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Statistical and biological analysis of the experimental data from cycle 2 showed that, a

total of 768 genes were both circadian and light-responsive, with a very low false positive

rate of 0.03 [13]. These genes then passed the first and second criterions and remain as

candidates of ccgs in Figure 1.2 and Figure 2.2. Also, as a control, other experiments with

designs very similar to our cycle 2 reported in [20] and [41] independently obtained results

in good agreement with us.

4.2.2 Possible Evidence for a Modified Model with Auto-Feedback Loops

Activating wc-1 and wc-2

With a second look at the MINE calculation of cycle 2 in Figure 4.2, a minor peak was found

at the shorter period end of the graph, suggesting possible informative experiments with a

very short artificial day ranging 3 to 6hrs. At the same time, when looking at the profiling

experimental results of the three cycles, we noticed that there was evidence of the presence

of auto-feedback loops for WCC activating wc-1 and wc2. In cycle 1 searching for circadian

genes, wc-1 and wc-2 mRNA showed fast oscillations with a period much shorter than the

circadian genes. In cycle 2, a fast light-response less than one hour was also noticed. In cycle3,

wc-2 and, of course, wc-1, also showed a quick response signal right after the knocking down

of wc-1 genes [13]. For the modified genetic network shown in Figure 4.3, it is reasonable

to predict that the auto-feedback loops added should permit entrainment to short artificial

days. Thus motivated by the MINE prediction, a series of experiments were performed with

extra short 3+3 artificial day that was usually avoided by researchers.

The result showed that the wild type strain did entrain into the 3+3 artificial day, and

banding patterns were observed similar with that shown in Figure 1.1 but much denser [13],

showing the direct evidence of the clock did oscillate and get entrained in to this very

short artificial day. And for a frq mutation, which disabled the frq gene and thus eliminated

FRQ from the genetic network in Figure 2.2, the entrainment still happened and the banding

pattern was shown. If the FRQ involved P-reaction is the only feedback loop in the biological
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clock, the oscillation and entrainment is impossible to happen. Further more, mutations that

disabled either wc-1 or wc-2, i.e., resulted in no bandings, indicating no entrainment to the

short artificial days with the frq gene being kept.

The above then suggested strong evidence of a modified model with auto-feedback loops

that activate wc-1 and wc-2 respectively shown in Figure 4.3. However, failure in further

ensemble fitting to the above quick response data stopped us from validating this model

and making further use of this model, although revisiting this model is possible in the

future. In conclusion it is a very interesting trial and suggests the high informativeness of

the Computing Life paradigm.

4.3 Cycle 3 - Which genes are under WCC control?

By cycle 2, the number of genes as candidates for ccgs was limited to 768. To be confirmed as

clock controlled genes, they need to agree also with a third prediction of the genetic networks

in Figure 1.2 and 2.2, namely that a gene under the control of WCC should experience a

sudden change in its mRNA level if WCC were knocked down (By saying “knock down”

here, it means that the amount of WCC in the system would be decreased to a lower level

compared to wild type strain.) It is easy to see from the model that interfering with the

WCC concentration level can be realized by reducing either one of wc-1 or wc-2 or frq

mRNA level. Therefore, to test the third prediction with a gene knock-down experiment, we

need to first know which gene should be perturbed to gain maximum information about the

genetic network in Figure 2.2.

The cycle 3 MINE calculation was done using the Q(θ) distribution generated from the

literature data [9, 13, 23–25] plus our experimental data in cycle 1 and cycle 2. The mine

criterion V (U) = det(E(U)) was maximized with respect to the transcriptional ratio (TR)

of the selected clock gene species to be knocked down. TR=1 corresponds to full expression,

while a non-zero TR value less than 1 simply means the selected gene species would have its

transcription rate coefficient S reduced to TR*S, where TR 6 1.
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Figure 4.3: A modified model with auto-feedback loops of wc-1 and wc-2. It is
reasonable to predict that with the presence of these two auto-feedback loops the system
can be entrained into very short artificial days, which is not a property of the frq-centered
biological clock. This figure was used in [13].
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The maximally informative gene to be knocked down was found to be wc-1, with a

TR=0.1 (shown in Figure 4.4). It suggested reducing the transcription rate coefficient to

10% of that of wild type. The actual experiment was done by engineering a mutation strain

of wild type wc-1 and a quinic acid inducible copy of wc − 1+ producing a knock-down to

30% of its original activity when being transferred into quinic acid.

An additional MINE calculation is shown in the right bottom plot in Figure 4.4. The low

log(det(E )) values suggested that over-expression of wc-1 will not be very informative. Lewis

et al. reported the over-expression of wc-1 was ”not sufficient to induce most light-regulated

gene expression”, which is consistent with our MINE prediction [41].

Statistical analysis of the data from this “gene knock-down” cycle 3 experiment found 328

clock-controlled genes supported by all three cycles of microarray experiment series and also

biologically reasonable (ccgs must have a WCC binding site to interact with WCC) [13]. The

possibility of a false positive was 0.0067, providing all three series were done independently.

These 328 genes therefore satisfy the three predictions of the genetic network and constitute

the clock controlled genes.

4.4 Identifying an ensemble of genetic networks for the biological clock

of Neurospora crassa

Besides accomplishing the biological goal of finding clock-controlled genes, the three cycles

of the Computing Life paradigm also have identified an ensemble of genetic networks of the

biological clock with the cumulative data from 3 cycles of microarray experiments and the

initial published literature data [9, 13, 23–25].

The estimation of rate coefficients has been improved after the three cycles, comparing

with our previous results for an in-the-dark model of the biological clock of Neurospora

crassa (Table 1 in [13]), which is the starting point of our simulation. The results of fitted

rate coefficients are summarized in Table 4.1. For 69% of the rate coefficients in common

(i.e., 18 out of 26) of these two models, ensemble standard deviations were reduced by the
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Figure 4.4: A 90% knock-down of the wc-1 gene is the MINE experiment. The
decadic log of the MINE criterion det(E ) is displayed as a function of percent remaining
activity of the three clock genes wc-1, wc-2, and frq. The matrix E is the correlation matrix of
the predictions, emphasizing independence of predicted data points f(., ui). The predictions
are for the mRNA levels of wc-1, wc-2, and frq over time. The right bottom figure shows
the MINE prediction that over-expressing wc-1 is not very informative, which was proved
to be true by the experimental results reported by Lewis et al. [41]. Repetition runs were
performed with different subsets of θ vectors drawn from the 40,000 model ensemble Monte
Carlo sample. The log(det(E )) values from repetition runs differ typically by no more than
± 0.5 from the results shown here and give the same results: the maximal det(E ) appears
at transcription ratio 0.1 for wc-1. Part of this graph has been published in [13].
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Figure 4.5: Classification of 4380 N. crassa genes with upstream LREs in a Venn
Diagram by their response in each of the three microarray experiments: (1)
cycle 1 (assay for circadian rhythm); (2) cycle 2 (assay for light response); and
(3) cycle 3 (assay for response to changing levels of WCC). The diagram summarizes
the microarray experiments in cycles 1–3 of the Computing Life Paradigm. This graph has
been used in [13].
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addition of data from cycle 1-3 from earlier published results in [14]. The estimated lifetimes

of the wc-1 mRNA and the FRQ protein remain in good agreement with the measured

values with data increasing by an order of magnitude(Table 4.3). The wc-1 mRNA life time

estimate of 7.4hrs = D−1
7 continues to be supported by experiments in cycle 3, in which

the transcription level of wc-1 was knocked down to a low level and the degradation time

of the wc-1 concentration was observed to be about 8 hrs (see Figure 2.3). The lifetime of

FRQ protein is estimated to be 1/ 〈D6〉 ≈ 5hrs, being consistent with both our previous

results and the estimation of 4-7 hrs from published data by others [33]. Transcription rates

of frq (A and Ā) and the deactivation rate of WCC (P), which were critical parameters for

maintaining oscillations [14], are now more sharply defined than before. As described in 2.3.2,

the model discussed above was replaced by the one in Figure 1.2 which has a close chi-square

statistics (Figure 2.4) but fewer model parameters. The summary of the rate coefficients of

the model in Figure 1.2 is shown in Table 4.2. There is no obvious improvement in the

parameter estimation.

To assess progress in the Computing Life paradigm and also to compare to other models

in the future, the error per observation σ2, or the error variance, is estimated. This has

served as a standard approach in linear and nonlinear models to estimate the precision of

an experiment [42], as we have introduced in Chapter 2. It is also illustrated by simulation

and data analysis that such a common variance components can be extracted from each of

a variety of microarray experiments and used to compare different experiments [43]. Under

the multivariate Gaussian assumption that we used in the likelihood in Chapter 2, a simple

estimator for the error per observation can be constructed for our successive cycles of the

Computing Life paradigm:

σ̂2 =
1

n
χ2

minσ
2
0

where n reports the number of data used in fitting, which is cumulative across cycles; χ2 is

the goodness of fit measure, and χ2
min is the minimum chi-squared statistic over the ensemble;

σ2
0 is the error per observation in the multivariate Gaussian likelihood, which is allowed to
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vary across observations. In the initial data drawn from the literature [9, 23–25], σ2
0 is 0.02.

In calculating χ2
min , preliminary estimates of σ2

0 , 4σ2
0 and 36σ2

0 were used respectively for

literature data, microarray data and conidiation data, respectively, in order to give equal

weight per time to different experiments in the ensemble fitting progress.

In Table 4.3, the progress can be seen in reducing the error variance in successive cycles.

In the fourth cycle, the model was switched from the one in Figure 2.2 to the one in Figure

1.2. An additional 842 data points of conidial banding data (as shown in Figure 1.1) were

collected under a 48 hr artificial day as in cycle 2. A reduction in the estimated error variance

with a simpler model confirms the switch of the model is reasonable, as we have discussed

in Chapter 2. Thus the advantage of this estimated error variance also offer a diagnosis of

whether or not further experiments will refine the model ensemble. The downward trend in

the estimated error variance suggests that further cycles could be profitable.
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Table 4.1: Rate coefficients in the genetic network model (Figure 2.2) of the biolog-
ical clock (n=m=4) based on data from cycles 1-3 predicting the clock’s observed
oscillations, light response, and wc-1 perturbation. Ensemble mean < X > and
ensemble standard deviation σ(X) := [< X2 > − < X >2]1/2 for rate coefficients (X) in the
n=m=4 biological clock model of Figure 2.2. For a kth order reaction (with k=1,2, or 5),
the rate coefficient is given in units of 1/(hour× cuk−1) where “cu” represents the arbitrary,
but common model unit of concentration for all species, except for the photon species where
1cu(photons) = 0.20µmole(photons)/(s ·m2).

X k < X > σ(X) X k < X > σ(X)

A 5 0.0313 0.00974 Ac 5 0.1293 0.0826

Ā 1 0.1108 0.00498 Bc 1 0.6091 0.1718

B 5 4.010E-4 1.020E-4 Sc 1 2.572 2.757

B̄ 1 0.382 0.0412 Lc 1 3.664 8.993

S1 1 4.20E-4 0.048E-4 Dcr 1 0.579 0.137

S2 1 0.0220 0.00838 Dcp 1 0.5536 0.1173

S3 1 5.474E-5 1.597E-4 E1 2 0.003125 9.865E-4

S4 1 1.252 0.286 Ē1 1 0.0965 0.0104

D1 1 6.607 1.399 E2 2 2.614 2.607

D2 1 0.153 0.0247 Ē2 1 0.0128 0.0298

D3 1 0.798 0.134 S5 1 8.924 0.696

C1 2 1.047 0.220 D9 1 1.234E-4 3.259E-4

L1 1 94.39 4.346 AcL 5 0.0524 0.0156

L2 1 0.3698 0.2207 Q 5 4.812E-4 6.111E-4

L3 1 63.93 21.50 D10 1 2.865E-4 9.257E-4

D4 1 0.00451 0.0118 C3 2 5.559 1.794

D5 1 0.00890 0.00242 BcL 1 0.00576 0.00633

D6 1 0.205 0.00899 ScL 1 0.07454 0.1344

D7 1 0.135 0.0148 E3 2 0.00974 0.00298

D8 1 0.0122 0.00304 Ē3 1 5.42E-4 0.00188

C2 2 3.322 0.912 E4 2 1.335E-5 3.456E-5

P 5 0.2233 0.2701 Ē4 1 0.0121 0.00682



55

Table 4.2: The estimates of rate coefficients after 3 cycles of Computing Life for
the genetic network shown in Figure 1.2. All symbols are similar with Table 4.1.

X k < X > σ(X) X k < X > σ(X)

A 5 5.60481E-4 2.97967E-4 Ac 5 0.57962 0.37478

Ā 1 0.12207 0.00571 Bc 1 52.19490 25.41051

S1 1 0.11210 0.18048 Sc 1 0.37529 0.70020

S2 1 86.98142 8.23094 Lc 1 7.30599 14.4736

S3 1 0.01720 0.06524 Dcr 1 0.58116 0.26025

S4 1 39.02247 6.10560 Dcp 1 0.36204 0.16057

D1 1 1.70002E-4 5.04858E-4 D2 1 0.01101 0.00162

D3 1 3.43327 0.60242 C1 2 2.37212 1.50706

C2 2 36.17778 11.09423 C3 2 0.05305 0.1832

L1 1 90.45906 7.23261 L2 1 1.66063 0.21721

L3 1 8.87033 2.46278 D4 1 0.13855 0.01669

D5 1 20.49211 7.75688 D6 1 0.48731 0.03427

D7 1 0.01759 0.00115 D8 1 2.61376E-5 6.46480E-5

P 5 0.01270 0.01688

Table 4.3: The quality of fit of the model usually improves in successive cycles
through the Computing Life paradigm. The column n reports the number of data used
in fitting, which is cumulative across cycles. χ2 is the goodness of fit measure, and χ2

min is the
minimum chi-squared statistic over the ensemble. σ̂2 is the estimates of the error variance σ2,
calculated using the formula σ̂2 = 1

n
χ2

minσ
2
0, where σ2

0 = 0.02 is the error per observation in
the multivariate Gaussian likelihood. The genetic network fitted is shown in Fig.2.2, except
cycle 4. This table was used in [13]

profiling Experiment n χ2
min σ̂2

data from literature (cycle 0) 333 1188 0.0714
circadian cycle in the dark (cycle 1) 553 2918 0.1055
light response in D/L artificial day (cycle 2) 1927 3938 0.0409
WCC response by turning of WCC (cycle3) 2165 5528 0.0511
genetic network of model in Fig. 2 (cycle4) 3007 4640 0.0309



Chapter 5

A Temperature Responsive Model of the Biological Clock

5.1 Temperature Compensation of Neurospora Crassa

The biological clock network model that we have described and discussed by now has a

circadian daily rhythm and also can adapt to external light stimuli. Besides light, the bio-

logical clock is also affected by other stimuli such as temperature and chemicals. Similar

to the response to the external light entrainment, the biological clock can be reset by tem-

perature pulses or steps, and it also can adapt to temperature entrainment, which confirms

temperature as another important entrainment factor [44]. However, there is another inter-

esting feature that makes temperature stimuli quite special: the period of the biological clock

remains stable over a relatively broad temperature range. This mechanism is commonly called

“temperature compensation” which is the key feature to make the clock tick with accurate

time in spite of the ambient temperature variation in the natural environment [45,46]. Also,

there are physiological temperature limits for clock function, i.e., the biological clock only

works rhythmically within a certain temperature range. Outside this range the clock will

stop ticking and freeze in a certain phase [47]. All of the above features motivate us to add

a temperature response feature to our light responsive model.

However, how the biological clock works to produce such a temperature compensation

remains a puzzle. A famous law for the temperature dependence of an elementary chemical

reaction rate is the Arrhenius equation [48]:

k = k0 exp(−∆Ea/RT ) (5.1)

56
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which means that the reaction rates can rise very rapidly as the temperature T (in Kelvin)

rises. Obviously if the Arrhenius equation is the only temperature dependence that works in

our genetic network model, one would naively expect that the oscillation period would be

shorter for a higher temperature since all reaction would simply speed up and vice versa.

There must be some mechanism that allows the genetic network to keep the period constant

when T is raised.

Recent experimental research shows that the frq gene plays an essential role in the tem-

perature response of the biological clock of Neurospora crassa. While the wild type strain of

Neurospora crassa could be entrained to external ambient temperature cycles, the frq-null

mutant strain, in which the frq gene is either deleted or disabled, could not truly entrain

to the same cycles. The frq gene and its derivatives, i.e., frq mRNA and FRQ protein, are

then believed to be the central components of the temperature response mechanism in the

Neurospora circadian clock [49].

Liu and Dunlap et al. [47] first proposed a complementary response of two FRQ isoforms

that give temperature stability at different temperatures separately. They suggested that

there exists temperature sensitive translational control of the production of the main oscil-

lator protein FRQ, which results in the two isoforms (i.e., different proteins produced from

the same gene and the same RNA) of FRQ: FRQ1−989and FRQ100−989. There is experimental

evidence showing that they have similar function but different behavior. Either form of FRQ

is able to support circadian rhythmicity independently. But the longer isoform (FRQ1−989)

generates a shorter period than the shorter isoform FRQ100−989 does. And the long FRQ1−989

is relatively more abundantly produced at a higher temperature, while the short FRQ100−989

is relatively more abundantly produced at lower temperature [47]. They are produced through

alternative in-frame initiation of translation. This competing initiation translational control

then forms the proposed mechanism of temperature compensation. Liu’s report, coming with

rich experimental data, described this hypothesis only qualitatively. Akman et al. [50] created

a toy model to represent this hypothesis, but they did not seriously reconcile their model
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with the data. We then decided to combine this interesting mechanism with our identified

model in Figure 1.2. The modified genetic network is shown in Figure 5.1.

Different hypotheses have also been proposed to explain how the frq gene and products

are related with the temperature compensation mechanism. A second hypothesis is given

by Ruoff and Dunlap [51] saying that there is a careful balancing of rate coefficients to

yield temperature compensation, which is then a property of the clock network and involves

an antagonistic balance of different reactions. A third hypothesis proposed by Hong and

Tyson [52] on the contrary considers antagonistic balance extremely unlikely. Rather they

develop a simple model in which some of the rate coefficients are temperature-dependent by

analogy to a mechanism they proposed for the cell cycle. Brunner and Dunlap et al. [53] have

developed a fourth hypothesis that the splicing in Introl 6 of FRQ during the transcription

of frq mRNA is temperature dependent and may contribute to temperature compensation.

This is an alternative mechanism to Liu’s original hypothesis of the generation of two FRQ

isoforms.

5.2 A Primary Model of the Alternative Initiation Translational Control

The proposed competing initiation of the translational control process are illustrated in

Figure 5.2. Multiple ribosomal subunits, including 40S and elF2.GTP.Met-tRNAi (for short

denoted by “E” below), must assemble on the frq mRNA to form a fully functional ribo-

some, before translation can begin at translation initiation sites (TIS) AUG#1 or AUG#3,

respectively. First, 40S, from the solution in the cytoplasm attaches itself at the binding

site A and scans along the frq mRNA in the 5’-to-3’ direction. If the 40S captures E from

solution, with a certain probability, before reaching AUG#1, the long isoform FRQ1−989 will

be produced by translation starting at AUG#1; if 40S captures E after passing AUG#1, but

before reaching AUG#3, the short isoform FRQ100−989 gets produced; if 40S doesn’t capture

anything before reaching AUG#3, nothing gets produced.
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Figure 5.1: Genetic network diagram of the alternative initiation translation con-
trol model. Comparing with the original model in Figure 1.2, the only difference in the dia-
gram in Figure 5.1 is the two isoforms of FRQ protein in parallel. The alternative translation
reactions are emphasized by red arrows. “FRQ Long” represents FRQ1−989 and “FRQ Short”
represents FRQ100−989. The subscript L or S, e.g., in PS, mean the reaction is related to the
“Long” or “Short” isoform respectively.
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Figure 5.2: Schematic of frq mRNA translation into two FRQ isoforms. A is the 40S
attachment site at the 5’-end of the mRNA strand; AUG#1 labels Long isoform translation
initiation site; AUG #3 labels Short isoform translation initiation site; “Ending”: Translation
termination site for both isoforms at the 3’-end of mRNA strand. “=” in the graph means
an mRNA site (base pair A, C, G, or U ).
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A mathematical model describing this mechanism of alternative translation initiation

can be set up by treating the formation of the 40S-E complex as a Poisson event. Suppose

the 40S ribosomal subunit attaches on the frq mRNA strand at site A with a probability

kA (i.e., the 40S-A-attachment reaction rate coefficient), and denote the probability of 40S

grabbing a ribosomal subunit E while residing at some site on the mRNA strand as p, so

the probability of 40S moving to the next site without capturing an E unit is q = 1 − p.

Thus according to the Poisson process, the possibility of 40S capturing an E subunit after

it moves exactly l steps, is

Pl = ql(1− q),

where l = 0,1,..., counting from A. So the probability that the capture happens in no more

than l steps (i.e., exactly l steps or less) is

Pk6l =
l∑

k=0

Pk = (1− q)
l∑

k=0

qk = 1− ql+1 = 1− (1− p)l+1,

where k is the number of steps that it takes 40S to capture an E unit. Similarly, the probability

of 40S capturing the E unit after moving l1steps but no more than l2 steps (l1 6 l2) is

Pl16k6l2 =

l2∑

k=l1

Pk = (1− q)

l2∑

k=l1

qk = (1− q) · ql1

(l2−l1)∑

k=0

qk = ql1+1 − ql2+1, (5.2)

or, we can write Eq. 5.2 as

Pl16k6l2 = [1− (1− p)l2+1]− [1− (1− p)l1+1] = Pk6l2 − Pk6l1 . (5.3)

Since the translation of the long isoform FRQ1−989 requires the 40S to capture the E unit

before it arrives at initiation site AUG#1, the net production rate coefficient of FRQ1−989 is

kL = kA[1− (1− p)L], (5.4)

where kA is the 40S-A-attachment reaction rate coefficient, and L = 1420 is the site number

of AUG#1, counting site A as the first one. Similarly, the net production rate of the short

isoform FRQ100−989, which requires the capture to happen between AUG#1 and AUG#3, is
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kS = kA[(1− p)L − (1− p)S] (5.5)

where S = 1720 similarly is the site number of AUG#3.

Both kA and p describe elementary reaction steps and, therefore, likely follow the Arrhe-

nius Law Eq. 5.1, i.e., kA = kA0 exp(−∆EA/T ) and p = p0 exp(−∆Ep/T ). In this manner

the temperature dependence of the complicated mRNA scanning and isoform production

process can be modeled by only 4 additional unknown thermal parameters: the activation

energies, ∆EA and ∆Ep, and the pre-factors kA0 and p0.

The same Poisson kinetics approach as described above can also be used to model the

temperature dependence of other translation reactions and of the transcription reaction

caused by alternative initiation, with or without isoforms. Other reactions shown in the

network in Figure 5.1 are elementary and can be modeled by a conventional Arrhenius law.

However, it is noted that we don’t have all reactions modeled by Arrhenius law to keep

this primary model as simple as possible for easy fitting. Therefore, for the genetic network

shown in Figure 5.1 featured with the alternative initiation translational control, we only

add the above 4 more unknown parameters to this model for the temperature dependence

comparing with our previous light-responsive model in Figure 1.2. If this model works, the

genetic network model shown in Figure 5.1 would be a complete biological clock model with

three most important features of a biological clock: circadian rhythmicity, light response and

temperature response.

5.3 Ensemble Fitting of the Temperature Response Model with Wild Type

Data

An ensemble fitting has been performed using the genetic network in Figure 5.1 featuring the

alternative transcription initiation mechanism above (shown in Figure 5.2). The experimental

data are obtained from experiments performed on wild type strains of Neurospora crassa in

the dark under 6 different temperatures (18�, 20�, 22�, 25�, 27� and 30�) published
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by Liu et al. [47]. At the same time, part of literature microarray data were also included

to constrain the model to still keep the correct light-response behavior while developing the

new temperature-response feature.

Since the genetic network model is a slightly modified version of our light-responsive

model shown in Figure 1.2, we initialized the reaction rate coefficients based on our previous

fitting results using this model [13]. The prefactor kA0 was initialized with the same value

of L3 in Figure 1.2, and the initial value of the activation energy ∆EA, in units of Kelvin

temperature (so is ∆Ep), was chosen to be the room temperature, 298.15K. This initial setup

of kA0 and ∆EA, together with other reaction rate coefficients directly from the old model

in Figure 1.2, mathematically made the new model have an easy start in an equivalent point

in the θ space to the already well fitted light responsive model.

The initial value of another activation energies, ∆Ep, and the pre-factors p0 were chosen

such that the value of p = p0 exp(−∆Ep/T ) has the same order of magnitude as 1/L,

i.e.,1/1420 ∼ 10−3. This therefore ensured the values of both 1−(1−p)L and (1−p)L−(1−p)S

to be reasonable , i.e., both values should not be too small to be numerically calculated.

That is to say, physically, we want to be assured that the amount generated for both isoforms

of FRQ would be at comparable levels. This has been verified by experimental data, that

the ration of FRQ1−989 and FRQ100−989 has the same order of magnitude of 1 [47].

The fitting results are shown in Figure 5.3. The discrete dots represent the experimental

data, and the curve is the ensemble averages with ±2 SD showing by the gray band, all

expressed in decadic log-concentration. The predictions by the model ensemble are in pretty

good agreement with the experimental data over the whole temperature range. So we can

conclude that our new light- and temperature- responsive model is sufficient to explain these

published profiling data generating by wild type strains.

The ensemble fitting results of the 4 newly added parameters are summarized in Table

5.1 with the ensemble averages and the ensemble SDs listed. It is easy to verify that p =

p0 exp(−∆Ep/T ) has the order of magnitude of 10−3 over the temperature range used here
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Figure 5.3: A model ensemble for the genetic network in Figure 5.1 predicts the
profiling data of wild type N. crassa. The strains were grown in the dark under 6
different temperature. The discrete dots represent the experimental data, and the curve is
the ensemble averages with ±2 SD showing by the gray band, all expressed in decadic log-
concentration. The predictions by the model ensemble are in pretty good agreement with
the experimental data over the whole temperature range.
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Table 5.1: The model ensemble predictions for the 4 parameters key to the alter-
native initiation translation mechanism in Figure 5.2 < X > is the ensemble average
and σ(X) is the ensemble SD defined same as before. The unit of ∆Ep and ∆EA is Kelvin.

X p0 ∆Ep ∆EA kA0

< X > 6.3108094E-01 2.2084690E+03 4.0160124E+02 6.5413293E+00

σ(X) 2.9876921E-02 1.4351865E+01 9.0030012E+00 1.9426574E-01

(18-30�). In Figure 5.4 (A), the predicted translation rate coefficients kL Eq. 5.4 and kS

Eq. 5.5 are plotted against temperature. The plots of kS have been moved vertically without

changing the scale for easy comparison. Both kL and kS increases with temperature, but kL

increases in a much faster manner. The kL/kS ratio in the Figure 5.4(B) shows this trend

more explicitly.

The translation ratio kL/kS alone cannot tell us how effectively each of these two isoforms

functions in the genetic network in degrading the WCC activator. We need to find some more

straightforward quantity to evaluate their performance in WCC degradation. It might be

intuitive to use the respective FRQ protein concentration of these two isoforms, since [FRQ]

is directly related to the P-reaction which results in the negative feedback loop. However

it is not sufficient to use the concentration [FRQ], because the WCC degradation rate also

depends on the P-reaction rate coefficients (PL and PL for the long isoform and short isoform

respectively), and these P-reaction rate coefficients are randomly varied in the MC random

walk, along with the random variations of the concentration [FRQ]. Further more, the MC

random walk during the ensemble simulation randomly varies certain scale factors, i.e., in

effect it randomly changes the units in which concentration is measured. Both the FRQ

concentration and P-coefficient values depend on that random choice of scale factors.

Thus we define a scale free quantity PX [FRQX]m[WCC] (where X =L or S, and the coop-

erativity m=4, refer to Figure 5.1). It is a quantity that is not affected by the random unit
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Figure 5.4: The alternative translation mechanism makes kLincreases much faster
than kS with temperature. (A) is the predicted value of kL and kS vs. temperature,
respectively. (B) is the ratio kL/kS plotted against temperature. All values are calculated
with the model ensemble predictions listed in Table 5.1. Variation is estimated assuming the
4 parameters are independent. The lines shown in the graph are auxiliary lines connecting
data points.
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Figure 5.5: The ratio of the scaling free quantity PX[FRQ]m[WCC] of the two FRQ
isoforms is plotted against the ambient temperature. The model ensemble predicted
scaling free quantity measures the efficiency of the FRQ protein in the P-reaction. Error bar
is ensemble SD. At the low end of 18�, the ratio is smaller than one, indicating that at
lower temperature the shorter isoform is more efficient than the longer one. The lines shown
in the graph are auxiliary lines connecting data points.
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Table 5.2: Temperature coefficient Q10 is calculated using 30� as reference tem-

perature. Q10 := (P1

P2
)

10
T1−T2 , where T2 here is the reference temperature 30� and P2 is the

corresponding period at 30�. The unitless quantity Q10 here measures the rate of change
of period in the biological clock of N. crassa for every 10� rise in the temperature. All
Q10 values are closed to but smaller than 1, indicating the period is stable and only slightly
decreased (i.e., shortened) with temperature rises.

T1 18� 20� 22�
Q10 0.9852 ± 0.0074 0.9058 ± 0.0043 0.9472 ± 0.0300

T1 25� 27�
Q10 0.8222 ± 0.0188 0.7662 ± 0.0283

scaling used in the ensemble approach and thus allows meaningful comparisons. It directly

measures the “power” or “efficiency” of FRQ1−989 and FRQ100−989 in the P-reaction in Figure

5.1, respectively, by calculating the scale-independent reaction rate of the P-reaction. The

plot of an ensemble average of this ratio of the two quantities against the temperature is

shown in Figure 5.5. It proves again that the long isoform FRQ1−989 increases faster with

temperature. However, it should be noted first of all that the ratio is close to 1 at all temper-

atures, which reveals a much smaller difference between the performance of the two isoforms

than what is found by the translation ratio kL/kS. Furthermore, it is clear that at the low

temperature end of 18�, the ratio is smaller than 1, meaning that the shorter isoform does

play a more important role in the biological clock at the lower temperature.

Figure 5.6 shows the model ensemble prediction of the period of the biological clock

under different temperatures. It can be seen that they remain relatively stable and fluctuate

in a narrow range of ∼21-24 hours, which is consistent with the concept of temperature

compensation. This is more clear with the calculated temperature coefficient Q10 listed in

Table 5.2. Q10 is a unitless quantity that measures the rate of change of a certain quantity

(e.g., reaction rate) in a biological or chemical system for every 10� rise in the temperature.
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ensemble average in Figure 5.3. They remain stable with slight fluctuation in the range of
21-24 hours.
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The closer the Q10 values are to 1, the stabler the measured quantity is with temperature

change. In Table 5.2, Q10 is calculated with 30� as the reference temperature. All Q10

values are closed to but smaller than 1, indicating the period is stable and only slightly

decreased (i.e., shortened) with temperature rises.

5.4 Mutant Type Data: Discrepancies and Possible Solutions

Although the Figure 5.3 shows that the ensemble of models identified for the genetic network

in Figure 5.1 gives a good fit to the experimental data of wild type strain of Neurospora

crassa, discrepancies show up when we move on to the mutant type experiments under the

same 6 different temperatures. Liu’s experimental work [47] shows that, if either one of

the two initiation sites is disabled, the resultant mutant strains will behave differently than

before. The AUG#1 mutant (i.e., AUG#1 is disabled) generates only the short FRQ100−989,

which results in the elimination of the rhythmicity at temperature near the high end of the

physiological temperature range. In contrast, the AUG#3 mutant generating only the long

FRQ1−989, results in the elimination of the rhythmicity at the low end of the physiological

temperature range. This at first seems quite easily explained by our model in Figure 5.1 and

Figure 5.2, since the analysis above shows that the short isoform has a lower translation rate,

but it is relatively more efficient at lower temperature. The longer isoform FRQ1−989 is less

efficient at the lower end than the shorter one.

However, it must be noticed that, once one of the initiation sites is deleted or disabled,

the alternative initiation translation mechanism at once degenerates into the same Poisson

model with only one initiation site which is just located at different positions on the frq

mRNA strain. What’s more, the two sites are very close to each other, considering that

L=1420 and S=1720 are the same order of magnitude. Therefore, the behavior with respect

to the temperature change of the two mutant types should be very similar to each other.

This makes it quite difficult to explain the different response that the short FRQ-protein

would work at low temperature end but fails at the high end, while the long isoform works at
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high temperature end and fails at the low end. Liu explained this by qualitatively and very

briefly stating that there might be a threshold of the concentration of FRQ [47]. However,

our continuous failures of fitting the two mutant experimental data disprove this possibility,

since the genetic network in Figure 5.1 automatically contains the requirement of appropriate

concentration of FRQ to serve as the input of P-reaction. There must be other reasons, or

say mechanisms, to explain the different responses of the two isoforms of the FRQ proteins.

This motivates us to again look at the genetic network in Figure 5.1 more carefully. The

only differences among those parameters that relate to the two FRQ isoforms, besides the site

position of the translation reaction, are the decay reaction rate coefficients and the P-reaction

coefficients. And as the key component of the genetic network that gives the negative feedback

loop, the P-reaction affects the rhythmicity of the clock most directly. What if the P-reaction

is also temperature dependent? The two isoforms of FRQ protein with different length are

very possible to have different properties with respect to the ambient temperature changes,

as temperature changes could affect their folding differently. In fact, a recent report from

Mehra and Dunlap [54] also notices this problem. They suggest the temperature dependence

of the P-reaction is an additional factor to the alternative translation mechanism that Liu

has reported [47]. Based on the above idea, two possible modifications of the model in Figure

5.1 are proposed for future work. We are going to introduce them below, respectively.

5.4.1 Independent P-Reaction Rate Coefficients Model

This solution to modeling the mutant data is a very simple idea. It is more like an empirical

solution which simply allows the rate coefficient of the P-reaction to be varied independently

under each temperature for each isoform, instead of having a fixed rate coefficient for all

temperature and for both isoforms as what we are doing right now. This gives extra degrees

of freedom for each isoform and allows them to develop different behavior under different

temperatures. No physical or mathematical model is considered at this stage, however. If all

the mutant type experimental data could be fitted in this way, the two groups of ensemble
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predictions of the P-reaction rate coefficients for each isoform can be listed out and plotted.

It is natural to expect that they would show different behaviors with respect to temperature.

Possible model fitting could be proposed afterwards.

Then we introduce 6 x 2=12 new parameters in total into the model. This fitting is

still underway. Currently, the AUG#3 mutant with only long isoform has been fitted at

higher temperature end of 25�and 27�. It is reasonable to have these two fitted since it is

equivalent to our previous light responsive model in Figure 1.2.

5.4.2 Multi-State FRQ proteins Model

This model starts from the fact that different protein folding and shaping, corresponding

to different energy status, should have different behavior in the translation reactions. Thus,

suppose in order to take part in the P-reaction, there is an energy threshold for the protein.

For the short isoform, its energy must be lower than this threshold (otherwise it changes

folding shape and is deactivated); similarly for the long isoform, its energy should be higher

than this threshold. Let’s first concentrate on the situation of the shorter isoform. Suppose

there are Nl possible energy levels below the threshold and Nh above it. And for simplifica-

tion, we assume the Nl lower energy levels are degenerate with the energy El, and the other

Nh higher status are degenerate and the energy is Eh. So, the probability ratio to find a

FRQ protein in the lower energy level and in the higher energy level is

Pl

Ph

=
Nl

Nh

exp(−El − Eh

RT
).

Notice that Pl + Ph = 1, let N denote Nh

Nl
. It is easy to see N > 1; and ∆E = Eh −El where

∆E > 0. The probability of finding a FRQ protein at the lower energy level is

Pl =
1

1 + N exp(−∆E
RT

)
.

So for a shorter isoform FRQ, we need to take this Pl into account as a prefactor of the

P-reaction. This will introduce two more parameters N and ∆E. Similarly, the probability

of a long FRQ protein at higher energy level is



73

Ph =
1

1 + 1
N ′ exp(∆E′

RT
)
,

where N ′ and ∆E ′are two more independent new parameters to be added in. It can be easily

seen that Ph and Pl do bring different temperature dependency for the two isoforms for the

FRQ proteins.

The work of ensemble identification of this model is beyond the scope of this dissertation.

These two new models discussed in this section will become the focus of future work.



Chapter 6

Conclusion

Throughout the work in this dissertation, genetic networks consisting of bio-macromolecules

and their interactions, have been used as a powerful framework for the quantitative descrip-

tion of the structure and dynamics of a biological system. Being built from a currently

limited biology knowledge database, genetic network modeling usually starts with an incom-

plete topology as well as plenty of unknown parameters, even if the targeted biological

systems have already been completely sequenced and well studied, e.g., like the biological

clock of Neurospora crassa. Competing multiple hypotheses of genetic networks for a biolog-

ical system reflect the incompleteness of experimental information. To test these hypotheses

and identify a precise model for a genetic network of high degree of parametric freedom is

a real challenge, considering the limited availability, high cost and large quantitative uncer-

tainties of the biological experimental data. There needs to be a decision-making algorithm

to suggest theoretically a next experiment that reduces most effectively the ambiguity in

the network hypotheses [4]. The Computing Life paradigm introduced in this dissertation

is such a novel iterative model-driven discovery process. This new methodology combines

experiments seamlessly with computational experimental data fitting and theoretically best,

or more precisely, maximally informative next experiment (MINE) design. The iterative pro-

cess accumulates maximal information in each cycle and thus improves the discrimination

between competing models and the precision of the model thereby identified.

The computational experimental data fitting method used in the Computing Life

paradigm is the ensemble approach which has successfully identified an ensemble of oscil-

lating network models quantitatively consistent with available RNA and protein profiling

74
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data on the N. crassa clock [14]. The philosophy of searching for an ensemble of models is

the essential idea here, since it is not possible to identify a unique model. The Metropolis

algorithm, a Markov chain Monte Carlo method, is used to generate a large number of

data-compatible models, all of which are treated as possible model candidates to represent

our ensemble. Model parameters are estimates over the whole ensemble as ensemble averages

and ensemble standard deviations. This approach is of great advantage when dealing with

systems of a high degree of parametric freedom that are poorly constrained due to a lack

of information from the data. The goodness of fit is evaluated by chi-square statistics with

respect to the data, which also provides an effective criterion to compare and discriminate

between different network hypotheses. The effectiveness of this approach has been verified

throughout the three cycles of Computing Life for the biological clock. Both the precision of

prediction and the ability of model comparison increased with the cumulative information

from the data.

The MINE design is built upon the model ensemble formalism and it is the central part

of this Computing Life paradigm: it provides a practical systems biology decision-making

algorithm. The criterion used in the MINE approach is to maximize the independence of any

pair of data points in observations to be done, based on the predictions made by the current

model ensemble. Therefore, it compares between different choices of the next experiment

U and tries to increase as much as possible the scope of observation (V(U))in the next

experiment instead of precision of a single observation. For the biological purpose of “mining

clock-controlled genes in the genome of N. crassa”, after three cycles,from 4380 N. crass

genes 295 such genes were selected that show meaningful biological significance [13]. At

the same time, as we have mentioned above, the precision of the model ensemble is also

improved. In cycle 1, the MINE choice of the initial observation time and the observation

time spacing conforms to the conventional experimental practice [11]. The second MINE

application in cycle2, suggests light exposure experiments with a 48hr artificial day, and it

also motivated us with a short 6hr-day of light response experiment, which is usually avoided
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by researchers [25], to examine the additional auto-feedback loop. In cycle 3, experiments

designed to perturb WCC protein levels, the MINE-recommended knocking down of wc-

1 does not seem to be an obvious conventional choice, but the subsequent wc-1 knock-

down experiment successfully identified 328 clock-controlled genes and thereby validated

this choice.

It must be noted that the selection of the next experiment U in fact is delimited by the

specified biological goal, e.g., the ccgs mining, which ultimately leaves the choice of what

kind of set of next experiments to be performed in the hands of the experimenter. The

MINE approach guides the design of the next experiment; on the other hand, the particular

biological goal defines which detailed specific set of possible experiments it should choose

from. One could naively make the biological goal the completely unconstrained objective of

learning the most about the genetic network to instruct the MINE criterion, but then the set

of possible experiments would become too large to actually realize the optimal experiment

computationally. By specifying a particular biological goal, the design questions are then put

into a more detailed and confined context and this makes it possible to parameterize and

optimize the next experiment.

We finally also utilized the ensemble approach to study a model expansion which describes

temperature compensation behavior of the biological clock. This is the first time in systems

biology that a complete biological clock model has been identified with all three basic func-

tions: circadian rhythm in the dark, light response and temperature compensation. The main

feature of this expanded model is to allow for alternative translation initiation control of the

FRQ protein that results in two FRQ isoforms with similar function but different temper-

ature response. The ongoing project has successfully found an ensemble of models that is

consistent with the experimental data from the wild type organism. However further sim-

ulations with mutant data show the incompleteness of this expanded model. They suggest

the necessity to make the activator-degrading P-reaction (in Figure 5.1) have different tem-

perature dependence for the two isoforms. Latest experimental data are consistent with this
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idea [54]. Two possible model modifications have been developed to capture this differential

temperature response of the P-reaction. These new models will be the focus of future work.

In conclusion, we have developed Computing Life as a novel model-driven iterative work-

flow process which fully integrates experimentation with a powerful new decision-making

and modeling algorithms for systems biology. For the first time in systems biology, a biolog-

ical clock model with both light response and temperature compensation features has been

identified with this new approach, based on the wild type data.
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