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Abstract

Genetic networks have been applied to describe biological systems, e.g., the biological

clock, from a systems biology perspective. A model-driven discovery process, Computing

Life, is developed and used to identify an ensemble of genetic networks to describe quantita-

tively the biological clock of the lowly bread mould Neurospora crassa for its light-responsive

behavior through iterative cycles combining both experiments and computational simula-

tions. Central to this discovery process is a new methodology for the rational design of a

Maximally Informative Next Experiment(MINE) based on the genetic network ensemble. In

each cycle, the MINE approach is used to design the most informative new experiment for

the biological goal of discovering clock-controlled genes which is the outputs of the clock.

The new experimental results are then added back to the data pool to provide more informa-

tion to improve the estimates and predictions made by the genetic network ensemble. The

identified ensemble of light-responsive genetic networks is expanded trying to describe the

temperature response of the N. crassa and has been proved to be sufficient to explain the

wild type data under different temperatures.

Index words: genetic networks, biological clock, ensemble approach, maximally
informative next experiment
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Committee: Jonathan Arnold

David P. Landau

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

August 2009



Dedication

This dissertation is dedicated to my parents,

who gave me life, love me and support me always.

iv



Acknowledgments

I would like to thank my advisors, Dr. H. B. Schüttler and Dr. Jonathan Arnold, for their
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Chapter 1

Introduction

1.1 Genetic Network for the Biological Clock

For species with fully sequenced genomes, it is presently feasible to obtain time-dependent

profiling of each biomolecule, i.e., DNAs, RNAs and proteins through technologies including

DNA microarrays and quantitative proteomics [1–3]. The development in genomics and

measuring biotechnologies provides us the genomic, proteomic and metabolic information,

bringing new detailed insights into the genetic and biochemical circuitry of a living cell.

Grounded in an understanding at the molecular level, it is now time to step up to the

system-level to understand a biological system’s structure and dynamics from a more com-

prehensive view. Genetic networks, as the central part of the system approach to biology,

provide a powerful theoretical and computational framework to integrate and summarize our

current knowledge of genes and proteins, and mostly important, their interactions and inter-

connections [4]. More than just a static diagram, genetic networks can incorporate biochem-

ical reactions and time-dependent profiling data of biomolecules to reveal how living systems

function dynamically, how they react to perturbations, such as environmental changes and

genetic engineering, etc [5, 6].

Many genetic networks can be partially identified for experimentally well-studied systems

from available knowledge in the literature. For example, the biological clock is known to be

a complex trait that can influence a large number of phenotypes from only a few regulatory

macromolecules. Particularly the biological clock of Neurospora crassa [7], a filamentous

bread mould, is chosen as our biological system of interest. Its biological clock is easy to

observe and to manipulate(Figure 1.1). As an experimentally well studied model organism,

1
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the entire genome of Neurospora crassa has has been completely sequenced [8]. Thus it

has been possible to identify three molecular building blocks of the clock: the genes white-

collar-1 (wc-1 ), white-collar-2 (wc-2 ), and frequency (frq) and their products. The genes

wc-1 and wc-2 encode PAS-domain containing transcription factors that turn on the clock

oscillator. The WC-1 protein also acts as a blue-light receptor. The gene frq encodes the

clock oscillator FRQ and is activated by the WHITE-COLLAR transcription factor protein

complex WCC=WC-1/WC-2. The FRQ protein in turn appears to function as a cyclin to

recruit an as yet to be identified kinase/phosphatase pair for the phosphorylation-dependent

inactivation of WCC [9–12].

From the above information, a detailed genetic network has been constructed to explain

how the clock functions as shown in Figure 1.2 [14]. In the network model, the WCC protein

activates the oscillator gene frq. The activated frq1 gene is then transcribed into its cognate

mRNA frqr1, which in turn is translated into its cognate protein FRQ. The FRQ protein, in

turn, deactivates the WCC in the P reaction. It thus forms a loop of dynamical frustration,

i.e., WCC turns on the oscillator gene (frq) whose product shuts down the activator WCC.

This negative feedback loop between WCC and FRQ explains in part how clock oscillations

arise. As the controlled outputs of the clock mechanism, WCC activates a large group of

clock-controlled genes (ccgs), the number of which in the genome was largely unknown prior

to the work reported in this dissertation. Hence, the extent of clock control over metabolism

is largely unknown [15].

1.2 The Computing Life Paradigm

Beyond the capability of quantitatively describing a living biological system and answering

some fundamental questions, e.g., how a complex trait like the biological clock works, another

important feature of a genetic network is making computational predictions about the corre-

sponding biological systems. Researchers have proposed such an iterative process involving an

interaction of modeling and experimentation to identify and validate genetic networks [4,16].
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Figure 1.1: The clock of N. crassa is remarkably adaptive in its entrainment to
varied artificial days. Replicate race tubes (as shown in the figures) are inoculated at one
end and subject to a 6 hr, 18 hr, and 48 hr artificial day over 7 ordinary days. The clock
is manifested by the appearance of orange bands (i.e., asexual production of spores) as the
culture grows to the other end of the tube. The term “artificial days” means that the culture
is grown in alternating dark and light periods with respective equal amount of time. In each
artificial day the race tubes experienced (A) 3 hrs light following 3 hrs dark, (B) 9 hrs light
following 9 hrs dark, or (C) 24 hrs light following 24 hrs dark. It can be seen that the number
of conidial bands tracked the number of artificial days experienced. The tube with bands,
marked with time points on them, are then photographed and analyzed the intensity change
with respect to time [13].
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Figure 1.2: Model diagram of the biological clock of Neurospora crassa. Molecular
species (i.e., reactants or products) in the network are represented by boxes. The white-
collar-1 (wc-1 ), white-collar-2 (wc-2), frequency (frq), and clock controlled gene (ccg) gene
symbols can be superscripted 0, 1, r0, r1, indicating, respectively, a transcriptionally inac-
tive (0) or active (1) gene or a translationally inactive (r0) or active (r1) mRNA. Associ-
ated protein species are denoted by capitals. A phot (in yellow) denotes a photon species.
Reactions in the network are represented by circles. Arrows entering circles identify reac-
tants; arrows leaving circles identify products; and bi-directional arrows identify catalysts.
The labels on each reaction, such as S4, also serve to denote the rate coefficients for each
reaction. Reactions labeled with an S, L, or D denote transcription, translation, or degra-
dation reactions, respectively. Reactions without products, such as D8, are decay reactions.
Reactions, such as A and P, have cooperative kinetics: (A) nWCC + frq0 → frq1 and (P)
WCC+mFRQ → WC−2+mFRQ. The n and m are Hill coefficients or cooperativities. Only
one reaction, the ‘‘A’’ reaction, has a back reaction, (Ā), frq1 → nWCC + frq0, included,
with nonzero rate. The rate constants specify the right hand side of the kinetics model in
equation (1) through the Law of Mass Action in Materials and Methods. The figure has been
used in [13]

.
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Along these lines, we introduce a model-driven discovery process called Computing Life as

shown in Figure 1.3. In this paradigm, a cycle consisting of computational modeling and

genomics experiments is used to identify a genetic network model for the biological system

of interest by iteratively tightening the estimates on model parameters and model predictions

with cumulative experimental data in each cycle.

A preliminary genetic network model is first built to describe the biological system of

interest according to known genetic and biochemical information. The biological system is

then perturbed, and the outcomes are observed, i.e., measured by RNA and protein profiling.

An ensemble fitting approach is applied with the constraint of the experimental data [14].

From the generated ensemble of model parameters, predictions are made and compared with

available data to evaluate goodness of fit of the ensemble. The next step is then to choose a

new perturbation to obtain more information to revise and improve the model. The difficulty

here is: what is the best perturbation to be done next to improve maximally our knowledge

of the genetic network, thus to make our model as close to the truth as possible [13]?

One proposed approach to find out the most “informative” next experiment is to design

the next perturbation based on the assumption that genetic networks are in steady state

and/or are linear [17, 18]. This is not applicable here since the biological clock is usually

not in a steady state but is rather approaching a stable limit cycle. Also, the steady-state

approach discards most information contained in observations on network dynamics, i.e., its

time-dependent behavior. Another approach is to generate an entire compendium of pro-

filing experiments for varied genetic and environmental perturbations [19]. However, such

profiling experiments nowadays are still very costly. In many situations, it is not a feasible

choice, considering the available budget. We, therefore, developed a process of choosing the

Maximally Informative Next Experiment (or MINEing) which can be guided by the contin-

uously refined network model in an intelligent and cost-effective way while fully exploiting

the information contained in the observed network dynamics.
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Figure 1.3: Computing Life Paradigm. The ‘‘perturb’’ and ‘‘observe’’ steps represent the
experimentation phase; the ‘‘fit’’, ‘‘predict’’ and ‘‘evaluate’’ steps are the main components
of the genetic network ensemble simulation phase; and the ‘‘select’’ step is the MINE design
phase which closes the Computing Life workflow cycle. The figure has been used in [13]
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In Chapter 2, I will discuss the kinetics model and the ensemble approach we used to

describe and identify the genetic network for a light-responsive biological clock. Several

examples of fitting, predicting and evaluating ensembles of genetic networks will also be

presented. In Chapter 3, the methodology of selecting an optimal perturbation, “Maximally

Informative Next Experiment” (MINE) will be discussed. In Chapter 4, the Computing Life

process will be applied to the light-responsive genetic network. To illustrate this iterative

process, we have traced three cycles through the Computing Life paradigm in the context

of refining our network model for the biological clock’s mechanism as well as mining for

clock-controlled genes in Neurospora crassa. In Chapter 5, the light-responsive model will

be expanded with a temperature-responsive feature, and applied to explain the so-called

temperature compensation, i.e., the stability of a biological clock’s period over the more than

a 10� physiological temperature range.



Chapter 2

Ensemble Method of Genetic Network Identification and its Applications

to the Light-Responsive Biological Clock Model

2.1 Introduction to the Kinetics Model

A biological system can be viewed as a chemical reaction network [20]. The diagrammatic

represents is as shown in Fig 1.2. The species are represented as boxes. The reactions are rep-

resented by circles. The arrows indicate the directions of reactions. Then the time-dependence

of the molecular species concentrations in the chemical reaction network model can be rep-

resented by coupled nonlinear ordinary differential equations (ODEs) based on mass-action

kinetics.

Consider a general single-reaction process of type: αA+βB  σS+τT with 4 species and

2 reactions (forward and backward). Suppose the forward reaction rate is kf and backward

reaction rate is kb. The net reaction rate for this process is given by mass action kinetics

according to:

1

α

d[A]

dt
= −kf [A]α[B]β + kb[S]σ[T ]τ

where

t is the time variable,

d
dt

denotes differentiation with respect to t,

[A], [B], [S] and [T ] are the concentration of the 4 species, respectively,

and and α, β, σ, and τ are the stoichiometric coefficients of the respective species.

That is, both for the forward and the backward reaction, the contribution to the net rate

of production is proportional to the product of the reactant concentrations.

8
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Similar equations for the other 3 species can be constructed. Usually the backward reac-

tion rate is smaller, sometimes just 0. For a chemical reaction network model with multiple

reactions, we can obtain the net rate of production for each species and construct the full

multiplicative mass action kinetics, i.e., the complete set of ODEs.

More generally, these ODEs have the form:

d[s]t
dt

= G(...[s′]t..., t) =
∑

r

gr,s′kr

∏

s′
[s′]

nr,s′
t , (2.1)

where [s]t is the concentration of molecular species s at time t; G(...[s′]t..., t) is the net rate

of production of species s at time t given all related species’ concentration [s′] in related

reactions r ; gr,s′ is the stoichiometry, i.e., the net number of molecules of species s’ produced

(if gr,s′ > 0) or consumed (if gr,s′ < 0) by the occurrence of reaction r; nr,s′ is the cooperativity,

i.e., the number of molecules of species s’ entering into reaction r as reactants. Both gr,s′ and

nr,s′ are the parameters representing the topology of the genetic network; the rate coefficient

kr of reaction r, together with the initial concentration [s]t=0 of species s, are the parameters

that describe the dynamics of the genetics network.

This kinetic modeling method can be applied to any deterministic genetic networks

regardless how complex they are. For example, the genetic network model for the biological

clock of Neurospora crassa shown as in Figure 1.2 uniquely specifies a system of 16 ODEs

that describes the temporal profiles of genes and their products shown in Figure 1.2 [14].

Since our kinetic model is now a system of ODEs, the task of simulating to the system is

reduced to the numerical integration of ODEs [21]. An efficient general purpose simulator,

KINSOLVER , was designed and implemented to compute the time dependent concentrations

of each species with 5 standard methods (Euler, Modified Euler, Runge Kutta (RK), Adap-

tive RK-Fehlberg, and LSODES) [22]. With the kinetic network model and the numerical

tools we are just ready to start our fitting for the experimental data. However, this approach

can be implemented on a real system only if all topological (gr,s′ , nr,s′) and dynamical (kr,

[s]t=0) are known.
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2.2 Ensemble Approach of Model Identification

2.2.1 Motivation of the Ensemble Approach

Before starting to model a genetic network, it is necessary to consider the quality and quantity

of the experimental data that we are going to fit. As an example that is representative for

the general case, let’s take a look at the experimental data for the light responsive biological

clock of Neurospora crassa shown in Figure 1.2.

The experimental data are time dependent microarray profiling concentration data of

RNAs and their products, and the conidiation intensity in race tubes representing the con-

centration of CCG proteins, coming from the experiments done by our collaborators in the

Department of Genetics (see dots in Figure 2.3) [13] and the digitization of published liter-

ature graphs [9, 14,23–25].

One would notice that for our situation, and more commonly in systems biology research,

the available experimental data generated by the profiling experiments are usually sparse,

incomplete and noisy [26]. The RNA profiling data are available for only a few molecular

species at a limited number of time points. For example, in our situation, when we started

to fit the model shown in Figure 1.2, we had initially only data for 5 species (the FRQ

protein, the WC-1 protein, the wc1 RNA, the frq RNA and the conidiation density, i.e. the

concentration of CCG protein) yielding 183 data points altogether [14].

Another issue to be noticed is that in our simulation, all species concentrations are to be

measured and represented in a common but unknown “model unit” of concentration (cu),

and all rate coefficients are in units of 1/(hour×cuk−1) for a reaction of kth order (i.e., having

k reactants). This brings up the unknown unit conversion factors by which the experimental

data are converted into model units. These factors should be counted as part of the model

parameters which need to be inferred during our study. For the subsets of experimental data

points measured under identical conditions, the unit conversion factors would be the same.
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For example, there are 5 independent unknown unit conversion factors required for the data

we used to fit the light-response model shown in Figure 1.2 .

Now when we start to model a genetic network such as shown in Figure 1.2, what we have

is a kinetics model that is rich in unknown parameters. Essentially, all of the kinetic model

parameters are unknown, including, e.g., the initial concentration of the molecular species,

the reaction rate coefficients and the unit conversion factors. In the above model to fit the

experimental data set requires 16 initial species concentrations, 26 rate coefficients, and 5

unknown concentration unit conversion factors, which add up to 47 parameters. However,

as we have seen above, the sparse, incomplete, and noisy data set we have is only a poor

constraint for these 47 unknown parameters. In fact this difficulty is quite fundamental and

ubiquitous in systems biology [27].

To solve the problem and obtain a meaningful comparison of the model to the data,

we have used a novel ensemble method [28, 29] of genetic network identification which was

developed for the context of sparse, noisy, time-dependent profiling data without requiring,

e.g., any stationary state assumption concerning the reactants and products in the genetic

network [30]. Instead of trying to identify one unique model parameter set, our goal in this

ensemble method is to generate a large, random sample, i.e., an ensemble, of models that

are consistent with the available RNA and protein profiling data. In the ensemble method

implemented as a Monte Carlo (MC) simulation technique [28], a random walk is initiated in

the 47 dimensional space of model parameters, and a likelihood function Q is used to guide

the walk into a parameter region of near-maximum Q values [14]. The model ensemble is a

probability distribution on the parameter space of rate coefficients and initial concentrations.

The Q value in this context is the likelihood that the genetic network model in Figure 1.2

could have given rise to the observed profiling data, calculated as a function of the model

parameters, e.g., kr, [s]t=0 and others we have explained above. This approach has now been

applied to several different genetic networks [31].Below is a more detailed, formal description

of the ensemble approach.
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2.2.2 A Formal Description of the Ensemble Approach

Let the M-dimensional vector θ := (θ1,. . ., θM) denote the natural logarithms (ln) of unknown

parameters that determine the model, including unknown reaction rate coefficients, unknown

initial concentrations of species, and unknown unit conversion factors we just described. For

example, for the full model in Figure 1.2 we will have M=47. And for short, θ is referred to

as “the model”. Our ensemble of models is then formally described in terms of a probability

distribution on the model space of all model θs with the likelihood function Q(θ).

Suppose that in a series of Me experiments labeled by e = 1, . . . , Me, the concentrations

[s ] of species s are measured at time points t. Define Yl := ln([s]
(x)
t,e ) where l := (t, s, e)

labels the measured concentration of species s in experiment e at time t in logarithms, and

[s]
(x)
t,e denotes by the superscript (x) that the concentrations here are the measured values

from the Me experiments in various experimental or detector units, such as microarray

reading , or photon or radioactive decay count units. Then letY := (Y1, . . . , YD) denote the

D-dimensional vector of all Yl values. Similarly let F(θ) := (F1(θ), . . . , FD(θ)) denote the

vector of corresponding predicted values of the observables in Y for a given model θ, which

are calculated by numerically solving the system of rate equations of the network using the

model parameters (i.e., the initial concentrations and the rate coefficients) given by θ and

then calculating the predicted log-concentration

Fl(θ) := ln(φs,t,e[s]t,e), (2.2)

for all D observables [22]. [s]t,e here without the superscript denotes the predicted species

concentrations in the model unit cu which was described in 2.2.1. φs,t,e denotes the unknown

unit conversion factor from the model unit to the various units of the experimental data.

It is reasonable to assume, but not fundamental to the ensemble method, that the prob-

ability distribution P (Y ) of the data Y is representable as a multivariate Gaussian, without

error correlations between different data points Yl, as

P (Y ; µ) = const× e−χ2/2, (2.3)
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with

χ2(Y ; µ) :=
D∑

l=1

(Yl − µl)
2/σ2

l ,

where µl denotes the mean values and σl denotes the standard deviation. σl is estimated to

be σl
∼= 0.14 for all log-concentration data points Yl [14].

A given P (Y ; µ) of course would not uniquely determine the model. There is then an

infinite manifold of θ which is consistent with the data distribution P (Y ), and our choice here

is simply to take P (Y ; µ) as the likelihood (in which the experimental data Y are viewed as

fixed) to determine a model ensemble Q(θ). Thus the parameters θ are distributed according

to the following likelihood:

Q(θ) = P (Y ; F (θ)) = Ω−1W (θ) = Ω−1exp[−χ2(Y ; F (θ))/2], (2.4)

with normalization factor Ω := ΣθW (θ) where Σθ denotes the integration over all M com-

ponents of θ.

With the likelihood distribution function Q(θ) constructed, standard data-fitting

methods, such as maximum likelihood, least-squared fitting and maximum entropy approaches,

could be used to construct the correct model by finding the unique θ which minimizes Q(θ).

However, such approaches are bound to fail in our situation due to the large number of

unknown model parameters and sparsity and noise of the experimental data here. Thus

instead of attempting to find a unique θ which is not warranted by the quantity and quality

of the underlying data, we take all θ as possible candidates for the correct model which

reasonably reflects a θ’s degree of consistency with the data. This collection of models

defines a probability distribution Q(θ)

If the weight function W (θ) is analytically known or numerically calculable, we can then

evaluate the ensemble average of any quantity G(θ),

E[G(.)] :=
∑

θ

G(θ)Q(θ) =

[∑

θ

G(θ)W (θ)

]
/

[∑

θ

W (θ)

]
,
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where E[...] denotes the mean over the ensemble probability Q(θ). And the ensemble standard

deviation can be evaluated as

σG = (E[G(.)2]− E[G(.)]2)1/2

But it is actually impossible to explore all the possible θ space. In the practical imple-

mentation of the ensemble method, a random sample of θ is generated by the Monte Carlo

(MC) method [32] using a Metropolis algorithm as we will describe in next subsection to

construct θ, and the averages E[G(.)] are then approximated by averages over the Monte

Carlo sample.

2.2.3 Monte Carlo implementation of the Ensemble method

The ensemble approach is implemented, as we mentioned at the end of last session, by a

Monte Carlo simulation method. To generate a random sample of θ, a standard Metropolis

algorithm is used: starting from some initial θ(i), a Markovian random walk is generated

through θ-space. For each step of the walk, a random change is proposed to either one

randomly selected θ-component (“local update”) or simultaneously to all θ-components

(“global update”). For both local and global updates, the proposed new θ′ is generated so

that it is randomly distributed according to a proposal probability Tp(θ → θ′) which is

symmetric, i.e., Tp(θ → θ′) = Tp(θ
′ → θ). The proposed θ′ is then probabilistically either

accepted or rejected so that the random walk would either walk to the proposed θ′(accepted)

or stay at the old θ(rejected). The random walk will converge to a terminal equilibrium

distribution after a large number of such updating steps, which is designed to be the desired

ensemble distribution Q(θ). In order to converge, the transition rate T (θ → θ′) from θ to

θ′ then must satisfy the detailed balance condition:

Q(θ)T (θ → θ′) = Q(θ′)T (θ′ → θ)

Then

Q(θ)

Q(θ′)
=

T (θ′ → θ)

T (θ → θ′)
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where

Q(θ)

Q(θ′)
=

W (θ)

W (θ′)
.

Thus we don’t have to evaluate the normalization factor Ω since only the ratios of prob-

abilities Q(θ)
Q(θ′) = W (θ)

W (θ′) enters the calculation. The new θ′ is accepted with Ta(θ → θ′) and

rejected with 1− Ta(θ → θ′) , where Ta(θ → θ′) = min(1,W (θ′)
W (θ)

), where Ta is the Metropolis

acceptance probability [32]. Combining Ta(θ → θ′) with the proposal probability Tp(θ → θ′)

will then obey the detailed balance condition, due to the fact that Tp(θ → θ′) is symmetric

in θ and θ′.

In the actual simulation run, not all θ-components are updated with the above proce-

dure. The unknown, independent unit conversion factors in the logarithm (ln(φs,t,e)) are

separately chosen to maximize Q(θ). Only the remaining θ-components (unknown initial

species concentrations and unknown reaction rate coefficients) are subjected to the random

Metropolis updating procedure, using the maximized Q(θ) as the terminal distribution [14].

From eq. 2.4 and eq. 2.2, it is easy to see that the original Q(θ) is Gaussian dependent on

ln(φs,t,e), therefore the reduced MC procedure which only carries the ratio of probabilities is

mathematically equivalent to the full MC procedure of updating all θ-components including

all the unit conversion factors. Correspondingly, χ2 used in the actual run is also a reduced

value which is minimized with respect to the independent ln(φs,t,e). This is the situation

for all the χ2 shown in Figure 2.1 and 2.4. An example of a typical minimizing process is

shown in Figure 2.1. It can bee seen in the figure that the χ2 first decreases very quickly

with progressive Monte Carlo (MC) sweeps in the parameter space. It is stuck at about 3600

for a while, and then the MC process takes a risk and permits the χ2 to increase, thereby

allowing the walk to escape from local minimum of χ2, which is just the situation illustrated

here.

After the Markov chain converges, the generated random sample of θ has a equilibrium

distribution which is approximately the ensemble distribution. By the Monte Carlo impor-

tance sampling method, when the sample size I is very large, the ensemble average calculated
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Figure 2.1: A typical example of Monte Carlo random walk equilibration in the
parameter (θ) space of the models in actual simulation.Progress toward equilibrium
is monitored by χ2 = −2 ln Q+ const, which is a measure of the departure between the data
and the model prediction. It can bee seen in the figure that the χ2 decreases with progressive
Monte Carlo (MC) sweeps in the parameter space. It is stuck at about 3600 for a while, and
then the MC process takes a risk and permits the χ2 to increase, thereby allowing the walk
to escape from local minimum of χ2, which is just the situation illustrated here.
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from the Monte Carlo sample θ(1), . . . , θ(I) is then

E[G(.)]MC :=
1

I

I∑
i=1

G(θ(i)),

where G(.) could be the square of any unknown parameter. The ensemble standard deviation

is calculated based on the same Monte Carlo sample,

σ[G(.)]MC = (E[G(.)2]MC − E[G(.)]2MC)1/2

2.3 Results and discussions for the light-responsive biological clock of

Neurospora crassa

In terms of the Computing Life paradigm shown in Figure 1.3, the ensemble approach of

genetic network identification is the stages that “fits” the genetic network models to the

experimental data (i.e., generates model ensemble consistent with the data), makes “pre-

dictions” with the generated model ensemble using ensemble averages, and “evaluates” the

goodness of fitting by comparing the predictions with the experimental data using χ2 as the

merit function.

The genetic networks shown in this thesis are based on Yu’s identification for a genetic

network of the biological clock of N. crassa [14,21] which successfully explained the literature

data both in the dark and in artificial days of different periods [9, 23–25]. However, due to

the very limited knowledge about exactly how the biological clock functions at the molecular

level, there exist different hypotheses, i.e., alternative models, for the biological clock of N.

crassa. In the work shown in this thesis, we have worked with different models. The genetic

network shown in Figure 2.2 is one of the alternative models other that the one in Figure

1.2. This one has served as the main genetic network model throughout the three cycles

of Computing Life process, which we will see in Chapter 4. In contrast with the model in

Figure 1.2, this model features two forms of WCC: a dark version (not light responsive,

denoted as WCCD) and a light version (capable of photon absorption, denoted as WCCL).

The dark/light forms then result in dark and light forms of frq and ccg when WCC binds
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Figure 2.2: Alternate genetic network for the biological clock. Molecular species (i.e.,
reactants or products) in the network are represented by boxes. The terms are the same as
described in the legend of Figure 1.2. The main difference is that the WCC has a light and
dark form denoted WCCD and WCCL . When these two forms bind upstream of frq and ccg
genes, it leads to two different transcriptionally active forms of the gene, such as frq1D and
frq1L. In addition, photons (in yellow) can enter the system to interact with WC-1 in four
ways, depending on the bound state of the WCC, in the reactions E1, E2, E3, and E4. All
four of these reactions have been given nonzero back reaction rates. The final difference is
that the two forms of WCC lead to two deactivation reactions of WCC by FRQ, labeled P
and Q. Reactions, such as A and P, have cooperative kinetics: (A) nWCCD+frq0 → frq1 and
(P) WCCD +mFRQ → WC− 2+mFRQ. The n and m in these two reactions are called Hill
coefficients or cooperativities. Only 6 reactions, such as the reaction A, has a back reaction
with non-zero rate, e.g. (Ā)frq1D → nWCCD+frq0 . This figure has been used in [13]



19

to the upstream region of frq and ccg genes, respectively. In addition, it is believed that

the photon absorbing feature of WCC comes from WC-1. Therefore, photons can enter the

system to interact with WC-1 in four ways, depending on the bound state of the WCC, in

the reactions labeled E1, E2, E3, and E4 in the network diagram. The final distinction is

that the two forms of WCC lead to two deactivation reactions of WCC by FRQ, labeled P

and Q. The model selection between this model and the one in Figure 1.2 will be discussed

in subsection 2.3.2.

2.3.1 Experimental Data Fitting of Data in Three Cycles

As mentioned in the introduction and as will be discussed in detail in Chapter 4, our Com-

puting Life paradigm was designed with the biological goal of searching for clock controlled

genes (ccg) in the genome of Neurospora crassa, and three series of experiments have been

performed, which are labeled cycle 1, cycle 2 and cycle 3, respectively. In each cycle, the

concentrations of wc-1 (in fact the total of wc − 1r0 and wc − 1r1), wc-2, frq mRNA were

measured by microarray profiling. In cycle 1 the organism was grown in the dark for 48 hours;

in cycle 2, a 48hr culturing was done with an artificial day of 24 hrs in the dark followed

with 24 hrs in the light; cycle 3 involved a knock-down of wc-1 genes in which wc-1 was

reduced to only 30% activity of the wild type.

The ensemble fitting, as we have mentioned at the beginning of this section, used the

genetic network model in Figure 2.2. Note that although not displayed here, the literature

data [9,23–25] were also included as well as data from the three cycles to keep the consistency

with previous work [14]. This rule was followed in each cycle, i.e., the data in each cycle

were cumulative. As shown in Figure 2.3, the dots are the experimental data with at least

5 duplicates at the same time points. The curve is the mean prediction of the ensemble

(ensemble average), and the gray band shows the 2 times ensemble standard deviation about

the ensemble mean. The bars with either gray or white alternatively represent the light

exposure to which the growing organism was subject.
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Figure 2.3: An ensemble of genetic networks predicts the mRNA levels of wc-1,
wc-2, and frq for cycles 1–3 by the model shown in Figure 2.2. The decadic log
(lg) of each gene’s mRNA level is measured at least 5 times on an array for each time point.
Some data points are from the literature [9, 25]. The curves represent the mean prediction
of the ensemble of genetic networks in Figure 2.2 ± 2 ensemble standard deviations about
the ensemble mean. Grey bars denote lights off; white bars denote lights on. This graph has
been published in [13].
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In cycle 1 where the frq gene showed an obvious oscillation rhythm in the biological clock,

the predicted oscillation by the model ensemble displayed great consistency. For wc-1 and wc-

2 mRNAs, the prediction also showed consistency with much reduced oscillations comparing

with frq mRNA. In cycle 2, the light was turned on after 24 hrs of dark. Both the microarray

data and the ensemble mean prediction reflected a coordinated response to the light in the

frq genes, which can be interpreted as a reset of the biological clock caused by turning on

the light. In cycle 3 which involved inhibition of the wc-1 gene to 30% of its original activity,

the ensemble prediction successfully displays the slow decay of the concentration level of

wc-1, while this decay observed over 8 hrs in the microarray data also supported a predicted

lifetime of 7.4 hrs by the ensemble. More detailed discussion of the 3 cycles procedure in the

point of view of an iterative Computing Life paradigm, including the refining progress of the

genetic network model, can be found in Chapter 4.

2.3.2 Model Selection Between Alternative Genetic Networks

χ2 defined in subsection 2.2.2 has been used as the merit function to evaluate the goodness of

fit to the data by the ensemble of genetic networks. Therefore according to the distribution

of χ2 obtained under same conditions (i.e., based on the same data sets), we can compare

between different models and make selections [14].

The first comparison shown here is between the genetic networks model shown in Figure

1.2 and in Figure 2.2. Although the latter is the genetic network we have been used in all

3 cycles of ensemble fitting throughout the whole Computing Life paradigm for finding ccg

genes (refer to Chapter 4), later development of the former one in Figure 1.2 did slight better

with a minimum chi-square of 4240 versus that of 4474 for the network in Figure 2.2. The

comparison is shown in Figure 2.4 (it is χ2/2 that is displayed in the figure), based on the

same data set. The model in Figure 1.2 also contains fewer parameters. Therefore by both

chi-square and Occam’s Razor, the simpler network with fewer parameters in Figure 1.2 is

more preferred and is used in later work.
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Figure 2.4: Comparison of model fits. The histogram of values of χ2 (as defined in Eq.
2.4 )is shown for model ensembles of genetic network shown in Figure 2.2 and Figure 1.2
respectively. The model in Figure 1.2 does have a smaller chi square and also contains less
parameters than the model in Figure 2.2, which makes us finally choose it as our model in
future work.
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The second comparison is then based on the selected model in Figure 1.2. The details of

this selected model, especially the details of the P-reaction, are still subject to debate. It has

been proved mathematically that to keep the clock ticking, i.e., to obtain oscillations in the

genetic network, the minimum requirement is that the choice of the Hill coefficients, n and

m, must satisfy nm > 4 [14]. There is also evidence reported that FRQ acts as a dimer [33],

which would suggest m = 2. Therefore, four model ensembles had been identified with

genetic network models of varying Hill coefficients, with n = m and n = 4, 3, 2, or1 based on

literature data set only in [14]. It turned out to be that n = m = 3 was substantially less in

χ2 than other models. However with limited duration data at that time, the comparison of

chi-square statistics failed to discriminate between undamped oscillatory (n = m = 4) and

weakly damped oscillatory models (e.g., n = m = 2). With cumulative data shown in Figure

2.3, we can now test again the appropriate Hill coefficients sets. As shown in the upper part of

Figure 2.5, the most obvious result is that the n = m = 2 model is outperformed clearly with

a huge χ2. The n = m = 3 keeps doing well and shows low chi-square statistics, supporting

the corresponding most robust version of a simplified stochastic model of n = m = 3 [34].

However n = 4,m = 2 slightly beats the n = m = 3 set with the lowest chi-square on average

by far. The current model n = m = 4 shows a chi-square distribution very close to that of

the n = m = 3 model. All three models have a large overlap with each other thus are not

discriminated by current data set. Although currently not used in the simulation, the results

do suggest to revisit the n = 4,m = 2 or n = m = 3 cases in future work.

A similar comparison also has been applied to possible mechanisms for the P-reaction.

There are different proposed versions of P-reactions about how WCC is deactivated by

FRQ [12,35]. To test these 4 distinct hypotheses about the deactivation of WCC (as shown

in Figure 2.5B), the likelihood function under each hypothesis was reconstructed using the

ensemble method. Previous analysis with model ensemble generated by only the literature

data supported our current choice of using 4FRQ + WCC → 4FRQ + WC-2 as our P-

reaction, but could not distinguish it from 4FRQ + WCC →WCC/FRQ, and 4FRQ +
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WCC →3FRQ +WCC/FRQ [14]. With more data from cycle 1 to cycle 3 added into the

simulation, it is very interesting to see that 4FRQ + WCC→4FRQ + WC-2 is still our best

choice, outperforming all others. The other two hypotheses 4FRQ + WCC →WCC/FRQ,

and 4FRQ + WCC→3FRQ +WCC/FRQ are suggested to fail by a much larger chi-square.

And surprisingly 4FRQ + WCC→4FRQ + WC-2+ WC-1, which previously had slightly

worse chi-squares, now has a second lowest set of chi-squares quite close to our best choice.

The addition of data does bring us a clearer view and to successfully discriminate model

under different hypotheses.
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Figure 2.5: Another comparison of model fits. A histogram of values of χ2 is shown
for varying model ensembles. In the upper panel models with different Hill coefficients are
compared. In the bottom panel, model with different P-reactions are compared. A smaller
χ2 is preferred.



Chapter 3

Maximally Informative Next Experimental (MINE) Design

3.1 Introduction

The model ensemble method described in Chapter 2 summarizes what we know, and equally

importantly, what we do not know about the biological network, given the prior or “old”

experimental data. The next step in our Computing Life paradigm as shown in Figure 1.3 is

to select a perturbation as the next round of experiments. Since the profiling experiments are

costly, we would like the designed perturbation experiments to be maximally informative to

gain the maximal information about the genetic network. In order to select such an optimal

perturbation, we introduce the novel method of evaluating the Maximally Informative Next

Experiment (MINE) [13].

In Chapter 2, the kinetics model is represented by a system of ODEs which reveals the

topological and dynamical details of the genetic network providing the prior experimental

data. If we change the point of view and include the experiment design together with the

model parameter selection, the system of ODEs in fact gives the model prediction if the

model parameters and experimental conditions are provided, eq. 2.1 now becomes:

dSt

dt
= G(St; θ,u), (3.1)

where St = ([s]t,1, . . . [s]t,N)Tis a N×1 vector of species concentrations, with N denoting

the number of molecular species evolving according to the kinetics rate equations; G =

[G1, ...GN]T specifies the kinetics, i.e., Gn(St; θ,u) is the net rate of production of species n

at time t, given the species concentration St. The model parameter vector θ ≡ [θ1, ...θM ]T

26
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in G is the M×1 vector of all θ model parameter variables as we have discussed in previous

chapters, and for short, is referred to as “the model”. The rate functions G now also explicitly

depend on an array of control variables, u of unspecified array dimension, which are known

and can be varied by the experimenter. These control variables specify, for example, the

nature of the perturbations and external conditions to be applied to the biological system.

They comprise all control variables defining the specific data point to be measured, including,

for example, the choice of molecular species to be observed and the time of observation. More

generally, u specifies the experiment to be done.So for short it will be referred to as “the

experiment” in the following.

Then for a given choice of model θ, let f(θ,u) denote the prediction for a single species

log-concentration log(y) to be measured for a single time point by the next profiling exper-

iment, where y is one of the elements of St to be measured at some specific observation

time t. The vector u, as explained above, would specify all control variables defining the

specific date point y to be measured. For the planned next experiment measuring multiple

variables y1, ...yd, let F (θ,U) := [f(θ, u1), ...f(θ, ud)]
T denote a d × 1 vector of the corre-

sponding predicted outcomes in logarithms, and U := [u1, ...ud] denote the supervector of

corresponding control parameter vectors ui where ui specifies the control variables for the

measurement of the data point yi for i = 1, ...d. That is to say, F (θ,U) is “the prediction”

for “the observables” log(yi) in “the next experiment” U. We are trying to find a maximally

informative perturbation in the next experiments.

Clearly, it is not a mathematically well-defined problem: which next experiment U is

“maximally informative”. We have to make an ad hoc choice for a design criterion and then

try it out in real-life applications. The basic conceptual ideas underlying this ad hoc con-

struction of a MINE criterion are borrowed from microscopy in which we need to “image”

the inner workings of the cell. A microscope generates images of the cell’s material compo-

nents in the three-dimensional physical space. By analogy the profiling experiments generate

images of the cell’s high-dimensional kinetics parameter space.
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Just as we always want to obtain a sharp and clear image through the microscope, ideally

we would like to obtain “images” with high resolution to determine accurately a genetic

network’s “location” in kinetics parameter space, which is specified by a unique choice of

parameter vector θ. However from the present-day profiling experiments the “images” we do

obtain do not allow us to completely re-construct the θ: our “vision” in θ-space is seriously

blurred so that we cannot “locate” exactly a unique θ. As we explained in Chapter 2, given

the prior experimental data, we are able to find the model ensemble Q(θ) from what we know

by imposing constraints on θ; however the Q(θ) is spread out within those constraints in θ-

space, which also presents the blurring caused by what we do not know. Our goal is therefore

to reduce this blurring as much as possible in the next experiment to be performed: we want

to tune our “microscope” on model parameters to get a view of θ-space different with what

we have seen with the maximum possible resolution.

The imaging procedure of a microscope is, from the model point of view, to relate, or say

to map the observed image (F ) to the underlying object (θ) through a mathematical model

and a mapping function F (θ,U) then captures this image model. It is important to have

such an imaging model; otherwise, we cannot, for example, reconstruct the shape, size and

location (θ) of a cellular organelle from the light intensity pattern (F ) of the cell’s magnified

image produced by an optical microscope. This model for the optical microscopy is now well-

established, highly reliable: it is simply the physical optics. Our “imaging procedure” for RNA

profiling experiments, by analogy relates the observables F to the underlying θ-vector. The

appropriate model framework may well be mass action kinetics as we have introduced in eq.

2.1. But the details of the kinetics model are still very much subject to debate.

As we have seen in Chapter 2, the profiling experiment’s data are sparse and noisy. Thus,

unlike in the microscope in which it is easy to look in all different directions, we do not have

sufficient experimental data with sufficient diversity to look in to all possible directions of

the kinetic parameter space. Each experiment only yields a (in general non-linear) projection

of the object points θ in the M-dimensional kinetics parameter space onto the image points
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F in d-dimensional image space. It is implied by the sparsity and noise of the experimental

data that typically only a lower dimensional image sub-space, of dimension deff < M, can

be actually resolved by the experiment. The MINE experimental design procedure cannot

eliminate the blurring of the vision, but it can help to minimize the blur.

3.2 The First Criterion : MINE by maximal distance in image space

In order to develop a quantitative MINE criterion, first consider the simplest case: the

maximally informative next experiment involves measuring only one single data point y.

Suppose from the model ensemble Q deduced from the prior experimental data, two possible

choices of models are randomly drawn, denoted by θ and θ′. Both of the two models would

give predictions consistent with the prior experiments within the experimental uncertainties.

A next experiment with control vector u is planned in order to distinguish between these

two choices. The predicted outcomes for the two models would then be f(θ,u) and f(θ′,u),

respectively. In our analogy to microscopy, the resolving power of a microscope is the ability

of the microscope to measure the angular separation of images close together. The further

the separation is, the higher the resolving power that the microscope would have. The crucial

point here in our MINE to reduce the “blurring” for a better resolution in the parameter

space is: the more the two predictions differ from each other, the better the next experiment

will allow us to discriminate between the two choices, i.e., the more informative the next

experiment will be.

It is necessary to choose a “metric” of the difference between the two model choices.

One possible choice could be, for example, the square of the difference of the two predicted

outcomes:

Vθ,θ′(u) = [f(θ,u)− f(θ′, u)]2/2 (3.2)

The Maximally Informative Next Experiment u is then the one that maximizes this difference

metric.
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Since the two θ and θ′ are randomly drawn from Q, their joint distribution would be

Q(θ,θ′) = Q(θ) × Q(θ′). The general idea is to apply the criterion explained above to an

ensemble of models by choosing u which maximizes the average of Vθ,θ′(u). For the proposed

Vθ,θ′(u) in Eq. 3.2,

V (u) :=

∫

θ

∫

θ′
Vθ,θ′(u)Q(θ)Q(θ′) = E[f(., u)2]− E[f(., u)]2, (3.3)

where
∫

θ
denotes integration or summation over all θ-components and E[...] denotes the mean

over the ensemble probability distribution Q(θ). The second equality follows immediate from
∑

θ Q(θ) = 1. V (u) is then just the variance in our prediction within the ensemble that can

be evaluated by Monte Carlo methods described in the previous chapter.

In the general case of the next experiment measuring multiple variables y1, ...yd, we

will replace the square of the predicted difference of the two one-dimensional outcomes,

∆f(θ, θ′,u) := f(θ,u) − f(θ′,u) in Eq. 3.2 by the corresponding squared length of the

difference vector of the two d-dimensional outcome vectors in the image space:

∆F (θ,θ′,U) := F (θ,U)− F (θ′,U). (3.4)

The Vθ,θ′(u) in Eq. 3.2 is then replaced by

Vθ,θ′(U ) = |∆F (θ,θ′,U)2|/2 (3.5)

where |...| denotes the Euclidean norm, i.e., |Φ| := (ΦTΦ)1/2 for Φ = [Φ1, ...Φd]
T . Inserting

Eq. 3.5 into Eq. 3.3, we get a MINE design criterion in the d -variable next experiment

V (U) = E[|F (.,U )|2]− |E[F (.,U )]|2 =
∑

i=1,...d

(
E[|f(.,ui)|2]− (E|f(., ui)|)2

)
(3.6)

It is easy to see from Eq. 3.6 that each ui could be independently chosen to make

E[|f(.,ui)|2] − |E[f(.,ui)]|2 the largest, which would result in all ui collapsing to the same

u point. That is to say, this MINE criterion tries to guide us to observe exactly the same
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y-variable for d times, instead of observing d independent y-variables. Clearly, this criterion

lacks the ability to enforce independence of multiple observables. We need to search for a

better criterion.

3.3 Criterion 2: MINE by maximal volume in image space

Now we need to construct a more useful MINE criterion, which enforces a measure of indepen-

dence of the observables. Instead of the Euclidean length in Eq. 3.6, we consider the volume

swept out by the image difference vector ∆F . The idea comes again from the microscopy

analogy. Suppose we are trying to observe a certain volume vo in the object space through

our “microscope”. Hence from the vo, the mapping function generates an “image difference

volume” v∆ in d -dimensional image difference space. v∆ is the volume swept out by the

image difference vector ∆F (θ,θ′,U) for all pairs of object points (θ,θ′) in vo × vo; or for-

mally, v∆(vo, U) := ∆F (vo,vo, U). From the notation, it is clear that v∆ depends on the

choice of the control vector U, as well as on vo.

The basic idea here inspired by microscopy is: the greater the volume amount contained

in v∆(vo, U), the more detail we should be able to discern in vo. That is to say, in order

to gain more information about the contents of vo, we need to tune U, our microscope’s

control vector, so as to increase |v∆(vo, U)|, the d-dimensional image difference volume

amount. Compared with the Euclidean distance criterion described in 3.1.1 which guides the

y-variables to be the same, the requirement of sweeping out a higher dimensional volume

v∆ will naturally enforce a certain degree of independence of the observables. The Euclidean

norm measures just the length of the ∆F -vector and can be maximized even if ∆F sweeps

out only a 1-dimensional sub-manifold (i.e., the same u point). However, v∆ is constructed

to be a higher-dimensional manifold with a dimensionality of d or M, whichever is less.

Then we need to find out how to choose an appropriate vo or the corresponding v∆, in

terms of the ensemble pair distribution Q(θ,θ′) = Q(θ)Q(θ′). However, what we explained

above of constructing a v∆ from an underlying vo in object (θ-) space, is not a practical
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solution to the question here and should only be regarded as what inspired us to introduce

the v∆. In our practical research, we simplify the MINE with v∆ criterion that we do not try

to construct such a v∆ from a given vo. Instead, a “representative” v∆ is defined as what

is swept out by ∆F (θ,θ′,U) where θ and θ′ are drawn from typical values prescribed by

the ensemble pair distribution Q(θ,θ′) = Q(θ)Q(θ′). This v∆ will be constructed from the

characteristic variance/co-variance ellipsoid of ∆F and then it will be a dependent of the

control vector U.

First let’s define the ensemble distribution of ∆F as :

Q∆(Φ, U) :=

∫

θ

∫

θ′
δ(Φ−∆F (θ, θ′,U))Q(θ)Q(θ′) (3.7)

where Φ := [Φ1, ...Φd]
T is any point in ∆F -space and δ(...) is the Dirac delta-function in

d-dimensions. Q∆(Φ,U) is the probability density for ∆F (θ,θ′,U) to take on the value Φ,

and θ and θ′ are independently distributed according to Q(θ) and Q(θ′), respectively. Note

that the characteristic ellipsoid of ∆F ’s d× d variance/co-variance matrix D(U) is given by

Dik(U ) :=

∫

Φ

ΦiΦkQ∆(Φ,U )/2. (3.8)

One can see that Q∆(Φ,U) then defines an effective v∆(U) in the image difference (∆F

) space. And since ∆F (θ′, θ,U) = −∆F (θ,θ′,U), Q∆(Φ, U) defined in Eq. 3.7 is even in

Φ, i.e., Q∆(−Φ, U) = Q∆(Φ, U). Thus, this characteristic variance/co-variance ellipsoid of

∆F is centered at the origin, Φ = 0. The squared half-axis lengths of the ellipsoid are the

eigenvalues of the D-matrix, corresponding to eigenvectors that defines the respective half-

axis orientations. These half-axes are orthogonal to each other, and they define a rectangular

parallelotope (i.e., a high dimensional parallelepiped prism) in ∆F -space. The volume of this

parallelotope is proportional to that of the ellipsoid by a universal constant prefactor. It is

then natural to choose this parallelotope constructed from the variance/covariance matrix D

of ∆F as our image difference volume v∆(U), instead of the ellipsoid itself. The determinant



33

of D(U) is the square of the parallelotope’s volume amount, |v∆(U )|2 and could be used as

a possible MINE criterion to be maximazed:

V (U ) := det(D(U)) = |v∆(U )|2. (3.9)

The above Eq. 3.9 is sometimes referred to as the generalized variance, whose distribution

is known exactly if the distribution of the prediction is Gaussian over the ensembles [36].

However, it should be strongly emphasized here that it is not implied or required that the

distribution Q∆(Φ, U) of ∆F is Gaussian by invoking the variance/covariance ellipsoid of

∆F . Such an ellipsoid can be constructed for any Q∆(Φ, U) from the matrix D(U) in Eq. 3.8.

Although the whole MINE approach here is ad-hoc, the main advantage of this constructed

v∆ is that Dik(U ) could be deduced from Eq. 3.4, Eq. 3.7 and Eq. 3.8 to be

Dik(U) = E[f(., ui)f(., uk)]− E[f(., ui)]E[f(., uk)]

in which the ensemble means E[...] could be calculated by ensemble Monte Carlo evaluation.

Also it should be noticed that since in the calculation of the matrix D(U) we only use

∆F (θ,θ′,U), the difference between log-concentrations, i.e., the logarithm of concentration

ratio, is independent of the choice of model concentration units and scale-free. Hence our

MINE criteria is also scale-free.

3.3.1 A Hilbert Space picture of MINE formalism

In terms of Hilbert Space (HS) formalism, we could define again the MINE approach con-

structed above using a Hilbert Space of functions that are defined on the model parameter

(θ) space. The variance/covariance is the HS inner product, which for any pair of functions

defined in the θ- space is defined as:

(g|h) := E[g(.)h(.)]− E[g(.)]E[h(.)]. (3.10)
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The observables log(yi) are now represented by a HS vector fi := f(θ, ui), for i=1,...d ; and

the element in the variance/covariance matrix, Dik, is then the inner product of two HS

vectors fi and fk,

Dik = (fi | fk).

The predicted ensemble standard deviation of the observable fi is the length in HS, i.e., the

HS vector norm ‖fi‖, where ‖fi‖ := (f | f)1/2 .

Now the independence of the HS vector set f1, ...fd naturally represents the independence

of the corresponding observables log(yi), ... log(yd). If the d HS vectors f1, ...fd are linearly

independent, the finite-dimensional subspace spanned by these HS vectors has a dimension

of d ; otherwise the subspace has a dimension less than d. Thus a linearly independent HS

vector set f1, ...fd spans a parallelotope of d -dimensional in HS. Since Dik = (fi | fk), one

can see that det(D) in the MINE criterion Eq. 3.9 is the Gramian determinant of the vector

set f1, ...fd, which is the square of the volume of this HS parallelotope [37]. Hence det(D) is

then an alternative representation of the characteristic variance/covariance parallelotope v∆

in the d -dimensional ∆F space. Notice that v∆ in ∆F space is a rectangular parallelotope

as we have described in 3.2.2., while the HS parallelotope spanned by the HS vectors f1, ...fd

is not rectangular in general, since f1, ...fd are not required to be mutually orthogonal with

respect to their HS inner product Eq.3.10.

If the f1, ...fd are linearly dependent, det(D) is zero and the HS prism spanned by these

HS vectors collapses to a lower-dimensional one. In the other extreme situation, if all observ-

ables are uncorrelated, the corresponding HS vectors f1, ...fd are maximally independent and

mutually orthogonal in terms of HS inner product and the volume of the HS parallelotope is

simply the product of the HS vector length ‖fi‖ and det(D) = (‖f1‖ · . . . · ‖fd‖)2. In general

cases, the observables are correlated and the HS vectors f1, ...fd are non-orthogonal, hence

det(D) < (‖f1‖ · . . . · ‖fd‖)2. The ratio det(D)/(‖f1‖ · . . . · ‖fd‖)2 with a range of (0, 1),

indicates the degree of independence of the observables. This ratio depends only on the HS
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angles between pairs of HS vectors, but not on their individual lengths ‖fi‖. Therefore we

can write the MINE criterion as:

V (U ) = det(D(U )) = (‖f1‖ · . . . · ‖fd‖)2 · det(D)

(‖f1‖ · . . . · ‖fd‖)2
. (3.11)

As we have seen in 3.2.1, if the experimental design tries to maximize only the individual

variances, it tends to also maximize the correlation thus makes the ratio vanish to zero.

Therefore, in order to maximize this MINE criterion, we must compromise between maximal

mutual independence of all variables and maximal variance of each individual observable.

With one more look into the matrix D(U) and the Euclidean distance criterion Eq.

3.6, it is easy to see that the right hand side of it is just the trace of the matrix D(U):

V (U ) = trace(D(U )) = ‖f1‖2 + . . . + ‖fd‖2. For maximizing the V (U), what the Euclidean

distance criterion suggests is to maximize each individual HS vector length, i.e., to maximize

the variance of each individual variable, even if that results in high co-variances between

variables. This is consistent with our discussion in 3.2.1..

3.4 Criterion 3: MINE by Maximal Observational Independence

We have seen that when we maximizing the MINE criterion Eq. 3.11, simply increasing

the variances of individual observables only results in decreasing the independence between

the observables and vise versa. This inspires us to propose another MINE criterion that

emphasizes even more the independence of the observables comparing with Eq. 3.11. We

substitute the original HS vectors fi with the normalized unit HS vectors gi where

gi(θ) := fi(θ)/ ‖fi‖ for i = 1, ...d; (3.12)

and define a new “normalized” variance/covariance matrix similar with the one defined in

Eq. 3.11,

Eik(U ) = (gi | gk) = Dik(U )/(‖fi‖ · ‖fk‖)

= E[g(., ui)g(., uk)]− E[g(., ui)]E[g(., uk)] (3.13)
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This is, in fact, the well known correlation matrix between the predictions [36]. And the

proposed MINE criterion is then to maximize

V (U ) := det(E(U )) = det(D(U ))/(‖f1‖ · . . . · ‖fd‖)2 (3.14)

Comparing with Eq. 3.11, it is easy to see that the lengthes of the individual HS vector, i.e.,

the variances of the observables do not affect det(E (U)), only the angles between pairs of

the HS vector affect it, which measures the independence of the observables. Geometrically,

in the Hilbert Space, det(E (U)) is the square of the volume of the parallelotope formed by

the d HS unit vectors g1, ...gd with fixed length ‖gi‖ = 1. It is the angles between pairs of

the unit vectors that determine the volume instead of their individual length, which then

emphasizes only the independence of the observables when maximizing this MINE criterion.

Such a MINE criterion tends to design a next experiment such that the maximized infor-

mation is obtained by improving the independence of the observables, rather than maximizing

the individual variances. It is more advantageous in applications where the HS vectors are

likely to be linearly dependent, i.e., the observables are easy to be highly correlated with

each other. This scenario is in fact what we have encountered consistently in our MINE cal-

culations for our three Computing Life cycles. Therefore the third MINE criterion Eq. 3.14

to maximize det(E (U)) is what we have applied in our implementation of the three cycles.

There are some additional advantages of choosing det(E (U)), the correlation matrix, as

the MINE criterion. It is well known in statistics that the correlation matrix measures the

linear independence between the predictions of the observables. From our discussion in 3.2.3,

det(E (U)) is known to have a range of 0 to 1, where the value 0 means perfect linear depen-

dence of the predictions and the value of 1 means perfect linear independence. Furthermore,

if the predictions are Gaussian over the ensemble, the correlation matrix measures also the

stochastic independence of the predictions. In this case the value 0 means perfect stochastic

dependence and 1 means perfect stochastic independence. That is to say, by applying the

third MINE criterion Eq. 3.14, we can easily interpret the measures. And finally the dis-
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tribution properties of det(E (U)) are well known, particularly when the distribution of the

predictions are Gaussian.

3.4.1 Volume collapse pathology

In the actual MINE calculation, we have encountered consistently the situation that the

observables are highly correlated, which results in the “almost” linearly dependent HS vector

set g1, ...gd (or, equivalently, the f1, ...fd set). It is easy to see this lack of sufficient linear

independence by calculating the d eigenvalues of the D matrix. Denote the d eigenvalues

as λn = λn(U ) and enumerate by n = 1, ..., d in descending order, with corresponding

complete, orthonormal d× 1 eigenvectors en. Note that the variance/covariance matrix D is

non-negative, so the d eigenvalues λn are also non-negative. Thus we can decompose D into

its eigenvector representation

D(U ) =
∑

n=1,...d

λn(U )en(U )en(U )T ,

and det(D) is simply the product of all d eigenvalues. However, a common numerical difficulty

we encounter is that the ratio of a smaller eigenvalue λn and the largest one λ1 becomes of

order or smaller than the machine precision εmp because the HS vector set is “almost” linear

dependent. Then all such eigenvalues λn that are comparable to or small than λ1εmp are

dominated by rounding errors, i.e., they are too small to be numerically calculable. Thus

det(D) is not numerically calculable for the exact value either. Geometrically this simply

means the near “collapse” of the characteristic ellipsoid of the matrix D : the half-axis along

the direction of the corresponding en with a length of
√

λn has shrunk very close to, and not

numerically distinguishable from zero. However, there is still useful information contained

in such almost collapsed ellipsoid about the range swept out by the image difference vector

∆F . We need to remedy this numerical pathology to obtain such information.

Thus an ellipsoid volume collapse pathology is proposed to introduce a numerically stable

lower cut-off into the eigenvalue spectrum of the matrix D so that if the eigenvalue λn is
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comparable or even smaller than λ1εmp, the product of the largest eigenvalue and the machine

precision, it is replaced by a modified eigenvalue:

µn(U ) = max(λn(U ), λ1εcut),

where the cut-off ratio εcut is fixed to be 10−10, which is typically at least 2 or 3 orders of

magnitude larger than the machine precision εmp. Thus in the ellipsoid every half-axis is at

least
√

λ1εcut along the corresponding eigenvector, which keeps the ellipsoid from collapsing.

Now the numerically incalculable exact value of det(E (U)) is then replaced by a numerically

stable det(D(U)) of a modified D matrix such that

D(cut)(U) :=
∑

n=1,...d

µn(U)en(U )en(U )T,

and

det(D(cut)(U )) = µ1(U ) · . . . · µd(U ).

In our actual MINE calculation, the MINE criterion Eq. 3.14 is used instead of Eq. 3.11.

The same lower cut-off procedure is then applied to generate a modified matrix E which is

numerically stable, and the determinant becomes the corresponding det(E(cut)(U )). Finally,

note that this ellipsoid volume collapse does not numerically affect the MINE criterion Eq.

3.6 using Euclidean distance, since V (U) = trace(D(U)) is the sum of the eigenvalues of D

matrix instead of the product of them. The sum is dominated by the largest eigenvalue and

thus is numerically well controlled.

3.5 Summary of the Maximally Informative Next Experiment Approach

The goal of the MINE approach described above is to develop a quantitative criterion (or

measure) to answer the question of how much information about the genetic network can

be obtained from the next experiment to be performed, and then maximize this measure

of information which is denoted by V (U) with respect to the experimental design, i.e., the

control parameters of the next experiment, denoted by the control vector U. The vector U
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contains all of the parameters that are controllable by the experimenter and that characterize

the measurements to be performed, including the external conditions and the perturbations

and mutations to the species.

As input to the MINE calculations, it is critical to have both the underlying kinetic rate

coefficient model of the genetic network and all available prior or old experimental data.

These two inputs first serve as the inputs of the ensemble simulation approach to constrain

the unknown kinetics model parameters and generate an ensemble of fitted parameters, which

is then used to predict the likely information content V (U) for the next experiment with

respect to U. The mine criterion Eq. 3.14, V (U ) = det(E(U )), is chosen to guide the design

of the next experiment as what we have discussed above. This criterion is the determinant of

the ensemble correlation matrix E (U) between predictions. For example, in our application

of the MINE calculation, an ensemble simulation was performed for the kinetic model for

the genetic network in Eq. 1.2 to generate a representative MC sample of 40,000 random θ-

vectors, drawn from the respective ensemble distribution Q(θ) for that cycle. A subset of 200

random θ-vector from this sample is then used to calculate MC estimates for the ensemble

expectation values E[...] for the matrix E via Eq. 3.13.

If two predictions in the fitted ensemble, given by two different models with different

control vectors, are highly correlated, it will be difficult to distinguish these two models

in the next experiment. If the two predictions in the fitted ensemble are less correlated, it

will be easier to distinguish the two corresponding models. Hence by applying the criterion

Eq. 3.14 that emphasizes the correlations between predictions, it is suggested to choose the

next experiment U such that it gives predictions in the fitted ensemble more uncorrelated

to each other and then more distinguishable. We are going to see a practical example of the

application of the MINE method in the next chapter.



Chapter 4

Application of the Computing Life Paradigm

on the Biological Clock of Neurospora crassa

After discussion of the ensemble method of genetic network identification and the Maxi-

mally Informative Next Experiment design respectively, it is now time to see how these

two approaches are combined with the experiments to work together in the Computing Life

paradigm shown in Figure 1.3. In the general context of refining the identification of the

genetic network model of the biological clock in N. crassa, a particular biological goal is set

to specify the direction of advance that we want to discover the clock-controlled genes(ccgs)

in the N. crassa genome.

These so-called clock-controlled genes, in another word, are the outputs of the biological

clock. Therefore, from the genetic network model shown in either Figure 1.2 or Figure 2.2, it

is predicted that a ccg gene should have three characterizations: (1) maintain an endogenous

circadian rhythm when the organism is grown in the dark; (2) be light-responsive when the

organism is moved from dark to light (D/L); (3) change its expression when the level of the

transcription factor WCC is knocked down. These three predictions are going to be used as

criteria for ccg selection.

It should be noted that, as we mentioned in section 2.3, the genetic network model used

throughout the Computing Life process shown in this thesis is the one shown in Figure 2.2

instead of that shown in Figure 1.2 for historical reasons.

40
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4.1 Cycle 1 - Which genes are circadian?

After fitting the data in the literature and building the biological clock model [14], the first

series of microarray experiments to be designed is to determine how many genes are under

clock control. Such genes, as shown in both Figure 1.2 and Figure 2.2, are the output of the

clock mechanism, thus should have an endogenous rhythm of ∼22hrs in the dark. So the first

experiment to be done was to culture a strain for about 48 hrs in the dark to observe the

clock’s endogenous rhythm. The initial MINE task is to find out the appropriate starting

time of observation and the optimal interval between observations.

In each of our MINE calculations, the predictions are of the log concentration of wc-1,

wc-2 and frq mRNAs over time in the next experiment, i.e., log([wc − 1r]), log([wc − 2r])

and log([frqr]), where [wc − 1r] is, in fact, the summed total of the two version of wc-1

mRNA, wc − 1r1 and wc − 1r2, as shown in Figure 1.2 and Figure 2.2, i.e., [wc − 1r] =

[wc − 1r1] + [wc − 1r2]. Each MINE calculation is constrained to have a fixed budget of 13

microarray chips per experimental cycle, which means that there are 13 time points to be

sampled in each cycle. This is a more realistic design since presently microarray profiling is

still quite expensive to perform. Hence the dimension d of the correlation matrix E (U) is

determined by the fixed number of time points such that d = 3× 13 = 39, which is fixed by

our budget.

Denote the starting time point, i.e., the time lag till the first observation time by tL, and

the spacing between measurements by tS. As what we have clarified above, the maximum in

spacing is limited by the total culture time (48 hrs) and the cost constraint of 13 microarray

chips. In the next experiment we are going to measure 3 mRNA species at 13 time points,

tj with j=1, ...13; and there are d=39 data points, y1, ...yd, to be observed in the next

experiment. The observation times tj are chosen to have equidistant spacing tS after an

initiation time lag of tL, which is counted from the experiment starting time t=0. So

tj = tL + tS(j − 1) for j = 1, ..., 13.
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In the cycle 1 ensemble simulation we constructed Q(θ) from the prior experimental input

data taken from literature [9,23–25]. An ensemble of Monte Carlo samples of 40,000 random

θ-vectors was generated according the ensemble distribution Q(θ). From this ensemble,

V (U)=det(E (U)) was maximized with respect to tSand tL, for the next experiment designed

to measure the three clock RNA species during the 48 hrs in the dark. The resulting optimal

MINE values (as shown in Figure 4.1) appeared to be ts = 3.5hrs and tL = 0. In the real

experiment, the theoretical optimal values were slightly modified to ts = 4hrs and tL = 0,

so as to cover the behavior at the end of culture (42-48hrs) which is missed by the optimal

design here but still important to know for the behavior at the later part of the strain culture.

In the latter cycle2 and cycle3 microarray profiling and corresponding MINE calculations,

tS and tL are then set at the same values used here without further adjustment.

The experimental results of microarray RNA profiling experiments following the MINE

design above can be found in [13]. Biological and statistical analysis showed that, in the first

cycle of the Computing Life process, 2436 genes showed circadian rhythmicity when grown in

the dark, behaving consistently with the first prediction of ccgs. Therefore these 2436 genes

were selected out as the future candidates of ccgs

4.2 Cycle 2 - Which genes are light-responsive?

4.2.1 Design of Light Response Experiments

From cycle1, 2436 genes showing circadian rhythmicity in the dark were identified [13] as

the candidate of ccgs according to the first criterion. However not all of them are “real” ccg

genes. The possible controller of the circadian rhythm shown in the dark could be either

WCC, or a different oscillator [38], or even multiple oscillators [39]. There is also a false

positive probability of 18% [13] for the selected 2436 genes. To discriminate the ccg genes

from the other possibilities, it is necessary to design the next experiment.

As shown in Figure 1.2 and Figure 2.2, an important feature of the clock is light-

entrainment. That is to say, the biological clock of the organism will be speeded up or
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Figure 4.1: MINE calculation to determine when to start sampling (tL) and how
often (tS). The MINE surface is plotted as function of the lag tLin hrs and spacing tS in
hrs. Higher values on the MINE surface suggest the preferred design points (tL, tS). Color
contours of the log of the MINE criterion det(E ) are overlayed as a function of the lag(tL) and
spacing(tS) to show points on the surface of similar MINE values. The MINE surface suggests
to start sampling immediately (small tL) and to make the spacing (tS) between observations
as large as possible. The maximum permissible spacing (tS) between observations is 5 hrs,
as determined by two constraints: the cost constraint of 13 microarray chips per cycle; and
beyond a 50hr experiment in cycle 1 stable oscillations in liquid culture are not guaranteed.
This graph has been published in [13].
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slowed down to accommodate the artificial days that it is exposed to, which consist of alter-

nating light exposure and dark exposure. If the gene is a ccg, i.e., under the control of WCC,

it should also be light-responsive. Then the question is what artificial day should be used,

i.e., how long should the alternating dark and light exposure be.

In all new experiments we have performed, whenever light exposure was applied, the light

intensity at the sample location was about 70 µmole(photons)/(s ·m2) in Einsteinian units,

or about 15 W/m2 in radiometric units, or about 5,300 lux/490 ft-candles in photometric

units, assuming a “cool white” spectrum, as given in [13, 40]. By contrast, for the light

exposure experimental data we have taken from the literature [9, 23–25], the light intensity

was report to be only 20 µmole(photons)/(s ·m2), with unspecified spectral distribution. In

the kinetics ensemble for cycle2 (also in cycle 3 below) the kinetics ensemble simulation needs

to incorporate the new experimental data from cycle 1 and the literature data [9,13,23–25]into

the distribution Q(θ). So, here we have assumed that both the literature data and our

experimental data were generated with the same photon spectral distribution. Therefore we

have modeled all light exposure experiments in terms of the photon concentration to be

proportional to the respective light intensities when light enters the reaction rate coefficient.

For all light-exposed experimental data throughout our simulation, the light exposure is

periodic with 50% duty cycle having the same dark and light duration, in a phase of either

D/L (i.e., dark first, then light) or L/D.

After the new experimental data from cycle 1 has been incorporated into the kinetic

ensemble simulation and fitted(see Figure 2.3), based on the new cumulative Q(θ), V (U) =

det(E(U)) was maximized with respect to the duration tp/2 of the light exposure with D/L

and phasing 50% duty cycle (i.e., the dark duration is also tp/2). The result is shown in

Figure 4.2, suggesting a long artificial day with a half-period of daylight of between 19 and

24 hrs. The half period tp/2 was chosen to be 24 hrs for the actual cycle2 experiments. A

second cycle of microarray experiments was therefore performed with an artificial day of 24

hrs dark and 24 hrs light in a 48 hrs observation time.
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Figure 4.2: MINE calculation to determine what artificial day to use in cycle 2.
Graph of the decadic log of the MINE criterion det(E ) as a function of the half period of the
artificial day in hrs. The calculation suggests trying a long artificial day and the half-period
of daylight is between 19 and 24 hrs. Repetition runs were performed with different subsets
of θ vectors drawn from the 40,000 model ensemble Monte Carlo sample. The log(det(E ))
values from repetition runs differ typically by no more than ± 1 from the results shown
here and give the same results: the half period of the artificial day should be in the range of
19-24 hrs. The inset gives: (1) the photon concentration of micromoles per second per meter
squared (µM/s ·m2 ); (2) the starting time (tL), which was selected to be close to zero but
not zero to assist in the computation of the MINE criterion det(E ); (3) spacing (tS) in hrs
between observations; and (4) the total number of time-points, at which mRNA levels were
measured (the number of arrays used). This graph has been published in [13].
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Statistical and biological analysis of the experimental data from cycle 2 showed that, a

total of 768 genes were both circadian and light-responsive, with a very low false positive

rate of 0.03 [13]. These genes then passed the first and second criterions and remain as

candidates of ccgs in Figure 1.2 and Figure 2.2. Also, as a control, other experiments with

designs very similar to our cycle 2 reported in [20] and [41] independently obtained results

in good agreement with us.

4.2.2 Possible Evidence for a Modified Model with Auto-Feedback Loops

Activating wc-1 and wc-2

With a second look at the MINE calculation of cycle 2 in Figure 4.2, a minor peak was found

at the shorter period end of the graph, suggesting possible informative experiments with a

very short artificial day ranging 3 to 6hrs. At the same time, when looking at the profiling

experimental results of the three cycles, we noticed that there was evidence of the presence

of auto-feedback loops for WCC activating wc-1 and wc2. In cycle 1 searching for circadian

genes, wc-1 and wc-2 mRNA showed fast oscillations with a period much shorter than the

circadian genes. In cycle 2, a fast light-response less than one hour was also noticed. In cycle3,

wc-2 and, of course, wc-1, also showed a quick response signal right after the knocking down

of wc-1 genes [13]. For the modified genetic network shown in Figure 4.3, it is reasonable

to predict that the auto-feedback loops added should permit entrainment to short artificial

days. Thus motivated by the MINE prediction, a series of experiments were performed with

extra short 3+3 artificial day that was usually avoided by researchers.

The result showed that the wild type strain did entrain into the 3+3 artificial day, and

banding patterns were observed similar with that shown in Figure 1.1 but much denser [13],

showing the direct evidence of the clock did oscillate and get entrained in to this very

short artificial day. And for a frq mutation, which disabled the frq gene and thus eliminated

FRQ from the genetic network in Figure 2.2, the entrainment still happened and the banding

pattern was shown. If the FRQ involved P-reaction is the only feedback loop in the biological
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clock, the oscillation and entrainment is impossible to happen. Further more, mutations that

disabled either wc-1 or wc-2, i.e., resulted in no bandings, indicating no entrainment to the

short artificial days with the frq gene being kept.

The above then suggested strong evidence of a modified model with auto-feedback loops

that activate wc-1 and wc-2 respectively shown in Figure 4.3. However, failure in further

ensemble fitting to the above quick response data stopped us from validating this model

and making further use of this model, although revisiting this model is possible in the

future. In conclusion it is a very interesting trial and suggests the high informativeness of

the Computing Life paradigm.

4.3 Cycle 3 - Which genes are under WCC control?

By cycle 2, the number of genes as candidates for ccgs was limited to 768. To be confirmed as

clock controlled genes, they need to agree also with a third prediction of the genetic networks

in Figure 1.2 and 2.2, namely that a gene under the control of WCC should experience a

sudden change in its mRNA level if WCC were knocked down (By saying “knock down”

here, it means that the amount of WCC in the system would be decreased to a lower level

compared to wild type strain.) It is easy to see from the model that interfering with the

WCC concentration level can be realized by reducing either one of wc-1 or wc-2 or frq

mRNA level. Therefore, to test the third prediction with a gene knock-down experiment, we

need to first know which gene should be perturbed to gain maximum information about the

genetic network in Figure 2.2.

The cycle 3 MINE calculation was done using the Q(θ) distribution generated from the

literature data [9, 13, 23–25] plus our experimental data in cycle 1 and cycle 2. The mine

criterion V (U) = det(E(U)) was maximized with respect to the transcriptional ratio (TR)

of the selected clock gene species to be knocked down. TR=1 corresponds to full expression,

while a non-zero TR value less than 1 simply means the selected gene species would have its

transcription rate coefficient S reduced to TR*S, where TR 6 1.
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Figure 4.3: A modified model with auto-feedback loops of wc-1 and wc-2. It is
reasonable to predict that with the presence of these two auto-feedback loops the system
can be entrained into very short artificial days, which is not a property of the frq-centered
biological clock. This figure was used in [13].
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The maximally informative gene to be knocked down was found to be wc-1, with a

TR=0.1 (shown in Figure 4.4). It suggested reducing the transcription rate coefficient to

10% of that of wild type. The actual experiment was done by engineering a mutation strain

of wild type wc-1 and a quinic acid inducible copy of wc − 1+ producing a knock-down to

30% of its original activity when being transferred into quinic acid.

An additional MINE calculation is shown in the right bottom plot in Figure 4.4. The low

log(det(E )) values suggested that over-expression of wc-1 will not be very informative. Lewis

et al. reported the over-expression of wc-1 was ”not sufficient to induce most light-regulated

gene expression”, which is consistent with our MINE prediction [41].

Statistical analysis of the data from this “gene knock-down” cycle 3 experiment found 328

clock-controlled genes supported by all three cycles of microarray experiment series and also

biologically reasonable (ccgs must have a WCC binding site to interact with WCC) [13]. The

possibility of a false positive was 0.0067, providing all three series were done independently.

These 328 genes therefore satisfy the three predictions of the genetic network and constitute

the clock controlled genes.

4.4 Identifying an ensemble of genetic networks for the biological clock

of Neurospora crassa

Besides accomplishing the biological goal of finding clock-controlled genes, the three cycles

of the Computing Life paradigm also have identified an ensemble of genetic networks of the

biological clock with the cumulative data from 3 cycles of microarray experiments and the

initial published literature data [9, 13, 23–25].

The estimation of rate coefficients has been improved after the three cycles, comparing

with our previous results for an in-the-dark model of the biological clock of Neurospora

crassa (Table 1 in [13]), which is the starting point of our simulation. The results of fitted

rate coefficients are summarized in Table 4.1. For 69% of the rate coefficients in common

(i.e., 18 out of 26) of these two models, ensemble standard deviations were reduced by the
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Figure 4.4: A 90% knock-down of the wc-1 gene is the MINE experiment. The
decadic log of the MINE criterion det(E ) is displayed as a function of percent remaining
activity of the three clock genes wc-1, wc-2, and frq. The matrix E is the correlation matrix of
the predictions, emphasizing independence of predicted data points f(., ui). The predictions
are for the mRNA levels of wc-1, wc-2, and frq over time. The right bottom figure shows
the MINE prediction that over-expressing wc-1 is not very informative, which was proved
to be true by the experimental results reported by Lewis et al. [41]. Repetition runs were
performed with different subsets of θ vectors drawn from the 40,000 model ensemble Monte
Carlo sample. The log(det(E )) values from repetition runs differ typically by no more than
± 0.5 from the results shown here and give the same results: the maximal det(E ) appears
at transcription ratio 0.1 for wc-1. Part of this graph has been published in [13].
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Figure 4.5: Classification of 4380 N. crassa genes with upstream LREs in a Venn
Diagram by their response in each of the three microarray experiments: (1)
cycle 1 (assay for circadian rhythm); (2) cycle 2 (assay for light response); and
(3) cycle 3 (assay for response to changing levels of WCC). The diagram summarizes
the microarray experiments in cycles 1–3 of the Computing Life Paradigm. This graph has
been used in [13].
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addition of data from cycle 1-3 from earlier published results in [14]. The estimated lifetimes

of the wc-1 mRNA and the FRQ protein remain in good agreement with the measured

values with data increasing by an order of magnitude(Table 4.3). The wc-1 mRNA life time

estimate of 7.4hrs = D−1
7 continues to be supported by experiments in cycle 3, in which

the transcription level of wc-1 was knocked down to a low level and the degradation time

of the wc-1 concentration was observed to be about 8 hrs (see Figure 2.3). The lifetime of

FRQ protein is estimated to be 1/ 〈D6〉 ≈ 5hrs, being consistent with both our previous

results and the estimation of 4-7 hrs from published data by others [33]. Transcription rates

of frq (A and Ā) and the deactivation rate of WCC (P), which were critical parameters for

maintaining oscillations [14], are now more sharply defined than before. As described in 2.3.2,

the model discussed above was replaced by the one in Figure 1.2 which has a close chi-square

statistics (Figure 2.4) but fewer model parameters. The summary of the rate coefficients of

the model in Figure 1.2 is shown in Table 4.2. There is no obvious improvement in the

parameter estimation.

To assess progress in the Computing Life paradigm and also to compare to other models

in the future, the error per observation σ2, or the error variance, is estimated. This has

served as a standard approach in linear and nonlinear models to estimate the precision of

an experiment [42], as we have introduced in Chapter 2. It is also illustrated by simulation

and data analysis that such a common variance components can be extracted from each of

a variety of microarray experiments and used to compare different experiments [43]. Under

the multivariate Gaussian assumption that we used in the likelihood in Chapter 2, a simple

estimator for the error per observation can be constructed for our successive cycles of the

Computing Life paradigm:

σ̂2 =
1

n
χ2

minσ
2
0

where n reports the number of data used in fitting, which is cumulative across cycles; χ2 is

the goodness of fit measure, and χ2
min is the minimum chi-squared statistic over the ensemble;

σ2
0 is the error per observation in the multivariate Gaussian likelihood, which is allowed to
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vary across observations. In the initial data drawn from the literature [9, 23–25], σ2
0 is 0.02.

In calculating χ2
min , preliminary estimates of σ2

0 , 4σ2
0 and 36σ2

0 were used respectively for

literature data, microarray data and conidiation data, respectively, in order to give equal

weight per time to different experiments in the ensemble fitting progress.

In Table 4.3, the progress can be seen in reducing the error variance in successive cycles.

In the fourth cycle, the model was switched from the one in Figure 2.2 to the one in Figure

1.2. An additional 842 data points of conidial banding data (as shown in Figure 1.1) were

collected under a 48 hr artificial day as in cycle 2. A reduction in the estimated error variance

with a simpler model confirms the switch of the model is reasonable, as we have discussed

in Chapter 2. Thus the advantage of this estimated error variance also offer a diagnosis of

whether or not further experiments will refine the model ensemble. The downward trend in

the estimated error variance suggests that further cycles could be profitable.
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Table 4.1: Rate coefficients in the genetic network model (Figure 2.2) of the biolog-
ical clock (n=m=4) based on data from cycles 1-3 predicting the clock’s observed
oscillations, light response, and wc-1 perturbation. Ensemble mean < X > and
ensemble standard deviation σ(X) := [< X2 > − < X >2]1/2 for rate coefficients (X) in the
n=m=4 biological clock model of Figure 2.2. For a kth order reaction (with k=1,2, or 5),
the rate coefficient is given in units of 1/(hour× cuk−1) where “cu” represents the arbitrary,
but common model unit of concentration for all species, except for the photon species where
1cu(photons) = 0.20µmole(photons)/(s ·m2).

X k < X > σ(X) X k < X > σ(X)

A 5 0.0313 0.00974 Ac 5 0.1293 0.0826

Ā 1 0.1108 0.00498 Bc 1 0.6091 0.1718

B 5 4.010E-4 1.020E-4 Sc 1 2.572 2.757

B̄ 1 0.382 0.0412 Lc 1 3.664 8.993

S1 1 4.20E-4 0.048E-4 Dcr 1 0.579 0.137

S2 1 0.0220 0.00838 Dcp 1 0.5536 0.1173

S3 1 5.474E-5 1.597E-4 E1 2 0.003125 9.865E-4

S4 1 1.252 0.286 Ē1 1 0.0965 0.0104

D1 1 6.607 1.399 E2 2 2.614 2.607

D2 1 0.153 0.0247 Ē2 1 0.0128 0.0298

D3 1 0.798 0.134 S5 1 8.924 0.696

C1 2 1.047 0.220 D9 1 1.234E-4 3.259E-4

L1 1 94.39 4.346 AcL 5 0.0524 0.0156

L2 1 0.3698 0.2207 Q 5 4.812E-4 6.111E-4

L3 1 63.93 21.50 D10 1 2.865E-4 9.257E-4

D4 1 0.00451 0.0118 C3 2 5.559 1.794

D5 1 0.00890 0.00242 BcL 1 0.00576 0.00633

D6 1 0.205 0.00899 ScL 1 0.07454 0.1344

D7 1 0.135 0.0148 E3 2 0.00974 0.00298

D8 1 0.0122 0.00304 Ē3 1 5.42E-4 0.00188

C2 2 3.322 0.912 E4 2 1.335E-5 3.456E-5

P 5 0.2233 0.2701 Ē4 1 0.0121 0.00682
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Table 4.2: The estimates of rate coefficients after 3 cycles of Computing Life for
the genetic network shown in Figure 1.2. All symbols are similar with Table 4.1.

X k < X > σ(X) X k < X > σ(X)

A 5 5.60481E-4 2.97967E-4 Ac 5 0.57962 0.37478

Ā 1 0.12207 0.00571 Bc 1 52.19490 25.41051

S1 1 0.11210 0.18048 Sc 1 0.37529 0.70020

S2 1 86.98142 8.23094 Lc 1 7.30599 14.4736

S3 1 0.01720 0.06524 Dcr 1 0.58116 0.26025

S4 1 39.02247 6.10560 Dcp 1 0.36204 0.16057

D1 1 1.70002E-4 5.04858E-4 D2 1 0.01101 0.00162

D3 1 3.43327 0.60242 C1 2 2.37212 1.50706

C2 2 36.17778 11.09423 C3 2 0.05305 0.1832

L1 1 90.45906 7.23261 L2 1 1.66063 0.21721

L3 1 8.87033 2.46278 D4 1 0.13855 0.01669

D5 1 20.49211 7.75688 D6 1 0.48731 0.03427

D7 1 0.01759 0.00115 D8 1 2.61376E-5 6.46480E-5

P 5 0.01270 0.01688

Table 4.3: The quality of fit of the model usually improves in successive cycles
through the Computing Life paradigm. The column n reports the number of data used
in fitting, which is cumulative across cycles. χ2 is the goodness of fit measure, and χ2

min is the
minimum chi-squared statistic over the ensemble. σ̂2 is the estimates of the error variance σ2,
calculated using the formula σ̂2 = 1

n
χ2

minσ
2
0, where σ2

0 = 0.02 is the error per observation in
the multivariate Gaussian likelihood. The genetic network fitted is shown in Fig.2.2, except
cycle 4. This table was used in [13]

profiling Experiment n χ2
min σ̂2

data from literature (cycle 0) 333 1188 0.0714
circadian cycle in the dark (cycle 1) 553 2918 0.1055
light response in D/L artificial day (cycle 2) 1927 3938 0.0409
WCC response by turning of WCC (cycle3) 2165 5528 0.0511
genetic network of model in Fig. 2 (cycle4) 3007 4640 0.0309



Chapter 5

A Temperature Responsive Model of the Biological Clock

5.1 Temperature Compensation of Neurospora Crassa

The biological clock network model that we have described and discussed by now has a

circadian daily rhythm and also can adapt to external light stimuli. Besides light, the bio-

logical clock is also affected by other stimuli such as temperature and chemicals. Similar

to the response to the external light entrainment, the biological clock can be reset by tem-

perature pulses or steps, and it also can adapt to temperature entrainment, which confirms

temperature as another important entrainment factor [44]. However, there is another inter-

esting feature that makes temperature stimuli quite special: the period of the biological clock

remains stable over a relatively broad temperature range. This mechanism is commonly called

“temperature compensation” which is the key feature to make the clock tick with accurate

time in spite of the ambient temperature variation in the natural environment [45,46]. Also,

there are physiological temperature limits for clock function, i.e., the biological clock only

works rhythmically within a certain temperature range. Outside this range the clock will

stop ticking and freeze in a certain phase [47]. All of the above features motivate us to add

a temperature response feature to our light responsive model.

However, how the biological clock works to produce such a temperature compensation

remains a puzzle. A famous law for the temperature dependence of an elementary chemical

reaction rate is the Arrhenius equation [48]:

k = k0 exp(−∆Ea/RT ) (5.1)

56
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which means that the reaction rates can rise very rapidly as the temperature T (in Kelvin)

rises. Obviously if the Arrhenius equation is the only temperature dependence that works in

our genetic network model, one would naively expect that the oscillation period would be

shorter for a higher temperature since all reaction would simply speed up and vice versa.

There must be some mechanism that allows the genetic network to keep the period constant

when T is raised.

Recent experimental research shows that the frq gene plays an essential role in the tem-

perature response of the biological clock of Neurospora crassa. While the wild type strain of

Neurospora crassa could be entrained to external ambient temperature cycles, the frq-null

mutant strain, in which the frq gene is either deleted or disabled, could not truly entrain

to the same cycles. The frq gene and its derivatives, i.e., frq mRNA and FRQ protein, are

then believed to be the central components of the temperature response mechanism in the

Neurospora circadian clock [49].

Liu and Dunlap et al. [47] first proposed a complementary response of two FRQ isoforms

that give temperature stability at different temperatures separately. They suggested that

there exists temperature sensitive translational control of the production of the main oscil-

lator protein FRQ, which results in the two isoforms (i.e., different proteins produced from

the same gene and the same RNA) of FRQ: FRQ1−989and FRQ100−989. There is experimental

evidence showing that they have similar function but different behavior. Either form of FRQ

is able to support circadian rhythmicity independently. But the longer isoform (FRQ1−989)

generates a shorter period than the shorter isoform FRQ100−989 does. And the long FRQ1−989

is relatively more abundantly produced at a higher temperature, while the short FRQ100−989

is relatively more abundantly produced at lower temperature [47]. They are produced through

alternative in-frame initiation of translation. This competing initiation translational control

then forms the proposed mechanism of temperature compensation. Liu’s report, coming with

rich experimental data, described this hypothesis only qualitatively. Akman et al. [50] created

a toy model to represent this hypothesis, but they did not seriously reconcile their model
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with the data. We then decided to combine this interesting mechanism with our identified

model in Figure 1.2. The modified genetic network is shown in Figure 5.1.

Different hypotheses have also been proposed to explain how the frq gene and products

are related with the temperature compensation mechanism. A second hypothesis is given

by Ruoff and Dunlap [51] saying that there is a careful balancing of rate coefficients to

yield temperature compensation, which is then a property of the clock network and involves

an antagonistic balance of different reactions. A third hypothesis proposed by Hong and

Tyson [52] on the contrary considers antagonistic balance extremely unlikely. Rather they

develop a simple model in which some of the rate coefficients are temperature-dependent by

analogy to a mechanism they proposed for the cell cycle. Brunner and Dunlap et al. [53] have

developed a fourth hypothesis that the splicing in Introl 6 of FRQ during the transcription

of frq mRNA is temperature dependent and may contribute to temperature compensation.

This is an alternative mechanism to Liu’s original hypothesis of the generation of two FRQ

isoforms.

5.2 A Primary Model of the Alternative Initiation Translational Control

The proposed competing initiation of the translational control process are illustrated in

Figure 5.2. Multiple ribosomal subunits, including 40S and elF2.GTP.Met-tRNAi (for short

denoted by “E” below), must assemble on the frq mRNA to form a fully functional ribo-

some, before translation can begin at translation initiation sites (TIS) AUG#1 or AUG#3,

respectively. First, 40S, from the solution in the cytoplasm attaches itself at the binding

site A and scans along the frq mRNA in the 5’-to-3’ direction. If the 40S captures E from

solution, with a certain probability, before reaching AUG#1, the long isoform FRQ1−989 will

be produced by translation starting at AUG#1; if 40S captures E after passing AUG#1, but

before reaching AUG#3, the short isoform FRQ100−989 gets produced; if 40S doesn’t capture

anything before reaching AUG#3, nothing gets produced.



59

Figure 5.1: Genetic network diagram of the alternative initiation translation con-
trol model. Comparing with the original model in Figure 1.2, the only difference in the dia-
gram in Figure 5.1 is the two isoforms of FRQ protein in parallel. The alternative translation
reactions are emphasized by red arrows. “FRQ Long” represents FRQ1−989 and “FRQ Short”
represents FRQ100−989. The subscript L or S, e.g., in PS, mean the reaction is related to the
“Long” or “Short” isoform respectively.
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Figure 5.2: Schematic of frq mRNA translation into two FRQ isoforms. A is the 40S
attachment site at the 5’-end of the mRNA strand; AUG#1 labels Long isoform translation
initiation site; AUG #3 labels Short isoform translation initiation site; “Ending”: Translation
termination site for both isoforms at the 3’-end of mRNA strand. “=” in the graph means
an mRNA site (base pair A, C, G, or U ).
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A mathematical model describing this mechanism of alternative translation initiation

can be set up by treating the formation of the 40S-E complex as a Poisson event. Suppose

the 40S ribosomal subunit attaches on the frq mRNA strand at site A with a probability

kA (i.e., the 40S-A-attachment reaction rate coefficient), and denote the probability of 40S

grabbing a ribosomal subunit E while residing at some site on the mRNA strand as p, so

the probability of 40S moving to the next site without capturing an E unit is q = 1 − p.

Thus according to the Poisson process, the possibility of 40S capturing an E subunit after

it moves exactly l steps, is

Pl = ql(1− q),

where l = 0,1,..., counting from A. So the probability that the capture happens in no more

than l steps (i.e., exactly l steps or less) is

Pk6l =
l∑

k=0

Pk = (1− q)
l∑

k=0

qk = 1− ql+1 = 1− (1− p)l+1,

where k is the number of steps that it takes 40S to capture an E unit. Similarly, the probability

of 40S capturing the E unit after moving l1steps but no more than l2 steps (l1 6 l2) is

Pl16k6l2 =

l2∑

k=l1

Pk = (1− q)

l2∑

k=l1

qk = (1− q) · ql1

(l2−l1)∑

k=0

qk = ql1+1 − ql2+1, (5.2)

or, we can write Eq. 5.2 as

Pl16k6l2 = [1− (1− p)l2+1]− [1− (1− p)l1+1] = Pk6l2 − Pk6l1 . (5.3)

Since the translation of the long isoform FRQ1−989 requires the 40S to capture the E unit

before it arrives at initiation site AUG#1, the net production rate coefficient of FRQ1−989 is

kL = kA[1− (1− p)L], (5.4)

where kA is the 40S-A-attachment reaction rate coefficient, and L = 1420 is the site number

of AUG#1, counting site A as the first one. Similarly, the net production rate of the short

isoform FRQ100−989, which requires the capture to happen between AUG#1 and AUG#3, is
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kS = kA[(1− p)L − (1− p)S] (5.5)

where S = 1720 similarly is the site number of AUG#3.

Both kA and p describe elementary reaction steps and, therefore, likely follow the Arrhe-

nius Law Eq. 5.1, i.e., kA = kA0 exp(−∆EA/T ) and p = p0 exp(−∆Ep/T ). In this manner

the temperature dependence of the complicated mRNA scanning and isoform production

process can be modeled by only 4 additional unknown thermal parameters: the activation

energies, ∆EA and ∆Ep, and the pre-factors kA0 and p0.

The same Poisson kinetics approach as described above can also be used to model the

temperature dependence of other translation reactions and of the transcription reaction

caused by alternative initiation, with or without isoforms. Other reactions shown in the

network in Figure 5.1 are elementary and can be modeled by a conventional Arrhenius law.

However, it is noted that we don’t have all reactions modeled by Arrhenius law to keep

this primary model as simple as possible for easy fitting. Therefore, for the genetic network

shown in Figure 5.1 featured with the alternative initiation translational control, we only

add the above 4 more unknown parameters to this model for the temperature dependence

comparing with our previous light-responsive model in Figure 1.2. If this model works, the

genetic network model shown in Figure 5.1 would be a complete biological clock model with

three most important features of a biological clock: circadian rhythmicity, light response and

temperature response.

5.3 Ensemble Fitting of the Temperature Response Model with Wild Type

Data

An ensemble fitting has been performed using the genetic network in Figure 5.1 featuring the

alternative transcription initiation mechanism above (shown in Figure 5.2). The experimental

data are obtained from experiments performed on wild type strains of Neurospora crassa in

the dark under 6 different temperatures (18�, 20�, 22�, 25�, 27� and 30�) published
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by Liu et al. [47]. At the same time, part of literature microarray data were also included

to constrain the model to still keep the correct light-response behavior while developing the

new temperature-response feature.

Since the genetic network model is a slightly modified version of our light-responsive

model shown in Figure 1.2, we initialized the reaction rate coefficients based on our previous

fitting results using this model [13]. The prefactor kA0 was initialized with the same value

of L3 in Figure 1.2, and the initial value of the activation energy ∆EA, in units of Kelvin

temperature (so is ∆Ep), was chosen to be the room temperature, 298.15K. This initial setup

of kA0 and ∆EA, together with other reaction rate coefficients directly from the old model

in Figure 1.2, mathematically made the new model have an easy start in an equivalent point

in the θ space to the already well fitted light responsive model.

The initial value of another activation energies, ∆Ep, and the pre-factors p0 were chosen

such that the value of p = p0 exp(−∆Ep/T ) has the same order of magnitude as 1/L,

i.e.,1/1420 ∼ 10−3. This therefore ensured the values of both 1−(1−p)L and (1−p)L−(1−p)S

to be reasonable , i.e., both values should not be too small to be numerically calculated.

That is to say, physically, we want to be assured that the amount generated for both isoforms

of FRQ would be at comparable levels. This has been verified by experimental data, that

the ration of FRQ1−989 and FRQ100−989 has the same order of magnitude of 1 [47].

The fitting results are shown in Figure 5.3. The discrete dots represent the experimental

data, and the curve is the ensemble averages with ±2 SD showing by the gray band, all

expressed in decadic log-concentration. The predictions by the model ensemble are in pretty

good agreement with the experimental data over the whole temperature range. So we can

conclude that our new light- and temperature- responsive model is sufficient to explain these

published profiling data generating by wild type strains.

The ensemble fitting results of the 4 newly added parameters are summarized in Table

5.1 with the ensemble averages and the ensemble SDs listed. It is easy to verify that p =

p0 exp(−∆Ep/T ) has the order of magnitude of 10−3 over the temperature range used here
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Figure 5.3: A model ensemble for the genetic network in Figure 5.1 predicts the
profiling data of wild type N. crassa. The strains were grown in the dark under 6
different temperature. The discrete dots represent the experimental data, and the curve is
the ensemble averages with ±2 SD showing by the gray band, all expressed in decadic log-
concentration. The predictions by the model ensemble are in pretty good agreement with
the experimental data over the whole temperature range.
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Table 5.1: The model ensemble predictions for the 4 parameters key to the alter-
native initiation translation mechanism in Figure 5.2 < X > is the ensemble average
and σ(X) is the ensemble SD defined same as before. The unit of ∆Ep and ∆EA is Kelvin.

X p0 ∆Ep ∆EA kA0

< X > 6.3108094E-01 2.2084690E+03 4.0160124E+02 6.5413293E+00

σ(X) 2.9876921E-02 1.4351865E+01 9.0030012E+00 1.9426574E-01

(18-30�). In Figure 5.4 (A), the predicted translation rate coefficients kL Eq. 5.4 and kS

Eq. 5.5 are plotted against temperature. The plots of kS have been moved vertically without

changing the scale for easy comparison. Both kL and kS increases with temperature, but kL

increases in a much faster manner. The kL/kS ratio in the Figure 5.4(B) shows this trend

more explicitly.

The translation ratio kL/kS alone cannot tell us how effectively each of these two isoforms

functions in the genetic network in degrading the WCC activator. We need to find some more

straightforward quantity to evaluate their performance in WCC degradation. It might be

intuitive to use the respective FRQ protein concentration of these two isoforms, since [FRQ]

is directly related to the P-reaction which results in the negative feedback loop. However

it is not sufficient to use the concentration [FRQ], because the WCC degradation rate also

depends on the P-reaction rate coefficients (PL and PL for the long isoform and short isoform

respectively), and these P-reaction rate coefficients are randomly varied in the MC random

walk, along with the random variations of the concentration [FRQ]. Further more, the MC

random walk during the ensemble simulation randomly varies certain scale factors, i.e., in

effect it randomly changes the units in which concentration is measured. Both the FRQ

concentration and P-coefficient values depend on that random choice of scale factors.

Thus we define a scale free quantity PX [FRQX]m[WCC] (where X =L or S, and the coop-

erativity m=4, refer to Figure 5.1). It is a quantity that is not affected by the random unit
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Figure 5.4: The alternative translation mechanism makes kLincreases much faster
than kS with temperature. (A) is the predicted value of kL and kS vs. temperature,
respectively. (B) is the ratio kL/kS plotted against temperature. All values are calculated
with the model ensemble predictions listed in Table 5.1. Variation is estimated assuming the
4 parameters are independent. The lines shown in the graph are auxiliary lines connecting
data points.
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Figure 5.5: The ratio of the scaling free quantity PX[FRQ]m[WCC] of the two FRQ
isoforms is plotted against the ambient temperature. The model ensemble predicted
scaling free quantity measures the efficiency of the FRQ protein in the P-reaction. Error bar
is ensemble SD. At the low end of 18�, the ratio is smaller than one, indicating that at
lower temperature the shorter isoform is more efficient than the longer one. The lines shown
in the graph are auxiliary lines connecting data points.



68

Table 5.2: Temperature coefficient Q10 is calculated using 30� as reference tem-

perature. Q10 := (P1

P2
)

10
T1−T2 , where T2 here is the reference temperature 30� and P2 is the

corresponding period at 30�. The unitless quantity Q10 here measures the rate of change
of period in the biological clock of N. crassa for every 10� rise in the temperature. All
Q10 values are closed to but smaller than 1, indicating the period is stable and only slightly
decreased (i.e., shortened) with temperature rises.

T1 18� 20� 22�
Q10 0.9852 ± 0.0074 0.9058 ± 0.0043 0.9472 ± 0.0300

T1 25� 27�
Q10 0.8222 ± 0.0188 0.7662 ± 0.0283

scaling used in the ensemble approach and thus allows meaningful comparisons. It directly

measures the “power” or “efficiency” of FRQ1−989 and FRQ100−989 in the P-reaction in Figure

5.1, respectively, by calculating the scale-independent reaction rate of the P-reaction. The

plot of an ensemble average of this ratio of the two quantities against the temperature is

shown in Figure 5.5. It proves again that the long isoform FRQ1−989 increases faster with

temperature. However, it should be noted first of all that the ratio is close to 1 at all temper-

atures, which reveals a much smaller difference between the performance of the two isoforms

than what is found by the translation ratio kL/kS. Furthermore, it is clear that at the low

temperature end of 18�, the ratio is smaller than 1, meaning that the shorter isoform does

play a more important role in the biological clock at the lower temperature.

Figure 5.6 shows the model ensemble prediction of the period of the biological clock

under different temperatures. It can be seen that they remain relatively stable and fluctuate

in a narrow range of ∼21-24 hours, which is consistent with the concept of temperature

compensation. This is more clear with the calculated temperature coefficient Q10 listed in

Table 5.2. Q10 is a unitless quantity that measures the rate of change of a certain quantity

(e.g., reaction rate) in a biological or chemical system for every 10� rise in the temperature.
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Figure 5.6: The period of the biological clock at 6 different temperatures over a
range of 10� remains stable The values of period are obtained from the fitted model
ensemble average in Figure 5.3. They remain stable with slight fluctuation in the range of
21-24 hours.
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The closer the Q10 values are to 1, the stabler the measured quantity is with temperature

change. In Table 5.2, Q10 is calculated with 30� as the reference temperature. All Q10

values are closed to but smaller than 1, indicating the period is stable and only slightly

decreased (i.e., shortened) with temperature rises.

5.4 Mutant Type Data: Discrepancies and Possible Solutions

Although the Figure 5.3 shows that the ensemble of models identified for the genetic network

in Figure 5.1 gives a good fit to the experimental data of wild type strain of Neurospora

crassa, discrepancies show up when we move on to the mutant type experiments under the

same 6 different temperatures. Liu’s experimental work [47] shows that, if either one of

the two initiation sites is disabled, the resultant mutant strains will behave differently than

before. The AUG#1 mutant (i.e., AUG#1 is disabled) generates only the short FRQ100−989,

which results in the elimination of the rhythmicity at temperature near the high end of the

physiological temperature range. In contrast, the AUG#3 mutant generating only the long

FRQ1−989, results in the elimination of the rhythmicity at the low end of the physiological

temperature range. This at first seems quite easily explained by our model in Figure 5.1 and

Figure 5.2, since the analysis above shows that the short isoform has a lower translation rate,

but it is relatively more efficient at lower temperature. The longer isoform FRQ1−989 is less

efficient at the lower end than the shorter one.

However, it must be noticed that, once one of the initiation sites is deleted or disabled,

the alternative initiation translation mechanism at once degenerates into the same Poisson

model with only one initiation site which is just located at different positions on the frq

mRNA strain. What’s more, the two sites are very close to each other, considering that

L=1420 and S=1720 are the same order of magnitude. Therefore, the behavior with respect

to the temperature change of the two mutant types should be very similar to each other.

This makes it quite difficult to explain the different response that the short FRQ-protein

would work at low temperature end but fails at the high end, while the long isoform works at
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high temperature end and fails at the low end. Liu explained this by qualitatively and very

briefly stating that there might be a threshold of the concentration of FRQ [47]. However,

our continuous failures of fitting the two mutant experimental data disprove this possibility,

since the genetic network in Figure 5.1 automatically contains the requirement of appropriate

concentration of FRQ to serve as the input of P-reaction. There must be other reasons, or

say mechanisms, to explain the different responses of the two isoforms of the FRQ proteins.

This motivates us to again look at the genetic network in Figure 5.1 more carefully. The

only differences among those parameters that relate to the two FRQ isoforms, besides the site

position of the translation reaction, are the decay reaction rate coefficients and the P-reaction

coefficients. And as the key component of the genetic network that gives the negative feedback

loop, the P-reaction affects the rhythmicity of the clock most directly. What if the P-reaction

is also temperature dependent? The two isoforms of FRQ protein with different length are

very possible to have different properties with respect to the ambient temperature changes,

as temperature changes could affect their folding differently. In fact, a recent report from

Mehra and Dunlap [54] also notices this problem. They suggest the temperature dependence

of the P-reaction is an additional factor to the alternative translation mechanism that Liu

has reported [47]. Based on the above idea, two possible modifications of the model in Figure

5.1 are proposed for future work. We are going to introduce them below, respectively.

5.4.1 Independent P-Reaction Rate Coefficients Model

This solution to modeling the mutant data is a very simple idea. It is more like an empirical

solution which simply allows the rate coefficient of the P-reaction to be varied independently

under each temperature for each isoform, instead of having a fixed rate coefficient for all

temperature and for both isoforms as what we are doing right now. This gives extra degrees

of freedom for each isoform and allows them to develop different behavior under different

temperatures. No physical or mathematical model is considered at this stage, however. If all

the mutant type experimental data could be fitted in this way, the two groups of ensemble
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predictions of the P-reaction rate coefficients for each isoform can be listed out and plotted.

It is natural to expect that they would show different behaviors with respect to temperature.

Possible model fitting could be proposed afterwards.

Then we introduce 6 x 2=12 new parameters in total into the model. This fitting is

still underway. Currently, the AUG#3 mutant with only long isoform has been fitted at

higher temperature end of 25�and 27�. It is reasonable to have these two fitted since it is

equivalent to our previous light responsive model in Figure 1.2.

5.4.2 Multi-State FRQ proteins Model

This model starts from the fact that different protein folding and shaping, corresponding

to different energy status, should have different behavior in the translation reactions. Thus,

suppose in order to take part in the P-reaction, there is an energy threshold for the protein.

For the short isoform, its energy must be lower than this threshold (otherwise it changes

folding shape and is deactivated); similarly for the long isoform, its energy should be higher

than this threshold. Let’s first concentrate on the situation of the shorter isoform. Suppose

there are Nl possible energy levels below the threshold and Nh above it. And for simplifica-

tion, we assume the Nl lower energy levels are degenerate with the energy El, and the other

Nh higher status are degenerate and the energy is Eh. So, the probability ratio to find a

FRQ protein in the lower energy level and in the higher energy level is

Pl

Ph

=
Nl

Nh

exp(−El − Eh

RT
).

Notice that Pl + Ph = 1, let N denote Nh

Nl
. It is easy to see N > 1; and ∆E = Eh −El where

∆E > 0. The probability of finding a FRQ protein at the lower energy level is

Pl =
1

1 + N exp(−∆E
RT

)
.

So for a shorter isoform FRQ, we need to take this Pl into account as a prefactor of the

P-reaction. This will introduce two more parameters N and ∆E. Similarly, the probability

of a long FRQ protein at higher energy level is
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Ph =
1

1 + 1
N ′ exp(∆E′

RT
)
,

where N ′ and ∆E ′are two more independent new parameters to be added in. It can be easily

seen that Ph and Pl do bring different temperature dependency for the two isoforms for the

FRQ proteins.

The work of ensemble identification of this model is beyond the scope of this dissertation.

These two new models discussed in this section will become the focus of future work.



Chapter 6

Conclusion

Throughout the work in this dissertation, genetic networks consisting of bio-macromolecules

and their interactions, have been used as a powerful framework for the quantitative descrip-

tion of the structure and dynamics of a biological system. Being built from a currently

limited biology knowledge database, genetic network modeling usually starts with an incom-

plete topology as well as plenty of unknown parameters, even if the targeted biological

systems have already been completely sequenced and well studied, e.g., like the biological

clock of Neurospora crassa. Competing multiple hypotheses of genetic networks for a biolog-

ical system reflect the incompleteness of experimental information. To test these hypotheses

and identify a precise model for a genetic network of high degree of parametric freedom is

a real challenge, considering the limited availability, high cost and large quantitative uncer-

tainties of the biological experimental data. There needs to be a decision-making algorithm

to suggest theoretically a next experiment that reduces most effectively the ambiguity in

the network hypotheses [4]. The Computing Life paradigm introduced in this dissertation

is such a novel iterative model-driven discovery process. This new methodology combines

experiments seamlessly with computational experimental data fitting and theoretically best,

or more precisely, maximally informative next experiment (MINE) design. The iterative pro-

cess accumulates maximal information in each cycle and thus improves the discrimination

between competing models and the precision of the model thereby identified.

The computational experimental data fitting method used in the Computing Life

paradigm is the ensemble approach which has successfully identified an ensemble of oscil-

lating network models quantitatively consistent with available RNA and protein profiling

74



75

data on the N. crassa clock [14]. The philosophy of searching for an ensemble of models is

the essential idea here, since it is not possible to identify a unique model. The Metropolis

algorithm, a Markov chain Monte Carlo method, is used to generate a large number of

data-compatible models, all of which are treated as possible model candidates to represent

our ensemble. Model parameters are estimates over the whole ensemble as ensemble averages

and ensemble standard deviations. This approach is of great advantage when dealing with

systems of a high degree of parametric freedom that are poorly constrained due to a lack

of information from the data. The goodness of fit is evaluated by chi-square statistics with

respect to the data, which also provides an effective criterion to compare and discriminate

between different network hypotheses. The effectiveness of this approach has been verified

throughout the three cycles of Computing Life for the biological clock. Both the precision of

prediction and the ability of model comparison increased with the cumulative information

from the data.

The MINE design is built upon the model ensemble formalism and it is the central part

of this Computing Life paradigm: it provides a practical systems biology decision-making

algorithm. The criterion used in the MINE approach is to maximize the independence of any

pair of data points in observations to be done, based on the predictions made by the current

model ensemble. Therefore, it compares between different choices of the next experiment

U and tries to increase as much as possible the scope of observation (V(U))in the next

experiment instead of precision of a single observation. For the biological purpose of “mining

clock-controlled genes in the genome of N. crassa”, after three cycles,from 4380 N. crass

genes 295 such genes were selected that show meaningful biological significance [13]. At

the same time, as we have mentioned above, the precision of the model ensemble is also

improved. In cycle 1, the MINE choice of the initial observation time and the observation

time spacing conforms to the conventional experimental practice [11]. The second MINE

application in cycle2, suggests light exposure experiments with a 48hr artificial day, and it

also motivated us with a short 6hr-day of light response experiment, which is usually avoided
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by researchers [25], to examine the additional auto-feedback loop. In cycle 3, experiments

designed to perturb WCC protein levels, the MINE-recommended knocking down of wc-

1 does not seem to be an obvious conventional choice, but the subsequent wc-1 knock-

down experiment successfully identified 328 clock-controlled genes and thereby validated

this choice.

It must be noted that the selection of the next experiment U in fact is delimited by the

specified biological goal, e.g., the ccgs mining, which ultimately leaves the choice of what

kind of set of next experiments to be performed in the hands of the experimenter. The

MINE approach guides the design of the next experiment; on the other hand, the particular

biological goal defines which detailed specific set of possible experiments it should choose

from. One could naively make the biological goal the completely unconstrained objective of

learning the most about the genetic network to instruct the MINE criterion, but then the set

of possible experiments would become too large to actually realize the optimal experiment

computationally. By specifying a particular biological goal, the design questions are then put

into a more detailed and confined context and this makes it possible to parameterize and

optimize the next experiment.

We finally also utilized the ensemble approach to study a model expansion which describes

temperature compensation behavior of the biological clock. This is the first time in systems

biology that a complete biological clock model has been identified with all three basic func-

tions: circadian rhythm in the dark, light response and temperature compensation. The main

feature of this expanded model is to allow for alternative translation initiation control of the

FRQ protein that results in two FRQ isoforms with similar function but different temper-

ature response. The ongoing project has successfully found an ensemble of models that is

consistent with the experimental data from the wild type organism. However further sim-

ulations with mutant data show the incompleteness of this expanded model. They suggest

the necessity to make the activator-degrading P-reaction (in Figure 5.1) have different tem-

perature dependence for the two isoforms. Latest experimental data are consistent with this
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idea [54]. Two possible model modifications have been developed to capture this differential

temperature response of the P-reaction. These new models will be the focus of future work.

In conclusion, we have developed Computing Life as a novel model-driven iterative work-

flow process which fully integrates experimentation with a powerful new decision-making

and modeling algorithms for systems biology. For the first time in systems biology, a biolog-

ical clock model with both light response and temperature compensation features has been

identified with this new approach, based on the wild type data.
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