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ABSTRACT 

Many stakeholders concur that secondary teacher preparation programs should include 

study of abstract algebraic structures, and most certification programs require an abstract algebra 

course for prospective mathematics teachers. However, research has shown that undergraduate 

students struggle to understand fundamental concepts and, upon completion of the course, are 

unable to articulate connections between abstract algebra and secondary school mathematics. 

This three-part study involved a textbook analysis, the creation of a comprehensive connections 

list, and a series of expert interviews. In the textbook analysis, I examined nine introductory 

abstract algebra textbooks to elaborate the mathematical connections that authors explicitly 

mentioned between concepts found in abstract algebra and secondary school mathematics. I 

identified any potential connections made in the text, categorizing them according to five types: 

alternative or equivalent representations, comparison through common features, generalization, 

hierarchical relationship, and real-world application. I then interviewed 13 mathematicians and 

mathematics educators involved in abstract algebra teaching and research to understand how they 



  

  

describe connections between abstract algebra and secondary mathematics. Participants’ 

descriptions of connections reflected their experiences with the secondary curriculum and 

differed according to their individual conceptualizations of abstract algebra. That is, participants 

prioritized different sets of connections based on their views of abstract algebra. Identifying and 

characterizing the connections between abstract algebra concepts and secondary school 

mathematics concepts offers abstract algebra professors, in particular, additional knowledge that 

can be used to enhance undergraduate students’ understandings of abstract algebra in addition to 

providing the vocabulary to discuss these connections. 
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CHAPTER 1: RATIONALE FOR MATHEMATICAL CONNECTION STUDY 

Educational committees and professional organizations concur that secondary teacher 

preparation programs should include the study of abstract algebraic structures (Leitzel, 1991; 

National Council of Teachers of Mathematics [NCTM], 2000; Conference Board of the 

Mathematical Sciences [CBMS], 2001, 2012). Moreover, NCTM (2001) described the subject 

matter taught in abstract algebra as an “essential component of contemporary mathematics” (p. 

1). Consequently, most certification programs currently require a course in abstract algebra for 

all prospective secondary mathematics teachers. Despite its overall importance to mathematical 

learning, however, undergraduate and graduate students encountering the subject for the first 

time often struggle and fail to comprehend many of the fundamental concepts of this course 

(Dubinsky, Dautermann, Leron, & Zazkis, 1994; Leron & Dubinsky, 1995). In fact, Leron and 

Dubinsky (1995) declared that both professors and undergraduate students view the teaching of 

abstract algebra as a disaster. If abstract algebra is such a valuable course, why has it proven to 

be so difficult to learn and teach in a meaningful way? 

Mathematical Connections 

As a mathematics educator, I assume that mathematical connections between concepts 

and unifying themes can help students understand mathematics. NCTM (2000) affirmed the 

importance of mathematical connections: “Thinking mathematically involves looking for 

connections, and making connections builds mathematical understanding. Without connections, 

students must learn and remember too many isolated concepts and skills” (p. 274). Thus, the 

connection standard asserts that mathematics educators should provide students with 
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opportunities to “recognize and use connections among mathematical ideas, understand how 

mathematical ideas interconnect and build on one another to produce a coherent whole, and 

recognize and apply mathematics in contexts outside of mathematics” (p. 64). NCTM noted that 

these connections should be made explicit to students so that they may be aware of the 

connections to increase their mathematical understandings. Similarly, Carpenter and Lehrer 

(1999) affirmed that students’ understanding of a concept is limited when mathematical 

connections are not made, because each mathematical concept is developed in isolation. 

Unfortunately, however, Zazkis and Leikin (2010) revealed that beginning undergraduate 

students experience great difficulty when starting their undergraduate mathematics courses 

because of their inabilities to build connections between these courses and the secondary school 

mathematics curriculum: 

Without connections students have to rely on their memory only and to remember many 
isolated concepts and procedures. To connect mathematical ideas means linking new 
ideas to related ideas considered previously and solving challenging mathematical tasks 
by thinking how familiar concepts and procedures may help in the new situations. (p. 
275) 
  

These students’ mathematical understandings are hindered because mathematical ideas are 

learned in isolation without recognizing the coherent nature of mathematics. 

Furthermore, the first CBMS (2001) report on the mathematical education of teachers 

acknowledged, “Unfortunately, too many prospective high school teachers fail to understand 

connections between [abstract algebra and number theory] and the topics of school algebra” (p. 

40). Cofer (in press) confirmed this assertion when she considered how prospective secondary 

mathematics teachers communicate the conceptual connections between abstract algebra and 

their teaching practices. She discovered that prospective teachers were unable to link the two 

despite having just finished an abstract algebra course. Bukova-Güzel, Ugurel, Özgür, and Kula 
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(2010) conducted a similar study in Turkey in which prospective secondary mathematics 

teachers could not communicate any connections between their undergraduate courses and the 

secondary school mathematics curriculum. Further, Cook (2012) asserted that the difficulties 

students have in learning abstract algebra are due to the lack of established connections between 

abstract algebra and school algebra. He affirmed that prospective teachers “do not build upon 

their elementary understandings of algebra, leaving them unable to communicate traces of any 

deep and unifying ideas that govern the subject” (p. xvi). As the research literature shows, the 

content connections between abstract algebra and school mathematics perceived by researchers, 

professional organizations, and educational committees are often not realized by prospective 

secondary mathematics teachers. Therefore, one characteristic of the teaching and learning of 

abstract algebra that might help students use abstract algebra in their teaching would be explicitly 

identifying the mathematical connections between that course and school mathematics. 

The central theoretical lens for this study was the notion of a concept image (Tall & 

Vinner, 1981; Vinner, 1983). Tall and Vinner (1981) defined concept image as “the total 

cognitive structure that is associated with the concept, which includes all the mental pictures and 

associated properties and processes” (p. 152). A concept image can be thought of as a cognitive 

network of mathematical connections between ideas. A concept definition is then the “verbal 

definition that accurately explains the concept in a non-circular way” (Vinner, 1983, p. 293). A 

person’s concept definition would then be the verbal description of his or her personal 

reconstruction of the concept image. Often, however, a person’s concept definition does not align 

with the formally accepted mathematical definition. Therefore, it is vital for students to 

recognize the mathematical connections between mathematical ideas to construct accurate 

concept definitions.  
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Importance of School Algebra and Abstract Algebra 
 

Abstract algebra is a generalization of school algebra in which the variables can represent 
various mathematical objects, including numbers, vectors, matrices, functions, 
transformations, and permutations, and in which the expressions and equations are 
formed through operations that make sense for the particular objects: addition and 
multiplication for matrices, composition for functions, and so on. (Findell, 2001, p. 9) 
 
Algebra has been a focal point of mathematics education research and curriculum reform 

movements over the past several decades (Kaput, 1998; NCTM, 2000; National Governors 

Association Center for Best Practices & Council of Chief State School Officers [NGA & CCSS], 

2010). Given the fact that algebra is a chief entry point to higher levels of mathematics, the 

subject has acted as a gatekeeper for many by preventing students from future academic success 

and employment opportunities (Kaput, 1998; NGA & CCSS, 2010; National Research Council 

[NRC], 1998). As a result, many educators have argued that algebra should be integrated into the 

school mathematics curriculum at an earlier age, playing a more prominent role in all grade 

levels (e.g., Carpenter, Franke, & Levi, 2003; Kaput, 1998; Kieran, 1992). In fact, the NCTM 

(2000) asserted that if algebra is viewed as a strand of mathematical thinking throughout the 

Grades K–12 curriculum, then “[elementary school] teachers can help students build a solid 

foundation of understanding and experience as a preparation for more-sophisticated work in 

algebra in the middle grades and high school” (p. 37). These recommendations recognize the 

importance of the development of algebraic thinking in children and young adults. 

The importance of abstract algebra lies in the opportunities it allows prospective 

secondary mathematics teachers to develop accurate concept images and concept definitions 

(Tall & Vinner, 1981) that help them explain and unite concepts found in school mathematics, 

which can include concepts found in school algebra as well as school geometry. For instance, 

Gallian (1990) explained the importance of abstract algebra because it exposes undergraduate 
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students to the “terminology and methodology of algebra” (p. xi). Exploring terminology such as 

identity, inverse, commutativity, and equivalence is often common practice in an abstract algebra 

course, enabling students, including prospective secondary mathematics teachers, the 

opportunities to develop deeper conceptual understandings of these concepts. Findell (2001) 

asserted: 

When the population of students in an abstract algebra course includes future teachers 
(which may be almost always), these big ideas, such as inverse and identity, are 
particularly important because they can help teachers connect advanced mathematics with 
high school mathematics in ways that can strengthen and deepen their understandings of 
the mathematics they will teach. (p. 13) 
 

Using precise mathematical language is vital to prospective secondary mathematics teachers as 

they attempt to communicate and teach their future students school mathematics. Furthermore, 

Papick, Beem, Reys, and Reys (1999) suggested that abstract algebra enables students to 

experience “a rigorous examination of arithmetic properties in various algebraic structures [that] 

deepens the understanding of traditional arithmetic and accentuates the importance of axiomatic 

mathematics” (p. 306). The results of such a rigorous examination ideally provide prospective 

secondary mathematics teachers opportunities to develop more solidified conceptual 

understandings of school arithmetic and algebraic structures and properties found in the 

curriculum. The benefits of an abstract algebra course described by previous research parallel the 

Common Core Standards for Mathematical Practice by encouraging students to “attend to 

precision,” “look for and make use of structure,” and “reason abstractly” (NGA & CCSS, 2010). 

Prospective secondary mathematics teachers do not, however, access the full benefits of 

learning abstract algebra when mathematical connections are not recognized between abstract 

algebra and secondary school mathematics. The failure to recognize such connections 

undermines the purpose of that course and thus represents a significant problem in collegiate 
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mathematics education. For this reason, something must be done to help abstract algebra students 

recognize and construct mathematical connections to other mathematical ideas. Additional 

research must be conducted to identify and describe these connections so that students can be 

made explicitly aware of them. In the remainder of this chapter, I explain the research questions 

and how my research study began to address these concerns.  

Research Questions 

Although several research studies have focused on the teaching and learning of abstract 

algebra, little research has been done on the mathematical connections between abstract algebra 

and school mathematics. Given that the importance of the undergraduate course in abstract 

algebra for teacher preparation programs is often explained by the course’s ability to 

theoretically rationalize as well as unite school mathematics concepts, providing the research to 

explicitly outline these mathematical connections is important. Therefore, I formulated the 

following research questions in an effort to make these connections between school mathematics 

and tertiary abstract algebra more explicit:  

1) What mathematical connections are explicitly stated between abstract algebra and 

secondary school mathematics in abstract algebra textbooks, and how are these 

connections discussed?  

2) Which mathematical connections between abstract algebra and secondary school 

mathematics do mathematicians and mathematics educators identify, and how do they 

describe them?  

Purpose of This Study 

The purpose of investigating the mathematical connections between abstract algebra and 

school mathematics was complex. First, in this study, I accepted the rationale that abstract 
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algebra should be a requirement of teacher preparation programs and thus it should aim to align 

abstract algebra concepts to the secondary school mathematics curriculum. The results from this 

research further illuminated the content connections between abstract algebra and secondary 

school mathematics. The more thorough examination of such ideas can cultivate more accurate 

concept images and concept definitions within prospective mathematics teachers. Second, 

practicing secondary mathematics teachers may also find the detailed mathematical connections 

beneficial in providing a theoretical explanation for certain topics of school mathematics that 

would ultimately enhance their students’ learning. Professional development programs for 

secondary mathematics teachers, in particular, can be organized around these results by explicitly 

discussing these connections. Third, identifying and characterizing such connections can serve as 

a teaching supplement for abstract algebra professors who may not have considered the 

secondary school mathematics curriculum in their teaching. This knowledge can then be used to 

enhance undergraduate students’ understandings of abstract algebra by providing the vocabulary 

to discuss these connections. The results of this study further the existing research on the 

teaching and learning of abstract algebra by suggesting new ways to think about teaching and 

learning the course.  

The following chapter reviews the relevant literature on the teaching and learning of 

abstract algebra. I then discuss the different definitions of mathematical connections found in 

literature. Lastly, I elaborate on the limited amount of existing research directly addressing 

mathematical connections identified by undergraduates, primarily prospective secondary 

mathematics teachers, in tertiary mathematics. 
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CHAPTER 2: LITERATURE REVIEW 

The purpose of this chapter is to summarize and critique literature relevant to the research 

questions. In the first section, I discuss research concerning the teaching and learning of abstract 

algebra. Next, I explain several different perspectives of mathematical connections and discuss 

how these perspectives informed my definition of mathematical connections. In this section I 

also summarize the types of mathematical connections identified in previous research. Finally, I 

elaborate on past research directly addressing mathematical connections in tertiary mathematics.  

Teaching and Learning of Abstract Algebra 

Research on the teaching and learning of abstract algebra has indicated the conceptual 

understanding of undergraduate students in abstract algebra is less than satisfactory (Dubinsky et 

al., 1994; Hazzan & Leron, 1996). Leron and Dubinsky (1995) asserted that the teaching of 

abstract algebra is considered to be a failure by both professors and undergraduate students. As a 

result, many undergraduate and graduate students, including prospective teachers, struggle to 

grasp even the most fundamental concepts of this course (Dubinsky et al., 1994; Hazzan & 

Leron, 1996; Leron & Dubinsky, 1995). For many of these students, taking abstract algebra is 

the first time they experience a higher level of mathematical abstraction and formal proof. It is 

often the first tertiary course in which teachers expect students to “go beyond learning ‘imitative 

behavior patterns’ for mimicking the solution of a large number of variations on a small number 

of themes (problems)” (Dubinsky et al., 1994, p. 268). Nevertheless, it is widely acknowledged 

that abstract algebra is an essential part of undergraduate mathematical learning despite its high 

level of difficulty at the collegiate level (Gallian, 1990; Hazzan, 1999; Selden & Selden, 1987).  
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Even with the importance of learning abstract algebra, the known difficulties of the 

subject, and an increasing amount of research on the teaching and learning of tertiary 

mathematics, few studies concentrate solely on the teaching and learning of abstract algebra. In 

this section, I summarize past research on the teaching and learning of abstract algebra, which 

can be classified into three categories: teaching methods (Freedman, 1983; Pedersen, 1972; 

Thrash & Walls, 1991), student learning (Asiala, Brown, Kleiman, & Mathews, 1998; Brown, 

DeVries, Dubinsky, & Thomas, 1997; Leron, Hazzan, & Zazkis, 1995), and proof writing (Hart, 

1994; Selden & Selden, 1987; Weber 2001). Mostly, the literature review provides a synopsis of 

research in the first two categories; namely, teaching methods and student learning. A thorough 

investigation of that research clearly shows there is a limited amount of current research in the 

teaching and learning of abstract algebra. Furthermore, even less research exists about the 

mathematical connections between abstract algebra and school mathematics.  

Teaching Methods. In response to an early awareness of the difficulties students were 

having in learning abstract algebra, several researchers introduced alternative teaching methods. 

One of the earliest papers on teaching abstract algebra was Pedersen’s (1972) presentation of a 

learning activity that involved 10 paper equilateral triangles, which students folded in various 

ways to evolve the noncyclic 6-group. This hands-on, discovery-learning activity encouraged 

students to develop mental concept images and accurate concept definitions of the noncyclic 6-

group in a unique way. Similarly, Huetinck (1996) introduced the SNAP learning activity in 

which students initially rotated and translated an equilateral triangle on an overhead transparency 

sheet to explore all possible orientations to introduce basic group theory ideas. Students then 

used a nine-peg 3×3 square array board with three rubber bands to discover patterns through 

various reorientations of the rubber bands. Larsen (2004, 2009) utilized both permutations and 
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symmetries of an equilateral triangle and the SNAP learning activity to understand how students 

reinvent the concepts of group and group isomorphism.  

In his dissertation, Larsen (2004) detailed the development of the instructional design 

theory of Realistic Mathematics Education (RME) and guided reinvention, which allowed him to 

instruct students using discovery-based learning activities while also being able to analyze how 

those students thought about abstract algebra topics. These discovery-based learning activities 

endeavored to build upon students’ intuition and past mathematical knowledge to develop 

mathematical meaning of abstract concepts. For instance, Larsen (2004) described the learning 

activities in his dissertation, “In each teaching experiment, I started the process by having the 

students identify the properties common to all of the situations they had considered” (p. 133). 

Larsen and Lockwood (2013) then modified this work to explore students’ understanding of 

parity as it relates to quotient groups. Cook (2012) paralleled this approach in the teaching and 

learning of rings, fields, and integral domains. He found that through these discovery-based 

learning activities, the participants were able to develop mathematical connections between 

abstract algebra concepts. For instance, Cook noticed that both of the participants began to 

recognize a connection between the structural features of ℤ! and the modulus because of their 

similar features. He also noted,  

Starting with ℤ 𝑥 , both pairs of students were fully aware that the solution to the 
equation 𝑥 + 𝑎 = 𝑎 + 𝑏 would be largely the same as the previous solution. Specifically, 
in this case, the students were able to make a connection between the integers and 
polynomials over the integers. (p. 124) 

 
Through discovery-based learning activities, the participants in these studies were able to 

identify similar features and structures to develop mathematical connections between concepts. 

Freedman (1983) offered another approach to teaching abstract algebra in detailing a 

unique lecture-based method that gradually required students to take an active part in the 
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learning process through teaching. In this three-stage teaching method, students initially learned 

through traditional lecture. Then in the second stage, students were required to complete a 

project as well as do a little of the teaching. Finally, students were solely responsible to design 

objectives and prepare all lectures. Through this active participation in the teaching process, 

Freedman claimed the students in the study were able to gain a strong understanding of the topics 

by being able to clearly explain them to others in the class. Still other researchers (Brown, 1990; 

Czerwinski, 1994; Leganza, 1995) suggested the use of writing assignments in abstract algebra 

to enhance student involvement in learning. For instance, one of these assignments asked 

students to write about connections between a certain abstract algebra concept and real-world 

applications in order to make the abstract more concrete.   

Another technique found in the literature regarding the teaching of abstract algebra is the 

use of computers. Gallian (1976) first suggested using Fortran to investigate finite groups. More 

recently, Leron and Dubinsky (1994), in response to the findings of Dubinsky et al. (1994), 

introduced key ideas related to group theory through the use of the programming language 

ISETL. That program allowed students to construct an algebraic environment or structure with a 

set of axioms and properties in order to work through specific examples and problems. Hodgson 

(1995b) reported successful learning results of students using ISETL to learn abstract algebra. 

Similarly, Asiala, Dubinsky, Mathews, Morics, & Oktaç (1997) implemented the ACE teaching 

cycle (Activities, Class discussion, and Exercises), where students rotated in groups between 

classroom activities and computer activities using the language ISETL. Asiala, Dubinsky, et al. 

affirmed that through this teaching method students demonstrated deep understandings of cosets, 

normality, and subgroups by their performance on the two given tests and a final exam as well as 

participants’ responses during two sets of interviews.  



  

 12 

Student Learning. In studying student understanding and the development of abstract 

algebra concepts, researchers (Brown et al., 1997; Dubinsky et al., 1994) have used the APOS 

(Action-Process-Object-Schema) theoretical framework. APOS theory consisted of four major 

components: constructing mental actions, constructing processes, constructing objects, and 

organizing them in schemas. A mental action is a repeatable transformation of objects requiring 

step-by-step instructions to perform an operation either explicitly or from memory. When the 

mental construction has been reflected upon and interiorized, the action has turned into a 

process. From a process, an individual can construct an object by recognizing the 

transformations acting on the constructed process. Finally, a schema of a specific concept is 

developed through the process of organizing the collection of actions, processes, objects, and 

other schemas related to this concept in such a way that other problem situations involving that 

concept can be confronted.  

Dubinsky et al. (1994) utilized the APOS framework to understand high school teachers’ 

development of group theory during a six-week workshop. The results of a written assessment at 

the end of the workshop and a follow-up interview with ten selected participants showed that 

participants developed understandings of group and subgroup in a parallel manner and depended 

on past mathematical knowledge such as set and function. Dubinsky et al. wrote, “There are a 

number of specific instances in which what is understood relative to one concept was used in 

constructing new understandings of another” (p. 23). In a follow-up study, Brown, DeVries, 

Dubinsky, and Thomas (1997) examined how abstract algebra undergraduate students 

understood binary operations, groups, and subgroups while using the ACE teaching cycle with 

classroom activities and computer activities using the language ISETL. Based on the 

participants’ performance on three written exams taken throughout the course and their responses 
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during two sets of interviews, Brown et al. found that students had difficulty fully understanding 

groups and subgroups without a deep understanding of binary operations.  

In summary, much of the research affirms students’ difficulties in learning fundamental 

concepts in group theory (Asiala, Dubinsky, et al., 1997; Larsen, 2004, 2009; Leron, Hazzan, & 

Zazkis, 1995), with little concentration on students’ learning of other algebraic structures like 

rings or fields (Cook, 2012). Despite the overarching focus on discovery-based instructional 

approaches in the teaching of abstract algebra, none of the studies directly addressed the 

mathematics content connections between abstract algebra and school mathematics. Much of this 

research endeavored to build on students’ intuitions about mathematics without discussing one of 

the primary sources of that mathematical knowledge; namely, school mathematics. Furthermore, 

even though abstract algebra is considered to be “a generalization of school algebra” (Findell, 

2001), the explicit generalizations from school algebra to abstract algebra have not been 

thoroughly researched thus far.  

Mathematical Connections 

Prior to discussing the existing research about tertiary mathematical connections, it is 

important to define what is meant by mathematical connections. The Oxford English Dictionary 

(2014) defines a connection as “a relationship in which a person, thing, or idea is linked or 

associated with something else.” A mathematical connection could then be defined as a 

relationship between a mathematical idea linked or associated to another mathematical idea. 

Businskas (2008) and Singletary (2012) provided similar definitions for a mathematical 

connection as “a true relationship between two mathematical ideas, A and B” (Businskas, 2008, 

p. 18) and “a relationship between a mathematical entity and another mathematical or 

nonmathematical entity” (Singletary, 2012, p. 10). However, both researchers emphasized in 
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their work that the literature defines this relationship in different ways. For instance, some 

researchers viewed these connections as a characteristic of mathematics. Singletary (2012) called 

this perspective mathematical connections as a part of a connected discipline. Other researchers 

viewed mathematical connections as an artifact of student learning. Still another group of 

mathematics education researchers viewed mathematical connections as an active process of 

doing mathematics. In the following subsections, I examine all three perspectives in light of 

existing literature to provide a more robust understanding of the definition of mathematical 

connections.  

Mathematical Connections: Characteristic of Mathematics. National education 

reports and existing literature give various descriptions of how mathematical connections are 

characteristic to mathematics. The NCTM characterized mathematics as “a web of closely 

connected ideas” (NCTM, 2000, p. 200) and “a unified discipline, a woven fabric rather than a 

patchwork of discrete topics” (NCTM, 1995, p. vii). Coxford (1995) described mathematical 

connections as the unifying themes or mathematical processes that relate different ideas in 

mathematics, which can be used across mathematical topics to “to draw attention to the 

connected nature of mathematics” (Businskas, 2008, p. 8). For instance, unifying themes such as 

function and variables and mathematical processes such as proof and problem solving are widely 

found in mathematics. Unlike Coxford’s understanding of broad mathematical connections 

across the discipline, other researchers considered the more fine-grained concept-by-concept 

mathematical connections (Businskas, 2008; Skemp, 1987; Zazkis, 2000). Still another subset of 

literature defined mathematical connections as equivalent representations across mathematical 

ideas (Businskas, 2008; Chappell & Strutchens, 2001; Hodgson, 1995a). For example, 

researchers recognized the equivalence of various methods of solving systems of linear 
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equations: algebraic manipulation, matrix systems, and graphing. Despite some slight differences 

in the literature about the type of mathematical connections, all of these researchers maintained 

the belief that mathematical connections exist and should be acknowledged throughout the 

discipline.  

Mathematical Connections: Artifact of Learning. Businskas (2008) described this type 

of mathematical connection as “a process that occurs in the mind of the learner(s) and the 

connection is something that exists in the mind of the learner” (pp. 12–13). The constructivist 

notions surrounding this definition of mathematical connections often are linked to the work of 

Piaget, in which the connections are established by the learner as an attempt to organize or 

interiorize mathematical ideas into a schema.  

The Piagetian notion of abstraction is widely found in the literature when considering the 

learning of abstract algebra. Hazzan (1999) explained: 

Students’ tendency to rely on systems of numbers, when asked to solve problems about 
other groups, can be explained by one of the basic ideas of constructivism. That is, that 
new knowledge is constructed based on existing knowledge. Thus, unknown (hence 
abstract) objects and structures are constructed based on existing mental structures. (p. 
76) 
 

As described by Hazzan, abstraction is the process whereby the student constructs connections 

between concrete mathematical ideas and abstract or unknown mathematical ideas in order to 

enable his or her complete understanding. Noss and Hoyles (1996) concurred with this notion: 

“[Mathematical] meaning can be maintained by involvement in the process of acting and 

abstracting, building new connections whilst consolidating old ones” (p. 49). Similarly, Hiebert 

and Carpenter (1992) wrote, “A mathematical idea, procedure, or fact is understood thoroughly if 

it is linked to existing networks with stronger or more numerous connections” (p. 67). In light of 

this literature, mathematical connections are a necessary component of learning. Mathematical 
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connections must be established between preexisting schema or networks in order for unknown 

mathematical ideas to be fully understood by the learner. Ultimately, Hazzan (1999) and Hiebert 

and Carpenter (1992) concluded that the teacher plays a pivotal role in helping the students to 

construct these connections among mathematical ideas. 

Mathematical Connections: A Mathematical Activity. Still another perspective about 

mathematical connections is found in the literature—establishing connections as a mathematical 

process or activity. In some sense this final perspective can be characterized as the blending of 

the initial two perspectives. To be more specific, this perspective acknowledges that connections 

exist across mathematics and that the learner should be involved in the activity of establishing or 

identifying these connections. Boaler (2002) asserted:  

It seems to me that the act of observing relationships and drawing connections, whether 
between different functional representations or mathematical areas, is a key aspect of 
mathematical work, in itself, and should not only be thought of as a route to other 
knowledge. (p. 11) 
 

The activity of making connections across mathematics, similar to those described by Coxford 

(1995), was seen as a significant aspect of doing mathematics (Boaler, 2002). In fact, NCTM 

(2006) characterized several mathematical activities that helped secondary students recognize the 

coherent nature of mathematics, which include: multiple representations, problem solving, proof, 

and real-world applications and mathematical modeling. These mathematical activities again 

align with Coxford’s (1995) view.  

Blending the Perspectives. The three perspectives highlighted in the literature—a 

characteristic of mathematics, an artifact of learning, and a mathematical activity—provide 

unique ways to consider mathematical connections. As Businskas (2008) and Singletary (2012) 

suggested, holding to only one of these perspectives seems unnecessary. Each provides different 

facets to help establish a more robust understanding of the definition. From my perspective, 
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mathematical connections exist across the discipline and can be considered as both broad 

unifying themes and concept-by-concept links. In order to best learn new mathematical ideas, 

students should engage in mathematical activities that enable them to construct connections 

between existing knowledge and new unknown ideas. To address my first research question, I 

focused primarily on the mathematical connections as a characteristic of mathematics and more 

specifically the concept-by-concept mathematical connections. This type of connection was 

discussed with the mathematicians and mathematics educators during their interviews. I also 

considered, however, the other perspectives of mathematical connections when analyzing how 

mathematicians and mathematics educators talk about mathematical connections.  

As a result of accepting a flexible definition of mathematical connections, I again go back 

to the definitions given by Businskas (2008) and Singletary (2012) as shown on page 15. Each of 

these definitions highlights the relationship that exists between mathematical ideas or entities, 

regardless of the perspective one has on mathematical connections. This relationship can take 

several forms. Previously established categories of mathematical concept-to-concept connections 

are displayed in Table 1 (Businskas, 2008; Singletary 2012). These categories aided me when 

analyzing the textbook and interview data.   
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Table 1 

Categories of Mathematical Connections From Research 

Category  Description 
Alternative representation One concept is represented in different ways such as symbolic 

(algebraic), graphic (geometric), pictorial (diagram), 
manipulative (physical object), verbal description (spoken), or 
written description. 

Comparison through 
common features 

Two concepts share some features in common, which allows a 
comparison through the concepts being similar, exactly the same, 
or not the same. 

Equivalent representation One concept is represented in different ways but within the same 
form (i.e., one concept could be represented in different ways 
symbolically). 

Generalization One concept is an example of specific instance of another 
concept. 

Hierarchical relationship One concept is a component of or included in another concept. 
Since one concept is included or contained in the other concept, a 
hierarchical relationship exists between two concepts. 

Logical implication One concept logically dependences on another concept. Often an 
if-then relationship exists between the two concepts. 

Procedural One concept can be used to find another concept. The first 
concept could be a type of procedure or connecting method used 
when working with the other concept. 

Real-world application One concept is an example of another concept in the real-world 
(i.e., a concept refers to another concept outside the current 
mathematical context). 

 

Mathematical Connections to Tertiary Mathematics 

In this final section, I examine literature that addresses mathematical connections 

established in tertiary mathematics. The research can be classified into two categories: the lack 

of identified mathematical connections by undergraduate students and the consequences of not 

establishing mathematical connections to learning. Much of the research concentrates on 

prospective secondary mathematics teachers, but other literature focuses on all tertiary 

mathematics students.  



  

 19 

Previously Identified Mathematical Connections. Some of the earliest work that 

specifically identified mathematical connections between abstract algebra and secondary school 

mathematics was done by Usiskin (1974, 1975). In a first article, he examined properties of 

addition and multiplication of real numbers as they related to teaching and compared them to the 

structural properties of groups and fields. He declared that “all properties of the reals follow from 

the complete field properties” (Usiskin, 1974, p. 279). He then described the isomorphic 

relationship between linear and exponential functions through the map 𝑥 → 𝑎!, which forms an 

isomorphic group under composition. Usiskin’s second article highlighted similar mathematical 

connections; namely, connections between algebraic structures and known number systems and 

operators as well as the isomorphic connection between linear and exponential functions as seen 

in the properties of exponents. In this article, he also discussed connections between the group 

structure and solving simple linear equations, the multiplicative group of invertible 2×2 matrices 

and solving systems of linear equations, and additive and multiplicative groups with familiar 

number systems and groups of geometric transformations. Lastly, Usiskin detailed the 

connections between groups and trigonometric functions. For instance, the 2×2 matrix 

cos 𝑥 − sin 𝑥
sin 𝑥 cos 𝑥  forms a group under composition and this group describes the properties of 

rotation about the origin. In another article, Usiskin (2001) described the connections mentioned 

in these two articles as generalizations taught in abstract algebra. 

The Conference Board of the Mathematical Sciences (CBMS), established by the 

American Mathematical Society (AMS) in partnership with the Mathematical Association of 

America, published two reports, the first published in 2001 with an updated version published in 

2012, entitled The Mathematical Education of Teachers (MET) and The Mathematical Education 

of Teachers II (MET II) in which recommendations are made regarding the mathematical 
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knowledge necessary for teaching at all grade levels: elementary, middle, and high school. In the 

chapters addressing secondary mathematics teachers, CBMS suggested ways in which 

undergraduate courses can better connect to secondary school mathematics given that 

prospective secondary teacher are not currently recognizing those connections. In the following 

paragraphs, I outline these suggestions as they pertain to the mathematical connections between 

abstract algebra and secondary school mathematics.  

 In the first MET report, CBMS (2001) focused primarily on the mathematical connection 

of generalization when describing the connections between abstract algebra and secondary 

school mathematics. They characterized abstract algebra as the examination of “mathematical 

structures that are the foundation for number systems and algebraic operations” (p. 40). Here we 

see that algebraic structures found in abstract algebra are generalizations of familiar number 

systems and operators. Another illustration of the emphasis placed on generalization connections 

in the MET report was given through a specific example: One task that can be incorporated into 

an abstract algebra course is “to show explicitly how the number and algebra operations of 

secondary school can be explained by more general principles” (p. 40). A second example was 

also given, in which abstract algebra students solve a linear or quadratic equation and for each 

step write out the necessary field property. In this example, the algebraic structures are again 

generalizations of operators but also the generalization of familiar solving procedures. In 

addition, the first MET report highlighted mathematical connections between abstract algebra 

and school geometry. Often these connections are overlooked by mathematicians and 

policymakers in favor of the connections between abstract algebra and school algebra. These 

mathematical connections again emphasized generalization connections by describing isometry 

and symmetry groups as generalizations of the geometry of transformations of regular polygons.  
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 The second MET report provided additional specific examples of mathematical 

connections between abstract algebra and secondary school mathematics. CBMS (2012) 

recommended the study of ring and field structures as the underlying structures of operations 

with polynomials and rational functions. Another connection described in this report was 

between complex numbers and real number polynomials: “It would be quite useful for 

prospective teachers to see how ℂ can be “built” as a quotient of ℝ 𝑥  and, more generally, how 

splitting fields for polynomials can be gotten in this way.” CBMS also suggested a focus on 

mathematical concepts inverse and identity. For instance, they mentioned the similar idea behind 

the abstract algebra concept inverse and the secondary school mathematics concepts additive and 

multiplicative inverse, inverse matrix, and inverse function. The abstract algebra concept 

isomorphism was identified as important to draw connections through comparison of common 

features between “the real numbers and the multiplicative group of the positive real numbers 

given by the exponential and logarithm functions” (CBMS, 2012, p. 59).  

Unknown Mathematical Connections. Bukova-Güzel et al. (2010) conducted a 

qualitative study in Turkey that considered prospective secondary mathematics teachers’ 

perspectives of their undergraduate mathematics courses in connection to secondary teaching. 

Thirty-six students in their last year of their teacher preparation program from four different 

universities in Turkey were asked by their instructors or via email four open-ended questions 

regarding their undergraduate content courses in Calculus, Analytic Geometry, Linear Algebra, 

Abstract Mathematics, Topology, and Differential Equations. The purpose of the study was 

threefold: (a) identify student teachers’ opinions on whether their mathematics courses fully 

prepared them to teach, (b) determine whether these courses were necessary to their 

understanding and abilities to teach, and (c) ascertain the participants’ perceptions of the quality 
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of these courses. Bukova-Güzel et al. found that 83% of the prospective secondary mathematics 

teachers did not see connections between the undergraduate content courses they had taken and 

the secondary school mathematics curriculum. However, 25% of the participants did believe that 

first-year undergraduate courses, such as Calculus and Analytic Geometry, were coherent and 

related to the secondary curriculum. One participant’s response stated: 

Since the courses are based on memorizing theorems and passing exams, it is really hard 
for us to apply even useful knowledge. At least on my own behalf, I was better at 
secondary school mathematics topics when I graduated from secondary school. (p. 2236) 
 

Furthermore, 42% of the participants recommended designing new undergraduate courses that 

were directly related to secondary school mathematics. In fact, 56% of the prospective secondary 

mathematics teachers felt insufficiently prepared mathematically to teach. We can see from these 

results that the participants did not feel that their undergraduate content courses made 

connections to the secondary school mathematics curriculum.   

Cofer (in press) confirmed these results when she considered how prospective secondary 

mathematics teachers communicated the mathematical connections between abstract algebra and 

their teaching practices. Five upper division tertiary students, all of whom had recently 

completed coursework in abstract algebra, were involved in an interview study that asked them 

to explain abstract algebra concepts connected to the school mathematics curriculum, such as 

division by zero and even numbers. Cofer discovered that the students were unable to relate 

abstract algebra concepts to the school mathematics curriculum despite having just finished the 

abstract algebra course.  

Consequences of Not Establishing Mathematical Connections. Cook (2012) 

hypothesized in his dissertation that the difficulty students experience in learning abstract algebra 

is due to the lack of established connections between undergraduate mathematics and school 
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mathematics. He wrote that prospective teachers “do not build upon their elementary 

understandings of algebra, leaving them unable to communicate traces of any deep and unifying 

ideas that govern the subject” (p. xvi). Similarly, Cuoco (2001) noted in an article about 

secondary teacher preparation programs, “Most teachers see very little connection between the 

mathematics they study as undergraduates and the mathematics they teach. This is especially true 

in algebra, where abstract algebra is seen as a completely different subject from school algebra” 

(p. 169). To put it simply, students are not recognizing or establishing the mathematical 

connections between abstract algebra and high school mathematics (Usiskin, 1988). Ultimately, 

this inability to make these connections hinders students’ learning of advanced mathematics as 

well as hurts future teachers’ ability to teach mathematics. Zazkis and Leikin (2010) affirmed:  

Without [mathematical] connections students have to rely on their memory only and to 
remember many isolated concepts and procedures. To connect mathematical ideas means 
linking new ideas to related ideas considered previously and solving challenging 
mathematical tasks by thinking how familiar concepts and procedures may help in the 
new situations. (p. 275) 
  
There are few studies about mathematical connections in tertiary mathematics, and there 

is a great need for further research in this area. Previous researchers (or studies) have focused on 

the perceived mathematical connections of prospective secondary mathematics teachers. The 

perspectives of textbooks and professors have also not been considered in the literature. In the 

present study, I explored these gaps in the literature regarding mathematical connections in 

abstract algebra and secondary school mathematics.  
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CHAPTER 3: METHODOLOGY 

In this chapter, I explain the specific methodology of this research. I first describe the 

rationale for the research design and the role of the researcher. Second, I explain the definition of 

abstract algebra used in this study. This definition provided the necessary boundaries to 

determine which abstract algebra concepts should and should not be included in this research. 

Next, I elaborate on the three-part data collection: textbook analysis, compilation of 

mathematical connection list, and participant interviews. Last, I discuss the methods of data 

analysis employed in this study. 

Research Design 

Qualitative research lent itself well to the present research study since it enabled the 

stories of the participants to be told. In describing qualitative research, Patton (2002) emphasizes 

the importance qualitative research places on understanding and capturing “the points of view of 

other people” (p. 21), which was at the heart of the present study. The purpose of this study was 

to understand the perspectives of mathematicians and mathematics educators about mathematical 

connections found in abstract algebra as expressed through interviews as well as the perspectives 

of written materials such as textbooks and previous literature. Thus, this study utilized two main 

sources of data: abstract algebra textbooks and interviews with mathematicians and mathematics 

educators involved in abstract algebra teaching and research. 

Role of the Researcher 

When conducting qualitative research, the role of the researcher must be considered 

given that the researcher’s perspective influences the research process (Patton, 2002). My beliefs 
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about and experiences with education and mathematics inevitability played a role in the research 

design of this study and the data collection and analysis. Therefore, I briefly describe my beliefs 

related to mathematics education and how those beliefs may have influenced my research.   

As a student, I had several negative experiences in which mathematics was reduced to the 

memorization of procedural rules. These experiences challenged the ways I understood 

mathematics. To me, mathematics was the study of relationships between mathematical ideas 

about quantity, space, and structure across different mathematical domains. Mathematics was 

about recognizing existing patterns and formulating new conjectures based on these patterns. 

And ultimately, mathematics was a coherent, logical system in which every procedure originated 

from sound reason. The explanations behind the mathematics caused me to adore the subject. 

Many of my collegiate professors encouraged such beliefs about mathematics, so despite 

conflicting experiences with mathematics, I still adhere to my initial beliefs about mathematics 

as a complex, interrelated, beautiful system of mathematical ideas. Consequently, as a teacher, I 

explicitly discussed mathematical connections across various concepts and domains to help my 

students develop more accurate concept images and meaningful understandings of mathematics. 

It is my belief that students have an easier time conceptually understanding mathematics when 

new mathematical ideas are actively built upon previous experiences and prior knowledge. 

It was important, in conducting this study, to recognize that I identify myself as both a 

mathematician and a mathematics educator. Having spent a significant portion of my graduate 

work in pure mathematics (particularly abstract algebra), I found it natural to pursue research in 

this area as it relates to education. When discussing my research passion with my peers, most 

complained about the difficulty level and uselessness of the course. Previous research about the 

teaching and learning of abstract algebra further illuminated these concerns. The combination of 
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my beliefs about mathematics, my passion for abstract algebra, and my experiences with students 

and peers motivated this study on the mathematical connections between abstract algebra and 

school mathematics. Furthermore, my desire to conduct this study was rooted in the belief that 

teachers must deeply and conceptually know what they teach, and a course in abstract algebra 

can provide some of that necessary background knowledge about school mathematics to future 

teachers. 

As a researcher, I recognize that I cannot separate myself my personal beliefs about 

mathematics and past experiences from my research. Therefore, I acknowledge that they likely 

influenced the ways I thought about, conceptualized, and continue to think about my research. It 

is possible that those beliefs acted as a lens for the mathematical connections I identified and the 

ways in which I categorized and described them. For these reasons, I reexamined the collected 

data several times, I relied on my analytic framework throughout my data collection and 

analysis, and I frequently met with my major professor to have a person with an additional 

perspective review and question my research findings. 

Definition of Abstract Algebra 

Renze and Weisstein (n.d.) define abstract algebra as “the set of advanced topics of 

algebra that deal with abstract algebraic structures rather than the usual number systems.” In the 

undergraduate abstract algebra course, these algebraic structures include groups, rings, and 

fields. This study focused only on concepts associated with these algebraic structures and 

ignored any additional topics. Establishing such boundaries were necessary for this research 

because introductory abstract algebra courses vary in content, often including topics from linear 

algebra, number theory, and discrete mathematics. For the purpose of this study, I instead wanted 

to concentrate on what I considered the essential course concepts.   
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Data Collection 

In this section, I describe the three parts of data collection for this study. First, I analyzed 

abstract algebra textbooks using the mathematical connections categories described in detail in 

Chapter 2 and summarized in Table 1. Second, I identified mathematical connections that were 

not explicitly stated in the textbooks. Third, I conducted interviews with mathematicians and 

mathematics educators specializing in abstract algebra. These parts of data collection aligned 

with the study’s research questions (see p. 6).  

Part One: Textbook Analysis. The first part of data collection in this study was to 

conduct an analysis of nine abstract algebra textbooks. The textbooks were chosen as the chief 

source of data about the abstract algebra curriculum since I believe that textbooks often drive the 

tertiary mathematics curriculum. Robitaille and Travers (1992) stated: 

Teachers of mathematics in all countries rely very heavily on textbooks in their day-to-
day teaching, and this is perhaps more characteristic of the teaching of mathematics than 
of any other subject in the curriculum. Teachers decide what to teach, how to teach it, and 
what sorts of exercises to assign to their students largely on the basis of what is contained 
in the textbook authorized for their course. (p. 706) 
 

I believe that although Robitaille and Travers were referring to Grades K–12 mathematics 

teachers, their observation is also true of tertiary mathematics professors. Also, I believe that 

mathematical connections between abstract algebra and school mathematics are more likely to be 

discussed in the abstract algebra class if they are found in textbooks. However, little research has 

been conducted on the analysis of abstract algebra textbooks. Capaldi (2012) analyzed abstract 

algebra textbooks to investigate the potential reader audience; level of detailed explanations, 

examples, and proofs; and content covered in the book. Using reader-oriented theory, Capaldi 

found discrepancies between the intended and the actual reader in regards to language maturity 

and level of details. Textbook examples were the only area in which the language maturity and 
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level of details aligned between the intended reader and the actual reader. Similar research has 

been conducted on linear algebra textbooks concentrating again on the presentation of a certain 

concept (Cook & Stewart, 2014; Harel, 1987). No other research, at this point, exists studying 

textbooks related to tertiary algebra.  

I examined nine abstract algebra textbooks for this research, based on a few criteria. First, 

I narrowed my focus to introductory undergraduate abstract algebra textbooks. While graduate 

textbooks may explicitly state mathematical connections between abstract algebra and secondary 

school mathematics, this study concentrated solely on undergraduate learning of abstract algebra. 

Second, all textbooks were published within the past 20 years from the start of the research study 

because they would be more likely to be used in undergraduate classrooms today. Next, I 

compiled a list of recently published abstract algebra textbooks by: (1) examining syllabi 

available online for introductory abstract algebra courses at more than 20 colleges and 

universities around the United States, (2) contacting five different textbook publishers about 

widely readily used abstract algebra textbooks, and (3) conducting online searches of textbook 

provider websites for textbooks that explicitly emphasis connections to school mathematics. The 

textbooks used in the study are listed in Table 2.  

Because the focus of this study differed from that of previous research on mathematics 

textbooks, I utilized previous mathematical connections research described in the literature 

review as my analytic framework to identity and categorize any explicitly stated connections 

found in the abstract algebra textbooks (described in detail in Chapter 2 and summarized in 

Table 1). I defined connections to be explicitly stated when the authors without a doubt intended 

concepts to be linked in some way to secondary school mathematics. After analyzing the 

textbook data, I modified the initial analytic connection framework to include only the five 
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mathematical connections categories found in the textbooks and better describe the types of 

connections based on the data (described in detail in Chapter 4 and seen in Table 3). 

Table 2 

Included Abstract Algebra Textbooks 

Author  Title Publication year 
Cuoco & Rotman Learning Modern Algebra: From Early Attempts to 

Prove Fermat’s Last Theorem 
2013 

Dummit & Foote Abstract Algebra (3rd ed.) 2004 
Fraleigh A First Course in Abstract Algebra (7th ed.) 2003 

Gallian Contemporary Abstract Algebra (8th ed.) 2013 
Hillman & 
Alexanderson 

Abstract Algebra: A First Undergraduate Course 
(5th ed.) 

1994 

Hodge, Schlicker, & 
Sundstrom 

Abstract Algebra: An Inquiry-based Approach 2014 

Nicholson Introduction to Abstract Algebra (4th ed.) 2012 

Nicodemi, Sutherland, 
& Towsley 

An Introduction to Abstract Algebra with Notes to 
the Future Teachers 

2007 

Shifrin Abstract algebra: A geometric approach 1996 

 

While reading each abstract algebra textbook in its entirety (explanation sections, 

homework problems, and any additional material), I documented when the book made an explicit 

connection to secondary school mathematics content. For instance, Nicholson (2012) used 

students’ prior knowledge of the geometric series and convergence to prove that if 𝑎 is nilpotent 

in 𝑅, then 1− 𝑎 and 1+ 𝑎 are units. He then made the connection between this proof and 

students’ knowledge of the geometric series when he wrote: 

In elementary algebra it is proved that, if 𝑥 ∈ ℝ, and 𝑥 < 1, the geometric series 
1+ 𝑥 + 𝑥! +⋯ converges for any real number 𝑥 with 𝑥 < 1 and equals 1− 𝑥 !! in 
this case. … We recognize that 1+ 𝑎 + 𝑎! +⋯ makes sense in any ring 𝑅 when 𝑎 is 
nilpotent, which then provides a formula for 1− 𝑎 !!.  (p. 167) 
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Since the proof required the prior knowledge of geometric series and convergence, this 

connection was classified as a hierarchical relationship.  

For each textbook, I created a list of every identified mathematical connection, noted 

where each connection was found in the text, and classified the type of connection based on the 

analytic connection framework. As previously mentioned, I modified the framework to more 

effectively categorize the data. Next, I constructed separate tables for each connection category 

detailing all the connections found in the textbook. I then created a list of the stated mathematical 

connections in preparation for participant interviews that included all of the adjusted categories 

except for the real-world application category. I purposely excluded that category because it was 

unique to a small number of textbooks and did not specifically address the study’s research 

questions about school mathematics. In order to ensure accuracy in the classifications of 

connections, I reexamined all of the mathematical connections found in the abstract algebra 

textbooks a second time prior to moving on to the next part of the study. The list of mathematical 

connections from the textbook analysis can be seen in Appendix B. 

Part Two: Compile Mathematical Connection List. After I formulated an initial list of 

mathematical connections from the abstract algebra textbooks, I used my own knowledge of 

abstract algebra and secondary school mathematics to add four additional mathematical 

connections to the list; namely, cyclic group with imaginary unit 𝑖, ideal with subset and number 

systems, kernel with nullspace of a matrix, and subgroup with subset. This comprehensive list of 

mathematical connections was used for interviews and can be seen in Appendix C.   

Part Three: Participant Interviews. Last, I conducted interviews with mathematicians 

and mathematics educators. This qualitative research activity enabled me to explore the 

perspectives of the participants as they shared their experiences and knowledge regarding 
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abstract algebra and secondary school mathematics. I used purposive case homogeneous 

sampling to choose participants who had expertise in abstract algebra (Patton, 2002; Roulston, 

2010). To be more specific, mathematicians and mathematics educators were chosen if they had 

taught or were currently teaching an undergraduate abstract algebra course or were involved in 

abstract algebra research of some kind. These participants ranged from pure mathematicians that 

have only published in pure mathematics journals with little to no experience with the secondary 

school curriculum to mathematics educators that have only published in mathematics education 

journals with several years of secondary school teaching experience. In total, I interviewed 13 

mathematicians and mathematics educators.  

I initially contacted each participant through an email in which I introduced myself, 

outlined the purpose of the study, and discussed why I specifically chose him or her to 

participate in this research. I then asked when each participant would be available to set up an 

interview. Through this initial contact, I established that this study was about the mathematical 

connections between abstract algebra and secondary school mathematics that could be explored 

in an abstract algebra course. I also briefly mentioned how identifying these connections will be 

beneficial for all undergraduate students learning abstract algebra regardless of their major.  

Each participant was involved in one interview that lasted between 40 and 70 minutes. A 

semistructured interview protocol was used, consisting of a predetermined list of open-ended 

questions that included knowledge questions regarding abstract algebra and secondary school 

mathematics and reflection questions about the formulated list of connections (see Appendix A). 

The types of questions used in the study were based on question types given in Patton (2002), 

Taylor and Bogdan (1984), and Zazkis and Hazzan (1999). Given the range of participants’ 

experiences with the secondary school mathematics curriculum, I prepared in advance a list 
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summarizing some of the curriculum topics found in secondary school mathematics based on 

NGA and CCSS (2010) in case a participant was not familiar with the curriculum. During the 

interview, participants were given the option of including their names or affiliations in the 

research results. Participants who chose to include their names are listed below. In addition to 

those who chose to identify themselves, one assistant professor from a small liberal arts college 

and one assistant professor from a university that specializes in graduate programs in education 

participated in the study. 

§ Daniel Anderson, University of Iowa, Mathematics Department 

§ George Andrews, The Pennsylvania State University, Department of Mathematics 

§ Tanya Cofer, Northeastern Illinois University, Mathematics Department 

§ Al Cuoco, Education Development Center, Director of the Center for Mathematics 

Education 

§ Joseph Gallian, University of Minnesota Duluth, Department of Mathematics and 

Statistics 

§ Timothy Fukawa-Connelly, Drexel University, School of Education 

§ Brian Katz, Augustana College, Mathematics Department 

§ Sean Larsen, Portland State University, Fariborz Maseeh Mathematics and Statistics 

Department 

§ Joseph Rotman, University of Illinois Urbana-Champaign, Department of 

Mathematics 

§ Zalman Usiskin, University of Chicago, Director of School Mathematics Project 

§ Rose Zbiek, The Pennsylvania State University, Department of Curriculum and 

Instruction 
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All of the interviews from this study were audiotaped and transcribed within a week of 

the interview. At the end of each interview after transcription, I modified the mathematical 

connections list to reflect the participant’s responses. Every explicit mathematical connection 

mentioned during the interview by each participant was added to the connections list. These data 

served dual purposes: first, to identify mathematical connections between abstract algebra and 

secondary school mathematics, and second, to ensure the validity of identified conceptual 

connections through the practice of theoretical sampling (Charmaz, 2000).  

Data Analysis  

In this section, I elaborate on the several types of analysis that I employed. I used 

grounded theory when analyzing the textbook and interview data, so even though coding was 

initially based on the aforementioned mathematical connection categorizes, I adjusted those 

categories and established new categories to reflect additional types of mathematical connections 

emerging from the data.  

To address the first research question, I analyzed each abstract algebra textbook 

individually in its entirely. I listed all identified mathematical connections and coded them 

thematically based on the aforementioned connection categorizes as well as modified or newly 

created connection categories emerging from the data (Charmaz, 2000; Patton, 2002; Taylor & 

Bogdan, 1984). In Chapter 4, I documented and elaborated themes found across multiple 

textbooks. I then created a comprehensive list of mathematical connections including all the 

connections from the three main categories in preparation for the interviews (Appendix B). The 

categories included: alternative or equivalent representations, comparison through common 

features, and hierarchical relationship. I selected these classifications were specifically because 

they were most predominant in the majority of the abstract algebra textbooks. I also excluded 
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real-world application connections because these connections were made to areas outside the 

scope of this research; namely, connections were made to subjects other than secondary school 

mathematics. Chapter 4 discusses the expanded list of the identified connections of all types.  

To answer the second research question, I analyzed each transcribed interview through an 

inductive and iterative coding process. Each time I examined the data, I concentrated on different 

aspects of mathematical connections: characteristic of mathematics, artifact of learning, a 

mathematical activity, and emerging mathematical connections. Since I modified the list of 

mathematical connections after each interview to include the previous interviewee’s identified 

mathematical connections, my data analysis was continuous throughout the data collection 

process. During the first stage of data analysis, I concentrated solely on concept-by-concept 

connections so that I could modify the comprehensive list of mathematical connections. I 

employed theoretical sampling throughout the interviews to ensure validity in the list of 

mathematical connections (Charmaz, 2000). In particular, I added to the connection list every 

mathematical connection explicitly mentioned by the participants. However, if two sequential 

participants disagreed with a connection, I removed the connection from the list. The final 

comprehensive list of concept-by-concept connections after the completion of the interviews can 

be seen in Appendix D. 

I conducted a second stage of analysis on the interview data upon the completion of the 

interviews. During this stage, I coded and analyzed the interviews thematically in light of the 

various definitions of mathematical connections described in detail in Chapter 2. I used the 

adjusted analytic connection framework from the textbook analysis to classify the concept-to-

concept connections mentioned by the participants. In addition, the historical development of 

abstract algebra provided a lens for me to understand the additional types of connections the 
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participants discussed. For instance, four participants mentioned the historical role of solving 

polynomial equations in the development of abstract algebra. Those four participants often 

concentrated on connections related to solving polynomial equations when describing the 

mathematical connections between abstract algebra and secondary school mathematics.  

In analyzing the transcripts a third time, I was able to elaborate on other aspects of 

mathematical connections discussed by the participants. For instance, six participants 

concentrated on unifying themes such as proof or function during certain parts of the interview in 

addition to concept-by-concept connections. In addition, three participants alluded to 

mathematical connections as an artifact of learning or as a mathematical activity in mentioning 

the development of students’ mental constructions of abstract algebra or the importance of doing 

proof, respectively. I detail the various connection descriptions given by the participants in the 

interviews in Chapter 5.   
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CHAPTER 4: MATHEMATICAL CONNECTIONS IN TEXTBOOKS  

In this chapter, I describe the explicitly stated mathematical connections between abstract 

algebra and secondary school mathematics found in abstract algebra textbooks. I first discuss 

how the initial mathematical connection framework was adjusted to be more suitable for the 

textbook data. Next, I elaborate on the mathematical connections found in the abstract algebra 

textbooks by connection category. Categorizing written texts was not a simple task. The textbook 

authors, for instance, may have intended to make a generalization connection when in fact the 

written text is more of a comparison connection. In addition, there is a fine line between these 

types of connections. Some hierarchical connections could also be generalizations depending on 

how the authors presented the connections. In short, the findings in this chapter are those that 

were most explicitly stated in the abstract algebra textbooks. 

Mathematical Connection Framework 

After reading through the nine abstract algebra textbooks, I adjusted the initial 

mathematical connection framework described in detail in Chapter 2 to better fit the data. For 

instance, the initial alternative representation category included oral or written descriptions, but 

textbooks always have a written description of a concept and never have an oral one, so those 

characteristics were omitted. In addition, the initial generalization category was defined as: “One 

concept is an example of specific instance of another concept.” However, abstract algebra 

textbooks are filled with examples of specific concepts, but the textbooks also generalize school 

mathematics concepts. For example, several abstract algebra textbooks introduced isomorphism 

and then provided the well-known example of exponential laws to illustrate the concept of 
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isomorphism. In spite of this example, isomorphism is not a generalization of exponential laws. 

As a result, this example was not included in the connection list, nor were any other examples of 

concepts. The algebraic structures, however, generalize the number systems and operators used 

in all of mathematics, so I altered the generalization category to reflect the latter situation. I also 

omitted several initial categories from the study because I found no mathematical connections of 

those types in the abstract algebra textbooks. The adjusted mathematical connections framework 

is given in Table 3.  

Table 3 

Categories of Mathematical Connections Found in Textbooks 

Category  Description 
Alternative 
representation 

One concept is represented in different ways such as symbolic 
(algebraic), graphic (geometric), pictorial (diagram), or 
manipulative (physical object). 

Comparison through 
common features 

Two concepts share some features in common, which allows a 
comparison through the concepts being similar, exactly the same, 
or not the same. 

Generalization One concept is a generalization of another specific concept. 
Hierarchical relationship One concept is a component of or included in another concept. 

Since one concept is included or contained in the other concept, a 
hierarchical relationship exists between two concepts. 

Real-world application One concept is an example of another concept in the real-world 
(i.e., a concept refers to another concept outside the current 
mathematical context). 

 

Mathematical Connections by Category 

 Next, I elaborate on the findings of mathematical connections explicitly stated in the nine 

abstract algebra textbooks by connection category.  

Alternative representation. This connection category represents a concept in multiple 

ways such as symbolic (algebraic), graphic (geometric), pictorial (diagram), or manipulative 
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(physical object). The alternative representation connections in the nine abstract algebra 

textbooks are given in Table 4 followed by a description of those connections.  

Table 4 

Mathematical Connections: Alternative Representation 

Abstract Algebra Concept Secondary School Mathematics Concept No. of Textbooks 
Group Geometric transformations, Solving linear 

equations 
7 

Permutation group Function, table, etc. 5 

 

Seven of the nine abstract algebra textbooks introduced groups or specific types of 

groups using geometric transformations alongside the formal definition. For instance, Fraleigh 

(2003) and Nicodemi, Sutherland, and Towsley (2007) introduced the concept of a group by 

solving linear equations, drawing a Cayley (or operation) table, and discussing the symmetries of 

a triangle and square alongside the formal definition. These varied approaches allowed students 

to learn the concept of a group algebraically, geometrically, and pictorially. If the abstract 

algebra professor also used manipulatives in class to do the geometric transformations, as many 

of the textbooks suggested, then students would also have a physical object understanding. These 

diverse ways of thinking about a group, as a result, can enable students to develop more a robust 

understanding.  

Five abstract algebra textbooks introduced several ways to write a permutation group, all 

of which relied on the students’ previous knowledge. For instance, Fraleigh (2003) and Gallian 

(2013) presented students with the function form: 𝜎 1 = 3, 𝜎 2 = 2, 𝜎 3 = 4, and 

𝜎 4 = 1  for a permutation 𝜎 on the set 𝑋! = 1, 2, 3, 4 . They also then suggested the array 

form:  𝜎 = 1 2 3
3 2 4        

4
1 , which may be more familiar to students with a knowledge of matrix 

systems. Hillman and Alexanderson (1994) introduced both of these forms and also illustrated 
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the permutation group in a table in which the input was 1, 2, 3, and 4 and the output was 3, 2, 4, 

1, respectively.   

Comparison through common features. This connection category allowed for two 

concepts to be compared as being similar, exactly the same, or not the same because the concepts 

share some common features. Table 5 summarizes the comparison connections I found in the 

abstract algebra textbooks. A detailed description of the most frequently made connections 

follows.  

Table 5 

Mathematical Connections: Comparison Through Common Features 

Abstract Algebra Concept Secondary School Mathematics Concept No. of Textbooks 
Algebraic structures & 
properties 

Number systems, arithmetic operators 8 

Congruence Solving linear equations 1 
Fundamental theorem of 
algebra 

Polynomial roots 2 

Homomorphism, kernel, 
image 

Mathematical modeling 1 

Polynomial ring Polynomial operators and vocabulary 8 

Quaternions Complex numbers 2 
Unit Invertible matrices 2 

 

Eight of the nine abstract algebra textbooks introduced algebraic structures such as group, 

ring, or field by comparing their defining properties to those of familiar number systems and 

arithmetic operators. Five of these textbooks explicitly stated and described these connections. 

For instance, Cuoco and Rotman (2013) wrote, “The main idea is to abstract common features of 

integers, rational numbers, complex numbers, and congruences, as we did when we introduced 

the definition of commutative ring” (p. 191); Hodge, Schlicker, and Sundstrom (2014) wrote, 
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“Rings are algebraic objects that share the same basic structure as the integers” (p. 89); and 

Nicodemi et al. (2007) wrote, “The arithmetic of fields is similar to the arithmetic of the rational 

numbers” (p. 89). All of these textbooks also stated or explained that the set of integers ℤ, 

rational numbers ℚ, real numbers ℝ, and complex numbers ℂ each form a group under addition 

because these sets share the four common features with groups: closure under addition, 

associativity, zero as the identity element, and negative numbers as inverse elements.  

Arithmetic operators such as addition and multiplication were also used in this 

comparison. For instance, the set of integers ℤ forms a group under addition but not under 

multiplication. The known arithmetic operators—addition, subtraction, multiplication, and 

division—were also compared to a field, given that it is a smallest algebraic structure in which 

all of these operators can be performed by nonzero set elements. Most textbooks also noted that 

known arithmetic operators have the same features as binary operators; namely, two set elements 

are combined to obtain one set element. Hillman and Alexanderson (1994) wrote, “Our notation 

for the operation has been the same as for multiplication in our familiar number system” (p. 74). 

This relationship is not surprising given that arithmetic operators are specific examples of binary 

operators. Focusing on the properties and characteristics of known number systems and 

arithmetic operators enabled the textbook authors to compare them to the newly introduced 

algebraic structures by drawing on shared and unshared features. 

The polynomial ring was compared in eight of the nine abstract algebra textbooks to an 

abundance of polynomial information from secondary school mathematics. Much of the 

vocabulary used with polynomials in secondary algebra, such as coefficient, degree, and 

polynomial equality, was stated to be the same as the vocabulary used with polynomial rings. For 

instance, Nicodemi et al. (2007) wrote, “In high school algebra, the polynomials studied usually 
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had coefficients that were either integers or rational numbers. We will extend the scope of that 

investigation to consider polynomials with coefficients in other commutative rings” (p. 111, 

emphasis added). In fact, five textbooks explicitly mentioned the different types of polynomial 

coefficients found in secondary algebra and abstract algebra. Fraleigh (2003) also pointed out, 

“We will be working with polynomials from a slightly different viewpoint than the approach in 

high school algebra or calculus” (p. 198) when he contrasted the vocabulary used for the symbol 

x as a variable with polynomials in secondary algebra and indeterminate with polynomial rings in 

abstract algebra. Similarly, all of the textbooks mentioned the similar types of operations 

performed on polynomials and polynomial rings. For example, Dummit and Foote (2004) wrote, 

“The operations of addition and multiplication which make 𝑅 𝑥  into a ring are the same 

operations familiar from elementary algebra: addition is componentwise” (p. 234). The eight 

textbooks then discussed polynomial long division using a comparison of similar features and 

vocabulary with either numerical long division or polynomial long division.  

Five of the abstract algebra textbooks provided an explanation and proof of the 

fundamental theorem of algebra. Two of those textbooks compared secondary students’ informal 

experiences with that theorem to the more formal presentation found in abstract algebra. For 

instance, Nicodemi et al. (2007) drew attention to the roots of a quadratic having two real or 

complex roots through factoring or graphing. Thus, secondary school mathematics textbooks 

often conclude that any nonzero polynomial has at most the same number of roots as the 

polynomial’s degree. These two abstract algebra textbooks then highlighted the common features 

of polynomial roots found in secondary school mathematics to introduce the formality of the 

theorem and its proof. 



  

 42 

The similar features of four-dimensional quaternions to two-dimensional complex 

numbers were compared in two of the nine abstract algebra textbooks as follows. Secondary 

school students are taught that complex numbers have the form 𝑎 + 𝑏𝑖 where a and b are real 

numbers with the imaginary unit 𝑖 such that 𝑖! = −1. Similarly, abstract algebra students are 

taught that quaternions have the form 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 where a, b, c, and d are real numbers and 

𝑖! = 𝑗! = 𝑘! = 𝑖𝑗𝑘 = 1. The two abstract algebra textbooks noted that quaternions paralleled 

complex numbers in the way elementary operations are performed. For instance, a complex 

number 𝑧 = 𝑎 + 𝑏𝑖 has a complex conjugate 𝑧 = 𝑎 − 𝑏𝑖 and a quaternion 𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 

has a conjugate 𝑞 = 𝑎 − 𝑏𝑖 − 𝑐𝑗 − 𝑑𝑘. One difference of quaternions is that quaternions are not 

commutative, so quaternion multiplication works differently than complex number 

multiplication. However, addition is quite similar for both number systems in that the real terms 

of the numbers are added together as well as the like 𝑖, 𝑗, 𝑘 elements. Last, if two complex 

numbers are equal, then the real components and the imaginary components are equal; likewise, 

if two quaternions are equal (if 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 = 𝑟 + 𝑠𝑖 + 𝑡𝑗 + 𝑢𝑘), then the individual 

components are equal (𝑎 = 𝑟, 𝑏 = 𝑠, 𝑐 = 𝑡, and 𝑑 = 𝑢). 

When first introducing the concept of a unit, two of the abstract algebra textbooks 

compared it to invertible matrices. A unit refers to an element a in a ring that also has an inverse 

element 𝑏!! in the ring such that 𝑎𝑏!! = 1, where 1 is the multiplicative identity. In other 

words, a unit is an element that has a multiplicative inverse in the ring. Even though students are 

first exposed to multiplicative inverses in studying reciprocals, matrix systems are often the first 

time students have experienced elements without multiplicative inverses. Thus, Hillman and 

Alexanderson (1994) and Nicholson (2012) both related unit to invertible by stating that unit is 
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no different than invertible, so invertible matrices are unit elements. Thus, the abstract concept of 

unit is the same as the concept of invertibility first taught in secondary school mathematics.  

Generalization. This connection category designates when one concept is a 

generalization of another concept. The generalizations explicitly stated in the nine abstract 

algebra textbooks are seen in Table 6, followed by a detailed description of most of the 

mathematical connections. 

Table 6 

Mathematical Connections: Generalization 

Abstract Algebra Concept Secondary School Mathematics Concept No. of Textbooks 
Algebraic structures  Number systems 5 
Binary operators Arithmetic operators and number systems 4 

Direct product Cartesian plane and ordered pairs 2 
Inverse Negatives; Multiplicative reciprocal 5 

Irreducibility Factoring polynomials 5 
Quotient Field Fractions, operations with fractions 5 

Sign rule in a ring Product of two negative numbers is positive 5 

  

One of the most commonly discussed connections in the abstract algebra textbooks was 

how various algebraic structures (i.e., group, ring, field) were generalizations of familiar number 

systems. Five of the nine textbooks explicitly mentioned that generalization. For instance, 

several textbooks noted that the integers ℤ, the rational numbers ℚ, the real numbers ℝ, and the 

complex numbers ℂ were familiar number systems that form groups under addition, and the 

nonzero elements of ℚ,ℝ, and ℂ form groups under multiplication. Hillman and Alexanderson 

(1994) stated, “The most basic number systems are examples of groups, and we all learn to deal 

with these early on” (p. 40), and Nicodemi et al. (2007) called these number systems 

“prototypes” under the “umbrella” of an arbitrary algebraic structure. Four textbooks then 
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introduced the more general binary operator ∗ for the familiar addition and multiplication 

operators. The definition of a group is then developed having that understanding of a binary 

operator. A similar approach was used to introduce rings, integral domains, and fields.  

The field of quotients or fraction fields is introduced in five of the abstract algebra 

textbooks as the generalization of fractions and operations on fractions. Those textbooks 

reviewed concepts such as equivalent fractions, equating two fractions, and operating on the 

fractions (addition and multiplication) prior to introducing the more general understanding of a 

fraction. For example, Dummit and Foote (2004) noted, “In more precise terms, the fraction !
!
 is 

the equivalence class of ordered pairs 𝑎, 𝑏  of integers with 𝑏 ≠ 0 under the equivalence 

relation 𝑎, 𝑏 ~ 𝑐,𝑑  if and only if 𝑎𝑑 = 𝑏𝑐” (pp. 260–261). With this definition in mind, the 

textbook authors then explored the properties, operations, and proven results of quotient fields.  

Five of the abstract algebra textbooks connected the concept of irreducible polynomials 

in a polynomial ring to prime polynomials and factoring. Upon introducing irreducibility, 

Fraleigh (2003) wrote, “The concept is probably already familiar. We really are doing high 

school algebra in a more general setting” (p. 213). In secondary school mathematics a 

polynomial is defined to be prime if it is unable to be factored, whereas in abstract algebra a 

polynomial is irreducible if it has no factorization of polynomials of lower degree than original 

polynomial. Thus, the latter is the generalization of the former for all polynomial rings.  

Five of the textbooks also generalized the notion that the product of two negative 

numbers is positive. These textbooks utilized ring properties to prove four sign rules for 

negatives. Hillman and Alexanderson (1994) wrote, “The following result [sign proof] is a 

generalization of one of the rules of signs of elementary algebra” (p. 217). Nicodemi et al. (2007) 

noted, “It is interesting to see how to deduce these facts from the abstract properties of rings 
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rather than from the elementary cookie-counting arguments that we usually use to explain the 

arithmetic of the natural numbers” (p. 84). These authors in particular allude to the importance of 

this connection in teaching by providing a ring based rationale for the positive result of 

multiplying two negative numbers and contrasting it with the rationale generally accepted in 

school mathematics. 

Hierarchical relationship. A hierarchical relationship connection is one in which a 

concept is a component of or contained in another concept. The abstract algebra textbooks in this 

study mentioned secondary school mathematics concepts that were included in abstract algebra 

concepts. Table 7 contains a summary of topics involving those connections found in abstract 

algebra textbooks. 

Table 7 

Mathematical Connections: Hierarchical Relationship 

Abstract Algebra Concept Secondary School Mathematics Concept No. of Textbooks 
Algebraic structures & 
properties 

Solving linear equations 6 

Compass/geometric 
constructions 

Ruler, circles, intersection, and other 
geometric concepts 

7 

Cyclic group Division algorithm 1 
Extension field/splitting 
field 

Solving for the roots of a polynomial 5 

Isomorphism Function 3 

Nilpotent Geometric series and convergence 1 
Permutation group  Function and function composition 3 
Polynomial ring Power series 1 

Symmetry group Rotation, reflection, function composition 7 
Zero divisors Solving quadratic equations by factoring 4 
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1) Given 

𝑥 + 𝑎 = 𝑏 𝑥𝑎 = 𝑏 𝑥 ∗ 𝑎 = 𝑏 
2) Determine the inverse of a under the operation and apply the operation with its inverse on 

the right of both sides of equation. 

 𝑥 + 𝑎 +−𝑎 = 𝑏 +−𝑎 𝑥𝑎 ∙
1
𝑎 = 𝑏 ∙

1
𝑎 𝑥 ∗ 𝑎 ∗ 𝑎!! = 𝑏 ∗ 𝑎!! 

3) Use the associative law under the operation to regroup the left side of the equation. 

   𝑥 + 𝑎 +−𝑎 = 𝑏 +−𝑎 𝑥 𝑎 ∙
1
𝑎 = 𝑏 ∙

1
𝑎 𝑥 ∗ 𝑎 ∗ 𝑎!! = 𝑏 ∗ 𝑎!! 

4) The result of regrouping a with its inverse is the identity under the operation [let e be the 
unknown identity under the operation].   

 𝑥 + 0 = 𝑏 +−𝑎 𝑥 ∙ 1 = 𝑏 ∙
1
𝑎 𝑥 ∗ 𝑒 = 𝑏 ∗ 𝑎!! 

5) Combining x with the identity under the operation results in x itself.  

 𝑥 = 𝑏 +−𝑎 𝑥 = 𝑏 ∙
1
𝑎 𝑥 = 𝑏 ∗ 𝑎!! 

 
Figure 1. The properties needed to solve simple linear equations form a group. 
 

Six of the abstract algebra textbooks seemed to rely on students’ previous understandings 

of solving linear equations to serve as a foundation for the new algebraic structures. For instance, 

simple linear equations of the forms 𝑎 + 𝑥 = 𝑏 and 𝑎𝑥 = 𝑏 form groups under addition and 

under multiplication, respectively. Four of the textbooks asserted that the knowledge of solving 

such equations was an integral component in the definition of a group; namely, the properties 

used to solve a simple linear equation define the group structure. Figure 1 illustrates this 

information with three different operators: addition, multiplication, and the more formal binary 

operator. Three of the nine textbooks introduced a field in a similar manner by walking through 

the properties needed to solve a linear equation of the form 𝑎𝑥 + 𝑏 = 𝑐𝑥 + 𝑑. To solve this 

problem one must utilize additive and multiplicative inverses, additive and multiplicative 

identities, additive and multiplicative associativity, closure under addition and multiplication, 

and the distributive law. These properties along with commutativity are integral components of 
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understanding the definition of a field. In both instances the properties used in solving linear 

equations are contained in the definitions of various algebraic structures. 

Similarly, five of the textbooks introduced the concept of extension field by building 

upon students’ knowledge of solving for the roots of polynomial functions. For instance, if the 

given field is the real numbers ℝ, then the simple polynomial function is 𝑓 𝑥 = 𝑥! + 1. 

Clearly, this polynomial does not have a solution in the field and is thus irreducible, so the 

question then arises whether or not a larger field that contains ℝ would provide a root for the 

polynomial. Gauss answered that question by introducing the complex number system 

ℂ = ℝ+ℝ𝑖 where 𝑖! = −1. Thus, to solve the polynomial 𝑓 𝑥 = 𝑥! + 1, the domain needs to 

be extended to the complex number system. 

Analogously, four of the textbooks made a connection between students’ previous 

knowledge of solving quadratic equations by factoring and the abstract algebra concept of zero 

divisors. These textbooks illustrated that to solve a quadratic equation, say 𝑥! + 2𝑥 − 15 = 0 

where 𝑥 ∈ ℝ, the students learned to factor the equation, 𝑥 + 5 𝑥 − 3 = 0, and conclude the 

only way that a product can equal zero is if one of the factors is zero, 𝑥 + 5 = 0 or 𝑥 − 3 = 0, so 

the only two possible solutions of the equation are 𝑥 = −5 or 𝑥 = 3. Students are then asked to 

utilize this previous knowledge to understand zero divisors. Several of these textbooks then 

problematized solving quadratics in a modular ring. Thus, the understanding of solving for the 

roots of a quadratic was included in the abstract algebra concept of zero divisors.  

Seven of the nine abstract algebra textbooks included a chapter or section on compass or 

geometric constructions, which are geometric applications of field theory. The geometric 

constructions first experienced in high school geometry using a compass and straightedge were 

given an algebraic context. Thus, students should first have a basic understanding of geometric 
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concepts such as angles, circles, distance, intersection, regular n-gons, and trisection in order to 

understand how their understanding relates to geometry. In fact, Dummit and Foote (2004) 

wrote: 

It is an elementary fact from geometry that if two lengths a and b are given one may 
construct using straightedge and compass the lengths 𝑎 ± 𝑏, 𝑎𝑏, and 𝑎 𝑏. It is also an 
elementary geometry construction to construct 𝑎 if a is given: construct the circle with 
diameter 1+ 𝑎 and erect the perpendicular [line] to the diameter. The length is 𝑎. (p. 
532) 
 

Thus, all arithmetic operations can be constructed using a compass and straightedge, and additive 

or multiplicative inverses, the product of two numbers, and the square root of a number are all 

constructible numbers. Gallian (2013) defined a constructible number as a real number ∝ 

 in which a line segment can be drawn with length ∝  in a finite number of steps (p. 400). He 

then provided three ways to construct such points: intersect two lines, intersect two circles, or 

intersect a line and a circle (p. 401). One chief result is to show the set of all constructible 

numbers then forms a subfield of ℝ and any constructible number must be a field extension of ℚ. 

Another result that is especially useful for future secondary mathematics teachers is that one 

cannot trisect an angle using compass and straightedge.  

Similarly, seven of the abstract algebra textbooks introduced symmetry groups with 

geometric transformations. For instance, Nicodemi et al. (2007) defined symmetry of a regular 

figure as “a rotation of the figure around an axis of symmetry that takes the figure congruently 

onto itself” (p. 196). Gallian (2013) posed it this way: 

Suppose we remove a square region from a plane, move it in some way, then put the 
square back into the space it originally occupied. More specifically, we want to describe 
the possible relationships between the starting position of the square and its final position 
in terms of motion. (p. 31) 
 

Thus, students can use their knowledge of high school geometry concepts of rotations, axes of 

symmetry, angle bisectors, and reflections in order to understand a symmetry group. Several of 
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the textbooks illustrated the six symmetries (identity, 2 rotations, and 3 flips/reflections around 

the axes) for an equilateral triangle. Dummit and Foote (2004) generalized those findings for all 

regular n-gons: “There are exactly 2n symmetries of a regular n-gon” and “These symmetries are 

the n rotations about the center through 2𝜋𝑖 𝑛 radian, 0 ≤ 𝑖 ≤ 𝑛 − 1, and the n reflections 

through the n lines of symmetry” (p. 24). In addition, these textbooks employed students’ 

knowledge of function composition to discuss the operator used with symmetry groups. Gallian 

(2013) explained the operation order in this way, “In lower level math course function 

composition 𝑓 ∘ 𝑔 means g followed by f”(p. 33), meaning that the order of the symmetries 

moves right to left similarly to function composition.  

Three of the nine textbooks discussed how the secondary school mathematics concept of 

function was included in the abstract algebra concept of a permutation group. For instance, 

Fraleigh (2003) explained a permutation as a rearrangement of the set elements that is truly a 

bijective function between two sets. Furthermore, all three of these textbooks stressed the 

sameness of secondary mathematics notion of function composition and the binary operator 

involved in the cycle decomposition of the product of permutations. In secondary school 

mathematics, students are taught the composite function 𝑓 ∘ 𝑔 𝑥  is read right to left, where 

𝑔 𝑥  is inputted into the 𝑓 function. Similarly, in abstract algebra to compute the product 𝜎 ∘ 𝜏 in 

𝑆! requires reading the permutations from right to left, so the product 

1 2 3 ∘ 1 2 3 4  sends 1 to 2 in the right permutation and 2 to 3 in the left 

permutation resulting with the composite map 1 to 3 for a completed cycle decomposition of the 

product 1 3 4 . 

Real-world application. Even though real-world application connections do not directly 

address my first research question given that the applications are outside the mathematical 
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context, it is important to note that Gallian (2013) focused a great deal of attention on making 

real-world application connections between the abstract algebra concepts and other concepts 

outside of mathematics.  For instance, the pyramidal molecule ammonia is the dihedral group D3 

and crystals are the dihedral group D4. Several mineralogists and chemists have studied the 

symmetries of figures using group theory to motivate their work. In fact, the orbit-stabilizer 

theorem was used on the rotation of a soccer ball to illustrate the new carbon form called 

buckyballs, and the symmetry group again provided useful information about this form because 

the absorption spectrum of a molecule relies on these symmetries (Gallian, 2013, pp. 154–155). 

These few examples provide some rationale why group theory is useful outside a mathematical 

context.      

 Furthermore, two of the abstract algebra textbooks related the concept of isomorphism 

with a discussion about different languages. These two textbooks compared the English words 

for one, two, three to the German words eins, zwei, drei. In both languages these three numbers 

mean the same thing even though the presentation of them is different. Similarly, two algebraic 

structures may look different and yet have the same form, which is the definition of an 

isomorphism. This real-world application connection provides students a non-mathematical 

context for isomorphism that can aid in the development of a more robust understanding of the 

concept.  

Summary 

This chapter has detailed the results of analyzing nine abstract algebra textbooks to 

identify explicitly stated mathematical connections between abstract algebra and secondary 

school mathematics and to examine how these connections were discussed. The results of this 

chapter were explained by connection category: alternative representation, comparison through 
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common features, generalization, hierarchical relationshil, and real-world application. The five 

most commonly stated mathematical connections found in textbooks can be seen in Table 8.  

Despite the fact that previous researchers have characterized abstract algebra as the 

generalization of school algebra and then used this characterization as a rationale for requiring 

prospective secondary mathematics teachers to take abstract algebra, the results from this study 

show that abstract algebra textbooks more explicitly make mathematical connections of other 

types; namely, alternative representation, comparison through common features, and hierarchical 

relationship. The sheer number of different connections explicitly made in textbooks was highest 

for the hierarchical relationship connection category. However, the most commonly stated 

concept connections across textbooks were presented using a comparison of common features. 

Table 8 

Most Commonly Stated Mathematical Connections in Textbooks 

Connection Category Abstract Algebra 
Concept 

Secondary School 
Mathematics Concept 

No. of 
Textbooks 

Alternative 
representation 

Group Geometric transformations, 
Solving linear equations 

7 

Comparison through 
common features 

Algebraic structures 
& properties 

Number systems, arithmetic 
operators 

8 

Comparison through 
common features 

Polynomial ring Polynomial operators and 
vocabulary 

8 

Hierarchical 
relationship 

Compass/geometric 
constructions 

Ruler, circles, intersection, and 
other geometric concepts 

7 

Hierarchical 
relationship 

Symmetry group Rotation, reflection, function 
composition 

7 
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CHAPTER 5: MATHEMATICAL CONNECTIONS DISCUSSED BY MATHEMATICIANS 

AND MATHEMATICS EDUCATORS 

The purpose of this chapter is to discuss the various ways mathematicians and 

mathematics educators described mathematical connections between abstract algebra and 

secondary school mathematics while participating in individual interviews. I first detail the ways 

in which the mathematicians and mathematics educators talked about mathematical connections 

in light of the framework used to analyze the abstract algebra textbooks. Next, I elaborate on the 

ways in which mathematicians and mathematics educators discussed connections in terms of the 

other connections perspectives found in the literature review: mathematical connections as an 

artifact of learning and mathematical connections as a mathematical activity. Last, I explain the 

other types of mathematical connections that emerged from the interview data. For instance, the 

participants in this study made use of the historical roots of group theory by emphasizing certain 

characteristics over others when talking about mathematical connections. Some participants also 

emphasized mathematical connections to teaching. The remainder of this chapter will elaborate 

upon the mathematical connections described by the participants.  

Mathematical Connections that Align with Textbook Analysis 

Initially, I analyzed the interview data using the analytic connection framework that was 

used to analyze the abstract algebra textbooks. This decision was validated when mathematicians 

and mathematics educators maintained that connections exist throughout the mathematics and 

thus are characteristic of the discipline, which was the stance from which the analytic connection 

framework emerged. Furthermore, the participants either used the abstract algebra textbooks 
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analyzed in this study when teaching the course or used their own materials. The way in which 

the participants described mathematical connections was captured by four of the five connection 

categories: comparison through common features, generalization, hierarchical relationship, and 

real-world applications. However, the participants emphasized the impact or usefulness of each 

category differently in that most of the participants described connections via comparison 

whereas only one participant mentioned real-world applications. In the following sections I will 

describe these findings by connection category. 

Comparison through common features. In this connection category, two concepts are 

compared as being similar, exactly the same, or not the same due to common features. The 

participants in this study not only compared concepts but more specifically compared structures. 

Structure was so important to many of the mathematicians and mathematics educators that they 

explicitly stated abstract algebra is the study of structure, so naturally these participants 

mentioned how the focus of this course would be on a comparison of these various structures. 

The ways in which these participants talked about structure, however, seemed to vary slightly. 

For instance, one participant described structure as, “When mathematicians say structure they 

generally mean in a set and some types of properties overlaid on that set.” This participant then 

stated, “Thus, abstract algebra is about the comparing structures and their properties.” Another 

participant mentioned, “So one of the reasons to do abstract algebra is to give a structure to all 

those properties you learned.”  

As a result of their focus on structure, the majority of these mathematicians and 

mathematics educators, when teaching abstract algebra, explicitly concentrated on the 

development of students’ abilities to recognize structural connections. They took the time to 

focus on these ideas even at the expense of teaching other abstract algebra topics. Five 
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participants, in fact, emphasized that once a structure is known, questions can be asked about its 

properties to determine appropriate expectations and assumptions about similar structures. 

Overall, twelve of the thirteen mathematicians and mathematics educators discussed 

mathematical connections between abstract algebra and secondary school mathematics as a 

comparison of structural features. 

One participant defined a mathematical connection as “when two contexts that look 

different on the surface have the same underlying structure.” For this participant, connections 

were more about abstract similarities than about studying surface features. Thus, he stressed that 

many problems in abstract algebra may appear to be different from other mathematics despite 

being quite similar or even the same as problems that students have seen before. Another 

participant mentioned that students can think about and approach problems in completely 

different ways despite the content and underlying structure being the same. For instance, abstract 

algebra provided structure to school algebra, so even though the two may look different, the 

mathematical content is actually the same. A third participant shared similar sentiments:  

It is the way algebraist think, when we talk about structure we immediately start thinking 
about, “Oh is this something I've seen before?” … Algebraists like to divide things up 
into chunks that behave similarly, so once you've started saying, “Does this behave like 
something I already know?” Oh well, let's chunk it with those things. 
 

For these participants, mathematical connections between abstract algebra and secondary school 

mathematics involved recognizing structural similarities despite dealing with phenomena that 

initially appeared to be different.  

Given the major focus placed upon structural similarities by the mathematicians and 

mathematics educators in this study, it was not surprising that five of these participants 

underscored the importance of isomorphism to an abstract algebra course. One participant 

explained isomorphism as, “If you have these two systems and then somebody points out, hey 
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they are really the same, there's just a different language here.” In fact, this participant shared 

that one of the main reasons for studying abstract algebra is isomorphism and the similarities of 

structures. Another participant repeatedly mentioned the time spent discussing what he called 

“prototypes” when teaching abstract algebra, which is how he described to his class a structure to 

which new concepts can and should be compared. Two examples that he provided of these 

prototypes are the dihedral group of order 8 for non-abelian groups and ℤ!for infinite cyclic 

groups of order 𝑛. The other three participants all described the structural similarities between 

the exponential or logarithmic functions and the real numbers. One participant discussed this 

connection in this way: the exponential and logarithmic rules, 𝑒!𝑒! = 𝑒!!! and log𝑎𝑏 =

log𝑎 + log 𝑏, “are both from the fact that the real numbers under addition is isomorphism to the 

positive real numbers under multiplication and you can use either 𝑥 or log 𝑥 as the mapping.” 

This same participant emphasized the role of equivalence in problem solving and explicitly 

detailed the various ways equivalence is presented in abstract algebra, such as two objects or 

structures being isomorphic.  

The mathematicians and mathematics educators in this study described specific 

mathematical connections through the comparison of structures in various other ways. However, 

the majority of the participants highlighted similarities between number theory and specific 

algebraic structures as well as solving polynomial equations and specific algebraic structures. 

These similarities primarily concentrated on the operations and properties of the structures and 

how these structures behave similarly and different across different domains. For instance, one 

participant discussed: 

When you translate a problem from domain to another, that's a connection, like 
constructing a regular polygon with a straightedge and compass turns out to be equivalent 
to finding the roots of the equation 𝑥!" − 1 and being able to express those in terms of 
radicals. So there's structural similarities. 
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Another participant mentioned the parallels between the secondary school mathematics concepts 

function and domain and the abstract algebra concepts operation and set. Structurally, these 

concept pairs behave or act similarly despite seeming quite different. Additional examples of 

specific mathematical connections are included in the Emerging Mathematical Connections: 

Historical Roots of Group Theory section found later in this chapter.  

Generalization. Four of the thirteen mathematicians and mathematics educators 

described mathematical connections as abstract algebra concepts being generalizations of 

secondary school mathematics concepts. An additional participant acknowledged the existence 

of generalization connections and provided one example, but he thinks about mathematical 

connections and teaches abstract algebra from another perspective.  

Only one participant explicitly characterized abstract algebra as the generalization of 

school algebra. He defined mathematical connections as “seeing how new knowledge or general 

concepts in abstract algebra inform what students have learned previously or underpin what they 

learned previously.” When discussing specific connections, he detailed how the ring and field 

properties are generalizations of the properties that are useful to solving polynomial equations. 

Similarly, another participant noted, “Each new abstract algebra concept is a generalization of 

number systems from the K-12 curriculum.” He also elaborated on how ring and field properties 

are generalizations of the properties needed to solve polynomial equations. Still another 

participant described how binary operators are generalizations of arithmetic operators.  

In addition, another participant discussed the importance of teachers knowing the 

generalization relationship between polynomial rings and polynomials taught in secondary 

school mathematics. He explained: 
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So you need a halfway decent understanding of them and you don't really understand 
them until you see the broader context of rings. For example, something as easy as a 
polynomial has at most n degree roots. Well, that's not always true and once you 
understand why that's not always true, it gives you better insight to what is going on and I 
think that it is really important for a teacher to know what is going on, not only to be able 
to teach it well but to be able to communicate. Once you embed these specific cases into 
the natural broader context I think it really aids the understanding. 
 

This participant understood the secondary school mathematics concept polynomial as specific 

cases of the more general abstract algebra concept polynomial ring. In fact, he stressed the need 

for secondary teachers to possess deep understandings of the more general polynomial ring in 

order to better understand and teach polynomials in secondary school. 

One participant described the abstract algebra concepts such as group and isomorphism 

as generalizations of the representation of symmetries of regular polygons. He mentioned several 

activities used in his class to build on this idea. For example, he provided his students with 

opportunities to explore the symmetries of an equilateral triangle to get students to generalize a 

set of rules regarding these symmetries to determine the definition of a group. Additionally, 

when teaching isomorphism, he provided his students a mystery table and asked them if the table 

represents a group. After they determined the mystery table did in fact represent a group, the 

students tried to find a correspondence between it and their regular polygon symmetry tables. 

The goal was for them to notice that the two tables were the same but with different symbols. 

Students generalized this idea of “sameness” from this example to eventually deduce the 

definition of isomorphism.  

Hierarchical relationship. Two of the thirteen mathematicians and mathematics 

educators briefly discussed hierarchical relationships between secondary school mathematics 

concepts and abstract algebra concepts in talking about specific secondary school mathematics 

concepts being components of or included in abstract algebra concepts. One of these participants 
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emphasized student knowledge about polynomials to understand polynomial rings and 

knowledge of functions to understand the bijections on a set for the definition of a group. This 

participant stated, “These topics provide a firm foundation to the material learned in abstract 

algebra.”  

The other participant described the geometric concepts that students should learn in 

secondary school mathematics that will influence their abilities to learn group theory. Some 

examples of these concepts include: rotation, reflection, axes, regular polygons, and degree 

measures. In addition, this participant affirmed that abstract algebra students should be very 

familiar with secondary school mathematics concepts such as complex numbers, properties of 

real and rational numbers, Euclidean algorithm, and least common multiples and greatest 

common divisors. He then detailed the connections of these topics to abstract algebra concepts. 

For instance, knowledge about least common multiples and greatest common divisors is 

necessary for students to understand LaGrange’s Theorem.  

Real-world application. Only one participant described mathematical connections 

between abstract algebra and secondary school mathematics in terms of real-world applications. 

One connection he made was between direct products taught in abstract algebra and molecules 

taught in secondary school chemistry. He explained:  

When you get to direct products, you can say that you glue those things together to get a 
much more complicated group by taking the basic component. Just like water is made out 
of hydrogen and oxygen, many groups are made out of Z2 cross Z4 cross a Z8 or 
something like that. 

 
This participant discussed how students want to be taught this type of mathematical connection 

so that they may recognize how mathematical concepts are related to concepts outside of 

mathematics.  
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Additional Mathematical Connections 

 After a second analysis pass through the entire data set, additional kinds of mathematical 

connections emerged that were not present in the textbook data. For instance, the participants 

discussed the mathematical connections in terms of two more connections perspectives: 

mathematical connections as an artifact of learning and mathematical connections as a 

mathematical activity. These additional connections are discussed in the succeeding sections.  

Mathematical Connections: Artifact of Learning. Three of the thirteen mathematicians 

and mathematics educators described mathematical connections as an artifact of learning. 

Businskas (2008) defined this type of mathematical connection as “a process that occurs in the 

mind of the learner(s) and the connection is something that exists in the mind of the learner” (pp. 

12–13). These participants concentrated on the mental connections developed within the 

students’ minds when talking about these mathematical connections.  

One participant characterized these connections as “more a state of mind,” so she did not 

think it was as important to explicitly state every connection to her abstract algebra students but 

rather to teach students how to make connections for themselves. When teaching abstract 

algebra, she challenged students’ assumptions about previous knowledge and properties because 

students “aren't blank slates when they come in the classroom” and often take their algebraic 

knowledge for granted. Despite these beliefs about mathematical connections, she still stated that 

she makes a point to explicitly mention as many connections as possible when teaching. A 

second participant shared these sentiments by discussing mathematical connections as “process 

connections.” She stressed the importance of having student think deeply about previously 

established concept definitions for secondary school mathematics to build mental connections 

between them and abstract algebra concepts. Consequently, both of these participants discussed 
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their shared belief that students learn best when starting from something familiar and building on 

what they already know by challenging their minds with something new to extend the 

knowledge. 

The other participant had a slightly different perspective on this type of mathematical 

connection. He focused his connection talk on students’ development of mathematical habits of 

mind and the role mathematical connections play in this development. For instance, in order for 

students to be able to identify patterns or make conjectures, they must first establish connections 

in their minds between concepts. Thus, abstract algebra students cannot make conjectures about 

an unknown structure without first thinking about how, for example, a specific number system 

learned in school mathematics relates to the unknown structure. After that connection is made, 

they are free to investigate the reasons why the structures are similar.  

Mathematical Connections: A Mathematical Activity. While all thirteen 

mathematicians and mathematics educators held the belief that connections exist across 

mathematics, six of these participants also discussed the involvement of the learner in the 

activity of establishing or identifying these connections through proof writing. Several of these 

participants, when teaching abstract algebra, emphasized student learning of proof techniques 

over specific abstract algebra theorems. However, these participants also mentioned a few 

abstract algebra concepts that provide opportunities for enhanced proof learning. These concepts 

included inverses, cosets, normal subgroups, and ideals. One participant noted that the latter 

three concepts, in particular, introduce an extra qualifier that students need to pay attention to 

when developing proof theory. 

While elaborating on the importance of proof writing, one participant asserted that proofs 

can illustrate how much or little a student knows about a certain topic. She explained, “If you 
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really understand that, then the proof is trivial. If they have no idea how to start it, then you know 

they don't have the right understanding.” Ultimately, she concluded that the more mathematical 

connections a student knows or has developed, the more sophisticated proof a student can write 

and understand. Analogously, another participant mentioned how mathematics was taught in the 

Middle Ages to teach people to think clearly about the world; correspondingly, abstract algebra 

students are taught to think, read, and write proofs in order to help them think abstractly about 

mathematics. A third participant commented, “High school teachers should be comfortable with 

proofs, and abstract algebra is certainly one of the best courses for that, because you have to 

think abstractly.” Another participant acknowledged that throughout an abstract algebra course 

students learn several proof techniques or templates that teach them to think clearly and parse 

information. She further added that proofs require students think about the role of definitions and 

how they build on these definitions by identifying connections to establish a sequence of logical 

arguments.  

Emerging Mathematical Connections: Historical Roots of Group Theory 

For many mathematicians and mathematics educators, the historical developments of 

algebraic structures (groups, rings, and fields) have shaped their understandings of them. As I 

further analyzed the interview data, additional mathematical connection categories emerged that 

aligned with the historical roots of group theory. More specifically, the participants tended to 

highlight mathematical connections related to one of the four historical origins of abstract 

algebra: solving polynomial equations, generalizing solutions to number theory problems, 

satisfying pre-established axioms, and characterizing geometric transformations. In order to 

better interpret the data, I will first provide a brief description of the historical development of 

group theory and then detail the described mathematical connections to these historical roots.  
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History of Group Theory. Until the early nineteenth century, the study of algebra 

primarily focused on the solving of polynomial equations. Joseph Lagrange initially analyzed 

known solving methods for cubic and quartic equations to discover that these methods shared the 

common feature of reduction; namely, the resolvent equation is one degree lower than the 

original equation.  In 1770, Lagrange used this finding, as well as permutations, to find a formula 

to solve fifth-degree polynomials (Hillman & Alexanderson, 1994; Kleiner, 2007; O’Connor & 

Robertson, 1996). Unbeknown to him, these permutations were elements of a group, so his work 

is now referred to as classical algebra. Evariste Galois, however, was the first to realize in 1831 

that the algebraic solution of an equation was connected to group theory (O’Connor & 

Robertson, 1996).  

Solutions to problems in number theory also played a prominent role in the development 

of group theory. In 1801, Karl Friedrich Gauss published Disquisitiones Arithmeticae, which 

summarized prior developments in number theory and examined the equivalence classes of 

various quadratic forms 𝑎𝑥! + 2𝑏𝑥𝑦 + 𝑐𝑦!. The byproduct of this work was an algebraic 

structure having certain properties that we now know to be a group (Hillman & Alexanderson, 

1994). Four specific algebraic structures were presented in Gauss’ paper: the additive group of 

integers modulo m, the multiplicative group of integers relatively prime to m, the group of 

equivalence classes of binary quadratic forms, and the group of nth roots of unity (Kleiner, 

2007). Gauss’ work also eventually led to the development of finite abelian groups.  

In 1854, Arthur Cayley introduced another way to understand groups; namely, through 

the use of a table (Hillman & Alexanderson, 1994; O’Connor & Robertson, 1996). He 

formulated the abstract group concept by using a set with a binary operator that satisfied certain 

axioms. This development was different from previous approaches in that certain axioms were 
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first selected, and algebraic structures were developed based on those axioms, whereas the others 

deduced properties from known polynomial structures and number systems. Cayley’s axiomatic 

approach to group theory guided the work of twentieth century mathematicians (O’Connor & 

Robertson, 1996).  

In 1872, Felix Klein proposed yet another way to think about groups with his Erlangen 

Program, which studied the invariants under a group of transformations (Kleiner, 2007; 

O’Connor & Robertson, 1996). It was here that Klein utilized algebraic methods to abstract ideas 

of symmetry by classifying geometries and their underlying transformations. Several groups 

appeared through Klein’s Erlangen Program: elliptic group, group of rigid motions, hyperbolic 

group, projective group, and symmetry group (Kleiner, 2007). This work largely influenced 

future mathematicians as seen in the growth in geometry transformation research in the 

nineteenth century. These distinct origins of group theory were visible through different 

participants’ descriptions of abstract algebra and connections to secondary school mathematics.  

Solving Polynomial Equations. Four of the thirteen mathematicians and mathematics 

educators in this study explained mathematical connections between abstract algebra and 

secondary school mathematics in terms of solving equations. Three additional participants 

acknowledged that this perspective was important to abstract algebra, but they did not elaborate 

on these connections. The four participants who did elaborate on these connections used similar 

descriptions to this one: 

I say to them, “Let's do solve equations.” Then ask which properties they used to solve 
the equations, could you use fewer. Then the students came and presented on the board 
and say the following properties can be used for this one, these can be used for this one, 
etc. … If we want to solve any equation, which properties do we need, let's write a 
definition that captures that. That's how I introduce the definition of groups. 
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These participants then emphasized mathematical connections such as inverse, identity, and 

operators and how these properties naturally come out through solving equations. For example, 

an inverse is first taught as a number; namely, an additive inverse is first introduced to middle 

school students as the negation of a number and a multiplicative inverse is introduced as the 

reciprocal of a number. High school students are then taught a more operational approach to 

inverse in learning how to find inverse functions and inverse matrices. In abstract algebra, 

students learn inverse as a necessary element of a set, whether that set is shown through solving 

equations or in the definition of an algebraic structure. One participant noted his surprise that 

more abstract algebra students do not recognize the connection between the zero product 

property and integral domains with solving quadratic equations through factoring. The other 

three participants who focused on connections to or through solving equations also mentioned 

this connection.  

Number Theory. Four of the thirteen mathematicians and mathematics educators 

described mathematical connections related to number theory. Two additional participants 

acknowledged the importance of number theory to the historical development of abstract algebra, 

but they did not elaborate on these connections. The four participants discussed how the known 

number system can act as a foundation to facilitate discussion of the properties and operations 

associated with algebraic structures. For instance, these participants elaborated on the similarities 

between integers and polynomial rings. One of these participants mentioned the similar structural 

nature of base 10 expansions with polynomials, whereas three of the these participants focused 

more on the parallels between integer long division and polynomial long division, factoring 

numbers and factoring polynomials, and the Euclidean algorithm and other division algorithms. 
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One participant also explained structural connections between complex numbers and 

polynomials and how they both relate to the construction of splitting fields: 

A lot of high school students, if you watch them work, they will calculate the complex 
numbers as if 𝑖 were 𝑥, and they work on them as if they are polynomials, and when they 
are all done they replace 𝑖! with -1. Well, that's actually a very deep idea. And we 
develop complex numbers from that point of view, building on what high school kids 
typically do. This is the idea that Kroencker used to construct splitting fields from 
polynomials. Basically what you are doing is taking a polynomial of one variable with 
real numbers and reducing it modulo 𝑥! + 1, so that's the whole approach to complex 
numbers. 
 

Ultimately, these four participants relied on students’ background knowledge of number systems 

from secondary school mathematics to develop relevant abstract algebra concepts. 

Axiomatic Approach. Only one participant discussed mathematical connections 

axiomatically. One additional participant mentioned this perspective, but only as a historical 

origin of abstract algebra. The first participant, when teaching abstract algebra, prefers to 

concentrate on axioms such as commutativity and associativity that he believes students should 

have learned in secondary school mathematics. He then builds students’ understandings of 

algebraic structures on these properties. Much of his talk about connections was then focused on 

the role commutativity plays in learning about abelian groups. Additionally, he discussed the 

notion of losing commutativity in studying certain structures, such as moving from dimension 

two complex numbers to dimension four quaternions. As a result, he emphasized logically 

deriving definitions and proving theorems from known axioms.  

Geometric Transformations. Four of the thirteen mathematicians and mathematics 

educators described mathematical connections between abstract algebra and secondary school 

geometry. Two additional participants acknowledged the existence of these connections but 

strongly preferred another perspective and, as a result, would not teach their students these 

connections.  The four participants who emphasized geometric connections liked the visual 
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nature of this approach to learning abstract algebra. These participants explicitly mentioned 

connections between geometric transformations such as rotation and reflection to algebraic 

structures. All were similar to one participant’s described approach to teaching abstract algebra: 

Basically, there's a long sequence of classes in the beginning that starts with symmetries 
on the equilateral triangle. The students reinvent their own symbols for those symmetries, 
then we talk about combining those symmetries. They develop a set of rules as to why 
that works. This leads into the axioms of a group.  
 

This same participant reinforced these ideas by assigning his abstract algebra students a 

symmetry journal for homework in which students explored the symmetries of regular polygons 

not already examined in class. 

 Two participants also discussed the mathematical connections to the combination of 

geometric transformations. One of these participants detailed the notions of identity and inverse 

in terms of these transformations. More specifically, she explained how an object reflected twice 

over an axis is in fact itself, so the action of two reflections acts as an identity and one reflection 

acts as an inverse. The other participant elaborated on using geometric transformations to explain 

the associative and commutative properties and parity. He noted: 

So I say look at your table of the symmetries of the square. They remember from the 
earlier work that a reflection and a reflection gives a rotation and a rotation and a rotation 
gives another rotation, if you mix them you get a reflection, so those act like evens and 
odds. 

 
Thus, for these four participants, students’ background knowledge of geometry from secondary 

school mathematics was pivotal to understanding abstract algebra concepts.  

Emerging Mathematical Connections: Connections for Teaching 

Three of the thirteen mathematicians and mathematics educators discussed yet another 

type of connection: mathematical connections for teaching. These participants emphasized that 

mathematical connections are important for prospective secondary school mathematics teachers 
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to identify in order to enhance their future teaching. All three of the participants detailed how 

abstract algebra knowledge can be used for a teacher’s preparation of lesson plans. For instance, 

one participant noted that secondary school mathematics teachers can employ what they know 

about a structure to help them plan a lesson. When a teacher is in the midst of extending an 

activity, he or she could quickly determine whether or not the extension is valid because it fits 

within the structure or stop because it is not within the structure that she is dealing with. By 

knowing about the structure the students are working with, the teacher could also realize the 

questions she may need to ask students about the problem in order to further student 

understanding and learning.  

Another participant described how abstract algebra could inform lesson planning, such as 

using arithmetic of quadratic fields and rational points on conics to develop problems that work 

out nicely. Similarly, the other participant explained: 

You are teaching them geometry and you want to give them some examples of triangles 
in a plane. It would be very nice if the side lengths of the triangle were integers, because 
it makes it much easier to work with, and by using abstract algebra it tells you how you 
can construct many examples.  
 

He also mentioned that one of the things he likes to discuss when teaching abstract algebra is the 

impossibility of trisecting an angle, which comes up in secondary school geometry. Another 

mathematical connection he described, “In high school you could take the affine group on the 

plane and construct an equilateral triangle with medians and apply the affine group, then you can 

see the properties are invariant of the affine group with midpoints.” Ultimately, for this 

participant, to teach something effectively means the teacher needs to know why something is 

true, as well as be able to communicate why you need certain hypothesis or properties so that a 

structure does not break down. Consequently, to him, mathematical connections between abstract 

algebra and secondary school mathematics involve those beneficial to teaching effectively, so 
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important connections are those that both provide necessary background knowledge and improve 

a teacher’s ability to communicate that knowledge. 

Summary 

In this chapter, I detailed the various ways mathematicians and mathematics educators 

described mathematical connections between abstract algebra and secondary school mathematics 

while participating in individual interviews. The pure mathematicians that have only published in 

pure mathematics journals with little to no experience with the secondary school curriculum 

made fewer connections than the participants with mathematics education experience, especially 

those having several years of secondary school teaching experience. To be more specific, the 

pure mathematicians discussed approximately five to eight mathematical connections whereas 

the other participants discussed approximately ten or more connections. The results of this study 

were organized based on the analytic connection framework used for the textbook analysis, 

additional perspectives of mathematical connections described in the literature review, and 

emerging types of mathematical connections from the interview data, which included 

connections that aligned with the historical roots of group theory and connections for teaching. 

The final modified connection list initially created from the textbook data, used during the 

interviews, and modified after each interview to include additional mentioned concept-by-

concept connections is shown in Table 9. 
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Table 9 

Final Mathematical Connections List 

Abstract Algebra Concept Secondary School Mathematics 
Concept 

Connection Category 

Algebraic structures & their 
properties 

Function and domain Comparison Through 
Common Features; 
Hierarchical Relationship 

Algebraic structures & their 
properties 

Identity Hierarchical Relationship 

Algebraic structures & their 
properties 

Inverse Hierarchical Relationship 

Algebraic structures & their 
properties 

Number systems and known 
operators 

Comparison Through 
Common Features; 
Generalization 

Algebraic structures & their 
properties 

Solving linear equations Comparison Through 
Common Features; 
Hierarchical Relationship 

Binary operator Arithmetic operators & 
number systems 

Generalization 

Binary operator Domain Comparison Through 
Common Features 

Binary operator Function Comparison Through 
Common Features 

Binary operator Function composition Comparison Through 
Common Features; 
Generalization 

Binary operator Function transformations Comparison Through 
Common Features 

Commutative ring theory 
(localization) 

Fractions Hierarchical Relationship 

Compass/geometric 
constructions 

Geometry concepts including: 
points, lines, circles, regular 
n-gons, angles, intersection, 
and trisection 

Hierarchical Relationship 
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Abstract Algebra Concept Secondary School Mathematics 
Concept 

Connection Category 

Congruence Solving linear equations Comparison Through 
Common Features 

Cyclic group Division algorithm Hierarchical Relationship 

Cyclic group Greatest common divisor Comparison Through 
Common Features 

Cyclic group Imaginary unit 𝒊 Comparison Through 
Common Features 

Cyclic group Rotations and periodicity Comparison Through 
Common Features 

Direct product Cartesian plane and ordered 
pairs 

Generalization 

Direct product Matrices for area and volume Comparison Through 
Common Features 

Equivalence Equal sign Comparison Through 
Common Features 

Equivalence Inequality Comparison Through 
Common Features 

Equivalence Similarity Comparison Through 
Common Features 

Equivalence Solving Equations Hierarchical Relationship 

Equivalence classes Decimal expansions  Comparison Through 
Common Features 

Equivalence classes Equivalent fractions Comparison Through 
Common Features 

Equivalence classes Linear functions Comparison Through 
Common Features 

Equivalence relation Congruence Comparison Through 
Common Features 

Equivalence relation Inequality Comparison Through 
Common Features 
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Abstract Algebra Concept Secondary School Mathematics 
Concept 

Connection Category 

Equivalence relation Similarity Comparison Through 
Common Features 

Equivalence relation Symmetry Hierarchical Relationship 

Extension field/splitting field Complex numbers Hierarchical Relationship 

Extension field/splitting field Domain Comparison Through 
Common Features 

Extension field/splitting field Solving for roots of a 
polynomial 

Hierarchical Relationship 

Fundamental theorem of 
algebra 

Roots of a polynomial Comparison Through 
Common Features 

Galois theory Radicals Hierarchical Relationship 

Galois theory Roots of polynomial 
equations 

Hierarchical Relationship 

Groups and specific types of 
groups 

Function composition Hierarchical Relationship 

Groups and specific types of 
groups 

Geometric transformations & 
symmetries 

Alternative Representation; 
Hierarchical Relationship 

Homomorphism/isomorphism Equality Comparison Through 
Common Features 

Homomorphism/isomorphism Function Comparison Through 
Common Features; 
Hierarchical Relationship 

Homomorphism/isomorphism Infinity and finitely infinite Comparison Through 
Common Features 

Homomorphism/isomorphism Invariance Comparison Through 
Common Features 

Homomorphism/isomorphism Mapping Hierarchical Relationship 

Ideal Number systems Comparison Through 
Common Features 

Ideal Subset Hierarchical Relationship 
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Abstract Algebra Concept Secondary School Mathematics 
Concept 

Connection Category 

Inverse Multiplicative reciprocal Generalization 

Inverse Negative numbers Generalization 

Irreducible polynomial Factoring polynomials Generalization 

Kernel  Nullspace of a matrix Comparison Through 
Common Features 

Lagrange’s theorem Euclidean algorithm Hierarchical Relationship 

Lagrange’s theorem Greatest common factor Hierarchical Relationship 

Lagrange’s theorem Least common multiple Hierarchical Relationship 

Nilpotent Geometric series and 
convergence 

Hierarchical Relationship 

Permutation group Function & function 
composition 

Hierarchical Relationship 

Permutation group Permutation Hierarchical Relationship 

Permutation group Symmetry Hierarchical Relationship 

Polynomial ring Operations with polynomials 
& polynomial long division  

Comparison Through 
Common Features; 
Hierarchical Relationship 

Polynomial ring Polynomial vocabulary 
(degree, coefficients, roots, 
etc.) 

Comparison Through 
Common Features; 
Hierarchical Relationship 

Polynomial ring Power series Hierarchical Relationship 

Quotient group/Quotient field Equivalent fractions  Generalization 

Quotient group/Quotient field Fractions & operations with 
fractions 

Generalization 

Product of cycle 
decomposition 

Composite function Hierarchical Relationship 

Quaternions Complex numbers Comparison Through 
Common Features 
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Abstract Algebra Concept Secondary School Mathematics 
Concept 

Connection Category 

Sign rule in a ring Product of two negative 
numbers is positive 

Generalization 

Subgroups Subsets Hierarchical Relationship 

Unary operators Negation Generalization 

Unary operators Trigonometric functions Generalization 

Unit Invertible matrices Comparison Through 
Common Features 

Zero divisors Geometric reflections & 
rotations 

Comparison Through 
Common Features 

Zero divisors Solve quadratic equations by 
factoring 

Hierarchical Relationship 
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CHAPTER 6: CONCLUSIONS, IMPLICATIONS, AND FUTURE WORK 

In this research study, I sought to first identify the mathematical connections between 

abstract algebra and secondary school mathematics explicitly stated in textbooks and discussed 

by mathematicians and mathematics educators. I then classified and described those connections. 

The primary motivation for this research followed from my assumption that students enhance 

their concept images and concept definitions of abstract algebra content with the recognition and 

understanding of these connections. However, previous research has shown that undergraduate 

abstract algebra students do not recognize mathematical connections between abstract algebra 

and secondary school mathematics. In this study I aspired to address this issue by identifying 

mathematical connections that could be made and investigating ways mathematicians and 

mathematics educators describe them. To reiterate, the following research questions guided this 

study: 

1) What mathematical connections are explicitly stated between abstract algebra and 

secondary school mathematics in abstract algebra textbooks, and how are these 

connections discussed?  

2) Which mathematical connections between abstract algebra and secondary school 

mathematics do mathematicians and mathematics educators identify, and how do they 

describe them?  

Qualitative research methods allowed me to answer my research questions by enabling 

me to more accurately present the perspectives of written materials such as textbooks through 

text analysis as well as the perspectives of mathematicians and mathematics educators about 
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mathematical connections found in abstract algebra as expressed through interviews. This study 

utilized two main sources of data: abstract algebra textbooks and interviews with mathematicians 

and mathematics educators. I selected nine abstract algebra textbooks to analyze (described in 

detail in Chapter 3 and seen in Table 2) and 13 mathematicians and mathematics educators 

involved in abstract algebra teaching or research to interview (described in detail in Chapter 3 

and seen on page 32). In the first stage of research, I created a list of mathematical connections 

identified in abstract algebra textbooks and classified the ways in which these mathematical 

connections were presented. To this list, I added mathematical connections that I thought may 

have been implicitly stated in the textbooks or I recognized from using my own knowledge of 

abstract algebra. I then interviewed the mathematician and mathematics educators, altering the 

connections list to include those mentioned by the participants. In this final stage of research, I 

also classified the ways in which the participants described mathematical connections between 

abstract algebra and secondary school mathematics. 

Even though researchers (CBMS, 2001; Cofer, 2012; Cook, 2012) have shown that 

undergraduate abstract algebra students are not recognizing mathematical connections between 

abstract algebra and secondary school mathematics, little previous work has been done to 

identify and discuss these connections. The findings of this study offer two major contributions 

to the literature. First, specific mathematical connections between concepts found in abstract 

algebra and those found in secondary school mathematics were identified and listed. The 

resulting list can serve as a teaching supplement for abstract algebra professors who may have 

not considered the secondary school mathematics curriculum in their teaching. Second, this study 

provided ways in which the mathematical connections between abstract algebra and secondary 

school mathematics could be discussed. As seen in this study, a connection between two 
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concepts can be described in different ways.  Mathematicians and mathematics educators who 

would like to talk about connections more explicitly can then utilize the classifications of 

connections to be more clear about the type of connection they want to emphasis. Policymakers 

and stakeholders can also take the results of this study to support the requirement of taking an 

abstract algebra course for prospective secondary mathematics teachers. In the following sections 

I elaborate on this study’s specific conclusions and implications as well as possible future work. 

Conclusions 

One interesting conclusion that emerged from this research is that despite the varying 

mathematical connection perspectives described in abstract algebra textbooks and by the 

participants, there were similar key perspectives that could be categorized into specific groups. 

More specifically, the textbook authors presented connections in five distinct ways: alternative 

representation, comparison through common features, generalization, hierarchical relationship, 

and real-world application. Similar to the textbooks, the mathematicians and mathematics 

educators, when describing connections, also used the analytic framework categories: 

comparison through common features, generalization, and hierarchical relationship. In fact, the 

textbooks and participants both primarily described specific concept connections between 

abstract algebra and secondary school mathematics using comparison through the common 

features and hierarchical relationship.  

To be more specific, the abstract algebra concepts algebraic structures and properties 

and polynomial ring compared to the secondary school mathematics concepts number systems 

and arithmetic operators and polynomial operators and vocabulary were the most widely 

explicitly stated connections across textbooks. The textbooks stated the greatest number of 

distinct concept connections using hierarchical relationship. Twelve of the thirteen 
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mathematicians and mathematics educators also described mathematical connections through a 

comparison of structural features. These participants detailed the numerous ways two structures 

could be compared and identified the particular structures they typically used while making these 

comparisons. For instance, the participants discussed the structural similarities between the 

properties defining group theory and the properties needed to solve a linear equation with one 

operator. These results are inconsistent with previous research that has suggested the primary 

mathematical connection between abstract algebra and secondary school mathematics is 

generalization.  

Not surprisingly, the authors of the abstract algebra textbooks and the participants 

identified various mathematical connections and prioritized certain connection types more than 

others. For instance, most of the textbooks introduced polynomial rings by making comparison 

through common features connections, whereas only one textbook discussed the hierarchical 

relationship connection between the abstract algebra concept polynomial ring and the secondary 

school mathematics concept power series. Even though polynomial ring is a standard abstract 

algebra concept found in all the textbooks, not all of them made the same explicit connection to 

secondary school mathematics or used the same connection type. Similarly, the mathematicians 

and mathematics educators’ descriptions of connections reflected their own experiences with 

students when teaching abstract algebra. Three of the participants described connections as an 

artifact of learning by concentrating on the mental connections developed within the students’ 

minds between concepts when learning abstract algebra. Six participants also discussed the 

involvement of the learner in a mathematical activity of establishing or identifying these 

connections through proof writing. In addition, the mathematicians and mathematics educators 

differed according to their individual conceptualizations of group theory. That is, participants 
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with views of abstract algebra based on axioms, solving equations, number theory, or geometry 

prioritized different sets of connections.  

Another interesting conclusion that emerged from this research is that the mathematical 

connections stated in the abstract algebra textbooks and described by the participants were linked 

to secondary school geometry nearly as often as secondary school algebra. These results were 

also inconsistent with previous research that suggested that the importance of abstract algebra 

lies in its mathematical connections to school algebra. To be more specific, seven of the nine 

textbooks connected group theory to geometric transformations through alternative 

representation and hierarchical relationship connections. In addition, seven textbooks connected 

the abstract algebra concepts compass or geometric constructions to school geometry concepts 

angles, circles, regular n-gons, etc. Several of the mathematicians and mathematics educators 

identified and discussed these same connections between abstract algebra and secondary school 

geometry. In fact, four participants prioritized connections to school geometry in their 

connection talk and when teaching abstract algebra. A comparable number of abstract algebra 

textbooks and participants explicitly made connections to secondary school algebra. That is, 

seven textbooks made an alternative representation connection between the abstract algebra 

concept group theory and secondary school algebra concept solving linear equations, and eight 

textbooks compared specific abstract algebra structures to secondary school algebra structures, 

operators, and vocabulary. Four participants also prioritized connections to school algebra in 

their connection talk and when teaching abstract algebra. 

Implications 

Stakeholders and policymakers’ recommendations and previous research have often 

characterized abstract algebra as the generalization of school algebra. However, the findings of 
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this study revealed a discrepancy between these held beliefs and the actual mathematical 

connections described in abstract algebra textbooks and by mathematicians and mathematics 

educators with expertise in abstract algebra. In fact, other connections and connection types were 

discussed with greater frequency in this study. Abstract algebra can no longer be considered 

simply as the generalization of school algebra but rather it should be regarded as an extension of 

previous mathematical knowledge from algebra and geometry. This study’s results revealed that 

textbook authors and participants identified and discussed mathematical connections between 

abstract algebra and secondary school geometry nearly as often as those connections to 

secondary school algebra. Thus, abstract algebra provides prospective secondary mathematics 

teachers knowledge that is important to their understandings of school geometry as well as their 

understandings of school algebra. 

Furthermore, the mathematical connections between abstract algebra and secondary 

school algebra in addition to the connections between abstract algebra and secondary school 

geometry are not simply generalizations. In fact, I discovered through this research that abstract 

algebra textbook and mathematicians and mathematics educators mentioned connections of other 

types more frequently; namely, connections of the types comparison of common features, 

hierarchical relationship, and alternative representations. The rationale for requiring prospective 

secondary mathematics teachers to take an abstract algebra course should then include abstract 

algebra as a further study of familiar mathematical ideas through studying structural 

comparisons, building upon previous mathematical concepts, and using alternative 

representations of algebraic concepts. In other words, a change must occur in the way in which 

we explain why abstract algebra is required for prospective secondary mathematics teachers. 
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Another implication that can be drawn from the results of this study is that a variety of 

mathematical connections between abstract algebra and secondary school mathematics can be 

made, and these connections can be described in various ways. It is important for abstract 

algebra professors to recognize that not all abstract algebra textbooks identify the same 

mathematical connections nor do all the textbooks discuss mathematical connections in the same 

way. For instance, not all of the abstract algebra textbooks analyzed introduced polynomial rings 

using comparison of common features even though the majority of the texts did. By identifying 

the specific mathematical connections found in their assigned textbook, one can build on these 

connections to help students develop more accurate concept images and concept definitions of 

abstract algebra content. For instance, professors can discuss connections with students in the 

classroom analogously to the ways in which connections are described in the assigned text. 

Coherently discussing mathematical connections may enhance students’ understanding of 

important connections or help students build new understandings from previous knowledge. 

Further, professors should be aware of the identified connections and connection types omitted 

from their assigned textbook so that they can discuss omitted connections in class or through 

supplementary materials. Abstract algebra professors may also want to talk about connections 

with students in ways that are not found in the textbook but would be beneficial to learning. For 

example, a professor may want to introduce alternative representations of a group when the 

assigned textbook only presents one representation of a group. 

From the interview data, in particular, another implication that can be drawn; namely, 

mathematicians and mathematics educators’ individual conceptualizations of group theory 

influence their descriptions of mathematical connections between abstract algebra and secondary 

school mathematics. Thus, abstract algebra professors should be aware of how their individual 
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conceptualizations of abstract algebra influence their teaching. That is, a professor who focuses 

on certain connections or connection types over others can limit the understandings of their 

students by not providing them opportunities to identify a set of connections. For instance, a 

professor who favors the axiomatic approach to group theory may fail to discuss the geometric 

connections between group theory and secondary school mathematics. As a result, students, and 

especially prospective secondary mathematics teachers, will not access the full benefits of this 

course because they will not see the connections to secondary school geometry. Therefore, 

abstract algebra professors should consciously consider their individual conceptualizations of 

abstract algebra and how it affects their students learning.  

Future Work 

 This study provides the groundwork for future research investigating the mathematical 

connections between abstract algebra and secondary school mathematics. I see two logical steps 

for future research: classroom observations to explore the mathematical connections discussed in 

abstract algebra courses and teaching experiments with undergraduate mathematics students 

enrolled in an abstract algebra course. In the former, examining the mathematical connections 

being made by the professor and students will provide a more complete picture of which and 

how mathematical connections are being presented in practice, if any. I anticipate either several 

explicit connections are being made in the classroom setting or very few. In the latter research 

direction, I will conduct a teaching experiment with a group of undergraduate mathematics 

students in which students will engage in activities that challenge them to consider the various 

mathematical connections between abstract algebra and secondary school mathematics. The 

purpose of this study would be to understand student learning of abstract algebra through 

identifying and making use of mathematical connections and to determine teaching approaches 
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to enhance learning. An extension of this study can be conducted by following the teaching 

experiment participants into their teaching profession to examine which connections and 

connection types are valuable for teaching and how these connections influence their teaching. 

Both research directions would provide a more complete picture of mathematical connections in 

the area of abstract algebra.  

In conclusion, many stakeholders and educational movements have emphasized the 

importance of recognizing mathematical connections between mathematical ideas to build 

students’ understanding of mathematics. Although previous research has examined abstract 

algebra learning as well as mathematical connections from a variety of perspectives, this study 

provided the first exploration of the explicit mathematical connections between abstract algebra 

and secondary school mathematics. The textbook analysis and individual interviews with 

mathematicians and mathematics educators provided a list of mathematical connections and 

descriptions of these connections. Identifying and characterizing connections between abstract 

algebra concepts and secondary school mathematics concepts offers abstract algebra professors 

additional information that can be used to enhance undergraduate students’ understandings of 

abstract algebra in addition to providing the vocabulary to discuss these mathematical 

connections. 
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APPENDIX A 

Interview Protocol 

Hello, my name is Ashley Suominen and I am a PhD student in mathematics education at 

University of Georgia. I am currently conducting a research study about the mathematical 

connections between abstract algebra and secondary school mathematics.  

 

Before we begin, I would like to discuss my plan on identifying your involvement in this 

research. In my methodology section of my dissertation I plan on listing all of the participants 

that helped with this project. However, I will not use direct quotes or identify anything you say 

or do during the interview to you personally. The reason for this decision is to provide additional 

creditability to the resulting formulated list of mathematical connections to future readers. If you 

would not like to be acknowledged in my dissertation, please let me know that as well. If at any 

point you feel uncomfortable, you may refuse to answer a question or stop the interview without 

any penalty. The interview should last approximately an hour. Do you have any questions before 

we begin? 

Experience Questions 

We will begin the interview by discussing your background in abstract algebra. 

§ Tell me a little bit about when you teach abstract algebra.  

o How many years/semesters have you taught the course? 

o What textbook do you use?  

o What topics do you include in the course?  
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o How do you typically structure or teach the course? 

o What do you want your students to learn from the course? 

§ If they research abstract algebra: Tell me about your research interests in abstract algebra.  

Switching gears slightly, let’s discuss your background in secondary mathematics education. 

§ Have you ever taught mathematics at the high school level?  

o If so, what did you teach? 

o If not, what experiences do you have regarding secondary mathematics curriculum? 

Mathematical Connections Questions 

Next, we will explore content connections between abstract algebra and secondary school 

mathematics. 

§ First, how would you define mathematical connections? If clarification is needed: What does 

it mean for a connection to exist between two concepts? 

§ Given your knowledge of abstract algebra as well as the mathematics taught at the secondary 

level (6th-12th grades), what mathematical connections do you recognize between abstract 

algebra and secondary school mathematics? 

o If the participant is not familiar with the secondary school mathematics curriculum, I will 

provide the list of curriculum topics1 (Table A1). Given your knowledge of abstract 

algebra as well as this list of curricular topics, what mathematical connections do you 

recognize between abstract algebra and secondary school mathematics? 

o For each identified connection: Tell me a little bit about why you identified this 

connection.  

 

                                                
1 Even though I offered two participants the option to view this document, neither participant 
wanted to look at the curriculum list, so none of the participants actually saw this document. 
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When the participant is finished identifying mathematical connections, 

Through analyzing textbooks and interviewing other mathematicians and mathematics educators, 

I have a working list of mathematical connections between abstract algebra and secondary school 

mathematics. Please take a few minutes to look over this list. Give the participant the list of 

mathematical connections. 

§ Starting at the top of the list, do you agree with each of these connections?  

o If so, could you explain why you agree with the connection?  

o If not, could you explain why you disagree with the proposed connection? 

§ Now that you have seen a formulated list of mathematical connections, are there any 

additional mathematical connections that are missing from this list? 

 
 
Closing: 

I want to thank you for coming in for this interview. Do you have any other thoughts about 

mathematical connections that you would like to share? If I have any other follow-up questions, 

may I contact you again? Thank you and have a great day! 
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Table A1 
 
Secondary Mathematics Curriculum Topics 

Grade/course Curriculum Topics 
6th grade § Area, surface area, volume 

§ Greatest common factor 
§ Multiply and divide fractions 
§ One variable equations and inequalities 
§ Rational numbers 
§ Understand and use ratios 

7th grade § Angle measure, area and circumference of a circle 
§ Understand and use proportions 

8th grade § Congruence and similarity 
§ Definition of functions 
§ Irrational Numbers 
§ Linear equations and pairs of linear equations  
§ Radicals 
§ Volumes of cones, cylinders, and spheres 

Algebra 1 § Arithmetic and geometric sequences 
§ Linear, quadratic, and exponential equations 
§ Piecewise functions 
§ Systems of linear equations 

Geometry § Circle theorems, arc length, areas of sectors of circles 
§ Conic sections 
§ Distance formula 
§ Geometric constructions 
§ Prove geometric theorems involving congruence and similarity 
§ Transformations in a plane 
§ Trigonometric ratios using right triangles 

Algebra 2 § Complex numbers 
§ Factors and zeros of polynomials 
§ Logarithms  
§ Transformations of functions 
§ Trigonometric functions using unit circle 
§ Trigonometric identities 

Fourth course § Domain of trigonometric functions 
§ Prove trigonometric identities 
§ Vectors and matrices 
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APPENDIX B	  

Mathematical Connections Found in the Textbooks 

Abstract Algebra Concept Secondary School Mathematics Concept 
Algebraic structures (Group, Ring, Integral 
Domain, Field) & their properties 

Number systems and known operators; 
Solving linear equations 

Binary operator Arithmetic operators & number systems 
Compass/geometric constructions Geometry concepts including: points, lines, 

circles, regular n-gons, angles, intersection, 
and trisection 

Congruence Solving linear equations 
Cyclic group Division algorithm 

Direct product Cartesian plane and ordered pairs 
Extension field/splitting field Complex numbers; Roots of a polynomial  

Fundamental theorem of algebra Roots of a polynomial 
Galois theory Radicals; Roots of polynomial equations 

Groups and specific types of groups Function composition; Geometric 
transformations & symmetries 

Homomorphism/isomorphism Function 
Inverse Multiplicative reciprocal; Negative numbers 

Irreducible polynomial Factoring polynomials 
Nilpotent Geometric series and convergence 

Permutation group; Product of cycle 
decomposition 

Function and function composition; 
Permutation 

Polynomial ring Operations with polynomials & polynomial 
long division; Polynomial vocabulary (degree, 
coefficients, roots, etc.); Power series 

Quotient field Fractions & operations with fractions 

Quaternions Complex numbers 
Sign rule in a ring Product of two negative numbers is positive 
Unit Invertible matrices 

Zero divisors Solve quadratic equations by factoring 
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APPENDIX C	  

Initial Mathematical Connections List for Interviews 

Abstract Algebra Concept Secondary School Mathematics Concept 
Algebraic structures (Group, Ring, Integral 
Domain, Field) & their properties 

Number systems and known operators; 
Solving linear equations 

Binary operator Arithmetic operators & number systems 

Compass/geometric constructions Geometry concepts including: points, lines, 
circles, regular n-gons, angles, intersection, 
and trisection 

Congruence Solving linear equations 

Cyclic group Division algorithm; Imaginary unit 𝒊 

Direct product Cartesian plane and ordered pairs 

Extension field/splitting field Complex numbers; Roots of a polynomial  

Fundamental theorem of algebra Roots of a polynomial 

Galois theory Radicals; Roots of polynomial equations 

Groups and specific types of groups Function composition; Geometric 
transformations & symmetries 

Homomorphism/isomorphism Function 

Ideal Number systems; Subset 

Inverse Multiplicative reciprocal; Negative numbers 

Irreducible polynomial Factoring polynomials 

Kernel  Nullspace of a matrix 

Nilpotent Geometric series and convergence 

Permutation group; Product of cycle 
decomposition 

Function and function composition; 
Permutation 
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Polynomial ring Operations with polynomials & polynomial 
long division; Polynomial vocabulary (degree, 
coefficients, roots, etc.); Power series 

Quotient field Fractions & operations with fractions 

Quaternions Complex numbers 

Sign rule in a ring Product of two negative numbers is positive 

Subgroup Subsets 

Unit Invertible matrices 

Zero divisors Solve quadratic equations by factoring 
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APPENDIX D 

Mathematical Connections List After Interviews 

Abstract Algebra Concept Secondary School Mathematics Concept 
Algebraic structures (Group, Ring, 
Integral Domain, Field) & their 
properties 

Function and domain; Identity; Inverse; Number 
systems and known operators; Solving linear 
equations 

Binary operator Arithmetic operators & number systems; Domain; 
Function; Function composition; Function 
transformations 

Commutative ring theory 
(localization) 

Fractions 

Compass/geometric constructions Geometry concepts including: points, lines, circles, 
regular n-gons, angles, intersection, and trisection 

Congruence Solving linear equations 

Cyclic group Division algorithm; Greatest common divisor; 
Imaginary unit 𝒊; Rotations and periodicity 

Direct product Cartesian plane and ordered pairs; Matrices for area 
and volume 

Equivalence Equal sign; Inequality; Similarity; Solving equations 

Equivalence classes Decimal expansions; Equivalent fractions; Linear 
functions 

Equivalence relation Congruence; Inequality; Similarity; Symmetry 

Extension field/splitting field Complex numbers; Domain; Roots of a polynomial 

Fundamental theorem of algebra Roots of a polynomial 

Galois theory Radicals; Roots of polynomial equations 

Groups and specific types of groups Function composition; Geometric transformations & 
symmetries 
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Homomorphism/isomorphism Equality; Function; Infinity and finitely infinite; 
Invariance; Mapping  

Ideal Number systems; Subset 

Inverse Multiplicative reciprocal; Negative numbers 

Irreducible polynomial Factoring polynomials 

Kernel  Nullspace of a matrix 

Lagrange’s theorem Euclidean algorithm; Greatest common factor; Least 
common multiple 

Nilpotent Geometric series and convergence 

Permutation group; Product of cycle 
decomposition 

Function and function composition; Permutation; 
Symmetry 

Polynomial ring Operations with polynomials & polynomial long 
division; Polynomial vocabulary (degree, coefficients, 
roots, etc.); Power series 

Quotient group/Quotient field Equivalent fractions; Fractions & operations with 
fractions;  

Quaternions Complex numbers 

Sign rule in a ring Product of two negative numbers is positive 

Subgroup Subsets 

Unary operators Negation; Trigonometric functions 

Unit Invertible matrices 

Zero divisors Geometric reflections & rotations; Solve quadratic 
equations by factoring 

 
  


