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ABSTRACT 

Algorithm Animations (AAs) portray the high-level dynamic operation of an algorithm. 

The computer science education community held great expectations that AA would assist 

students in understanding algorithms. However, many studies of the instructional effectiveness 

of AAs have produced inconclusive results. We investigated a number of issues pertinent to AA 

effectiveness: the study of AA user needs, user-centered design and the role of perception in AA.  

Existing algorithm animation systems typically have been designed without formal study 

of related teaching practices. We conducted an observational study of instructors teaching data 

structure and algorithm topics, focusing on activities involving the use of diagrams and 

algorithms. The results of this study were used to inform the user-centered design of SKA, the 

Support Kit for Animation. SKA combines interactive data structure diagram manipulation with 

flexible pseudocode execution, simple algorithm animation authoring support, a visual data 

structure library, and an animation engine designed for perceptual pacing and timing.  

The role of perception in AAs had not been formally considered in the past. We 

collaborated on a number of empirical studies to investigate this role, and the design of software 

to be used to conduct these studies. We found that some animation techniques can assist user 



 

perception and mapping in AA in some contexts, which will inform future AA design and 

studies. 
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CHAPTER 1 

INTRODUCTION 

1.0  Introduction and Motivation 

What is Algorithm Animation? An Algorithm Animation (AA) is a visualization of an 

algorithm, usually intended for educational use [PBS93]. Algorithms are specified using static 

textual code (or static graphical notation) that does not readily reflect the dynamic behavior of 

the algorithms during execution. Algorithm animations are intended to portray the dynamic 

operation of algorithms and, in some cases, their underlying concepts.  

Algorithms and data structures have traditionally been regarded as a core area of 

computer science that students find difficult [Denning89]. The advent of algorithm animation 

created great expectations in the computer science teaching community, as animation was seen 

as a better way than purely static media to illustrate the dynamic workings of algorithms. Marc 

Brown , an AA pioneer stated that “multiple, dynamic, graphical displays of an algorithm reveal 

properties that might otherwise be difficult to comprehend or even remain unnoticed” 

[Brown87]. However, these expectations have been met only partially, at best.  

In the early era of AA, researchers had a vision of the future that would see students and 

instructors using these animations as an integral part of the learning process, perhaps integrated 

with notes and using wireless notebooks, as in Alan Kay’s Dynabook [Kay81].  They would 

interact with animations shown by instructors, as in the interactive classroom at Brown 

University [Bazik98]. While the technology and systems to support this vision have emerged, 
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AA use has not been integrated into the practice of instruction [Naps03] or study on a pervasive 

basis. 

The early thrust of AA research emphasized AA system design. This focus was common 

for educational technology development during that period [Smith86], when it was assumed that 

the technology would be beneficial. This was followed by a period of reflection during which 

initial studies of AA effectiveness were conducted [HDS02].  

However, while some studies of effectiveness have shown instructional benefits 

[LBS94][KST01][THRK02] for the use of algorithm animation, many studies are inconclusive 

[BCS96][Jarc98], and a few had negative results [Mulholland98]. In a meta-study [HDS02] of 24 

AA studies, 11 had significantly positive results, 10 had no significant results, and 1 had a 

significantly negative result. However, the studies generally could not point to definitive reasons 

for their failure or success, and thus tend to speculate in their conclusions. The mixed results of 

these studies has prompted further studies and attempts to improve effectiveness, but a similar 

pattern of results has continued [Saraiya04]. 

 

1.1 Algorithm Animation Studies 

Studies of AA effectiveness have examined a number of usage scenarios, including 

lecture presentations, laboratory use, self-study, and AA construction. Hundhausen notes that 

studies that involved active use of AAs, such as data set construction, prediction or interaction, 

had a higher rate of significant positive results than studies involving passive viewing [HDS02]. 

However, for every usage scenario, there are inconclusive studies. We contemplated some 

possible reasons for this in [KTH01]. 
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Lawrence conducted studies that were set in all three scenarios and found that a group 

that used input data set construction with animation scored significantly higher on a post-test, 

compared to a control group that did not use animations [LBS94]. [Saraiya04] found that a group 

of students provided with a good predefined data set scored significantly higher on a post-test, 

compared to a group of students that constructed their input data sets.  

Jarc found no advantage for use of prediction on tests comparing the use of animations 

with and without predictions [Jarc98]. Byrne, et.al. [BCS99] conducted a study that combined 

prediction and no prediction with animation and non-animation conditions. For a simple 

algorithm, both animation groups scored significantly higher on a post-test, but with a more 

complex binomial heap algorithm, a mix of significant and non-significant advantages was found 

for animation and prediction groups.  

Kehoe, Stasko and (Hamilton-)Taylor [KST01] found that for the same binomial heap 

animation used by Bryne, using a textbook and AA as a resource in a problem-solving setting 

resulted in a significant advantage over the use of the textbook and a series of equivalent static 

figures. Hübscher-Younger found that a group that constructed an animation significantly 

outperformed (on a post-test) groups who used other media [HN03]. We discuss studies of AA 

and their learning contexts in further detail in Chapter 2. 

 

1.2 Complexity of Authoring 

Algorithm animation authors find that designing and implementing an AA can be lengthy 

and complex [Hund99][Naps03], despite attempts to address this in AA systems. Naps reports 

that two-thirds of instructors found that the length of time needed to create an AA was a limiting 

factor in their use of AA [Naps03]. Hundhausen found that students spent an average of 33.2 
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hours completing a Samba assignment [Hund99]. Creating an AA may require learning a 

complex system, with extensive APIs and new programming concepts [SK93]. Alternatively, it 

may be difficult or tedious to create a non-trivial AA using a simple system (such as a GUI-

based system), which may not provide all of the capabilities needed [RF01][Stasko96]. An 

algorithm may have to be extensively modified to be animated. A significant amount of planning 

often has to be done to design an algorithm animation. This includes the conceptual design of the 

AA and the design of the display, the animation actions, mapping the actions to the algorithm 

operations, and the coordination and timing of the actions. These issues are discussed further in 

Chapter 3. 

 

1.3 Our Analysis of AA Problems 

We believe that a number of issues relevant to AA have not been sufficiently 

investigated, and that these issues potentially impact AA adoption and effectiveness at several 

levels. One objective of this dissertation is to identify and examine some of these issues to shed 

light on the perplexities of AA. We start with the assumptions that in order to be effective, AAs:  

1. should support the needs of the users (the students/learners and the authors). 

2. should be used in an appropriate learning context. 

3. should be presented so that the student/learner can perceive and comprehend them. 

 

This suggests that we identify and examine relevant issues in the following areas that 

relate to these needs: (a) human-computer interaction and user interface design, (b) perceptual, 

attentional, cognitive and engineering psychology, and (c) the learning sciences and educational 
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technology. We will address each of the above points, and preview relevant issues in the course 

of doing so.  

 

1.4 HCI Design and Learning Context  

Does the AA system support essential user needs and tasks? For example, the user may 

not be able to explore the algorithm effectively, or to control its execution. There may exist tasks 

that an instructor or student would do that the system does not support, such as annotation or 

modification of data structures. 

Have AA system designers attempted to understand the existing learning processes 

employed in the teaching of algorithms and data structures? Do the animations affect the learning 

process in unexpected and unintended ways? For example, can an instructor show the same 

concepts and examples in the manner he or she is accustomed to with a black/whiteboard by 

using an animation? Are the animations being used in a manner conducive to the support of the 

learning process? 

Is the learning context appropriate? What may be suitable for individual or lab use may 

not work in a lecture or discussion or vice-versa. For example, a particular AA might be suitable 

for use as a learning resource rather than as the sole means to teach an algorithm.  

 

1.5 Perceptual Design 

While AA aims to take advantage of human perceptual ability, we believe that some of 

the techniques used in AA may exceed our perceptual and attentional capabilities. Users may not 

be able to perceive the actions in the animations properly. The changes or pattern of changes 
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may be too fast or too complex to follow. The AA may not be portraying the algorithm 

effectively. The portrayal may be too complex for the user to absorb, obscuring the essential 

concepts, or it may not show these essential concepts. 

Baecker, considered the founder of program visualization and AA, thinks that "timing is 

the key to effective motion dynamics and algorithm animation," but notes that it is “hard to find 

the right speed for a diverse audience" [Baecker98]. Marc Brown, an AA pioneer, begins a book 

chapter [BH98] by stating that “designing an enlightening software visualization is a tricky 

psychological and perceptual challenge”. Stasko, a leading researcher in the field, considers 

"smooth, continuous motion" essential, and postulated that it would ensure that viewers could 

follow the animation actions, and thus improve AA comprehension [Stasko98a]. However, no 

studies were conducted to investigate such ideas prior to our research, which we discuss further 

in Chapter 6. 

 

1.6 Goals and Framework of Dissertation Research  

In this dissertation we will examine the relation of AA to a number of research areas that 

we believe have some bearing on AA problems. We will analyze a number of AA issues utilizing 

research perspectives of these areas, and drawing on research findings from these areas. We will 

then focus on particular issues that we believe to be of prime importance, and describe our 

research on these issues. We envision our research as proceeding in a number of phases: 

1. The study of the problem 

2. The design and implementation of appropriate tools 

3. The evaluation of these tools in appropriate contexts 
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We feel that researchers have too often developed tools without sufficient or thorough 

study of the problem and related issues. The aspects of this study phase described in the 

dissertation are (a) a review of research in relevant fields, (b) a study of how experts discuss 

algorithms and data structures in the classroom, and (c) studies of how viewers perceive 

algorithm animations.  

To this end, we conducted an observational study of computer science instructors 

[Hamilton-Taylor02b], in order to examine the context of learning in the classroom, and 

understand the tasks and needs of instructors. While a number of studies of students have been 

conducted [HDS02], including an ethnographic study of student AA construction [Hund99], 

similar naturalistic studies of computer science instructors for AA do not otherwise exist. The 

design and results of this study are described in Chapter 4. A description of SKA [Hamilton-

Taylor02a] (Support Kit for Animation), a tool designed to support these tasks, is described in 

Chapter 5.  

Our determination to investigate the role of perception in AAs led us to formulate a plan 

that specified (a) a number of potential perceptual problems and issues that we wanted to 

investigate, and (b) a strategy for investigating them from the lowest level of individual AA 

actions up to groups of AA actions. We wanted answers to a number of questions, including the 

following: 

Are users perceiving the actions or changes in algorithm animations? How often do they 

miss these actions, and why? Can the user follow the animations perceptually? What perceptual 

techniques help? Can they relate the animation portrayal to the algorithm it attempts to 

represent? Do the animations convey the algorithm concepts and operations that the designer 

intended?  
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We initiated what became a large-scale project. An expert in visual and engineering 

psychology, Prof. Davis of Georgia Tech, became our collaborator. A joint project proposal 

between UGA and Georgia Tech, to which we contributed, was funded by the NSF [KD02]. This 

collaborative project proved quite fruitful. We designed an architecture for software to conduct 

perceptual experiments, VizEval. Other graduate students at UGA were selected to collaborate 

with us on the development of VizEval. Graduate students at Georgia Tech worked on the 

perceptual experiments. We collaborated on the design of a series of studies that examine the 

role of perception [DHKHR06] [RRKHDH06] [Rhodes06] [Hailston06] [Reed06] in AAs, and 

the design of software to conduct the studies [KRRH06] [RKHD06] [Reed06] [Thomas04] 

[Ross04]. We are not aware of any prior studies that investigate the perceptual aspect of AAs. 

These studies and the testing environments are described in Chapter 6. 

We have described the main aspects of the study phase. The design phase includes the 

design of SKA and the VizEval perceptual testing environment. The evaluation phase includes 

current use of perceptual testing environments in studies of AAs and future evaluation of SKA. 

 

1.7 Instructor Study 

We examined one aspect of AA learning context and user needs by investigating the 

activities of instructors using AAs in a classroom. This is a common setting, but has not been 

previously studied, to the best of our knowledge. We conducted a naturalistic observational study 

of how instructors discuss algorithms in a lecture setting, with a focus on the use of diagrams and 

algorithm tracing. We videotaped the lectures, and employed a custom methodology/protocol 

based on activity analysis [Nardi96] and contextual inquiry [BH98] to describe activities, tasks 

and use of artifacts (entities). We then identified activities and artifact tasks that could be 
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supported by software tools. We found that the use of diagrams was prevalent, and was an 

integral part of algorithm execution tracing, derivations and discussion of theoretical algorithm 

issues. However, the tracing and diagramming tasks were often tedious and error-prone, and a 

prime candidate for task support. 

 

1.8 SKA 

We designed SKA, the Support Kit for Animation [Hamilton-Taylor02a], based on the 

analysis of user needs and tasks in our observational study of instructors. SKA is designed to 

support and enhance tasks such as diagram manipulation and tracing. It is intended to be a shared 

medium of discussion for instructors and students. SKA is a combination of an interactive data 

structure diagram manipulation environment, an algorithm animation system, and a visual data 

structure library. SKA supports interactive creation and manipulation of data structures via visual 

data structures, independently of algorithms, in a whiteboard-like environment. The visual data 

structures are active diagrams; operations on them manipulate the underlying data structure. 

SKA allows users to execute algorithms that appear as pseudocode on the data structure 

diagrams. Execution control is flexible and designed to emulate and support the manner in which 

instructors perform tracing tasks. SKA has a simple authoring system that portrays Java 

programs as pseudocode algorithms. New visual data structure diagram classes can be added by 

library developers. SKA also has a scripting interface that allows its animation and interaction 

capabilities to be used by other programs; this is used by our perceptual testing software, which 

is described in the following section. 
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Figure 1.1:  SKA in action. The algorithm on the right is waiting for the user to select a directed 

graph from the canvas on the left. 

 

1.9 Perceptual Studies  

We proposed that AAs should be evaluated at the perceptual, mapping and 

comprehension levels, and that we should study the role of perception and perceptual design 

effects at each level. We then collaborated in the design of empirical studies to investigate the 

role of perception in algorithm animations. We designed software to be used to conduct these 

studies. We also examined research in perception, attention, memory, cognition, and cognitive 

engineering design and have analyzed AAs in light of relevant findings. 

We contributed to the design of an experiment that evaluated the effect of cueing 

techniques and labeling objects on the detection of changes and locating the changed objects in 

an AA display [DHKHR06] [Hailston06]. Among other things, we found that cues and labels can 

help users to locate changes, especially for simultaneous changes, but did not affect their 

detection significantly. Also, larger numbers of objects on the display reduced the ability of 

observers to locate simultaneous changes significantly. 
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Another study we contributed to utilized a popup question methodology we developed to 

evaluate whether the viewer was able to perceive and relate (map) changes in an AA display to 

changes in values and to variables in the algorithm [Reed06] [RRKHDH06]. The cueing and 

animation techniques had a significant positive effect on perception and mapping questions. The 

study also evaluated the effect of different cueing and animation techniques on the 

comprehension of a quicksort algorithm animation, as measured by performance on a set of 

problems. These techniques did not help comprehension in the context of use, which allowed 

users to explore the AA while answering questions, and the availability of other redundant 

information sources, such as narrative descriptions.  

A third, preliminary study [Rhodes06] evaluated the effect of the popup question 

methodology on AA comprehension, among other things. The popup methodology did not affect 

comprehension question scores if feedback to popup questions was provided. We found that 

performance on popup questions that mapped changes to algorithm variables was lower than that 

on questions involving mapping of changes to values. A change in color design also improved 

performance to some extent, compared to the second study.  

In order to conduct perceptual studies of AA, we developed software to create and run the 

tests, to meet the specific needs of evaluating algorithm animations. We designed the VizEval 

software architecture [RKHD06] [Ross04] [Thomas04] to conduct perceptual studies of AA 

views, that facilitates: 

• Specification of various types of trials, questions, interaction, and data collection 

• Control of time-based animation of AAs, which is necessary to support trials involving 

perceptual tasks 
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The VizEval suite is comprised of software to create displays for trials, software to create 

trials and tests, and software to conduct tests and collect data. The scripting interface to SKA was 

used for VizEval, and also for a second system, SSEA (System for Study of the Effectiveness of 

Animations) [Reed06], which conducts comprehension-level AA tests and incorporates our 

‘homework’ scenario testing methodology [KST01] and our popup methodology.  

 

1.10 Contributions 

This dissertation research explored a number of issues that relate to the three assumptions 

we stated earlier; namely that to be effective, AAs must support the needs and tasks of the users, 

must be used in appropriate learning contexts, and must be designed to support users’ perceptual 

capabilities and limitations. This research has culminated in a range of contributions: 

• A naturalistic study of instructors to examine their activities and use of artifacts whilst 

conducting algorithms and data structure lectures, and analysis of the results, used to 

suggest areas for potential technological task support.  

• An AA system, SKA, informed by the instructor study findings, that supports interaction 

with active conceptual data structure diagrams, simple authoring and flexible execution 

of pseudocode algorithms, visual data structure library development, and an animation 

engine designed for perceptual pacing. SKA is designed to support instructors in the 

algorithm classroom context, discussion with and exploration by students. 

• Collaborative design of a series of experiments that investigate the role of perception 

(and associated factors) in the use of AAs at various levels of perception and 

comprehension. 
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• Collaborative design and implementation of software to conduct perceptual AA 

experiments, that supports creation, running and data collection for a variety of trial 

types. 

• Work on the analysis of AAs from various research perspectives and work on 

experimental methodologies to evaluate them in various contexts. 

 

1.11 Structure of Dissertation 

The structure of the remainder of the dissertation is as follows. Chapter 2 analyses 

algorithm animation concepts, the objectives of algorithm animation, and efforts to evaluate 

algorithm animation use, all from an HCI and educational technology perspective. Chapter 3 

gives an overview of the historical development of algorithm animation systems and authoring 

paradigms. Our observational study of computer science instructors is described in chapter 4. 

The design and use of SKA is described in chapter 5. The perceptual studies, testing software, 

and related work are described in chapter 6. Finally, we provide a concluding discussion and a 

vision of future research in chapter 7. The relationship of the research components of this 

dissertation is shown in Figure 1.2. 
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Figure 1.2: Structure and relationship of the research components of the dissertation.  

On the left, SKA is informed by our three areas of concern, and is also designed to 

support them. On the right, the observational study investigates user tasks and the 

instructional learning context and informs the design of SKA, as well as the 

algorithm animation community. SKA provides capabilities that support perceptual 

design. The perceptual studies are run using VizEval and SSEA software, which use 

SKA. The perceptual studies will inform future versions of SKA and the algorithm 

animation community.  
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CHAPTER 2 

ANALYZING ALGORITHM ANIMATIONS 

2.0 Introduction 

What is an Algorithm Animation (AA)? What do we think they can do, and why? How 

have they been used in the learning context? What do studies show about AA use?   

What is the fundamental rationale for using AAs and what are our objectives in so doing? 

What is the nature of the artifacts and activities involved in the discussion and design of data 

structures and algorithms?  

Answers to questions such as these may provide useful insight into the design, use and 

evaluation of algorithm animations.  

Standard definitions for AA state that AA is a dynamic visualization of an algorithm 

[PBS93]. However, we seek to understand the underlying nature of AA as an artifact and a tool. 

In this chapter, we discuss these issues from a wider perspective, employing analytical 

frameworks used in educational technology [Orey05] [BH05] and HCI [Nardi96]. Within this 

context, we will also describe studies of AA use. 

 

2.1 Educational Technology Processes  

The Association for Educational Communications and Technology (AECT) definition of 

Educational Technology is “the study and ethical practice of facilitating learning and improving 

performance by creating, using, and managing appropriate technological processes and 
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resources” [BH05].  An educational technology process is an organized set of actions that aims 

to achieve some learning goal. Knowledge about an educational technology process or product 

can be categorized into concepts, theories, and practices [BH05]. An educational technology 

product is an idea, a framework of ideas used to develop technologies, or a concrete technology, 

used in a process. Branch notes that the AECT “assumes education is a process, technology can 

facilitate educational processes, educational technology projects are complex, and the 

sophistication of a process should match the complexity of the related situation” [BH05]. 

A concept is an idea or notion about an entity, process, phenomenon, or technology, for 

example, the idea of an algorithm animation. A theory is a formal proposal about an entity, 

process, phenomena, or technology. For example, researchers have theorized that AAs help 

learners by portraying the dynamic execution of algorithms. Practice describes the actual use of 

the entity, process, phenomena, or technology. For example, we can describe how AAs are used 

as learning tools in lab settings. The process classification of concept, theory, and practice 

represents a useful analytic framework to categorize the learning context of algorithm 

animations. 

2.2 Algorithm and Data Structure Representation 

We want to understand the concept of an AA, the theories ascribed to AAs, and the 

practice of using algorithm animations. Before we seek to examine AAs, we should try to gain an 

understanding of the entities that AAs attempt to visualize: algorithms and data structures. We 

should ask what these entities are, how they are represented, and how they are used in practice. 

We know that algorithms and data structures and their representations are used in design, 

debugging and instruction [AU85]. It is well known that there are common representational 

forms that are used in these contexts [CLR90][Dale03], as we shall discuss.  
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We will begin by describing algorithm and data structure artifacts and activities. This 

descriptive approach is derived from ethnographic description methods [FW96] and activity 

theory analysis methods [Nardi96]. In activity theory, artifacts are entities or external 

representations used in activities. Tools mediate or facilitate the performance of activities on 

artifacts. 

 

Insert new value in list 

   If we reach the end of the list  

OR the new value is less than the value in the node 

Create a new node with the new value 

Insert the new node in the list: 

 Make the next link of the new node point to the list node 

 Make the list pointer point to the new node 

   Else 

Insert new value in the sublist starting at the next node 

 

Figure 2.1: Pseudocode algorithm to insert a new value in sorted place in a linked list. 
 
template<class ItemType> 

void Insert(NodeType<ItemType>*& listPtr, ItemType item) 

{ 

  if (listPtr == NULL || item < listPtr->info) 

  { 

    // Save current pointer. 

    NodeType<ItemType>* tempPtr = listPtr; 

    // Get a new node. 

    listPtr = new NodeType<ItemType>; 

    listPtr->info = item; 

    listPtr->next = tempPtr; 

  } 

  else Insert(listPtr->next, item); 

} 

Figure 2.2:  C++  program that implements the algorithm to insert a new value in sorted place in 

a linked list. 

  

An algorithm is a set of steps that carry out a programmed task; this is the concept. 

Algorithms are described in a variety of notations ranging from arbitrary structured English 

(pseudocode) to algebraic expressions to flow diagrams and combinations thereof. An example 

of a pseudocode algorithm is shown in Figure 2.1. Algorithms are implemented as computer 

programs in various programming languages, as shown in Figure 2.2. An algorithm uses and 
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modifies scalar variables or elements, and data structures or objects. Data structures organize 

elements into groups, in a manner suitable for particular methods of storage, retrieval, deletion, 

and manipulation [AU85]. Common examples of data structures include arrays, lists, trees, and 

graphs.  

We will now define a few terms to describe algorithms and data structures, as used in the 

context of this discussion. Notation refers to the language used to specify algorithms or computer 

programs and define how data is stored. Representation refers to the means of showing the state 

of a running algorithm or program. Representation can be static or dynamic, and often involves 

showing or annotating the corresponding notation. The implementation level refers to the lower 

level at which notation is implemented on a computer, i.e. the level of a computer program. The 

conceptual level refers to the higher level at which algorithms are designed. 

 

Figure 2.3:  A Linked List diagram, using the de facto informal representation. 

 

At the conceptual level, data structures are often described using a diagram 

representation, and algorithms perform tasks on these diagrams. In other words, the notation and 

representation are the same when using these diagrams. An established, though informal, set of 

diagram representations exists for data structures such as lists, trees, graphs, and arrays [CLR90] 
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[Dale03]. Examples of the de facto standard diagram representation are depicted in Figures 2.3 

and 2.5. These diagrams are used in both high-level and lower-level discussion and design. 

Data structures and data can also be represented by charts, such as a series of bars whose 

heights indicate the magnitude of array elements. These tend to be used to display values in a 

form suitable for easy visual comparison of magnitudes. Metaphoric representations can also be 

used, such as playing cards to represent data to be sorted, and towers of Hanoi diagrams to 

understand recursion; examples can be seen in textbooks such as [CLR90][Dale03]. Some 

experts use customized visual representations for specialized design, at a level not intended for 

novices [Petre02]. However, one finds that textbooks and instructors almost inevitably return to 

the de facto algorithm and data structure representations to discuss design, as these alternative 

representations tend to be used to illustrate very high-level concepts and behavior. Also, the 

alternative representations are not universally employed. We therefore believe it is important to 

examine the informal de facto algorithm and data structure representations and their relation to 

AA. 

 

2.2.1 Notation and Representation Difficulties 

Algorithm notation consists of static text (or static diagrams in visual languages), but the 

tasks an algorithm performs are dynamic. At the implementation level, data structures are 

specified (declared) using static textual notation, as shown in Figure 2.4.  However, this 

implementation notation does not portray the changes in size, dynamic structure, and content that 

data structures undergo when modified by algorithms, as shown in Figures 2.3 and 2.5.  
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template < class DT > 

class List 

{ 

  public: 

    // Constructor 

    List ( int ignored = 0 ); 

    // Destructor 

    ~List (); 

    // List manipulation operations 

    void insert ( const DT &newData )        // Insert after cursor 

        throw ( bad_alloc ); 

  private: 

    // Data members 

    ListNode<DT> *head,     // Pointer to the beginning of the list 

                 *cursor;   // Cursor pointer 

}; 

 
template < class DT > 

class ListNode                 

{ 

  private: 

    // Constructor 

    ListNode ( const DT &nodeData, ListNode *nextPtr ); 

 

    // Data members 

    DT dataItem;      // List data item 

    ListNode *next;   // Pointer to the next list node 

 

  friend class List<DT>; 

}; 

 

Figure 2.4:  Part of a declaration of a List and a List Node in C++. The diagrams in Figures 2.3 

and 2.5 are drawn manually by tracing a program that uses such a declaration, or by 

tracing an algorithm. 

 

2.2.2 Conceptual Simulation versus Program Execution 

Algorithms and data structures are generally designed and discussed at the conceptual 

level in research and learning environments. To show the effect of an algorithm at the conceptual 

level, one traces (i.e. simulates manually) its steps and their effects on data structure diagrams, as 

shown in Figure 2.5 [Dale03]. As we show in our observational study of instructors [Hamilton-

Taylor02b], described in Chapter 4, tracing is a time-consuming, difficult, and error-prone 

process. Conceptual-level algorithms cannot be executed on a computer (unless an AA is used).  
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At the implementation level, programs show their effect on data structures by updating 

the data structure state, i.e. its variables. However, programs do not produce data structure 

diagrams from their internal representation (unless a program visualization system is used).  

 

 
Figure 2.5. A sorted linked list diagram, before and after a new value, 67, is inserted. This is 

drawn manually by tracing the insertion algorithm in Figure 2.1 or program in 

Figure 2.2 (from Dale03]).  

 

2.2.3 Gulf Between Notation and Dynamic Representation 

Because the behavior of an algorithm is not apparent from its notation, a fundamental 

gulf exists between the notation for algorithms and the tasks they perform, and between the 

notation for data structures and their representation. This is akin to what Norman calls the gulf of 

execution, which describes the gulf between a user’s intention to do a task, and the user’s ability 

to figure out how to instruct a system to perform that task [HHN85]. Cognitive dimension 

analysis [Green00] would classify these notations as lacking in role-expressiveness: the purpose 
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of the design of an algorithm is often not readily inferred from its notation. These are problems 

that AA and program visualization systems attempt to address. 

 

 

2.2.4 Problems in Learning Situations 

Novices face a number of difficulties in the course of learning programming: 

misconceptions about the model of execution, about programming concepts, and about notation 

[Pane02a]. The misconceptions in the mental models of novices, and the difficulties 

understanding the computational model (the "notational machine") have been identified in 

studies of novices and children learning introductory programming [DuBoulay89]. Mayer found 

that providing concrete models of abstract notational machines improved learning [Mayer89]. A 

primary goal of Boxer [diSessa86] and HANDY [Pane02a] was to provide an interactive 

environment for children and novices that reflected a concrete visual model of computation and 

data. These studies (and tools) involved only introductory programming. However, these 

difficulties extend to algorithms and data structures learning [HDS02], which may be classified 

as intermediate programming. Apart from anecdotal evidence, this is borne out by student 

performance in a number of AA studies [HDS02], including in conditions not involving 

animation use. We identified a number of student misconceptions about intermediate 

programming in Smalltalk in a study of sophomore-level computer science students at Georgia 

Tech [TG97].  

In data structures and algorithms courses, learning situations often involve discussion, 

design, and exploration of conceptual algorithms and data structures. The instructors, or experts, 

often use high-level conceptual algorithms as their notation and data structure diagrams as their 

representation in high-level discussion and design [Hamilton-Taylor02a]. However, we believe 
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that the novice learner often lacks a sufficient grasp of the expert's mental model in order to use 

it accurately on the representation. Even when data structure diagrams are relatively simple, the 

actions performed on them by the algorithm are often quite complex. Thus, the novice often has 

difficulty recreating the behavior of the algorithm or exploring its effects on the data structure 

diagrams.  

These challenges can provide motivation for the design of tools that can bridge this gulf 

and thereby assist novices, or learners. Though researchers have not analyzed the problem from 

this perspective, as far as we are aware, this was the motivation that led to the development of 

algorithm animation. 

 

2.3 Algorithm Animation Concepts 

Price [PBS98] distinguishes between software visualization (SV), program visualization 

(PV), and algorithm animation (AA). Software visualization involves the use of any form of 

visualization technique for software, either static or dynamic. Program visualization is the 

graphical (or multimedia) portrayal of the state of an executing program. Algorithm animation is 

the visualization of high-level and lower-level algorithms, usually for educational purposes, as 

opposed to the typically lower-level code shown by PV. Algorithm animation is also called 

algorithm visualization (AV). In practice, the terms AA and PV are often used interchangeably, 

as it can be hard to draw exact boundaries between high-level algorithms, lower-level algorithms 

and low-level code.  

Algorithm animations, by definition, are intended to show the dynamic operation of an 

algorithm. In so doing, we believe they have the potential to bridge the gap between the static 
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notation and the dynamic behavior of algorithms, and between the static notation/representation 

and dynamic representation of data structures. 

We differentiate between what we think an AA can show (the aim), and how it attempts 

to show it (the design). AA designs can be based on the informal standard algorithm and data 

structure representations, on charts, or use metaphoric representations, as discussed in the 

previous section. Adding a dynamic aspect provides additional display dimensions. Algorithm 

animation display designs are classified in [Brown98] and AA display techniques are surveyed in 

[Jeffrey98] [BH98]. 

An AA can show a dynamic representation of how the algorithm computes its results. 

This would not be visible from the algorithm.  The AA can display dynamic representations of 

the strategies used by the algorithm in the course of execution (carrying out computations). 

Learning such strategies is an important objective for algorithms courses. Algorithm animations 

can also portray the performance or efficiency of an algorithm, which is often not obvious from 

the notation. This is another important learning objective for algorithms courses. Algorithms 

usually have sub-algorithms that carry out subprocesses. Algorithm animations can show the 

dynamic relationships between an algorithm and sub-algorithms, the data that is passed between 

them, and so on. This is important because this is often difficult to track and tedious to trace 

manually.  

 

2.4 Algorithm Animation Theory 

The fundamental theory of AAs is that they help learners by portraying the dynamic 

execution of algorithms [Brown87], thus bridging the gap between static algorithm notation and 
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their dynamic behavior. Hundhausen presented an analysis of AA (which he calls algorithm 

visualization or AV) using six learning theories, as follows (from [HDS02]) in Table 2.1. 

 

Table 2.1: Theories of algorithm animation/visualization (AA/AV) and software visualization 

(SV), as posited by six learning theories (from [HDS02]).  

THEORY SYNOPSIS  ROLE OF AV 

EpistemicFidelity Graphics have an excellent 

ability to encode an expert’s 

mental model, leading to the 

robust, efficient transfer of that 

mental model to viewers 

Encoding of knowledge 

Dual Coding Representations with dually-

coded information  (e.g., graphics 

and text) promote the most robust 

and  efficient knowledge transfer  

Encoding of knowledge 

Individual Differences Differences in human cognitive 

abilities and learning styles 

enable some to benefit from SV 

more than others 

Unspecified, but “encoding  of 

knowledge” fits in well with the 

theory 

Cognitive Constructivism Active engagement with SV 

enables one to construct one’s 

own understanding 

Resource for knowledge 

construction   

Situated Action AV is a communicative resource 

for building a shared 

understanding of algorithms 

Communicative resource akin to 

speech, gesture, and gaze 

 

Sociocultural Constructivism AV enable people to participate 

in a community in increasingly 

central ways 

Community artifacts that grant 

access to central community 

activities 

 

Other AA researchers have put forward less formal theories, some of which relate to 

Hundhausen’s analysis. Baecker proposed that timing and pacing are key in designing effective 

AAs, along with clear, uncluttered display layouts [Baecker98]. His experience with the AA film 

Sorting Out Sorting (SOS) provides anecdotal support for this theory. Stasko theorized that 

smooth, continuous animation makes movement easier to track than sudden movement, which 

allows the viewer to follow animation actions and thus facilitates AA comprehension [Stasko98]. 

These theories have not been confirmed, but we believe that AAs often have problems that are 

perceptual and attentional in nature that may contribute to the mixed results of studies of AA 
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effectiveness. We initiated and have collaborated on empirical studies to investigate these issues 

[DHKHR06] [RRKHDH06] [Rhodes06] [Hailston06], described in Chapter 6, and we are in the 

process of conducting further empirical studies. 

Hundhausen believes that AA construction is more effective then AA viewing because of 

the nature of the design process and the higher level of engagement involved [Hund99]. 

Hübscher-Younger found that a group that constructed an animation outperformed groups that 

used other media on a post-test [HN03], supporting this position.  

We agree with the cognitive constructionist view that using AA as a resource facilitates 

knowledge construction. We believe that AA use in a problem-solving context facilitates 

exploration of the algorithm, and promotes a higher level of engagement. Furthermore, we 

believe that active use of an AA to seek an answer to some question in the mind directs and 

sharpens cognitive focus and perception, particularly to aspects of the AA that relate to the 

question. This transforms the AA into an investigative tool, a virtual lab, an exploration tool. 

Prior studies we conducted, using AA as a problem-solving resource, provide some support for 

this notion [KST01] [TRHK02]. 

We also believe that AA environments can be used as a shared medium of discussion 

between expert and novices, or between novices. In particular, we propose that they can bridge 

the gap between the language of hand-drawn data structure diagrams and static notation that 

specifies the data structures, as well as between algorithms and their dynamic behavior. This is 

part of our design rationale for our interactive AA system, SKA, the Support Kit for Animation 

[Hamilton-Taylor02a], described in Chapter 5.  
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2.5 Algorithm Animation Practice 

AAs have been used in a wide variety of learning situations. They include lectures, 

laboratories, tutorials, class discussions, office hour use, tests, assignments, and self-study. A 

survey of these is discussed in [HDS02] [Naps03]. We discuss some of the more common uses 

of AA and studies of their efficacy or use in those contexts.  

The earliest use of AA was as a lecture demonstration tool. Intended for novices, Sorting 

Out Sorting (SOS) is a thirty-minute narrated film, similar in flavor to those produced for high 

school physics classes [Baecker98]. It presents a series of sorting algorithms at the conceptual 

and operational level. It goes on to present the efficiency of each algorithm, then explores their 

comparative efficiency using simultaneous animation. There is anecdotal evidence of the 

effective use of SOS. 

The implicit learning model of many algorithm animations is that of passive transmission 

[Kosch96]. The objective of many existing AA systems is to provide a good graphical library. 

These systems generally support a ‘video’/ batch processing paradigm – provide the input data 

and watch the video, with controls to slow it down, speed it up, pause it or replay it. Yet there is 

a school of thought in the education community that an active model of learning [Kosch96], 

involving exploration, problem solving, or construction, may be more appropriate and effective. 

Hundhausen suggests that active learning with AAs can be accomplished using a variety of 

activities, such as (from [HDS02]) 

• constructing their own input data sets; 

• making predictions regarding future visualization states; 

• programming the target algorithm;  

• answering strategic questions about the visualization; and 
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• constructing their own visualizations.  

 

The results of some studies of AA support the theory that interaction and active learning 

can improve learning [Lawrence93] [KST00] [HN03], though other studies have mixed or 

inconclusive results [BCS99][Jarc98]. In Hundhausen’s meta-survey, 71% of the studies he 

categorized as involving active learning or cognitive constructionism [HD0S2] had significant 

positive results, versus 50% of the studies in the individual differences category, 50% in the 

dual-coding category, and 30% in the epistemic fidelity category [HDS02]. Algorithm animation 

system designers should therefore consider supporting interaction, active exploration, and other 

modes that facilitate active learning. Interaction control can affect outcomes. [Saraiya04] found 

that user-friendly execution controls provided a significant advantage (on a comprehension post-

test) for a group using them, compared to a group whose system did not have these controls. 

Generally, students are passive viewers when AA is used as a tool in lectures; however, 

AAs can be used to facilitate interaction between the instructor and the class. The electronic 

classroom at Brown University allowed instructors and students to pose and respond to 

questions, run animations and interact with them [Bazik98]. An examination of the tasks the 

instructors perform while discussing algorithms and data structures in a lecture in the absence of 

an algorithm animation system allowed us to identify some tasks that could be supported by a 

system [Hamilton-Taylor02b], as described in Chapter 4. We found that diagram use is an 

integral part of the discussion process, and used the results to inform the design of SKA 

[Hamilton-Taylor02a].  

Algorithm animations are used as learning tools in laboratory settings; students may be 

asked to perform various types of exercises such as comparing the effect of input data sets on the 
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behavior and performance of the algorithm, or may be encouraged to explore on their own. A 

comprehensive study [LBS94] compared groups that observed an animation during a lecture to 

groups that viewed slides portraying the same algorithm, using the same data set. Each of these 

groups was divided into two sub-groups, one of which did a lab using an animation of the 

algorithm they were studying.  The lab groups were subdivided into a 'passive' group, which ran 

the animation, and an 'active' group, which had to create their own data sets for the animation. 

They found that the group that constructed data sets while doing the lab exercise had 

significantly higher scores on a post-test than groups that just attended the lecture. 

Algorithm animations are used as individual learning tools to observe or explore 

algorithms. Many studies of AA effectiveness, which are primarily of individual use, have 

produced mixed results [HDS02]. In some cases, this is so even when they included interaction.  

Byrne, et.al. [BCS99] conducted a study that combined prediction and no prediction with 

animation and non-animation conditions. Students were asked to make predictions about the 

result of the next step of the algorithm. All groups were shown a short videotaped lecture. The 

study had two parts. In part A, a basic depth-first search algorithm animation was used and a 

post-test consisting of procedural questions was given to the students, who were non-CS majors. 

Both animation groups (prediction/no prediction) and the no animation/prediction group showed 

a significant advantage over the no prediction/no animation group. In part B, the students were 

advanced CS undergraduates, a more complex binomial heap animation was used, and the post-

test had procedural and conceptual questions. They found a mix of significant and non-

significant advantages for animation and prediction groups; no differences were found on 

conceptual questions. On the other hand, Jarc found no advantage for prediction on tests 
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comparing the use of animations with and without predictions [Jarc98]. A study by Rhodes and 

her colleagues [Rhodes06] had similar results to that of [Jarc98], described in Chapter 6. 

In a study conducted at Georgia Tech in 1997, we had individual students use AAs as a 

resource while solving textbook exercises [KST01]. This has been called the ”assignment” 

[HDS02] or “homework” scenario. The students were learning about a complex new data 

structure (a binomial heap), and a set of algorithms that use it. Students were also given the 

relevant section of the textbook, which included figures. We recorded detailed observations of 

students using these resources in this problem-solving process, and found that animations were 

used as heavily as a resource, in conjunction with other materials. Students in the animation 

group performed significantly better than those in another group who were given the same text 

and static diagrams from the algorithm animations. In post-session discussions, students pointed 

out specific instances where the animations helped to clarify operations. The same binomial heap 

animation was used in [BCS99], which makes for an interesting comparison. 

In another study we collaborated on at UGA in 2001 [TRHK02], using this same 

“assignment” approach resulted in significant advantage in scores on a problem set for an 

animation group, as compared to a group that used cognitively equivalent non-animated material. 

The animation group also fared better compared to earlier groups that used a standard post-test 

approach, though there were a few differences in the experimental environments. 

Another approach to using AAs in computer science education is to ask students to 

construct their own AAs, with the intention that in so doing, they will learn about the algorithm. 

Constructionist activity has been used in many subject areas [Pappert87]. Stasko found that 

students enjoyed using his Samba tool to do so, but it was quite time-consuming [Stasko96]. 

Hundhausen found that students took much less time to create AAs with ALVIS, a higher-level 
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tool, than with Samba [Hund99]. The design of ALVIS is based on his study of students using 

tangible material (paper cut-outs) to create AAs. Hübscher-Younger found that a group that 

constructed an animation outperformed those who used other media such as paper drawings, 

stories or anything else [HN03]. The comparison was done using pre- and post-tests of algorithm 

comprehension.  

We participated in a team effort to conduct an ethnographic study of student perspectives 

on the learning of algorithm and data structures at Georgia Tech in 1998. This included 

investigating student views on algorithm animations developed by instructors, by themselves, by 

other students, and on the tools used by the students to develop animations (in this case, Samba). 

Our findings from this study (unpublished so far) revealed that students face a number of 

challenges in the construction process. Constructing an animation can help to understand an 

algorithm, but some students find they have to understand the algorithm first while others 

develop an understanding of the algorithm while developing the animation. Yet others report 

developing an animation (even with bells and whistles) without fully understanding the 

algorithm, and even receiving high grades. For example, a number of students reported that they 

fully understood the Shellsort algorithm they animated (which was not discussed in class) only 

after viewing a ‘solution’ animation during class. We also found that students spent a substantial 

amount of time in the pre- and early design phase on low-level details, and that the time required 

for constructing AAs using Samba could not be supported in a typical algorithms course for 

more than a few algorithms (and many algorithms need to be covered). The use of higher-level 

AA tools can help to reduce construction time, but may not necessarily address these other 

concerns. 
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2.6 Conclusion and Future Work 

Much of the research in AA has concentrated on developing systems, proposing practices 

and analyzing the end results of studies of these practices, rather than examining the fundamental 

essential nature of the phenomena AA attempts to visualize, and considering the various aspects 

of AAs in the larger educational technology context. We have presented an analysis of the 

entities that AA is trying to represent and the problems their notation and representation imply 

for learning and AA system design. Rather than simply reviewing studies and definitions of AAs, 

we have discussed them in the framework of educational technology processes. Clearly, there are 

a number of AA theories that merit further thought and elaboration, including some of our own. 

Studies of the practice of AA use and construction reveal a complex picture of results, which 

points to the need for further examination of the relationship between AA theory, the aims of AA 

practice, the design of AAs, and the actual practice or use of algorithm animations. 

We believe that our analysis represents a new approach to the study of the artifacts, 

activities, and related learning issues surrounding the subject of algorithms and data structures. 

We have employed this analysis to inform our framework for (a) the study of these artifacts and 

activities, (b) the design of tools for learning environment support, and (c) evaluation of factors 

relevant to their effectiveness. We are not aware of any research that describes and analyzes 

these issues as we have. 
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CHAPTER 3 

THE HISTORICAL DEVELOPMENT OF ALGORITHM ANIMATION 

3.0 Introduction 

In the late 1960’s, a graduate student at MIT named Ron Baecker had a vision.  He would 

use the new graphics display terminals to portray data structures diagrams, and show dynamic 

changes to them as programs executed [Baecker68].  He anticipated that this could be useful for 

debugging, since programmers often drew these diagrams by hand and painstakingly traced 

changes on them in the process of debugging. 

Thus was born software visualization (SV).  In the late 1970’s, Baecker pursued further 

work on the use of SV for educational purposes [Baecker75], resulting in a landmark work, 

Sorting Out Sorting [Baecker81] [Baecker98].  This film of animated sorting algorithms 

generated much excitement when it was shown at SIGGRAPH [Baecker81].  It was followed by 

algorithm animation (AA) systems such as BALSA [Brown87] and TANGO [Stasko98a]. 

Initially, it was assumed that AAs would be beneficial, as this seemed intuitive.  

Eventually, studies were conducted to investigate the benefits of algorithm animation.  To the 

surprise of researchers, the benefits were not clear-cut.  Further, we note that AAs seem not to be 

used as much in teaching as was expected [Naps03]. 

Why haven’t AA systems had the type of impact that was widely anticipated? Why aren’t 

they more widely used? Practitioners in the field continue to express concerns about these issues 

[Naps03].  One reason may be that AA systems designers, particularly in the early years, focused 

their efforts largely on technical design issues such as graphical capabilities, animation system 
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capabilities, and API (application programmer interface) design. Algorithm animation system 

capabilities have grown and become more sophisticated. For example, systems went from 

addressing serial computations to dealing with concurrency, from 2D graphics to 3D, and from 

single workstation to networked systems.  No doubt exists that many of these systems are 

impressive technical achievements, and represent significant milestones in the development of 

AA system design. It took detailed planning to create abstractions for graphical layout, 

positioning, animation actions, etc. and the solutions embodied in the AA systems developed are 

quite elegant.  

However, in  this focus on technical design issues,  we believe that  a number of issues 

relevant to the ultimate goal of using AAs to effectively portray algorithms have been neglected.  

For example, with few exceptions [MS94][SH04] [Saraiya04], the capabilities described above 

have not been evaluated for usability nor shown conclusively to significantly increase AA 

effectiveness.  Virtually all AA systems have been designed in the absence of preliminary studies 

to evaluate the tasks and needs of the authors and users. 

A number of studies have been performed to evaluate the effectiveness of AA for 

learning, and the results have been varied [HDS02]. In general, these results have not been 

correlated to factors such as perceptual and cognitive abilities and limitations, AA design, or 

system capabilities that might offer an explanation of the results. In one of the few studies to 

look at system capabilities, [Saraiya04] found that providing forward and backwards step 

controls to one group resulted in them significantly outperforming (on a post-test) a group whose 

system did not have these controls. 

In order to place the AA system design aspect of this dissertation into the proper context, 

we examine below the development of AA systems, their system goals and capabilities. We 
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categorize these systems according to their authoring paradigms, and discuss the design models, 

capabilities and limitations of these paradigms. 

 

3.0.1 Evolution of AA Systems 

One perspective on the evolution of AA systems is in terms of the specification paradigm 

employed.   The various specification paradigms (methods of specifying or programming an 

animation) that have been used over time are discussed in the following sections and include: 

• Customized specification (no specialized AA API)  

• Event Annotation 

• Declarative 

• Programming by Demonstration (PBD) 

• Scripting  

• Automatic Animation 

 

3.1 Customized Specification 

Customized specification methods use general graphics or animation libraries for 

programming algorithm animations. This means that there is no specific API (application 

programming interface) developed for algorithm animation. The main advantage of this is that an 

author does not have to learn a new API. A secondary advantage is that the general graphics or 

animation API may have a wider set of capabilities than may be available through a particular 

animation system. However, the big disadvantage is it will almost certainly take much longer to 

implement an AA using a general library than it would using an AA system. Algorithm 

animation systems have specialized capabilities related to typical AA graphics and animation 
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needs that distinguish them even from general animation libraries. Because of this, customized 

specification is not considered an important AA specification method. In a SIGCSE conference 

discussion session we attended in 1998, instructors from Brown University reported that students 

using Java libraries to do AA assignments took a great deal of time to implement their algorithm 

animations.   The Sorting Out Sorting film, discussed below, required a substantial amount of 

time to create and produce, though only partially because of the use of a general graphics API. 

3.1.1 Sorting Out Sorting 

 

Although there were earlier efforts, it is widely recognized that the field of AA started 

with the film Sorting Out Sorting (SOS) [Baecker98] [BP98] [Baecker81]. Developed by Ron 

Baecker and a large team at U. Toronto between 1978 and 1981, SOS was a thirty-minute 

animated film, similar in flavor to those produced for high school physics classes. Its debut at 

SIGGRAPH 83 created quite a stir, and jump-started interest in algorithm animation 

[Baecker81]. 

SOS showed a series of animations of sorting algorithms, accompanied by audio 

narration. The film then moved on to an analysis of how fast they could sort data, accompanied 

by animation with larger data sets, and finally a comparison of execution speed was made by 

showing the large data set animation views simultaneously. 

SOS Animations were programmed using batch-processing with a graphical API; there 

was no AA API defined for it. SOS took three years to produce, even with a team of 

programmers. Why so long? Baecker does not provide specific details about the development 

process, though some insights may be gleaned from a paper describing its development [BP98]. 

Apparently, it was not just the lack of an API. There are at least three reasons we can identify.  
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The first reason is that much time was invested in the design of the animation content and 

layouts. SOS established some of the standard graphical display types for sorting, for example, 

the use of bar and dot displays. In addition, Baecker chose displays they believed would be best 

for particular algorithms. For example, numbers were used in the heapsort tree display because 

bars would not be easily comparable in a tree. 

Secondly, Baecker recognized that a careful balance was needed between (a) showing a 

process at a pace that the viewer could follow and (b) boring the user by showing the process at a 

slow pace. He notes that timing was a central problem [Baecker98]. They decided to present the 

initial steps of the algorithm slowly to give the student an idea of what was going on. He points 

out that “totally literal and consistent presentations can be boring” (p.374) and that after slower 

initial step-by-step explanations he found he had to “add visual and dramatic interest” to “present 

more advanced material” (p.374). He also notes that timing requirements can vary with the 

nature of the particular algorithm. Hence, he used customized pacing and timing for different 

algorithms in SOS. In addition, the pacing often had to be changed during an animation. This 

seems to have taken some time to fine-tune. 

Prior to SOS, Baecker designed the first system for cartoon animation, GENESYS 

[Baecker71], which incorporated  Programming by Demonstration (PBD) techniques for 

controlling pacing and timing. The pacing and timing design of SOS is likely to have benefited 

from this experience. Given the large size of the production team acknowledged in the credits, 

Baecker may have also had advice from animators and filmmakers (SOS). 

Thirdly, SOS had a well-defined lesson structure. SOS used audio commentary to 

accompany the animations. The commentary is used to introduce algorithms, the purpose and 

goal of the algorithm, give a conceptual overview of its high-level operations, explain its low-
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level operations, comment on its performance, and summarize and review it. The use of audio 

narration may have an advantage over the use of on-screen narration such as accompanying text. 

In a series of studies, Mayer [MM98] found that this was the case for educational multimedia in 

some domains, presumably because audio uses a separate perceptual channel than visual 

presentation. In other words, SOS used classical educational multimedia design, perhaps before 

such guidelines existed. Baecker seems to have had input from someone on the large production 

team who knew about lesson design, although this is not mentioned. This no doubt added value 

to the AA, by presenting it almost as a structured lesson.  

Baecker judges SOS as successful [Baecker98] based on general feedback, student 

interviews and “an informal unpublished experiment” (p.377). Baecker then makes a number of 

claims for animations, e.g. “we can perceive structure and relationships of causality and 

ultimately infer what the program is doing” (p.370), but does not substantiate them or propose to 

study them. However, Baecker notes [Baecker98] that pedagogical AA is “not a trivial 

endeavor” (p.370) because, among other things, we must “enhance relevant details, devise clear, 

uncluttered, and attractive graphic designs and choose appropriate timing and pacing” (p.370).  

However, he believes that “fancy rendering and smooth motion” are not “necessarily required” 

(p.378). In short, SOS was supported by 

• Customized animation for each AA (pacing, control) 

• Narrated Animations 

• Carefully Planned Lesson Design 

• Graphical Design (view design for large and small data sets, minimal number of colors 

used to indicate changes, side-by-side comparison of views) 
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SOS set a benchmark that was not recognized, at least at the time. Next generation AA 

system designers focused on the animation process rather than the design process.  Their 

challenge was to write a system that one could use to author an AA for any algorithm, rather than 

creating a customized animation for each algorithm using a generic graphical API. Balsa 

[Brown87] was the first to attempt to fulfill this need. However, Balsa and many of the systems 

that succeeded it did not readily support the customized animation, customized pacing, and 

careful instructional design of SOS.  

 

3.2 Event Annotation 

The first popular AA specification method was event annotation. In this approach the 

author defines events, which correspond to functions that perform some graphical action. The 

events are generated by the algorithm, and serve to invoke graphical action that illustrates the 

current algorithm operation. The AA system receives the events and carries out the required 

action. The majority of AA systems use event annotation. The main advantage of this method is 

that events can be closely linked to source code. The main disadvantage is that extensive 

annotation may alter the structure of the source code. 

3.2.1 Balsa/Balsa-II 

Balsa was the first comprehensive AA system. It was developed at Brown University in 

the late 1980’s by Marc Brown [Brown87] [Brown98]. This system was considered significant 

enough to merit the publication of a book, which attracted widespread attention, based on 

Brown’s dissertation [Brown87]. Balsa introduced the event annotation method of specifying 

algorithm annotations. Brown calls this ‘interesting event’ annotation. Balsa had a set of 

primitives to create views (windows), graphical objects, and to animate these objects. It ran on 
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the then-new Macintosh, which was the only GUI platform available to the general public at the 

time.  

Balsa-II replaced Balsa in fairly short order [Brown88]. The Balsa-II architecture added 

capabilities that allowed a programmer to produce comparative animations of the type shown in 

Sorting Out Sorting. For example, Balsa-II supported the visual comparison of multiple 

algorithms, allowing them to be run in separate windows. In order to compare the algorithms, 

AA designers were advised to mark operations of equivalent time complexity (O(1) operations)  

as “single-step” events. Balsa-II would run each algorithm (in round-robin fashion) up to a 

single-step event. Algorithm animation designers could also designate other “interesting events” 

to be used in comparison, e.g. the completion of a loop, insertion of a node, etc. 

Balsa-II facilitated execution control through two types of breakpoints – every single-step 

event was a breakpoint, and the other “interesting events” could also be made into breakpoints. 

However, these breakpoints had to be specified at compile time, and could not be changed during 

execution (we address this limitation in our system design in Chapter 5). Events were stored by 

the animation engine, and could be played in reverse, thus giving the impression of reverse 

execution. 

A major limitation of Balsa and Balsa II was that they lacked authoring-level animation 

control or pacing. Animation speed was based on the speed of the system, which became a 

problem as computer system speeds increased exponentially over the years. Also, the animation 

was not guaranteed to be smooth. Balsa-II included other capabilities such as limited animation 

interactivity. Researchers at Brown University used Balsa and other tools in teaching practice in 

a variety of ways, which are described in [Bazik98]. 
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3.2.2 TANGO/XTANGO 

3.2.2.1 Main Ideas 

TANGO, the next major AA system, also uses the event annotation specification model 

[Stasko98a]. TANGO was developed by Stasko at Brown University around 1990, followed in 

short order by an X-windows version, XTANGO. The main goal of TANGO was to allow simple 

creation of smooth animation of primitive graphical objects along user-defined paths. Stasko 

theorized that smooth animation would ensure that viewers could follow the animation actions, 

and thus improve AA comprehension. However, no studies were carried out or proposed to 

confirm this belief, nor was any supporting evidence presented.  

At the time the development of these systems was occurring, it was common for 

pioneering educational systems such the Alternate Reality Kit [Smith86] to be designed based on 

similar assumptions. It was quite rare for empirical testing or any form of user testing to be done 

to confirm their beliefs. Such testing became seriously considered several years later as the 

educational community began to call for verification of beneficial claims.  

On the technical side, TANGO introduced a path-transition paradigm for specifying 

animation actions. Stasko believes that this was the major contribution of TANGO, and we agree 

[Stasko98a]. The programmer could specify the path followed by an object (the image), and how 

the object changed (the transition) while following the path. TANGO established formal 

abstractions for locations, paths, and transitions, all of which could be defined independently of 

graphical objects. Each abstract type had a set of functions defined on it. 

A path was modeled after a geometric 2D path, a series of (x,y) difference changes, but 

could also define changes of size, color, etc. It could also define the time between each 

animation 'frame'. Paths could be manipulated in a number of ways with functions relevant to 
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animations – iteration, concatenation, and composition, which are essentially list manipulations. 

Transitions use paths to specify how to modify images. Transitions could use path composition 

to perform actions concurrently. 

Although the animation in TANGO was smooth, the overall rate of animation was 

machine dependent and also dependent on CPU load. The user was given a speed control slider, 

but it could be rather sensitive, so an animation could be too slow at one moment then, after a 

small adjustment, too fast at the next. 

Performing complex animation took some planning on the part of the AA author, even 

with this framework. The paths could be a bit tedious to program if the actions were not 

straightforward. Layout had to be planned carefully. In particular, complex concurrent actions 

were generally difficult to specify, once they involved more than a few objects. Some of these 

limitations were addressed in the design of the next system, POLKA.  

3.2.3 POLKA 

3.2.3.1 Main Points 

POLKA was developed by Stasko at Georgia Tech around 1993 [SK93]. POLKA's 

primary aim was to extend the XTANGO model to include parallel AA and revise its 

programming model. This would facilitate the portrayal of parallel/concurrent algorithms and 

visualizations. Also, in some sequential algorithms, many operations are conceptually 

concurrent, for example, the exchange of elements in a sort, or the comparison of several paths in 

a graph algorithm. While the addition of parallel animation is very useful for authors, little 

consideration was given to the perceptual/attentional implications of this capability. 

POLKA's programming model incorporates a number of improvements over the 

XTANGO model. The path-transition model introduced in XTANGO was enhanced. It readily 
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supports parallel animation of objects within a view, a challenge for XTANGO. POLKA also 

supports multiple views.  

The POLKA programming model is more modular, and since it is written in C++, it is 

object-oriented. A POLKA animation is separated into (1) headers of animation functions, (2) 

animation function bodies (scenes), and (3) algorithms, which invoke animation functions. 

Despite the mature animation control design, POLKA did not have time-based pacing 

control – animation speed still varied with system speed and load. This was due in part to the fact 

that the popular operating systems of the day did not support certain types of time-based actions 

very well. However, POLKA does allow the definition of animation speeds in relation to other 

actions. For example, one action can be twice the speed of another, as defined using a common 

clock. However, we cannot control the actual pace of the clock – it is system-dependent. 

 

3.2.3.2 Technical Description  

To get a feeling for the concepts one must understand to be an AA author using an event 

annotation AA system of this generation; we therefore present a brief technical overview of 

POLKA.  

POLKA defines an Animator class that performs animation on one or more views, which 

are members of Animator. The Animator is used to coordinate multiple views, to define common 

variables, and can contain either the algorithm to be animated or a main event-processing loop 

that receives the “interesting events” and then invokes the corresponding functions. 

A view is a window, with a real-valued coordinate system. Scene functions can be 

defined on views to perform semantic actions, but these scenes are not required. Views can 

contain AnimObjects, the graphical objects in the view. Actions can be independently defined 
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and associated with one or more AnimObjects at a particular clock time by use of the function 

program(). Each view has a clock, which is independent of the clocks in other views. To define 

concurrent actions, one simply programs each of the multiple actions to start at the same time. 

The animation is actually performed when the animate() function is called. This function 

also advances the clock time. The programmer specifies how many frames to generate in the 

animate call (e.g. animate(n)). Note that clock time is actually the number of frames (i.e. each 

clock tick is a frame). The animate function checks to see if any of the AnimObjects defined in 

the view have actions programmed on them for that time period and sends them update and draw 

messages. 

The programmer can vary the relative pace of an Action by specifying how many frames 

to spread the action over. The relative pace is the pace of an animation action in relation to other 

actions (in the same program). The absolute pace is the speed of animation the user sees, which 

is governed by the number of frames per second. The absolute pace is system-dependent 

(depending on system speed and load) and cannot be controlled by the programmer. 

When the viewer is running the animation, he or she can control the absolute pace by 

using the speed control bar. However, it can be quite a task to get an animation to run at the 

desired pace.  For example, it is frustrating when the user desires that one section run quickly 

and the next section slowly, and has to try to quickly change the speed before the transition from 

the fast section to the slow section. Finding the right pace can also be a challenge as the speed 

can be quite sensitive to small changes of the speed control bar, especially on fast machines. 

POLKA includes functions for creating various geometric objects, a variety of Action 

types (e.g. MOVE, GROW, COLOR), paths, and functions to manipulate them, and a few 
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functions to assist with basic layout. POLKA also has low-level interactivity support. It provides 

a pick function that invokes a callback function defined on a visual object. 

POLKA is a solid, well thought out system. However, the authors admit that it does not 

completely meet their goal of being easy-to-use [SK93]. The concepts take a little getting used 

to, the library takes some more time, and to actually use it to design and implement an AA is 

quite a bit of work for the average time-strapped instructor or student. Also, there are no 

predefined data structure display objects (e.g. trees and graphs and arrays), so all layouts have to 

be designed from scratch.  

POLKA is ideal for someone who wants to do a serious animation and has some time to 

invest. POLKA continues to be used (a windows version is available) and is also the underlying 

engine of the Samba scripting system.  

 

3.2.4 POLKA-RC 

POLKA-RC is an extension of POLKA that adds real-time control over pacing, i.e. 

absolute pacing [SM95]. It is obvious that the lack of this capability was seen as a serious issue 

for an entire system extension to be devoted to addressing it. POLKA-RC replaces the 

fundamental notion of the clock as a frame, and uses actual time in its animation functions. 

POLKA-RC also adds pacing controls such as slow-in/slow-out to improve the perception of 

animation. The authors note that cartoonists use these techniques, and that real-world objects 

hardly start and stop abruptly. However, the effectiveness of these techniques was not studied.  

Although POLKA-RC is ostensibly an extension of POLKA, their API functions differ 

quite a bit at times. While the temporal control capabilities of POLKA-RC are useful, even 



 

 

46

 

simple actions can involve hand-tuned time constants, as shown in the following POLKA-RC 

code, which animates two objects on an arc: 

top_trans = new transition( 

icn_obj1, 

new arc_traj(250,303, 293, 3.8,5.0), 

start_in, MSec(500), duration, Sec(4)); 

 

bottom_trans = new transition( 

icn_obj2, 

new arc_traj(250,453,293,3.8,5.0,&slowinout), 

start_after_start_of, top_trans, MSec(0), 

duration, Sec(4)); 

 

transition_agent->schedule_transition(top_trans); 

 

Higher-level timing and pacing abstractions such as those used in POLKA-RC can help 

make authoring easier, but one still has to plan the design of AAs and adjust the original program 

in relation to this plan. Detailed AA actions and temporal considerations are the chief issues. For 

example, the sequence of actions to animate an operation that finds the shortest edge in a graph 

might be: 

1. Highlight or cue the group of edges to be considered (for some time period). 

2. Move an object along one of more edges 

3. Keep track of shortest edge found so far and show it graphically 

4. Show the final minimum edge and change its appearance  

5. Add it to a new set or tree 

 

If one adds timing and pacing considerations, it is easy to see how the authors of Sorting 

Out Sorting spent so much time working on AA design - if one wants to make the AA visually 

clear and appealing. Obviously, some sort of support to reduce this design and implementation 

burden would be useful. Declarative and Programming-by-Demonstration (PBD) specification 

methods are attempts to do so.  
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3.3 Declarative Specification 

Declarative specification methods [Roman92] work by allowing users to define actions 

that should be performed when certain changes occur or when user-defined conditions are met. 

Authors define rules that contain the conditions or changes. The AA system then monitors 

changes or accesses to data structures or variables and matches them against the rules. For 

example, changes to an element of an array could trigger an animation routine. Declarative 

specification methods are attractive because they promise to reduce the amount of annotation 

code needed to portray animations. 

A major objective of declarative specification is to decouple or separate the program code 

from the animation invocation code as well as the animation code. Event annotation only 

separates the animation code. The declarative idea is to leave the original code relatively 

untouched, and thus more readable. However, this leads to possible complications. Suppose we 

have different animation actions at different points that we want to perform using the same rule, 

or suppose two or more rules are met simultaneously. Which action should be performed first? 

The order in which rules are fired is critical for the correct operation of the algorithm animation. 

However, this ordering can be difficult to specify, especially when the source code is in different 

routines and rules are attached to each routine. The separation of rules from code can make AA 

design/authoring and debugging harder. 

 

3.3.1 PAVANE 

PAVANE [Roman92], developed by Roman at Washington University around 1992, was 

the first well-known declarative AA system. In PAVANE, a visualization is formally defined as 
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a mapping from program states to a graphical representation. PAVANE specifies mappings using 

mathematical mapping functions, which can contain logical or set expressions, assertions or 

rules. These are specified via dialog boxes.  

The main goals of PAVANE are to present a cleaner way of specifying AAs, and to 

support concurrent algorithm animation. Roman claims that declarative specification can 

simplify AA authoring.  For example, it can reduce the need to save program state, in some 

cases. However, the declarative approach can get complex. PAVANE uses composite objects, in 

which one mapping defines a graphical object, which is sent to a second mapping that modifies 

it, and so on. For example, a node can be defined in one mapping, and the second mapping 

modifies its appearance or content. This is useful in handling recursion, which is a challenge in 

PAVANE as actions must figure out their recursion level. An AA author can design graphical 

objects that can be constructed from others, a form of inheritance that can be used to create a 

library of objects to simplify AA layout. Although he argues against event annotation, Roman 

recognizes that event detection is needed at times. One can declare mappings to detect and 

handle events. PAVANE also supports distributed computation and distributed AA by sharing 

state between processes. PAVANE supports 3D graphics, and the execution environment 

supports 3D navigation of views and interaction. 

Roman states that an evaluation showed that “competent” programmers (with no previous 

visualization experience) could learn PAVANE and produce an AA within 3 to 6 hours, and that 

most AAs need less than 24 rules, with 3 to 10 rules being common. While PAVANE has some 

good features for authors, we believe that quite a bit of effort is needed to write reasonably 

complex algorithm animations.  
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Designers kept up the quest for easier AA authoring techniques, and created the 

Programming by Demonstration and Scripting paradigms. 

 

3.4 Programming by demonstration (PBD) 

Programming by demonstration (PBD) is a specification method in which the user 

demonstrates what the program should do, using a visual tool. The method has been used for 

general programming, and for end-user programming in particular. For example, many 

commercial multimedia systems use some form of PBD to specify animations. It has been 

employed for AA in only a few instances. Stasko’s Dance system [Stasko98b] used PBD to 

specify objects and the paths they should follow, etc, and generated TANGO code. The goal was 

to reduce authoring effort, and in this regard it showed promise, especially for novice users or 

those who do not have time to learn other types of AA systems. 

One limitation of PBD is that it is often challenging to use it to specify generalized AA 

actions, for example, a swap that can occur between any two elements in an array, not just two 

fixed locations. Moving an object along a graph edge should work for any edge of any 

orientation. Actions are often composed of smaller actions, and this must be accommodated. 

Timing and pacing can be challenging to specify as well. Even general multimedia animation 

tools can be quite tedious and time-consuming to use.  

Specifying AA actions visually poses additional challenges. Predicting all actions may 

not be possible when these actions are under program control. Some actions are related to the 

semantics of a program, so they are hard to predict, e.g. drawing a pointer from one point to 

another in a tree algorithm. Specifying a generalized action, and relating the action to an 

algorithm operation can be difficult or tedious. For example, to swap bars, a bar has to be related 
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to an array value, then one must specify that a swap in the algorithm causes an animated swap 

and visually specify how the bars must move, perhaps using a template of bars. A usability study 

of the Lens animated debugger system  [MS94] found that users had difficulty constructing 

mappings between code and the visual representation. Dance [Stasko98b] used dialog boxes to 

specify which functions would call the actions specified using PBD, and how the parameters 

would be used. We are not aware of any well-known system that uses PBD for general algorithm 

animation. Some AA scripting systems (e.g. ANIMAL [RF01] and ALVIS [HD02]) use visual 

tools that incorporate some aspects of PBD, or can be considered composite systems. 

 

3.4.1 Dance 

Dance [Stasko98b] was developed by Stasko at Georgia Tech around 1991 to allow the 

creation of animation routines via direct manipulation. It uses PBD to specify animation routines 

(called scenes) for TANGO. The scenes are specified using menus, dialog boxes, and a visual 

tool, and are then output as C functions. The algorithm then calls these routines with the 

appropriate parameters. However, AA construction using Dance involves a large number of 

steps. For example, to swap two bars in arbitrary positions that represent array values in a sorting 

routine, one would: 

 

1. Define the parameters of the routine (e.g. p1, p2) 

2. Create rectangles for use as templates (arbitrary position rather than fixed position) and 

name them (e.g. bar1, bar2) 

3. Define an association between each parameter and the corresponding bar (e.g. p1 to bar1) 

4. Position the bars on the display 
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5. Create a variable that names the location of the lower-left corner of each bar (e.g. loc1 

and loc2) 

6. Create and name a path (e.g. path1) from loc1 to loc2, and specify its direction (e.g. 

clockwise) 

7. Create a second path (path2) from loc2 to loc1 (can be copied and modified from path1) 

8. Create a transition (move1) that moves bar1 along path1, and move2 that moves bar2 

along path2 

9. Create a composition transition exchangeBars that combines move1 and move2 

 

This is a large number of steps, and each step involves some use of menus, dialog boxes, 

and visual tools. While Dance does free users from learning the TANGO API and helps with 

layout, one still must understand the abstract concepts of locations, paths, and transitions. One 

also must plan what parameters will be needed and how they will map to the algorithm. And of 

course, the animation concept and layout has to be designed.  

Dance leaves some AA construction problems unresolved. One difficult issue is the 

generalized mapping of algorithm entities to graphical entities. For example, even associating bar 

heights with variable values is tricky in Dance. However, Dance was a useful system that 

achieved some degree of success  in the quest for easier AA construction. 

 

3.4.2 LENS 

LENS is an animated visual debugger [MS94] that can perform actions specified by PBD. 

LENS was developed by Mukherjea and Stasko at Georgia Tech around 1993. It is a visual tool 
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that works in conjunction with the Unix dbx debugger, using dbx to access variable values and 

program control info.  

Using the PBD tool of LENS, one can create graphical objects and map them to 

variables. The authors identified actions and objects commonly used in AAs in a study [MS94]. 

This included actions such as flash, move, resize, and objects such as circles, lines and 

rectangles. One can associate one of these predefined actions with an object and specify visually 

that the action should be invoked when a selected line of source is run. 

While LENS showed promise, it had a number of limitations, and one has the impression 

that further development was not pursued. For example, C expressions were used to specify 

some aspects of graphical objects and relationships between them (e.g. size, spacing). This 

aspect of LENS is declarative. The authors note that a direct manipulation interface would be 

better suited for this purpose. However, they state that it is quite difficult to use PBD to specify 

some graphical relationships, e.g. the mapping between a disk and a peg in a towers of Hanoi 

visualization. They also note that there are many visual representations and animations that 

cannot be constructed with PBD in LENS, and that programming must be used. LENS can also 

do limited automatic visualization, which we mention in the Automatic Specification section. 

 

3.4.3 ANIMAL 

ANIMAL was developed by Roessling, Schueler, and Freisleben at the University of 

Siegen around 2000 [RF01]. The main goal of ANIMAL is to make the creation of AAs easier 

using direct manipulation. ANIMAL is a visually oriented tool that allows users to create objects 

and animate them. It supports a number of object types, including arrays, list elements, and even 

pseudocode displays. A limited set of animation actions is supported (move, color, etc.), and 
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action durations may be specified. The ANIMAL visual tool allows users to create animation 

actions via PBD and dialog boxes. One selects elements previously created with the tool, and 

chooses actions to perform. It then generates scripts in its scripting language (described in the 

scripting section). These scripts can be examined and even modified if desired. Here is an 

example from the ANIMAL visual scripting tutorial [Rößling] that explains how to get a pointer 

to move from one element to another (italics are mine): 

Click on the arc icon. Select a point directly next to the top right corner of the new list 

element as the arc center and click once. 

Now move the mouse to see the outline of the current arc. Try to manage that this arc line 

touches both the tip of the first list element and the left side of the new list element at the 

same height as that element’s tip. Figure 18 on page 30 shows an example of the result. 

This may take some time in trying out possible arc centers. However, using the figure, 

you can determine where to place the element to make it work. 

Next, click on the first element’s tip end resting next to the second list element to 

mark the arc start angle. The next mouse click then goes to the left side of the new list 

element, and should result in something resembling…. 

 

Apparently, specifying semantic actions using visual tools is not always easy. While 

ANIMAL is quite useful for constructing simple AAs, as the complexity increases, so does the 

work the user needs to do. ANIMAL has a scripting aspect as well, which is described later in 

this paper. 
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3.5 Automatic Visualization 

Automatic visualization methods attempt to create an animation without any authoring 

effort, or minimal configuration. They do this by monitoring changes or accesses to data 

structures or variables. For example, changes to an element of an array could trigger an 

animation of some sort. This approach is more typical of program visualization (PV) than 

algorithm animation. Automatic visualization has been used for graphical debugging and 

performance monitoring in PV in systems such as ZStep 95 [LF98]. There is some crossover, as 

Baecker worked on some early graphical debugging systems, and LENS [MS94] used XTANGO 

[Stasko98a] as a basis for animated debugging displays.  

Automatic visualization methods are better suited for PV than for AA because the 

visualization can be a direct representation of the data or data structures of the program. Even 

this is a challenge since variables (e.g. indices, stack top, etc) may need human interpretation to 

be presented in the proper context. The issue is semantics. It is difficult to interpret the meaning 

of a program from its code, and AA often tries to illustrate the conceptual level of an algorithm. 

For example, how do we know if an integer variable contains a simple value, or if it contains an 

index of an element in an array? In the latter case we may want to represent this graphically, say 

as an arrow to the element. With automatic visualization, actions taken are generally the same for 

same operations, e.g. all assignments look the same. Some systems such as EBBA [Bates89] 

attempt to derive higher-level events from low-level events using models and rules, but we 

cannot create rules for all possible events, and someone must compose these rules. Other systems 

like LENS have predefined visualizations and behaviors for each data structure. The weakness of 

this paradigm is that it is practically impossible to reflect all the semantics of an algorithm 

automatically. However, a number of very useful systems use the paradigm. 
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3.5.1 FIELD/MEADOW  

Steve Reiss and his colleagues at Brown University have produced a number of AA 

systems over the years. One of the earliest was FIELD [Reiss98]. FIELD is a programming 

environment, somewhat ahead of its time, with automatic visualization capabilities. The goals of 

FIELD were to support development activity with visual tools and visualization. It is essentially 

an IDE that is a visual wrapper and an intercommunication framework for a number of Unix 

tools such as make, profilers, source code control tools, and the dbx debugger. It adds additional 

visual tools and an underlying message passing system used to exchange information between 

the tools. It provides a visual editor, animated call tree views, a visual call graph, a visual class 

browser, and a graphical source module view. FIELD can animate linked data structures using its 

automatic visualization capabilities.  MEADOW [Bazik98] is a scaled-down version of FIELD 

that is designed for use by novice programmers. Some of the more complex features were 

removed, existing features were simplified for novices, and the user interface was revamped. 

Follow-up visualization systems have been produced such as Jive [Reiss03], though these have 

been designed primarily for performance measurement and debugging.  

 

3.5.2 LENS 

As mentioned in the PBD section, LENS is an animated visual debugger [MS94] that can 

do limited automatic visualization. LENS includes visual representations for variables and 

common data structures such as arrays, linked lists and trees. One uses a template to define 

which variables should be shown. To show a linked list automatically, the pointer variable, the 
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value field and the next field are selected. LENS uses this information to render and update the 

display.  

 

3.5.3 Jeliot 

Jeliot [MMSB04] provides automatic animation of Java programs. The main goal of 

Jeliot is to support novice Java programmers as they develop programs and learn. Jeliot was 

initially developed at the Universities of Helsinki and Joensuu around 1997 by a research team 

[HPSTTV97], and it has since gone through a number of versions and design teams. Jeliot2000 

[LBU03] adds visualization of control structures, method calls, parameters and return values. 

Users can also evaluate Java expressions. Jeliot3 [MMSB04] adds visualization of object-

oriented concepts, and uses an instrumented compiler to achieve this. Not all Java classes can be 

dynamically visualized. However, the system is extensible. JGRASP [CHB02] has similar 

features and functionality. 

 

3.6 Scripting 

Scripting systems use a scripting language to specify an algorithm animation. Generally, 

the aim is to create a simpler method of specification than that obtained with event annotation or 

declarative methods. Scripting systems generally employ one of two specification methods. In 

the first, the algorithm outputs the script, which is then read by an interpreter that renders the 

algorithm animation. This method is used by Samba [Stasko96] and JAWAA [Rodger02]. While 

the algorithm can use any specification paradigm to produce the output script, many scripting 

systems use the equivalent of event annotation by placing print statements at appropriate points 

in the algorithm.  



 

 

57

 

In the second method, the script is the actual algorithm, or a simulation thereof, that is 

run by the AA script interpreter. The script becomes the conceptual version of the algorithm. 

Systems using this approach often incorporate a drawing tool to create the visual elements and 

the layout. Sometimes the visual tool is also used to help specify the animation. Examples of 

these systems are ANIMAL [RF01], ALVIS/SALSA [HD02], and JAWAA2 [Rodger02] as well. 

Some of these tools are more like multimedia authoring tools with limited computational ability. 

Such systems may be easier to use, and can reduce authoring time compared to other 

specification methods. However, creating complex AAs can prove difficult when there is no 

‘normal’ algorithm. One can wind up writing the algorithm in the scripting language, which 

usually has limited computational facilities compared to a general purpose language. 

 

3.6.1 Samba 

Samba was developed by Stasko at Georgia Tech, and actually runs on top of POLKA 

[Stasko96]. The goal of Samba is to permit very easy scripting of animations, and its capabilities 

include naming and grouping of objects, and concurrent movement. Samba AAs are generally 

constructed from the output of other programs. Samba does not support interaction; these types 

of scripting systems are generally output only. In order to simplify the complexity the detailed 

path animation control in POLKA is not implemented in Samba. Otherwise, execution pacing 

control is limited by the same factors affecting POLKA. Also, the detailed path animation 

control in POLKA is not implemented in Samba. A Java version, JSamba, is also available that 

incorporates the POLKA animation engine. 

In an unpublished study of students doing animation assignments, we found that one of 

the main limitations of Samba was that students spent too much time designing layouts and 
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getting animations to work correctly; another study reports similar findings [Hund99]. Samba is 

very easy to use and easy to learn, but because it supports only low-level graphical objects (and 

their composites) it requires authors to build more complex visual representations and layouts. 

 

3.6.2 JAWAA 

JAWAA was developed by Rodgers at Duke University around 1998, with a subsequent 

version 2.0 around 2001  [Rodger02]. The main goal is to allow simple and rapid development of 

algorithm animations. JAWAA can be considered an extension of Samba that includes common 

data structures such as binary trees, graphs, stacks, queues, linked lists and arrays. JAWAA also 

includes a visual layout editor and support for animation of linking arrows and visual markers. It 

therefore relieves AA authors from dealing with low-level layout issues for these predefined data 

structures. The scripting syntax for DS construction and animation commands is quite similar to 

that of Samba, with some extensions. The scripting model prohibits interaction, as with other 

systems of this type.  

As with Samba, JAWAA AAs can be generated as the output of other programs. Rodgers 

also uses JAWAA as a standalone authoring language, which is feasible because of its support 

for libraries of data structure objects. JAWAA AAs can also be run within web pages. Naturally, 

JAWAA appears to reduce the authoring time for simple animations involving the supported data 

structures. However, it is hard to add features to these data structures, e.g. node names must be 

integers. JAWAA is not designed to be extensible and thus does not support the addition of new 

data structures. It also lacks built-in support for pseudocode displays. Overall, JAWAA has a 

very useful set of AA authoring capabilities. 
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3.6.3 ANIMAL 

The ANIMAL visual AA development system (previously described in the PBD section) 

[RF01] also allows users to specify scripts with a language that looks somewhat like Samba, with 

a few notable additions. Any action command can have a duration and a delay, which offers 

some degree of pacing control. Pseudocode displays are supported and there are functions that do 

actions such as highlighting a line of code. Aspects of the location of an object can be referenced 

(e.g. SW corner). The language includes special functions for particular element types. For 

example, a list element has one function to move the element but not an attached pointer, and 

another for the pointer, but not the element. The default move action will move both. One 

peculiarity of ANIMAL is that it is not clear how one would generate scripting code from an 

external program (as one would in Samba) that can access/manipulate entities created in the 

visual tool. This would limit the expressiveness of the system since the ANIMAL scripting 

language has no variables, control structures, etc. The authors refer to an API for Java that is 

under construction. However, the language seems to be well-designed in many respects, 

including layout and timing.  

 

3.6.4 ALVIS/SALSA 

ALVIS is a visual AA development tool based on the idea of constructing paper 

prototypes of algorithms. SALSA is a scripting system that works with ALVIS. Hundhausen 

started the design of ALVIS and SALSA [HD02] at the University of Oregon as part of his 

dissertation research and completed its implementation at the University of Hawaii around 2001. 

In an ethnographic study, Hundhausen found that students constructing AAs concentrated on the 

conceptual level when they used tangible material such as paper cutouts, whereas students using 
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AA programming tools such as Samba focused on low-level details [Hund99]. ALVIS was 

designed to provide operations analogous to the manual operations performed by students using 

the cutouts. ALVIS supports pen-based interaction and construction of graphical objects, but 

these objects are graphics and not variables or data structures, although they may represent such 

conceptually. Execution is reversible, and one can change the objects during execution. 

Technically ALVIS is a PBD tool, but because of its tight integration with SALSA, we have 

included it here. 

ALVIS uses the visual tool to construct a visual representation and generate SALSA 

scripts. SALSA is a scripting language that is also used to create animations that act on the 

generated visual representation (which is also stored as a script). SALSA is unusual among AA 

scripting languages because it has some control structures. SALSA essentially uses only string 

representations of data; for this and other reasons (e.g. the limitations of the control structures), it 

is difficult to use it to write general-purpose algorithms. However, the pair of systems does seem 

to support easier AA authoring, where they are suitable for the algorithm. 

 

3.7 Summary and Conclusion 

AA system designers face formidable challenges in the quest to create systems that 

effectively support the tasks of AA authors and are effective and usable for AA users. Over time, 

complex technical problems have been solved that relate to AA system design. However, many 

effectiveness and usability challenges remain. Specification is not easy for almost any non-trivial 

AA when we want to control timing, pacing, movement, interaction and layout. 

Custom development is not constrained by the AA system, and thus offers complete 

flexibility for all aspects of the algorithm animation. However, since it does not use an API 
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designed to support (targeted to) AA tasks and therefore all development must be done from 

scratch.  

Event annotation allows authors to map animation actions closely to exact points in the 

algorithm, yet separate the actual animation from the algorithm. However, Brown notes that 

interesting events can include things that are not relevant to the algorithm itself (e.g. previously 

unused else’s), and that this annotation can change the structure of the original code significantly 

[Brown98].  

Declarative specification allows the separation of rules that invoke actions and the 

animation from the source algorithm. Rules can be hard to write and complex. The order in 

which they are invoked can be hard to predict, which, along with their independent placement 

from the source, makes them hard to debug.  

Scripting languages are intended to have a simple syntax to make authoring easy. If the 

script is generated by an external algorithm, interaction with the AA is usually impossible. Also, 

animations of complex algorithms can be difficult to design if the algorithm is written in the 

scripting language and that language does not support generalized computation.  

Programming by demonstration (PBD) allows authors to do layout and/or animation 

using a GUI or dialogs. However, this process is not always as simple as it sounds, especially for 

generalized or complex routines.  

Automatic visualization may seem ideal, requiring no authoring, but it is generally 

impossible to automatically animate the conceptual aspects of an algorithm as this would require 

automatic interpretation of the semantics of the algorithm and its variables. How does one 

automatically derive a custom portrayal or animation of a top pointer to a stack, for example? 

Hence, automatic visualization is used primarily for visual debuggers, employing standardized 
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visual representations. The strengths and weaknesses of each paradigm are summarized in Table 

3.1. 

 

Table 3.1: Comparison of the AA specification paradigms. 

Specification Paradigm Strengths Weaknesses 

Custom Flexibility; not limited by 

AA system capabilities 

Lengthy development; no 

specialized AA support 

Event annotation Integrated coordination with 

algorithm; 

Separation of animation 

Changes source 

algorithm/code structure 

Declarative Separation of rules and 

animation from source 

algorithm 

Rules can be complex, 

difficult to formulate, hard 

to debug 

Scripting Simple syntax for easier 

authoring, can use any 

specification paradigm  

Can be hard to write AAs of 

complex algorithms. Can 

limit interaction with AA 

Programming by 

demonstration 

Simplifies specification of 

layouts and/or animation 

Specification of non-trivial 

actions or layouts is often 

difficult 

Automatic visualization No authoring needed (may 

have to mark the variables 

to be animated);  

Generally impossible to 

automatically derive good 

animations of conceptual 

aspects of algorithm 

 

Clearly all the specification paradigms face serious design challenges. In a recent study, 

Naps reports that two-thirds of instructors found that the length of time needed to create an AA 

was a limiting factor in their use of AA [Naps03]. This points to the complexity of writing an 

AA using many systems. The question is whether this is inherent or to what extent we can make 

authoring easier.  

Some systems such as SALSA/ALVIS reduce authoring time. However, the 

SALSA/ALVIS system and many like it have limitations with respect to authoring complex 

animations, and non-trivial temporal control is also an issue.  

The way that temporal control issues are addressed in POLKA-RC is a good example of 

how designers can be tempted to focus on the technical aspects of algorithm animation. The 
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technical problem is solved, but specifying all but trivial temporal control remains complex for 

the author. In POLKA or POLKA-RC, all actions have to be planned to fit into an overall 

schedule for the animation. Not only is this tricky, but sometimes variables must be created to 

mark points in time, for example, the end of a swap, the start of a pass. This planning is not 

normal activity for a student or even an instructor just writing an algorithm.  

Baecker proposed that timing and pacing are very important for AA design, and paid 

attention to this in his work on SOS. Brown begins a book chapter [BH98] by stating that 

“designing an enlightening software visualization is a tricky psychological and perceptual 

challenge” (p.81). Some systems such as ANIMAL and SALSA/ALVIS include some support 

for pacing and timing, but empirical knowledge about the role of perception would be useful 

information for AA systems designers, as well as AA authors.  

There are few studies of the usability of AA systems [SH04] [Saraiya04]. The capabilities 

of AA systems have not been matched to user needs, with few exceptions [Hamilton-

Taylor02a][HD02]. So even if the specification problems were solved, would we be specifying 

the right things, and showing them in the right way?  

What is needed is to establish AA system design on a better knowledge foundation in 

terms of all the issues that impact on it, including the needs of learners and authors, perceptual 

and attentional issues, cognitive issues, and visualization design issues. It is our intention to 

examine what these issues are, and to initiate the process of investigation. We have in fact, begun 

this process, in our studies of instructors [Hamilton-Taylor02b] which informed our design of 

SKA (The Support Kit for Animation) [Hamilton-Taylor02a], and in our ongoing collaborative 

perceptual studies, which are described in Chapters 4, 5 and 6, respectively. 
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CHAPTER 4 

A NATURALISTIC OBSERVATIONAL STUDY OF INSTRUCTORS 

 

4.0 Introduction and Motivation 

Algorithm animation systems are far from being a standard part of teaching 

practice for relevant courses, as Naps found in a survey of instructors [Naps03]. In 

general, the design of algorithm animation systems has not been based on the context and 

practice of algorithm and data structure discussion. Instead, the focus has been primarily 

on providing graphical capabilities for animation, as discussed in Chapter 2. 

The study of user needs and tasks is an essential component of modern HCI 

system design. This is the cornerstone of user-centered design methods [Norman88] such 

as contextual design [Beyer98], in which the first step is to study the user’s existing tasks 

and workflow. Design proposals are made with the objective of enhancement the existing 

system, while a careful attempt is made not to displace aspects of the existing workflow 

process that enable the tasks to be accomplished. Systems are then designed to support 

these tasks. 

It seems self-evident that we need to examine the context in which students learn 

algorithms before we propose learning models for algorithm animation, or design 

algorithm animation systems. This context of learning has been practically ignored, apart 

from [Hund99], which examines student construction of AAs. We decided to study one 

aspect of this context of learning. It is our position that an appropriate starting point in the 
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design of an algorithm animation system to be used in a classroom setting is to examine 

the tasks instructors perform and the context of these tasks.  

It is common knowledge that instructors, tutors, student peer groups and 

individual students are the participants in the learning process. We know that the 

participants and textbooks use an informal conceptual diagramming scheme to introduce 

and discuss data structures, and use variations of pseudocode to describe algorithms, as 

discussed in Chapter 3. However, little formal knowledge exists about the use of these 

diagrams and algorithms, and other entities in this process. 

 

4.1 Related Work 

Naturalistic inquiry methods [LG85], ethnographic inquiry methods [FW96] and 

contextual design inquiry [Beyer98] are all related. Naturalistic inquiry is the broadest 

term covering all these methods. Naturalistic observational methods suggest a passive 

approach, which aim not to influence or control the natural environment being studied. 

Ethnography involves highly detailed observation and inquiry. Contextual design 

basically employs a less intense form of ethnography inquiry, combined with a specific 

set of activities and diagram notations that were developed by the authors.  

In our study, we draw on elements of various naturalistic design methods. Scaife 

and Rogers also found that they had to “adapt and combine well known user-centred 

design methods” in conducting naturalistic studies of users in order to fit the needs and 

“concerns specific to the design of virtual environments … to support learning” in a 

virtual theatre system for children  [SR01]. 
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Hundhausen conducted ethnographic studies of how students construct algorithm 

animations [Hund99], comparing the use of tangibles such as paper cutouts to 

development with the Samba system [Stasko96]. He found that the tangibles facilitated 

higher-level conceptual design, and used the results to design similar operations as the 

foundation of the design of SALSA and ALVIS [Hund99].  

Pane studied how adults and children performed algorithmic problem solving and 

used this information to design HANDS, a programming language and environment for 

children [Pane02a][Pane02b]. Petre studied the mental imagery of software design 

experts and found that these experts use a language of diagrams, but generally don't use 

visualization software because these programs do not mesh with their tasks and needs 

[Petre99]. 

 

4.2 Overview and Objectives 

The broad objective of our study was to investigate the activities performed by 

instructors in algorithms and data structure lectures, and how the instructors used artifacts 

in that process. The method of investigation we used for the study involved the following 

primary goals: 

1. To identify and describe the activities and tasks performed by instructors 

2. To identify and describe the types of artifacts used, and how they are used 

3. To describe how the task environment is used 

 

In the context of this dissertation, activities are carried out in the process of 

teaching a topic or subtopic, and include discussion, derivations or proofs, working 
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through examples, problem solving, and so on. Tasks are typically smaller units and 

include writing, drawing, showing a transparency, erasing, etc. Tasks can also more 

specific or may be a subpart or combination of other tasks such as constructing a 

diagram, annotating, making corrections, and so forth. Behaviors such as gestures of 

various types, facial expressions, and tone of voice are also involved in activities. 

Artifacts are relevant entities used by instructors such as text and diagrams, 

formulas and algorithms. The task environment includes the facilities of the classroom or 

lecture hall, such as black/whiteboards, overhead projectors, markers, computers, and so 

on. 

This method of investigation and analysis is derived from activity analysis 

[Nardi96], contextual analysis [Beyer98], ethnographic analysis [FW96], and other 

naturalistic observational analysis methods. In activity analysis, tools mediate or facilitate 

the performance of activities on artifacts. The tools, in this case, are found in the task 

environment.  

 

4.3 Study Design 

This study was conducted over a number of semesters in order to observe a 

number of instructors. Four instructors participated between 2002 and 2004 (three at 

UGA and one at UWI Mona, Jamaica), and five courses were involved, which included 

three offerings of one of the courses. The courses were sophomore-level data 

structures/algorithms and upper level-undergraduate/lower-level graduate algorithms. 

Three instructors taught the same sophomore data structures/algorithms course in 

different semesters at UGA, one of whom also taught the graduate algorithms course at 
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UGA, and one instructor taught a sophomore data structures/algorithms course at UWI. 

We identified a set of topics that included a number of commonly taught algorithms and 

data structures; these included topics in trees, graphs, and search lists. The relevant 

lectures were videotaped. In our videotape analysis we identify the activities and tasks 

performed in each segment and the time spent on each task, noting the use of various 

artifacts. Interim results were published in [Hamilton-Taylor02b], with further analysis 

continuing. 

 

4.4 Results 

The study generated a large body of data (over twenty hours of videotape), which 

took some time and effort to transcribe into an appropriate form, but was well suited for 

the activity/artifact analysis. The results were fascinating, especially as we probed the 

connections between the activities and artifacts.  

 

4.5 Activity Analysis and Artifact Use 

We found that instructors performed a similar set of activities and used similar 

artifacts, with some variation depending on the topic. The activities and artifacts are 

generally well known, so identifying them presented no great surprises. Activities 

included discussion, description, derivations or proofs, doing examples, problem solving, 

tracing, question and answer interactions, and so on. Tasks included writing, drawing, 

constructing diagrams, annotating them, making corrections, erasing, showing a 

transparency, and so forth. Artifacts included definitions, descriptions and other text, data 

structure diagrams, other diagrams, formulas and pseudocode. The artifacts and some 
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tasks performed on them are shown in Table 4.1. Making corrections and erasing was not 

considered integral to the artifacts, though common to all artifacts, and therefore not 

included in the table. 

 

Table 4.1.  Artifacts used by instructors and common tasks on them.  

Artifacts Tasks 

Data Structure Diagrams Constructing 

Manipulating 

Annotating 

Performing operations 

Copying to show state 

Pseudocode Tracing 

Constructing 

Annotating 

Formulas Deriving 

Annotating 

Definitions Deriving 

Annotating 

Descriptions Annotating 

Other Diagrams Constructing 

Manipulating 

Annotating 

 

An interesting finding was that data structure diagrams can be abstract, concrete, 

or both. An abstract diagram typically contains no data and is often a compact 

representation of a data structure.  An example of this is the use of a triangle or rectangle 

to represent a subtree in an AVL tree (Figures 4.1a, 4.1b) or a binary tree with empty 

nodes (Figure 4.1c). Abstract diagrams are generally used to show some property of the 

data structure without requiring that all the details be shown, and thus save the instructor 

drawing time and space. A concrete representation shows all of the important data, for 

example all the key values in the data structure diagram. Some diagrams are part concrete 

and part abstract, for example, a concrete tree with an abstract subtree (Figure 4.1b).  
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Figure 4.1a: Abstract AVL tree with height annotation on abstract subtrees. 

 

 

Figure 4.1b: Rebalancing operation on AVL tree with abstract subtrees. 

 

 

Figure 4.1c: Another form of abstract binary trees 

 

In general, there was a high degree of use of multiple artifacts during activities. 

These artifacts were used both separately and in various combinations, for example, 

definitions and formulas, diagrams and formulas, diagrams and pseudocode, and so forth. 

What was particularly interesting was how the artifacts were used in coordination during 
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the activities, and how annotation and behaviors were used to connect the artifacts in the 

course of performing the activities. For example, a diagram might be used to derive a 

formula using diagram annotation to point out properties of the diagram that are 

generalized in the formula. Gestures between the diagram, the annotations and the 

emerging formula might form (imaginary) connections between them. For example, one 

instructor used AVL tree diagrams for various insertion cases, annotated them with their 

height, and derived the general formula for AVL tree insertion time from this.  

What was particularly noteworthy was the high degree of data structure diagram 

(DSD) use in many activities. We witnessed instructors constructing DSDs from 

definitions, constructing definitions from DSDs, deriving formulas from DSDs, 

constructing algorithms from diagram operations, and performing tracing of pseudocode 

algorithms on DSDs, and other forms of cooperative use. We performed further analysis 

on this diagrammatic aspect of the data, as it seemed to be an integral component of the 

entire instruction process. 

 

4.6 Data Analysis 

Our approach to videotape analysis is to divide topics (e.g. binary search trees) 

into subtopics (e.g. binary search tree insertion), and divide the subtopics into segments - 

for example, an introductory discussion, examples, further discussion, and analysis. We 

identify the activities and tasks performed in each segment and the time spent on each, 

noting any use of artifacts and behaviors. We record the use of annotations and gestures 

used in conjunction with the artifacts. We were particularly interested in the use of data 

structure diagrams and their combined use with other artifacts, especially pseudocode.  
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An example of this is the summary of the binary search tree deletion video session in 

Figure 4.2. 

 

Duration  Activity 

(min) 

Part 1 

1:00 Introduces topic. 

0:30 Copies tree diagram. 

0:30 Annotates tree diagram with keys to be deleted,  

 traces leaf deletion. 

1:00 Traces key deletion, constructs two possible resulting trees. 

1:00 Discusses general rule for deleting interior nodes. 

2:30 Traces key deletion, circles successor/predecessor nodes, 

 writes notes on them, draws resulting trees. 

 (All the traces above were done using DSDs only) 

Part 2 

6:30 Writes deletion algorithm, describing fragments along the way. 

 Annotates one algorithm fragment with explanation. 

1:00 Continues writing algorithm, referring to tree diagram to 

 explain what a certain fragment does. 

1:00 Refers to diagram to show what the fragment about to be  

 written will do.  

 (Both references are gestures along path of tree  

 that the algorithm fragment will follow). 

0:30 Copies tree diagram. 

2:00 Traces key deletion using algorithm. 

 Annotates tree diagram with pointer variables from algorithm 

 (Diagram becomes somewhat cluttered with arrow annotations). 

3:00 Starts redoing example because of errors encountered. 

 Needs to get rid of arrows, so erases and recopies tree diagram. 

 Draws added arrows more carefully, traces very carefully, 

 going back and forth between diagram and algorithm. 

 

Figure 4.2. Record of instructor activity 

 

 

As we have noted, DSDs were employed in conjunction with other artifacts in 

many activities and tasks, and we wanted to understand this usage. In order to analyze the 

use of DSDs, we recorded their use in various contexts, as summarized in Table 4.2, 

focusing on the tasks, gestures and annotations involved. 
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Table 4.2.  A summary of task types for each subtopic, and the use of data structure 

diagrams and other artifacts. 
Topic Diagram   Diagram Usage   

 Type tracing analysis discussion drawing gestures Annotations 

Binary Search 

on Arrays, part 

1 

Array algorithm 

and diagram 

None Yes construct 

array 

point to 

statements of 

algorithm 

index vars for 

array in trace 

Binary Search 

on Trees, part 2 

Binary 

Search 

tree 

algorithm 

and diagram 

Yes Yes construct 

tree 

point to tree 

properties, path, 

nodes 

  

Interpolation 

Search 

Array algorithm 

and diagram 

Yes Yes copy array point to array area 

accessed 

index variables for 

array in trace 

Binary Search 

Tree Insertion 

Binary 

Search 

tree 

algorithm 

and diagram 

None Yes construct, 

copy tree, 

update tree 

point to tree path, 

nodes 

add, cross out 

pointer variables 

during trace 

Binary Search 

Tree Deletion, 

part 1 

Binary 

Search 

tree 

diagram 

only 

None Yes construct, 

copy tree, 

update tree 

  mark subtrees. 

Add, cross out 

pointer variables 

Binary Search 

Tree Deletion, 

part 2 

Binary 

Search 

tree 

algorithm 

and diagram 

None Yes construct, 

copy tree, 

update tree 

show path, 

affected nodes 

before writing 

algorithm 

add, cross out 

pointers. Add 

arrows to show 

path followed 

AVL Tree 

Insertion 

AVL 

Tree, 

Abstract 

AVL tree 

algorithm 

and diagram 

Yes Yes construct, 

copy tree, 

update tree 

point to tree path, 

nodes, rotation 

direction, subtree 

movements 

add, update node 

balances, add 

rotation arrows  

AVL Tree 

Deletion 

AVL 

Tree, 

Abstract 

AVL tree 

diagram 

only 

Yes Yes construct, 

copy tree, 

update tree 

point to tree path, 

nodes, rotation 

direction, subtree 

movements 

add, update node 

balances, add 

rotation arrows 

2-3 Tree 

Introduction 

and Insertion 

2-3 Tree algorithm 

and diagram 

Yes Yes construct, 

update tree 

movement of 

nodes with  

insertion in the 

tree 

Label nodes 

2-3 Tree 

Deletion 

2-3 Tree diagram 

only 

None Yes construct, 

update tree 

indicate direction 

of rotation 

  

Topological 

Graph sort 

Directed 

graph 

diagram 

only 

None Yes construct 

graph, 

update graph 

Indicate direction 

of new edges 

Add edges 
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As shown in Table 4.2, we have observed a number of types of annotations and 

gestures. For example, annotations are used to track variable values during tracing and 

highlight sections of data structures while gestures are used to identify elements that are 

being accessed or compared, and to indicate properties such as the number of elements, 

path followed, etc., for an entire DSD or part thereof. 

 

Table 4.3.  Percentage of time spent on each type of activity. 

Topic Time%  

 Trace Analysis Discussion Joint Total 

(hr:min:sec) 

Binary Search, part 1 80% 0% 20% 0% 05:00 

Binary Search, part 2 16% 77% 7% 49% 30:30 

Interpolation Search 47% 24% 29% 0% 24:30 

Binary Search Tree Insertion 25% 0% 75% 19% 08:00 

Binary Search Tree Deletion, part 1 67% 0% 33% 0% 06:00 

Binary Search Tree Deletion, part 2 49% 0% 51% 14% 17:30 

AVL Tree Insertion 52% 18% 30% 33% 1:45:00 

AVL Tree Deletion 24% 19% 57% 33% 21:15 

2-3 Tree Introduction and Insertion 32% 30% 38% 29% 19:00 

2-3 Tree Deletion 59% 0% 41% 27% 11:00 

Topological Graph Sort 37% 0% 63% 27% 04:30 

 

We recorded the time spent doing various types of activities, as summarized in 

Table 4.3. The time spent using diagrams (tracing or joint use) varied considerably over 

the topics observed thus far, but in many cases it is a substantial portion of total time 

spent, especially when part 1 and 2 of the topics are combined. Note that the percentages 

add up to more than 100% unless joint time is excluded. Joint time is time spent on 

discussion and diagrams, or analysis and diagrams. In our observational data, tracing 
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always involved diagrams. One interesting finding here is that tracing, which includes 

diagram operations, often occupies over half the time of the activity. Diagram 

construction, manipulation and tracing all consume large quantities of time. 

 

4.7 Data Structure Diagram Use and Tracing 

As we have previously noted, we found that data structure diagrams are 

frequently used by instructors. We have observed data structure diagrams being used 

primarily in (a) tracing algorithms, sometimes without a written algorithm, (b) discussing 

or describing properties of the data structures or algorithms, (c) deriving or confirming 

theoretical analysis of algorithms.  

We found that there were certain common patterns of DSD use, particularly with 

tracing. An instructor will usually conduct an introductory discussion about an algorithm 

or data structure, then proceed to show relevant examples. In the case of a data structure, 

examples of diagrams, storage formats, and common operations are generally presented. 

The effect of the operations is sometimes shown without initial reference to an algorithm. 

For example, the effect of a height-balanced tree rotation might be shown prior to the 

discussion of the particulars of an algorithm to achieve this. 

The vast majority of algorithms operate on a data structure. An instructor will 

typically construct a data structure diagram, then trace the execution of the algorithm, 

using the data structure diagram as input. If the algorithm modifies the data structure 

diagram, the changes are made manually to the diagram. Even if no changes are made, 

some recording of which parts of the data structure have been accessed may be done on 

the diagram. For example, we might record which vertices have been visited in a graph 
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search algorithm. Other algorithms construct a data structure as they execute. The initial 

data structure diagram is empty, but the instructor still has to show changes on the data 

structure diagram over time. Other algorithms require input data structures and also 

construct data structures.  

A high-level pseudocode version of an algorithm is often used for discussion. The 

idea is to ignore the low-level details that do not relate to the main operations of the 

algorithm.  An instructor will generally show the effect of each step of the algorithm on 

the data structure diagram(s), moving back and forth between the algorithm and the 

diagram. During this process of tracing, instructors may perform a variety of tasks. They 

may highlight part of a data structure diagram, such as a path in a graph. They may 

record particular states of a data structure by copying the diagram, perhaps at the end of 

each major phase of the algorithm. Students may be asked to predict the state of the data 

structure after the next operation or phase. An instructor may go slowly during the first 

few passes through a section of an algorithm, then go faster, just showing the net effect of 

that group of operations thereafter. Finally, instructors may need to use a particular data 

structure instance to show special case behavior of an algorithm, and need to trace 

quickly up to some point in the algorithm where the special case behavior exhibits itself. 

Of note are the various types of annotation used. Some are part of the data 

structure such as an edge weight; others note properties of the data structure such as its 

height. Both vary somewhat widely by data structure. For example, an edge in a flow 

graph has multiple annotations. An AVL tree node has a balance as well as contents.  

Every type of data structure diagram seems to have its own annotation needs, and 

many algorithms that operate on these diagrams have additional annotations they add to 
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the diagrams. Also, instructors can have an individual annotation style, though we did not 

observe much of this. 

 

4.8 Instructor Style 

There were some differences in instructor style worth noting, both in the use of 

artifacts during activities and in media use. We will briefly describe some of these 

differences. The instructors used either black/whiteboards or transparencies. None of the 

instructors used any computer-based media during our study; no animations or 

powerpoint slides. 

Instructor 1 used transparencies of various artifacts: diagrams, definitions, 

algorithms, formulas and theorems. He would often perform a trace on example diagrams 

by annotating them with a transparency marker, and would frequently switch between 

them and transparencies of algorithms, definitions, formulas and theorems to show the 

relationship between them, derive properties, and so forth.  

Instructor 2 used the black/whiteboard, and generally had a well structured order, 

giving definitions, followed by diagram examples, then tracing, then derivations. Her 

pace of presentation allowed time to observe, and seemed to suggest an even pace. The 

gestures between the artifacts also followed this pace. One might see an even, expansive 

vertical spreading of the arms to indicate the height of a tree and its relation to a formula.  

Instructor 3 also used the black/whiteboard, and often constructed or derived the 

algorithm from the examples he had performed on the algorithms. For example, he 

performed various cases of AVL tree insertion and rebalancing, then derived the 

algorithm cases from them. His style tended to change by topic. He tended not to point 
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between the diagrams and other artifacts, but to alternate between them in short 

durations. However he often used gestures to connect them. He used annotations heavily, 

both on diagrams, and as connecting devices between them and formulas. He tended to 

do tracing by performing operations on DSDs rather than by using pseudocode as the 

driving source.  

Many of the gestures use the black/whiteboard or screen as a backdrop, so one 

might see an expansive vertical spreading of the arms to indicate the height of a tree, for 

example. One advantage of the black/whiteboard is the space it offers. It does have the 

restriction that one has to write or draw all artifacts, and perform manual manipulations. 

On the other hand, it affords annotation and gestures. Classrooms that have an 

accompanying projector can relieve the instructor from writing and drawing everything, 

but manual manipulations remain, though one can show changes with static slides or even 

with animations.  

 

4.9 Requirements Derived from Task Analysis 

We found that data structure diagram use is an integral part of discourse and the 

learning process. Though this varies considerably by topic, as shown in Table 4.3, we 

observed that, on average, more than half the time spent on a topic involves the use of 

DSDs. One might almost posit that the process is diagram-centric, as many of the other 

activities are performed in conjunction with the use of these diagrams. To summarize, we 

found that: 
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1. DSDs are used primarily for tracing tasks, but also for analysis and general 

discussion.  

2. DSD construction, manipulation and tracing using DSDs are often performed in 

the absence of a written algorithm. 

3. Tracing is performed in a flexible manner, which varies from doing a single 

operation to showing the effect of a segment of an algorithm.  

4. DSDs often have to be copied to perform a new trace or record a history of DSD 

states. 

5. Annotations are used in a variety of ways. For example, they are used to record 

changes, show a path or series of accesses in DSDs, and to relate steps in the 

algorithm to actions on DSDs. 

6. Gestures are used to connect spatially separated entities, give an intuitive 

indication of direction or size, etc. For example, a gesture can be used to show the 

direction of a search in a DSD. 

 

However, we observed that these activities and tasks are time-consuming. It is 

very-time consuming to construct large, detailed diagrams. Diagrams often have to be 

redrawn to show different examples. Updating, correcting and erasing all consume time. 

Transparencies can be useful, but they can only be annotated, not changed.  

Tracing has particular limitations. It can be a long process. It can be tedious and 

error-prone. To record a visual history of changes requires that diagrams be redrawn 

repeatedly, and the time to do so increases in proportion to the complexity of the data 

structure diagram. It can be difficult to reconstruct the intermediate states, which are 
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often recorded by erasing or overwriting the previous state. It is difficult to go over a 

trace without redoing it, particularly without a visual history. Tracing special data cases 

or algorithm variations takes yet more time. Even highlighting and removing the 

highlighting notation (using different line types, etc.) can be a chore. Outside of this 

study, we have seen well-regarded instructors spend multiple lectures discussing a 

complex algorithm, with a significant portion of that time devoted to tracing. 

Tracing can take so long that students lose concentration and lose track of the 

flow of the algorithm and the discussion. In addition to this, it is quite difficult for 

students to take notes, especially to show state changes to a data structure diagram. It is 

hard for students to walk away with a detailed record of the trace to compare it to their 

reconstruction later on. Instructors can also make mistakes as they act as a virtual 

execution machine, draw and erase, talk, and answer questions simultaneously. In 

summary, while tracing and diagram manipulation are integral activities in the instruction 

process, they can be tedious and error prone. This makes these tasks prime candidates for 

technological support. We have identified some activities, tasks and artifacts that could 

be the target subject of this type of support, as summarized in Table 4.4.  

 

Table 4.4.  Tasks that are time-consuming that could be supported by technology. Making 

corrections and updating are time-consuming tasks common to all artifacts, 

and are thus not shown. 

 

Artifacts Tasks 

Data Structure Diagrams Constructing 

Manipulating 

Annotating 

Performing operations 

Copying to show state 

Pseudocode Tracing 

Constructing 

Annotating 
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A means of ‘tying together’ the data structure diagram, the algorithm and other 

artifacts is also a desirable feature of a system that intends to support the activities we 

observed. We note that support for gestures in software cannot emulate natural human 

expressiveness. However, a system can afford support for tasks such as highlighting, and 

might provide support for gestures (albeit limited compared to manual system), for 

example, by using a projector and a laser pointer.  

4.10 Conclusion 

We have observed that instructors share some common methodological ground in 

teaching data structures and algorithms. The process involves a complex web of multiple 

interrelated activities and use of artifacts. We were specifically interested in the use of 

data structure diagrams and pseudocode in the classroom, having found that instructors 

spend much time constructing, manipulating and performing simulations using these 

media. We also believe that it is difficult for students to record, replay, and explore these 

manipulations and simulations.  

Our study shows that the manual processes of diagram manipulation and tracing 

are clearly important, but challenges and limitations make them ideal candidates for 

support of technology.  An AA environment that intends to support these tasks and needs 

can enhance the user’s ability to perform these tasks by providing operations that reduce 

the time and effort that a user would expend manually, such as copying, saving and 

retrieving diagrams to reduce manual drawing time, and automatically updating data 

structures during tracing. In Chapter 5, we describe how we used the results of this study 

to derive a set of requirements for an AA system, SKA (the Support Kit for Animation), 
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which provides enhanced support for such tasks. To the best of our knowledge, this 

represents a new approach to the identification of requirements for algorithm animation 

systems in the classroom context. We believe that this analysis will contribute to better 

algorithm animation system design. 

In the future we plan to continue analysis of the data, examining annotation of 

data structures and other artifacts in depth, as well as other aspects of the data. We plan to 

conduct further studies of the learning process, involving students as well, as we believe 

that this will yield additional findings information about the activities and artifacts 

involved in the process, and contribute to further design improvements. 



 83

 

 

CHAPTER 5 

SKA: THE SUPPORT KIT FOR ANIMATION 

5.0 Motivation 

Existing algorithm animation systems typically have been designed without formal study 

of related teaching practices. We believe that this has contributed to low adoption rates of these 

systems, since these systems may not have addressed the needs of these users. We conducted a 

naturalistic observational study of instructors teaching data structure and algorithm topics 

(described in Chapter 4), with a focus on the use of diagrams and tracing [Hamilton-Taylor02b]. 

The results of this study were used to inform the design of SKA, the Support Kit for Animation 

[Hamilton-Taylor02a]. Our methodology draws on user-centered design methods [Norman88] 

such as contextual design [Beyer98] and artifact analysis [Nardi96]. In a similar vein, 

Hundhausen conducted ethnographic studies of how students construct algorithm animations, 

and used the results in the design of SALSA and ALVIS [Hund99]. Pane designed HANDS, a 

programming language and environment for children, based on a study of algorithmic manual 

tasks performed by adults and children [Pane02a] [Pane02b].  

Another important issue that impacts the adoption of algorithm animation systems is the 

time it takes to author an animation. The average instructor lacks the free time to create 

algorithm animations. Naps finds that two-thirds of instructors surveyed express this concern 

[Naps03]. Some systems, for example Samba [Stasko96], have attempted to address this issue, 

but it appears to be largely unresolved. One study found that students took an average of 33 

hours to produce a Samba animation [Hund99].  
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One must write code to create, display, and modify data structures such as graphs and 

trees in all but a few systems, such as JAWAA [Rodger02] and Animal [RF01]. Where data 

structure objects are provided, systems often do not support general purpose programming 

operations on them, or semantic manipulation; they are not active objects. We have attempted to 

minimize authoring time in SKA by providing an extensible library of visual data structure 

objects, and a set of simple operations that facilitate access to these objects. 

In order for users to comprehend animations, we believe they must occur at a pace that a 

user can follow perceptually. SKA attempts to support this by providing an action API 

(application programming interface) and animation engine that supports time-based pacing. 

Other systems such as Polka-RC [SM95] and Animal [RF01] also provide time-controlled 

actions. 

We will describe how we derived the requirements of SKA from the observational study. 

We discuss how we used our tool design philosophy with these requirements to design SKA. We 

will then describe how to use SKA, and how to create an animation using SKA. An overview of 

the SKA architecture follows. Finally, we present future directions for SKA. 

 

5.1 Requirements Derived from User Study and Task Analysis 

An examination of the tasks the instructors perform while discussing algorithms and data 

structures in a lecture in the absence an algorithm animation system allowed us to identify some 

tasks that could be supported by a system, as shown in Table 5.1 (and previously in Table 4.3). 

We found that some tasks performed by instructors, particularly diagram 

construction/manipulation and tracing, can be tedious and error-prone. Tracing is the manual 

simulation of the execution of an algorithm. 
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Table 5.1:  Tasks we identified in our study of instructors that are candidates for system support. 

Making corrections and updating are tedious tasks common to all artifacts, and are 

thus not shown. 

 

Artifacts Tasks 

Data Structure Diagrams Constructing 

Manipulating 

Annotating 

Performing operations 

Copying to show state 

Pseudocode Tracing 

Constructing 

Annotating 

Other Diagrams Constructing 

Manipulating 

Annotating 

 

We observed that tracing takes place in a larger context. Part of this context is data 

structure diagram construction. Sometimes conceptual data structures diagrams (DSDs) are 

drawn just to show examples of the DSD, but they are not used for simulation later. Other DSD 

instances are manipulated to show an operation (e.g. add an element) without explicit reference 

to an algorithm. Yet other DSD instances are drawn because they cause special case behavior 

when an algorithm is executed on them. Arbitrary textual or visual annotations may be made on 

the DSD instances and/or the algorithm. Sometimes a history of selected DSD states and/or 

variable states is constructed, and the selected set can vary during a particular trace. We believe 

that this construction and free manipulation of data structures diagrams should be supported by 

technology. 

Most algorithms have major phases or passes, which repeat until some goal or state is 

reached. A visual history of changes usually records the state at the start or end of major intervals 

or phases. Particular critical steps in each pass determine the course of action for the pass, or if 
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the algorithm has reached the final state. These steps may require close examination. After a 

number of cycles, a pattern may emerge and some simulation details in the remaining cycles may 

be skipped. This is another aspect of tracing we wish to support, by providing flexible execution 

and breakpoint controls, and a means of recording visual history. We note that user controls were 

found to be important in AA system use; [Saraiya04] found that user-friendly execution controls 

provided a significant advantage (on a post-test) for a group using them, compared to a group 

whose system did not have these controls. 

  

5.2 Design Approach 

The objective of our system is to support this set of activities we have just described with 

technology. We believe that technology can at least partially address the limitations we have 

noted. We want to create an environment that allows users to execute algorithms on conceptual-

level data structures. To support these tasks, our system design includes a workspace for the 

visual creation and manipulation of DSD instances by the user (instructor, tutor, or student). 

These visual data structures are active diagrams that can be manipulated by the user, entirely 

independent of any algorithm, or they can be used as input to an algorithm, which can then 

manipulate it.  

Just as the user interacts with a manual simulation, we believe that our system needs to be 

interactive. To support the notion of real execution, we believe that it is necessary that the data 

structures reflect their current value, i.e. that they are active. Moreover, we believe that visual 

changes to a DSD made by the user should be reflected in the underlying value of the DSD to 

retain the notion of reality, and that the interaction should generate a sense of direct engagement 

[HHN85]. In this respect our work is close in spirit to that of Morphic systems [SM95], to that of 
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‘live’ (active) debugging systems [ULF97], and even closer to systems such as the Alternative 

Reality Kit (an interactive physics simulation environment) [Smith86].  

We believe the design of this environment will afford all users a common medium for 

discussion and exploration. It is our vision that students will be able to take tangible algorithm 

and data structure artifacts with them and experiment with them in this common environment. In 

this sense our design approach also aligns with Cognitive Constructivism, Situated Action, and 

Sociocultural Constructivism learning theories [HDS02], discussed in Chapter 2. 

To merge these philosophical design perspectives with our findings and make them 

concrete, we derived the following requirements from analysis of our observational study (and 

the tasks we identified in Table 5.1): 

1. Provide a workspace to construct and manipulate data structures 

2. Provide diagram manipulation capabilities that change the underlying data structure 

3. Support highlighting and/or selecting of elements or sections of data structure diagrams 

4. Support arbitrary annotation of data structure diagrams 

5. Provide ability to clone the diagrams to provide a visual history of changes 

6. Provide ability to save and retrieve data structure diagrams to save construction time 

7. Allow the user to run the pseudocode algorithm on the data structure diagrams 

8. Provide flexible execution controls to facilitate user control observed in tracing 

9. Support arbitrary pseudocode notation to allow authors to control the conceptual level of 

pseudocode and use individual pseudocode style 

10. Provide authoring support by creating a library of commonly used visual data structures, and 

by supporting construction, manipulation, and interaction with minimal coding. 
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In Chapter 1, we proposed that an AA system should support users tasks and needs, be 

used in appropriate learning contexts, and should be designed so that users can perceive and 

attend to them. Our design thus far has addressed the first and second objectives. Based on our 

appreciation of human perceptual limitations with respect to visualization [Ware99] and other 

applications of animation [Bartram01], we decided that our system should provide time-based 

animation to support design for perception. Furthermore, we decided that it should also facilitate 

investigation of the perceptual issues by providing a scripting interface for external programs to 

use the animation capabilities.  

Finally, we determined that the architecture should also provide a common low-level 

library of geometric objects as the underlying level for the visual data structures, and these 

objects should facilitate manipulation and interaction. We then proceeded to design an initial 

version of SKA. 

5.3 Design Overview 

SKA is a combination of a visual data structure manipulation environment, an algorithm 

animation system, and visual data structure library. New visual data structure classes can be 

added to the SKA library by library developers. SKA runs on any Java platform (PC, Mac, 

Linux), and a projection device is recommended for use in lectures.  

When the SKA environment is started, instances of a visual data structure (an interactive 

data structure diagram) can be created and manipulated on the canvas (seen in the left of Figure 

5.1), independent of any algorithm. Manipulations include adding and removing elements, 

highlighting parts of the visual data structure, and performing other operations specific to that 

data structure class, such as deleting a subtree in a tree data structure. SKA supports arbitrary 

annotation of visual data structures and their elements; a pen-based system is highly 
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recommended for this purpose. When an element is moved, its annotation moves with it, and 

deleting an element removes its annotation. 

A visual data structure may be cloned (copied) at any point in time, and the clone can be 

manipulated independently of the original. In Figure 5.1, the directed graphs are clones. Each 

visual data structure instance has a corresponding model data structure instance. Cloning creates 

a separate copy of the visual/model data structure pair, but with identical elements and 

configuration. This allows the user to create a visual history of changes. A visual data structure 

may also be saved to a file and read in later.  

 

Figure 5.1:  The algorithm on the right is waiting for the user to select a directed graph from the 

canvas on the left. 

 

The SKA environment can execute animated algorithms. The authoring process will be 

described in the next section. When invoked via a menu, a pseudocode algorithm appears in an 

execution panel, seen in the right of Figure 5.1. Through this panel, the user may run the 

algorithm, pause and resume, set and remove breakpoints before or during execution, or step 
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through the algorithm a line at a time. The user can also reset (terminate) an algorithm and run it 

again.  

An algorithm can use, as input, a visual data structure on the canvas created by the user, 

as shown in Figure 5.1. This same visual data structure is also manipulated by the algorithm. 

Algorithms can also create visual data structure instances on the canvas. An algorithm can even 

request the selection of an element from a particular visual data structure instance. During a 

pause or break, a user may make clones of a data structure that is being used by (bound to a 

variable of) an algorithm, and manipulate either the clones or the original. Such a manipulation 

of the original might cause an error in the algorithm, but this can be used to illustrate erroneous 

states.  

SKA supports recursion. Each recursive call instance is represented by a separate 

pseudocode subwindow, within the overall code window, as seen in Figure 5.2. The arguments 

can be shown for each call, and users can examine all calls and minimize them if desired, but can 

only control execution of the current call. 

 

Figure 5.2: A recursive binary search algorithm, showing the current call on the subtree 

highlighted in blue on the left. The current line, highlighted in yellow, is comparing 

the red node ‘ox’ to the search value ‘lion’, as also shown by the popup label. 
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Multiple algorithms can be run in parallel, even multiple instances of the same algorithm. 

However, the execution time of these algorithms cannot be relied on for comparative purposes 

because of the varying time each algorithm spends pausing, waiting on input, and performing 

animation. 

5.4 Usage Scenarios 

In this section, we describe a typical use of SKA by an instructor. Let us imagine that an 

instructor, Prof. Iani, is going to discuss the breadth-first search graph algorithm, and uses SKA 

in the following manner. Prior to the lecture, Prof. Iani prepares some sample input graphs by 

starting SKA, creating them on the canvas, and saving them. Alternatively, an algorithm could 

have been used to create sample input data structures, which can also be saved.   

 

 
Figure 5.3a: The user reads a previously prepared directed graph, seen on the right. 

 

In class, the instructor starts SKA, and creates a sample graph on the canvas, and reads in 

the saved graphs (Figure 5.3a). Prof. Iani discusses the properties of the sample graphs (acyclic, 

directed, undirected, DAG, tree, etc.), then opens a breadth-first graph search algorithm window, 

sets some breakpoints, and clicks the runs button to initiate execution. When execution reaches 
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the line that is highlighted in Figure 5.3b, the algorithm requests that a directed graph be input 

from the canvas, and waits for the input.  

 
Figure 5.3b: The user initiates execution of an algorithm by clicking the run button (seen top 

right). The algorithm (seen top right) requests input of a directed graph. The user 

selects a directed graph (seen top left). The algorithm (seen bottom right) requests 

input of a start vertex in that graph. The user selects a vertex (seen bottom left). 

 

Prof. Iani selects an undirected graph, but the system will not allow the wrong type to be 

sent as input. Prof. Iani then selects a directed graph, and the algorithm labels it with the bound 
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variable name. The algorithm requests the selection of a starting vertex from the selected graph, 

and the instructor does this. At a breakpoint Prof. Iani makes a clone of the graph (Figure 5.3c). 

He then asks students to predict the set of vertices to be visited by the algorithm, and highlights 

them by dragging around them.  

  

 
Figure 5.3c: After the algorithm runs to a breakpoint, the user creates a clone of the graph G 

being used by the algorithm, then highlights an area of the original graph. 
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Figure 5.3d: After the algorithm runs to completion, the user adds an edge to the cloned graph 

(seen at top). The user runs the algorithm again on the modified clone of the graph, 

then selects a vertex at a breakpoint (seen at bottom). 

 

Prof. Iani modifies the cloned graph by adding an edge to it, and asks students how that 

would affect the vertices visited by the algorithm (Figure 5.3d). He then runs the algorithm 

again, using the modified cloned graph.  At a breakpoint, he asks students to predict the next 
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vertex to be visited by the algorithm, and selects the predicted vertex (by dragging around it) on 

the clone. He discusses the influence of the input data structure on the behavior of the algorithm.  

Let us examine another possible scenario of use: illustrating the insertion of an element 

into an AVL tree, and the subsequent rebalancing. Prof. Iani constructs an AVL tree (Figure 

5.4a), and inserts an element, 70, which makes the tree unbalanced (Figure 5.4b).  

 

 

 
Figure 5.4a: The user is constructing an AVL tree. 
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Figure 5.4b: Adding node 70 makes the AVL tree unbalanced, so the user starts a single rotation 

by detaching the subtrees with root nodes 50 and 40, then linking nodes 30 and 40. 
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Prof. I then performs a single left rotation in a number of steps, shown in Figures 5.4b 

and 5.4c. In this rotation node 50 will become the root, with node 30 as its left child, and node 40 

will become the right child of node 30.  

 

  
  

Figure 5.4c: The user makes node 50 the root, then attaches (links) node 30 to node 50. The 

rotation is complete. 

 

The subtrees involved in the rotation are detached by right-clicking each of their root 

nodes (nodes 50 and 40) and selecting ‘Detatch from Parent’ (Figure 5.4b). Prof. Iani makes 

node 50 the root of the entire tree by right-clicking it and selecting ‘Make Node Root’, then 
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drags the subtrees into a desired layout (Figure 5.4c). Next, Prof. Iani makes node 30 the left 

child of node 50 by right-clicking on node 50 and selecting ‘Link Left’ (at which point a 

rubberband line appears), then clicking node 30. Finally, node 40 is made the right child of node 

30 in a similar manner. The rotation is complete. 

5.5 Authoring an Animation 

How does a user, typically an instructor, prepare an animated pseudocode algorithm in 

SKA? We walk through the process of authoring the BreadthFirstSearch algorithm example we 

saw in the previous section. We start with the source code for the algorithm (henceforth called 

the code), seen in Figure 5.5. The source code must be written in Java. The present 

implementation language is Java because of its widespread use in computer science education, 

and its support for user interface development. The instructor writes a pseudocode equivalent of 

the code, shown in Figure 5.6. The level of detail or style of the pseudocode does not matter, 

since the pseudocode is merely displayed, not executed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5:  The original BreadthFirstSearch algorithm source code. 

 

public BreadthFirstSearch() { 

  DirectedGraph g = new DirectedGraph(); 

  int v, u, w; 

  LinkedList Q = new LinkedList(); 

  // construct graph by some type of input, then… 

  v = Integer.parseInt( 

 JOptionPane.showInputDialog(“Enter start vertex index”)); 

  Q.addLast(new Integer(v)); 

  while (!Q.isEmpty()) { 

    u = ((Integer)Q.removeFirst()).intValue(); 

    g.getVertex(u).setVisited(true); 

    System.out.println(“Visted vertex “+u); 

    for (w=0; w< g.nVertices(); w++) { 
      if (g.edgeExists(u, w))          

        if (!g.getVertex(w).isVisited()) { 

           Q.addLast(new Integer(w)); 

           System.out.println(“Visted edge(“ +u +”,” +v +”)”); 

        } 

    } 

  } 
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Figure 5.6:  The pseudocode version of the BreadthFirstSearch algorithm. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7:  The annotated code for BreadthFirstSearch, in which the DirectedGraph G is 

replaced with a SkaDirectedGraph, and showAlgLine() calls are added to connect 

the pseudocode lines with corresponding source code. 

 

algorithm breadthFirstSearch 

  input Directed Graph G from canvas 

  select start vertex v in Graph G 

  enqueue v on Q 

  while Q is not empty do 

    dequeue vertex u from Q 

    mark u as visited 

    for each vertex w adjacent to u 

      if w has not been visited 
        enqueue w on Q 

        mark edge visited 

public BreadthFirstSearch() { 

  SkaDirectedGraph g = new SkaDirectedGraph(); 

  int v, u, w; 

  LinkedList Q = new LinkedList(); 

  showAlgLine(1, “algorithm breadthFirstSearch”); 

 

  showAlgLine(2, “  input Directed Graph G from canvas”); 

  g = (SkaDirectedGraph) inputVizDS(SkaDirectedGraph.class); 

 

  showAlgLine(3, “  select start vertex v in Graph G”); 

  v = (SkaVertex) inputVizElement(g, SkaVertex.class) 

 

  showAlgLine(4, “  enqueue v on Q”); 

  Q.addLast(new Integer(v)); 

  showAlgLine(5, “  while Q is not empty do”); 

  while (!Q.isEmpty()) { 

    showAlgLine(6, “    dequeue vertex u from Q”); 

    u = ((Integer)Q.removeFirst()).intValue(); 

    showAlgLine(7, “    mark u as visited”); 

    g.getVertex(u).setVisited(true); 

    System.out.println(“Visted vertex “+u); 

    showAlgLine(8, “    for each vertex w adjacent to u”); 

    for (w=0; w< g.nVertices(); w++) { 

      if (g.edgeExists(u, w)) { 

        showAlgLine(9, “      if w has not been visited”); 

        if (!g.getVertex(w).isVisited()) { 

           showAlgLine(10, “        enqueue w on Q”); 

           Q.addLast(new Integer(w)); 

           showAlgLine(11, “        mark edge visited”); 

           System.out.println(“Visted edge(“ +u +”,” +v +”)”); 

        } 

      } 

    } 
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The first step in preparing an algorithm visualization is to replace the data structures we 

wish to display with the equivalent SKA data structures from the SKA data structure library. In 

this case we replace DirectedGraph with SkaDirectedGraph in Figure 5.7. 

Next, we annotate the source code by placing showAlgLine() calls to mark which line of 

pseudocode corresponds to which line of code. If we want to get a data structure from the 

canvas, we replace the input routines with a canvas inputVizDS() call, as shown in Figure 5.7. 

Any extra animation calls (e.g. to highlight some element) are then added. The code is then 

compiled with the relevant SKA libraries.  

 

5.6 SKA Object Scripting 

We provide a scripting interface to the SKA animation engine so that external programs 

can use its animation capabilities. This has been used in the VizEval and SSEA testing 

environments for our perceptual experiments, as described in chapter 6. Although the syntax may 

be somewhat similar, one aspect of our scripting system that sets it apart from systems such as 

Samba [Stasko96] and JAWAA [Rodgers02] is that users can interact with the objects. The 

canvas on which the objects are displayed can be embedded in other Java applications and this 

interaction information can be made available to these applications. The applications can also 

create and manipulate objects on the canvas. This is how VizEval and SSEA use the SKA 

architecture. 

Scripted objects can be defined in a manner similar to that in Samba. For example, a 

rectangle with an id of 0, an upper left coordinate of 0, 100, height 10, and rgb color (0,255,0) or 

green can be created using: 

object 0 rectangle x 000 y 100 h 10 c 0 255 0 
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Actions such as movement and color changes can be performed on the objects. A move 

takes place over a specified time, and follows a path of n submoves, which are coordinate 

differences of the form (dx,dy). We can also use pacing techniques such as slowInOut for 

gradual movement. We can also group actions so they occur concurrently (in parallel), for 

example: 

move object 0 slowInOut time 1500 path 2 200 100 250 100 

startParallel 

move object 0 time 2500 path 2 200 100 250 100 

move object 1 time 4000 path 3 100 100 150 50 100 250 

move object 2 slowInOut time 5000 path 3 150 200 100 50 100 200 

endParallel 

 
where the first command moves object 0 by (200,100) to (200,200) then by (250,100) to 

(450,300) in 1500 milliseconds. 

5.7 SKA Architecture 

SKA uses three main components: the canvas, pseudocode windows, and actual programs 

represented by the pseudocode. A pseudocode window object displays pseudocode and contains 

the controls to control the execution of the underlying program (Figure 5.8). The canvas contains 

visual data structures. Common operations such as creating or deleting a visual data structure or 

reading one from a file are defined on the canvas. 

Visual data structures are composed of visual elements such as nodes and edges. A visual 

container, which appears as a mini-window (also referred to as a tile or plate), contains the 

elements and defines the boundary of the data structure. This is necessary for data structures that 

may be disconnected visually, such as graphs. Interactions such as adding a node or highlighting 

part of a tree are defined on visual data structures. Operations common to all visual data 

structures such as mini-window operations are defined in a parent class.  
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Figure 5.8: The SKA architecture in use; the user sees only the visual data structures and the 

pseudocode window to the left, not the actual program on the right. Changes made 

by the user to Graph G on the canvas on the left affect variable G in the program on 

the right, and vice versa. The showAlgLine calls in the program mark produce the 

pseudocode display. The user can control execution of the pseudocode on the left, 

which then controls execution of the program. 

 

Visual data structures have corresponding model data structure instances. A change in 

one causes a change in the other. Similarly, visual elements have corresponding model elements. 

Visual elements use glyphs as their visual representation. Interactions such as changing the 

contents of a node or adding a child are defined on visual elements. Glyphs are basic objects 

such as rectangles, lines, strings, circles, etc., or composites of these basic objects.  Operations 

such as movements and color changes can be performed on glyphs. The operations are designed 

to reduce the work the programmer needs to do to in specifying glyph layout and movement.  

SKA uses the interesting event model [Brown98] when we annotate code, but also has an 

aspect of automatic visualization [LF98] as the visual data structures automatically reflect the 

public BreadthFirstSearch() {

SkaDirectedGraph G = new SkaDirectedGraph();

int v, u, w;

LinkedList Q = new LinkedList();

showAlgLine(1, “algorithm breadthFirstSearch”);

showAlgLine(2, 

“  input Directed Graph G from canvas”);

G = (SkaDirectedGraph) 

inputVizDS(SkaDirectedGraph.class);

showAlgLine(3, 

“  select start vertex v in Graph G”);

v = (SkaVertex) inputVizElement(G, SkaVertex.class)

showAlgLine(4, “  enqueue v on Q”);

Q.addLast(new Integer(v));

showAlgLine(5, “  while Q is not empty do”);

while (!Q.isEmpty()) {

showAlgLine(6, “    dequeue vertex u from Q”);

u = ((Integer)Q.removeFirst()).intValue();

showAlgLine(7, “    mark u as visited”);

G.getVertex(u).setVisited(true);

System.out.println(“Visted vertex “+u);

showAlgLine(8, 

“    for each vertex w adjacent to u”);

for (w=0; w< G.nVertices(); w++) {

if (G.edgeExists(u, w)) {

showAlgLine(9, 

“      if w has not been visited”);

if (!G.getVertex(w).isVisited()) {

showAlgLine(10, “        enqueue w on Q”);

Q.addLast(new Integer(w));

showAlgLine(11, 

“        mark edge visited”);

System.out.println(

“Visted edge(“ +u +”,” +v +”)”);

}

}

}
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changes in the underlying data structure. The interactive and manipulative aspect of SKA does 

not fit into any of the established algorithm animation authoring models. It also supports the 

scripting model [Stasko96], but adds interaction. 

 

5.8 Visual Data Structure Development 

The SKA library currently contains visual data structures for undirected and directed 

graphs, binary trees, and linked lists. Developing a new visual data structure class is more 

difficult than authoring an animation, though we have attempted to provide a framework that 

simplifies their development, particularly for user interface operations. Essentially, one creates a 

subclass of the parent visual data structure class, VizDS, and designs any new visual element 

types that are needed as child classes of VizElement. One also creates a subclass of the parent 

model data structure class, SkaDS, and designs any new model element types that are needed as 

child classes of SkaElement. New interactions in either the new visual data structure or visual 

element classes must be designed as well. Creating a specialized subtype of an existing class, 

such as a new type of tree, can be accomplished by creating a subclass, and while this reuse can 

save time, it still requires design of any new aspects. Currently, library development is a task for 

serious developers, which requires one to understand the SKA architecture and the Java Swing 

API.  

We expect to provide enough data structure classes to fulfill the most common needs in 

the near future, with more classes coming on stream over time, perhaps contributed by the wider 

computer science education community. 
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5.9  Conclusion and Future Directions 

The capabilities of SKA have been specifically targeted to address many of the 

limitations instructors encounter in the classroom when teaching algorithms and data structures. 

Specifically, SKA supports and enhances the lengthy processes of data structure diagram 

creation and manipulation, and tracing algorithm execution on data structure diagrams. We 

believe that SKA will be a useful tool in the classroom, allowing instructors to better utilize time 

both in preparation and in the classroom.  

Our initial implementation of SKA incorporates a number of features, some of which are 

unique, and others that have never been brought together. It facilitates simple mapping of 

programs to pseudocode algorithms and provides interactive algorithm execution control. 

Execution control is flexible and designed to emulate and support the manner in which 

instructors perform tracing tasks. It allows interactive data structure instance creation and 

semantic manipulation, and direct-manipulation of underlying data structures. It allows input of 

visual data structures to algorithms. SKA supports simple authoring for complex interaction and 

exploration. A basic library of interactive data structures is provided to simplify authoring, which 

we expect to expand in the future. SKA uses time-based animation to provide better temporal 

control. It provides pacing facilities and other animation techniques to aim to improve visual 

clarity. A scripting interface is provided that facilitates interaction, and use in other contexts such 

as perceptual experiments. The SKA architecture is extensible and designed for reuse. 

We believe that our research is an important contribution to algorithm animation because 

it blends modern HCI design theory, Educational Technology theory, and Engineering 

Psychology with ideas from prior research in algorithm animation to create a system that takes 
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factors from all these fields into account in its design. Prior systems were not designed with the 

aim of supporting instructional or exploratory tasks in particular contexts.  

We approach design trying to provide a virtual high-level execution environment to allow 

learners to explore, observe and verify or refute their notions about an algorithm. This notion 

may not be entirely novel, but we believe our implementation has unique attributes.  

Reeves categorizes learning tools into those one can “learn from” and “cognitive tools” 

one can “learn with” [Reeves99]. He states that one requirement of effective “learn from” tools is 

that learners must “perceive and encode” the “messages encoded in media”. Cognitive tools have 

been “intentionally adapted or developed to function as intellectual partners to enable and 

facilitate critical thinking and higher order learning.” Examples include various applications, 

development and system tools from word processors to spreadsheets to computer languages to 

multimedia/ hypermedia construction software. 

We describe algorithms and data structures as artifacts that are constructed, then observed 

and explored. Therefore, we believe that SKA can be described as a "cognitive tool". However, it 

has an aspect of the "learn from" software category when AAs are being observed during 

execution and exploration, and one of the goals of our empirical perceptual studies (described in 

Chapter 6) is to evaluate whether the "learners perceive and encode" the animations.   

We plan to use the results of our perceptual studies to inform further work on the SKA 

perceptual animation libraries. We will then conduct a user evaluation study of SKA. Such a 

study would preferably involve a second video study to compare SKA use to manual tasks. Both 

of these projects are extensive and as thus will be pursued in future work. We plan to make SKA 

available when this phase is complete. We expect that some changes will be made to SKA when 
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we examine the results of our user studies. However, we believe that our research represents a 

radical re-examination of algorithm animation system design.  
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CHAPTER 6 

INVESTIGATING THE ROLE OF PERCEPTION IN ALGORITHM ANIMATION 

6.0 Introduction and Motivation 

Over the years, we have informally observed a number of problems that users 

encounter with algorithm animations (AAs). Students in our algorithms and data 

structures courses have complained that many AAs were hard to follow visually. We 

watched instructors struggle to control AA speed and pacing. While AA implicitly 

intends to take advantage of human perceptual ability (as do other forms of visualization), 

we believe that some of the techniques used in AA may exceed our perceptual and 

attentional capabilities, and may thus contribute to the mixed results of studies of AA 

effectiveness [HDS02].  

Algorithm animation requires the viewer to construct and maintain mental 

mappings from the AA to an algorithmic process throughout the visualization. For 

example, a value can be mapped to a bar or node, and a display may represent the current 

state of an algorithm. Researchers have put forward possible explanations of what affects 

the viewer mapping process [BCS99], but have not studied the perceptual and attentional 

aspects of the phenomena directly.  

The role of perception and attention in AA has not been formally considered, to 

the best of our knowledge. We believe that this oversight needs to be addressed. We have 

worked with our collaborators at Georgia Tech and the University of Georgia to conduct 

a number of empirical studies to investigate the role of perception and attention in AAs 
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[DHKHR06] [RRKHDH06] [Rhodes06] [Hailston06] [Reed06]. We have designed 

software to be used to conduct these studies [KRRH06] [RKHD06] [Reed06] 

[Thomas04] [Ross04], which use SKA animation and interaction capabilities [Hamilton-

Taylor02a] [Hamilton-Taylor02b]. We have also examined perceptual and attentional 

research and analyzed AAs in light of relevant findings. 

6.1 Our Approach 

As described in the previous section, we started with the informal observation that 

AAs seemed hard to track perceptually. We speculated that viewers might not perceive 

some of the AA actions. Furthermore, we assumed that if they did not see the changes 

they would have difficulty mapping the graphical changes to the behavior of the 

algorithm, and learning would suffer. We believe that perception and attention may affect 

AA use at several levels: 

1. Detection of changes/actions 

2. Identification of the objects involved (and their spatial locations) 

3. Monitoring or tracking actions if they continue beyond an initial change 

4. Mapping between AA entities and algorithm entities 

5. Mapping of AA actions to algorithm operations  

6. Comprehension of algorithm animations 

 

For brevity, we will refer to the first three levels as the perceptual level, although 

we believe that perception, attention, and working memory all play important and 

interconnected roles at these levels. Levels 4 and 5 will be referred to as the mapping 

level, and level 6 as the comprehension level. We believe that each level depends to some 
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extent on lower levels, such that if a breakdown occurs at lower levels, it will affect the 

processing levels above. We speculate that mapping depends heavily on working memory 

as well as attention and perception. Finally, we believe that comprehension involves 

higher cognitive processes, but also relies on effective mapping.  

Each level has tasks of varying degrees of complexity. Detection, identification 

and monitoring can vary in complexity, depending on the number of objects involved and 

the number and type(s) of actions being performed. The use of multiple views adds 

further complexity. Mapping a single visual entity to a simple variable is easier than 

mapping a visual data structure such as a linked list to the corresponding algorithm 

entities, or mapping a comparison of algorithm variables to its visual representation. One 

may comprehend part of an algorithm, but not another. Or one may comprehend the 

overall concept of an algorithm, but not the details of lower levels, or vice versa. 

We propose that the design needs differ at each of these levels. At the perceptual 

level, we believe that perceptual techniques, whether they are animation techniques (such 

as cueing and motion type) or graphical object design techniques can impact 

performance, and the studies we describe support this. We believe that improving 

performance at the higher mapping and comprehension levels will require improved 

display design and conceptual design; we discuss related display design concepts in the 

following section, and we will return to this notion later in this chapter. 

In order to establish the role of perception at each level, we worked with 

collaborators at Georgia Tech to conduct studies that would measure detection, 

identification of spatial locations of change, and monitoring of individual and group 

actions [DHKHR06] [Hailston06]. We also conducted initial studies that explored the 
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role of perception in the mapping of animation actions to algorithm operations, and its 

role in the comprehension of algorithm animations [RRKHDH06][Rhodes06]. This 

represents the beginning of a systematic investigation of the various factors involved at 

each level and of the relationships between the levels. 

To carry out these studies, we had to develop software that facilitated the 

evaluation of AAs at these multiple levels, as existing software did not meet these 

specific needs. Two systems were developed. The VizEval suite [RKHD06] [Ross03] 

[Thomas04] is used to evaluate perceptual and attentional factors, primarily. SSEA 

(Software System for Evaluation of Animations) [Reed06][KRRH06] is intended to 

evaluate the comprehension, mapping and perceptual levels in a multi-window AA 

environment.  

6.2 Related Work 

6.2.1 Perception, Attention, and Memory 

Humans have sophisticated perceptual capabilities; an overview can be found in 

[Coren04][Goldstein02]. These include various aspects of object recognition, as well as 

motion detection and processing capabilities. Bartram compared the capabilities and 

limitations of motion detection and color and shape change detection for applications 

such as industrial control panel monitoring. She found that motion changes were, with 

one exception, detected and identified at a much higher rate than color and shape changes 

[Bartram01]. The difference was more pronounced in the periphery of the user’s field of 

view. Bartram found that a variety of motion changes measured at up to 52 degrees of 

visual angle were detected quite accurately (< 4% error rate). Color and shape changes, 

on the other hand, had respective detection error rates of 36% and 20% at 7 to 20 degrees, 
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and 64% each at 40 to 52 degrees of visual angle. The corresponding motion changes 

measured at up to 52 degrees of visual angle were identified at error rates from 0% to 

1.8%, with the exception of the ‘jumpy’ linear motion (6.6% at 7 to 20 degrees). 

Corresponding color and shape changes were identified at error rates of 19% and 6.3% at 

7 to 20 degrees, and 15% and 4.8% respectively at 40 to 52 degrees visual angle. Bennett 

found that using luminance changes to simulate motion was more effective than use of 

color changes to mimic animation in displays [Bennett97].  

Attention and memory are also relevant to animation processing, and are closely 

associated with perception [Pashler98, Baddeley93]. A number of studies of visual search 

and attention have been performed in other domains [Davis06b] [Davis04] [Geisler95] 

[Palmer00] [Shaw80] [Treisman93], with varying results and interpretations. Attention 

can be described as the ability to concentrate on one or more stimuli (focused attention 

versus divided attention) to the exclusion of others. Animations that involve multiple 

changing elements or windows require divided attention. Though people can 

simultaneously attend to non-contiguous locations [Kramer95], divided attention is 

generally harder to maintain if the sources are not in close proximity [WC97]. This would 

typically involve spatial proximity, e.g. for multiple windows, though it is possible to 

cause confusion by crowding. Other forms of proximity (e.g. color, shape) can assist in 

maintaining divided attention, particularly where close spatial proximity is not possible or 

optimal [WC97].  

Selective attention is directed to a stimulus that attracts attention [Pashler98]. It 

may be directed to one of several competing stimuli or may be involuntarily drawn to a 

source because of the type of stimulus. Overuse of a stimulus to attract selective attention 
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can lead to loss of sensitivity, or confusion in some cases [WC97]. For example, if many 

sources keep flashing, flashing will become a less effective stimulus. 

Working, or short-term memory [Baddeley93] has a very limited capacity and 

duration that decreases with cognitive load. A stream of events that requires items to be 

stored in working memory, such as typically seen in an AA, is said to involve dynamic 

working memory [WC97]. Wickens points out that new information can interfere with 

the old if it is similar in meaning, or if working memory is updated too rapidly [WC97]. 

However, Baddeley posits that there are separate audio and visual short-term 

memory stores, and thus one can process more information if tasks involve a combination 

of audio and visual resources than if all the demand is on one type of resource. This 

position is supported by a number of studies of multimedia by Mayer [MM98]. 

 

6.2.2 Visualization 

Improved design for perception has been shown to improve the effectiveness of 

systems in a number of domains. Bartram used perceptual principles to design tests for 

supervisory control systems: she was able to identify and classify a number of techniques 

to improve critical information display [BWC01]. Faraday and Sutcliffe [FS97] used eye-

tracking to monitor overt shifts of attention to various aspects of a multimedia medical 

lesson. They were able to show significant improvement on a post-test using a redesigned 

lesson, in which they used a combination of perceptual techniques to direct attention to 

aspects of the lesson that the viewers missed. However, they did not attempt to use each 

technique in isolation, and thus did not assess the contributions of the individual factors. 
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McCrickard compared different schemes for presenting peripheral information 

using animation, with the goal of maintaining awareness with minimal distraction from 

the main task, and found that some animation techniques were less distracting and more 

effective than others [MSC01]. 

Bartram also showed that attention and cognitive load can affect identification 

and detection even when perceptual techniques are used that are effective in the absence 

of those cognitive tasks [Bartram01]. She asked subjects to perform a focused attention 

task (text editing, Tetris or Solitaire) while detecting changing icons. The cues and 

motion types that were effective in isolation were less effective as the cognitive load of 

the accompanying task increased. Subjects found the various types of changing icons 

disruptive, some more than others. In increasing order of disruptiveness, they were 

blinking, zooming (in-place growth and shrinking), and linear movement. However, 

Bartram was not trying to measure the influence of these techniques on comprehension or 

mapping.  

 

6.2.3 Visual Display Design 

A number of display design concepts from human factors engineering may be 

pertinent to AA design. We give a brief overview of these concepts. 

In display design, one important analytical concept is that the quality of the 

relationships between the individual, the interface and the domain determine HCI quality, 

and these relationships are mediated by the correspondence and coherence of the 

interface [WR88]. Correspondence is the mapping between a problem domain and the 

system representation. This determines what information to include in the interface in 
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order for the intended tasks to be feasible. Coherence is determined by the mapping 

between the system and the user. It is a holistic measure of how well the interface 

conveys pertinent information to the user and how effectively the user can interact with 

the interface to carry out intended tasks.  

The attention-based approach to display design [Bennett97] focuses on how the 

design of interface elements, their layout, and the encoding mechanisms used affect 

object perception and visual attention. The goal of the attention-based approach is to 

design displays that help to reduce the cognitive load of the interface and its tasks. 

Attention is viewed as a continuum from focused tasks that require attention to specific 

elements to integration tasks that require distribution of attention across multiple features 

that must be considered together. Examples of integration tasks include comparing 

objects visually (e.g. their color or size), or comparing them using other information (e.g. 

is x > y, where one has to look up the values of x and y in a table).  

A number of graphical dimensions can be used for coding information in a 

display. These include (but are not limited to) object shape, size, orientation, color, 

texture, and motion [Ware99]. In some cases, these graphical dimensions can be 

processed rapidly by the pre-attentive visual system [Healey00], and can thus be 

efficiently analyzed and effectively used to code information in displays. There are a 

large number of coding guidelines and findings that could be useful in AA design. Ware 

provides a good overview of these guidelines in relation to information visualization 

[Ware99]. For example, it is recommended that the number of colors used for coding in a 

visualization display should be limited to around six to avoid visual confusion 

[Stokes88].  
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6.3 The Experiments 

The evaluation of the perceptual and attentional factors in AA turned out to be a 

fairly large-scale project, which is ongoing. Two research groups collaborated on the 

project, one in Computer Science at the University of Georgia, headed by Eileen 

Kraemer, and the other in Engineering Psychology at Georgia Tech, headed by Elizabeth 

Davis. We describe three sets of experiments that these groups have participated in or 

conducted.  

The first set of experiments [DHKHR06] [Hailston06] focused on the detection 

and localization of actions in a typical AA sorting display, and the effect of using cueing 

techniques and labeling. Detection is defined as noticing a change. Localization is 

defined as identifying the spatial location of a change (i.e. where did it change?), as 

distinguished from identification, in which one identifies the object that changed by some 

property (i.e. which object changed?). Specifically, we were interested in measuring and 

distinguishing between the ability of the viewer to attend to actions on individual objects 

and groups of objects using cueing and labeling.  

The second set of experiments [RRKHDH06] focused on measuring the impact of 

using the effective cueing techniques identified in the first set of experiments to measure 

performance on a set of questions within the context of a multi-view algorithm animation. 

We also measure detection and identification of actions on objects, and perform initial 

measures of mapping AA changes to algorithm variable changes. 
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The third and final set of experiments [Rhodes06] evaluated the influence of the 

popup question evaluation methodology on comprehension performance. It also 

compared performance on a revised color design to that in the second study. 

 

6.4 VizEval Suite 

To support the running of the first set of experiments and a planned series of 

similar experiments, we developed the VizEval suite [RKHD06] [Thomas04] [Ross04]. 

The VizEval suite allows the experimenter to develop an animation experiment, to deploy 

that experiment and to collect and organize the output. Automation is important because 

of the size and complexity of these experiments, which may consist of hundreds of trials 

and complex ordering within a trial or across test participants. The experiment consists of 

a number of blocks.  Each block contains some number of trials. In each trial, the 

participant views a short animation and is then asked a series of questions about what she 

saw and understood.  

Figure 6.1 depicts the system architecture of the VizEval Suite, which consists of 

SKA (the Support Kit for Animation)[Hamilton-Taylor02a], and TestCreator, 

FileCreator, TestTaker, and Utility modules.  

SKA is a combination of a visual data structure library, a visual data structure 

diagram manipulation environment, and an algorithm animation system, all designed for 

use in an instructional setting. In the context of the VizEval suite, SKA serves as the 

graphics and animation engine.   As a result, we are able to directly apply lessons learned 

in the VizEval environment to continuing refinement of SKA.   
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Figure 6.1: The VizEval Architecture, showing the dependencies of various subsystems 

and entities. TestCreator uses graphics and animation files and generates test 

files. TestTaker runs experiments using the test files and SKA, and output 

data to log files. 

 

Graphical objects and their animations are specified in graphics and animation 

files, respectively.  These are simple text files that are processed by SKA at run-time. 

While such files may be created manually using a text editor, it is desirable in the case of 

large experiments to use FileCreator to automate this process.  

FileCreator is currently a custom application that specifies the graphical objects 

for the particular type of display used in this experiment; however, we plan to generalize 

it. It allows the user to create a single file in which the objects (bars, in this case) to cue 

and the objects to animate can be specified or randomly selected.  When generation of the 

set of all files is requested, all possible combinations are created for each of the group of 

objects.   

TestCreator, shown in Figure 6.2,  facilitates the design and generation of 

experiment test files. It leads the experiment designer step-by-step through the process of 

specifying each block, the trials within each block, and the graphics, animations, and 

questions associated with each trial. TestCreator supports five different types of 

File Creator Test Creator Test Taker 

 

Graphic and 
Animation Files 

Test Files 

Log Files 

Utility Programs SKA 
Support Kit for 

Animation 
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questions: mouse (requires user interaction with a mouse), keyboard (requires interaction 

through the keyboard), Multiple Choice, N-Point (e.g., Likert Scale), and Yes/No 

(True/False). Additional customized question types may be created, by extending the 

“Question” class. 

The experiment file generated by TestCreator contains or specifies all the 

information needed to run the experiment, including user instructions, questions, start 

method (enter key, mouse click, space bar), attractor (countdown timer, etc.), graphics 

and animation files to be used, as well as various timing and flow of control parameters. 

The application is also designed to generate random values within a range for certain 

parameters, thus saving the users from having to generate values for these. A batch 

processor module allows the experiment designer to specify parameters that repeat across 

blocks, trials or questions. The experiment file that is generated through the use of the 

batch processor can then be opened and customized. This feature is especially useful 

when the experiment consists of a large number of blocks or trials. 

 



 

  

119

 

Figure 6.2: TestCreator GUI.  Using TestCreator, researchers specify an experiment to 

be performed.   

 

TestTaker, seen in Figure 6.3, is the execution environment for the experiments. It 

keeps track of the user data, the date and time at which the experiment was conducted, 

and other metrics such as height and width of the screen, distance of the eyes from the 

screen and directory into which the log files are written.   Through TestTaker, animations 

and associated questions are displayed. User responses and other needed information are 

written into a log file.  The utility programs parse these log files to extract and analyze 

the date. 

Figure 6.3 depicts a sample user session.  In this case eight bars are shown. One 

or two bars have been cued (by flashing) and one or two bars have changed height.  The 

user is then asked a series of questions to determine if they noticed that something 

changed (detection) and can identify the location of the object that changed (localization). 
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Figure 6.3: The TestTaker interface during a session. 

 

 

The VizEval suite has some features that are similar to those in E-prime [Eprime], a 

commercial software package for conducting psychology experiments. E-prime has 

extensive functionality, including visual and GUI creation of timed trials of various types, 

blocks, and sessions, the ability to collect data from the keyboard or mouse, and data 

logging and data output in various forms. It also has a scripting language, E-Basic, that 

appears to be similar to Microsoft Visual Basic. One can create displays similar to that in 

Figure 3, but to generate the combinations of display actions that we used in the first 

study would require writing scripts in E-Basic to generate them. Also, displays involving 

more general AA actions would require an experimenter to observe the AA and 

painstakingly copy its behavior using the E-prime scene construction GUI. Alternatively, 

they would have to try to rewrite the AA in E-Basic, which has no algorithm animation 

system or animation engine. 
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6.5 First Study: Evaluating Perception 

Our initial focus was to measure the perception (detection and localization) of 

some basic actions in algorithm animations. 

One of our initial speculations was that viewers were not detecting and locating 

actions in the periphery (or outside the area of immediate focus) while observing another 

action, perhaps because they were not looking in the required vicinity at the time. If this 

were true, we wanted to know if cueing could help to address the problem, as it did in 

[Bartram01].  

We believe that localizing the actions was particularly important, as it would give 

a point of reference for an object in the AA display, which we thought was essential for 

the observer to form a meaning for the action. 

Working with the Davis group at Georgia Tech, we investigated these 

speculations in the context of what users perceive in a ‘conventional’ bars display 

typically used in sorting algorithms. This study [DHKHR06] [Hailston06] sought 

answers to fundamental questions such as: (1) Can users detect that something has 

changed? (2) Can they accurately locate where a change occurred? (3) Does the number 

(set-size) of display elements (for example, bars) affect performance?  (4) Can they 

simultaneously divide attention over two widely separated locations while monitoring 

activity in both regions? (5) Does cueing where a change may occur necessarily help 

performance? and (6) Does labeling locations help performance?   

Many AA sorting displays use bar arrays (which look like bar graphs) where one 

or more bars may change their properties (e.g., bar height) to indicate a change in value. 

We used bar displays (as in Figure 6.3) in which (a) one bar changes its height, (b) two 
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bars changed simultaneously, or (c) no change occurs. For each trial, the observer must 

detect if a bar changes and then identify the location(s) of the bar or bars that have 

changed by clicking on the appropriate bars. We also employed catch trials, in which no 

change occurs.  

Each change could be cued (the bar flashed twice), or uncued. When two bars 

changed, they were on opposite sides of the center of display, and one or both could be 

cued, as seen in Table 6.1. The display contained 4, 8, or 16 bars. The intention was to 

see if working memory limitations would affect detection and localization outcomes. The 

bars were arranged so that they were on either side of central area of the display, 

extending into the periphery of the display, as seen in Figure 6.3. The changes could 

occur in the periphery only, or in varied locations (near central area, far periphery, or 

intermediate locations). Participants were asked to focus on a countdown timer in the 

center of the screen until a trial began. 

 

Table 6.1: Experimental conditions for the first study. 

Within-Subject Factors for both Labeled and Unlabeled Blocks of Trials 

Set Size  Number of  Bars That Change Height 

4 Cues 0 1 2 

 1   Cue X X X 

 2 Cues X X X 

8 Cues 0 1 2 

 1   Cue X X X 

 2 Cues X X X 

16 Cues 0 1 2 

 1   Cue X X X 

 2 Cues X X X 

 

 

Thirty-six Georgia Institute of Technology students participated in this study.  All 

participants had 20/20 vision after any necessary refractive correction and all received 

extra-credit in their courses for participating. Two Dell Dimension desktop computers 
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with Sony Trinitron 19” color monitors were used.  Participants interacted with 

TestTaker of the VizEval suite, which managed the presentation of questions, graphics 

and animations, and logged participant responses.   

 

6.5.1 Results and Discussion 

This study yielded some interesting results. We found that factors that enhance 

localization performance often hinder detection, and vice versa.  

Detection is significantly better if two bars change than if one bar changes 

(F(1,33)=62.96, p<0.001), which implies that users can divide their visual attention 

across the display. This might be partially due to probability summation, as users have 

two chances to detect a change when two bars change.  

Detection is worse in the periphery for the smallest set size of 4 when bars are 

only presented in far peripheral fixed locations. The difference between a far peripheral 

display with 16 bars and one with 8 or 4 bars is that some of the innermost bars are 

removed. The interbar spacing remains the same. Therefore, as we reduce the number of 

bars, the bars become more concentrated in the periphery. This points to the importance 

of studies such as this, as intuition would lead one to believe that smaller sets are always 

better in a learning context. However, when bars are presented in varied locations, 

performance was equivalent across all set sizes (4, 8, and 16 bars). Thus, detection 

performance was not hampered by working memory.  

Cueing did not have a significant impact on detection. We can posit that, in this 

case, a good animation change technique was sufficient on its own for detection, and thus 

cueing did not offer much additional help.  
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Localization is significantly worse when there are two changes (F(1,33)=89.18, 

p<0.001). Perhaps localization performance suffers because while the observer is making 

responses about the first location, information is fading from working memory about the 

second location. Localization rates fall as set size increases, regardless of object position 

on the screen (whether in the periphery or not). 

Cueing affected localization performance positively. Localization performance is 

much worse for an uncued change than a cued change (F(1,33)=64.98,p<.001)), 

especially when 8 or 16 bars are presented (F(1,33)=11.563,p<.002)). The set-size effect 

is larger when 2 bars change. For localization, it seems that that cues give an additional 

opportunity prior to the animation to note the localation of an object, and it becomes 

more important as set size grows. We can infer this from the data, which shows that when 

two bars change height and one change is cued and the other is uncued, the difference in 

average detection rates is more than 10% higher for the cued change, for set sizes of 8 

and 16. When only 1 bar changes and it is cued, there is no set size effect to speak of. 

This again suggests that working memory limitations may negatively impact localization 

performance when there are simultaneous changes, an important note to AA designers. 

Generally, localization rates vary from below 85% for two changes and 16 bars to over 

95% for smaller set sizes or for one change.   

Labels apparently help to ‘mark the spot’, as they can improve localization. This 

is particularly notable for two changes, which is consistent with the notion that it is 

harder to remember two visual locations than one. Even with labels and cueing, 

localization performance for two changes decreases with set size from about 95% for 4 

bars to approximately 85% for 16 bars. This indicates that animation designers should 
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avoid simultaneous changes with large set sizes until this issue can be addressed, unless 

they can live with less than perfect localization rates. 

 

6.6 Second Study: Evaluating Multiple Levels 

In the second set of experiments [RRKHDH06], we set out to simultaneously 

evaluate the effects of the animation techniques at three levels: perception 

(identification/detection) of changes, mapping of changes to algorithm operations, and 

comprehension of the algorithm depicted in the animation. In performing this multi-level 

evaluation, we wanted to answer the following questions:  

1. Will the animation techniques we used in the first set of experiments result in 

improved performance on comprehension tasks? 

2. Can the user map AA actions to algorithm operations? Do perceptual techniques help 

in this regard?  

3. What are the relationships between performance on perceptual, mapping, and 

comprehension tasks as we vary animation techniques? 

 

We investigated these issues in an experiment that uses a quicksort sorting 

animation in the SSEA testing environment [KRRH06] [Reed06], which we describe 

below. The study evaluates the effect of different cueing techniques and different types of 

change animations on user performance at various levels. Apart from comprehension, the 

study also evaluates the user’s ability to perceive changes in the animation, and to relate 

(map) these changes in the animation to changes in the algorithm. Specifically, we 

measure whether the viewer perceived changes in the main bar display (in Figure 6.4) 

and was able to map these bar changes to the values they represent, and in some cases to 
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the variables they represent (e.g. firstHigh in Figure 6.4). Mapping bars and their changes 

to variables can be considered a simple integration task. 

Perceptual effects and mapping are evaluated through responses to popup 

questions (questions that appear during playback of the animation, where the animation 

pauses its run until an answer is provided). By effects on comprehension we refer to the 

ability of viewers to understand an algorithm, as measured by the number of correct 

answers to questions about properties of the algorithm.  The users’ responses to such 

“traditional” questions measure the comprehension effects of the algorithm animation. 

For traditional questions, the “homework scenario” evaluation methodology we 

introduced in [KST00] was employed (also referred to as the “assignment scenario” 

[HDS02]), in which students can use the animation as a resource to solve the problems, 

and have no time limit to do so. 

We vary two animation attributes. We label the first attribute as “cueing” or “no-

cueing”.  The “cueing” depiction flashes the compared bars three times when the 

comparison event occurs.  “No-cueing” simply does not flash. The second attribute is 

labeled as “grow” or “move”.  In the “grow” depiction of an exchange of elements, the 

bar representing the smaller element grows to the height of the larger element while the 

larger element simultaneously shrinks to the height of the smaller element. In the “move” 

depiction of an exchange of values, the two bars representing the data elements being 

exchanged are seen to move in an arcing motion, each one moving to the location of the 

other. Four animations were created: cueing with move, cueing with grow, no cueing 

with move, and no cueing with grow.   
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6.6.1 Method 

6.6.1.1 Participants 

Participants in the experiment were 59 volunteers drawn from the undergraduate 

computer science students registered at the University of Georgia in the fall semester of 

2005 and spring semester of 2006. Participants received a five-dollar payment in return 

for their participation, which required approximately one hour. 

 

6.6.1.2 Apparatus 

Studies were conducted on Dell Dimension desktop computers with high-

resolution 17-inch LCD flat-panel color monitors. 

The empirical study we conducted used an algorithm animation framework called 

SSEA, a System to Study Effectiveness of Animations [KRRH06][Reed06]. SSEA 

integrates a visualization interface with a question panel, pop-up questions and a monitor. 

The monitor automates data collection of user interactions and events. A SKA [Hamilton-

Taylor02a] module manages the display of the animation and adjusts the visualization to 

any users interactions. SSEA also supports our “homework scenario” evaluation 

methodology [KST00] via the question panel. 

The main SSEA user interface is seen in Figure 6.4.  It includes an animation area 

(A), a pseudocode display (B), animation controls (C), and a question area (D).  The 

animation area and code area display the graphical representation of the underlying 

algorithm, and are synchronized by SKA.  A high resolution monitor is required to view 

the multiple areas of SSEA in their entirety. Our empirical studies were conducted on 

such monitors. 
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Figure 6.4: The SSEA Environment.  (A) Animation area where visualization of 

underlying algorithm is displayed.  (B) Pseudocode display: currently 

executing code is highlighted. (C) Animation controls: data set, 

start/stop/step/pause,  animation speed and starting point. (D) Question list 

and questions. 

 

The user can control the animated display.  Specifically, the user can select the 

data set, control the speed, start, stop, pause and step the animation.  In addition the user 

may move the slider seen in section C of Figure 6.4 to select a point in animation time at 

which to restart the animation. 

The questions seen in area D of Figure 6.4 may be answered by the user at any 

time.  An asterisk next to a question number in the list indicates that the question is still 

unanswered.  The user may also return to a question and change his answer.  After all 

questions have been answered a “submit” button becomes enabled.  When the user clicks 

“submit” the session is complete.  Both the intermediate choices and the final answers for 
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all questions are recorded in the log. In our studies we used this question mode to solicit 

answers to “traditional” questions. 

The experiment designer may also specify “popup” questions, as seen in Figure 

6.5.  These questions are associated with the animation of the algorithm on a particular 

data set.  The popup questions appear only the first time the user runs the animation of 

the algorithm with the associated data set.  We used these questions to solicit answers 

about what the user just saw – which two bars were just compared, or which two bars just 

exchanged values, for example.   

To prevent users from using the highlighted code to supply the correct answer to 

the popup questions, the popup box is positioned over the area containing the 

corresponding code and is not movable, nor does any action proceed, until a response is 

provided by the user.  The popup text then updates to indicate the correct answer to the 

question.  The user may then close the popup and continue with the animation.  Users’ 

answers to these popup questions are also recorded in the log. 

 

6.6.1.3 Stimuli 

Participants viewed a quicksort animation, as seen in Figure 6.5.  The elements of 

the array of values are represented as filled rectangular bars.  The value of the array 

element is indicated by both its height and a label that appears below the bar.  The height 

of each bar is the value of the element multiplied by the “just noticeable difference” (95% 

discrimination threshold) of 0.65% of visual angle, which was equivalent to 22 pixels on 

our monitors when viewed at a distance of 28.5 inches. The “just noticeable difference” 
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or 95% discrimination threshold was determined through pilot studies, and indicates the 

smallest bar height change that is noticeable at a 95% rate anywhere on the display.   

 

 
Figure 6.5: Screen shot of the SSEA program with a pop-up question waiting to be 

answered. 

 

The quicksort algorithm is recursive and involves dividing and sub-dividing the 

array into partitions. An outlining rectangle indicates the current partition.  In addition, 

labeled arrows marked “begin” and “end” indicate the boundaries of the current partition.  

Two additional labeled arrows marked “firstHigh” and “findLow” represent the variables 

that move within the current partition looking for values that are higher or lower than the 

pivot.    

We employed a color scheme that used six colors. Bars are colored to indicate the 

state of the algorithm. The current pivot (a critical value) is colored green. Inactive 

partitions are colored gray.  The active partition is initially colored red.  As the algorithm 
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proceeds the bars are sorted into a lower partition (values less than or equal to the pivot) 

which is colored light blue, and a higher partition (values greater than the pivot) which is 

colored purple.   The pivot value is then swapped with the rightmost value in the lower 

partition, which is its final location.  It is then colored black to indicate that is in its sorted 

position. A legend is provided in the upper right-hand corner of the display. 

Two lines of text below the array serve as captions, providing a description of the 

current step being performed.  Lines in the pseudocode display of section B are 

highlighted as the animation is executing the corresponding event. 

 

6.6.2 Design 

Two between-subject factors were varied: (a) whether flashing (bars flash three 

times)  was used to cue the comparison of the element at the “findLow” arrow with the 

pivot and (b) the method (move or grow) used to depict the exchange of values between 

two elements.  In the “grow” method, the exchange is depicted by showing the larger bar 

shrinking to the height of the smaller bar at the same time the smaller bar grows to the 

height of the larger.  In the “move” method the bars are seen moving in an arcing fashion 

from their original positions to their new positions. 

 

Table 6.2: 2x2 Factorial Design – Letters in boxes indicate animation version.  

Numbers in parentheses indicate number of participants assigned to that 

group. 

 Move  Grow 

Flash Cue MC (14) GC (16) 

No Flash  MX (12) GX (17) 
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6.6.3 Procedure 

The participants were randomly assigned to one of the four groups (MC, MX, GC, 

GX), as seen in Table 6.2.  Each participant initially completed a training exercise that 

required that the participants view a simple “Find Max” algorithm in SSEA, and answer 

one pop-up question and four traditional questions.  The instructions led each participant 

through the use of each of the animation controls. 

Participants then viewed the animation for the group to which they had been 

randomly assigned.  Participants in each group were asked the same multiple choice 

questions, which reflected a range of concepts related to comprehension of the quicksort 

algorithm.  The instructions directed participants to use the ‘LargeRandom’ input set.  

This ensured that participants would be asked all eight popup questions, which were 

categorized as either “cue-specific” (asking which two bars where just compared) or 

exchange-specific (asking which two bars just exchanged values). Upon completing the 

traditional questions and selecting “submit”, participants were given the opportunity to 

comment on the animations they viewed, the SSEA system, or to give any general 

feedback, through a paper survey form.  

6.6.4 Results 

6.6.4.1 Traditional Questions 

Participants had an average score of 61% on the traditional questions, some of 

which required detailed knowledge of the procedure or time complexity analysis.  

Average time to complete the study was 23 minutes.  Table 6.3 shows the per-animation-

group averages for score and time. 
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Table 6.3: Average Time and Score per Group, Traditional Questions 

Group Average Score 

(%) 

Average Time 

(minutes) 

MC 62 26 

GX 61 21 

MX 59 25 

GC 62 20 

 

An ANOVA analysis was performed.  No statistically significant effects were 

found for performance on overall traditional questions for cueing, exchange type, or 

interaction effects. The traditional questions were further sub-divided into groups based 

on the type of knowledge the question tested: knowledge (recall/identification), 

comprehension, and application. ANOVA analyses were performed on these subsets.  

Again, no significant difference was found among the four animation groups.   

 

6.6.4.2 Popup Questions 

Overall performance on the pop-up questions was 66%.   Table 6.4 shows the per-

animation group scores for the pop-up questions.  Times are as reported in the traditional 

question section. 

Table 6.4. Average scores per group, popup questions 

Group Average Score (%) 

MC 73% 

GX 58% 

MX 62% 

GC 72% 

 

An ANOVA analysis was performed.  Cueing was found to have a statistically 

significant effect (F(1,57)=4.44,  p < 0.04) on participant performance on popup 
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questions.  Further, cueing was also found to have a statistically significant effect in a 

subset of the popup questions classified as cueing-specific (1,2,3,8), F(1,57)=10.39, p< 

0.002. 

Exchange type was not found to have a statistically significant effect on 

performance on the overall set of popup questions.  However, in a subset of questions 

classified as exchange-specific, a statistically significant benefit to “move” over  “grow” 

was found (F(1,57)=5.74, p< 0.02). 

6.6.5 Discussion 

The results of the experiment make for interesting food for thought. Cueing 

significantly improved popup question scores, but not traditional question scores. 

However, there was a moderate correlation (0.466) between popup and traditional scores, 

which shows that those who did well on one type of question tended to do well on the 

other, and vice-versa. After the experiment was complete, we noted that there were 

several indicators that could supply the participant with needed information besides 

cueing and motion type: labels for the objects, arrows pointing to the objects before and 

after an action, descriptive text, and highlighted code. The design of the study permitted 

participants to use the animation as a resource and replay or explore it to find the needed 

information for traditional questions, thus providing several sources and paths to arrive at 

the answers. In this context, it is quite possible and reasonable that the effect of these 

perceptual techniques was too small to make a significant difference on those questions. 

The other available resources were much more likely to be important for conceptual 

development. In particular, the ability to replay the animation while answering questions 

without time constraints reduces dependence on memory and allows observers to perform 
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exploration and hypothesis testing. Perhaps we need to remove some of the other 

information sources and interaction capabilities (for experimental purposes) to isolate the 

effect of cueing and motion type.  

However, the popup questions were shown only once, and cueing or motion 

immediately preceded the popup, which had to be answered then and there without the 

possibility of replay or exploration. This context makes these perceptual techniques 

important, hence its influence on the popup scores. 

Some of the popup questions that involved variables require the user to map the 

variables to values and perform a comparison, which is an integration task. Integration 

tasks require the user to attend to and relate or consider multiple entities together 

[Bennett97]. Thus we find that cueing can help integration tasks in algorithm animations.  

Motion type had no significant effect on traditional question scores, or overall 

popup question scores. In the case of traditional questions, this could be due to the same 

factors previously outlined. However, there was a significant advantage for the ‘move’ 

animation over the ‘grow’ animation for exchange-specific popup questions. This is not 

surprising, since exchanges are the only operations that utilize these animations in the 

context of that type of popup question. This may indicate that ‘move’ may be a more 

effective technique than ‘grow’ animation in this context of exchanges, perhaps because 

they cross the user field of view. More importantly, it confirms our hypothesis that good 

perceptual techniques can help users, where these techniques are relevant to the algorithm 

operation.  
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6.7 Third Study: Evaluating Popup Methodology 

In experiment two, we evaluated mapping and perception using popup questions. 

We wanted to know if this aspect of our experimental methodology influenced 

comprehension. Specifically, we wanted to know if popups helped students by 

encouraging them to focus on the events queried by the popup questions, or if they were a 

distraction. This third study, designed and conducted by Philippa Rhodes and our 

research group [Rhodes06], was intended to investigate this and other issues. The study 

also evaluated the use of prediction for popups, and of feedback to popup questions. In 

addition, the numbers of colors used in the display design was reduced, as compared to 

experiment two. However, these results must be considered preliminary because of the 

small group of subjects. 

 

Table 6.5: 2x3 Factorial Design - Number of Participants per group. 

 NoPop-up Without 

Feedback 

With 

Feedback 

Predictive 5 5 5 

Responsive 4 5 5 

 

Six groups were formed as shown in Table 6.5. The popup questions were either 

predictive (what will be the next step?) or responsive (what did you just see?). Half of the 

participants in each popup group received immediate feedback; they were shown the 

correct answer after each popup question. The two no-popup groups are actually one 

group, but the design simplifies analysis. The materials and procedure were essentially 

identical to that of the second study. 
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6.7.1 Results and Discussion/Conclusion 

We were particularly interested in the influence of popup questions on participant 

scores, while noting that the results were preliminary. The average number of correct 

responses for the no-popup group was 76% on traditional questions. If we compare this to 

the average score of all popup groups (67%), we see that the use of popups may have 

made performance on traditional questions worse, but not significantly. However, the 

average traditional question score for the responsive-with-feedback group (76%) was the 

same as for the no-popup group. This suggests that the popup question methodology may 

have negligible effect on comprehension performance, if feedback is provided. 

Prediction reduced scores on popup questions significantly, but did not affect 

overall traditional question scores. Feedback improved popup scores significantly (97.5% 

versus 77.5% without feedback), and also improved traditional scores, but not 

significantly.  The gap in popup score averages for prediction (52.5%) versus responsive 

(87.5%) is understandable, given the difference in tasks. However, the gap in popup score 

averages for no feedback (58.8%) versus feedback (81.3%) is quite remarkable. Perhaps 

popups can be distracting, but the use of feedback allows the students to come to closure 

on each question.  

Some mapping popup questions required identification of the variables that 

indexed the bars involved in an animation action. For the responsive group, the average 

score on these variable-mapping popup questions (73%) was much lower than that of 

mapping popup questions that just involved identification of values represented by the 

bars (96%). A similar difference was found for the predictive group: 48% for variable-

mapping versus 60% for value-mapping. To answer the variable-mapping questions 
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correctly, the subject had to recall and had to keep track of the relationship of the 

variables to the graphical objects, because the variable labels were hidden. This could be 

considered a primitive test of the ability to track relationships in working memory in the 

context of a multi-view algorithm animation. 

Surprisingly, the reduction in the number of colors used improved scores on 

traditional questions for the responsive-with-feedback group over the similar group in the 

second study (76% versus 62%), which made a marginally significant difference. This 

points to the need to examine various perceptual factors in AA design. Again, the results 

of this study must be considered preliminary because of the small group of subjects. 

 

6.8 Comparative Study Discussion/Analysis 

In the first study, cueing helped localization significantly, but did not help 

detection. Cueing had a significant effect on popup question scores in the second study, 

and these questions involved identification and localization. This indicates that cueing 

can be an effective perceptual technique for identification and localization, which was 

one of our original questions.  

Of note is the fact that average localization performance for large set sizes (16 

bars) was just under 85% for two cued changes versus over 95% for one cued change in 

the first study, while there was hardly any difference for smaller set sizes (4 and 8 bar 

displays). This supports one of our initial hypotheses: that viewers were not able to 

identify some changes, that this becomes worse as the number of changing objects 

increases and as the number of objects on the display increases. Even with cueing, this is 

still a concern, and animation designers should be aware of this. In the future, we plan to 
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test other cueing techniques to see if they can improve identification and localization of 

simultaneous changes with larger numbers of objects. 

In our second study, we found that the use of perceptual techniques did not affect 

the comprehension level results significantly. We believe that viewers found some other 

path to the knowledge required to answer these questions, including the use of the replay 

controls to explore the behavior of the algorithm. This could indicate that this learning 

context and such interaction controls are important for AA comprehension tasks. Another 

possibility is that students may have used several other cues that were available, which 

indicate the same attribute or action. It may also indicate that the effect of the techniques 

used was too small to be significant.  

In the second and third studies, we found that perceptual techniques such as 

cueing can help with identification and mapping in an animation (even when there are 

two changing objects). We also showed that users can perform simple integration tasks 

when mapping graphical representations to algorithm variables in a multi-view algorithm 

animation.  

Study three suggested that experimental methodology might influence 

comprehension in unexpected ways, though we do not form firm conclusions due to the 

small number of subjects in the study. When popups were used with feedback, the 

methodology did not affect comprehension performance, but prediction and/or lack of 

feedback affected comprehension performance negatively. Perhaps the lack of feedback 

left students wondering if they were on the right track, and distracted them. Prediction 

may also be distracting. This suggests that we evaluate experimental methodologies 
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carefully, and examine the context of learning of AA and interaction design in future 

studies.  

The third study also suggests that mapping graphical objects to variables may be 

harder than just identifying values represented by graphical objects, which is of relevance 

to the perception levels we proposed. Mapping tasks are apparently harder than 

identification tasks, which in turn are harder than detection tasks. Perceptual and object 

design techniques may help, as in the case of cueing in study two and color in study 

three. We plan to investigate this issue further. Finally, a change in color representation 

influenced comprehension performance, which points to the need to examine various 

perceptual factors in AA design, which we plan to do in future studies. 

 

6.9 Conclusion 

Our quest to thoroughly investigate the role of perception and associated 

psychological factors in AA has led us on an extensive journey, with contributions from a 

number of researchers and graduate students. This journey is ongoing. Thus far, our 

research has produced some fundamental results. We have shown that perceptual and 

attentional factors have an impact on AA viewing. Perceptual techniques can facilitate 

the ability to attend to animations at the perceptual and mapping levels, if used 

appropriately. We are not aware of any AA study that examines perception or any 

combination of perception, mapping and comprehension.  

The VizEval and SSEA systems have shown their utility in facilitating the 

running of experiments that evaluate AAs at multiple levels of perception, mapping and 

comprehension. We are confident that they can be used as platforms for future 
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experiments that explore these issues further. We are not aware of any systems that 

facilitate this type of AA evaluation. Both systems are based on the SKA algorithm 

animation system, which means that the animation techniques we evaluate are portable 

across the systems. More importantly, this means that the techniques we verify as 

perceptually useful can be deployed in an actual AA system, SKA.  

As a result of our analysis thus far, we can describe AA as follows: Algorithm 

Animation provides external representation of program entities and processes, but it also 

introduces perceptual tasks that need to be mapped to cognitive tasks, thus introducing 

new perceptual, attentional, and memory requirements. The perceptual and cognitive 

tasks include simultaneous tracking of data, processes, and goals as well as the 

interrelationships between them. The data can be complex, and are typically a 

combination of interrelated data structures and simple variables. The process description 

may or may not be shown. The processes usually have subprocesses (explicit or implicit) 

that have their own mental tracking requirements, but results, inputs and outputs have to 

be related to other parent processes or subprocesses. The cognitive agent has to track the 

changes not only in the algorithm, but in the AA visual mappings. In AA these tasks are 

often accompanied by frequent perceptual switching, which can lead to loss of tracking, 

attention, and orientation. This can occur within a view or between views. The 

continuous information and process updates in AA also introduces dynamic working 

memory issues and may exceed our short-term memory capabilities. The results of our 

studies support this analysis. All of these factors make AA design a serious challenge, 

which will need further exploration in the future. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

7.0  Overview 

In the quest for knowledge and understanding, those in a field of endeavor must, on 

occasion, engage in reflection on the wider universe of knowledge when faced with quandaries 

or a dilemma of a fundamental nature. We set out to conduct a holistic investigation into the 

factors affecting AA, given the puzzling results of many studies of AA effectiveness, and the 

questions arising from our own observations.  

 

7.1 Contributions 

We developed three guidelines that became a framework for investigation and design: 

namely, that to be effective, AAs must support the needs and tasks of the users, must be used in 

appropriate learning contexts, and that users must be able to perceive and attend to them. 

To this end, we conducted studies to gain a deeper understanding of these issues, having 

chosen a subset of problems from these areas to examine. We conducted research to examine 

users needs and tasks, choosing a context that had not been previously investigated: the activities 

of instructors and their use of artifacts in algorithms and data structures classes.  

We designed SKA to support the tasks performed by instructors, which represents a 

unique effort in AA system design to create an environment that supports the discourse of 

experts and novices, as informed by user studies.  
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We divided the study of the role of perception into an examination of the effects at the 

perceptual, mapping, and comprehension levels. We investigated the role of perception and 

associated factors in AA, in a series of collaborative studies. Some of these experiments tested 

the ability of users to perceive and attend to animations at the perceptual and mapping levels, 

using various animation methods and cues. The effect of these methods and cues on 

comprehension was also examined. We now have evidence that the use of these methods and 

cues can help users perceive and attend to algorithm animations, but can also have complex 

effects. We are not aware of any AA study that measures either perception or any combination of 

perception, mapping and comprehension. 

We developed a software architecture to be used in the running of perceptual AA 

experiments, that facilitates creation of trials, running trials and data collection. We collaborated 

on the development of the VizEval testing suite and contributed the popup trial methodology 

aspect of the SSEA testing environment. These software support testing at multiple levels, and 

use the SKA scripting interface to specify perceptual animation tasks and to monitor user 

interaction. 

We have analyzed AA from a number of research perspectives including HCI, 

educational technology and engineering psychology. We have worked on multi-level 

experimental methodologies to investigate AA from these perspectives. We believe that this 

combination of analytical perspectives has not been previously brought to bear on AA issues. 

7.2 Future Work 

We will continue research on all three aspects of the framework that we hold to have 

bearing on AA, as we aim to gain further understanding of relevant issues, and widen the 

horizons of AA research by incorporating research from other fields of endeavor. 
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We will continue and expand our user studies, including evaluation of SKA in various 

contexts. The results of the perceptual experiments will be examined, to seek to improve 

animation in the SKA libraries. We will seek to make authoring simpler, including for library 

developers. Additions will be made to the SKA libraries. We will continue to collaborate on 

perceptual experiments and develop additional experiments involving design for perception and 

associated factors.  

It is our position that AAs demand a dynamic mix of focused, selective and divided 

attention, as well as perceptual tasks and cognitive tasks. This makes the processing of AAs at 

these multiple levels a complex task, and this difficulty generally increases with the complexity 

of the algorithm. Of course, it is often the more complex algorithms that we want to visualize. 

There is a large leap between the mapping and comprehension levels. Comprehension 

involves factors related to learning such as learning style and background knowledge, as well as 

factors related to perception, attention, and memory. At the mapping level, effective designs 

must establish the connection between the AA entities and the algorithmic entities, and facilitate 

visual and cognitive tracking of these entities. At the comprehension level, a good design needs 

to portray the essential concepts that the AA designer wants to portray about the algorithm, and 

facilitate exploration of the algorithm where relevant or useful.  

In the future, we plan to extend our present series of experiments with our collaborators. 

We also plan to update the VizEval suite, based on their feedback. We propose to examine how 

cognitive engineering design and analysis concepts such as knowledge representation, attention-

based display design, correspondence and coherence [Norman88] [Bennett97] [WR88] relate to 

algorithm animations. How much information do we represent in the animation (“knowledge in 
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the world”) versus how much we assume the user knows (“knowledge in the head”)? Too much 

information can lead to display clutter and overwhelm the user, while too little can leave the user 

with insufficient resources.  

We will consider how to organize complex displays, such as typically found in multi-

view AAs so that users find it easier to attend to them, i.e. how to make these displays more 

coherent. We will also consider how to design the animation entities and actions to optimally 

represent the relationship, or correspondence between them and the algorithm entities and 

operations. We will investigate the role of pacing and timing. We believe that these and other 

design techniques have the potential to improve algorithm animation comprehension. 

We believe that the use of AA and similar educational technology has a bright future, 

provided that we create conditions that give researchers of all origins the means to thoroughly 

investigate the issues that impact on the design and use of these technologies, and if we invest in 

those who have creative insight and innovative ideas, enabling them to fulfill their visions, which 

will ultimately benefit all. 
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