INVOCATION OF WEB SERVICES IN GLYCOMICS PORTAL
by
SINGARAM SUNDAR
(Under the Direction of William York and John Miller)
ABSTRACT
The GlycomicsPortal is a web based portal intending to serve as a hub for the
Glycomics community. It contains relevant Web services, workflow systems, software
modules and database systems. The users can register, submit or view existing content.
This research enhances the functionality of the web portal by adding the Web service
invocation and automatic Web service population features to it. The primary focus of
these features is to enable the users to directly invoke and execute all the SOAP and
REST Web services registered within the portal without writing a separate client
application. This is achieved by introducing a generic SOAP client that handles doc-
literal SOAP and REST clients that handles REST Web services. These SOAP and REST

clients are integrated within the portal to exploit its functionality.

INDEX WORDS: GlycomicsPortal, Web services, SOAP, REST, WSDL

INVOCATION OF WEB SERVICES IN GLYCOMICS PORTAL

by

SINGARAM SUNDAR

B.Tech, SRM University, India, 2009

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2012

© 2012
Singaram Sundar

All Rights Reserved

INVOCATION OF WEB SERVICES IN GLYCOMICS PORTAL

by

SINGARAM SUNDAR

Major Professor: William York, John A. Miller

Committee: Krzysztof J. Kochut
Ismailcem Budak Arpinar

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School
The University of Georgia
July 2012

DEDICATION

To God, my family and friends.

v

ACKNOWLEDGEMENTS

I am greatly thankful to my major professors, Dr. York and Dr. Miller for their
continuous support and guidance during my study at UGA. I would like to thank Dr.
York for his valuable advice, support and encouragement through all my work and time
at UGA. [would like to thank Dr. Miller for his valuable suggestions, support, advice and
encouragement all through my work. I would like to thank Rene Ranzinger for his
continuous guidance, support and teaching all through my work. I am thankful to Dr.
Kochut, who has introduced me to Web services, helped in understanding the concepts
and built the foundation. I would also like to thank Dr. Arpinar for being a part of my
work and time at UGA.

Finally, I would like to thank my colleagues who have helped me on this project:

Alok Dhamanaskar and Micheal A. Cotterell.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS ...ttt ettt et e \%
LIST OF FIGURES ... oottt ettt e 1X
CHAPTER
1 INTRODUCTION ..ottt ettt 1
LT OVEIVIEW ..ttt ettt ettt et e e 1
1.2 MOtIVATION ..ottt et et 2
2 RELATED WORKooiiii ettt 3
2.1 B10-CatalOgUEcccvvieiiiieciieeciee ettt et 3
2.2 EBI (European Bio Informatics Institute) System..........ccccceevevveerneenns 3
2.3 500D Ul ..ottt e et e e e e e et e e e nraee s 4
2.4 Generic Web Based or desktop Clientscccceeevveeciieeiieencieeeeeens 4
2.5 WSDL-Based Automatic Test Case Generation for Web services
TSN .ttt ettt ettt e et e e et e e etbeeessaeeentaeeessaeennreeennneeens 5
2.6 Daios: Efficient Dynamic Web service Invocationccccecvveeeenennne. 5
2.7 Web services Invocation Framework (WSIF)ccccoovviiviiiiiiiieniens 7
3 GLYCOMICS PORTAL ..ottt 8
3.1 OVEIVIEW ..ttt ettt ettt et ettt et e st et e sabeebe e 8
3.2 ATCRITECTULE. ...couiiiiieiieeeet ettt et 9

vi

I BN 3) 1 1 PP URPPI 10

3.4 ENtry SUDMISSION ...eeeeiiieiiiieeiieeciieeeieeeeieeeeveeesereeeiaeeeaeeesaeeesnee e e 13
4 WEB SERVICES ...ttt 18
4.1 OVETVIEW ..ttt ettt ettt et ettt st e be e st e e saeeebeas 18
4.2 Types Of WED SETVICESccccuvieeiiieeiiieeiieeeieeeeiee et eeveeeaee e 18
4.3 Technologies in Web SEIVICEScccuveeeiieeeiiieniieeriee e 23
4.4 Web service data flow........coceeiiiiiiiiiiiiiiieceeeeeeee e 25
5 WSDL ettt ettt ettt eneens 26
5.1 WSDL OVEIVIEW ...eeeuiiiieiieieeiienieeie ettt eee st eee s e see e sneenseenees 26
5.2 Types Of WSDL ..ottt e 26
5.3 Description of @ WSDL filecccvieiiiieiiiee e 27
5.4 Entities of @ WSDL file.....c.cooiiiiiiiiiieeeeee 29

6 IMPLEMENTATION OF WEB SERVICES INVOCATION AND

AUTOMATIC POPULATION OF WEB SERVICES..........ccceoiiiiieeee 32
0.1 OVEIVIEW ...ttt ettt ettt ettt e st ebeesateebeesaeeens 32
6.2 TEChNOIOZIESveeeeiie et e e saee e 32
6.3 Automatic Population of Web Services........cccceevvieeriieeiieeecieesnieens 34
6.4 SOAP Invocation Manager..........ccceeeeveeeeiieeenieeeniieenreeeseeeeneeesneeens 35
0.5 SOAP CHENL....eiieieiieieeieseee ettt 38
0.6 REST CHENLoiuiiiieiieiiesiieeceseee et 44
6.7 Result Handler ..o 46

6.8 Comparison of Web service invocation between other systems and

GlycomiCSPOItal........cccviiiiiiiece e 47

vil

7 CONCLUSION AND FUTURE WORKSc.cccooiiiiiiicieeee, 55

T 1T FUtUIe WOTK ..o 56
REFERENCES ...ttt sttt ettt et e s e nteeneenseenseeneens 57
APPENDICES

A USER GUIDE. ... e 60

viii

LIST OF FIGURES

Page
Figure 1: Daios overall architeCture..........ccuveeeviieiiiieeiieciee et 6
Figure 2: GlycomicsPortal home page..........ccocuveeriieeiiieeiiiecieeeee e 12
Figure 3: Glycome DB database entry Pagecccvveerveeerieeeriieeeieeeiieeeeeeseeeeveeeeveees 13
Figure 4: System workflow for new entity SUDMISSIONccovveeveiieeciieeieecieeeieeeeen 14
FIgUIE 5: LOZIN PAZE ..cevvieeiiieeiieeeiie ettt eetee ettt e e te e et e e et e e esaeeessaeeensaeesssaeesnsaeesnseeas 14
Figure 6: Generic details for entry SUDMISSIONceecvieeiiieeriieeiee e 15
Figure 7: Generic page for entry file information...........cccceeevvieeiiieeciieecieecieeeee e, 15
Figure 8: Entry specific Information Pagecccccveeeeiieeriieeiiieeiee e 16
Figure 9: Manage entry PAZE-accceeecuveeriieeriiieerieeesieeenteeessreeessreessseessseessseeesseessssess 17
Figure 10: Manage entry PagE-D........cccvieiiiiieiiieeiiieeeieeeriee et eieeeeveeeeraeeevaeeeseeeenvee s 17
Figure 11: Web service data fIOWcceeeiiiieeiiieiiie et 25
Figure 12: Apache AXIS 2 frameWorkccccuvieiiieeiiie et 33
Figure 13: Soap INvocation Manager............cccveeeiiieeiiieeiiie et eee e evee e 35
Figure 14: SOAP Client ATChiteCtUICccvvieviieeiiieeiie et 38
Figure 15: EBI- NCBI Blast Web ServiCe Page.....c..cecvveeerieeerieeeiiieeiieeeieeeseeesvee e 48
Figure 16: EBI- NCBI Blast Web Service Operations...........ccccveeeeveeeeieesiveesineeescveeenneens 48
Figure 17: SOAPUI — Invocation of NCBI Blastc.cccccieeiiiiiiiieeiieeieeceeeeeeen 49
Figure 18: NCBI Blast service in GlycomicsPortal...........c.cccccvveviiiiiiiiiiniiieeieeeeeeeen 50
Figure 19: Web service iINVOCation PAZE........cccveeerieeeriieeiiieeriieeeiereeeteeeeneeesveeesseeesseees 51

1X

Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:

Figure 34:

Results page for run Operation..........ccceecveeeeiieeriieeniee e 52
Input page for getResult operationcceccveeeviiieiiieeiiieccieece e 53
Output page for getResult operationccceeeveeeeciieeriiieeriie e 53
ReESt SETVICE INPUL PAZE....vveeeeiieeeiiieeiie ettt ettt e e e e e e e 54
Rest SETVICE TESUIL PAZE ...vveeeeiieeeiii et 54
Web service definition PAZEcc.veeeveeeriieeriieeiee et et ree e e 61
Web service Ports Pageccc.vveeviiiiiieeieeee et 61
Web service generic details Pagec.veeeveeeeiieeriiieiiee e 62
ConfIrmation PAZE......ccccveeerrieeiiieeiieeeieeeeiteeesteeesreeeseaeeessaeeessaeeesseesssaeessseeas 62
Manage ENtry PAZE......coeeviiiiieieiiie ettt et e e e st e e s 63
Automatic Population Pageccceeeuieeiiiieiiieeieeeee e 63
Prefilled generic details PAZEc.eeevvveeeiieeeiieeiee e 64
Prefilled input parameters Page........cceeeveeeriieeriieeiiee e 64
Prefilled output parameters Page.........ceeevveeeveeeriieeniie e e 65
Web service VErification PAZEccccveeerveeeriieerieeerieeeereeeereeeereeeeeeeeseeeeens 65

CHAPTER 1

INTRODUCTION

1.1 Overview

Sophisticated computational tools are required to process and annotate the large,
complex data sets that have become a hallmark of modern biology. Many of these tools
are available as Web services, which perform diverse operations on distinct experimental
data types. However, identifying the appropriate Web service to perform a specific task
in a defined environment is still problematic. Although the basic functionality of a Web
service can often be ascertained from descriptions such as those associated with each
service in a repository, invoking a Web service in a way that provides enough
information to evaluate its utility often requires the user to write customized client
software. Thus, generic client software that allows the user to invoke the full
functionality of diverse Web services could save a considerable amount of effort by

individuals who merely want to evaluate or use the service.

The available Web services are registered in different repositories, which provide
the information required to access them. In a typical scenario where there is no generic
client software available as a part of the repository, users will have to gather the details
provided about the Web service in the repository and write customized client software to

consume the specific Web service. The alternative way to consume the service will be to

use the provided details in another generic client software. This thesis addresses this
problem by bringing the repository that contains the registered Web services and the
generic client software together. The Web services can be discovered using the repository
and invoked using the generic client software from the same place. The work focuses on
merging the Web service repository and the Web service invocation system to enable
automatic Web service invocation from the repository, substantially reducing the effort
required to invoke a Web service. It expands the functionality of the repository by
automatically populating the Web services based on its definition and annotating Web
service components with descriptions from the service provider that facilitate efficient

use.

1.2 Motivation

Writing client software to invoke a Web service is a resource and time consuming
process. There are several Web services available, however, in order for the users to be
able to find the service based on their needs, they need to be able to test and evaluate it.
Currently, the users are unable to do so without having to write a custom client or using

another generic client to invoke and execute the service.

This thesis focuses on merging the Web service repository and the Web service
invocation system together; to enable automatic Web service invocation from the
repository. This result in substantially reducing the effort required for invoking a Web

service.

CHAPTER 2

RELATED WORK

This section discusses several solutions related to discovering, registering,
invoking, annotating and monitoring the web services. This chapter elaborates on the

functionality and limitations of these systems.

2.1 Bio-Catalogue

The Bio catalogue [1] is a centralized registry of curated Life Science Web
services. It allows the user to easily discover, register, annotate, monitor and use Web
services. The Bio-catalogue system does not provide automatic Web service invocation
functionality for the services registered in it and it also does not provide automatic
population of Web services based on WSDL. This is a drawback compared to our system,

which provides both functionalities at the same place.

2.2 EBI (European Bio Informatics Institute) System

European Bio Informatics Institute [2] is another system offering a Web service
repository that contains Web services dealing with biological data. It allows
programmatic access to various data resources and analytical tools. Even though this
system contains various REST and SOAP services, it differs from our system in that it

does not have a generic SOAP and REST client that can invoke any registered service.

2.3 Soap Ul

SOAPUI [3] is a desktop based functional testing system that supports invocation
of various formats of SOAP services. The WSDL for the SOAP service is provided
manually and the system gives an interface in XML format for invoking any operation
definied in the WSDL. In contrast to SOAPUI, our system provides the interface for
service invocation directly from the repository through an intuitive, user-friendly

approach that allows users without technical background to invoke and use the service.

2.4 Generic Web Based or desktop Clients

There are some generic web-based or standalone desktop clients like
soapclient.com[4] that can invoke Web services when the definition file is provided.
These generic clients support either SOAP or REST individually but our system supports

both SOAP and REST.

The generic clients that are available can rarely be used as alternatives to the
generic SOAP and REST client built into our system due to differences in software
dependencies that are characteristic of each Web service. In addition, using a generic
client forces our system to depend on the third party client, affecting reliability of our
system. If we were to use a third party generic client software and if the client were to
change for any reason by its host, our system would get directly affected. Also, these
systems do not offer an API and hence HTML feeding is not a reliable option. Based on
the mentioned limitations and drawbacks, using our own system instead of the available

generic clients would be the most optimal choice. Using our own SOAP and REST

client, will enable us to seamlessly integrate them with the Glycomics portal and to

exploit the benefits of both systems together.

2.5 WSDL-Based Automatic Test Case Generation for Web Services Testing

Xiaoying Bai, Wenli Dong, Wei-Tek Tsai and Yinong Chen, discuss and propose
a way of generating test cases for Web services [5]. Web service have become an
essential part of today’s world and the number of Web services being published every
day is growing at a very fast pace. However, one must realize that in order to maintain
the quality of the services that are being published, invoked and integrated, test cases
need to be generated at runtime. This paper [5] proposes a method to generate these test
cases automatically. These test cases are generated with the help of WSDL files that
have the information about the Web service. The approach that was taken for generating
the test cases was based on two perspectives; test data generation and test operation
generation. Once these are generated, three types of dependencies were defined including
input dependency, output dependency, and input/output dependency. Finally, Service

Test Specification files were generated in XML based files.

2.6 Daios: Efficient Dynamic Web Service Invocation

The Daios system stands for the Dynamic and Asynchronous Invocation of
Services framework [6]. It is a message based service framework. It is based on RESTful
services and supports SOA implementation, allowing dynamic invocation of

SOAP/WSDL. With the help of the Daios system that is proposed in the system, users

can create stubless and dynamic service clients that are less strongly coupled to a specific
service provider. This paper proposes a system (Daios) as a Web Service invocation
front-end. It is a front end for SOAP/WSDL based services as well as the RESTful
services. One of the advantages of this system is its ability to completely support
dynamic invocations without any static components. A preliminary evaluation of the
proposed system (Daios) was also done against several other systems including Apache
WSIF, Apache Axis 2, Codehaus XFire, and Apache CXF. Figure 1 illustrates the

architecture and framework of the proposed DAIOS system:

Service

Registry

Find Publish

Service
Provider

Service
Consumer

Daios I
Message
HTTP, Soap and
Framework/ S0:08

Front End

SOAP Stack

Interface
WSDL Parser

Service Wraps

Invoker REST Stack

Figure 1: Daios overall architecture adapted from [6]

2.7 Web services Invocation Framework (WSIF)

In this paper, Matthew J. Duftler, Nirmal K. Mukhi, Aleksander Slominski and
Sanjiva Weerawarana discusses and proposes a framework known as the Web service
invocation framework (WSIF) allowing the application programmers to program in a
protocol independent manner against an abstract description of service [7]. WSIF is
implemented via an API, which is used to invoke the Web services. The system works
using the WSDL files that describe the service, regardless of the nature of the system.
The system enables the user to deal with abstract service representations rather than
working closely with the SOAP API’s. Using this system new bindings can be
dynamically formed. WSIF is not up to date and was last updated in 2003. WSIF

provisions two of the following different approaches:

1. This first approach deals with compiling the WSDL document to Java
interface, implementation of the interface with the necessary Java types. The
service can easily be accessed via the Java stubs that were generated by the

implementation of the interface.

2. The second approach that was taken in this paper was to directly operate on
WSDL documents. The key difference is that no compilation cycle is required

when using this second approach.

Although there are several software tools available for discovering, registering,
monitoring and using Web services, they either lack invocation functionality, generic
SOAP or REST client or provide a limited SOAP or REST client. Our system provides a
one-stop shop for Web service discovery and invocation with generic SOAP and REST
client integrated with the GlycomicsPortal. This research brings the Web service
repository (GlycomicsPortal) and the Web service Invocation system (SOAP and REST
Generic Client) together to create a Web service Discovery and Invocation tool with

Automatic Web service population.

CHAPTER 3

GLYCOMICS PORTAL

3.1 Overview

The Glycomics community does not have a one-stop place for finding relevant
Web services, software modules, workflows and databases. The GlycomicsPortal is a
solution to that requirement developed at the Complex Carbohydrate Research Center by
Ranzinger and coworkers (http://glycomics.ccrc.uga.edu/GlycomicsPortal/) [15]. This
portal makes it easy for many biologists and scientists to search and find Web services,
workflows, databases and software modules. It is a centralized hub for glycomics related

information.

This web portal contains Web services, Workflow systems, Software modules and
Database systems related to Glycomics. It is open to the public so that anyone in this field
can contribute to the knowledge source, populating the portal and making it more
meaningful. This portal also has a user authentication system that has restrictions based

on the user access level.

This portal is based on Client-Server architecture and a Model View Controller
(MVC) interface. It has a database backend at the server side and a user interface at the

client side that interacts with the server to perform all operations.

3.2 Architecture

* PostgreSQL database layer: PostgreSQL database [16] which is an open source
object-relational database system is used as the database back end for the web

portal.

* Hibernate persistent layer: Persistent layer is an object relational model
representing tables in the database as classes, columns as objects and keys as sets.
Hibernate [17] is a persistent system that provides a framework for object
relational mapping (ORM) for Java. The database tables are basically accessed

through Java classes and objects.

Java bean classes [18] exist for every table in the database. A hibernate
configuration XML file defines the mapping between the tables, columns and

keys with Java class and objects for each table in the database.

* Business logic layer: The business logic for the portal is completely built using
Java. This layer is responsible for all the logical operations in portal. The logic

layer is split into three sub layers to perform its responsibilities.

* Hibernate entity manager: This layer contains all the logical code and interacts
with the persistent layer to access the database (read and write). Every interaction
with the hibernate layer to access the database is done within a transaction.
Hibernate query language (HQL) [19] is used for interacting with the database

from the entity manager.

* Data transfers objects: This layer contains classes and objects for transferring
the data from the entity manager to the action classes. It secures and isolates the
entity manager data from the action classes. It contains the getters and setters for

the objects required at the action layer.

* Action classes: This layer contains action classes that handle all the events
happening between the portal and the user. It sends data to the entity manager for
various operations and receives data from the data transfer layer to display the
user. It also contains the Java reflection for objects whose values are required at

the front end.

* Web Works framework: Web works is a Java based web application framework
that is built on top of Xwork [20]. It contains the web portals data flow between
the data model and the front end. The entry point of the web application is
web.xml, which redirects to the Web work’s configuration xwork.xml that defines
all the actions, its input parameter, interceptors and output template files. Input
parameters contains the elements that the action takes in and output contains the
location of the free marker template file that is displayed as a result of the execute

method in the action.

* Free marker template engine: Free marker [21] is a tool that generates output
for web pages for given html and Java objects. It is defined as .ftl files that
contains HTML, Javascript and free marker code that represents Java objects at
the action layer associated with this template. It is a dynamic tool for generating

web pages and called as a result of an action from xwork.xml

* Front end: The front end that interacts with the user is designed using HTML,
Javascript, jQuery, CSS and free marker. The collection of free marker template
files dynamically generate the front end web pages based on the action and

events.

3.3 System

The GlycomicsPortal allows the user to submit either one of the following:
1. Web Service
2. Workflow System

10

3. Database System
4. Software Module

3.3.1 Web service

A Web service can be described as a program located at a remote server that does
some operation, which is invoked by a client at a different location by passing the inputs
required for executing the program [22]. This makes it easy to perform various
operations, as we need not have the programs implemented locally. Instead, we make a
call to that program through the appropriate protocol and get the result back. This also

saves resources locally and is very useful for resource intensive programs.

Processing of glycomics data similarly involves diverse computational operations.
This portal is a centralized repository for finding Web services related to glycomics
which are submitted by various people who have implemented the services and make

them publicly available.

3.3.2 Workflow System

A workflow consists of a sequence of steps or processes. Each step or process
follows the previous step and must end before the next step/process can begin. A
workflow management system defines a series of tasks to be performed for obtaining a
particular output [23]. Many different workflows can be imagined for the analysis of
glycomics data. Each of these would perform a set of operations with a given input to
achieve a defined result. The workflow contains information about its framework, inputs,
outputs and portal entries associated with it. Workflows developed by portal users for

glycomics analysis can be submitted to the portal.

3.3.3 Database System

A database is an organized collection of data. Databases that contain a
considerable amount of information about glycomics exist. The experimental data in
glycomics databases are available to the biologists. The databases are for instance

categorized as carbohydrates structure database or enzyme related database. The

11

databases contain information about the content, supported search for the data and

semantics associated with it.

3.3.4 Software Module

A software module may perform one or more operations. It may be installed to
the local system or used as a client to access information on a server. Glycomics has
many software applications that perform various tasks related to it. The software modules
contain information about the programming language, requirements, snapshots, download

link and are submitted by developers who have created them.

The GlycomicsPortal home page is the base page of the system that is presented
when the user first enters the portal. Figure 2 represents the Glycomics portal home page.
The user can navigate through the portal to any type of entry from the menu bar. The
recently added entries are displayed under ‘Recent Items’ and the total numbers of entries

based on different types are displayed under ‘Summary’.

NCRR - GlycomicsPortal — S4S

Registration / Log in

Home Web service Workflow Software Data source Search Help

Glycomics Data Processing Summary
33 Database
3 Webservice

Over the last two decades, a large amount of Glycolnformatics tools such as 28 Software
databases, web applications, web services and workflows, have been developed. 0 Workflow
Although the majority of these tools are readily accessible for users, many research

groups are not aware of these tools. Reason for this is the under-representation of Recent ltems
Glycolnformatics talks and posters in traditional glycomics conferences and the fact Ddddddddd

that these tools are either i or in Biolr ics or Informatics yeifnwer
journals (e.g. Bioinformatics or BMC Bioinformatics) that are not widely read by .- >, 20 PM
glycomics r . Several and Gly matics project web sites

test service
test service
Feb 21,2012 5:04:50 PM

provide hyperlinks to available tools. However, most of the tools that are accessible
by these hyperlinks are not fully described, making tool discovery a difficult task.
Furthermore, these web pages are infrequently updated, resulting in outdated
information and even dead links when tools disappear or move to another URL. ~ EnsembleGly i -
Another disadvantage is that web services and workflows, which are becoming ‘E\se"’emr'“."“"" 0f0-, N-, and C-Linked Giycosylation Sites with
increasingly important, are rarely reported in these web pages. Thus, a central ‘nvse'mh\‘e eamnrjg T

entry point that addresses all of these short ings will be icial to "0 S e

y
scientists attempting to discover Glycolnformatics tools that meet their needs. CAZypedia

The Encyclopedia of Carbohydrate-Active Enzymes. CAZypedia is an
We have developed a web based portal for the registration and discovery of Eesntinein active enzymes. Itis inspired by,

and meantt..

Glycolnformatics tools, called GlycomicsPortal. This portal allows research groups 57752

that have developed software tools, such as databases, web services, workflows,

Figure 2: GlycomicsPortal home page

The user clicks on the entry to open the entry page that displays entry specific

information. Glycome DB is a database registered with GlycomicsPortal under the

12

category ‘Database’. Figure 3 represents the Glycome DB entry page that displays

relevant information submitted by the user.

Data source > Carbohydrate structure databases > GlycomeDB

GlycomeDB

Similar Objects

W Oreviews

Carbohydrates are the third major class of biological macromolecules, besides proteins and (~

DNA molecules. They are involved in numerous biological processes, among them protein Summary

folding and inter/intra cell recognition. In contrast to DNA and proteins neither a

comprehensive database for carbohydrate structures nor a universal nomenclature for Contributor ReneRanzinger
computational purposes exists. After the cease of funding for the Complex Carbohydrate Release Date 08/20/2007

Structure Database (CCSDB, often referred as CarbBank) in 1997, four initiatives developed

independent databases with partially overlapping foci. For each database, a proprietary Availabilty Open access

encoding scheme for residues and topology of the structures was designed. As a result it is Development Stable version, next release
virtually impossible to get an overview of all existing structures, and to compare the contents of Status planned

the different databases. We have analysed all of the existing public databases and defined a

sequence format based on XML (GlycoCT) capable of storing all structural information of Current Version 1.0

carbohydrate We have i ted a library of parsers for the interpretation of Wiki Page GlycomeDB

the different encoding schemes for carbohydrates. With this library we have translated the

carbohydrate sequences of all freely available databases (CFG , KEGG, Web Site Visit Web Site I
GLYCOSCIENCES.de, BCSDB and Carbbank) to GlycoCT, and created a new database

(GlycomeDB) containing all structures and annotations. During the process of data integration '\ J

we found multiple inconsistencies in the existing databases which were corrected in
collaboration with the responsible curators. With the new database, GlycomeDB, it is possible
to get an overview of all carbohydrate structures in the different databases and to crosslink
common structures in the different databases. Scientists are now able to search for a particular
structure in the meta database and get information about the occurrence of this structure in
the five carbohydrate structure databases.

Data: Carbohydrate structure
Database reference
Species annotation

Data Search Available: Maximum common substructure search
Search by species
Similarity search
Structure search
Sub-structure search

Figure 3: Glycome DB database entry page

3.4 Entry Submission

The GlycomicsPortal has a user authentication system that allows the user to
register with the portal and provides a user name and password that the user uses to log
into the system. Registered users are allowed to submit their Web services, databases,
software module and workflow system related to Glycomics. The user follows a specific
series of steps to submit a new entry in the portal. These involve specification of generic
information about an entry, entry specific information, data related to the entry and more
details if needed. Figure 4 illustrates the workflow of the system for a new entry

submission by the user:

13

e

o
Submitted
Entry is User
processed Submitted
User Creates (generic files, Entry is made
and Account moderators public for
etc. are users to view.
added)
~— B S —

e N
Submits a
Web Service, Entry is
Database further
Module, processed by
Software adding Entry
Module or specific
Workflow information.
System
|)

Figure 4: System workflow for new entity submission

Step 1: User creates the account and logs into the portal for authenticity:

NRR - GlycomicsPortal ey

Registration / Log in

I\ ASS |
Home Web service Workflow Software Data source Search Help
Login to the portal
Account”
Password*

Login

Forgot password?

Complex C: y Center, University of Georgia
315 Riverbend Road, Athens, Georgia 30602-4712 USA Phone:706-542-4628

| Home | | Personal | | About CCRC | | Contact Us |

Figure 5: Login page

14

Step 2: User submits a Web service, workflow, database or software module. All entries
have a common input page with generic information as listed on Figure 6.

Please enter the following details for the new Web service

Name*

Description*

Wiki Page* o\

License | No license model 1@
Add a new license

Availability* | Select one

Development status* | Select one

Release date* 9

Select categories* REST 0
SOAP
Other Web Services

Request a new category!

Figure 6: Generic details for entry submission

Step 3: User uploads generic files for certain type of entries like Web service that are
processed to prefill fields in the next steps:

Home ‘Web service Workflow Software Data source Search Submit Content Administration Help

Please enter the following details for the web service

Web Service Protocol* | SOAP 1@

Warning : Providing invalid definition file location may take very long to process!

Definition File
Definition URL | http://iwww.ebl.ac.uk/Tools/services/soap/ncbiblast 0
Select file Choose File | No file chosen 0

Semantically Annotated Definition File

Definition URL

Select file Choose File | No file chosen e

Back Cancel Next

Complex Carbohydrates Research Center, University of Georgia
315 Riverbend Road, Athens, Georgia 30602-4712 USA Phone:706-542-4628

I Home | | Parsonal |1 Ahout CGRC |1 Contact Us |

Figure 7: Generic page for entry file information

15

Step 4: Uploaded files are then added to the DB. Then entry specific additional
information is manually added or the uploaded files are processed when provided, to
automatically fill the entry specific information. Supported information includes:

Web service specific information such as Operations, inputs and outputs;

Workflow specific information such as Inputs and outputs;

Database specific information such as Database size, number of entries, structure;
Software specific information such as Software download, snapshots;

Figure 8 shows the entry specific information page for a database entry.

Home Web service Workflow Software Data source Search Submit Content Administration Help

Please enter the following details for the database (test)

Information* 3D Structure Carbohydrate structure Conformational maps 0
Database reference Enzyme Glycogene
Glycoprotein HPLC data Lectin
Lipid MS data Monosaccaride
NMR data Pathogen sugar binding Protein
Publication Species annotation

d a new d.

type

Search Composition search Maximum common substructure Motif search 0
search

Search by mass Search by publication Search by species
Similarity search Structure search Sub-structure search

Add a new Search

Semantics CAZy Enzyme Family NCBI Reference Sequence NCBI taxonomy 0
SwissProt ID

d a new Semantic Type

Back Cance Next

Comolex Carbohvdrates Research Center. Universitv of Georaia
Figure 8: Entry specific information page

Step 5: The uploaded entry can then be modified in the ‘Manage Entry’ section. These
modifications include modifying any content of the entry. ‘Manage Entry’ also allows
adding various other options specific for an entry, and generic options like “make entry
public for unregistered users to view”, “add publications related to the entry”, “add files”
that include images, presentations, manuals, release notes etc. related to the entry, tags or
keywords for searching entry easily, moderators for the entry, owner of the entry, and

wiki page that contains more information about the entry:

16

Manage Web service "GlycomeDB structure dump"

Back to GlycomeDB structure dump

Web services are provided by GlycomeDB to export all structures and related information in the database into a compressed XML file.

Time Created: Jul 18, 2010 6:25:04 PM
Last Modified: Mar 5, 2012 7:04:18 PM
Type : Web service
Availability : Open access

Development Status: Stable version

Release Date: 07/30/2009
Owner: ReneRanzinger
Categories : REST

Edit GlycomeDB structure dump

Add new webservice operation :
Binary data getStructureDump.action (String user) e &

WAdd Webservice operation
WAdd Webservice operation from a WSDL file

Figure 9: Manage entry page-a

Public Availability Hide from Public

Publications :

WJ Add Publications

Files:
[Type [Name/URL | Format i R
W Add Files

Tags:
W Add Tags

Databases:

GlycomeDB (ReneRanzinger)

=

Figure 10: Manage entry page-b

The GlycomicsPortal is a repository where the users can submit and discover Web
services, workflows, databases and software modules related to glycomics. The generic
client software is integrated with the GlycomicsPortal enabling discovery and invocation

making it a one-stop shop.

17

CHAPTER 4

WEB SERVICES

4.1 Overview

A Web service can be described as a program that performs one or more
operations, which is offered by a person or company and located at a remote server [22].
This program is called by the client when the user wants to invoke an operation provided
by the Web service, by sending the input data required. The server then returns the result
of the operation, which is interpreted by the client. It may be important to note that Web
services are designed to be automatically called by software, not by individuals surfing

the Web.

4.2 Types of Web services

Web services are broadly classified into two types namely, SOAP and REST.

4.2.1 SOAP

SOAP previously stood for Simple Object Access Protocol [24]. It is a protocol
that enables the applications to exchange information over HTTP through SOAP
messages. It is an XML based protocol used for communication between the applications

for transferring data.

4.2.1.1 Types of SOAP Service

SOAP services are generally classified based on the bindings of the Web service.
There are two kinds of WSDL SOAP bindings. It could either be a Remote Procedure
Call (RPC) style binding or a document style binding. A SOAP binding can also have an

encoded use or a literal use. This gives us the following four style/use models [36].

18

1. RPC/encoded

2. RPCl/literal
3. Document/encoded
4. Document/literal

e RPC Encoded/Literal:

The main purpose of SOAP RPC is to provide Remote Procedure Calls (RPC)
transparently to the client. This means that the client behaves as if it is calling
methods on a local object, however, in fact those method calls are translated to
XML and sent over the internet, processed on the other end. Once they are
processed, the response message is concealed as the return value from the method

call.

* Benefits of using RPC:
The following are some of the strengths of using RPC:

1. Straightforward WSDL

2. The name of the operation appears in the message. This enables the
receiver to easily dispatch the message to the implementation of the
operation.

3. RPCl/literal is WS-I [10] compliant.

Sample Messages (All example XML code snippets listed in this Chapter are obtained
from the reference cited [14])
RPC/Encoded WSDL (1.1)
* Sample Input:
<wsdl:message name="Distancelnput'">
<wsdl:part name="p1" type="tns:Point" />
<wsdl:part name="p2" type="tns:Point" />

</wsdl:message>

19

* Sample Output:
<wsdl:message name="DistanceOutput">
<wsdl:part name="result* type="xsd:float*/>

</wsdl:message>

a) RPC/Encoded SOAP
* Input:
<soap:Envelope ..>
<soap:Body soap:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">
<ns:Distance ..>
<pl HREF="#id1"/>
<p2 HREF="#id1"/>
</ns:Distance>
<ns:Point id="1d1">
<x>10</x>
<y>20</y>
</ns:Point>
</soap:Body>

</soap:Envelope>

* Document Literal:
o Inputis any XML document
o Output, if present, is another one
o Both are described with XML Schema (in theory, other schema languages
are supported)

* Benefits of using Document Literal:

o There is no type encoding information.

20

o Any XML interpreter can interpret the message as everything in the body
of SOAP message is defined in XML schema.

o Document/literal is WS-I compliant, but with restrictions

Sample Messages

a) Document/Literal WSDL (1.1)

* Sample Input:
<rnc:Distance>
distance { pl { Point }, p2 { Point } }
Point = x {xsd:float}, y {xsd:float}
</rnc:Distance>
<wsdl:message name="Distancelnput">
<wsdl:part name="body" type=“rnc:Distance" />

</wsdl:message>

* Sample Output:
<wsdl:message name="DistanceOutput">
<wsdl:part name="result" type="xsd:float" />

</wsdl:message>

b) Document/Literal SOAP

* Sample Input:
<soap:Envelope>
<soap:Body>
<ns:distance>
<pl>
<x>10</x> <y>20</y>

</p1>

21

<p2>
<x>100</x> <y>200</y>
</p2>
</ns:distance>
</soap:Body>

</soap:Envelope>

4.2.2 REST:

REST stands for Representational State Transfer [25], in which the primary
purpose of the service is to manipulate XML representations of Web resources using a
uniform set of stateless operations and arbitrary Web services, in which the service may
expose an arbitrary set of operations.

REST is defined in the context of HTTP protocol and also is based on application
layer protocol. HTTP uses the following methods [38] and is called based on the
requirement,

GET — Requests and retrieves data from the service

POST — Submits data to the service to be processed

PUT — Uploads a representation of the specified resource

DELETE — Deletes the specified resource

4.2.2.1 RESTful Services:

A REST service that conforms to the following REST constraints is called
RESTful service [26]. The constraints are:

o Client-Server — Follows client-server architecture.

22

o Stateless — client-server communication must be stateless, in which each
request from the client contains all required information.

o Cacheable — The response should be defined as cacheable or non-cacheable.

o Layered system — The architecture can comprise of multiple layers.

o Code on demand — Client functionality can be extended by downloading and
executing the code.

o Uniform interface — implementations are decoupled from the services they

provide and emphasizes uniform interface between components.

4.3 Technologies in Web services:

* WSDL

WSDL stands for Web service Description Language [12]. It is an XML based
language and is used to provide the description of services available. The WSDL file
includes the details about the Web service including how the service can be called, what
parameters are accepted, what operations it performs etc. WSDL is often used in

combination with SOAP and XML Schema to provide Web services over the Internet.

A WSDL definition is divided into separate sections. These sections specify the
details about the logical interface and physical Web service. The details include the
HTTP port number, details about how the SOAP payload is represented and which

transport protocol is used. WSDL is discussed in greater detail in chapter 5.

23

* WADL

WADL stands for Web Application Description Language [8]. WADL is
lightweight, easier to write and easier to use than WSDL. However, it may not be as
flexible as WSDL. It is sufficient for any REST service and much less verbose. A large
number of web-based enterprises provide HTTP-based applications that provide access to
their internal data. Usually these applications are designed using textual documentation
that is sometimes supplemented with more formal specifications such as XML schema
for XML-based data formats. "WADL is designed to provide a machine process-able

description of such HTTP-based Web applications [8]”

* UDDI Open Standards
UDDI stands for Universal Description, Discovery and Integration [9]. UDDI is
used for listing the services that are available. UDDI makes discovery of services

possible.

24

4.4 Web service data flow:

. . Find/locate services
Publish services

Input message (xml)

é

>

Output (xml)

Figure 11: Web service data flow Service-oriented Architecture (SOA) [28]

25

CHAPTER 5

WSDL

5.1 WSDL Overview:

Once the Web service is developed, the Web service is published with its
description and a link to UDDI (Universal Description, Discovery and Integration)
repository. This enables the potential users to easily find and use the Web service.
Potential users request the Web service’s WSDL file to find the location, function calls
and access to the function calls etc. [11]. Then they use this information in WSDL file to

form a SOAP (Simple Object Access Protocol) request.

A WSDL definition consists of the following main parts:
* A description of the messages that can be passed
* The semantics of passing the message
* Specified encoding information

* The Endpoint information

5.2 Types of WSDL:

The earlier version was WSDL 1.1 and the current version is WSDL 2.0. WSDL
2.0 came with several modifications to increase the interoperability; however, very few

vendors support WSDL 2.0 today due to the same interoperability issues [29].

26

Here are the main underlining differences between WSDL 1.1 and WSDL 2.0

WSDL 1.1 WSDL 2.0
<definitions> <description>
<portType> <interface>
<port> <endpoint>

<message> is removed and defined inside

<message>)
<operation>

5.3 Description of a WSDL file:

The following example shows the WSDL definition of a simple service providing

stock quotes. Here is a sample WSDL file; this example uses the SOAP encoding [12]:

<?xml version="1.0"?>

<definitions name="StockQuote"
targetNamespace="http://example.com/stockquote.wsdl"
xmlns:tns="http://example.com/stockquote.wsdl"
xmlns:xsd="http://www.w3.0rg/2000/10/XMLSchema"
xmlns:xsd1="http://example.com/stockquote.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

27

<message name="GetTradePricelnput">
<part name="tickerSymbol" element="xsd:string"/>
<part name="time" element="xsd:timelnstant"/>
</message>
<message name="GetTradePriceOutput">
<part name="result" type="xsd:float"/>

</message>

<portType name="StockQuotePortType">
<operation name="GetTradePrice">
<input message="tns:GetTradePricelnput"/>
<output message="tns:GetTradePriceOutput"/>
</operation>

</portType>

<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetTradePrice">

<soap:operation soapAction="http://example.com/GetTradePrice"/>

<input>

<soap:body use="encoded" namespace="http://example.com/stockquote"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

28

<output>
<soap:body use="encoded" namespace="http://example.com/stockquote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>>

</binding>

<service name="StockQuoteService">
<documentation>My first service</documentation>
<port name="StockQuotePort" binding="tns:StockQuoteBinding">
<soap:address location="http://example.com/stockquote"/>
</port>
</service>
</definitions>

This sample code was taken from [12].

5.4 Entities of a WSDL file:

A WSDL file consists of the following entities:

1. Types
Message
Operation
Port Type
Binding
Port

S A A

Service

29

* Types

A container for data type definitions using some type system (such as
XSD). The “types” element encloses data type definitions that are relevant for the
exchanged messages. WSDL prefers the use of XSD as the canonical type system,

in order to increase interoperability and platform neutrality.

* Message

An abstract type definition of the data being communicated, which can be
input, output or fault. Messages can be composed of one or more logical parts.
Each logical part associated with a type from some type system using a message-
typing attribute. There are several message-type attributes currently defined in

WSDL

+ element. Refers to an XSD element using a QName.

« type. Refers to an XSD simpleType or complexType using a QName.

* Operation

An abstract description of an action supported by the Web service. The
operation contains the input and output messages related to it. The message can
have the list of elements definition directly under it or in the WSDL types based
on the type of WSDL.

* Port Type

Port Type is an abstract set of operations as well as abstract set of messages
supported by one or more endpoints. The port type name attribute provides a

unique name among all port types defined within the enclosing WSDL document.

30

* Binding

A binding is used to define the message format and protocol details for

operations and messages defined by a portType.

* Port

A port is defined as a single endpoint defined as a combination of a binding

and a network address.

¢ Service

A service is defined as the collection of related endpoints. A service groups a

set of related ports together.

31

CHAPTER 6

IMPLEMENTATION OF WEB SERVICES INVOCATION AND AUTOMATIC
POPULATION OF WEB SERVICES

6.1 Overview:

This chapter describes the concepts, technologies, design and implementation of
the Web service invocation system and the automatic Web service population system.

The Web service invocation system comprises of the Generic SOAP and REST clients.

6.2 Technologies:

* Apache AXIS 2 framework [30]

Apache Axis 2 is the SOAP and WSDL engine that supports the Web
service invocation system providing required functionalities. It is a Java-based
implementation of both client and server sides of the Web service system. The
Generic SOAP client implements the Axis 2 framework for sending SOAP
messages, receiving and processing SOAP messages which constitutes the Web
service invocation system. Apache Axis 2 provides an API with functions that

enables us to make use of its features.

Figure 12 below illustrates the integration of Apache Axis 2 in the
GlycomicsPortal and Generic SOAP client. The User application in the Figure 12
denotes the Web portal and the SOAP client that uses the Axis 2 Client API. The
constructed SOAP message is sent from the SOAP client to the Axis 2 framework
where it is handled; this is denoted by Handler in Figure 12 and transported over
the Internet through SOAP protocol. It is then received at the server end, handled

and the Web service business logic performs the defined operation and sends the

32

Application

message back to the client. The SOAP client at the client side handles the

received message.

User

Client AP

Transport SOAP | | Transport Web Service
| port » Message 8 L
| Sender »| | Listener = PSR m=p-| Business Logic
|

Handlers Handlers
(interceptorts) (interceptorts)

Figure 12: Apache AXIS 2 framework [31]

* WSDL4J API

WSDLA4]J stands for Web service Description Language for Java [32]. It is
a toolkit for WSDL support in Java, which enables representation and
manipulation of WSDL documents. WSDL4J API is used in the GlycomicsPortal
and Generic SOAP Client to parse and manipulate the WSDL files. The WSDL4J
can parse the WSDL structure that includes the service, bindings, port types,
operations and messages but not the part of WSDL documents that contains the
XML schema definition. That is where the JDOM parser is used in addition to
WSDLA4]J to support manipulating WSDL files.

« JDOM API

JDOM is an API for Java representation of XML documents [33]. JDOM
provides the ability to read, manipulate and write XML documents using Java. It
is used in the GlycomicsPortal and the Generic SOAP client to create and
interpret XML message in the WSDL document and received/sent SOAP

messages.

33

6.3 Automatic Population of Web services:

This system has two major roles in the GlycomicsPortal.

* Parse the WSDL to prefill the generic details about a Web service during
registration process

* Automatically register operations provided by a SOAP service with the portal by
parsing the WSDL

The user is allowed to upload or provide the location of the WSDL definition for the
Web service during registration process as demonstrated in Figure 7. The uploaded or
located WSDL document is then parsed using WSDLA4J parser to provide the list of ports
to register and then prefill the details of Web service specific information like service

provider and URL based on the chosen port during registration.

The automatic population of Operations in the Web service is implemented by
parsing the WSDL document using the WSDL4J parser and providing the list of
operations. Then the details of the chosen operation that includes the number of inputs,
outputs and faults are prefilled from the WSDL. The user further proceeds with the
registration process where the input parameters, output parameters and fault messages are
prefilled with each parameter’s Name and Type from the WSDL. The steps in the

automatic population of operations in a registered Web service are as follows,

* Display list of operations
* Enter operation details

* Enter input parameters

* Enter output parameters

* Enter fault message details

34

6.4 SOAP Invocation Manager:

A registered Web service can be invoked by navigating to the Web service entry
page in the portal. The user clicks on ‘Invoke operation’ link at a Web service entry page
that exists next to an operation provided by the Web service. This calls an event handler
that sends the URL of the Web service, which is the location of WSDL file that is stored
either in a remote location or in the portal server and the operation information to the

SOAP Invocation Manager.

SOAP Invocation Manager receives the following required information

e Location of the WSDL file

* Operation name

It checks for the type of the SOAP service or WSDL, which can be basically rpc-
encoded or doc-literal. It routes the invocation process to proceed based on the type of

WSDL.

SOAP Invocation

Manager

DOC Literal RPC Encoded

Figure 13: Soap Invocation Manager

6.4.1 DOC-Literal

If the type of the WSDL is in doc-literal format, then the SOAP Invocation

Manager performs the following operations:

35

(1) Get the input message for the current operation from the WSDL.

(2) Locate the input message definition in the WSDL document.

(3) Locate the part element defined in the input message. The part element is located
in the <wsdl:types> which is defined in the XML schema definition of the
WSDL. The element located would have a list of simple and complex elements
under it. It then retrieves the list of elements or its children one by one and routed
as follows:

a. Ifthe element is a simple element then it reads the detail of each element
which include:
1. Name — Name of the element
ii. Type — Type of the element
iii. Value — Value that is empty and has to be entered by the user
iv. Description — Description or annotation or documentation
specified about the element
v. Required — Specifies if the element is mandatory
b. If the element is a complex element then it recursively calls the same
function that retrieves the list of children. That function retrieves the list of
the current complex element’s children. This returns the simple elements
under this complex element and in case of any further complex elements

the recursive call continues until the leaf nodes are reached.

6.4.2 RPC-Encoded:

If the type of the WSDL is in rpc-encoded format, then the SOAP Invocation

Manager performs the following operations,

(1) Get the input message for the current operation from the WSDL.

(2) Locate the input message definition in the WSDL document.

(3) Retrieve the list of parts under the input message. The major difference between
rpc-encoded and doc-literal WSDL comes into play at this point, where the list of
elements at the first level are defined directly under the input message instead of

the XML schema definition <wsdl:types>.

36

Now, based on the type of part element, we proceed as follows,

a. If the part is an element of simple type then it reads the following detail of

each element:

1.
1l.
11l

1v.

Name — Name of the element

Type — Type of the element

Value — Value that is empty and has to be entered by the user
Description — Description or annotation or documentation
specified about the element

Required — Specifies if the element is mandatory

b. If the part element is of complex type then, it locates the element in the

<wsdl:itypes> in XML schema definition. After locating the complex

element, the lists of its child elements are read. If any complex elements

are found then, it recursively calls the same function that retrieves the list

of the current element’s children. This returns the list of all elements under

an operation until the leaf nodes are reached.

6.4.3 Input Element List

All the read elements are used for populating the input element list that is built

dynamically for both rpc-encoded and doc-literal WSDL. By the end of traversing

through the WSDL tree structure, we have a completely filled input element list with the

list of all the elements under the invoked operation with details. It is possible to trace the

tree back from this input list as it contains all the information required to rebuild the

WSDL structure.

After populating the input element list, it is displayed to the user with all the

available information including Name, Type, Required and Description for every input

parameter. Each element or input parameter displayed to the user has an empty field next

to it where the users can enter their input values.

37

Once the values are entered by the user, we fill up the value attribute that specifies
the user’s input value for an element by traversing and repopulating the input element
list. After creating a completely filled list with all the user values, we call the Generic
SOAP client by providing the WSDL URL, operation name and the filled input element

list.

6.5 SOAP Client

The generic SOAP client is the independent module that gets the required
information from the portal and invokes the SOAP Web service. The functionality of the

SOAP client is as follows:

* Prepare for invocation by gathering the required information from the
GlycomicsPortal

* Construct the SOAP message based on WSDL

* Invoke the Web service

* Get the XML response back and send it to the result handling system

A

P p—

ICIJ C Request

| il

C

2 5

L t Response
| fe—

0

n

Figure 14: SOAP Client Architecture [37]

The SOAP client uses the Apache Axis 2 framework to invoke the SOAP Web

service by passing the created payload (constructed message) and operation gname. It is

38

invoked in a synchronous and blocking manner. Figure 14 illustrates the synchronous
functionality in which the client sends out a request and waits for the server to respond. A

dynamic service client is created with every given SOAP service for invocation.

6.5.1 Service client

The Service client API is provided by the Apache Axis 2 framework to invoke the
Web service. This acts as the mediator between the client and the actual service on the
web. The functions from Service client API are used for interacting (sending/receiving
data) with the actual Web service. The Service client can be used to invoke the Web

service in a synchronous or asynchronous manner.

An Axis 2 runtime called Configuration Context is required to invoke the Web
service. Configuration Context consists of configurations, parameters, and other relevant
data. Semantically, ConfigurationContext is similar to ServletContext in an application
server. Configuration context can be specified explicitly or used by default settings when
no special arguments are required to call a service. Service client can be either static or

dynamic.

* Static service client
A static service client is used for calling a specific service and may not be an ideal
choice in our system. It requires the options object to be set with the service end point

reference and operation details.

* Dynamic Service Client
The idea of a dynamic client is to create a ServiceClient on the fly, or simply
create a client for a given WSDL at runtime and use the created ServiceClient instance to
invoke the corresponding service (the service corresponding to the WSDL). When we
create the ServiceClient in this manner, it will create and configure a service proxy inside

the client. The constructor for creating a dynamic client is as follows:

39

ServiceClient dynamicClient = new ServiceClient(configContext, wsdlURL,

wsdlServiceName, portName);

o configContext — This system uses null for this parameter as it uses the
Axis 2 default configuration context instead of defining an explicit

configuration for a client

o wsldURL: This argument specifies the URL for the WSDL file and is
filled with the URL from the SOAP Invocation Manager.

o wsdlServiceName: A WSDL document might have multiple service
elements, the QName of that service element can be passed as an
argument. We do not want to pick a specific service element, so this
system uses null for this argument which uses the default first service

element.

o portName: A service element in a WSDL file could have multiple ports. If
we opt to select a specific port, then the name of the port is passed as a
value for this argument. Since the ports are handled and filtered while
registering the service with the portal through automatic Web service
registration, the ports need not be explicitly defined here, so no option is

specified for the port and the default port is selected.

* Creating Payload
Create payload is the process of constructing the SOAP message body by
specifying the input parameter names and values. It is implemented using the Axis 2 API

function OMElement.
6.5.2 OMElement

OMElement is the SOAP message container, which builds the message

dynamically reading information from the WSDL. The SOAP message construction

40

process is handled by the OMElement Handler. The invoked operation information and

other required WSDL details are passed to the OMElement Handler to construct the

SOAP message. For example OMElement for a single element will look like,
<programming>java</programming>

In the above OMElement, programming is the parent element and Java is the text or value

of that element.

* OMElement Handler:
OMElement Handler does the following operations to process and construct
the SOAP message from the WSDL and available user input data.
o Create an OMElement with the operation information. This will be the
SOAP message header that helps in dispatching the SOAP request.
o Parse the WSDL document to get the complete tree structure of
elements under the given operation.
o Create an OMElement for every processed element maintaining its

parent-child relationship as defined in the WSDL structure.

The OMElement Handler is a recursive function that parses the WSDL tree
structure to dynamically construct the SOAP message. The code snippet on page 44
explains the working of the OMElement Handler process. The root element of the
WSDL, operation information and XML schema information are the parameters required

to start the handler process.

After the handler is initiated, it parses the WSDL to find the list of root element’s
children, which would be defined in the XML schema definition of the WSDL. While
traversing through the list of children, if the element is of a simple type, a child
OMElement is created and added as a child of the root OMElement in the SOAP
message. If the element encountered is of complex type or a list, OMElement Handler
process is called recursively passing the complex element as the root element. The same

process is recursively called until the leaf nodes of the WSDL tree structure are reached.

41

OMElement Handler Recursion process (Code snippet for doc-literal recursion process)

is as follows:

If (root element) then
Create root OMElement object
For list of children do
{
if (element is primitive type) then
create child OMElement object and
add as child to root OMElement
else if (element is of complex type) then
call OMElement Handler passing the complex element as root element
else if (element is a list) then

call OMElement Handler passing the list element as root element

end

The OMElement object is completely filled by the end of recursion and contains
the final SOAP message to be sent over. The SOAP client then invokes the Web service
with the SOAP message as follows,

serviceClient.sendReceive(operation qName, OMElement);
operation qName — refers to the WSDL representation of the invoked operation

OMElement — refers to the complete SOAP message.

Doc-Literal and RPC-Encoded WSDLs are handled in different ways for
contructions of the SOAP message because of the difference in WSDL structure. Doc-
Literal follows the same steps as mentioned above for SOAP message construction. RPC-

Encoded has the following process:

42

e RPC OMElement Handler

RPC OMElement Handler works in a different way compared to the doc-literal
because of the WSDL structure. The root element of the WSDL, operation information,
input message and XML schema information are the parameters required to start the

handler process.

After the handler is initiated, it parses the WSDL to find the list of part elements
under the operation’s input message. This list of part elements is the operations first level
of child nodes. While traversing through the list of children, if the element is of a
primitive data type, a child OMElement is created and added as a child of the root
OMElement in SOAP message. If the element encountered is of complex type or a list,
OMElement Handler process is called passing the complex element as the root element.
The same process is recursively called until the leaf nodes of the WSDL tree structure are
reached. The following code snippet explains the working of the RPC OMElement

Handler process.

If (root element) then
Create root OMElement object

For list of parts under input message do

{
if (part element is simple type) then
create child OMElement object and
add as child to root OMElement
else if (element is of complex type) then
call OMElement Handler passing the complex element as root element
b

43

* SOAP Request

The SOAP message contains the information required for invoking the operation
provided by the SOAP service. SOAP message can be split into two parts, i.e., the SOAP
envelope and the SOAP body. The SOAP body is created dynamically based on the
WSDL by the SOAP client. The SOAP envelope refers to the wrapper around the SOAP
body making a complete SOAP message that can be transmitted over the Internet to the
SOAP service. The SOAP envelope is created dynamically by the Axis 2 framework

when an invocation call is made according to the configuration context.

* SOAP Response

The SOAP Web service when invoked by passing the constructed SOAP message,
gives back an XML response that contains the result. The XML response received from
the SOAP service is sent to the Result Handling system to process and display the result

to the user.

6.6 REST Client:

The REST services registered with the GlycomicsPortal can be invoked using the
REST client. The portal contains information about the REST service URL and the input
parameters required to invoke it. It is implemented by constructing the service URL
including all the parameters and then making an HTTP request. The REST invocation is
handled and processed by two systems,

= REST Invocation Manager
= REST Client

. REST Invocation Manager
The REST Invocation Manager is responsible for communicating with the Portal to
retrieve REST Web service related information and construct the URL. The steps in

REST Invocation Manager are as follows:

44

(1) Retrieve the complete details about the REST service that user wants to
invoke
(2) Locate the specific operation to be invoked by the user in that REST service
(3) Read the URL and input parameters for the specific operation in the given
REST service from the portal database
(4) Display the input parameters with information including Name, Description
and Type with a blank text field next to it to allow the user to enter inputs in a
web page
(5) Get the inputs for the displayed parameters from the user
(6) Construct the REST invocation HTTP call as follows:
o The first part of the HTTP call will be the URL of the REST service
o The operation name is appended to the base URL followed with a “?”.
o Each input parameter and its values from the user are then appended to
the URL separated by “&” according to the HTTP invocation
standards.

(7) Transfer the control to the REST client by passing the constructed URL.

For example, a constructed REST HTTP call will look like,
http://www.glycome-db.org/database/getStructureEncoding.action?1d=1&type=Glydell

In the above example, “http://www.glycome-db.org/database/” is the REST
service URL. “getStructureEncoding.action” is the operation provided by the Web
service. “id” and “type” are the two input parameters with values “1” and “Glydell”,

respectively.
. REST Client

REST invocation system comprises of the REST client that takes in a complete

URL and invokes the Web service.

45

o HTTP Request
Java provides a HTTP connection API that is used to send a request to the
given REST service URL. Our system supports the GET method for REST invocation.

An HTTP connection for a given URL is opened as follows:

HttpURLConnection conn = url.openConnection();

The steps in the REST client for invoking a service is as follows:
(1) Get the complete REST service URL from the REST Invocation Manager
(2) Invoke the REST service using an HTTP request
(3) Listen to the HTTP open connection for stream of data as a response
(4) Call the Result Handling System to parse the results and display it to the

user

6.7 Result Handler:

The Result Handling system is used by both SOAP and REST client to process

the XML response received.

* XML Parser

The XML parser is responsible for parsing and returning only the content to the
user ignoring all tags and other schema information. It implements a recursive function
that traverses through the XML file from root till the last child node. It prints the content,

which is the text in each tag as it traverses and forms a JSON output that is readable.

* Other Formats
Web services can return responses in formats other than XML. It can be an image
or a file. When the format is not XML or text, the result handling system interprets those

formats and prints them on the browser directly.

46

* SOAP Client result handling

The SOAP service returns an OMElement object which is interpreted by parsing
through an XML parser to get the content inside the tags forming the result. The retrieved
content from the XML parser is displayed to the user as the result of the invoking the

service.

* REST Client result handling

The REST client returns the stream of data as a response from the service to the
Result handling system. If the stream of data received is of type text or XML, then it is
sent to the XML parser for further processing and retrieving required content. If the data

is of different type, then it is interpreted and displayed to the user.

6.8 Comparison of Web service invocation between other systems and
GlycomicsPortal:

The service that we are invoking for comparison is NCBI Blast SOAP service and
the operation called ‘run’ provided by NCBI Blast
(http://www.ebi.ac.uk/Tools/webservices/services/sss/ncbi_blast soap). It is registered in
EBI and GlycomicsPortal. The first step for invoking a Web service is to locate the Web
service in the repository. The NCBI Blast SOAP service is located in EBI as shown in
Figure 15. The operations in the NCBI Blast service are shown in Figure 16. The two
pages in figure 15 and figure 16 provide all the information required to invoke the NCBI

Blast Web service.

47

EMBL-EBI 3:° 3¢ Find Terms of Use| Privacy | Cookles

Databases Tools Research Training Industry About Us Help site Index B &
= about EBI > EBI Web S > > ss8 > ncbi_blas
= clients Login
= help
= services
» NCBIBLAST (SOAR) -Too ot Comterts |
+ archive
+msa “NCBI BLAST (SOAP)
Important “Important
+pfa ~Description
hyl We kindly ask all users of EMBL-EBI Web Services to submit tool jobs in batches of up to 25 at a time and to not submit more until the results and processing Clients
+ phylogeny has completed for these. This enables users as well as the service maintainers to deal more easily with local and remote network outages as well as scheduled :‘g:g;ms
+psa or unscheduled downtime. FgotParameters)
+ segstats . § § § § § § ~getParameterDetalis(parameterid)
Service provision happens on a fair-share basis. Overzealous usage of a particular resource will be dealt with in accordance to the EBI's Terms of Use. -mn[saman. 1itle, params)
~sss ~getStatus(obld)
~getResulTypes(jobld)
fasta_rest -getResult(obld, type, parameters)
fasta_soap Description +Data Types
f ‘m’ ¢ NCBIBLAST is a sequence similarity search program. The emphasis is to find regions of sequence similarity, which will yield functional and evolutionary clues ngg’;’:ﬂ“’;;’{:&’faﬂs
asim,_res about the structure and function of the query sequence. WU-BLAST and NCBI BLAST are distinctly different software packages, although they have a common -wsParametervalue
fastm_soap lineage for some portions of their code, so the services do their work differently, obtain different results and offer different features. “wsProperty
ncbi_blast rest ~wsRawOutputParameter
- - For more information see: “wsResultType
nebi_blast_soap
psiblast_rest = Web form: http: .ebi.ac.
psiblast_soap = REST service
psisearch_rest = NCBIBLAST Help
psisearch_soap = BLAST Guide
wu_blast_rest Web service registry entries:
wu_blast_soap = BioCatalogue
+st
censor
dalilite Clients
dbfetch Sample clients are provided for a number of programming languages. For details of how to use these clients, download the client and run the program without any arguments.
dbfetch._rest Language Downioad Roquiremernt

Figure 15: EBI- NCBI Blast Web service page

(http://www.ebi.ac.uk/Tools/webservices/services/sss/ncbi_blast soap)

Operations

getParameters()
Geta listof the parameter names.

Arguments: none
Returns: a list of strings giving the names of the parameters.

getParameterDetails(parameterld)
Get details of a specific parameter.

Arguments:
- Id: identif ofthe 1o fetch details of.
Returns: a wsP: Detail i the and its values.

run(email, title, params)
Submit a job to the service.

Arguments:
= email:(required) user e-mail address.

= title:job title. Default: ™.
= params: (required) parameters for the tool. These are described by the InputParameters data structure.

Returns: a string containing the job identifier (jobId).

getStatus(jobld)
Get the status of a submitted job.

Arguments:

= joblId:(required) job identifier.

Returns: a string containing the status.

The values for the status are:

= RUNNING: the job is currently being processed.

= FINISHED: job has finished, and the results can then be retrieved.
= ERROR:an error occurred attempting to get the job status.

Figure 16: EBI- NCBI Blast Web service operations

(http://www.ebi.ac.uk/Tools/webservices/services/sss/ncbi_blast soap)

48

The next step for invocation of the Web service is to copy the gathered
information that includes WSDL location and operation name from EBI about NCBI
Blast to SOAPUI, which is a generic SOAP client. Figure 17 represents the interface for
SOAPUI application and illustrates the invocation of NCBI Blast service. The left part of
Figure 17 represents the SOAP request, which is generated, based on the WSDL file and
chosen operation. It is the xml SOAP message that contains the set of inputs for “run”
operation as tags and a “?” in between the opening and closing tag, which should be
replaced with the actual input by the user.

For instance: <email>?</email> represents the input parameter “email” and the
“?” represents the user input value. For example, the tag after replacing “?” with user
input will be, <email>abc@abc.com</email>. In a similar way, all the tag’s content in
the SOAP message should be modified by the user with input values. The “run” button is
then clicked which invokes the “run” operation in NCBI Blast service and returns the
SOAP response as an xml message represented on the right side of figure 27. The SOAP

response contains information about the “job id” which is the result of “run” operation.

FIEIEIRIESIESR Al Search Forum i@

(s] i Request 1

Projec
v B e

[3)
= =0 http://www.ebi.ac.uk/Tools/services/soap/ncbiblast & %[+|®
> I o

="http://schemas.xmlsoap.org/scap/envelope/" >
v

2
I =
>

z ngaram@gmail.com</email> H
> (-3 3
>
>
>

GVEPTFSVAAT

or more repetitions:-->
iprotkb</string>

Request |

Aut Headers (0) Attachments (0) WS-A WS-RM Headers (5) Attachments (0)

Pro. soapUllog httplog jettylog errorlog wsrmlog memory log

Figure 17: SOAPUI — Invocation of NCBI Blast

49

In comparison to invoking the NCBI Blast service using EBI and SOAPUI, let’s
invoke the same with GlycomicsPortal. I have already discussed about navigating to a
Web service entry in the portal and viewing its information. Figure 18 represents the
entry page for NCBI Blast service registered with the GlycomicsPortal. It provides
information relevant to the Web service. There is an ‘Invoke Operation’ link next to
every operation listed out in the Web service entry page for all SOAP and REST services.
In comparison to EBI and SOAPUI, where the user has to manually copy all the required
information from EBI repository to the SOAPUI interface, in the GlycomicsPortal the
user just clicks on the ‘Invoke Operation’ link next to the operation to invoke the Web

service.

Web service > SOAP > NCBI Blast Service

NCBI Blast Service
Edit NCBI Blast Service

Similar Objec

Vote!
NCBI Blast from EBI (

Summary
Provider
EBI Contributor Singaram

Webservice URI Release Date 02/01/2012
http://www.ebi.ac.uk/Tools/services/soap/ncbiblast Availability

Operations Available
run
getResult
getResultTypes Protocol

Definition File

Semantic Definition File

run Invoke operation
Wiki Page

String run (String email , InputParameters parameters , String title)

wefwefewf

Parameters:
email - wewef

parameters - wegweg
title - wegweg

Returns:
String - ergewrewr

Figure 18 — NCBI Blast service in GlycomicsPortal

When the ‘Invoke Operation’ link next to “run” operation is clicked, it processes
the implementation of SOAP client as discussed in this chapter and displays the Web
service invocation page (Figure 19). The Web service invocation page displays the input
parameters for the invoked “run” operation with the following information,

* Name
* Type

* Description

50

The information above are retrieved from the WSDL file and displayed intuitively
in a user-friendly interface compared to the XML SOAP message displayed by SOAPUI
which has to be modified by the user.

Figure 19 represents the Web service invocation page that is displayed with the
input parameters and its details to the user. It contains a blank field for every input where

the user enters the input value.

Please enter the input parameters for invoking the web service

emal [Type : nm|

st [Type : ne|

program [Type | InputParimeten
matdx [Type IroutPacametens)
shgreacts [Type InputParametens)
scores [Type | InputParemeten)

exp [Type : IngutParametens]

gepalign [Type - InputParameters]
algn [Type ! IrputParametens)
tanshadie [Type [sputParamelers)
stype [Type . lnputPararmetors)
sequence [Type - InputPasameters|

NYLPSOOOKODEVD KM

sifrg [Type | AryOfString]

string [1] [Type : AmayOfSadng)

Figure 19: Web service invocation page

The user enters the input for the parameters listed and clicks on “Run” which

initiates the generic SOAP client process and then the result handling system as discussed

51

in this chapter. The Result page is displayed after invoking the operation and providing
the required inputs. Figure 20 represents the result page for invoking “run” operation
from NCBI Blast service. The result contains the “job id” that is parsed from the SOAP
response and displayed to the user compared to SOAPUI that displays the entire SOAP

response from which the user interprets the result.

NRR - GlycomicsPortal gy

Home ‘Web service Workflow Software Data source Search Submit Content Administration Help

Web service result

ncbiblast-820120630-181741-0155-64294320-pg

Complex Carbohydrates Research Center, University of Georgia
315 Riverbend Road, Athens, Georgia 30602-4712 USA Phone:706-542-4628

| Home | | Personal | | About CCRC | | Contact Us |

Figure 20: Results page for run operation

The invocation of “run” operation can be further continued by invoking
“getResult” operation provided by the NCBI Blast service that takes in the result of
“run” operation which is “job id” and type of result as input and which returns the result
of the job. Figure 21 shows the Web service invocation page displaying the input
parameters for “getResult” operation. When this is invoked by clicking on “Run”, it

returns the result (Figure 22) that displays the result of submitted job.

52

Home ‘Web service Workflow Software Data source Search Help

Please enter the input parameters for invoking the web service

jobld [Type : getResult]
An identifier for the job to check

* ncbiblast-$20120716-053(

type [Type : getResult]
The renderer to be used to format the output

* xml

name [Type : wsRawOutputParameter]
The name of the parameter

string [Type : ArrayOfString]
The parameter value as an array of String

string [1] [Type : ArrayOfString]
The parameter value as an array of String

Cancel Run

Complex Carbohydrates Research Center, University of Georgia
316 Rivarhand Road Athans. Ganraia 30602-4712 LISA Phana:706-542-4628

Figure 21: Input page for getResult operation

Home ‘Web service Workflow Software Data source Search Help

Web service result

Root Element : getResultResponse

XML Response
v ,

WNyOXMFQwMTowMDowMCswMTowMCIvPgogICASL TYXNIcz4KIC. pl) ZXI
CIAGPCIWYX g 1 y I yOxNIQWNTozMD Tow

DEYLTA3LTE2VDA10jMxO)] yY2g T JMEgWTTQ2LJAW
MFMiLx4KI XVIbmNIL YXJjaFJlc3VsdD4KIC.
DDIM]UMHK!CAQPthdCBudW1IZXDQIJEIIGRthFIYXNIPSJUUIIgaWQSIkIZS1JXM19UT1hHTngYWM9IklZS

Tt 3B

UsIHBMGFOaXZIIEQ.r JOPVRHTUUOO! JEUSNCBTVjOxIj4KI
CAgID KICAgICABYprZZStZWSOIGMhWJIclOIMSI*CIAgICAgIDxxYZSyZ
lelNTchCSzYZQyZTAKICAgICAgPGJdeMvM IXRzP, AgIC, YXRpl
(C4wPC8leHBIY:) A,,r gl Jl 4w T4KICAgICAg
XZicz4xMDAUMD AgICABCIRYY UvbmauZTwvc3Ry YWS5kPgogiCAgl

CABCXVICnITZXEgCSRhCnQSI]EilGVuZDDIQDC4I]5NWUXQUOLJR1 FLRORFVKRLTUtTQUSFRUFTUFNHUINT
R1JTVEtTUEdAWRIBURINWQUFJUFBSQUFWU1NMQVRSROIGREXTRVJQS0VJUONSTKREQUZWQUhHQVIM
[TEZOQUILUKtMVEVTU1IBS1ZWSUdMU0dHU1RQTFBJWVNBTFJITEFMQVNBREhFUEdSQUFUSEXBVEFW
UEVGUOVFTFFSREFLR1NEUOFMRFAUUIZGRKZMVKRFUIIWSFBUSEFEUO5RUINJUKtTEXHUVBOR1ZBQO
RRUEJBRUNHRORWTFBWUEVLTKX, FNMUEXFREN. TEXFTEXBQVRRUUIETFZUTEdMR1
BEROhJQVNJRIBQTFNFRURMSO0VRTUS5QTIBJVKxIVFRUU1JGQUAGRFJJVFZTTFFMTENHQUhRS1ZGRKxL|
RORFSOISTFASRE1RRERBUINLU1ZBRUZQQUxXBVkxRU0dOVktWVKkFWUFBMRFZIRUVITFFRUUXSQURSV
EZMU1ZWVkxHQVNHREXBSEtLVFIQQUXGUO0XGQOVHTEXQUEhGSEIWR1IBUINLTVRGRFFGVOVLSVNRS0

Ml LINNTINZGOM ISOVNRSIIRMTEETRIGTSENTIAL INOLIRGOLISMRNSIT INZHLIZZ

Figure 22: Output page for getResult operation
* REST Invocation
The REST Web services when invoked from portal displays an input page similar to
the SOAP services. It lists out all the input parameters for the invoked operation, which
are processed from the portal as explained in chapter 6. Figure 23 shows the input page

displayed when invoking the Glycome DB REST service registered with the portal.

53

NCRR - GlycomicsPortal 58

& Singaram Log out
\ | RSS

Home Web service ‘Workflow Software Data source Search Submit Content Administration Help

Please enter the input parameters for invoking the web service

user [Type : String]

User role in GlycomeDB that specify the amouont of data thatis e

ed. Currently there is only the role "eurocarbdb

Cancel Run

Complex Carbohydrates Research Center, University of Georgia
315 Riverbend Road, Athens, Georgia 30602-4712 USA Phone:706-542-4628

| Home | | Personal | | About CCRC | | Contact Us |

Figure 23: Rest service input page

The user enters the input values for the displayed fields and clicks on “Next”
which processes the invocation using REST client and result handler as explained in this

chapter. Figure 24 represents the output received from the Glycome DB REST service.

Web service result

Root Element : Glydell

molecule:
[Attribute: subtype="glycan"]
[Attribute: id="From_GlycoCT_Translation"]

residue:
[Attribute:
[Atribu

btype="base_type"]
=17
http:/iwww.monosaccharideDB.org/GLYDE-Il jsp?G=x-dglc-HEX-xx")

[Atribute:

residue:

[Attribute: subtype="base_type"]

[Attribute: partid="2"]

[Attribute: ref="http:/ww ideDB.org/GLYDE-Il.jsp?G=b-dglc-HEX-1:5"]
residue:

[Attribut btype="base_type"]

[Atribute: parti

37
[Attribute: ref="http:/www.monosaccharideDB.org/GL YDE-Il.jsp?G=b-dglc-HEX-1:5"]
residue:
[Attribute: subtype="base_type"]
[Attribute: partid="4")
[Attribute: ref="http:/Awww. ideDB.org/GLYDE-Iljsp?G=b-dglc-HEX-1:5"]

residue:

btype="base_type"]

te: 5%
[Attribute: ref="http:/www.monosaccharideDB.org/GL YDE-Il.jsp?G=b-dglc-HEX-1:5"]
residue:
[Attribute: subtype="base_type"]
[Attribute: partid="6
[Atribute: ref="http:/Awww. ideDB.org/GLYDE-Il jsp?G=b-dglc-HEX-1:5"

residue:

Figure 24 — REST service result page

54

CHAPTER 7

CONCLUSION AND FUTURE WORKS

Currently there is no widely available system that is a combination of Web
service repository and Generic SOAP and REST service client. This thesis has achieved
bringing the Web service repository (GlycomicsPortal) and the Web service Invocation
system (SOAP and REST Generic Client) together to create a Web service Discovery and
Invocation tool with Automatic Web service population.

Thus, the generic client software allows the user to invoke the full functionality of
diverse Web services registered with the GlycomicsPortal and saves a considerable
amount of effort by individuals who merely want to evaluate or use the service. The table

below explains the operations and services currently supported by our system:

Functionality Supported Context Unsupported Context
SOAP Client Doc-literal and rpc Doc-encoded and rpc-literal
encoded

REST Client GET Method PUT, POST, DELETE
Methods

RESTful Client GET Method PUT, POST, DELETE
Methods

Automatic Population of Portal | Doc-literal (simple Rpc-encoded simple and

DB with operations defined in | types) complex types

a WSDL for a registered Web doc-literal complex types

service

Output Handling XML, Text Binary (e.g., base64, images)

55

7.1 Future Work

Future works in system includes adding support for doc-encoded and rpc-literal
types for the SOAP client. Even though they are not commonly used this could make the
system support wide range of services. To support this the OMElement handler in the
system needs to be modified to support different structure of the two types of WSDLs.
When the structure of the WSDL until the XML schema definition is handled using a
new handler, then the existing OMElement Handler can be reused for the complex

elements in the WSDL.

Adding PUT, POST and DELETE methods for the REST Client is also another
future work to be considered. To support this, the existing REST Invocation manager
needs to be modified from constructing the REST URL to construct the payload at the

REST client and reuse the existing result handling system.

Also, automatic population for rpc-encoded and doc-literal complex type needs to
be added. To support this feature, the automatic population of web service operations
should be modified. There are parsers that already exist to retrieve the information about
doc-literal complex elements and rpc-encoded WSDL elements. These retrieved elements
can be used to prefill the registration process of operation, its input / output parameters
and fault messages, which will enable the system to automatically populate operations

from doc-literal and rpc-encoded WSDLs.

56

10.

11.

12.

13.

REFERENCES

. About Bio Catalogue. BioCatalogue. ‘“http://www.biocatalogue.org/”. Retrieved on

May 11, 2012.

Our Mission Areas. European Bioinformatics Institute. “http://www.ebi.ac.uk/”.
Retrieved on May 21, 2012.

. What is soapUI. soapUI. “http://www.soapui.org/.”. Retrieved on May 10, 2012.

Generic Soap Client, SoapClient.com. “ www.soapclient.com/”. Retrieved on May
22,2012.

Xiaoying Bai, Wenli Dong, Wei-Tek Tsai, Yinong Chen. “WSDL-Based Automatic
Test Case Generation for Web services Testing”. Proceedings of the 2005 IEEE
International Workshop on Service-Oriented System Engineering, 2005.

Philipp Leitner, Florian Rosenberg, Schahram Dustdar. “Daios: Efficient Dynamic
Web service Invocation”. IEEE Computer Society, IEEE Internet Computing. 2009.

Matthew J. Duftler, Nirmal K. Mukhi, Aleksander Slominski and Sanjiva
Weerawarana. “Web services Invocation Framework (WSIF)”. IBM T.J. Watson
Research Center. 2011

Web Application Description Language. W3c.org.
“http://www.w3.org/Submission/wadl/”. Retrieved on May 1, 2012

What is UDDI. W3schools.com. “http://www.w3schools.com/wsdl/wsdl uddi.asp”.
Retrieved on May 1, 2012

About WS-I. Web services Interoperability Organization. “http://www.ws-i.org/”.
Retrieved on April 1, 2012

Overview of WSDL, Oracle Sun Developer Network.
“http://developers.sun.com/appserver/reference/techart/overview wsdl.html”
Retrieved on May25, 2012

Web service Description Language. W3c.Org. “http://www.w3.org/TR/wsdl”.
Retrieved on May 1, 2012

Generating deploy code. WebSphere Studio.
“http://publib.boulder.ibm.com/infocenter/adiehelp/v5rIiml/index.jsp?topic=%2Fcom
.ibm.etools.prodovr.wsinted.doc%2Fhtml%2Fcgendply.html”. Retrieved on May 1,
2012.

57

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Dan Gunter, “Document Literal vs. RPC Encoded SOAP”. Lawrence Berkeley
National Laboratory. 2004.

René Ranzinger and William S. York. 2012, Glyco-Bioinformatics today (August
2011) — Solutions and Problems. In Proceedings of the 2nd Beilstein Symposium on
Glyco-Bioinformatics - Cracking the Sugar Code by Navigating the Glycospace.
June 27th — July Ist, 2011, Potsdam, Germany. Pp. 107-130

About PostgreSQL, The PostgreSQL Global Development Group,
“http://www.postgresql.org/”. Retrieved on May 12, 2012.

Hibernate Overview, JBOSS Community. “http://www.hibernate.org/”. Retrieved on
May 11, 2012.

Java Beans, Wikipedia.Org, “http://en.wikipedia.org/wiki/JavaBeans”. Retrieved on
May 14, 2012.

HQL: The Hibernate Query Language, JBOSS Community,
“http://docs.jboss.org/hibernate/orm/3.3/reference/en/html/queryhgl.html”. Retrieved
on May 12, 2012.

WebWork, Wikipedia.Org, “http://en.wikipedia.org/wiki/WebWork™. Retrieved on
May 02, 2012.

What is FreeMarker, FreeMarker Project, “http://freemarker.sourceforge.net/”.
Retrieved on May 02, 2012.

Introduction to Web Services, W3schools.com,
“http://www.w3schools.com/webservices/ws_intro.asp”, Retrieved on May 06, 2012.

Workflow, Wikipedia.Org, “http://en.wikipedia.org/wiki/Workflow”. Retrieved on
May 02, 2012.

Introduction to SOAP, w3schools.com.
“http://www.w3schools.com/soap/default.asp”. Retrieved on May 11, 2012.

Rest Web Services, Predic8, “http://predic8.com/rest-webservices.htm”. Retrieved on
April 29, 2012.

RESTful Web Services and constraints
“http://www.ics.uci.edu/~fielding/pubs/dissertation/rest arch style.htm”. Retrieved
on April 28, 2012.

Introduction to XML, W3schools.com,
“http://www.w3schools.com/xml/xml whatis.asp”. Retrieved on April 30, 2012.

Role of Web Services in SOA, Krawler Blog, “http://blog.krawler.com/2009/08/role-
of-web-services-in-soa/”. Retrieved on July 02, 2012.

58

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

WSDL 1.1 Vs WSDL 2.0, TheSoaTestingGeek,
“http://thesoatestinggeek.wordpress.com/2012/03/12/wsdlI-1-1-vs-wsdl-2-0/”,
Retrieved on June 02, 2012.

Welcome to Apache AXIS 2 /Java, The Apache Software Foundation,
“http://axis.apache.org/axis2/java/core/”. Retrieved on May 01, 2012

How Axis2 Handles SOAP Messages, The Apache Software Foundation
“http://axis.apache.org/axis2/java/core/docs/userguide.html”. Retrieved on May 01,
2012.

Web Service Description Language for Ja, Sourceforge.net,
http://sourceforge.net/projects/wsdl4j/”, Retrieved on May 04, 2012.

Overview JDOM API specifications, JDOM, “http://www.jdom.org/docs/apidocs/”,
Retrieved on May 15, 2012.

R. Battle and E. Benson, “Bridging the semantic Web and Web 2.0 with
Representational State Transfer (REST),” Web Semantics, vol. 6, 2008, pp. 61-69.

Semantic Annotations for WSDL and XML Schema, W3.org,
“http://www.w3.org.com/TR/sawsdl/”, Retrieved on May 02, 2012.

Style of WSDL, “http://www.ibm.com/developerworks/webservices/library/ws-
whichwsdl/”, Retrieved on May 04, 2012.

Invoking Web Services using Apache Axis2, Java.net,
“http://today.java.net/pub/a/today/2006/12/13/invoking-web-services-using-apache-
axis2.html”. Retrieved on May 04, 2012.

HTTP Request methods for REST services.
“http://en.wikipedia.org/wiki/Hypertext Transfer Protocol#Request methods”,
Retrieved on May 15, 2012.

59

APPENDIX A

USER GUIDE

Registering a Web service in the Portal:

After specifying the generic details of a Web service in the first page of
registration, we have the Web service definition page where we provide the WSDL (Web
service Description Language), SAWSDL (Semantically Annotated WSDL) [35], WADL
(Web Application Description Language) and SA-WADL (Semantically Annotated —
WADL) definition files [34]. The definition files can be from a remote location, which is

given as a URL, or a user’s local file that can be uploaded.

The Web service definition page does not force the user to provide definition
files. The files are provided only when it exists and if the user wants to upload. The
WSDL files are taken for post processing to automatically populate the SOAP service
generic information. The SA-WSDL, WADL and SA-WADL are just received and stored
in the portal database.

Home Web service Workflow Software Data source Search Submit Content Administration Help

Please enter the following details for the web service

Web Service Protocol* | soapP 1@
Wamning : Providing invalid definition file location may take very long to process!
Definition File
Definition URL http:/iwww.ebl.ac.uk/Tools/ser (7]

Select file | Choose File | Nofile chosen
Semantically Annotated Definition File
Definition URL 0

Select file | Choose File | Nofile chosen 0

Back Cancel Next

Complex Carbohydrates Research Center, University of Georgia
315 Riverbend Road, Athens, Georgia 30602-4712 USA Phone:706-542-4628

IHome | 1 Parsanal |1 Ahaut GCRC 1 Gontact Ls |

60

Figure 25: Web service definition page

e Ports in Web service

After providing the WSDL file location, the WSDL file is parsed and the ports
defined in the WSDL are retrieved and displayed to the user in the next page below. A
service can have a number of ports defined under it. The user chooses the port to be

registered with the portal. Only one port is associated with most of the Web services.

NRR - GlycomicsPortal S

& Singaram og out
Home ‘Web service Workflow Software Data source Search Submit Content Administration Help

Please enter the following details for the web service

+ JDispatcherService : http://www.ebi.ac.uk/Tools/services/soap/ncbiblast

Back Cancel Next

Complex Carbohydrates Research Center, University of Georgia
315 Riverbend Road, Athens, Georgia 30602-4712 USA Phone:706-542-4628

IHome |1 Parsnnal |1 Ahout CCRCG || Contact Ls |

Figure 26: Web service Ports Page

* Prefilled generic details from WSDL

The WSDL file is parsed to retrieve the generic information about the service, which

includes the Web service URL, and provider as shown below.

61

NCRR ~

GlycomicsPortal gay

& Singaram Log out
\ RSS |

Home Web service Workflow Software Data source Search SubmitContent Administration Help

Please enter the following details for the web service

Web Service URL* http:/iwww.ebl.ac.uk/Tools/services/soap/ncbiblast o

Web Service Provider* EB|

Back Cancel Next

Complex Carbohydrates Research Center, University of Georgia
315 Riverbend Road, Athens, Georgia 30602-4712 USA Phone:706-542-4628

| Home | | Personal | | About CCRC | | Contact Us |

Figure 27: Web service generic details page

Verification page before finalizing and submitting the Web service is displayed to the

user as shown below:

Home Web service Workflow Software Data source Search ‘Submit Content Administration Help
Please Verify the Data!l
Name : test
Description : wekjnfwef
Type : Web service
Categories : SOAP
Release Date : 06.20.2012
Version : 1
DevelopmentStatus : Alpha version
Availability : Open source
Public Availability : No
Web service URL : http://www.ebi.ac.uk/Tools/services/soap/ncbiblast
Web service protocol : SOAP
Web service provider : EBI
Back Cancel Finish

Figure 28: Confirmation page

Manage Entry page for the registered Web service

62

Manage Web service "GlycomeDB structure dump"

Back to GlycomeDB structure dump

Web services are provided by GlycomeDB to export all structures and related information in the database into a compressed XML file.

Time Created: Jul 18, 2010 6:25:04 PM
Last Modified: Mar 5, 2012 7:04:18 PM
Type : Web service
Availability : Open access

Development Status: Stable version

Release Date: 07/30/2009
Owner: ReneRanzinger
Categories : REST

Edit GlycomeDB structure dump

Add new webservice operation :
Binary data getStructureDump.action (String user) e &

WAdd Webservice operation
WAdd Webservice operation from a WSDL file

Figure 29: Manage Entry page
Automatic population of Web service operation based on the provided WSDL is initiated

by clicking on “Add Web service operation from a WSDL file” as shown in figure 19.

NRR GlycomicsPortal &

& Singaram Log out
\ ASS |

Home Web service Workflow Software Data source Search SubmitContent Administration Help

Please choose the operation you wish to add from WSDL file

*run
getStatus
getResultTypes
getResult
getParameters

getParameterDetails

Cancel Next

Complex Carbohydrates Research Center, University of Georgia
315 Riverbend Road, Athens, Georgia 30602-4712 USA Phone:706-542-4628

| Home | | Personal | | About CCRC | | Contact Us |

Figure 30: Automatic Population page

63

User chooses one of the operations listed in figure 30 from the WSDL. That prefills the
generic details for the operation that include the Name, Description, Number of inputs,

Number of outputs and Number of fault messages as shown below.

i GlycomicsPortal VA
& Singaram Log out
Home Web service ‘Workflow Software Data source Search Submit Content Administration Help

Please enter the following details for Operation

Name* run

Description* run operation

Number of Inputs* 3

Number of Outputs* 1

Number of Faults* 0

Back Cancel Next

Complex Carbohydrates Research Center, University of Georgia
315 Riverbend Road, Athens, Georgia 30602-4712 USA Phone:706-542-4628

Figure 31: Prefilled generic details page

The user clicks on “Next” that takes the process to Input Parameters page with prefilled

Name and Type of each parameter from WSDL. The user fills the Description manually.

Please enter the following details for the webservice input variable(s)

Input 1

Webservice Value Name* emall

Webservice Value Description* |emallid

Webservice Value Type* | String 1@

Add a new webservice value type

Input 2

Webservice Value Name* title

Webservice Value Description* | title of the experiment

Webservice Value Type* | String 1@

Add a new webservice value type

Figure 32: Prefilled input parameters page

64

Next page is the Output Parameters page that is prefilled with Name and Type of each

output parameter from WSDL. The Description is entered manually by the user.

NCRR - GlycomicsPortal S

& singaram Log out
Fro—
Home Web service Workflow Software Data source Search Submit Content Administration Help
Please enter the following details for the webservice output variable(s)

Output 1

Webservice Value Name* jobld

Webservice Value Description*

Webservice Value Type* | String : o

Add a new webservice value type

Back Cancel Next

Complex Carbohydrates Research Center, University of Georgia

Figure 33: Prefilled output parameters page

Next page is the verification of entered information page where the user verifies the

entered data and submits the operation to register it with the portal.

micsPortal £3 GlycomicsPortal
) localhost:8080/GlycomicsPortal /finalizeEntryWebservice.action w
Please Verify the Data!
Webservice operations
Name : run
Description : run operation
Webservice operation values:
Input:
Name email
Description email id
value type name String
Name title
Description title of the experiment
value type name String
Name parameters
Description parameters required
value type name InputParameters
Output:
Name jobld
Description job id
value type name String

Figure 34: Web service Verification page

Refer to section 6.8 in chapter 6 for invocation of the registered web service in
GlycomicsPortal.

65

