and by in-service teachadrstanding or mastering of how to
roughly show, to the students especially thosehigsiaists”, the idea of proving this
mathematical fact using abstract algebra knowledge.

| will first try to state the related parts needegrove the fact, and then relate it to
the common proof given in high school or even ifirst year of college.

Let K be afield extensionof F with finite degree. Letp K - K be aring
isomorphism. We say that the isomorphisgis an F -automorphism of K if ¢gfa) = a
forall all F, i.e., @ fixes the elements ifr . Then theGalois group of K over F is
defined asG(K/ F) = { F -automorphisms oK } with group operation (Note: here

K/F doesn’t mean a quotient ring, but just me&nsver F ). Interestingly, we find the

complex conjugation function is @ -automorphism ofC. In other wordsG(C/ R) is a

Galois group, and complex conjugation is an eleroéttie group, i.e.p0G(C/ R.
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Before we move on, let us look akesmma:
K is a field extension oF . a 0K is a root of polynomialf (x) O F[ X] . For any
pOG(K/F), ¢a) is also a root off (x) .
The proof of this lemma uses quite fundamental sratitical technique and the
definition of automorphism we introduced above.
Proof.
Let f(x)= C,+Cx+..+ G X for C,,C,...,.C OF.

aOK isarootoff(x) = C,+Ca+...+ Ga" =0 (X).

Apply @ to (%). We get@(C, + Ca +...+ Ca") = ¢(0).
Since @ is a ring homomorphism by definition, we have
#AC,) +AC)@Aa) +...+@C.)@Aa))" =0.
And sinceg is anF -automorphism oK , we getC, + C¢(a) +...C (¢a))" =O0.
This expression just showga) is a root of f (x) , as desired.
Now, by the lemma we just now provedafllC is a root of a polynomial
f(X)OR A, then@a) , namely, the complex conjugation of, is also a root off (x) .
Therefore, we proved the mathematical fact “nonr@ats of any polynomial in
R[{ come in pairs”.

The usual proof that most high school studentotiege freshmen are given is, first,

taking the conjugate of the whole equatiéf)(i.e.,C,+Ca +...+ Ca" = 0, which is
essentially the above step of applyiggto (>¢), and secondly, using the homomorphism

property of @ that conjugates of sums and products are sumpraddcts of conjugates
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(essentially assuming0G(K/ F) ) to getC, + Clc_r+...+ Cnc_rn = 0 which meangy is a
root of f(X).

Dr. Roy Smith commented that the proof was too@ldar him to think of as a
freshman, and perhaps also for many other studentsnaybe if they learn to think
about symmetries they would appreciate the idehdte suggested starting motivating
students with the following fact: the sum of thetegs starting at the origin and ending at
the vertices of a regular polygon of n sides whitk $ymmetric center at the origin is zero
(personal communication, February 9, 2010), bectheseompositions of the vectors on
the horizontal axis and vertical axis are zero, @hdn we rotate the polygon through
360/n degrees or we flip it in the horizontal axighe vertical axis, the vectors just
exchange positions while the sum of them does imatge.

Hence, next we use the idea of symmetry to retabdut the above proof of the
conjugate zeros theorem. If there exists an imaginamber which we view as a vector
starting at the origin and ending at the point hiepresents the number in the complex
plane, then its square is another imaginary nurabeesponding to a vector, and so is its
cube, and so forth till its highest power which aigithe degree of the polynomial. And
then we dilate these vectors by the correspondiedficients of the polynomial and
connect the terminal points of the new vectorshdhat we have an (irregular) polygon,
the sum of whose origin-starting vectors is zefoudthis imaginary number is a root of
the polynomial. Now concerning flipping the polygorthe real axis, those vectors turn
into the vectors of the corresponding conjugaté® dnly thing it changes is the
directions of these vectors, but the sum of thgistarting vectors of the polygon is

taken to its opposite value, “negative” 0, whichamg the sum 0 does not change. So the
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complex conjugate is also a root of the polynonAajain, all of these are about
symmetry and isomorphism.

As an extension of this idea, every high schodetd should know that if a
guadratic equation has real solutions, then thatisols come in pairs (including those
with only one solution, which is in pair with it$ellt is because the two solutions come
symmetrically in the axis of symmetry of the gragtthe quadratic function. So this is an
analogue to the symmetry explanation of the corigigaro theorem. Theoretically, the
reflection in that axis of symmetry can be presupabnsidered as an automorphism as
well.

Now let us go back to the example | mentioned atiginning of the section that

Q[\/E] is a field extension of. This is elegantly analogous to tHatis a field
extension ofR by adjoiningi =+—1, i.e.,C = Rv-1]. If @0Q[V2] with 2PU Qs 4
root of polynomial f (x) 0O ¥, then wa) DQ[‘/E] should be another root of the
polynomial, by theQ -automorphism oRIV2] efined as 4@+ bV2) = a+ p(/2)
For simplicity, we may also defin as a “conjugation mapping” b@(*/z) = _*/E, ie.,
Aa+bV2)=a- 2 | ot s check with, for example, the polynorrﬁ(éllJrzx_1D QY.
Let X +2x-1= 0, e haveX = "1 V20 Q[*/E], as claimed the roots coming in

2
conjugate pairs. What about the polynontfal” 3V2x- (1+ 3/ 2), Obviously it is not in

QI , SO the roots coming in conjugate pairs is norguiged. To be sure we check the
2
roots of X ~3V2x- (1+ 3/2) They arel+3J/2 and -1, no conjugate pairs. Moreover, if

we are comfortable with notations we can‘i/é be any symbol we like, sa‘fE =7,
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Thus the field extensiof?[r] of Q would look more IikeC =K1 as a field extension of

R. And as having the complex plane, we may haveoour “Q =7 plane” as we wish. If

we adjoin all square roots of rational numbeerpwe will have the Euclidean plane

(more about which we will see later in Chapter 5Ri¢ase note that | just presented an
analogy betwee®[v2] and RIW-1], but I did not say there is an isomorphism between
them. Actually it is impossible to establish oneel*,]é)ecausé? is countable whileR is

not (we will talk about this later in Chapter 5.8yhat aboutQ[v2] and Q[v-1]? They
both are countable but still not isomorphic to eatiter becaus@[\/‘_l] containsv-1

and so contains square root of negative rationadbars WhereaQ[\/E] does not. Hence,

this should be the more germane reason for W11 is not isomorphic t6v2] .

It is not easy for students to reach the kindrafarstanding that we have talked
about in this section unless they have a reallydgoulerstanding of the mathematical
definitions. In addition, after the students arpased to examples of one type the teacher,
who has much more experience and a better unddmstpof mathematics, needs to help
students see the connections | have described.edris is why | concentrate on the

connections themselves and always refer to théecklzasic definitions.
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2.4 Modular equivalence relation

When we do long division, we always divide an irtelgy a smaller one, and the
guotient number is always as big as possible thgilhon-negative remainder is smaller
than the dividing number. Mathematicians summaribhégirule into théivision
Algorithm for natural numbers :

Given a, =N, there are integers q (for “quotient”) and r (fegmainder”) so that a=qxb
+ r, with 0<r<b.

In our experience, when we divide different a’sthy same b, consequently g's are
different, but r could be the same. This is anrggéng and useful phenomenon.
According to Cuoco (1990, p. 264), the word “moduleed by Gauss is from the Latin
verb that means “to measure”. Roughly speakinggeiuse 5 as a measure on the number

line

.............................................
||||||||||||||||||||||||||||||||||||||||||||||

then 17 is 2 more than a marked number 10. So Gemsisl say that “17 is 2 modulo 57,

or “17 is 2 more than a multiple of 5”, or “17 is€xcept for a multiple of 5”. All these

can be expressed symbolically’s&= 2 (mod 5, Cuoco (1990, p. 264) commented that
the custom of thinking of “modulo” as “except fdras added a rich flexibility to the
word, and then he illustrated the beauty of “motiblptelling us that mathematicians
often say things like “I can prove this theorem mlodone conjecture” or even “Modulo
a rainstorm, we will have a picnic this afternoon”.

People notice this kind of phenomenon appearsireeeryday life and is involved
in some basic calculation, and call it “modulattarietic”. | include several examples

below.
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(1) For example, 3 o’clock in the morning is 3 pastplesition 12:00; 15 o’clock in the
afternoon is also 3 past the position 12:00 ofcdlbek. We symbolize this a8= 15
(mod 12). This illustrates why the modular arithmebmetimes is also called clock
arithmetic.

(2) Interestingly, when people call different days “Miay” they actually use the idea of
“mod 7”, so we may number the seven days in a vesglMon.=1, Tue.=2, Wed.=3,
Thu.=4, Fri.=5, Sat.=6, Sun.=0}, and when it mofresn one day to next day, we
algebraically add 1 to any number and it will beedtitme next number, if we define
6+1=7=0 in this context.

(3) Suppose Adam has 93 cents and Bob has 38 centgwHm to convert the cents
they have into as many nickels as possible anevbeehas more cents left. Because
93=18x5+3. Adam gets 18 nickels and 3 cents. Similarly, Bets 7 nickels and 3
cents. So they have the same amount of cent$Shaftbolizing this i93= 3§mod
5).

(4) In trigonometrysin30° =sin390° because80° =390 (mod 360 ).

(5) We knowi® =-1so0i* =1, then we can compute, for examplészi® =i **=- and

£ 7348 _: 0 _
i =i-"=1.

(6) Actually, our decimal division uses 10 as the dividhumber. If integers, anda,

divided by 10 have the same remainders, then wdslne thata, = a, (mod10).

(7) 1 remember a brilliant explanation abduE 0 (mod 5 generated by a
homeschooled Algebra | boy (L. Holladay, persomshmunication, January 18,

2010) as follows:

36



In a chemical equation, the mass of all the reacainstances must be equal to
the mass of all the product substances. If the coabmass of all the reactant
substances in a reaction is five grams, the proahasis will also be five grams.
If you are looking for the mass of the product whyou can contain, the masses
may be different. If the reaction caused substandtsa combined mass of five
grams to turn into gases which you are unable mato, the mass of product
would be zero.
In teaching students it is good to start with ateghand extract the mathematics and
then later on apply it to new situations. Thusuleformally define “integer arithmetic

modulom” as follows: If a,b0 Z are “equal after casting onts”, i.e., a=r (modm)

< a=qln+r, b=r(modm) = b=q,[n+ r, wherer is the remainderg,, g, are the
quotients by division algorithm, then we wriée=s b(modm) (read “@ is
congruent/equivalent t8 mod m"). It is easy to check this is an equivalencetretaon

Z , and equivalence moduin respects the algebraic operation4n i.e.,Proposition
3.1 (Shifrin, 1996, p. 21):

If a, =b (modm) anda, =h,(modm), then (1)a, +a, =B + b,(modm); (2)

cl® = c[lh(modm); and, more generally (3, (&, = b [b,(modm).

A special case isn|a = a=0(modm). So we rewritea = b(modm) into
a-b=0(modm), therefore,a=b(modm) = m|(a-b).

If an integer is divided byn then all the possible remainders are {0, 1, 2m:1}.
For each remainder there is a set of integers corresponding taithghat every

elementn in the set divided byn has remainder, i.e., n=r (modm) and all such’s
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form the equivalence class of correspondinip other words, the intege# is divided
into m equivalence classes of each possible remainder tingodivision bym.
Symbolically,

(noz, n=r (modm) r=0,1,2,..m g
={{...,-3m, -2m, -m, 0, m, 2m, 3m, ...},

{...,/3m+1,-2m+1 -m+1,1 m+1 2m+1,3m+1..},
{...,=83m+2,-2m+2,-m+2, 2, m+ 2, 2m+ 2,3m+ 2,...},
{..., -3m +(m-1), -2m +(m-1), - m +(m-1), m-1, m+(m-1), 2m +(m-1), 3m
+(m-1),..}}

=mZ+r.

And we denote the finite modular ring iy mz=Z/(m =z,_={0,1, ... m-1}. If there is

no confusion, sometimes we omit the baf’ ‘on the number modulm. Hence,

Z ={0, 1,2, ...m -1

It is obvious that there is a 1-1 correspondendedrEn each equivalence class of the

remainder modulo and the remainder itself. However, as we mentidrefdre in

Chapter 2.19°Z = %n defined by#@ = a(Mod M) is ot 4 1.1 correspondence, since

apparentlyZ is infinite and Zn or Z/< m> is finite and it is impossible to have a
bijection between an infinite set and a finite one.

Nevertheless, Iuckily,(p: Z -7, is a homomorphism, as a consequence of the above

Proposition 3.1(good exercise for students). Generally, a homotism ¢ A-B
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carries over structure partially or fully from osetting A to anotherB . In other words,

the operation inA is preserved iB by the homomorphisrff, and if # is a bijection

then any structure it is completely preserved iR, and vice versa. Losing some of the
structure or simplifying structure while still peging the operation(s), as a
homomorphism does, can make problem solving sonesteasier whereas an
isomorphism does not. So it is key to being ablédal with the algebraic structure
preserving feature of a function, which sometingesvien more basic than the bijection

feature.

Now let us concentrate on the homomorphfgh‘lz = Ly defined by
¢@) =a (mod m) 1 is obvious that some structure &fis preserved irfm while some
other is lost. As noted above the actual numbelerhents is no more infinite fo%rn

than it is forZ , but an integer equation i%m still has integer solution(s) if it is solvable
in Z. Because applying modul® is a homomorphism, we conclude that if a statement
is true, then it is also true for every (integeQdulus M. Its equivalent contrapositive
says that if a statement does not hold for evertggier) moduludl, then it is also not
true before we apply moduld to it. To understand this property better and skdat
modular arithmetic is good for, we take a lookte tollowing little nice techniques.
(1) We can check 378+2%5674 by only checking the “ones digits” of thoseethitems
without adding them together. The contradictiothet 378= 8(mod 10),
295= 5(mod 10),674= 4(mod 10). But 8+5=1313= 3(mod 10),3% 4(mod 10).
(2) We can generalize the Divisibility Criteria (cRroposition 3.2 (Shifrin, 1996, p.

21)), which most of the high school students aneilfar with.
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(3) We can test for divisibility by 1110=-1(mod 11) andL00= 1(mod11) can be

written in forms ofl0=-11in Z,, and100=1in Z,,. Thus,1000= 10QJ1(=-1 in

Z,,, 10000= 100@1=-131=1in Z,,, and so forth. For examplé83654z =

11°

2-4+5-6+ 3-8 €= 2-4+5-6+ 3 8 €= -2#0in Z,. Hence, 6836542 is
not divisible by 11.

(4) The solutions to some classic problems like “tgllihe day of the week for any date”
and “casting out nines” are also based on moduitdmaetic.

(5) We can use, for example, arithmetic mod 2 to tastHe solvability of some integer

equations, such &X' +16¢ - 8= 103 ( |f we subtract the constant term -103

from the equation, we will get the transformatidfx” + 16X’ = 8= 10% we notice
that every term on the left-hand-side of the equmis even equivalent to 0 (mod 2),

but the right-hand-side is odd equivalent to 1 (fBhdlhus to solve this equation for

integers is impossible.
(6) Arithmetic mod 4 can be used to detect perfect mpuany perfect square must be

2 — Y12 — \
equivalent to either 0 or 1 (mod 4), becadsé 0 (Mod 4, 1" =1 (mod 4,

2°=0(mod 4 3 =(-1y=1(mod4 g4 no matter how big the integer

983747823194209432612542015 is, it is equivaleBtmod 4) (noticing the last

two digits of the number). So it is safe to coneluldat the given integer is not a

perfect square.

2 2
(7) Then, let us try to solve equations li¥et Y = M where X YH Z andnON |

Reducing the equation by mod 4, according to trssipte values (mod 4) of a
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2 2 = 2 2 _
perfect squareX * Y~ can only be 0, 1, or 2. So¥=3 (MOd 4)ypen X +y"=n
cannot be solved for intege¥sand ¥ . Moreover, supposB is prime. Hence, if
n=1(mod 4, then the equation is solvable for integers. Téisansistent with

Fermat's Last Theorem (proved using very deep rdsthg Andrew Wiles in 1995).

(8) We can solve the equatiotf =1 for xOJC.
1 o 2 L
X:13:(COS(2(7T)+I sin(R7m )3 _ —co {ZI;ﬂjH Etsn{ ZI;HJ or X :13=(6.2kn)3 _

2k

( )WherekDZ
e
k=0(mod 3)= x=1;

k=1(mod 3)= x= cos%+|B|n2—77-—%+i[—|§;
k=2(mod 3)= x= cos%—i-lﬁ;ln%r——%—i@/;.

In other words k(mod 3) corresponds to one of the three complex cube aidks

The following is the picture illustration of thisample.

B: (1.00, 120.00°)
B

A:(1.00, 0.00°)
A
+—+

C:(1.00, -120.00° C

Figure 2.4.1lllustration of the three complex cube roots of 1

(9) We will see at the end of the next chapter (Chap)en interesting and more
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realistic application of modular arithmetic basedr@rmat’s Little Theorem.

(10) Note that if an integer equation has no solutiod it does not mean it has no

Z

. . 2 — . . .
solution in“m. For exampleX ~2= 0 has no integer solution i& , whereas

x* =2=0 may have solutions ifim. SupposeN= 7, then X =3 satisfies the

equation inZ

7. This is because that a homomorphism partiallggmess the structure
such as solvability, but it does not take carenefrion-existent structure. In other
words, a homomorphism takes solutions to solutirigioes not take non-solutions
to non-solutions. Dr. Smith supplemented that ssaee things are taken to zero, the
error that measures how far an integer is fromdaisolution may be taken to zero
and then the integer becomes a solution (persamahwnication, April 13, 2010).
Note that the algebraic expressions are powerfrtgpoesent mathematical

relationships in the given contexts, embody pegglesights into these relationships, and

help people record ideas and organize thoughtsemettically.

One way to connect the idea of modular arithmetithe experiences of younger
students is through arithmetic computation “tricksdt students often learn. For example,
some students were taught in elementary schoaitaresting method of multiplying two
numbers between 5 and 10 with the aid of theirdisgTo calculate 6x7, one needs to
raise (6-5=1) finger on one hand and (7-5=2) fisger the other, and then add the
numbers denoted by the raised fingers, i.e., 1+ar8 multiply those denoted by the
bent fingers, i.e., (5-1)x(5-2)=4x3=12. Thus, theduct is (3x10+12=42). Some young
students might be happy to learn this trick, esgggcivhen they learn arithmetic.

However, they seldom ask why this trick works, eaéier they become high school
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students knowing more mathematics, though they trev&nowledge and ability to
figure out why it works.

Verifying this trick is within the mathematical eaqpise of high school students and
makes use of ideas from modulo equivalence clagsesder to create a justification, we
need to model the situation; usually the first siemodeling is to define the variables. In

this instance, leg, b[[5.10] be the two integers which we want to multiply, dnein
a-5, b-5, respectively, will denote the number of raisiedér(s) on each hand. You

may make a different decision to define the vagalffor example, le®, b be the
number of raised finger(s) on each hand); it isaupou as long as your model works for
the rule(s).

Thus, we want to check whethafb equals
[(@=5)+(b-5)]A0+[5-(a~ 5)]I5-(b- 5)]. Simplifying the latter does yield the former
alb, so they are equal; that is why the trick works.

This trick actually entails some abstract algebravidedge. In detail, when we

calculate the number of raised bent fingexs5 in Z (not a field) isa in fieldZ,, and
then5-(a-5)inzis(@™")=(5-a)=(0-a)=(-a)inZ,; similar forb. But
(@ )b ) =[5-(a-5)]T6-(b-5)] in Z . may not be equal to the value itself any more in

Z, since Z is not a field ; the calculation rulesZzi do not work in the world consist of

some elements of Z, for exampde, ={0,1,...4}. That is why, in the case 6x7, the
additional inversex ‘of X0 Z, is (0-X=-X) or (5-X), so (6™)(7™")
=(1™)(2")=(-1)(-2)=2in Z,, butalso(6™)(7)=(1")(2")= 4B in Z,, while

then4B=12in Z. 2#12 in Z. Similarly, a+b in Z_, may not be equal t@+b in Z.
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However, | think this kind of rule may confuse stats. Some students may feel it

makes the computation more complicated, and it doeseem to arise intuitively from

the usual ways to compute, neither 6x7=(5+1)(5+%)+5(1+ 2)+ 132 nor 6x7= (10-

4)(10-3)=10 -(4+3)x 10+& I Furthermore, it will be more confusing if the ¢ber
shows students the case for example, 7x8, andlelhs that 7-5=2, 8-5=3, and then
2+3=5 "“is the tens, 50”, and 3x2=6 “is the unit$he product being 56” (Smith, 1958, p.

201, as cited in Arcavi, 2008, p. 43). In this exdenthe additional inverse & in Z,
happens to b& which is different froma , and the product of the inverses@fnd

b happens to be a one-digit positive integer, whia loe called “the units” but what if it
is two-digit positive integer, like in the exam@g7? Students may wonder whether they
need to “take off” the “1” in “12” to only add thanits “2” to the “tens” “30”. Hence,
teachers need to be careful about the choice obatsrand the wording of the “trick.”
To end this chapter I will only introduce the fallmg theorem and examples to
point to a little bit higher level which studentlgventually be able to understand and
deal with, and hope to fire some students’ interefiirther pursuit of mathematics.
Referring to thd=undamental Group Homomorphism Theorem(Shifrin, 1996, p.

194), we can establisp: Z,, - Z, (a map from an additive abelian group to another)
@ ([al,,) =[a]; as a subjective homomorphism, and the kernet &f ([3],,), i.e., kewp is
generated by 3(mod 12), denoted byge([3],,) = {{0, 3, 6, 9} inZ,}=3Z,,, so
Z,lkerpOZ,.

Here are two classic examples.
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(1) GroupsG:(R’+), H=(z+) G'={z0C|zF10 ¢:G - G given by

¢X) = e?™ =CoS(ZIX Jri siN(ZX 5 3 surjective homomorphism and leerZ (the

groupsG/H and G both contain the multiplicative identity 1), s6/H UG or

RIZI{ZD C| =1 py, Roy Smith offered the following metaphor (pamal
communication, December 27, 2009). When we plaj wiyo-yo, we wrap the string
around the round yo-yo. If we consider the strintipwhe directions of wrapping to be
real numbers, consider the round yo-yo to be thaecof complex numbers of length one,
and consider the number of times the string goasral with the directions of wrapping

to be an integer. It will help us to understanddhe-to-one correspondence between the

elements ofR! Z and those of 25 Cl 4=1 | other words, real numbers on the real

line turn out to be real values of angles with eeat the origin (0, 0), and each angle
oU[0,27) \yhere 8 = 271x while XPI0.1) s mapped one-to-one and onto each complex

value of the circle of length orfég. Interestingly, the quotient of two additive graup

turns into a multiplicative group, i.e., additiohamgles inR changes into the definition

of multiplication for complex numbers of length ot Cl 4=1} Algebraically it is
i = g g SOR

just exponentiation® =

2) GroupsC = (C—{0}, 9 S=(R’+) H=({z0C| 2=1x) _

({zOC:z=¢€&™,x)

¢:C" — S py A2) = 2l i5 a surjective homomorphist€T@=H soC*/HOS soto
speak, the unit complex circle corresponds to d,aher equivalent circles correspond

to the positive non-zero real numbers, illustratethe picture below. It might be helpful
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={zOC:| 7=

if you connect the mapping modufd LX) 1o the closing of the open

train of a peacock. Conceive of the closed traithagositivex-axis except for 0, more

S= (R

precisely '*) and the fully opened train as the complex planepixtor O,

more precisel)px =(C-{0},»  Also interestingly, the quotient group of two

multiplicative groups turns into an additive group,, the multiplication irc ~{0}

changes into the addition of anglesF?ﬁo. Algebraically it is exponentiation,

e g™ = rrgd ™" | 61,8, tOR™

The identity 1 is
in CX/H.

15+

Figure 2.4.2lllustration of the isomorphisrfe / H O'S
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3. Binomial Coefficient and Irreducibility of Polynomials

In this chapter | first summarize several wayséaweadop the coefficient formula
n n! . :
(kj :m of Binomial Theorem, and several places to usddimaula to develop
I(n —k)!

some other conclusions. Then | focus on the proatf the polynomial

XPE X2 x+] (p prime) is irreducible ifQ[ ¥ , which is related to Eisenstein’s
Criterion (our first irreducibility criterion; thether two in Chapter 5.3) and again the
notion of isomorphism. Then | use one of the introetl lemmas and mathematical
induction to give a brief proof and a realistic bggtion of Fermat’s Little Theorem,
which involves no more mathematical knowledge thigih school algebra and modular
arithmetic.

Now let us start listing some connections thatlmaexplored related to the
binomial coefficient.

n

ny _
Briefly, the Binomial Theorem, i.e(2+b)" = Z(kj a" b for any nJ N, can

k=0

be developed by exploding an n-dimensional solith wide of length® * b such that

students do not have to memorize it without undeding. Particularly, in spite of

n
verifying the coefficient formula, name(ykj :ﬁ, by mathematical induction
I(n-k)!

(c.f., Shifrin, 1996, p. 7), it can be generatecchgosing a k-element subset of an n-
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element set (c.f., Shifrin, 1996, p. 6) or by enypig group action (c.f., Shifrin, 1996, p.
218) — | will introduce the concept of group actlater in Chapter 4.3.

Conversely, the Binomial Theorem and its coeffiti®nmula can be used to

(1) count the number of elements of the symmenacig 35 which are conjugate

|
(defined in Shifrin, 1996, p. 192) to the elemekR3) (Hint: p: =% =20, or

5
Ci2= (3) [P=10002= 2(since we first do not consider the order of tireghentries

of a 3-cycle, and then notice that a cycle andhiterse are different.);

(2) count the possibilities of some configurationen using Burnside’s Theorem. The
use of Burnside’s Theorem is quite related to deardnd other subjects. For example,
we can find the number of different types of ciesuhecklaces that can be made from
six white and four blue beads. We can answer tlestqpn “how many different
chemical compounds can be made by attachinGH,, C,H., or Cl radicals to the
four bounds of a carbon atom?” We can also figutehow many ways one can paint
the outer faces of a cube with several differetrsolassuming we paint one whole
face with only one color);

(3) prove that the polynomiad®* + x*?+...+ x+1 (p prime) is irreducible irQ[ X (this
fact is an ingredient of the proof that the Gatgisup of a polynomiaf(x)=x" -1 (p
prime) is cyclic (Shifrin, 1996, p. 281, Exercisg®)R

Here, | want to spread out the proof that the pafyial X"+ x"?+...+ x+1 (p prime)

is irreducible inQ[ ¥ (*). First, the test for irreducibility of polynoias with integer

coefficients lays the foundation for the deepedgtof polynomials. Second, this proof
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itself involves a basic irreducibility criterion pblynomials, and can be completed using
students’ understanding of school algebra. Congistéh the NCTM (2000) Standards’
direction that instruction should enable all studen recognize reasoning and proof as
fundamental aspects of mathematics, | approactptbi in a manner accessible to high
school students.

Every big problem in the world grows from one orrmmemall problems. If we are
able to tear a big problem apart into sub-problamsnay see how to solve the big one.
This “subgoal” strategy is suggested in a lot rAture and research on cognition.
Below | show how to break this larger proof intoadler pieces and identify some
“nuggets” for high school students following eadhie three lemmas below.

Before proving (*) we introducEisenstein’s Criterion (c.f., Shifrin, 1996, p. 109,
Theorem 3.5) as odirst irreducibility criterion (we will see the other two in Chapter
5.3):

Given polynomialf(x)=a, + a x+ a, X + ..+ a %, andf(x) 0Z[x] , which means the
coefficients of ) are all inZ . T®) is irreducible inQ@X! i BPUZ(p is prime; g,cp,

that P& PlA play pyePla Pl a

For instancel5X° -10x° +8x+1¢js irreducible in@*! by Eisenstein’s Criterion because

we may test it witlP=2; 8x°-27x’ -6 is irreducible inQX] because we may apply

+X+1

— —v 2
Eisenstein’s Criterion to it wit?=3. The polynomial(*)=X seems to be

— 2
impervious to Eisenstein’s Criterion, but if we sater (Xt1) = (x+1) +(x+1)+1jq

—_ 2
irreducible inQX] due to Eisenstein’s Criterion, then we can coreltiit [(X)=X"+X+1

is also irreducible ifX] . The upcoming proof explains the reason.
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Note that | once made a low-class mistake of usfrand only if” in this statement

instead of the correct “if (but not only if)”. I§ ilapparent that there are polynomials

f(x) 0Z[x] irreducible inQ[x] that do not satisfy Eisenstein’s Criterion, SUSIX&+2

and X*-32 (because of Root-Factor Theorem, which will bkedlin Chapter 5.3). Thus
this may be used as a good chance for the teazleaptain to the students the difference
between a necessary condition and a sufficient one.

Then we need to prove three lemmas as follows.

Lemma 1. Any polynomial g(x+1) is irreducible in a field§[ = polynomial g(x)
is irreducible in F[x].
Proof. We want to show g(x) is not irreducibte g(x+1) is not irreducible, i.e., g(x) is
reducible= g(x+1) is reducible in F[x]. g(x) is reducible nmsag(x)=h(x)k(x) where
h(x), k(X)LIF[x]. We substitute x+1 for x in polynomial g(x) ¢@t g(x+1)=h(x+1)k(x+1),
which means g(x+1) is reducible in F[x], as desired

Nuggets:definition of reducibility, proving contrapositivegplacing variables.

p_
Lemma 2. (x+1)"* + (x+1)"?+ .+ (x+1)+I = x+)° -1

X1 )

Proof. xP 1= (X=1)(A+ x+ X’ + ..+ ¥ ') = 1+ x+ X’ +..+ X' = 1
X_

(Depending on the context we are using, we mayay not need the "as long as x does
not equal 1" part. — | will offer a reason for thaser in Chapter 5.3.).

p_

. . X
Substituting x+1 for X irl+ x+ x>+ ..+ X" ' =

, we get
Xx-1 g

X+ + (x+1)2+ 4 (x+1)+E

p_
()(L)l, as desired.
X

Nuggets:factoring and dividing a polynomial, replacing \adoles.

50



We now use %) to show 0.999...=1, about which | will talk moreédain Chapter

5.2.

Proof.

We use the idea of geometric series to turn a teygedecimal into the summation of
fractions.

i+—9+ —( 1+—1+ )

16 16 " -10" 10 " 16716 e
ﬁ“* .

9 110

e o wtig

, by (%), which equals

9 9
[ T

9
e —+
100 1000 =10

9
—+
0.999...=10

as n approaches infinity. But

_5(10 —EE‘OQ =1 whenn -

n+l
(i) -~ 0whenn = «

10 . SO 10 . Therefore,

0.999...=1, as desired.

Lemma 3. p| (Ej (p prime) for k=1, 2, ..., p-1.

p p! (p-1)! _(p
Proof. (kj e pDk!(p—k)! = pE(p-l)!—(kjE(k!(p— k)!). pl( pA(p-1)) but

p | (k!(p—k)!) since p is prime. Sg| Uj

Nuggets:transformation of combination formula (namely, bieomial coefficient),
properties of prime numbers, the equivalence mtatidicated by the equal sign “="
(which students usually do not understand well).

Now we prove (*) as follows.
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Proof. The coefficient ofx*, namelyak , in the expansion ofx+1)° is (EJ , with k = 0,

p_
1,...,p. So the coefficient of in the expansion ogL)l is (kilj’ with k =
X

0, ..., p-1. So biemma 2the coefficient ofx* in the expansion of

X+1)P1+ (x+1)P2+ .+ (x+1)+ is
(x+1)" + (x+1) (x+1) (k+1

P j with k=0, ..., p-1. Then dgmma 3

p| (k?rlj withk =0, 1, ..., p-2. In the expansion(@f1)"* + (X+1)*?+ ..+ (x+1)+,

p-1 p
h k= -1,a = =1, 1 -1, wh k=0,a = =p,
when k=p-1, 2 (p-lj sopj1= P} d,.1; when K (O+1j P, SO

2
pPPlp= P 13a. By Eisenstein’s Criterion (X+1)°*+ (X+1)P%+ ..+ (Xx+1)+is
irreducible inQ[x] . Thus, byLemma 1 x"*+xP?+...+ x+1 is irreducible inQ[x] . Done.

Thus, now we can safely say thetrx*+x*+x+1 is also irreducible irX] |

Writing down the steps and writing about the refévdeas helps students clarify
their thinking and develop understanding.

Here is a question that | think needs our atterdiath consideration: How do we
realize that in order to provigx)=x""+x"?+...+ x+1 (p prime) is irreducible irQ[x] we
should provef(x+1)=(x+1f"+ (x+1f?+ ..+ (x+1)+ (p prime) is irreducible ifQ[x] ?

I do not know the history of this "trick" and canlp guess how it was discovered. If
f(x) can be factored, thernxfn) can be factored. If Xttn) can be factored therxj(can
be factored, becausef(= f(x+n-n). Thus f§) is irreducible if and only if +n) is

irreducible. So we look for a convenient valuelw integer n. To apply Eisenstein’s
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Criterion for the prime p to a polynomiabg(©f degree p-1 we need that the coefficient
of the term of degree p-1 ofg(is not divisible by p, the coefficients of alltes of g&)

of degree less than p-1 are divisible by p, ancctrestant term is divisible by p but not

by pz. The simplest case is when the constant termxfegfuals p. This is the same
thing as saying that g(0) = p. Now we apply thigtg = f(x+n). We want p = g(0) =
f(n). It is easy to see that f(1)= p. So we try thrat & works!

Notably, it is a beautiful illustration of the pomef isomorphism, the notion |
elaborated intensively in Chapter 2. In other wotlle map taking f(x) to f(x+1) is an

isomorphism of the polynomial ring[x] with itself. Because an isomorphism takes

units to units and products to products, it takesducibles to irreducibles (R. Smith,
personal communication, March 22, 2010).

This could be an example of developing a mathemladigument and reasoning.
Students would be well served to keep in mind &éisdbng as we try we will find out
either what we expect or something else out ofeoqypectation which tells us either what
we should avoid in next try or something new thatmay also have interest to give a try.

Based on what we have done in this chapter, werzase a little bit further to
Fermat's Little Theorem that N” =n (mod p) with p prime anchOd Z.
We useanduction, for example, only for positive, to start the proof, then from the

idea ofa=b (modm) = m|(a-b) we want to showp|[(k+1f - (k+1)]. So we use
Binomial Theoremto expand(k+1)° — (k+1), and then we getk+1)’ — (k+1) =

p

(kp-k)+p(kp‘1+k)+(gj kP2+ ( 2) k* (*). p|(k° —1) as assumed for induction and

then bylemma 3just proved above, p divides every term on rigirichside of (*), so p
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divides the left hand side of (*), i.ep|[(k+1)f — (k+1)], as desired. The proof for
negative integen is similar with the above one, but the main idetoiprove it for p=2

by induction om, and then do induction for all other prime p, hessall prime numbers
except for 2 are odd numbers and an odd powemnefjative number is still negative, so
we can just use the cases for positive numbers.

We may see that the whole proof is directed by Brmppre algebraic logic, which |
think high school students can master after practicder the guidance of teachers,
though Fermat’s Little Theorem is a so-called adeanalgebra theorem that has never
appeared in high school algebra books.

It would be easy to restate Fermat's Little Theoasrthat if p is prime, then for any
nOZ, n"*-1 is divisible by p. Then this is the basis for Fermat primality test, which
is a probabilistic test to determine if a numberasposite or probably prime.

More interestingly, as | noted in Chapter 2.4, FatfsnLittle Theorem is at the basis
of modern cryptography such as some security coalietipods for credit cards,
information transfer in banking, ATM machines, étenic commerce, and other secret
messages on the internet. The specific algorithsophisticated, but here | would like to

describe a simple way of encrypting whole numbers.

What can we do with® = n (mod p) (p prime)? LetX” = N with X 0.0 Z,
and then we ge&xb)p =X’ (mod p) j e x*=x (mod p). Then let?= P 5o we have
X" =x’(mod P) |t seems we need to have another modulo relatitween? andb.
Working on 2= PP seems promising. It is equivalent? P=P-b j o a-b=Hp-1)

So@~b=0(modp-1 o a=b(modp-1, now we get a slight generalization of
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Fermat's Little Theorem, i.e., if p is prime afd P (MOd P-Lyith & bUZ hen for

a — b —
any XOZ we haveX =X (Mod P) Next we try with specific numbers. LBE/, then
a=2 andb=8 satisfy the conditio® =P (Mod P-1} 5,50056x =3, then according

2 — A —
to the above generalization, we knéw= 3 (Mod 7, 54 e have = 6561 (mod 7

Suppose that Amy using our mod-7 algorithm chaigesiumber 3 to 9 by raising 3 to
its 2nd power, and then sends to Beth the numb@&t @hich is equivalent to 9 by mod 7.
Beth knows that they are using the mod-7 algoriéma that in order to recover the
original number from the number she receives framyAall she needs to do is to take the
8th root of 6561. Thus, of course, Beth successfigls the number 3 back. Note that the

variant of Fermat's Little Theorem fortuitously pelstudents see that it is possible that

different powers of a same number can still besdrae inZp (p prime), which never

happens ir£ .
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4. Functional Thinking Entailed in Problem Solvingand Reasoning

NCTM (2000) urges that school instructional progsashould enable all students
to—

* Build new mathematical knowledge through probkstving

* Solve problems that arise in mathematics andheracontexts

» Apply and adapt a variety of appropriate stragego solve problems

» Monitor and reflect on the process of mathemapoablem solving (p. 334)

» Make and investigate mathematical conjectures
* Develop and evaluate mathematical arguments evaf9(p. 342)

In this chapter | show how ideas from abstractlalgend high school algebra can
be used to engage students in problem solvingeambning, which entail thoughts about
functional relationships. We have seen some exagflessomorphism in the previous
chapters, and we will see more in this chapterpyetfocus will be more on the
prediction and bijection features of a functionsé examples from permutations (e.g.,

symmetry groupS, ), congruence/isomorphism, dihedral group, centali@tion between

a group and the cosets of a subgroup, and abittieoncept of group action. In this
chapter I still draw on the idea that “[tjleachdme@dd maintain a curricular perspective,
considering the potential of a task to help stusi@nbgress in their cumulative
understanding in a particular domain and to makeeotions among ideas they have

studied in the past and those they will encoumteneé future” (Martin, 2007, p. 33).
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4.1 From labeling a triangle to permutation group

Most high school student may have solved a prolilegriHow many ways are there
to label a triangle using the different lettergtad alphabet?” The following is the
explanation of the solution of this problem frone fioint of view of abstract algebra.

If we use A, B, C to label a triangle, we have thstinct ways to do it. ABC means
that we start with A on the triangle on the rigit, to B counterclockwise, and then go to
C and then back to A. This is calledycle Without moving A, B, and C, BCA means
that we start at B, go to C, then to A, and theB.t€AB means that we start at C, go to
A, go to B, then back to C again without moving lsgers on the triangle. So, all three
cycles amount to the same arrangement of letteteetriangle, i.e., ABC, BCA, or
CAB equivalently denote the same arrangement td@rkebn the triangle. We see that C is
on our left and A on our right. Similarly, ACB, CBAr BAC equivalently denotes
another same arrangement of letters on the trialgdesee that C is on our right and A
on our left. No matter how we cycle the two setsyfles, the two sets of arrangement of
letters on the triangle will never coincide (segufe 4.1.1). The arrangements ABC,
BCA, and CAB actually are in the form of a cycleB®) in terms of abstract algebra
terminology. The arrangements ACB, CBA, and BACas® in the form of a cycle

(BCA) in terms of abstract algebra terminology.

A C
Figure 4.1.1Two ways of labeling a triangle with three differégtters
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If we place A, B, and C on a segment, in fact, vilesee there are 6 different
orderings to arrange the three letters. The linaeangement ABC means that B is
between A and C. Then CBA is the inverse arrangewieABC on the segment. They
are different arrangements of the letters on tigenemt. Note that on a triangle, B is not
between A and C because we can go from A to C withassing through B. Likewise
for the two other letters. If we list out all thie glistinct orderings of the arrangement of
A, B, and C on this segment we get 3x2 differedteangs. See the following illustration

(Figure 4.1.2).

A B C C B A
B C A A C B
C A B B A C

Figure 4.1.2Six orderings of three different letters on a segmn
This "linear arrangement case" actually can be edad mathematically into the
symmetries of a group of an equilateral triangnated byT , which is isomorphic to

the symmetric groufs,, the set opermutations of three elements, say {1,2,3} or

{A,B,C}, or even {Apple, Pear, Orange}, i.e., thetof allbijectionsof a 3-element set

with itself. Clearly, the linear arrangement ABGresponds to the permutation

(ABC

A B Cj’ or (A)(B)(C) in terms of cycle; the linear arrangement CBA esponds

A B C
to the permutatiorEC 5 AJ’ or (AC)(B) in terms of cycle; the linear arrangement
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A B C
BCA corresponds to the permutatiéré c Aj’ or (ABC) in terms of cycle; the
| A B C .
linear arrangement ACB corresponds to the pernaut I'IA - (A)(BC) in

A B C
terms of cycle; the linear arrangement CAB corresisdo the permutatio(nC A Bj :

or (ACB) in terms of cycle. Note th{t’é i gj namely(ACB) or (CBA) is the

A B C
inverse element OEB c Aj namely(ABC), and the other element is the inverse of

itself in group S, with its operation of the composition of permutas. The order o8,
namely|S; |, i.e., the number of elements in the grdsip is 3!1=3x2x1.

Now, how many different triples of letters are #hesing the alphabet if all three
letters are different? Remember, we used only ttigtenct letters, A, B, and C above.
There are 26 choices for one vertex. After tharetare 25 choices for the second vertex.
Finally, there are 24 choices for the third veri®g, there are 26x25x24 ways to choose
three letters. But, in this case, the choices edered choices which means, for example,
that (ABC) is not the same as (CBA) in terms ofleg@above. We are making choices as
if the letters are in a row on a segment, and abave discussed ABC, ACB, BAC, BCA,
CAB, and CBA are all different because they araragements of A, B, and C on a
segment or permutations of A, B, and C. So, fohedmwice of three letters, there are
3x2x1=6 distinct orderings of the three lettersvagust got above. Teachers may guide

students to see why it is the way to compute threbrar of elements of a permutation set.
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If we choose three letters for the vertices ofantyle, we do not want to order them
once we choose them because we have already shathére are only two of them that
are distinct. So, there are (26x25x24)/(3x2x1)mtstchoices of three letters of the
alphabet disregarding the order. But there indeedveo types of them that are distinct
regarding the order, because it is really not anlagral triangle; (ABC) and its inverse
(CBA) are not congruent. So we need to multiply2®x24)/(3x2x1) by 2. Hence, there
are 2x(26x25x24)/(3x2x1) distinct ways to label¥betices of an irregular triangle with
distinct letters of the alphabet.

Before teaching permutations using abstract algetsal think using traditional
numerical methods to approach the solution andrmdlize the mathematical thinking
elicited from the problem is necessary becausedssier for students to achieve and
helpful to understand. These numerical methoddtuambe extended to the algebraic
methods | have described above.

| think the mathematical ideas implied in this desb can be adapted to many other
contextualized problems. Teachers may want studemoups to make up some

different contexts that fit in the “spirit” of thigroblem. Hopefully, students will notice

m= (nN)(n=1)(n-2)...(n— (k- 1))E2
there is functional relationship k! embodied in each

context they come up with. In our original contkxtenotes the number of the vertices of
the irregular polygom denotes the total number of choices (e.g., letietse alphabet)
the first vertex can be labeled, amdndicates the number of distinct ways to label the
vertices of the polygon with distinct letters otat@ns. Ifmis the dependent variable,
andk can both be independent variables or studentfixane of them and only leave

one to be variable. These setups really depentiendntext of the problem students
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come up with. “An important convention in algebregpresentation is that if there is a
predictable relationship between numbers, we gégeavdate one in terms of the other”
(Boaler & Humphreys, 2005, p. 31). In short, thare a lot of good ingredients
classroom teachers could elicit from this problenrmiike a worthwhile task of high-level
thinking demands.

Note that the relationships cannot be taught eitigticather, teachers must use
different ways to help each individual student ¢ang and represent the relationships
mathematically. Remember that teachers are “mogléinstudents the practice of
asking mathematically worthwhile questions” (Drikct999, as cited in Boaler &
Humphreys, 2005, p. 35). Thus, in some cases, éeashould avoid asking directly, or
too early, a question like “What is the relatiomshetween A and B?”. Rather, teachers
should help students notice the existence of tlagioaships themselves. Do not “press
the students about this but rather to let them poitadn their own” (Boaler &
Humphreys, 2005, p. 31). Boaler and Humphreys (R02%med that the impact of this
strategy would surface later in the lesson. leommended that “teachers focus
students’ attention on what is staying the samevemat is changing in order to help them
learn how to build rules to represent functionstigboll, 1999, as cited in Boaler &
Humphreys, 2005, p. 30). Algebra is a tool for sajvand exploring problems, during
which manipulation skills can be practiced in atidiental way, but is also a tool for

representing mathematical relationships more so finding results.
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4.2 From self-congruence of isosceles triangle tehedral group

One of Euclid's propositions (Proposition 1.5) vifaat the base angles of an isosceles
triangle are equal. Euclid proved it by construgtauxiliary triangles. But here | want to
share a different proof of it, which actually is@ecial case of Euclid’s proof. Given
isosceles triangle ABC with AB, AC equal, we letérrespond to itself, and let B and C
correspond to each other (i.e., B corresponds 10 €rresponds to B). Teachers should

encourage students to visualize this relationship i@ an important exercise in
visualization. Then we will see AB=AG/BAC=UCAB and AC=AB, then
ABAC UACAB py (assuming) side-angle-side criterion for coegiee of two triangles.

Thus, the corresponding angles in each trianglequel, i.e.,/B=UC we proved the
isosceles triangle congruent to itself, with thetia a different order. It is a fast and
kind of tricky proof. Dr. Roy Smith commented tllaére is a psychological reason that
most people find this proof tricky: It involves wrdtanding the concept of a function,
not just vertices of a triangle (personal commundce February 9, 2010). In other words,
it involves understanding the meaning of the sesgérending Ato A, Bto C, and C to
B, which in this special case preserves correspgndistances, defines a congruence” as
opposed to just roughly thinking one knows whatgbetence “these triangles are
congruent” means. More specifically, in the Euchdelane we say geometric figures are
congruent if they can be related by a bijectivéatice-preserving map; at this point it is
essentially the same notion of isomorphism.

Yet there is more behind this proof. If we justAetB, C respectively correspond to
itself, it will be the identity self-congruence.vife let the vertices correspond in the way

shown above, then it is like a flip self-congrueab®ut the bisector the original angle A.
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So there are two self-congruences in an isoscetegjte (only two sides equal).
Similarly, an equilateral triangle has six self-gamences: the identity self-congruence,
60-degree and 120-degree rotations about the cefnttee equilateral triangle, three
reflections about the three bisectors of the tlaigggain, teachers should encourage
students to picture this in their minds.). Extemgdinis to the square, there are eight self-
congruences up to “rigid motions” (translation atain, reflection). For a regular
pentagon there are 10. Hopefully students woulohtlened to ask whether there is any
pattern to these numbers and would try to makethenaatical conjecture. As Martin
(2007) noted, “[s]tudents must be given opportesito engage in making conjectures, to
share their ideas and understandings, to propgeeaghes and solutions to problems,
and to argue about the validity of particular clgjrtihey must recognize that
mathematical reasoning and evidence are the bassds€ourse” (p. 46).

There are 2 self-congruences for a triangle wisid2s equal, and 6=3x2 for a
triangle with three sides equal, and 8=4x2 forqula 4-gon, and 10=5x2 for a regular
5-gon. Thus, there 2n self-congruences (which strabt algebra textbooks are usually
called symmetries) in a regular n-gon. To undestahy this is so, we note that a
regular polygon with n sides has 2n different syrmiag: n rotational symmetries
(including the identity symmetry) and n reflectisymmetries. In abstract algebra all the
symmetries of a regular polygon with respect todperation of composition of
symmetries form the algebraic structure of a figiteup, which is called dihedral
group denotedD, . If students could accept th@®,x) is a group, then taking all the 2n

symmetries composing of a set with the operatiocoofiposition of symmetries will help

students also accepl, is a group. However, the difference is thatis not a
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commutative group whiléQ,x) is. If we first do a 90 degree central rotatioratequare

and then a central flip, the position of the squsreuld be different than if we reverse the
order of the two actions done to it. Incidentaifyye work with the matrix forms of
rotations and reflections we will understand thiwsgrices form a non-commutative
group. More generally, matrix multiplication is roammutative and matrices have zero-
divisors, so some matrices with the operationstamdand multiplication may only form

a non-commutative ring.

To some this may look more related to geometryrsit $Sight. But actually this
underlines pattern generalization. NCTM (2000) espes the following expectation on
high school algebra that “[i]n grades 9-12 all stutd should generalize patterns using
explicitly defined and recursively defined functs3r{p. 296). In this context, the

relationship between the number of sides of a seguigon and the number of different
symmetries in the n-gon (denotta[()j1| , the order of the dihedral group, i.e., the number

of the elements of the group) yields a represemntaif the functioA D”| - 2”, confining

NON and increasing from 3. In other words, we needefine the domain and the range
for the function. Again, as | emphasized beforerded and identifying domain and
range of an equation is very important to determwhether the equation is a function.
However, most mathematics textbooks, especialligeasecondary school level, do not
attend to it.

One point | think is worthy of mentioning is ththe aim of the task is to let
students find the functional relationship betwdsnrumber of sides of a regular polygon
(denoted by n in the following table) and the numifeself-congruences of the

corresponding regular polygon (denoted by m infetlewing table) through figuring out
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the growth pattern, it is not suggested to diraaients to write down the so-call input-
output table as a way to represent the cases ey dhecked. If we introduce the table

like the following one

n m
3 6
4 8
5 10
6 12

Figure 4.2.1An example of input-output table
many students will look down the columns for rectesnsights because recursive
relationships are often stressed in middle scHoather words, they may notice that the
first column (n) starting from 3 increases by oaed the second (m) starting from 6
increases by twos. Looking at the recursive refatgp within a variable obscures the
relationshipbetweerthe variables (independent variable and dependsgigble).
Students will over-focus on the pattern within egahable rather than the functional
relationship between the two variables. This is Whyggested introducing the
conjecture in the manner noted above to help stadeous on the relevant numbers (the
number of sides, the number of rotation symmetmetading the identity symmetry, the
number of reflection symmetries) for each regulaygon. By looking at these number
patterns, students may be encouraged to visuaiezggometric figures. Teachers should
give students private think time to ensure thahesdadent has a chance to individually
grapple with the task, and then may put students several small groups in order to let
individual diligence and intelligence contributeltoth group and individual success, and
later ask students from different groups to drameadalifferent polygons as examples to

check their (maybe different) conjectures and shi@e points of view or explanation
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with the whole class. Boaler and Humphreys (20@&¢ah that students learn a lot when
they consider competing ideas, even when someeai tire wrong. Furthermore, “verbal
statements about functional relationships arecatifor understanding ... [and] it is
important to make sure students verbalize genatadizs of patterns before asking them
to formalize those generalizations symbolicallybéier & Humphreys, 2005, p. 27). So
as students try to image the patterns in their roimdraw pictures on the paper and try to
verbalize the relationships they get, they are ablenderstand them more or better.
Moreover, one reason students bog down in theieakttip within one variable may
be that the set of possible values of one varigeept for the constant function) usually
has more than one element or even an infinite nuntitnegs, it is easy for students to
move forward along a road when they do not seenleof the road. The relationship
betweertwo variables is usually not obvious so studentstmelate two sets of many or
even infinitely many elements together to find &ue rule or a unique succession of
algebraic operations that tell the interdependelationship between the two sets. It is as
hard as asking students to walk along one roadevdtiserving where the other road goes
in order to figure out how the two roads are relate some cases, it might be impossible
to use the winding of one road to predict the pdtthe other one (i.e., there may be no
functional relationship between two variables §t Moving back and forth among the
notions of uniqueness, the finite, and the infimitakes it difficult for students to figure
out a functional relationship between two sets. Mgt is also difficult for students to
understand and master the concept of functioraisitlis also hard to say whether a
functional relationship exists as an object or psogess; in other words, is a functional

relationship something static or dynamic?
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4.3 From “Parade Group” to group action

I now introduce the idea of a group action and tfedsite it to real world experiences
that could engage high school students in this ema#tical idea.

First | give the definition ofroup action as follows. You may skip this definition, if
it looks abstract to you. It won'’t hurt your reagliaf the following content. When you
need just go back to this.

Theaction of a groupG on a setS is given by a homomorphisg :G - PermS),
which assigns to everg [l G and everys[] S an elementg [0 S, where we normally
write @(g)(s)= glk, andPerm§ ), as we mentioned before, is a set of bijectioomfs
to itself. Note that since is a homomorphism we havge) = |, so the operatiort-
satisfies:

(1) els=A 9( $=1(s)=s;

(2) U9 = A)(AI)(9)=(AAd))(9 =A99)(9=(99) L5.

Conversely, given (1), (2), the functign defined by ¢ ¢ )6 F glkis a
homomorphism.

Many projects or initiatives (e.g., MathematicgJantext, Connected Mathematics)
advocate curricula with contexts to situate mathesaasks, which draws students
interest, stimulates students’ imaginations an@stigations, and assists students in
making connections among mathematical and evergdagepts that students hold
(Middleton & Spanias, 1999). Next | present an eglenfrom real life that involves the
definition of group and group action. Consider tagdour oral parade commands, which
tell the group to pivot and look to a certain direc: stand as you were (S), left face (L),

about face (A), and right face (R). The operat®ffaollowed by,” which we designate as
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F. Interestingly, S, L, A, and R, respectively,respond td (the identity rotation of a

square),R, (the symmetry rotation of a square by 90 degreRs)(the symmetry
rotation of a square by 180 degrees), &d(the symmetry rotation of a square by 270

degrees). We can check that the “Parade Set” Wéloperation F “followed by” really is

a group by making an operation table because tsai@, associativity, identity, and
inverse properties of a group hold for the four arends with the operation “followed

by.” In fact, the “Parade Group” (denoted by Pa subgroup of the symmetry group of a
square, namelyD,. So if we notice the corresponding relationshipS,d_, A, and R to

the elements of the symmetry group of a squaregamemmediately realize it is a group.
Furthermore, if we consider the set of the fram, feft, the behind, and the right of a
parade group corresponding to the set (denoted loy #éur edges of a square, say a, b, c,

and d, then we can let P act on E. The actionag/shn the following operation table:

Actron| I R, R, R,
a a b C d
b b C d a
C C d a b
d d a b &

Figure 4.3.1"Parade Group” operation table

Thus we can rewrite the elements of P in term@eoiutation cycles I=(a),
R, = (abcd, R, = (ac)(bd,, R, = (dcba). These cycles show mathematically what the

elements of the group P are.
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Teachers may use this example as a concrete ancagyetorial example to help
students get a feel for what a group looks likeachers may also show students how a
group action can be used to help express its elsmeanother way. Similarly, we use
different words in different contexts to define g@mne thing. Informally, for example,
we say a truck is a vehicle used to carry relajyibed and heavy things from one place to
another. But if we confine a truck to the contdydttthe Smiths are moving, we may say
the truck is a vehicle that carries the Smithshiure from their old house to their new
home.

Moreover, teachers may use this example to iniaadescussion among students
about the relationship between a group and itsreuipg Dweck (1986) noted that
appropriately challenging tasks are often the dhatare best for utilizing and increasing
one's abilities. | believe students have the adslito observe, make a conjecture, and
then reason it with the help of their peers andHees, and | want to challenge them to
enhance these invaluable abilities.

For example, one of the features of a subgrouipaisi (as a subgroup of given

group G) is closed under multiplication and itserse, i.e,a,b0H = albOH and
a*0H . So if we let any other element, say of G but not in H multiply any element
in H, the element after multiplication will not e H but still in G. If we multiplya,
with every element in H, we will get a satH (acosetof H), which has no overlap or
intersection with H. Then we use another elengr&E G neither in H norg,H to do
multiplication with H. We will get another cosajH , which has no intersection with H

either for the similar reason as fafH . But doesa,H intersect witha,H ? (Some
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students may come up with this question.) We cliiat if a, # a,, then applyinga,, a,
to any two elementy,, h, in H (h, h,can be the same), respectiveiyt # a,h,. More

generally speaking, two cosets have a nonemptysietgon if and if they are identical.
What is the reasoning for this claim?
Proof:

“=": Suppose I §H n a,H ). Then there exish, h,[1 H such thatb=ah = ah.

Thus,a =(a,h) " =a,(h,h™) € a,H by closure of a subgroup. So we &t= a,h,

with h, O H , left & multiplying with any other elemerit, D H , and then we get

ah, =(ah)h,ie.,ah =a(hh). Thus,h,h,DH=aH O a,H. Similarly,
a, =a(hh™), and soa,H O a H. Therefore,a H = a,H, as desired.

“ [ ”: Common notion: two identical things have noneyniptersection.

Now we see that each elementlG belongs to only one coset of H, so G can be
expressed as the union of distinct cogelts. If we define thendex of H in G to be the
number of distinct cosets of H in G, denoted [G:&fd define therder of H (or G) to
be the number of elements of H (or G), denoteddH|G|), then we conclude
|G|=[G:H]- |H|. Where did this relationship comenifbThe union of the [G:H] disjoint
cosets is all of G. H is in one-to-one and ontoespondence with each coget , if we
mappinghJ H to ah, so every coset has |H| elements. Therefore,tire(e are
[G:H]- |[H| elements all together, which means thmesaumber as |G]|.

Based on the example of the “Parade Group”, ifteepush students to think a
little bit further, they can ask student “What #re relationships you have seen between

| P| (the “Parade Group”) andd $q orD, | (the square oD, group)?” Students
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may note thatt B is smallerthanD, | .” or maybe “| D, | is double of | H
or“| P | dividing | D, | equals 2.”,or ‘| D, | is divisible by | P| .”. Good. These
are all good findings. Then teachers can push stade explore all the subgroups Df

by using the definition or properties of a subgrampl ask them to generate the
relationship between the order of a group and theraf any of its subgroups. | believe,
after going through all the subgroups, studentsgeiherate the conclusion that “if H is a
subgroup of a finite group G, then [H dividés |G "viNib would be the right time
to try to discuss whether this “rule” works for asiybgroup of any finite group or not (as
we just showed above). If students think it is tthen teachers may ask them “Why?”,
“How do you know?”, “Can you prove that?”, or “Cgou give me some reasons for
that?” to put them on the way of “reasoning ofificdtion” (Ball & Bass, 2003, p. 29).
Ball and Bass (2003, p. 29) pointed out that “mathical reasoning is as fundamental to
knowing and using mathematics as comprehensioexbig to reading”. Important
learning and mathematical thinking takes placaadesits try to make sense of
something.

To end this section | will elaborate a little matgoutgroup action. Given a group

actionG on a setS, ands[] S, theorbit of sis O, ={s S s = g[k for some

g G}, the stabilizer of s is G,={ gL G: gLs= s}. There is a one-to-one and onto
correspondence betwe&y G, (the set of cosets @b, in G) andO,. So[G: G,] =
#(0,). And then by Lagrange G | =[G:G] L | G, | , whereG, is a subgroup of
G,wehavel G | =#(0,)L| G, | * as we suggested students to figure out by

themselves in the above example. Once we knowdmsula *, given the action well
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defined, or at least understanding the idea undénrtbe counting principle, even high
school students could learn to count the ordenefgroupG , which may be the simplest
guestion we can ask when we naturally want to keomiething about the structure of
groups we encounter.

Here is a classic example (appreciated and offleyadany mathematicians) to
illustrate the power of group actions to high sdtstodents. It is also a good example to
show the conception that groups represent the adgelersion of symmetry (the

symmetric groupS, we talked before in this section was also one dumehtal example

of a finite group). LetG be the group of rotation symmetries of a cube. Hoany

rotation symmetries are there @? Let us count as high school students in this \(@y:
the identity rotation is 1 element & ; (2) the rotations by 90°, 180°, 270°about the 3
axes through centers of opposite faces count 3eBrfents ofG ; (3) the rotations by
120°, 240° about 4 axes through opposite verticestc2x4=8 elements @& ; (4) the
rotations by 180°about 6 axes through midpointsppfosite edges are 1x6=6 elements of
G. So there are totally 24 elementsGn i.e.,| G | = 24. Now let us see how to get this
number in a more advanced way by employing grotipracThere are three useful
actions of G we can useG acts on the set of faces/vertices/edges of the.didt us

take the action 06 on the set of edges of the cube as exampleSLie¢ the set of edges
of the cube, so any element 8fcan go to all the positions of 12 edges of theedup

symmetry rotations. This means the orbitsaf S is the whole se6, i.e., O, =S and #
(O,)=# (S)=12. The stabilizer of one edgg S is the rotations by 0° or 180° about the

axis through the midpoints of the edge and itsahadly opposite edge, i.eG; is all the
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symmetry rotations that fix the edg&l S, so | G, | = 2. Therefore,| G | =# (Og) L
| G, | =12L2=24. To check this nice result again we can thkeattion ofG on the

set of vertices of the cube as follows. There aee#y three rotations leaving a given
vertex of the cube fixed, and there are 8 vertiseghere are 8x3 = 24 symmetry

rotations in all.
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5. Real Numbers and Polynomials

In this chapter | will discuss some topics rela®deal numbers such as natural
numbers, 1-1 correspondence (the bijection featfiam isomorphism), prime numbers,
the unique factorization theorem, rational numbArshimedean properties, the least
upper bound property, Dedekind’s axiom, ordereld fiproofs of 1.000...=0.999..., the
infinite set, the countability and uncountabilityrmimbers, polynomials and its roots,
algebraic numbers, and the Cartesian plane ovieltda The impetus of writing this
section mainly came from reading Dr. Roy Smith’puinlished lecture notes about the
construction of the real numbers for the Paidetlao8tat Atlanta, my own class notes for
his mathematics classes at the University of GadidGA), and our personal
communication around my questions. | gave cleandieins and detailed proofs for
most theorems discussed in this section. | belgwneg through a whole proof is a hands-
on mathematical experience and also a good waguserand connect the knowledge we
have learned and also a process of learning songetiew. Even though we may not be
able to regenerate a whole proof by ourselves withay reference, it would still be
easier to pick it up quickly after we get some $iot stimuli, about which most students
must agree with me. It is reminiscent of an oldri@ke saying “Having it does not mean
it is enough, but not having it means it is notugtd'.

King (1992, p. 37) proposed that abstract algebeabranch of mathematics that

deals with structures having names like ‘ringsglds’, or ‘groups’ and processing
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structures which allow the elements of those sebetcombined in various ways. High
school algebra more than likely contains “only suier the elementary manipulation of
number” (p. 37). In other words, high school studesew real numbers, for example,
just as meaningless numbers operated mechanicatgad of elements of a field, which
has its own algebraic structure built out of binapgrations on the set itself — again, this
is one important idea | accentuate in the thekigelask the question to high school
students that in their mind what the differencesveen real numbers and integers (or
natural numbers) are, some of them may blurt attdalreal number has infinite decimal
digits, but it is not true since an integer alse imdinite decimal digits which just are all
0’s. Some may say there are infinitely as manymeaibers as natural numbers.
Unluckily, it is not true either (we will talk abobthis later). Others may do a better job
saying that an irrational numbers cannot be expteas a ratio of two integers. That is
right, but there is in fact more than that to talout among different number systems to
high school students.

Numbers are abstractions intended to capture somtitptive properties of
physical objects and to make it possible to comphweanswers to various questions;
different questions require different kinds of nwerdto be useful for answering them;
we began historically with the simplest kinds ofirhers, positive integers, for the
simplest counting problems, and invented new nusmbsmew problems arose (R. Smith,
personal communication, September 9, 2009). Fampla the creation of negative
numbers was motivated by the demand that the operat subtraction should work in

all cases; the invention of complex numbers wasvatad by the question that what is

the solution(s) of the equatio’h2 =-1 when solving forX. Most importantly, the notion
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of one-to-one correspondences, which might preoedebers, enriched or developed
humans’ experience in numbers. Dr. Roy Smith dzadl he used to use the example of
the Cyclops putting aside one rock for each shedptiout to graze, after Odysseus
blinded him, so he would know when they had all edrack in the cave (personal
communication, February 17, 2010). It was a goaarg{e for illustrating the difference
between 1-1 correspondences, such as the Cyclapasiag, and actual counting,
wherein one has a model set of numbers to compiéineeach other set to be counted.
That is, the Cyclops did not know how many sheepdw but he knew whether the
number that went out equaled the number that caole in. Notably, a great contribution
by George Cantor (1845-1918) “allowed mathematiian the first time to come to

exact grips with the concept of size of infiniti€&ing, 1992, p. 185).

5.1 Natural numbers and 1-1 correspondence
When we treat counting numbers as natural numbergssentially defineatural
numbers as a set of the number 1 and any other numbeasmebtby adding 1 to it

repeatedly, assuming the successor of any natunaber is different from the number.

That is, we define a mapri=>n+1 from the set of natural numbeP$ to itself. The
pigeonhole principlestates that, given two natural numbe@ndm withn >m, if n
pigeons are put intm pigeonholes, then at least one pigeonhole musacomore than
one pigeon; in other words) pigeonholes can only hold pigeons with one pigeon in
one hole, adding one more pigeon will require negigine of them holes. More
mathematically, the principle states that theresdu® exist an injective function on a

finite set whose range (the number of the pigeas)ak smaller than its domain (the
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number of the pigeons); in other words, there caerist an injective function from a
larger finite set to a smaller finite set. Henéw, pigeonhole principle implies that if S is
a finite set, then every injection f=8S is a surjection. Thus, its (equivalent)
contrapositive says that if there is an injectio§$ S which is not a surjection, then S is

not finite, namely, infinite. Therefore, the mam#n+1 from the set of natural numbers
N to itself as we defined above actually is an itiggcbut not a surjection sinde? 0

= n+1#1 Hence,N is an infinite set, the existence of which we assinere.

Moreover, if we consider any infinite set S, we sanilarly find an injection f: S

which is not a surjection. So we may claim a dé&bni of an infinite set that: a set S is
infinite if and only if there is an injection f:-3S which is not a surjection. In other words,
a set S is infinite if and only if there is a bijen (one-to-one correspondence) between S
and a proper set of S. This, in fact, is the de@iniof aDedekind-infinite set. The usual
definition of an infinite set is that: a s&is infinite if it cannot be put in bijection with
finite ordinal, namely a set of the form {0,1,2n-1} for some natural number So an
infinite set is one that is literally "not finiteih the sense of bijection. Most modern
mathematicians assumed that a set is infinitedfamly if it is Dedekind-infinite.

If it is possible to figure out some way to ordesed of things, such as defining
natural numbers, there is a first one, then a stoome, then a third one, and so on, then
we really can put our whole collection of thingsaahoin this list so that they all get
counted. If this can be done we call thecsintable, even though it may be infinite. So
the real problem for counting infinite collectioissto find the right way to order or
enumerate them. Here is a general principle fasgeizing countable infinite sets:

Suppose that S is a collection of things which loatroken up into a countable number
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of sub-collections, S1, S2, S3, S4, ..., and s@adh having a finite number of elements,
and then S is a countable set. For instance, edtrmmmbers (i.e., fractions) are countable.
Teachers may want to engage students in findingyatavorder or list all the rational
numbers (which has been described in a lot of hodleyre is the brief idea for a
complete list of all positive rational numbers:X14/2, 2/1, 1/3, 3/1, 2/2, 1/4, 4/1, 2/3,
3/2,1/5, 5/1, 1/6, 6/1, 2/5, 5/2, 3/4, 4/3, 1//0,,B/5, 5/3, 1/8, 8/1, 2/7, 7/2, 415, 5/4, ......}
(observing the sum of the numerator and the deraimirof each fraction).

Now, based on the notion of countability, we cldirat the cardinality of the set of
all even (or odd) numbers equals that of the natunmbers, by the definition of "same
cardinality”, namely that there exists a bijecttween the sets. So it is not as many
students think that the size of the set of natuwahbers are twice big than all (infinitely
many—easy to prove) even (or odd) numbers, bedhese exists a bijectiom>2n (or
n—>2n-1) wheren is any natural number. What about the set of pnomabers? Are there
infinitely many prime numbers? Nobody has foundaprto get all the possible primes
from natural numbers, but mathematicians did coma alassic way to prove thiect
that there are infinitely many prime numbers. Oweeknow this and ththeorem that
every infinite subset of natural numbers has acbrtespondence with all natural
numbers, we will see that there are as many pramesatural numbers, since primes form
an infinite subset of natural numbers. Before wavprthe fact and the theorem we just
now stated above, we need to introduce some funolamend important mathematical

ideas.
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Thewell-ordering principle : Every non-empty subset of positive integeé} (
contains a smallest element. Though students waotddively agree with this statement,
the mathematical ideas entailed in the following pvoofs need students’ attention.
Proof.

Let S be a non-empty set of positive integersLIE] then clearly s the smallest
element. If not, let T={tIN: none of the positive integers 1, 2, 3, ..., t bg®to S}.
Suppose KIT. If k+10T, then k+1 is the smallest element of S. If, hogretor all KIT

it is true that k+11T, then by the principle of mathematical inductidaN, and so SK-
T=¢, i.e., S is emptycontradicting the hypothesis.

Proof by contraposition.

That is to prove a subset of the positive integetis no least element is empty. Let S be
a subset of the positive integ&tavith no least element. Define T = {the complemeint
S} =N-S. Claim: T =N, i.e., S=¢.

By strong principle of induction, i.e., a subsedfIN equals\ if it satisfies the two
properties (i) Lisin T, (i) if {1,...,k} is in Tthen k+1isin T.

Ok, certainly 1 is in T, since if not, and 1 isSnthen S would have a least element,
namely 1, contradicting to the hypothesis.

Now suppose {1,...,k} isin T, and ask whether ks-in T. Similarly as the above step, if
not, then k+1 is in S, and would also be the lebsnhent of S, since none of the smaller
elements {1,....,k} lies in S, so it is again a tadiction to the hypothesis.

Hence by strong induction, TN, so SN-T=¢, as claimed.

Typically each proof usaaduction, a basic technique in mathematics. The first

proof does not offer as many details or as mudtitglas the second one, so it might be a
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little harder to follow the first one without hagmone through the second one when
reading them in the order | have presented themceéiat is important to keep in mind
that the way a proof is presented to students taftbeir understanding. Though the two
proofs essentially are the same, the first onegsdlie original statement by discussing
successive possible cases one by one while enainigst case by contradiction; the
second one instead proves the contrapositive abrilggal statement and uses
contradictions to justify the satisfaction of teetproperties of induction. Note that this
fortuitously reflects the equivalence between tteas of proof bgontradiction and
contraposition. Incidentally, this principle does not hold foetpositive real numbers.
For instance, the infinite set of real numbersooff {1/2, 1/3, 1/4, 1/5, ... } contains no
least element and its greatest lower bound is beitathat is not in the set.

TheUnique Factorization Theorem of natural numbers(namely,Fundamental
Theorem of Arithmetic): Every positive integer greater than one candotofed into
positive prime factors in exactly one way.

(The usual proof is by induction. Here | prefer tfarative proof which | got from Dr.
Roy Smith (personal communication, September 69PbB8cause | think it does a better
job of expounding on the mathematical thought.)

Proof.

(1) The existence is the easy part.

Suppose there is an integer x>1 that does notrfadtm primes, then by theell-

ordering principle, there is a smallest such positive integer, there is an x>1 that

does not itself factor, but such that every smaitiggger greater than 1 does factor

into primes. But this is impossible. Our numberaxiot itself be prime (with just one
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prime factor), or else it would already be factor#d primes, so it can be factored
into two factors both of which are smaller thamxl greater than 1. But then both of
the factors, being smaller than x, will have prifaetorizations, by our assumption,
and then by putting the two factorizations togetker would get a prime
factorization of x. This contradiction shows thatsuch smallest non-factorable
number x exists, and hence indeed no non-factorabigers exist at all.

(2) The uniqueness part is harder, and may have fresed first by Gauss.
Thekey lemmausually used nowadays, is to show: if a primegateg divides a
product of positive integers ab, then p dividebasita or b.
A nice way to do this follows from a classic fabbatgreatest common divisors
(g.c.d.) It can be stated as a fact about measuring lengtimg two different rulers,
which are commensurable, i.e., whose ratio of lesigt a rational number. The basic
result is that the shortest length one can medsuusing both rulers, equals the
longest length that can itself be used to measoite tolers. Algebraically, given two
integers a,b, the smallest positive integer thatmwritten in the form na+mb,
where n, m are any integers, either positive oatieg, equals the largest integer d
such that d divides both a and b evenly.
Assuming this, if p is prime and divides ab butsloet divide a, then the largest
integer that divides both p and a is 1, hence lbeawritten in the form of 1=na+mp
for some integers n, m. Then multiplying by b givssb=nab+mpb.
Now assuming p divides the product ab, it follows3kterm principle that p divides
both terms on the right side of the equation, helinaees also the left side.

(Incidentally, this is another good illustrationtbe equivalence relation indicated by
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the equal sign “=". The previous example is in Gba) Thus we have shown the
abovekey lemmathat if p divides ab but does not divide a, thathvides b.

Now suppose we have factored some number n inteegrin two ways

N=PP PR =9%8--U\yhere r and s are some positive integers. Shce
prime and divides the left side it also divides tight, hence by thkey lemma Py
divides some™ , which we may renumber & But% is prime so itP divides i,
since Pt ¢1, it must be that® = %. Then we can cancél and % on both sides and
have a new equatioﬂ = PPsR = %G9 we now apply the same argument to
the prime p2, eventually canceling it with some prin% we may renumber al.
Eventually, we have canceled all primes on botkssith particular, each prim|%j

was equal to some prim%‘ , and so the factorization was unique.
Thus, the above two parts constitute the wholefproo

Now let us prove the aforementioniedt thatthere are infinitely many prime
numbers.

Proof by contradiction.
Suppose there are finitely many prime numbers, whre P Py By pﬂ, where mis a

positive integer. Now consider the numﬂ\ér: PP, Py By +1. Since M is not any of the
already known primes, by thénique Factorization Theorem / Fundamental Theorem
of Arithmetic, it is can be factored as a unique product of gsinfin fact, this needs

only the existence part of the theorem, i.e., dohthis proof whether the factorization of
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M is unique does not matter.) But none of the alydanown primes divides M. We reach
a contradiction, so there are infinitely many primanbers. Done.

By the way, Euclid’s definition of primes is “A pnie number is that which is
measured by a unit alone” (Definition VII.11) anddid proved “Prime numbers are
more than any assigned multitude of prime numb@ts3position 1X.20) by working on
a special case when m=3. In addition, the pubtitule Lang (1985b) gave about prime
numbers on May 16, 1981 is really a great illugtratbout the interactions among
primes, integers, logarithmation and exponentiatiiomt and infinity, discreteness and
continuity. | recommend it to those who have insere further reading.

Next we prove the aforementioned really importaebrem thatevery infinite
subset of natural numbers has a 1-1 correspondengeth all natural numbers.

Proof.

Let S be any infinite subset of natural numbé¥s By thewell-ordering principle S

contains a smallest element, denotedLet correspond to 1. Then we taReoff from
S, so again the new sgt_{ ) has a smallest element, denotedLet > correspond to
2. Then we take? off from S-{9 , SO the se§_{ $ 9 contains a smallest element,

denoted™. We now apply the same arguments{o Repeating this process, we
eventually can make a 1-1 correspondence betwesy element of any infinite subset
of Nand every element o\ .

Incidentally, how do we know all the natural nungoese defined exist? That is, how
do we know the set of positive integers exists ahale? It would be an infinite

collection, and there is, in our physical world,infinite collection of anything.
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According to Gamow (1957, pp. 5-6), in order towlbe existence of numbers which
exceed not only the number of grains of sand whichld even equal to a mass the size
of the universe, Archimedes (in his treat&mnd Reckongset out to determine an upper
bound for the number of grains of sand that fib itite universe by inventing a way to
talk about extremely large numbers, which is sintitethe way large numbers are written
in modem science, and estimating the size of tineetse according to the then-current
model. If we think about it, not only the grainssaind on all the beaches and oceans are
finite in number but even the total number of atamthe universe is finite. Though we
could not directly observe anything infinitely mafigw) or large (small), “all our
observation does take place in space and timesaoidwhat is spatially and/or
temporally extended” (Tiles, 1989, p. 21). Hence,need a way to think coherently
about infinity and our observations in space antet{continuous magnitudes). In our
mind we believe that there are some really infinienbers, which are larger than any
number we can possibly write out no matter how laegwork. “Thus ‘the number of all
numbers’ is clearly infinite” (Gamow, 1957, p. 1A} least we have arrived, (some of us
anyway), at an act of faith by which we assumeettistence of an infinite collection of
things called the counting numbers or natural nus)lvhich we assume to have the
familiar arithmetic properties we know to hold tbe few relatively small numbers we

actually have used in our lives (R. Smith, persaoahmunication, September 6, 2009).

5.2 Constructive and axiomatic approaches for Realumbers

In this section | will discuss the constructiorntloé real numbers first from a

constructive approach (inspired mostly by Dr. Royitf’s Paideia lecture notes) and
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then from an axiomatic approach. In addition, Il wilare another constructive approach
(Cauchy Model) offered by Dr. Roy Smith in an emiaithe appendix.

A closely related concept to that of a number ésabncept of a "numeral”, which is
a symbol that is used to represent or to "nameinaber; a number is more of an idea,
whereas a numeral is more of a physical objectesioimg we write on paper for instance
(R. Smith, personal communication, September, 6920Ne sort of have names for all
of the positive integers, so as the negative imefjast changing the direction of
counting), at least in the sense that we know lmproceed along from one to the next.
It is not harder to represent the rational numhiiisse useful numbers that provide
solutions to equations like bx-a = 0, where a,ebiaregers, andA®. Thus, we just define
a rational number to be given by a pair of intedars) where $0, but we agree that the
two pairs (a, b) and (c, d) shall represent theesetional number if (and only if) ad-
bc=0. We also write a/b, as a fraction, of coufsethe number represented by (a, b). So
to name a rational number we just need two integedsthus a finite number of the basic
digits. Also the difference between a number andraeral is pointed up by the fact that
2/3 and 4/6, for example, are two different nunsefal names) for the same rational
number. However, one of the difficulties in congegrof the set of all real numbers is
the problem of finding names or numerals for althedm. There are just too many real

numbers for us to be able to easily give named tuf them.

5.2.1 The constructive approach

We have already met the phenomenon of using (teimiecimal expansion to

represent a real number. Let us assume it hetartoosirconstructive approachfor the
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real numbers. Then | suggest students think aleuttollowing question: “Can you
explain why a real number is rational if and orilifs decimal representation is either
finite or repeating?” (c.f., Shifrin, 1996, p. 3Bxercise 11). As we know the rational
numbers are defined as the “fractions” formed lyng “ratios” of integers. Apparently
the decimal representation of a fraction is eiflrete or repeating. If a real number r has

finite decimal representation, for example, r hakeaimal digits, then r can be expressed

n

in form of %) which is a fraction since (10" is an integer. What if a real number r

has repeating decimal representation, for exantipdeglecimal representation of r is in

form of m random digits followed by n repeatingith@ Let us put this into a concrete

example illustration as follows. Take= 0.43%5678. Thus,r =0.432+ 0.0006678
=0.432+0.0005678 0.0000000678+0.00000000005678¢ ....

Every item in the above expansion is a finite dedjrthough there are infinitely many
finite decimals of such kind. We have just now shamy finite decimal is a rational

number. So the sum of rational numbers (infinitalgny finite decimals) will still be a

rational number, sian, as a ring or a field, is closed under additionhigh school,

students usually are told what sort of numbersalled rational numbers, and then those

real numbers not belonging @ are called irrational numbers. But actually what real
numbers? Students are seldom challenged to reasomahy the definition is what it is.

If we treat real numbers as one-to-one corresparglpaints on the real line, as
taught in high school, there would be a historpeispective to approach this concept.
The "real" numbers are designed to solve the pnolaiemeasuring lengths of line

segments; there is nothing any more “real” aboeitrthhan there is about any other kind
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of numbers; all numbers are imaginary construbis difference between rational
numbers and irrational numbers is much greatersabtler than the difference between
real numbers and imaginary numbers (R. Smith, patsmommunication, Fall 2009).
Measuring lengths is not such a simple problemcamgequently the real numbers are
rather sophisticated things (later in this sec@d®9...=1 is a specific example of this).
We choose a point x, and assume for simplicity ithegs to the right of zero. Then lay
off copies of the unit interval end to end, on lihe, starting from zero, until we get one,
whose right end point does not go to the right,dit so that the right end of the next
unit interval does go to the right of x. The numbgunit intervals we have laid off, i.e.,
the largest number that do not reach actuallyeaitiht of x, is the integer part of the
decimal we are constructing. Then we get the tepdinisin a similar way; i.e., subdivide
the unit length into ten equal parts, and then tale of these tenths and start laying off
copies of it end to end starting from the point kivag the integer part of x. Again, there
will be a segment which does not itself reach ®ortght of x but such that the next
segment will do so. The greatest number of segntkatgio not reach to the right of x is
a number between zero and nine, called the temgitsrdthe decimal expansion of x. We
get the hundredths digit the same way, and comguwve can construct as much of the
infinite decimal as we want. Now, of course, wekhit is obvious that this procedure
can be carried out, but in fact in doing so we hawegly endowed the real line with a
special property, thArchimedean Property I:

Given any point x on the real line, and any positength y (determined as the interval
between two distinct points), if we lay off enougtpies of the given length, starting

from zero on the line, we will eventually (in aifennumber of steps) go past x.
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Algebraically, given any two positive real numbgyy, there is an integer n such that
ny>Xx.
By our geometric statement this property is appiremuitively true in Euclidean
geometry.
Algebraically, if x is any real number then thesean integer n which is bigger than x.
(c.f., Hartshorne, 2000, p. 115 & p. 139)
Proof. Just take n to be one more than the integer part@r, take any positive length y
equal 1 the unit length. Done.

The Archimedean Property | says that x cannot be "infinitely far away fromcae
But what about the possibility that x is “infiniyetlose to zero”? So we claim
the Archimedean Property I1:
If X is any point to the right of zero, and if wersider any other finite interval extending
to the right from zero, such as the unit interttagn it is possible to subdivide that
interval so that the first subdivision will occuetiveen zero and x. Algebraically, if x is
any real number bigger than zero, there is a pesititeger n such that 1/n is smaller than
X.
Proof.
To see this geometrically, assume first that wedaading with the unit interval, just so
the interval will have a name. Then consider treeaahere the end of the unit interval,
the unit point, is already to the left of x. Théete is nothing to do, and we are finished.
So assume now that the unit point, call it 1, ithright of x. Now assume the
Archimedean Property | to find n so large that n copies of the intervaht 0 to x,

whose right endpoint we will call nx, reaches dadiow just subdivide both intervals [0,
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nx] and [0, 1] into n equal pieces. Since nx igh@right of 1, the first subdivision of [0,
nx], which is x, should be to the right of the fissibdivision of [0, 1], which is what we
wanted to prove. Dr. Roy Smith pointed out thatwloed "should" is in there because we
do not see immediately how to prove that from Eledn geometry, so either work it out
ourselves or assume Archimedean property |l axemeaif we want to (personal
communication, September 6, 2009).

Of course, to prove this algebraically we just takgreater than 1/x. If the integer part of
x is bigger than 0, then 0.1=1/10 (where n=10)maler than x. That takes care of that
case. If the integer part of x is zero, just gountil we find a non-zero digit (salgth
decimal digit) in the expansion of x. Then the nemlvhich has all zeros one place

farther out than x does, but then has a 1, ammkalls after that, is smaller than x and has

1 _ +
the formj/ld( =¥ N wheren =10 pone.

Corollary II.1 : If x is any positive real number (point to thghi of zero), then there is a

positive integer m such thytldn is smaller than x.

Proof.
Since¥10" < ¥ Mo, any positive integer m, but as shown in thevabproof¥y M< X,

then 0< Y10 < X Done.

Corollary 1.2 : If x is a non-negative number which is smallaartii/n, for every

positive integer n, then x is zero.

Proof.

This is a rephrasing of thrchimedean Property Il, which says if it were not zero then

some number of form 1/n would be smaller than utt By the hypothesis, x has to be 0.
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Even though we cannot construct the entire irdidiecimal in a finite amount of
time in the way we showed before, neither can vieadly construct the whole of the
familiar collection of positive integers in that Wwave to just put dots eventually when
we were trying to write down all of them, but weokmhow to construct them as we wish.
In this situation, most mathematicians are coriessay that we have constructed, or at
least that we have given a prescription for comsing, the full decimal expansion of x,
and to leave matters there (R. Smith, personal aamzation, September 6, 2009).

Thus, we know how to assign the real number (anitefnumeral representing) to a
point on the real line, with which people extenéitltonceptions or considerations of
“countable” things to “measurable” things. This reds me of an interesting line from an
ancient Chinese poem written by Han, Yu (an essawd poet during the Tang Dynasty),
which | translate into “I am crooning verse alotiere are extremely little pieces of
sadness in my heart, which no one can trim for rHari was using a metaphor that
assigns a magnitude (let us say a length on a nuimbegto each of his very little pieces
of sadness. Though the length is extremely smalktii doubted that people can reduce
or shorten it. Let us consider it more carefullyartain mathematical system. Suppose
we can sign an infinite decimal to the length ohldasadness which satisfies the
Archimedean Property (A) like the real numbers tredlength is very, very small which
approaches 0. With this hypothesis, we are sureamdrim down his sadness for him,
i.e., itis true unless (A) does not hold for iglis@ss.

Now, what about the reverse? That is, supposeavefsdm an arbitrary infinite
decimal, is it necessarily the real number commgifsome point on the line? The

answer is essentially yes, with one class of exaegt certain points on the real line, the
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ones having finite decimal expansions, also hawthen different expansion which is
infinite. For example, a number like 19.850000000Q00 , has another expansion namely
19.84999999909...... . However, the method that @geibed of assigning a decimal to a
point on the line will not allow us to come up witie second of these two expansions.
Thus we could say that, by our construction, thatgsaf the real line correspond exactly
to those infinite decimals that never become eahytequal to all nines. It will be better
though, if we go ahead and think of real numbergian by all infinite decimals and

just remember that every infinite decimal that eimdsll zeros (i.e., every “finite”

decimal, or “terminating” decimal) can be writtegain, in a different way, as an infinite
decimal that ends in all nines. This points upfdo that the decimals are numerals, i.e.,
merely names for the numbers and not the actuabatsithemselves; some real numbers
have more than one name -- that is it (R. Smithsqreal communication, September 6,
2009).

One thing which | think really requires the attentof both students and teachers is
that why 0.999... and 1.000... are two different nafoeshe same real number 1.
Calculator is convenient but affects students’ usidading of real numbers. Calculator
rounds the real number 0.999... to a rational nundagr, 0.999999. In this case, the
calculator only does arithmetic computation oftinilecimals, so students will never get
the result (0.999...)(0.999...) = 1. No wonder it ischtor students to believe
mathematically 1.000... = 0.999..., while they beli@y® = 0.333... or 1/9 = 0.111... (*),

and nearly no high school students realize thatiptyihg (*) on both sides by 3 or 9
yields 1.000... = 0.999... . And note that studentsaliguhink maaa..< ml where

m is an integer, but it turns out to be not righiew all® =2 with i ON
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We have seen one proof of 1.000... = 0.999... befo@hapter 3. Now | will give a
proof of 1.000... = 0.999... by using thechimedean Property Il or its corollary.
Proof by contradiction.

If not, then apparently we suppose 1 > 0.999.... samd-0.999... = X which is greater
than 0. Hence, b@orollary 1.1 above, there exist a positive integesuch that

1 1
0.999...+—— |<( 0.999.% 0.999..+— |<
£ 10[1) ( % i.e.,( 101)

O<]7/10] < X. Thus, we hav

0.999. +

>
But the truth is that for every integex0 ( ) . For example, when= 2

(O.QQQ..&%)Z 0.999.+ 0.04 1.0099

, Which is greater than 1. So we reached a
contradiction. Therefore, 1.000... = 0.999... is trDehe.

Teachers may want to use this little nice progfrmmote students’ appreciation of
the value of logic. Well, there is another proofdoing some basic algebraic operations,
which high school students may like better: Let 8.899999... . Then 10x =
9.999999... . S0 10x —x =9, i.e., 9x = 9, on bades of which cancelling 9 (non-zero)
yields x = 1.

For later use, we define a setin a vector space ovéR is aconvex seff and only

if whenever x and y in S the entire line segm)é_YltIies in S. A convex subset of a line
is sometimes called anterval .

In order to prove the upcoming “Squeeze Theorand its corollary, let us prove a
stronger version of the Archimedean axioms, namely,

the Archimedean Property Il (Density of rational numbers):
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Between any two distinct real numbers there idiamal number. In other words, if x and
y are positive infinite decimal numbers and x<rtlthere is a finite decimal a that lies
between them in the sense that it is greater tremdXess than y, i.e., such that x <r <y.
(This says x and vy, if different, cannot be infatyt close to each other, as measured by
our unit interval.)

Proof.

First make sure neither x nor y ends in all nifdgen, suppose x and y agree out through
the A" decimal place buty is larger in the (n¥p)ace (trying out one example helps
students understand). Since we may assume x dbesin all nines, it is possible to
go out further than the (n+1place and find an entry in x which is less th#nh ket r be
the finite decimal obtained by letting r agree witbut to that digit but then replace that
digit by the next larger digit, by therchimedean Property I. Then we complete r by
putting all zeros after that. Then r is greatentkdut less than y. Done.

(I used a pretty fundamental and intuitive methtmg@rove this axiom. Some may want to
refer to an algebraic proof given by Shifrin (1996, 53-54).)

Note that this may be an explanation to studentsstjons like “What is the
previous (or next) number before (or after) 1/28tiecing the answer also depends on
which number systems are talked about.

Interestingly, please imagine that we are walkitngightly along a line, and there
exists a gap on the line, namely, an interval [xy#hose length is 1/m (m is any given
natural number), wherever in front of us. Thatfisyshere we are standing now is the
origin and facing the positiveaxis, then O<x<y. As long as the length z of cumstant

walk step is less than 1/m, we will eventually falthat gap. We can take z=1/n (natural
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number n greater than m), then we know there exmstmber of steps we walk by, say k
steps, such that x<(k/n)<y. Similarly, if we arelkiiag in a limited room, if there is a
round hole with diameter of length 1/m (as defiabdve) and we walk in constant step
of length z (as defined above), and if we keep mglkn the room, then we will, again,
eventually fall in that hole.

Squeeze Theoremif x and y are any two real numbers, and if A2, A3, ..., and
B1, B2, B3, ...., are two infinite sequences oité decimals such that we have
An<x<y<Bn ,for all natural numbers n, and such that (Br)-Approaches zero, as n
approaches infinity, then x=y.
(Note that teachers may guide students to defsexiaence approaching to zero by using
algebraic language.
Definition: A sequence {Sn} 1, of real numbers, is said to approach zero, as n
approaches infinity, if and only if, for any giveositive real numbe? there exists a
corresponding positive integer N, such that fomgwve>N, we have |Srd|0. In
shorthand, we write Sh0, as r>infinity.)
Proof by contradiction.
If not, so that in fact x <y, then tegchimedean Property Il (Density of rational
numbers) would give us a finite decimal ¢ such that x <y. /Applying the
Archimedean Property Il again gives us another finite decimal d such¢had <.
Then we would have An < ¢ < d< Bn for all n, whamv all these numbers are finite
decimals. Subtracting ¢ from the last three of tlmaw gives 0 < d-c < Bn-c (1). On the
other hand, subtracting An from the first two oéin gives O < c-An, and adding Bn-c to

this gives Bn-c < (Bn-c)+(c-An), i.e., Bn-c < Bn-AR). Putting (1) (2) together gives 0 <
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d-c < Bn-c < Bn-An, for all n. This, however givagontradiction, since thénh=(d-c)
would be a positive number which (Bn-An) alwaysystgreater than, in contradiction to
the assumption that (Bn-An) "approaches (arbityardar to) zero".

This Squeeze Theorendirectly yields the followingCorollary :

If [ALl, B1], [A2, B2], [A3, B3], ... is an infinitesequence of closed bounded nested
intervals, whose end points are finite decimalsg, @hose lengths, (Bn-An), approach
zero, then there st mostone real number which is in all of the intervals.

Okay, let us now start from any infinite decimabé#if possibly even one that ends in
all nines, and explain how to construct the comesing point on the real line. We just
give an example: say the decimal is given by 1616611611116111116... (adding an
extra one each time before the next six). Thisitdidecimal should really be thought as
an infinite sequence of finite decimals: 16, 14416, 16.161, 16.1611, 16.16112,
16.161161, ..., and so on. That is, skequenceof those rational numbec®nverges to
that real number, which in calculus is thmit of the sequenc¢e®r theleast upper bound
(which we will define in a little while) of the sebnstituted by all the decimals in the
sequence. That real number actually asud™of the real line divides the rational
numbers into two classes (We will talk more abobig soon later). We may image that
the “guy” 16.16116111611116111116... (a real nuntbégrms of decimal expansion)
has an infinite long name, with 16 as its 1st nahéel its 2nd name, 16.16 its 3rd name,
16.161 its 4th name, ..., and so forth. To thgus@ace of finite decimals we associate the
following infinite sequence of closed bounded ings on the real line for which these
decimals are the left end points: [16, 17], [164.2], [16.16, 16.17], [16.161, 16.162],

[16.1611, 16.1612],........ , and so on. Note thatlength of succeeding intervals is
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growing shorter: the 1st interval has Iena;f_hj/ldj, the 2nd has Iengtﬁ'1= yio= 11&,

the 3rd has Ienth-Ol: y1006= 2 16, and so on. Note also that this is a "nested"
sequence of intervals, in the sense that eachvalteompletely contains the next interval
in the list. That is, any point that lies in anyeasf these intervals automatically lies also
in every previous interval in the list. Then weeasshat there is exactly one point x on
the line, that lies in every one of these intervafgl that x is the point corresponding to
the infinite decimal number we started with. Thesexrtion indeed is tHéauchy
completeness property of the real numbers

If [AL, B1], [A2, B2], [A3, B3], ... is any infinié sequence of closed, bounded, nested
intervals, whose endpoints are finite decimals, sunth that the sequence of their lengths,
(Bn-An) with n=1, 2, 3, ... , approaches zero, theare is exactly one real number which
lies in all the intervals.

Note that if those nested intervals are unboundeshcosed, by th&rchimedean
properties when n approaches infinity there is no common tpoiall the intervals.

In the above discussion, we have actually useddheeption obrdering of real
numbers. In other words, if all digits of two numbédecimals) are correspondingly
equal (except for those ending in all 9's and &) De., modulo a certain equivalence
relation such as 0.999...=1.000..., about which we halked before), then the two
decimals are equal. Starting from the first digibne number and stopping at the first
digit that is different from the corresponding afehe other number, the number having
bigger first different digit is bigger.

Then we come to the question about howadd two positive real numbers if their

decimals are infinitely unrepeated. | believe @hhschool students know how to add
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two rational numbers. So then we can use the atméoned idea that an infinite
decimal can be treated as a convergent infiniteesace of nested closed bounded
intervals with rational (finite decimal) endpoirds the real line. Therefore, the sum of
the two infinite decimals will be represented by gum of the two convergent infinite
sequences of intervals (as for the precise chditteecsequences, please refer to the
Cauchy Model stated in the appendix). Similarly,c@e check that the new sequence
converges to exactly one common point that is time sf the two real numbers. Based on
this idea we can construct the summation, multgioan, and division of any two real
numbers and then check those basic algebraic lavauge rational numbers form a field.
Thus we may say that the real numbers in ternteciimal expansions with

respect to the operations “addition” and “multiption” form anorderedfield.

As we have checked that our infinite decimal cargtton of real numbers satisfies
Archimedean properties, next we check that infideeimals have thieast upper
bound property (LUB): Every nonempty set S of real numbers, which Imaspger
bound, has a least upper bound.

Before giving the proof let us look at the relevdatinitions as follows.
Upper bound: Let S be a set of real numbers, and call b aruppund for Sif b is a
real number and if b is at least as big as evemytrar belonging to S. (Particularly, if S is
the empty set then every number is an upper baon8.jLeast upper bound (l.u.b.) If
S is a set of real numbers, a least upper boun8 fera number L such that L is an upper
bound for S, and no number smaller than L is areuppund. (Note that it is not required
that the l.u.b. should itself belong to the sab@&,only that it shall be a real number.)

Proof of LUB.
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Here, we may consider only the case when our nusrdrerall positive (easier for
students to think about). If some of our numbeesparsitive and others are negative then
we only need to consider the positive ones, silns#tipe is greater than negative. If our
numbers are all negative, we apply the similarsdeaall positive numbers to argue.

We think of the real numbers as given by infiniezitchals, as usual. Note first that since
our set S is bounded above, some integer is arr ipop@d. Moreover since the set is
nonempty, some integer fails to be an upper botihds there is a smallest integer which
is an upper bound. This is not of course neceysael (real) least upper bound we are
looking for, since it may not be the least real bemwhich is an upper bound. Now we
define the least (real) upper bound x of the sené&digit at a time. To define the integer
part, take the largest integer that is not an uppend for S, i.e., one less than the
smallest integer upper bound. Now among the num{bedsn.1, n.2, n.3, n.4, ....., n.9}

where n is an positive integer, there is exactly sach that it is itself not an upper bound
for S, but such that we get an upper bound by addih to it. Let™ be the digit between
0 and 9 in which this number ends. Then we statedtr number x starts olt®. Now

among the numbersn{aio, n.all’ n.alz’ v n.a19} there is again exactly one such that,

it is not itself an upper bound for S, but such tha get an upper bound by adding 0.01

to it. Let % be the appropriate digit, and then our numbeaxrsbut ad"&e,

Continuing in this way we get at least a presasipfior constructing an infinite decimal

X=N&& &3 -- and one which | claim is the least (real) uppmurid of S.
Hence we must check two things:

(1) x is an upper bound for S
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(2) No number smaller than x is an upper boundstor

For (1), Suppose x is not an upper bound for ) there would exist a number zin S
which is larger than x, i.e., x<z and/3. Now if X=Nadaa - then write

Xn =N %4, - a“, where m is any natural number, for the finiteinhed that agrees

with x out through the fidecimal place and then has all zeros. Also, define

Ym=Xp +10 , SO that (by construction of x), for all M is not an upper bound of S but

Ym is an upper bound. Sincels then?= Ym for all m. Thus we hav&m SX<2=Yn

for all m. Since, howeveer'Xm =10" , which approaches 0 when m approaches infinity.
This contradicts th&queeze Theoremve proved before, which says that then x = z. So
X is an upper bound for S, as desired.
Now for (2), our construction may yield for x a deal that ends in all 9's, (apply it, for
instance, to the set S={0.9, 0.99, 0.999, ...l éven if it does, any number smaller than
x will be given by a decimal which equals x up ¢tone point and then has a digit which
is smaller than the corresponding digit of x. Sp i a smaller number than x, then look
at the first digit y has which is smaller than tdogresponding digit of x. By construction
of x, the decimal which agrees with x out to, amcluding, this digit is not an upper
bound for S, and it is at least as large as yhabyt is not an upper bound, either, as
desired. Done with this proof.

Incidentally, with this result, the uniqggeeatest lower bound(g.l.b.) may also be

constructed.

Corollary : Every real number is a l.u.b. or a g.l.b. of acdegational numbers.
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Earlier, to construct the corresponding point anréal line to a given infinite
decimal, we assumed tizauchy completeness property of the real numbers
If [AL, B1], [A2, B2], [A3, B3], ... is any infinié sequence of closed, bounded, nested
intervals, whose endpoints are finite decimals, sunth that the sequence of their lengths,
(Bn-An) with n=1, 2, 3, ... , approaches zero, theere isexactly ongeal number which
lies in all the intervals.

Now we can prove it as follows.

Proof.

TheCorollary of Squeeze Theorenshows there iat mostone such point so we have to
prove there isit leastone. Let S be the set of all left end points efititervals, i.e.
S={An}. Then B1 is an upper bound for S and A1nsS, so S is not empty and is
bounded above, and thus, (WJB), has a least upper bound, which we call x. Then we
claim that x lies in all the intervals. Since »ais upper bound of S, we have % for all

n. Moreover, since every Bn is an upper boundHerdet S, and x is the least upper
bound, no Bn can be less than x, i.eBr for all n. Thus for all n, ARx<Bn, i.e., X is in
all the intervals. Done.

Importantly, the rational numbers are not Cauchyyolete. For example, the infinite
sequence 1, 1.4,1.41, 1.414, 1.4142, 1.414214218] 1.4142135, ... is
convergent/Cauchy but it does not converge toiamatnumber, whereas, in the real
numbers, it converges to the positive number wisgs@re equals 2. Nevertheless, to be
prudent we should prove that there is a real numibe@se square is equal to 2. To do this,
briefly, we produce an infinite sequence of ratiomambers, none of whose squares is

equal to 2, but whose squares get closer and do2n\We say the real positive square
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root of 2 is the real number approximated by oguseace of rational numbers. (Note that
we have talked about how to square a real numbehvig determined by the
multiplication operated with the associated segeasif finite decimals.) We will see the

formal proof in the next section.

5.2.2 The axiomatic approach

Now, it is time to address the axiomatic approawxttiie real numbers. If there is a
world in which all axioms hold, then those axioms eonsistent (i.e., cannot lead to a
contradiction) and all theorems deducible fromakmms are true in the world. We may
call this world araxiomatic system Therefore, working in an axiomatic system we can
take any property as an axiom if we accept it diele it is true without proof, perhaps
for energy-saving, convenience, or simplicity. Egample, we can take as axioms the
Archimedean properties, LUB, Cauchy Completenespétty of real numbers that we
presented before. Moreover, according to Hartsh(#@eO0, p. 67), if we have set up an
axiomatic system, model of that axiomatic system is a realization of tiheefined
terms in some particular context, such that theragiare satisfied. For instance, the set
of real numbersR is such one model. Hence if we take a model asxample of some
world, then we should make sure that the axiomkeést some of the axioms) of the
world hold for the model we choose (i.e., modetsrageded to prove that the axioms we
choose are not self-contradictory).

Now let me introduce some pertinent definitions arms as follows.

An ordered field is a field (F,+,[ﬂ' together with a subsdé? whose elements are

called “positive”, satisfying
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()  forany@UF one and only one of the following hold&H Por 2=0 or

—allP (theTrichotomy principle ).
i) if 2POP thena+bl Pangalbd P (spositive” closure):
It follows that2# 00 F = & O P_ This consequence essentially tells us that theumt
of two negative numbers is positive. We will see pnoof in Chapter 6.4.
For example, the rational numbéPsform an ordered field where we take the positive
rational numbers, in the usual sense. Similarly,réral numberR is also an ordered
field with the usual notion of positive numbers.tBue field of complex numberS is
notan ordered field, sincé = ~1, while 1< 00P Moreover, as we talked befo# is
only a ring not a field, but with the positive seb®! , Z is anordered ring.

Let F be an ordered field. If a s&U F and there is an elemeXt F such that
X2'S for everySH S, then we say® is bounded aboveand X is calledan upper
bound of S.

In particular, whenF be a set of real numbers, and c&lan upper bound foF if X is
a real number and X is at least as big as every number belonging tdo%e that ifF is
the empty set then every number is an upper boomb

Let SU F be bounded above. We séﬂ/D F is theleast upper bound(l.u.b.) of S
if
(i) X is an upper bound o?;

(ii) for all upper boundst of S, %=X,
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We sayF has thdeast upper bound property(LUB) if every nonempty subset

SO F that is bounded above has a least upper bound.
In particular, whenF is a set of real numbers, a least upper boundrfisra number®

such that’® is an upper bound fdr , and no number smaller thdh is an upper bound.

Note that it is not required that the least upprrma should itself belong to the det,
but only that it shall be a real number. Teacheag mant students to reason that the
empty set has no least upper bound, and that armaset most one least upper bound.

An ordered field F is calledcompleteif and only if F has thdeast upper bound
property (LUB).

Theline-separation axiom(a corollary of plane-separation axiom):
Any point P on a line L separates the line into tli&goint nonempty convex sides, and
given two points A and B different from P on thedliL, then A and B are on opposite
sides of P= P is between A and B> P is on the segment AB* P is in the interval
(A, B) on L if which is the real line. (c.f., Hahtsrne, 2000, pp. 74-77)

Dedekind’s axiom (D)(the converse of the line-separation axiom):
“If all points of a straight line fall into two c&&es, such that every point of the first class
lies to the left of any point of the second cldaken there exists one and only one point
which produces this division of all points into twiasses, this severing of the straight
line into two portions” (Dedekind, 1963, p. 11,ated in Tiles, 1989, p. 85) (c.f.,
Hartshorne, 2000, p.115 & p. 139). It says thaefaery decomposition of the straight
line into two nonempty disjoint intervals, exactiye of the intervals has an endpoint.
This resolves the contradiction between the cootistnature of the number line and the

discrete nature of the numbers themselves. In etbeds, there is a real number r such
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that either one interval equals {x<r or x= r} aine tother interval equals {x>r}, or else
one interval equals {x<r} and the other equals {o»ix=r}, with r being the endpoint in
both cases. In short, a Dedekind cut yields amealber, which is the reverse of
assigning a real number to a given point on a line.

Now | claim theleast upper bound property of real numbers (LUB)can be
considered equivalent @edekind’s axiom (D)
Proof. (I created this proof with Dr. Roy Smith’s direation March 26, 2010.)
=
Assume (LUB), and dividdR into two nonempty disjoint intervals J and K. Thies R
is an ordered field, j<k for every element j ointlavery element k of K. And so J is
bounded above and every element of K is an uppandof J (but K may not contain all
upper bound of J). By (LUB) we let r be the I.uLobJ. If J is closed then r is the endpoint
of J and r does not belong to K. If J is not clogesh r does not belong to J, and so r
belongs to K and is the endpoint of K.

t

Assume (D), and leR have a nonempty subset S which is bounded abgvieysia, so
every element of S is smaller than b. Then divitlénto two disjoint subsets J and K
where K consists of all upper bounds for S (thusib K), and J consists of all elements
which are not upper bounds of S (thus every elemihis smaller than b). Hence, fBr

is an ordered field, J and K are intervals, sificeither of s, t is an upper bound, so also
no points between them are upper bounds and drg, both upper bounds then so also
are all points between them upper bounds. By ()kmow either one of them has an

endpointr. If ris in J, then K has no left endgpand r is not an upper bound for S. Thus
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some element x of S is greater than r, i.e., r<.rBs the greatest element (the right
endpoint) of J, so it means x is an upper bourd @hus x is in K). But by hypothesis
x<b. So x is the least upper bound of S, so xadeft endpoint of K. This contradicts to
the hypothesis itself. So ris in K not in J, ahdrt it is the least upper bound for S, as
desired.
Now let us look at the following three populara@xis for the real numbers:

(1) the structure axiom: R is a field;
(2) the ordering axiom: R is an ordered set;
(3) the completeness axiomR has a least upper bound property (LUB), iR.is

Dedekind-complete (D), as we just proved above.
We sayR satisfies all the three axioms above, so agaimeadefined before we calk
is a Dedekind-complete ordered field. And so th@pirag, f: points on a straight line
real numbers, is a bijection.

Now we can prove tharchimedean Property (A): (algebraic statement) “Given
any two positive real numbers x, y, there is aagetn such thatV’yY” X" as a corollary
of (LUB) or (D). | show it in the following two ways.

Proofs.
@) Let S=INI N NS X i S js empty, i.e..Y ™ X, then it is easy to takB=1.
Otherwise, when® is not empty, we know tha? is bounded above by, for example,

XI'YUR Thus by (LUB) or (D), we know there exists ab.Ud of S, where
NN actually is the integer part & Y plus 1 (if X/ Y is not an integer). So we

can just take" to bel* X/ Y such that’yY > X. Done.
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2) Supposd® I N is the L.u.b. ofN | then™ ~1< " for some elemer?'ON | and so

My <(n'+10 N), which saysnO is even not an upper bound ®f. So we reach a

contradiction, and hence natural numbers are nadbed above, which is what (A)

says. (c.f., Birkhoff & MacLane, 1941, p. 69, Thewr4)

Note that the real numbeR and the rational numbefR both satisfy the first two

axioms (i.e., they both are ordered fields), wheiies the third axiom that differentiates

R from Q. In the aforementioned example (in Chapter 5.@f ije approximation
rational sequence of the positive square root afl2he rational numbers with square
less than 2 have a rational upper bound but norraltieast upper bound, because the
positive square root of 2 is not rational. On tkieeo hand, (LUB) tells us that a real
number can be defined by infinite decimals to whiod associated Cauchy sequence
converges. So we may say Cauchy completenesgecabkcase of Dedekind
completeness. Moreover, certainly (A) does not infpUB) or (D) because, for

example, the rational numbers satisfy (A), but(httB) or (D).

To be circumspect, we now prove the existenct/é)fas a real number.

Proof.

We want to prove that/E exists as the L.u.b. of the sef- 1 SU Q $<2} . It is obvious

that S is bounded above (say, by 2), so by (LUB) or (D)ds least upper bound denoted
by | . Hence we want to prove= V2, so to provd” = 2.
By theTrichotomy principle we now prove that” <2 and!” > 2 both lead to

contradictions and so we must ha{\ie_- 2,
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2
2 1] <
Thus we supposk <2. We now considek N with NUN which is equivalent

|2+£|+i2<2 |2+£|<2 n> 2

to n n . Thenwe have N , and so 2-1*  Then by (A) we can find

2
(I+£j <2 (I+£J>I
such an" so thatt N . But n , sol would not be an upper bound. This

contradicts the hypothesisis l.u.b. So* ¥2, as desired.

1

2
| e
Similarly, we supposé” > 2. We now considek N with "IN which is

-4, 1o, 12-2 55 n>_2

equivalentto N n’ . Thenwe have N ;andso  1°=2. Then by (A)

(I —1j2>2 (I—ljd

we can find such afl so thatt " . Since n , we found another upper
bound which is smaller thahn But this contradicts the hypotheéisi;s l.u.b. So|2 *2 as
desired.

Done with the proof.

In short, Dedekind’s axiom holds in an ordereddfiéland only if it is a complete
ordered field. Any two complete ordered fields im@morphic; there is one and (except
for isomorphic fields) only one complete orderezdj which actually iR (Birkhoff &
MaclLane, 1941, pp. 71-73). These are essentialgdme as Harthorne (2000, p. 70)
talked which we will briefly mention later in Ch&pt5.4. The proofs for these
conclusions are long and not easy, and would leddnafield, so | just mention them

here for people who have further interest.
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5.3 Uncountability/countability and polynomials

We have known that natural numbers and any subb$edi@ countable. What about
real numbers? How many points are there in a Mietlaim that there really are more
real numbers than there are natural numbers, nap@djtive integers, in a rather precise
sense.

Theorem: (Georg Cantor) The set of real numbers is not countable.
Proof (adapted from Dr. Smith’s Paideia notes plus my overpretation).
We will just show that no list of real numbers camtain all of them. Indeed we will
restrict ourselves just to those real numbers aeggveen 0 and 1 and whose decimal
expansion contains only 0’s and 1's. What we wallislassume that we are given a list of
such real numbers and then give a way of cookingngther such real that cannot
possibly be in the list. That will show that thstlcannot be complete.
So let us take an example of one possible list:
1) 0.0000000000...
2) 0.1000000000...
3) 0.1100000000...
4) 0.1110000000...
5) 0.1111000000...
Now of course it is easy to see that 0.010101010101... , for example, is nowhere in
this list, but let us try to construct another n@mkmot in the list, in a more systematic

way, a way that has some hope of working on akolists as well.
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Notice first of all that in order for two decimaid$this type to be different they only need
to be different in one digit. So, for instancectmstruct a decimal that is different from
the first one in this list, we only need to letdiscimal part begin with a 1, instead of a 0.
So we let our number start out as 0.1, and thehawve already made it different from the
first number in our list, and we are nowhere neaslied constructing it. How should we
continue it so that it will be different also fraime second number in the list? Since we
are ready to choose the second digit of the degoad) and since the second number in
the list has 0 as the second digit of the decimadi, pve only need to choose the second
digit of the decimal part of the third number as$Sé.our decimal now looks like 0.11, so
far. Now look at the third digit of the decimal paf the third number in the list, which is
again a 0, and conclude therefore that we showdssha 1, and we have 0.111, for our
number so far. Get the idea? We are led to the pu®i11111... , which is different
from every number in the list.

Now let us try it in general.

Suppose we are given some infinite list of infirdeximals like those above:

1) 02233,3,.
2 0Bbbbk...

3) 0.c,C,GG,G...

where each of these digits is still each 0 or 1.
Now to construct an infinite decimal which is notthe list, we do as we just did. To

figure out a way to write it, let us make a rulee \Wut a “= ” symbol over a digit to
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change that digit into the opposite choice of digior 1. Thus i is 0 then® is 1, and

vice versa. Then our number, which we claim is nenghn the list, can be written as

e T

0.a,b, G- That is, our number has a different first deciatglt from the first number

in the list, so it does not equal the first numlhiealso has a different decimal second
digit from the second number in the list, so itsloet equal that second number either.
Indeed our number cannot equal any number in sthailce it differs from each number
in at least one digit. Thus we have constructesbhmumber whose decimal expansion
has only O's and 1's and which is not in the glisnThus no one list can contain all real
numbers of that type. That is, the real numbethaiftype aretincountable’. This

implies also that the “larger” set of all real nuenbis uncountable too (since the real
numbers in [0, 1] have a one-to-one correspondefitbethe numbers in any other
interval of unit length on the real line). Done.

We have kept using the concept “polynomials” abdwkink it is the time to define
it formally as follows, and then | give my pedagmjiconcern which is related to this
concept.

Definition (Birkhoff & MacLane, 1941, p. 77): LéP be anyintegral domain [why
not any ring? we will see in a little while one possible reasssociated with the
degrees of polynomials], and leX" be any symbol. Suppose one forms sums, products,
and differences oK with the elements oP and with itself, subject to the rules of
ordinary algebra (technically, the postulates forrdegral domain). This procedure is, as

least in special cases, familiar from high schdgélara, and leads to the construction of
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polynomialsin X. Since nothing is assumed known abd8ufnot even that it is an
unknown element oP ), X is usually called amdeterminate.

Generally, the starting exploration of the algebsdructure for polynomials can be
put parallel to that for natural numbers. The agwlof Division Algorithm for both
natural numbers and polynomials is an exampleattaogue of prime numbers is
irreducible polynomials, and so is the analogyhef inique factorization of a natural
number and that of a polynomial in a given fietdslworth noting at this point that,
however, this definition treats polynomials forith@wvn sake, different from what most
high school students’ understanding that a polyabieian expression with values or a
function of a variable on a set of numbers, ilee,indeterminatel in a polynomial needs
not be a variable, and so computation with polyradsnis not the computation of the
evaluations of the polynomials “at” certain numbéance, so do rational functions
(quotients of polynomials) or even rational expi@ss (quotients of algebraic
expressions, including polynomials). Thereforeg Indt quite like the routine that the
teacher suggests students checking the validignatlgebraic transformation by
substituting numbers, because then the studentklveewnfortunately unconsciously
reduced to only working in the field of numberseoen worse only exercising number
manipulation instead of thinking on the standpoiinthe field of rational expressions; it
is harmful for students to develop a consciousnegation to algebraic expressions as

mathematical objects in their own right. Thus,daample, when students get the

2 _
algebraic identityXS—25 =—(x+5), the teacher should be sensitive to the context th
-X

students are asked to work in and careful abolihgdgs long asX does not equal 5” or

“except whenX equals 5. The same reason works for the equation

111



P
1+ X+ X +..4+ X" =X—11 we saw in Chapter 3. Given this, it then would lbetvery
X_

difficult for students to develop the crucial natiof substituting an algebraic expression

for a variable in a function; one of the typicakgtions is that iff () = X =2x+ 5, then
what is f(x++2)
If we write apolynomial with coefficients in a commutative ring in the form of

f()=aX+a X"+ .+ ax+ 3, naed Mz o gngd 20 4o T(QOMA

then an individual term of the fOI‘I%x is called anonomial. The exponent of the

monomial with the highest exponent is ttegreeof the polynomial, denoted by

deg( f &)

, and then the coefficient of that monomial is @altheleading coefficientof

the polynomial. Teachers may let students check Wﬁlyis a commutative ring wheh
is a commutative ring (for the proof, see Shifif96, p. 83, Proposition 1.1). We call
sUT js aroot of T(XDTMH ¢ 1(5)=0,

Incidentally, we can have polynomials also withflioents in a non-commutative
ring, but we have to be more careful about muliqgythem. And it is not as easy to
substitute values into them; we have to substgiitesr from the right or from the left (R.
Smith, personal communication, December 30, 2009).

We, however, claim that we can find a subset dfmambers which is a countable
set, i.e., all the real numbers contained in th@®all algebraic numbers defined as the
(complex) numbers which are solutions of some reno-polynomial equation

n -1 —_
QX' +3, X7+t gx+ g=0 with integer (or, equivalently rational) coeffiots and

positive integer exponents.
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Proof.
Let us say that, for a given non-zero polynomialatpn with integer coefficients, we
will call the "size" M (a natural number) of theuzdion the integer we get by adding

together the degree of the equation and the aleseélies of all the coefficients. For
example, the size B¢ + 17X -5= ( js N=3+(2+17+|-5[)=27. Then let the $3tbe

the set of all equations of size 2 (why not starinth size 0 or 17?), antQi‘Z be the set of
all equations of size 3, and so on. Thetalm that:

(1) there are only a finite number of equations in esath

(2) any non-zero polynomial equation has only a finibenber of solutions.

Now we can make a list of all algebraic numbersaiyng all the solutions of equations
in the setSl and putting them in the list first, one after drestuntil we have all of them.

Then after those, we can put down all the soluttortbe equations in the sgi, and so
on. In this way we will eventually list all solutis of every equation, i.e., we will be able
to list every algebraic number, so that we haveg@mndhat the algebraic numbers are
countable.

Now we get an interesting bonus! Since the algebrambers are merely countably
infinite, whereas there is a much larger, uncouetatfinity of all real numbers, it
follows that some real numbers (most of them) arteafgebraic!

But | have leave out the proofs of claims (1) addiif the above proof. Now | will
prove them as follows.
Proof for claim (1) by induction:

Let us first check the first two cases.
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We do not consider the case M=0 and M=1, since Wuaayd turn out to be zero

polynomials, which look likéX" =0 and0X" =0, which have infinite solutions, and the

degree of which actually is undefined.

When M=2, S ={(#) X =0} , SO there are three elements in this set, whiafiigite one.

(#1) ¥ =0,(x2) X =0, 1) X+ 1= 0}

When M=3, S =1 “which is a finite set with 9

elements.

Now suppose™ is a finite set wheR®< M <k, whereKON |

We want to proveSK+1 is also a finite set. Let us consider all the gmegolynomials of
SK+1. X =0 must be one of them. It is also the only poss$ibibr the highest degree k.
So the other elements must be of degree less thaut kve supposed thzﬁﬂ, SK-l, e

S are all finite sets, s%ﬂ is also finite, as desired. Done.

Let us restatelaim (2) more strictly as an algebragicoposition (*):
A polynomial of degred! with coefficients in a field= hasat most" different roots in
F.

Thus, we have interest in the rirllzdx] , hamely, the ring of all the polynomials with

coefficients in the fieldF , and in this case the followirgjvision Algorithm of
polynomials (like the Division Algorithm we introduced befoi@ the ring of natural

numbers) holds.
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Let f(X),9(X)0 HX pe non-zero polynomials. Then there are uniqugnaohials

a0, T FN guch thatf =009 AR+ 1R ith
deg(r &))< dedg & )< deff )()}orr(x)zo.

Note that this is the precise description of “latigision” of polynomials usually taught

in high school algebra.

Lemma: Let I be an integral domain. If (X 9T X are non-zero polynomials,

ihended( f €0 (x) = ded f &)+ defg &)

. Moreover,"™ is an integral domain.

By the way, this property of degree may explain \Birkhoff and MacLane (1941)
defined polynomials with coefficients in an intelgdamain instead of any non-
commutitative ring, i.e., he might want to have sdmetter properties, more like integers,

for his polynomials.

Proof. Let deg(f (X)) =M and deg(g (X)) =M Sincer is an integral domain, the

leading coefficient$h and o, are not zero-divisors, and gobm * O. Thus,

deg( f )G (x) = n+ deg( f ()b (x) = ded f &)+ defig ) -

m Hence,
particular, if neither'c (x) nor 9(x) Is the zero polynomial, the produHX) (%)
cannot be the zero polynomial, g is an integral domain. Done.

Of course, this conclusion holds fbris a field, i.e.,F[X] is an integral domain wheh
is a field.

Remainder Theorem(corollary of the Division Algorithm):
Let SOF and TOODFIA when we divide! ) by the monomiak—$ the remainder

is a constant () =€,
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Proof.

By theDivision Algorithm , we have! (¥) = (X=9d 3+ (3 xy \yhere

deg(r &) < ded X=s)  r(x)=0 g deg( &-s)= ! thus"®) is a constan€ no
matter what valuef takes, which could be 0. Take™ S in (*), then we get
f(8)=1(9=¢ pone.

Referring to the definition o root of a polynomial(defined above), when
rx)=c=0 e get T =(X=9d3 and s0f (9 =0 thus,SOF is aroot of
FOOOFA Hence, we get an important consequence, nameRdbt-Factor
Theorem:

Let SOF and TOIDFIA Thenx-s is a factor of ' (X if and only if S is a root of
F(®) | in symbols,(X=91 1(X) = f(9=0

Notably, as mentioned in Chapter 3, this theoremuasecondirreducibility criterion
explains why some polynomiafé) [1Z]x] such as<’ *2 and X’ ~32 are irreducible in
Q[x] while they do not satisfy Eisenstein’s Criterion.

Now we prove the abovgroposition (*) as follows.

Proof.

Let deg(f (X)) =nt N. By theRoot-Factor Theorem if 8 UF is a factor of
FOIDFA , then F(x)=(x-3) i(¥ , wheredeg( by (X)) =n-1 N. Then if % UF :
but different from®, is a factor off (L FIX , then f(a,)=(a,~a) f(a)= O, where

az_a1¢0’ so (@) =0 Ang so (¥ =(x=a) 1,(X ’ wheredeg( f, &) =n- 2 N_
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Thus, FO9=(x-a)(x-a) &(} By induction, suppose’ &+ UF are all

distinct roots off (X) . then FO)=(x=a)(x= 8)...(x %), in other words, each root

gives rise to a linear factor. By themma proved above,

deg( &k-a)(x-a)..x- 3 )= de§ (= a)+ def & a)r + dfgx a)¥

But deg(f &)= ded &-3 )&= 3 )b @ )= " soM<n in other words,f ()
cannot have more thdh linear factor. Therefore, a polynomial of degfeevith
coefficients in a field® hasat most" different roots inF . Done.

Here is another perspective to state this propositie., the number of different

roots of a polynomial is not greater that the degrethe polynomial. Therefore, we can

also start from assuming that if there are at |8adifferent roots of the polynomial

F() Thus, still by thdRoot-Factor Theoremandinduction we may get

fFO=[](x-a)dR
D , Wheredeg(g (X)) = O. Therefore, also by tHeemma

deg(f (X)) = (n+ deg( 9 Q()) = n' that is, the number of different roots 5% is equal

to or smaller than the degree fo) , as desired.

Till now have we finished the proof that algebnaionbers are countable by going
through above basic concepts and theorems abogrigruolals, which | think high school
algebra should give more weight to.

It looks like square root of a rational number @ as usual as rational numbers, but
we still can get a rational number back when weasgit. So again there is no doubt that
square root of a rational number is an algebrambar. But how do we know the square

root of a positive rational number is not ration@®ere should be no doubt that the
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square root of a negative rational number or ational number is not rational.) | will

prove\/E is an irrational number as a classic example mdifferent ways as follows.

Proof by contradiction.

n
J2=—
Suppose\/E is a rational number, thenlet M wheren andm are the “positive”

r]2

2=—
elements of therdered ring Z. So we have m’ , and so” =2 Byt in the prime

factorization of"’ there are twice as many 2’s as in the factorimabin, hence an even
number, and the same holds f8r . But that means in the prime factorizationfthere
occur an even number of factors of 2, while infdetorization of2M there occur an

odd number (the even number of factors of ﬂfn plus the extra “2” in front o?mz).
Since an integer has onaique prime factorization (c.f., Chapter 5.1) (or in terms of

abstract algebra, the integers is a unique faetoa domain (JFD)), it cannot be true
that N* =2n", Therefore,\/E is not a rational number. Done.

By the way, teachers may want students to thinktkrehe proof for\/§ would be

different. Note that 3 is not even, the populahtisghool proof (different from the one

stated above), which assumes the “lowest term’then usingnz =2n" reaches a
contradiction that the numerator and the denomiraftthe lowest term are both even
numbers, might need some changes. What about skef@asquare root of a non-prime
number? This way of proving might have its deficign

There is another proof which involves polynomiaté just manipulation of numbers,

by using theRational Root Theorem
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Given a primitive polynomialf () =a,xX+g, X" +.+ ax+ g0 7 ¥ (i.e., all the
coefficients of a polynomial with integer coeffinois have no common integer divisor
s s
except fortl), if t is a rational root of (X, whereS t0Z gng9cdis t)= Yie. tis
expressed in lowest terms), théhao and! |an'
The proof is not complex. Teachers may want stigentry it out. By the way, this
theorem is very useful in calculus in maximizindyp@mials by finding zeroes of their
derivatives.

The usual practice or application of this theorarhigh school stops at those
guestions like “List all possible rational zerostloé each function.” or “Find the possible
rational solutions of the following polynomial ediom.”. Actually it directly implies the
fact that square root of 2 is an irrational numb®stead of scaring students by not telling
them the immediate corollary. And applying thisdtesn we will know whether a
primitive polynomial with integer coefficients ig@ducible over the rational numbers, so
this is ourthird irreducibility criterion different from Eisenstein’s Criterion which we
introduced in Chapter 3.

What is a square root of a (real) number? | gotnfsome mathematicians and
graduates of mathematics and mathematics educatid®@A, the most frequent
explanation: the square root of a number x is albermg so that y times y equals x; it
may or may not exist in the number system we werkivg in. This is consistent with

the statement that the square root of a rationallb@u is an algebraic number. So we say

V2 is a positive root o° ~2=0_ Now we want to check whether it is a rationaltroo
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S
Supposet in lowest terms is a rational root g -2=0 Thus, by thdRational Root

Theorem, we haveS! (72) angt |1, and so all the possible rational roots #fe *2,

Remember the theorem itself does not guarantee iherrational root, so when we plug
them back in<" =2= 0 we find they are even not its roots at all. Heweeconclude that
V2 as a root of the polynomial just will not be rai@d. Note that if we draw the graph of

y=x -2 on the Cartesian plane over the rational numloeitsof most high school

students’ expectation, we will not see the tworsgetions of the graph and tkaxis,

both of which are consist of only rational numbétere is an alternative approach.

Supposingtl, 2 are all rational roots oK’ —2= 0 we can check/E is not equal to

none of them. Note that some students probablysaiflit is obvious since, for example,

we get\/E by taking positive square root of 2 while 2 igltsvithout being operated. So

we thought “How could they be the same?”. | oncéerthis conceptual mistake too. But

| was questioned about how | kno‘/\z # 2 just because they look different (R. Smith,

personal communication, December 16, 2009). Thezethe thing turns out to be
finding out whenVa =@ ith @ OR for example. In other words, whéh=0a" 2 If we

draw the graphs of the functiods~ X and ¥ = X’ on the Cartesian plane ovEr, as

shown in the figure below, we will see that theemsections of the two graphs are (0,0)

and (1,1), i.e., only wheff =0 or Tye haveVa =@ S0 we conclude/2 # 2.
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Figure 5.3.1Intersections of the graphs of functiods * and ¥ = X on R

5.4 Algebra and analytic geometry

| believe real numbers virtually grow out of georgetWe could see this when we
were trying to assign a real number to a point tnea Another origin might be related
to Pythagorean Theorem, which tells people thatlithgonal of a unit square (a
geometric object) is a number whose square (aratpg) is double unit, say 2, if we
take the unit to be 1. People realized that theydcoot find a natural number or even a
rational number whose square is 2. If the ratiosvof pairs of segments are equal in our
usual sense about real numbers, we may want taisaewill happen if the two pairs of
segments are two pairs of sides of two trianglestdthorne (2000) commented that while
Euclid was able to develop the material of book/Ief the Elementsvithout any notion
of number, it is a different matter when we comé® concept of similar triangles as

taught in high school. These are triangles whadessare not equal, but all in some
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common “ratio” to each other. If that ratio is aeiger, then we see the length of the
longer side is multiple of the shorter one; actyate shorter one can be consider as a
unit copy of the longer one. If that ratio is natiateger but a rational number, i.e., the
sides of the similar triangles are integer or enagional multiples of each other. In other
words, if we impose the vertex of the smaller tgi@ron the vertex of the bigger one, and

impose their sides along each other, by rigid nmsti@ssuming its existence), then the

lines where their bases lie are parallel, anddfrttio isﬂ with n,mdZ andﬂ <1,
m m

then we will see that there are exactly n subdivisiof side of the smaller triangle lie
above its base and (m-n) the same subdivisionsviieddase. Euclid loved rational
numbers. But he noticed that he could not always $uch subdivision for two “similar”
triangles, actually even for the division of a pafisegments. But there are always same
numbers of subdivisions lie above and below thesédae” of the smaller triangle on the
two sides of the bigger triangle. So Euclid decitteat he needed irrational numbers to
express the ratios (c.f., Euclid®ementsDefinition V.5 (equivalent to our description
about how the real numbers behave, say that tWwauoeabers are equal if and only if the
two real numbers are both greater than or equéiletdame rational numbers), Definition
V.6, & Definition VI.1).

| think it is also good for high school studentktmw the following information.
When Euclid constructed a segment he used compassstruct a circle which
intersects with a straight line, and he actuallg wssuming\rchimedean axiomand the
existence of the circle-circle intersectionequivalently, theexistence of the circle-line
intersections(c.f., Hartshorne, 2000, p. 144, Proposition 1@®}th of which indeed can

be implied byDedekind’'s Axiom). (By the way, Hartshorne (2000, Ch.4) showed tigat
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could prove Euclid’s propositiongithout assuming Archimedean axibmcreating an
arithmetic of line segments.) We all know in thalr€artesian plane the equation of a
circle is a quadratic one and the equation of@ikna linear one. So the intersections of
one circle and one segment are the common solubiotne two equations of them, and
so this kind of construction actually only allowesito get a segment of a special
irrational length which is (a multiple of) a squao®t of a positive integer. Hence, when
Euclid used ratio to compare two segments, hegdsonly a special real number which
is (a multiple of) a square root of a positive@atil number. Hence, modern
mathematicians realized that Euclid’'s real numb&hsch are actually what high school

geometry are talking about, are not all the reahipers on the real line. Aordered field

F is defined to b&uclidean if and only if X&' P= (Cy F)X( ¥ =% 50 all ratios of
pairs of segments in Euclidean geometry are théipy®elements of a Euclidean field.
We define the Cartesian plane over a fiEldas

F?=F xF ={all ordered pairs X y ) withx yO F “and a line as a subset©f is

defined as the solution set of a linear equation:

{(x y) OF*: ax+ by= owvith a b €& Fand a bnot both zerc Consequently, like real

numbersR, if Fis any Euclidean field, the Cartesian plane dveturns out to be a

Euclidean plan in which all Euclid’s propositionsléh Algebraically, the elements of our
Euclidean field, which essentially defines high@alhgeometry, are some elementshbf

which are obtained by a finite number of operatiohg+, —, x, +,\ } on rational

numbersQ. So the Cartesian pIaH@2 is a model for Euclidean geometry, but is a bit

“overloaded”. Note thabedekind’s axiom (D)holds if and only if Euclidean numbers
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are real numbers. In other word€aclidean plane(a set of “points” with subsets called
“lines”)) is defined to be &lilbert plane (assuming the entire list éfilbert’'s axioms
(Incidence; Betweenness; Congruence) satisfyingitibke-line or circle-circle
intersection axiom andPlayfair's axiom, also called thearallel axiom, which says

for aline L and a point P not on L, there is atstmane line containing P which is parallel
to L. Note that a Euclidean plane does not hawsatsfyArchimedean axiom but |

prefer to assume it also, which makes our axiortegaysnore natural. So we say a
Euclidean planewith (D) is isomorphic to th€artesian plane over the field of the

real numbers. In other words, putting Hilbert's axioms, Playfaiaxiom, and

Dedekind’s axiom, together, the axiomatic systethba categorical, i.e., thenique
model (up to isomorphism) for the system will be thal Cartesian plane (Hartshorne,
2000, p. 70). Last, please allow me to be a ligitgpicky. Similar to the side-effect of
calculatorsand graphing software | mentioned before, GSP @gldor students to
explore some geometry figures, but people may atte that it does not really a model
of Euclidean geometry, since all the numbers usetlhave to be rounded to rational

numbers.
Theorem (Birkhoff & MacLane, 1941, p. 67): 1P(X) is a polynomial with real
coefficients, if2 <P and if p(a) < p( b), then for every constantsatisfying

(&) << A  the equationP(® = € has a root betweed andb.

Birkhoff and MacLane (1941) commented that “[gfesrically, the hypothesis
means that the graph &~ P(¥ meets the horizontal liné = P(8) at X=a and the line
y=p(D) g x= b: the conclusion asserts that the graph must aéssi Bach intermediate

horizontal lineY = ¢ at some point with an x-coordinate betwetand b~ (p. 67), and

124



“there is a general theorem of analysis which asskis conclusion, not only for

polynomial functionsp(x), but for any continuous function” (p. 67 in thetoote).
Birkhoff and MacLane also proposed that this theofdoes not show how to construct
numerical solution to numerical equations; it mggaioves their existence” (p. 69), and
the study of computing them “is not a part of algelbut of analysis” (p. 69). So here we
may assume that we can add, subtract, multiply dande real numbers as assumed in
high school algebra (i.e., we assufds a field).

Note that the theorem (Birkhoff & MacLane, 19416) above actually is the
Intermediate Value Theoremin calculus, which can be considered to be eqgentab
Dedekind’s axiom (D) claimed by Dr. Roy Smith (personal communicatioa) E009),

while (D) reflects the modern development of the real nusbed notions of continuity.
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6. Reflections and Suggestions

"All mathematics students should be exposed tdésic ideas of modern algebra,
its problem-solving skills and basic proof techraguand certainly to some of its elegant
applications" (Shifrin, 1996, p. vii), but do natrfjet that students learn what they are
taught which can serve to broaden or limit theawior understanding on algebra. The
picture | have painted so far is an imperfect,agwe, but hopeful one, with a goal of
giving some of my own ideas about helping high stistudents and teachers develop a
more positive and structural view about algebrammathematical thinking and an
appreciation of the beauty of mathematics. Adddlbn | believe that the process itself
of writing a thesis is a process of learning, drat this thesis will be a very precious

document for my own teaching in the future.

6.1 Mathematics itself worth teachers’ and studentsappreciation

Many have noted the beauty of mathematics. Foamtst, King (1992) noted that
“One of the vastest areas of the world of conteth@eeauty is mathematics. This alone
is sufficient reason for its study” (pp. 275-278nhd Lang (1985b) said “whereas the
beauty of poetry pales under translation, the heafutnathematics is invariant under
linguistic translations” (p. 18).

King (1992) said that nobody began with mathemdiersause of its beauty; all

school children began the study of mathematicsuzecthey had no choice. Some
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children just fell in love with mathematics fronetbeginning, or at least as soon as they
found out they were good at it, while some othass quit as soon as they were done
with school. There are also some children who eedluvanting to see the great practical
value emphasized by their teachers until theyyagtby chance, encountered pure
mathematics and felt like breathing the fresh aithe deck after living all their lives in
the hold of some great ship (King, 1992). Howe¥ang (1992) said that his early
teachers over-chanted the notion of practical vafumathematics by justifying
mathematics on the basis of its utility in the aactdof one’s daily life. The true value of
mathematics lies outside of pedestrian common@ateity. The intrinsic worth of
mathematics itself is a creative and intellectugland the value stemming from
mathematics is its unreasonable effectivenessptaaxng and predicting real-world,
physical phenomena; to fully appreciate eitheheke values, one must seriously study
mathematics to some level, a clear cut of whiclbabdy does not exist (King, 1992).
Similarly, Saul (2008) proposed a broader vieweda flife as “the life of the mind” (p. 75)
and noted that “[m]athematics itself acquires ditsetor students, ... motivation for
learning mathematics can eventually arise from tjes within mathematics itself. That
is, mathematics is, at a certain level, its ownliappon” (Saul, 2008, p. 75). | also
believe that mathematics taught as “low art” (Kit§92, p. 277) is definitely not enough.
King (1992) said that students come to college, or&img the mathematics “told” (p.
276) to them, “with no feel for mathematics that,cga any way, be associated with art.
In fact, they seem convinced that either no suasa®n is possible, or else that it falls —

like ultrasonic sound — outside the sensory rariggdnary mortals” (p. 277). King
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(1992) tried to make clear that he did “not beliévat a feel for mathematics is innate”
(p. 277) and commented that
The fact that mathematics presently lies outsideattistic range of most people is
the fault of neither the audience nor of mathensat¢hat has gone wrong is the

manner of presentation. How else can there eypstson who likes poetry and hates
mathematics? Properly presented, they are mucéaiie. (p. 277)

Algebra should be viewed as a body of knowledgeadsal as a way of thinking; so
is mathematics, of course. Students should be eaged to engage in reflecting on the
meanings of algebraic expressions and also cotistygumeaningful ones while
discussing with their teachers and peers, instédding an excessive amount of time-
wasting homework that just requires practicing mehtary skills of manipulating. "Not
every student needs proficiency in symbol manipaaskills. By choice or circumstance,
many students will never reach the levels of matters study where they will use these
skills. However, every student needs to undershavd quantities depend on one another,
how a change in one quantity affects the other,evdto make decisions based on these
relationships” (Williams & Molina, 1998, p. 41). iBreminds me of an old Chinese
saying "Facing what you are seeing, you should khow and why it is that."

Even though his students were successful on stdizédrtests, Chazan (2000, p.
Xiv-xv) was skeptical that his students had learmexdh of lasting value about algebra
and was uncomfortable that they did not exercie& thwn judgment in mathematics.

And he once was unhappy with his own understandiradgebra as subject matter,
which needs to be fundamentally different from thhtch had created daunting and
debilitating experiences for students.

In order to emphasize what | meant to say, | qotg’s (1992) vivid description (it

is sad but not at all universal):
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All of us have endured a certain amount of classramathematics. We lasted, not
because we believed mathematics worthwhile, ncase ... we found the
environment favorable. We endured because therenwasher choice. Long ago
someone had decided for us that mathematics wasriam for us to know and had
concluded that, if the choice was ours, we wouldosie not to learn it. So we were
compelled into a secondary school classroom fronigdgrey chalkboards and
spread with hard seats. A teacher who had himsek been compelled to his same
place stood before us and day after day pouredus/@ahat he believed to be
mathematics as ceaselessly as a sea pours fonth Tdee room in which we sat was
a dark and oppressive chamber and ... only in anfallerld could such a place exist.
(pp- 15-16)

King (1992) then identified three groups of peapl¢he classroom where students (a
group of “scientists” and a group of “humanistsa@dhprecollege mathematics thrust upon
them. Unfortunately, the high school mathematiesher (as the only member of the
third group) had three characteristics: “he didlika& mathematics, he did not understand
mathematics, he did not believe mathematics impt8r{a. 16). King (1992) explained
his opinions as follows. First, the teacher did lii@ mathematics was clear from the
beginning.
His lack of fancy for the subject he taught camado.. from his transparent
absence of passion for mathematics. ... Passionnew kven then, is too easily
communicated. But from our teacher we heard notbfngathematics except basic
facts. When he spoke to us of mathematics he spakeneither ardor nor metaphor.
He taught mathematics on weekdays with less ergbnsthan he showed on

Saturday when he mowed his lawn. We knew he didiketnathematics. But we
did not hold that against him. We did not likeither. (pp. 16-17)

Then later slowly after the students themselvesstiadied more advanced mathematics
they realized that

[w]e could then —as earlier misunderstood noticgrsaine clear— look back on what
he had told us about mathematics and pinpoint Bxte shallowness of his
understanding. But we saw unmistakable signs oignisrance even as he taught us.
Mostly [he] showed through his fumbling and fearegponses to elementary
questions that he could not answer. (p. 17)
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King (1992) made this “understandable” by tellihg ttruth” that at that stage in one’s
life neither the students nor the teacher expegbaato understand mathematics. It is
just something they endure for as long as they nimtsequently, it becomes
“‘understandable” also to the students that thegpengho teaches them mathematics in
high school does not think it is valuable.
Why should he? No one else you know does. Youmpsiteve their lives without
mathematics and so do your parents’ friends. ... Bratitics is mentioned neither in
the newspaper nor on television. At no time haserattics ever been — within your
range of hearing — a subject of conversation.
Naturally, your teacheells you almost every day that mathematics has value.

But you know that he does not believe it. And hews that you know. It is just
another shared fiction. ... (p. 18)

It is so unpleasant to see “this unhappy bandrekth(King, 1992, p. 18) went on.
... [Students] took a succession of secondary satmaises. And, at each stage, the
separation between the future scientists and tiueefilnumanists became more and
more sharply defined. The “scientists” ... determitteat while the subject might
never be understood, it could at least be learAsdhe curriculum advance, the

“humanists” became more and more ignored by théemaatics teachers and
advisors, and were allowed -- even encourageddrdp out of the mathematics
sequence.

The mathematics teachers, as might be expectetinged. They came before us one by

one, uninspired and uninspiring, as identical asidoes. (King, 1992, pp. 18-19)

6.2 My pedagogical understanding of mathematical thking

I guess the concepts and facts in high school edgebre generated and extracted
from abstract algebra so that high school studearisunderstand these ideas. While there
are many more concepts in high school algebraatteatonnected to abstract algebra, |
have been working on exploring a limited numbecainections that | have seen as a
master’s student majoring in mathematics educatibave been using a less

sophisticated way to illuminate those connectidrad t think important for high school
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students to know so as to enrich their perspectivethe algebra they learn in high
schools. To be clear, | anot saying the way | presented the content is the effistent
way to help teachers and students to see someralgehcepts taught in high school as
connected to abstract algebra. In fact, “efficieizcgften in the eye of the beholder when
it comes to mathematical thinking” (Boaler & Humes, 2005, p. 16). The same task
could be implemented in a number of different wayd at a number of different levels,
which will also affect the cognitive effort studemill put into the learning and the
mathematical connections they will see.

“To engage students in challenging mathematicshtxa need to use worthwhile
mathematical tasks. Those tasks must be rich mst@f content and processes” (Martin,
2007, p. 39). In this thesis | concentrated upatdeing the connections | noticed in an
explicit way with much less focus on the task psses. In addition, providing a
prescriptive list of things to do to implement nmetratical tasks designed to help
students see connections becomes difficult duleg@ynamic aspects of the classroom.
But | suggest that teachers put more effort ingteésg and implementing worthwhile
mathematical tasks that would engage studentgimlevel cognitive and intellectual
thinking.

Tasks that promote communication and connectiondielp students see and

articulate the value and beauty of mathematicscii@a can enhance the value of

existing materials by tailoring them to needs artdriests of their students. By doing

S0, teachers can promote both motivation and equityeir classrooms. (Martin,
2007, p. 39)

Stein, Grover, and Henningsen (1996) found thathimking and reasoning implied
by the task statement are not necessarily theitigrdnd reasoning students engaged in

while working on and talking about the task. Teaatan reduce the cognitive demands
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by simply pointing out to students some connectibey have seen and letting students
memorize them. However, teachers drawing conceptuatections is not one of the
factors that support the maintenance of high-leeghitive thinking (Henningsen &
Stein, 1997). Rather, teachers can help studentsrstand some mathematical facts as
stepping stones and then guide them to constraatdhnections among mathematical
ideas in their own knowledge web. Henningsen aeth31997) noted on the importance
of scaffolding, based on students’ prior knowledgehelping students to understand and
make connections among important ideas:
Scaffolding occurs when a student cannot work thhoaitask on his or her own, and
a teacher or more capable peer provides assistlaaicenables the student to
complete the task alone, but that does not recheeverall complexity or cognitive
demands of the task. Also, teachers can suppdrtlbigel thinking processes in

students by explicitly modeling (or by having ad#ant model) such processes and
thinking strategies (Anderson, 1989). (p. 527)

Moreover, there are three other important factomrmaintain high-level cognitive

thinking demands entailed in a mathematical taskfdcusing on the thinking processes
entailed in reaching the solutions or conclusiatker than the exact answers, (2) giving
students enough time to grapple with the impomaathematical ideas, and (3) having
high expectations and accountability for high-leN@hking (Henningsen & Stein, 1997).
Martin (2007) gave a similar suggestion as follows:

Serious mathematical thinking takes time as welhtslectual courage and
skills. A learning environment that supports probleolving must provide time for
students to puzzle, to be stuck, to try alternatipproaches, and to confer with one
another and with the teacher. Furthermore, for nvaorghwhile mathematical tasks,
especially those that require reasoning and probklaing, the speed, pace, and
quantity of students' work are inappropriate ciatéor "doing well". Too often,
students have developed the belief that, if theywohanswer a mathematical
question almost immediately, then they might ad gieke up. Teachers must
encourage and expect students to persevere whegerheunter mathematical
challenges and invest the time required to fighnegs out. In discussions, the
teacher must allow time for students to respomglistions and must also expect
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students to give one another time to think withatgrrupting or showing impatience
(NCTM, 2000). (p. 41)

In short, mathematical thinking and learning, frarpedagogical perspective, are
highly contextualized. Students learn mathematiashbetter when tasks are engaging
brain exercises instead of time-pressing compastiszvhen concepts are communicated
to them emphasizing the understanding rather thaweared on them forcing them to
memorize, and when they are able to connect matimahaleas more pluralistically and

tightly than struggling in a chaotic and looselynected mathematics world.

6.3 The balance between words and ideas

Howe (2001) claimed that “all high school mathemsgtiourses should be seen as
loci of reasoning and proof” (p. 45) and “[lJossthé opportunity for high school
students to have an introduction to systematicordag would constitute a major
institutional failure, but it seems to be happehifmy 45). King (1992) commented that
the certainty of the proved theorems of matheméiidds only due to the complete
precision involved in the derivation of them by @logic, and “truth which comes from
deduction and not from observation is possible dylyvay of complete precision. Pure
mathematics is precise or else it is nothing” @. &ing (1992) also commented that the
totally abstract nature of pure mathematics isroftet forward by both mathematicians
and non-mathematicians alike as an explanatioth®ohigh degree of difficulty the
subject presents for all but a small subset optiymulation, and simultaneously provides

some mathematicians “an excuse for their failurgansmit their knowledge of
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mathematics to outsiders” (p. 61), who are getiiinfipel comfortable to believe that
“their inability to understand mathematics reséiten a handicap beyond their control
and not from simple failure of nerve or self-didicip” (p. 61). Unfortunately, abstract
thinking (nothing more than selective thinking) ambtract objects (including any
academic textbooks) are commonplace in our ddey(King, 1992). So it is precision,
but not abstraction, that makes mathematics diffi¢precision is unnatural and hard”
(King, 1992, p. 62). In King’s (1992) view, in matiatics, we can either prove a
statement with the given hypotheses or not; trer®ithird way for us to bluff through.
However, Dr. Roy Smith asserted that there is abaaathird way, namely changing the
assumptions, which is standard procedure in aeyngit to make progress, though the
progress is partial and gradual. Doing mathemaiesresearch activity. The basic rule
of problem solving is to make the problem easieenvive are stumped. We do not just
set a fixed challenge and refuse to budge over wkawant to achieve. Otherwise, we
are probably not going to get anywhere. We shoatchold the view of our field that it is
“all black and white” (personal communication, A@8, 2010). I think this would just
be one of the reasons that mathematics enjoysadmsteem. Indeed, the desire to be
precise prompts us to connect what we have knowntabhathematics and what we are
working on until we get to a solution, a discoveryeven a creation. But the process
never ends because there will always be sometlangto interest us. In other words,
mathematics is driven forward by its unsolved peotd, and conjectures are a vital part

of this process. So | think this agrees with Dr.it8is opinions and renders that the
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precision of pure mathematics noted above by Kiraykl not exclude the importance of
unsolved problems or unproved conjectures. A gaogecture is extremely valuable and
has high status, not as Ernest (1991) considerdgdrinal or unverified conjectures,

proof attempts, ... to be low status knowledge inhaatatics” (p. 99). | would say the
creation or discovery of numbers, especially reshbers, is a good illustration of the
notion of mathematical precision. In particulae ttecimal representation of an irrational
number (which can be viewed as an object as well@®cess, as | discussed at the end
of Chapter 4.2 about the difficulty of understarmgdanfunction) makes it less precise than
a rational number. For instance, we do not know tmadd two infinite decimals. On the
other hand, the idea of an irrational number ersabeto be more precise than that of a
rational number can be in some cases, especialgries involving the infinite. This
might be one difficulty when students deal withl reambers. For example, the
aforementioned (in Chapter 3 and Chapter 5.2) ndi899...=1 is a difficult one for

most students to accept.

In fact, “there is no single theoretical account@thematics” (Hanna, 1983, p. 63).
We should not view mathematics as a static anapeyf-structured system of
definitions, axioms, theorems, concepts, and pnaeesd Though the method of
axiomatic system is quite popular, proof, as aemssl facet of the axiomatic method, is
just one possible way to demonstrate the truthstheement and the validity of the proof
itself within the assumed axiomatic frame of refexe which is not shared by the various
schools of mathematical thought. Hanna (1983) megdhat rigorous proof in school

mathematics curriculum should be treated as asjredisable topic, a valuable asset of

135



modern mathematics, instead of a pervasive metbgga@nd mode of presentation.
Otherwise, it “may conceal from the student thé pturalism of modern-day
mathematical theory and perpetuate in the studemtisl a simplistic and relatively
unattractive picture of mathematical practice”§p). Hanna (1983) also argued that
rigorous proof plays almost no role in mathematiiatovery and creativity, that the
proof of a theorem carries little weight in the quex process of the acceptance of the
theorem by students or even mathematicians, ané thily rigorous proof is impossible
in some cases due to the inescapable practicdations. | wrote down the proofs in this
thesis mainly for teacher’s sake. |, however, lvelihat understanding important
mathematical knowledge must happen prior to bogdown in the bald statement of the
rigorous proofs. Teachers may have students focukase proofs which are not too long
but interesting, clever, and involve relatively ionfant mathematical ideas. According to
Healy and Hoyles (2000), though it is difficult fibre majority of the students to generate
valid proofs in domain of algebra on their own ytli® value general and explanatory
arguments and believe that a valid proof of a staté makes no further work necessary
to ascertain the truth of any specific cases ostheement. “The process of proof is
undeniably complex, involving a range of studenhpetencies-identifying assumptions,
isolating given properties and structures, andmmyag logical arguments-each of which
is by no means trivial” (p. 396) and certainly aizahg the conclusion guides all of these
processes of thinking.

Furthermore, we do not have the right to let mem@migor stand in the way of a
flexible understanding of a piece of mathematicadwledge. “Rigor and reasoning

should always be presented in a way that can baingfal to the audience. When deep
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ideas and reasoning are brought up in service esutisey should be treated in a ‘great
ideas’ fashion” (Howe, 2001, p. 45). Instead ofngpihrough the proof in a didactic way,
teachers may give students an intuitive graspade¢hmeaningful and powerful ideas
behind the abstractions and precisions by a relgtmformal narrative exposition so as
to help students start with testing and refiningitiown conjectures, feel the process of
proving mathematicians summarized, and “developemaultifaceted competence in
proving that includes some deductive reasoning’af{ii& Hoyles, 2000, p. 427). When
it comes to mathematics learning and teachingabloze suggestion, | believe, is not in
conflict with King's (1992) proposal about precisimm mathematics. This is why |
sometimes used a less formal way to state a pstwdents deserve to see the essential
mathematical thoughts. This suggestion also gaasyakith the proposal | stated at the
beginning of the “algebraic structure” section (ftea 1.3) that teachers should not let
the “formalism” formalize or “format” our studengsd undermine their understanding,
interest, and confidence in mathematics. Thisadably why mathematicians seldom
give lectures by “reading” a prepared manuscrightaudience; they enjoy a flow of
ideas more than a flow of words.

Incidentally, “disproof,” like figuring out why aanclusion isnot right or a statement
is not true, is another good way to build studeuntslerstanding of mathematical
concepts. Martin (2007) proposed that

When students are allowed to examine and critigoerrect solutions or strategies,

counterexamples and logical inconsistencies camalit surface. This process of

analyzing solutions instead of relying on teachengalidate them can enhance
students' abilities to think critically from a mathatical perspective. (p. 47)

I like King's (1992) comment that "the ideas broufgrth from the unconscious and

handed over to the conscious invariably possesstémep of mathematical beauty” (p.
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139). I will use the two proofs tha/(E is not rational (given in Chapter 5.3) as an

example to illustrate this. We suppogé is a rational number and let it be in the lowest
term. To start with this step we automatically onsciously use the definition of rational

numbers and the method of proof by contradictibrs iis nice but not as brilliant as the

move from the equatioﬁ2 =2n g the contradiction, because it is this equatiat
motivates the unconsciously further progress ofptto®f before people know what to do
next, and then the pleasure or excitement continagkthey consciously reach the exact

contradiction. The beauty of the proof by the nadgiloroot theorem is perhaps that people

stare at the algebraic favs/tE [/2=2 unconsciously and finally pull out a more
sophisticated proof transferring their work fietdrh the system of integers to the world
of polynomials.

Mathematical intuition or unconsciousness is thea@® of creation or discovery of a
theorem; we use the axiomatic method and logietp bis organize and analyze more
deeply the consequences of what our intuition hggested; A proof, discovered by
intuition, preceded by substantial mathematicaMdedge accumulation and arduous
mathematical work or thinking, filled out with carngus confirmation details, is a
process that we apply to test those suggestioasrahtuition, and is an elaboration to

supply communication of any kind.

6.4 Last remarks to share with both students and schers
Mathematical thinking is more than the processhilitis utilized in absorbing
some piece of mathematics or in solving some madiiead problem. Mathematical

thinking is closely associated with a consideratibthe beauty of mathematics; it can be
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an impulse of new instruction or even curricular@thematics. King (1992) proposed
that people “need experience and training in holeok at mathematics just as they need
experience and training in how to listen to Bee#drovlhe natural place for this
instruction is in the mathematics classroom” (®)1$tudents should be given
opportunities teseemathematics as the mathematiciaasit; mathematical concepts
must be motivated for the students as they areviateti for the mathematicians;
mathematicians are fallible, so are students (eadhers). For example, students should
experience mathematics like research mathematicising prior knowledge and
moderate technology to observe mathematical phenanteisting or distrusting their
intuitions, trying to solve the problems or makegges, trying to use their analytical
powers to justify those conjectures they madeniegrto get used to the abstract
versions, and applying the verified conclusionsew, harder problems. Therefore, as
King (1992) claimed, it will require our school rhamatics teachers to be “people who
themselves have been personally touched by mathesnaksteply enough to have some
chance at communicating to their students a seroblahthe excitement of the subject”
(p. 143). | like Mortimer Adler’s notion of two kds of beauty: “enjoyable beauty” and
“admirable beauty” (as cited in King, 1992, p. 177)s understandable that mathematics
does not have enjoyable beauty to most peopleagisbme people do not think classical
music is as enjoyable as rock music. It is in partatter of personal taste. But most
people (including high school students) should feperly influenced to appreciate or at
least believe the admirable beauty of mathematibg;h has been sensed and judged by
experts who “learned enough or experienced enacuplave developed superior taste” in

mathematics (King, 1992, p. 177). | hope that teesland teacher educators could work
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together to help our students see that mathenfagSaccessible beauty,” something |
have tried to illustrate in this thesis.

| talked about algebraic structures at the veryrivegg of this thesis. Whether an
object belongs to a structure depends on whetheelations with the substantiated
objects of the structure is consistent with thesuwdf the structure. If an object cannot
play within the rules already set for the structtinen the object is not a member of the
structure itself. Our society can also be consdl@sesuch a "structure.” Students know
they have to work out a way to fit themselves i $bciety to survive or even thrive.
What if they are taught with the “accessible beaatymathematics and motivated to
want to treat mathematics (at least school algedma@) structure to adjust themselves for?

Let us go back to see one more example about sbthe basic algebraic rules.
Someone says that he can prove 2 = 1 in any sprmseding the following proof:

1) a= b for some a’s and b’s (thinking about modarithmetic as an example, or for

simplicity, 1=41 (which we have shown before); a and b just lodtedent, and they are
just two different numerals for two equivalent tis),

2) a+a = b+a (doing the same thing to two equival@ngs),

3) i.e., 2a = b+a,

4) 2a-2b = b+a-2b (still doing the same thing to &quivalent things),

5) 2(a-b) = a-b (distributivity),

6) 2 = 1 (cancelling a-b on both sides of the eglence relation),

as desired. Done.

It seems that 2 = 1 has really been proved. Batbaields a-b = 0. The proof is a trap.

We have been told that we cannot divide by 0. Buy2WVe will appeal to the definition
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of division (i.e., we call a number x/y if it isumiquenumber whose product with y is x).
Thus to have a number called 2/0, for examplepitilel have to multiply O into 2, which
never happens. In other words, if O is the defiagditive identity, and if we want to have
the axiom that a(b+c) = ab+ac, then for every nunab&e have a(0) = a(0+0) =
a(0)+a(0), so subtracting a(0) from both sides @eethat 0 = a(0). Thus, if we want to
have subtraction and distributivity of multiplicati, then we must have a(0) = 0 for all a.
Hence, we can never have any number d such thped(@ls 2 or whatever non-zero

number, i.e., we cannot have any number calledB/@he way, this can be seen from

_2
X with % YU R When x approaches 0 in both

the following graph of the function
positive and negative directions, the value of grapches an uncertainty: infinity or
negative infinity? Hence, we cannot divide by Onitarly, we cannot divide by a zero

polynomial (or any additive identity depending e tontext).

2
. o Y= x. VOO R
Figure 6.4.1Partial view of the graph of function X with %Y

141



On the other hand, to consider the symbol 0/0, sveefa different problem: every
number qualifies to be called 0/0 because everybeumultiplies 0 into 0. We do not
know what number we are talking about when we wi@ which violates the
uniqueness part of the definition of division, se @o not want this either. However, in
calculus, when we have an expression like x/3xctvigives 0/0 when x = 0, we can
make sense of this by canceling the x's first &ed tve get 1/3.

Now let us try to answer another typical high-sdkgtadent question: “Why does a
negative times a negative equal a positive?” coniegrthose basic algebraic rules or
axioms. Note that this is essentially a conseqpeoyerty of an ordered field (such as the
real numbers) which we mentioned in Chapter 5.2.2.

Let a and b be two positive elements in an ordeared So —a and —b are negative
elements in the ring by the closure property ofrthg, and ab is positive.

First, we claim b-a = b+(-a). Cancelling b on bsithes, we want to show —a = +(-a)
as follows. Since 0 is the additive identity, -aa#=0 = 0+(-a+0) = +(-a).

If we want the distributivity holds, we must ha @)= a(b-b) = a(b+(-b)) = ab+a(-b).
But we know ab-ab = 0. So we must have a(-b) F(1abSimilarly (-a)b = -ab (2). And
so a(-b) = (-a)b (3).

Let us see 0 = 1-1 = 1+(-1). Since 1 is the mudigtive identity, we have 1+1(-1) =0,
and so 1 = -1(-1), which yields 1 = (-1)(-1) by.(&nd (-a)(-b) = (-a)(1)(1)(-b). By (3)
we get (-a)(-b) = (a)(-1)(-1)(b). So we have (H)& (a)(1)(b) = ab.

Indeed, we just try to agree on what axioms we wabk true and try to live by

those rules and to thrive in our world of mathegsa{or even in our real life). If you ask

a mathematician “What is 1 plus 2?”, he may safyw# work in the ringZ , and given 1
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plus 1is 2, then 1 plus 2 is 3; if in the rir7rg it equals 0.” Missing most parts of the
chains of deduction in mathematics may oppressgirtén students away from
mathematics.

Everyone has taste in mathematics, just like imamusic, simply because taste is
having the courage of one's own convictions. Thevimbion could be that one can do
mathematics better than he/she is doing, no matterhe/she is, a high school student or
a mathematician, and one can prove it by oneswfconviction could be that one can
always find a good way to help his/her studentsepate mathematics better if he/she
wants to prove himself/herself a good teacher.

Middleton and Spanias (1999) proposed that if@yppate practices are consistent
over a long period of time, students can and dmleaenjoy and value mathematics.
This proposal actually loads most of the studdemii'sien of learning mathematics on to
the shoulder of the teacher. It requires the teé&haderstanding of fundamental
mathematics to be both mathematically profound@edhgogically preferable. As Saul
(2008) proposed, in order to implement effectivdggogical techniques to address the
difficulties students encounter in learning algebvhich are related to deeper
mathematical insights, “teachers need to know mmathematics than they expect their
students to know. The question of teachers’ corkeatwvledge is an increasingly
important one and worthy of our continued atteritigm 78) (c.f., Ferrini-Mundy &
Findell, 2001). On the other hand, as Dr. Roy Silidimed, no matter how much
analyses state that it is crucial to draw connastioetween different subjects, we cannot

teach this way if we give in the pressure to médeedasses less demanding (personal
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communication, February 9, 2010). It is enlightgnio see Dr. Smith’s (1997) following
proposal

That student [who has been told something he doegat understand] is actually
receiving instruction not just for the moment, bigo for the future; he is being given
something to think about which will last him somgngficant amount of time, and which
will repay all the thought he will give to it. ... Véh reading student evaluations of a
teacher, how often does one encounter the gratefunment, “He really gave us some
provocative questions to think about. | still han settled them all!”? | would ask, if
this comment is missing, can the teacher reallgxzellent? (p. 13)

I hope that through this thesis the light of math&oal aesthetics of connectivity,
logic, precision, efficiency, diligence, uncons@aess, and inspiration will shine

brighter in high school mathematics teaching aadlieg.
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APPENDIX

The Cauchy Model of the Real Numbers

The following is the second constructive approamtttie real numbers as feedback
on my thesis offered by Dr. Roy Smith on Saturddsrch 27, 2010, with my

annotations in italics in brackets.

Dear Chen,

Here is a pretty little construction of the redlattyou may like, if you like Cauchy
sequenceddlked about in Chapter 5.3 of this th@sidearned this from the book
Modern Algebra by Van der Waerden, English tramstadf the second German edition,
section 67, pages 211-2118 Jater correspondence, Dr. Smith said Waerdenhinigge

the model created by Georg Cantor, the man whoteteset theory, and gave the
diagonal argument for the real numbers being mamnerous than the rational numbers,
which we have talked about in Chapter]5IBis more abstract than infinite decimals, but
that actually makes some things easier to provécdlthat an infinite decimal is an
infinite sequence of finite decimals, with eachtérdecimal having n decimal places,
differing from the next one by less than 1/(10)This is a Cauchy sequence of finite
decimals, i.e. of rational numbers. So really & neanber is something that can be
approximated by rationals, but it takes an infimtenber of rationals, and in order to

define a unique real number the sequence of rai@mauld be Cauchy. Of course there
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are two sequences that define each finite decioma,ending in 0’'s and one ending in 9's.
There is no way to choose just one sequence for reat number and this can be
confusing. [n later correspondence, Dr. Smith commented thigt in fact, possible to
pick just one decimal sequence for each real nuntherif you do, when you add two
numbers there is no guarantee you will get theyanechose as your sum. So there is no
way to pick just one sequence so that the sequgoogsick will be closed under

addition and subtraction and multiplication. Thattere the mystery for students comes
in. For example, if they use the sequence {1.01.0},for 1, and the sequence {0.3, 0.33,
0.333, ..., 0.333333...3, ... } for 1/3, then when thaipty 1/3 by 3 they get {0.9, 0.99,
0.999, ..., 0.999999...9, ...} which is not the sequttregechose for 1 Thus it is even
easier to just use lots of sequences for eacmteaber. Though there is no way to write
down all Cauchy sequences that define a given nunthere are infinitely many, but we
can at least try to list some of them to see jost many sequences are possible for each
real number. For pi, we could choose say, as fitshber, any rational number between
3 and 4, then as second number any rational nurbbegveen 3.1 and 3.2, then as third
number any rational number between 3.1 and 3.15and so on, so the sequence may
look like {3.1, 3.14, 3.141, 3.1415, 3.14159, ...t Be could still have a sequence like
{2.9, 3.09, 3.139, 3.1409, 3.14149, 3.141589, .r.}4p3.2, 3.15, 3.142, 3.1416,
3.14159, ...}, or {3.9, 3.19, 3.149, 3.14159, 3.14158}, or some other sequences like
{1, 3,3.1,3.14, 3.141, ..}, {1, 2, 3, 3.1, 3.34141, ...}, {0, 2, 3.4, 3.14, 3.141, ..}, {1, 2,
3,4, 3, 3.1, 3.14, 3.141, ...}, etc.. We can tkgfinite sequence whatever and start with
it, then switch to the usual sequence, and thatbeilCauchy and converge to pi. The

monotonicity (increasing or decreasing) of the Gausequence does not matter, and
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especially it does not matter whether the “initisite sequence” is monotonic or not.
But still even these infinitely many possibilittesne nowhere near being all possible
choices] We can use this idea to define real numbers agl@asequences of rational
numbers, subject to a natural equivalence reldiahmeans the two sequences define

the same real number, as follows.

Assume we know about the rational numbers Q arndhles form a field. Then define
the set C to be the set of all Cauchy sequencegtiohal numbers. Since the sum and
product of two Cauchy sequences is also Cauchytrendhtionals are a ring, we get a
ring structure on C by adding and multiplying egdrin the sequences. Among the
Cauchy sequences in particular are all the conneggguences of rationals, i.e. rational
sequences with a rational limit. Let N = the sulade® of “null sequences”, i.e.
convergent sequences with limit zero. Then N i&daal” of the ring C, i.e. Nis a
subring but is also closed under multiplicationgbgments of C, i.e. the product of any

element of C with any element of N is containedlin

Then define the equivalence relation on C where®@aachy sequences are equivalent if
and only if their difference is null. This definaset of equivalence classes R = C/N,

analogous to modular integers Z/nZ. This R is oadet of the real numbers.

Then a non null Cauchy sequence has a multiplieativerse because the absolute

values |g of the entries are eventually positive, so thvelise sequence exists after

excluding some initial finite sequence of the teffos example, to invert (take the
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multiplicative inverse of) the sequence 0, 0, @,3, 4.6, ..., we use any number such as
1 to substitute initial 0’s, and then invert thensequent numbers like inverting 2 to 1/2,

and 4.6 to 1/4.6? So the inverse of the sequerntelisl, 1/2, 1/2, 1/3, 1/4.6,]...

Moreover if two sequences are not equivalent their tifference sequence is eventually
positive or eventually negative so we can definatwithmeans for one equivalence class
of sequences to be greater than another, namehatkeenot equivalent and the elements

are eventually greater than the elements of theraquence.

It is easy to prove that axiom Ajfchimedean properjyholds.

Then one can prove a version of LUB, namely

Theorem: Every strictly monotone increasing (or decreassegjuence of Cauchy
sequences, has a limit.

Proof: sketch. By choosing subsequences one can insatrantbach Cauchy sequence

all terms after the nth term are closer togethan ttvyn.

Then one can choose a “diagonal” subsequence mscigpthe nth term from the nth

sequence, similar to the diagonal constructionant@r’'s argument that the reals are

uncountabledgain, as shown in Chapter 5.3 in my thesis

Then this diagonal subsequence should be a lintiteofequence of Cauchy sequences.

153



Then one can use axiom A to show rationals areadenk, and then use this monotone

limit theorem to prove the full LUB properta$ shown in Chapter 5.2 in my thésis

How do you like that?

Roy
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