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Abstract

In this study, topological data analysis techniques were used to analyze a discrete

dataset. The dataset is the results of a national study done on college calculus stu-

dents in the United States. The goal of the study was to create and implement

techniques to analyze the data by considering the persistent homologies up to the

second dimension. The resulting persistence diagrams were then interpreted by con-

sidering the context of the data analyzed, and in some cases, these results were

compared to the findings in the report on the calculus study.
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Chapter 1

Introduction

Data of various kinds are being produced at an unprecedented rate. However, obtain-

ing data is only the first part of the process of research. The next step is to analyze

the data. Over the past few decades, various powerful statistical methods have been

used to sort through and determine the significant components of datasets. In this

thesis, I will explore a newly developing way of analyzing data, topological data

analysis. According to Offroy and Duponchel [16], topological data analysis used

in spectroscopy is capable of detecting sup-populations which are not observed with

PCA or HCA), is less sensitive to noise, spectral resolution and spectral shift, and

can handle large data sets. The tool has shown promise in analyzing data sets that

have very low signal to noise ratio, variable shifts and missing data. The dataset I

will be considering comes from a large scale study across the United States on college

Calculus students. I will provide a summary of the Calculus report and its findings,

outline the goals, theory, and some of the previous research done using topological

data analysis, explain the methods that were used to adapt the dataset so that it

would be suitable for running TDA, describe the results of the analysis, and provide

some future directions for research.

This study aims to address the following research questions:

(1) How can topological data analysis inform analysis of a discrete dataset?

What adaptations to datasets need to be made and what patterns emerge

in the resulting analysis of the dataset?

1



(2) How can 3-D plots of variables aid in the interpretation of persistence

diagrams produced from three variables? What conclusions can be made

about Calculus I students by considering these persistence diagrams and

their respective 3-D plots, and how do these results compare with previ-

ous findings of the dataset?

(3)What considerations need to be made when using high dimensional

input for topological data analysis?
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Chapter 2

MAA Calculus Report Data and

Analysis

2.1 The Dataset

The dataset under consideration for this study is from the Characteristics of Suc-

cessful Programs in College Calculus (CSPCC) of the Mathematical Association of

America (MAA), David Bressoud, PI. The goal of the report was (1) to establish

a “base of knowledge of who takes Calculus I and why, what their preparation has

been, what they experience in the classroom, and how this affects their confidence,

enjoyment of mathematics, and intention to persist in the study of mathematics”

and (2) to identify institutional practices that contribute to the retention of STEM

students [4, p. v].

The data collection occurred in two phases, the first of which is the focus of the

MAA Calculus report considered here. In 2010, the researchers involved in the study

selected a stratified random sample of non-profit colleges and universities offering a

degree in mathematics (Associate’s, Bachelor’s, Master’s, or Doctoral). The insti-

tutions were stratified by highest degree offered by the department and size of the

undergraduate population. Over the summer and fall of 2010, the researchers con-

tacted the selected institutions’ mainstream Calculus I coordinators, where “Main-

stream Calculus I” is defined as any first course in calculus that can be used as part

3



Figure 2.1: CSPCC data collection timeline.

of the calculus prerequisite for higher level mathematics courses [4, p. vi]. The co-

ordinators gave basic information about the course and the contact information of

the institutions’ instructors of the identified course. The instructors were surveyed

before and immediately after their first fall term, and the students in the courses

were surveyed in the second and the second-to-last weeks of class (Figure 2.1). This

data was organized into a file and had identifiers removed; the resulting file is the

dataset used for this study.

According to the 2010 Conference Board of the Mathematical Sciences (CBMS)

[3], there were about 300,000 mainstream calculus students across the United States

(110,000 from PhD-granting universities, 41,000 from MA-granting universities, 82,000

from BA-granting four-year colleges, and 65,000 from AS-granting two-year col-

leges) [4, p. 1] in 2010 (Figure 2.2). These numbers are the most recently updated

as of April 2016.
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Figure 2.2: (left) CBMS 2010 report on distribution of Calculus I students by insti-
tution type [3] (right) CSPCC student participants.

In comparison, the CSPCC collected data from 10,114 mainstream Calculus I

students (7,086 from PhD-granting universities, 535 from MA-granting universities,

1,742 from BA-granting four-year colleges, and 751 from AS-granting two-year col-

leges (Figure 2.2) from 213 colleges and universities [4, p. 135]. Note, however,

that the percentages reported by the MAA Calculus Report were first calculated for

each institution type and then combined with a weighted average determined by the

number of Calculus I students at each type of institution [4, p. 1]. The CSPCC

information reported on in this report comes from the 7,260 students who responded

to both the start and end of term surveys [4, p. 136] (Figure 2.3).

Overall, five major surveys were constructed: one for the coordinators, two for the

instructors (pre- and post-course), and two for the students (pre- and post-course).

Based on their survey of the literature, the researchers decided to analyze six de-

pendent variables: confidence, enjoyment, desire to continue studying mathematics,

intention to continue calculus, increased interest (end of term survey only), and final

grade of C or higher (end of term survey only) [4, p. 134]. Confidence, enjoyment,

and increased interest were assessed using a Likert scale (e.g., 0=Strongly Disagree;

5



Figure 2.3: Calculus I students nationwide, in the study, and included in the CSPCC
(not to scale).

1= Disagree; 2=Slightly Disagree; 3= Slightly Agree; 4=Agree; 5=Strongly Agree).

All of the survey questions received answers that were discrete in nature (e.g., yes/no,

select all that apply, and letter grade).

2.2 Analysis

This section describes the methods of analysis used on this data in order to provide

insight into the research that has already been done on this particular dataset. Fur-

thermore, examples of the results of these forms of analysis provide insights into the

findings of the study, some of which will be considered when interpreting the results

of the topological data analysis.
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Table 2.1: CSPCC report of students’ survey responses on graphing calculator use.

2.2.1 Percentages

Oftentimes, the authors reported percentages. For example, while 80% of 7,089 stu-

dents in PhD-granting universities reported that their home supported their studying

mathematics and 40% reported that no one encouraged them to study mathematics,

67% of 7,089 students in 2-year AS-granting colleges reported that their home sup-

ported their studying mathematics and 49% reported that no one encouraged them

to study mathematics [4, p. 4]. The reported percentages are often displayed in a

table format. For example, Table 2.1 shows the percentages of students reporting

various aspects of graphing calculator use [4, p. 9]. Depending on the focus of the

study, the percentages of different survey responses are split by gender, ethnicity,

and/or type of institution.
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2.2.2 Means and Standard Deviation

Means and standard deviation are a common way to report the results. For example,

the average SAT Math score (and standard deviation) from University (PhD) to 4-

year College (BA) to University (MA) to 2-year (AS) went from 663 (71) to 632 (72)

to 616 (81) to 589 (95) [4, p. 5] (Figure 2.4). The means and standard deviations are

reported by institution type for instructor-student reported graphing calculator use

during class and class size (i.e., for the institutions selected for clinical interviews,

four-year BA-granting colleges 25.46 (4.457) (N=14); MA-awarding universities 26.50

(5.334) (N=12); PhD-granting universities 54.70 (57.045) (N=47). In their analysis of

the Calculus I Curriculum, the results focus primarily on the problem types faculty

included on assignments and exams (e.g., [4, p. 48]). However, some means and

standard deviations are reported on the survey questions. For instance, 421 faculty

members have a mean of 4.90 (1.03) in response to the survey question: “My primary

role as a Calculus instructor is to: 1 (work problems so students know how to do

them) to 6 (help students reason through problems on their own)” and 90% of faculty

responded 4 or higher [4, p. 49].

2.2.3 Frequency

Sometimes, only raw numbers are reported. For example, from the 4,828 students

from PhD-granting universities who had taken Precalculus by 11th grade, only 7

students did not go on to take calculus in high school [4, p. 6].

2.2.4 Factor Analysis

The most rigorous method of analysis used in the report was factor analysis. Factor

analysis is a branch of multivariate analysis that assumes the approximate linearity

8



Figure 2.4: SAT Math scores for Calculus I students by institution type [4, p. 5].

of variables and then considers the relationships between the variables. According to

Costello and Osborne [5, p. 17], factor analysis aims “to reveal any latent variables

that cause the manifest variables to covary. During factor extraction, the shared

variance of a variable is partitioned from its unique variance and error variance to

reveal the underlying factor structure” [5, p. 2]. As a result, only shared variance

is considered. In other words, let X1,. . . ,Xp be a set of p observed correlated vari-

ables, the goal of factor analysis is to account for the correlations using a smaller

number, k, of hypothetical variables. In order to do this, the correlation matrix of

the variables is compared to the unit diagonal matrix to see if any correlation exists.

If a correlation between variables is found, the goal is to see if there exists an F1

such that, when its effect is eliminated, the correlations between the X variables

are zero. If not, the new partial correlations between the variables are considered,

and the process continues until all partial correlations between the X variables are

zero. Thus, unlike the independently observable variables from which they came, fac-
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tors are an “unobservable variable derived from internal analysis of the X -variables

themselves” [13, p. 7].

This analysis is in the section on the impact of instructor and institutional factors

on students’ activities. The researchers used factor analyses to develop a composite

measure (of “students’ attitudes towards mathematics, three composites of pedagog-

ical features, and four composites of institutional characteristics” [4, p. 17]), and

multivariate regression analyses were used to model the impact of the factors onto

students’ attitudes while accounting for control variables.

Before conducting factor analysis, the researchers prepared the dataset. These

researchers used the pre- and post- completed surveys from 3,103 students in 308

classrooms. According to the data, the variables indicating attitude (confidence,

enjoyment, and persistence) were highly correlated (from r=0.52 to r=0.70) and so

the authors decided to combine the three variables to create a dependent variable

called “mathematics attitude” by standardizing each of the three variables from the

post survey (because two survey responses used a 6-point scale and one used a 4-point

scale), averaging them, adjusting the standard deviation of the resulting composite

to the standard deviation of the initial mathematics attitude composite, and then

centering it on the average decline in the mathematics attitude score between the

beginning and end of the semester [4, p. 17]. By going through this standardizing,

averaging, and re-standardizing process in the beginning-of-the-semester surveys as

well, the researchers created the same composite of initial mathematics attitude. The

results of the analysis show that, on average, student attitudes toward mathematics

declined from beginning to end of a college calculus course [4, p. 18] (close to a third

of a standard deviation).

The researchers controlled for student, instructor, and institutional level variables

in order to account for alternative hypotheses by “using variables that control for

10



differences in students, classroom, and institutions, especially those differences that

do not represent decisions that can be made or conditions that can be modified” [4, p.

18]. They considered information such as students’ grades in high school mathematics

classes, the students’ year of college (using dummy variables), size and status of

the instructor, and three dummy variables representing institutional type. Recall

that dummy variables are created in order to include qualitative (or categorical)

variables by arbitrarily assigning numbers to the various levels of the qualitative

variable. [14, p. 213]

The variables of interest were instructor pedagogy and institutional character-

istics. Since a total of 121 survey items characterized these two categories, the

researchers decided to use exploratory factor analysis to help group items that might

be indicators of the same underlying feature. The results of the factor analysis re-

veal that student responses to questions about instructor characteristics factored

into three clusters: Good Teaching, Technology, and Ambitious Pedagogy. Of these

three, only Good Teaching had a positive effect on the change in students attitudes

towards mathematics (a composite of three outcomes: mathematics confidence, en-

joyment, and persistence) [4, p. 83]. A similar process was used for institutional

characteristics that resulted in four different factors.

In order to explain the variance in students’ attitude at the end of the semester,

the researchers decided to employ hierarchical linear modeling (HLM) which consid-

ered course, instructional, and institutional levels [4, p. 25]. The following statements

are two examples of conclusions drawn from both the resulting model. The main

effects model indicated that students’ initial attitudes “powerfully predicted their

attitudes at the end of the semester” and male students scored significantly higher

than females on the mathematics attitude composite [4, p. 26]. Furthermore, in the

main effects model, Ambitious Teaching had a negative effect, although the relative

11



effect size of Good Teaching far outweighed that of ambitious teaching. Characteris-

tics of Ambitious Teaching include 14 survey items such as the use of group projects,

the inclusion of unfamiliar problems both in homework and on exams, requirements

for students to explain how they arrived at their answers, and a decreased reliance on

lecture as the primary mode of instruction [4, p. 93], whereas Good Teaching come

from the 22 survey items which contains questions about the instructor providing

understandable explanations, making the students feel comfortable to ask questions,

grading fairly, etc. [4, p. 21].

2.2.5 t-Tests

Some of the analysis done on the results of the survey was done using Welch’s t-

test. Welch’s t-test is for cases in which the sample populations are both assumed

to come from Gaussian populations but not necessarily have the same standard

deviation. Since it is a t-test, it is used to test the hypothesis that two populations

have the same mean. For example, according the CSPCC, “Calculus I students at

BA-granting four-year colleges are significantly less concerned about finances than

those at PhD-granting universities (Welch’s t-test, p<0.001) whereas those at AS-

granting two-year colleges are significantly more concerned about finances (Welch’s

t-test, p<0.001)” [4, p. 3].

2.2.6 Chi-Square Tests with t-Tests

Further analysis involved conducting either t-tests or Chi-square tests of indepen-

dence to explore differences between faculty in institutions selected for the case study

(N =104) and those not selected for case study (N =399). For instance, there iss a

statistically significant difference in the two groups in their use of projects (χ2(1,

N =364)=7.54, p<.006). More specifically, 20% of faculty in selected institutions

12



Figure 2.5: Median responses of faculty reported responses to the percentage (0%to
100%) of different problem types faculty include on assignments and exams [4, p.
48].

assigned two or more projects while only 9% of non-selected institutions’ faculty

did [4, p. 50].

2.2.7 Medians

The researchers also created Figure 2.5 to show the median responses to the per-

centage of different problem types faculty included on assignments and exams; they

also included the first and third quarter percentile responses. The faculty included

in this analysis are the 503 faculty who responded to pre- or post-course instructor

surveys.

2.2.8 Intra-category Comparison T-tests

When analyzing academic and social supports, the researchers used intra-category

comparison t-tests for the selected and non selected institutions for interviews. They

13



found that none were significant at the .05 level; for example, selected and non-

selected institutions were just as likely to offer tutoring by full time mathematics

faculty [4, p. 70].

2.2.9 Cronbach’s α

The mean, standard deviation, and reliability of the good teaching factors based on

the results of the factor analysis were reported (Table 2.2). Reliability was measured

using the Cronbach α. According to Tavakol and Dennick [17, p. 54], “The number of

test items, item interrelatedness and dimensionality affect the value of α.” Moreover,

acceptable values of α range from 0.70 to 0.95. “A low value of α could be due

to a low number of questions, poor interrelatedness between items or heterogeneous

constructs [17, p. 54]”. Tavakol and Dennick note that high α values may suggest

that some items are redundant as they are testing the same question but in a different

guise. They also report that a maximum α value of 0.90 has been recommended.

2.2.10 Limitations of Analysis

The CSPCC self-reported limitations of their study and these limitations should also

be kept in mind when reading the results of the topological data analysis performed

in this study. First, the data is self-reported. Second, several institutions had low

response rates. Third, there is an over-representation of PhD institutions. Lastly,

the researchers were hesitant to compare students’ responses at the start and end

of the term because “[s]tudents who answered the survey at the end of the term

were, for the most part, those who had successfully negotiated the course” [4, p.

13]. According to the report, however, the only statistically significant difference

between the responses before the term and after the term (only including students

who responded to both surveys) was “in answer to the question about hours working

14



Table 2.2: Mean, standard deviation, and Cronbach α on good teaching factors.

at a job, and this only held among students at PhD-granting universities” [4, p.

13]. One of the solutions to this limitation was to corroborate some of the trends

identified in the various forms of analysis through in-depth site visits to the selected

institutions.

15



Chapter 3

Overview of Topological Data

Analysis

This section providea an overview of topological data analysis and some of the pre-

vious analysis done on real-world systems. The main appeal of topological data

analysis is its robustness against noise in data and its ability to be a coordinate-free

method of analysis. This section describes some of the different ways to use and

visualize the results of topological data analysis by considering examples in research.

3.1 Topological Data Analysis

One of the beauties of computational algebraic topology is its ability to provide in-

sights into high-dimensional data. Data analysis in general generally aims to address

two fundamental tasks: inferring higher dimensional structure from lower dimen-

sional representations and assembling discrete points into a global structure [8, p.

61] According to Ghrist [8], researchers such as Carlson, de Silva, Edelsbrunner,

Harer, Zomorodian, and others use the following principle themes:

(1) It is beneficial to replace a set of data points with a family of simpli-

cial complexes, indexed by a proximity parameter. This converts the

data set into global topological objects.

(2) It is beneficial to view these topological complexes through the lens

16



of algebraic topology – specifically, via a novel theory of persistent ho-

mology adapted to parameterized families.

(3) It is beneficial to encode the persistent homology of a data set in

the form of a parameterized version of a Betti number: a barcode. (p.

61-62)

Keeping these principle themes in mind, the following discussion outlines how the

CSPCC data was collected in a way that is suitable for topological data analysis.

First, consider the dataset for this study: survey responses from calculus students,

instructors, and coordinators. Consider this data as unordered sequences of points

in a Euclidean n-dimensional space En. The goal of topological data analysis is to

see if the global “shape” of this data can provide some insight into information about

the underlying phenomena which the data represents [8, p. 62].

Consider the case where n=3 for this dataset. One example of this case would

be choosing to represent each individual student’s response to three different survey

questions as a point in 3-D space. Such an example is called point cloud data and is

easily representable using 3-D plotters on a computer. In this setting, noting some

of the global features of the data is still possible, and this situation will be explored

in more detail in Chapter 5. However, this study is also interested in the question

of how to analyze the data in higher dimensions. The data in these cases are still

referred to as point cloud data, and the goal of topological data analysis is still

to extract course features from these high-dimensional sets using algebraic topology.

Overall, this method of extraction differs from methods in non-linear statistics, which

is rarely topological [8, p. 63].

The next step is to convert the point cloud into a complex. One way to accom-

plish this goal is to use the point cloud as the vertices of a combinatorial graph.

In this case, the edges are determined by proximity using some specified distance

17



ε. In order to perceive higher-order features beyond clustering, one can think of the

aforementioned combinatorial graph as a scaffold for a higher-dimensional object by

completing the graph to a simplicial complex – “a space built from simple pieces

(simplices) identified combinatorially along faces” [8, p. 63] or a space with a tri-

angulation [15, p. 7] (Definition 2). Two methods of filling in higher-dimensional

simplices of the proximity graph are the Čech complex and the Vietoris-Rips complex

(heretofore referred to by its other name, the Rips complex). This study used the

Rips complex, but both methods will be described below to highlight the difference

between them and to highlight the advantages/disadvantages of each method.

Definition 1. The join of n points is a convex polyhedron of dimension n-1 called a

simplex. [9, p. 9]

Definition 2. A simplicial complex can be described combinatorially as a set X0

of vertices together with sets Xn of n-simplices, which are (n+1)-element subsets of

X0. [9, p. 107]

Ghrist [8, p. 63] offers a definition for the Čech complex (Definition 3).

Definition 3. Given a collection of points {xα} in Euclidean space En, the Čech

complex, Cε, is the abstract simplicial complex whose k-simplices are determined by

unordered (k+1)-tuples of points {xα}k0 whose closed ε/2-ball neighborhoods have a

point of common intersection.

The idea is that there is a point set X in a metric space and a number ε >0.

Then, using a subset S⊂X, we form an ε/2-ball around each point in S. S is included

as a simplex if there is a common point contained in all of the balls in S. The ε/2

balls are illustrated in Figure 3.1, and a k -simplex is formed whenever there is a

subset of k points with a common intersection [10]. Thus, the Čech complex has the

homotopy type of the ε/2 cover.
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Figure 3.1: A fixed set of points [upper left] converted into a Čech complex (bottom
left) and Rips complex (bottom right) (image courtesy of Ghrist [8, p. 64]).

Next, consider the Čech Theorem (or the “Nerve Theorem”) [8, p. 63]. Follow-

ing the definition of homotopy, this theorem implies that C, an abstract simplicial

complex of potentially high dimension, behaves like a subset of En [8, p. 63].

Čech Theorem. Cε has the homotopy type of the union of closed radius ε/2 balls

about the point set {xα}.

The difficulty with the Čech complex is that it is difficult to compute. For in-

stance, to check to see if there exists any 5-simplices, one would need to inspect all

the subsets of size 5. According to Kun [10], computing the entire complex requires

exponential time in the size of the metric space. Therefore, the attention will now

turn to the Rips complex (Definition 4) [8, p. 63].
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Figure 3.2: A case using the vertices of an equilateral triangle where the Rips complex
is a graph with a 2-simplex but the Čech complex is simply a graph [10].

Definition 4. Given a collection of points {xα} in Euclidean space En, the Rips

complex, Rε, is the abstract simplicial complex whose k-simplices correspond to

unordered (k+1)-tuples of points {xα}k0 that are pairwise within distance ε.

The Rips complex works in the same way as the Čech complex, but instead of

adding a d -simplex when there is a common point of intersection of all the ε/2-balls,

simplices are added when all the balls have pairwise intersections [10]. See Figure

3.1 to compare the different simplices that result from the Čech complex and the

Rips complex. Also, consider the following example from Kun [10]. Given three

points that are vertices of an equilateral triangle where the lengths of the sides of

the triangle are all one, consider drawing (1/2)-balls around each point (Figure 3.2).

Then, each of the balls intersects the other two balls, but there is no point of triple

intersection. In this example, the Rips complex is a graph with a 2-simplex, but the

Čech complex is just a graph.
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Unfortunately, the aforementioned Čech theorem does not hold for Rips com-

plexes. The previous example is an obvious counterexample because the two com-

plexes have different topology. Note that even though the Rips complex generally has

more simplices, this complex is still considered to be less computationally expensive

than the Čech complex. According to Ghrist [8, p. 63], the reason for this result

is because the Rips complex is a flag complex – “it is maximal among all simplicial

complexes with the given 1-skeleton,” where the 1-skeleton is the topological graph.

That is, an edge is included between two points in the point cloud if the correspond-

ing ε/2 balls overlap (Figure 3.3). The combinatorics of the 1-skeleton is stored as a

graph and thus provides a rough sense of the proximity of the nodes. This process

is much simpler than storing the boundary operator needed for the Čech complex.

However, computing both quantities still requires exponential time [10].

One of the difficulties of converting a point cloud dataset into a global complex

is knowing when a specific value of ε captures the topology of the dataset. As ε

increases, the complex will transition from a discrete set (the total number of nodes

in the data set) to a single high-dimensional complex. To illustrate the importance

of the value of ε, consider a case when a sample of points is taken from a genus-2

surface (i.e., a double torus). For what value(s) (if any) of ε will the Rips Complex

indicate that there are precisely two holes? Furthermore, how can you know if the

holes indicated are not just noise? Ghrist [8, p. 65] offers a helpful diagram of a

sequence of Rips complexes for a point cloud data produced from an annulus to show

the different complexes produced for different values of ε (Figure 3.3).

In order to provide insight into this issue, topological data analysis techniques

invoke the notion of persistence. The idea is to create a family of topological spaces

by parameterizing with respect to the size of ε. A specific topological feature (e.g., a

hole) is interpreted as signal over noise if the hole persists for a “significant” param-
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Figure 3.3: Ghrist’s [8, p. 65] sequence of Rips complexes for point cloud data
constructed from an annulus.

eter range. What is deemed as significant depends on the researcher’s interpretation

of the data set and is an active area of research, but see Lemma 1 for the minimum

needed to guarantee a good approximation of the Čech complex.

Ghrist [8, p. 65] offers a more formal way of thinking about the idea of persistence.

Definition 5. Assume that R = (Ri)
N
1 is a sequence of Rips complexes associated

to a fixed point cloud for an increasing sequence of parameter values (εi)
N
1 . There

are natural inclusion maps

R1
ι
↪−→ R2

ι
↪−→ . . .

ι
↪−→ RN−1

ι
↪−→ RN .

Instead of examining homology of the individual termsRi, one examines the homology

of the iterated inclusions ι : H∗Ri → H∗Rj for all i <j. These maps reveal which

features persist.
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One crucial component to consider is whether or not using this idea of persistence

actually gives a good approximation to a single Čech complex. This result would be

ideal since by the Čech Theorem, the Čech complex can give an accurate representa-

tion of the homotopy of the topological space. The Rips complex is the same as that

of the of the Čech complex for a particular value of epsilon. Thus, by finding a good

approximation of the Čech complex using the less computationally expensive Rips

complex method, it is possible to conclude that the homotopy type determined by

the Rips complex matches the topological space created by the union of the ε-balls

created from the metric space. Thus, homology will not distinguish the spaces. de

Silva and Ghrist [6, p. 66]provide a proof for the lemma which provides us with the

aforementioned property of the Rips complexes:

Lemma 1. For any ε>0, there is a chain of inclusion maps

Rε ↪→ Cε√2 ↪→ Rε
√
2.

Thus, topological features that persist between two Rips complexes formed from

Rε ↪→ Rε′ is a topological feature of the Čech complex Cε′ when ε′/ε ≥
√

2 [8, p. 66].

3.2 Representations and Interpretations of

Persistent Homologies

The next step is to represent these persistent homologies. There are two main meth-

ods of accomplishing this goal: barcodes and persistence diagrams. The results of

this study contain persistence diagrams, but some of studies using topological data

analysis reported here use barcodes. In order to clarify some terminology, Hi will

represent a vector space, where i represents the dimension of the vector space. The

dimension of H∗(C) corresponds to the persistent homology of a sequence of chain
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complexes, C. Edelsbrunner and Harer [7] describe homology as “the mathematical

formalism for talking in a quantitative and unambiguous manner about how a space

is connected” (p. 79). More specifically, homology groups “provide a mathematical

language for the holes in a topological space” (p. 79). The idea of homology is to

relate topologically meaningful subset of a space in order to capture holes in the

space. The dimension of H∗(C) corresponds to its Betti number (i.e., B0:= dimHi).

In other words, the pth Betti number refers to the rank of the pth homology group,

where p defines the dimension of the space [7, p. 81]. Thus, the Betti-0 number of

a specific simplicial complex refers to the number of connected components, Betti-

1 is the number of one-dimensional “circular” holes, and Betti-2 is the number of

two-dimensional “cavities.”

3.2.1 Bargraphs

In order to represent the persistent homology, there needs to be a way to represent

the data as ε increases. Barcodes represent the data in a way that simplices are added

but never removed as ε increases. To do so, a barcode shows a collection of horizontal

line segments in a plane whose horizontal axis corresponds to the parameter ε and

whose vertical axis represents an (arbitrary) ordering homology generators [8, p. 67].

Consider Figure 3.4, which shows a barcode for the persistent homology of the data

points from the annulus from Figure 3.3.

The homologies up to H2 are visible for a range of ε. In order to interpret the

barcodes, consider the starting point (ε =0) and the seven constructed simplicial

complexes from various sizes of ε. At the left of the barcode, when ε =0, the num-

ber of bars corresponds to the number of vertices in the dataset (i.e., the Betti-0).

As ε increases, vertices are connected and so the number of connected components

decreases. For instance, the second simplicial complex has a total of six connected
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Figure 3.4: Ghrist [8, p. 67] example of barcodes using the data cloud annulus from
Figure 3.3.

components, which is indicated by the six red bars intersecting the blue dotted line.

When ε reaches the size indicated by the third blue dotted line from the left, all

of the vertices have been connected and so only one red bar indicated by the 0th

homology, H0, remains. Thus, when two vertices are connected at the appropriate ε

size, the barcodes initially displays two red bars and then at the appropriate ε size,

an arbitrary one of the bars will end and the other will continue. Because there is no

way of distinguishing which bar should be the one to end, the barcode will accurately

represent the situation regardless of the bar it chooses to end and which it chooses

to continue. Looking at the H1 section of the diagram, we can determine the number

of holes in the data set for given sizes of ε. For instance, at the point where ε is the

value indicated by the second dotted blue line, there are two holes in the dataset.

These holes are the non-filled holes visible in the example simplicial complexes.
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The barcode is simply an ε-parameterized rank, which provides a way to filter

out topological noise and capture significant features qualitatively. How to deter-

mine what is considered significant has varied over the years. In the early years of

topological analysis, it seemed to be the case that the significant findings in the data

were those holes that persistent over a large range of ε values. For instance, Ghrist [8]

remarked that in his results of the data cloud taken from an annulus (Figure 3.4)

“that the point cloud likely represents a connected object with one or two significant

‘holes’ as measured by H1 and no significant higher homology” (p. 68). The one or

two significant holes results from the two relatively longer green bars visible in Figure

3.4, and although there did appear to be a higher dimensional hole captured as H2,

this hole only occupied a small range of ε, and so Ghrist deemed it insignificant. It

should be noted that the goal of this analysis was to see if the persistent homologies

captured in the analysis indicated that the point cloud’s shape appeared to have

come from an annulus. Thus, in this case, it was appropriate for Ghrist to use the

length of the bar codes to determine significance in the findings.

Some research done after Ghrist’s [8] piece has found that the length of the bars

in a bar graph is not always an appropriate determining factor for the significance

of the hole in terms of the interpretation of the dataset. That is, the persistent

generators may not correspond to relevant meaningful structures in the data. Rather,

it is the birth and death rates that become significant. For instance, consider the

work of Lee, Chung, Kang, Kim, and Soo [11], who used the process of persistent

homology through the Rips filtration “to construct brain networks consists out of

fluorodeoxyglucose-position emission tomography (FDG-PET) data for 24 attention

deficit hyperactivity disorder (ADHD) children, 26 autism spectrum disorder (ASD)

children and 11 pediatric control subjects (PedCon)” (p. 1). Their goal was to study

modeling brain networks using persistent homology. To do this, the researchers chose
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Figure 3.5: 18F-FDG PET of 3 cognitively normal subjects between 76-82 years old
from Berti, Mosconi, and Pupi [2].

97 regions of interest (ROIs) from the aforementioned dataset. The researchers were

only interested in looking at the number of connected components (i.e., the Betti-0

number).

Lee et al. [11] used FDG-PET data, which is a form of PET scan that uses

FDG as its tracer to create three-dimensional images of the tracer concentration (see

Figure 3.5 for an example image of a FDG-PET). In this case, the 3-dimensional

images construct images of the brain network. They also used the Rips-Complex on

their dataset. The researchers prepared the dataset by taking the mean FDG uptake

within the 97 ROIs and globally normalizing the value to the individual’s total gray

matter mean count. The result is shown in Figure 3.6.

What Lee et al. [11, p.3] noticed is that the filtration values at which all connected

components are created are identical because of the normalization of their dataset.

They noted “common underconnectivity and local over-connectivity in ASD and

ADHD group compared to control groups” and that “the barcode changes faster in

PedCon than other groups”. From these observations, Lee et al. concluded “the

brain networks of ASD and ADHD groups might be more difficult to be merged into

a giant connected component which connects values at which connects all ROIs when
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Figure 3.6: Barcode of the Betti-0 number for ADHD (red), ASD (green), and Ped-
Con (blue) networks.

the filtration increases”. Lee et al.’s [11] study is an example of the importance of

considering the context in which the dataset is placed to interpret the results. In this

case, the death rate of connected components between ADHD, ASK, and PedCon

networks is of more significance than the number of connected components.

3.2.2 Persistence Diagrams

Although the previous studies illustrate the method for creating complexes (specifi-

cally Rips complexes) and the method of topological data analysis through persistent

homologies, the studies use bar graphs instead of persistence diagrams to visualize

the results. The following discussion describes what a persistence diagram is and

how to interpret one.
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In general, a persistence diagram is a multiset of dots in R2. The planar point

(a,b) indicates the value of ε-ball is at when the connected component is formed

(i.e., its birth), a, and the value of the ε-ball when the connected component dies, b.

Note that this construction implies that each dot will be above the major diagonal

because a component always dies after it is born. Moreover, the persistence of a dot

can be thought of as b-a, which corresponds to a dot’s vertical distance to the major

diagonal. [1, p. 10]

For each component, C, C is not present before the ε value of a, C exists at every

value of ε between a and b, and C joins with another component at the ε value of

b. Thus, similar to the length of the bars in the graphs, the higher up the dot in

the persistence diagram, the larger the ε-range in which that component persists.

Alternatively, the smaller the persistence the dot has (i.e., the closer to the diagonal

a dot is), the more likely that the feature is likely to be noise.

Consider the new point cloud below, Y, from Bendich, Marron, Miller, Pieloch,

and Skwerer [1, p. 12] and associated persistence diagram (Figure 3.7). In this

example, (a) is a point cloud in R3 that appears to contains four loops (i.e., a

compact subset of some Euclidean space RD, where D=3 in this case), (b) is an

image of the ε balls created around each point at a specific value of ε, and (c) is the

resulting one-dimensional persistence diagram (i.e., H1 persistence diagram) over a

range of ε values from 0 to 2.5.

The four loops can be identified in this persistence diagram by looking at the

four dots that are furthest from the diagonal. According to Bendich et al. [1, p. 12],

the two dots with the highest persistence correspond to the two larger loops. The

dot with the later birth time (i.e., the right-most dot) corresponds to the leftmost

loop in the image; the sparseness of data points in this loop requires a larger value

of ε to fill to create the loop. The smaller loops correspond to the two dots with the
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Figure 3.7: Point cloud Y to persistence diagram from Bendich et al. [1].

next highest persistence. The smaller persistence of these loops occurs because the

value of ε needed to close the loops is much less than the value needed to close the

aforementioned loops. The remaining dots near the diagonal indicate small loops

that appear and disappear within a small range of ε values as a result of holes being

created between overlapping sets. Thus, the persistence diagram accurately depicts

these holes as noise. Figure 3.7 only shows the persistence diagram for the Betti-

1 case, but similar diagrams can be created for other dimensions (see persistence

diagrams in Chapter 5).

In summary, this overview contains a description of how a point cloud is converted

into complexes. Complexes are then formed for a range of sizes of ε-balls around each

point. Bar graphs and persistence diagrams provide a way to visualize the homologies

that persist for different ranges of the parameter ε. Lastly, when interpreting either

the bar graphs and persistence diagrams, researchers should always consider the

context of the dataset used to create the representations.
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Chapter 4

Methods

The goal of this study is to apply topological data analysis techniques to the dataset

described in Chapter 2. The dataset, maalongdatafile ANON.csv, was obtained with

the permission of the MAA. The data was imported into the statistical software, R.

After preparing the data for analysis, the dataset was analyzed using R’s persis-

tent homology code. The resulting persistent diagrams, and in some cases, three-

dimensional plots of the dataset are in Chapter 5.

4.1 Preparing the Dataset

The datafile, maalongdatafile ANON.csv, contains the survey responses from all of

the participants in the study. In order to limit the course of the study, only the Cal-

culus students who responded to both the pre- and post-course surveys and had their

grades recorded were considered. This restriction reduced the number of participants

down to 797 Calculus students (Figure 4.1a). The distribution of Calculus I students

by institution type is displayed in Figure 4.1b. Since much of the survey data was

recorded using a Likert scale and topological data analysis requires numerical values

to run, the Likert scale responses were converted into numerical values that also in-

cluded 1 to indicate students who did not respond to that particular survey question

(e.g., 1-No response, 2-Strongly disagree, 3-Disagree, 4-Slightly Disagree, 5-Slightly

Agree, 6-Agree, 7-Strongly agree). Similarly, student grades A-F were converted to

the numbers 1-13 (1-F, 2-D-, 3-D, 4-D+, 5-C-, 6-C, 7-C+, 8-B-, 9-B, 10-B+, 11-A-,
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12-A, 13-A+). This conversion method was applied to all of the variables of interest

for this study (see Chapter 5).

R has a function that computes the persistent homology of a given dataset [12].

As described in Chapter 3, the steps for computing persistent homology include cre-

ating a filtered simplicial complex and then computing the persistent homology of

the filtered simplicial complex. R has the ability to use the Rips complex to con-

struct the simplicial complexes, and this method was chosen due to its computational

advantages (see Chapter 3). In this study, the maximum dimension considered was 2

(i.e, H0, H1, and H2). This range was considered in order to explore possible interpre-

tations at various levels. The maximum filtration was set to 4. I chose this number

by experimenting with various values; the number appeared to be small enough not

to obtain a memory error and large enough to reveal persistent information. In some

cases, the maximum filtration needed to be larger to display all of the persistent

information, and I made the appropriate adjustments. The output of the function is

a matrix with three columns. Each row corresponds to a persistence interval. The

first column contains the dimension of the interval, the second column contains the

starting point, and the third column stores the ending point (i.e., the values of ε that

corresponded to the birth and death).

In order to produce a persistence diagram from the output of the function that

computes the persistent homology of the dataset, I used another function in R which

plots the starting and ending points as the coordinates (xi, yi), respectively, in the

plane. Markers identify the dimensions: red circles indicate H0, green triangles indi-

cate H1, and blue plus signs indicate H2. One issue to note is that there is a possibility

that two dots have the same starting and ending points, and the multiplicity of an

interval is not visible on these persistence diagrams beyond a bolder marker. In this

case, using barcodes to visualize the persistent homologies may be more ideal.
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(a) Proportion of Calculus I students in this study (not to scale).

(b) Calculus I students in this study, nationwide (CBMS) (top left), and the CSPCC (top
right) by institution type.

Figure 4.1: Distribution of Calculus I students in this study.
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4.2 Topological Data Analysis

I used three different methods of data input in this study, and I interpreted the

resulting persistence diagrams. First, I included the numbers of responses that cor-

responded to matching responses for two of the survey questions and normalized the

result. I plotted the persistence diagrams for these cases and compared them to

three-dimensional plots of the data for further analysis and contextual interpreta-

tion. Second, I analyzed the persistence diagrams of the survey questions asked both

at the beginning and end of the students’ semesters in Calculus I. Third, I consid-

ered students’ responses from multiple survey questions. Each of these methods are

discussed in more detail in the following sections.

4.2.1 Normalizing the Data

The main method of analysis involved considering the responses to two survey ques-

tions and the frequency of each of the responses. The reason for considering the

frequency of the responses was due to the large sample size combined with the low

number of variables considered and the low number of potential responses. The re-

sult of this combination of factors meant that most of the possible data points were

filled when only considering students’ responses to two variables (i.e, survey ques-

tions); that is, all possible combinations of responses were present in the dataset,

even when a lower sample was taken. See Figure 4.2 for an example of this result

created from two variables and 100 randomly sampled responses. Thus, resulting

persistence diagrams of any two variables looked very similar and there was no way

to get a sense of the structure of the data.

In order to resolve this issue, I created a third variable that corresponded to

the frequency of each type of response. For instance, say 30 people responded 3 to
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Figure 4.2: Point cloud covers the space.

the first survey question considered and 5 to the second survey question considered.

Then the frequency of the coordinate pair (3, 5) is 30. However, because of the high

value of the frequency of pairs relative to the values of the responses (mostly 1-7),

the data was normalized by setting the value of the highest frequency equal to the

maximum value of the survey responses considered. This strategy avoids dealing with

the scaling issues that could be involved in determining the persistent homologies

for a range of ε values by making what is considered to be a “significant” range of ε

closer in value across each of the variables.

After normalizing the data, the resulting matrix was run through the function

for topological data analysis and I analyzed the resulting persistence diagrams. To

draw conclusions from the diagrams, I also considered the 3-D plots of the data in

order to get a sense of the location of any identified loops and to determine what the

loops could indicate about the data.
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4.2.2 Pre-/Post- Persistence Diagrams

As described earlier, some of the survey questions were asked both before and after

the Calculus I course. Although analyzing pre- and post-course survey data needs

to consider the context of the course (i.e., most students who took the post-survey

successfully completed the course), there is still information to be gleaned from the

pre- and post-course survey responses from these students. That being said, I used

two methods of inputting the data for these types of questions.

In the first method, I considered the persistent homologies of several of the high

dimensional data cloud of pre-course survey questions identified to be about students’

attitudes towards mathematics. Then I constructed the persistence diagram for

the same survey questions using the post-course data. Lastly, I compared the two

persistence diagrams to one another to see if there were any significant differences

between them.

It should be noted that a sample of 100 random students were taken from the total

sample in this pre- and post-course analysis and the high dimensional input form of

analysis described in Section 4.2.3. This decision was made because of the likelihood

that most of the possible data points would be represented in the dataset with a large

enough sample size as discussed in Section 4.2.1 and because persistence diagrams

do not account for multiplicity or frequency of results in these cases. Thus, only

a proportion of the results were considered in an effort to identify some underlying

structure in the dataset. Each random sample of 100 students was used to create

pre- and post-course variable analysis. Several random samples of 100 students were

used to create multiple persistence diagrams in an effort to choose a persistence

diagram that seemed to be representative of total data cloud. Chapter 5 depicts the

persistence diagrams that I deemed to be a typical resulting persistence diagram for

the different random samples of 100 students.
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For the second method, I plotted the pre-course survey question responses with

the post-course survey question responses for the same survey questions along with

the frequency of the responses. The survey questions chosen were identified as the

two variables of attitude that had the largest effect size on attitude by the CSPCC.

This configuration enabled me to consider loops in the data that could potentially

correspond with shifts in the student responses because responses along the diagonal

of the survey responses in the 3-D plot would indicate that the students did not vary

their responses from the pre- and post-course survey question.

4.2.3 High Dimensional Input

One last configuration of the data involved producing the persistence diagrams from

several responses to survey questions. This form of data input was mostly exploratory

in measure because the interpretation of the results becomes difficult at high dimen-

sions. However, the variables considered for this method were based off of the results

from the MAA Calculus Report. For instance, the section on factor analysis identi-

fied three clusters of variables that all seemed to indicate the same information; that

is, the covariance between the variables was high. I created persistence diagrams

of some of the variables placed in each of these categories in order to observe the

homologies produced by these variables.
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Chapter 5

Results

This section begins by outlining some of the observations made from analyzing the

persistence diagrams that were particular to the discrete nature of the dataset. Then,

it includes the results of the study using each of the three methods of data input

described in Chapter 4.

5.1 Discrete Data Points

In this section, I describe how the discrete nature of the dataset affects the resulting

persistence diagrams. Recall that most of the survey questions considered were based

on Likert scale responses. Thus, most of the responses were based on answers from

the integer values 1-7. Similarly, yes/no responses were given the discrete values

0 and 1, and the grading scale was translated into a discrete scale as well. The

discrete and integer-valued nature of the data set implies some commonalities across

the persistence diagrams.

For example, consider the case when two survey questions are the variables used

to create the point cloud. The resulting point cloud is a unit grid of the possible

responses. Figure 5.1 shows a simple four-point version of this case. Since the

distance between each of these points is 1, two ε-balls initially connect when ε=1

(Figure 5.1 (left)). Moreover, if using the Rips complex, the components connect

and a loop will form. The loop dies once ε=
√

2 because that is the value of ε

which results in the ε-balls meeting in the center and, thus, closes the loop (Figure
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Figure 5.1: Point cloud with ε=1 (left) and ε=
√

2 (right) to show the birth and death
rate of a loop in a unit square point cloud.

5.1(right)). Hence, the point (1,
√

2) is plotted on the persistence diagrams to

indicate the birth and death of this loop in the data (Figure 5.2).

In the case when the frequency of each of the combinations of the responses of

the two variables is also considered, this same result may not occur because the

normalized frequency value is not necessarily zero or the same value as surrounding

combinations of responses. Building on the example in Figure 5.1, each of the points

in the point cloud would be raised depending on the frequency of times that response

was found in the dataset. Thus, the minimum starting ε value of a loop in the data

is when ε=1 and the minimum ending ε value of a loop is when ε=
√

2.

In terms of the number of connected components, no matter the situation pre-

sented in this study, each point in the point cloud is a connected component that

starts at ε=0 and ends at various values of ε. Thus, the coordinate pairs, (xi, yi),

for each point in the point cloud, pi, on the persistence diagram for these connected

components will fall on (0, yi), where 1 ≤ yi ≤ m, where m is the minimum value of

ε at which only one connected component exists. Furthermore, it should be noted
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Figure 5.2: Persistence diagram of a unit square point cloud.

that the persistence diagrams created in this study always plot a connected compo-

nent in the upper left corner of the diagram regardless of the maximum filtration

size because there is always one remaining connected component that never has an

ε value for which the connected component ends.

5.2 Normalized Data

This section contains another base case for comparison before there is a discussion

of specific examples from the dataset. For instance, consider the case in which stu-

dents respond with exactly the same numerical value response to both variables. In

this case, the 3D-plot of the data would simply be along the diagonal of the two

axes representing the two variables. In this method of analysis, the frequency of the
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responses is considered, and so the third variable would correspond to the frequency

of each of the responses. As a simple example, Figure 5.3a shows an example of the

frequency table produced when students’ final grades were compared against stu-

dents’ final grades. The students’ actual grades in their respective Calculus I courses

were provided by the departments based on student ID matches. The counting table

shows how many students scored each grade (where the values for seqx and seqy are

1=F through 13=A+) along the diagonal (e.g., of the 797 total students, 222 stu-

dents received an A). These frequency values were normalized before analyzing the

persistent homologies, so that the maximum value (i.e., 222) became the maximum

value of the other variables (i.e., 13), and every other number was scaled using that

same scaling factor (see Figure 5.3b to see the result of this scaling). The resulting

persistence diagram is in Figure 5.3c.

The diagram shows that most of the loops occur around the (1,
√

2) point men-

tioned earlier. The distribution of the grades in this example lends itself to producing

loops with larger values of ε as well. That is, more students were likely to receive

letter grades that did not have a + or - attached to it (e.g., a B is more common

than a B+ or B-), which ends up producing a point cloud that is susceptible to loop

detection. Thus, two loops were detected between the 4 < ε < 6.

With these base cases established, consider the following result in which one

loop has a significantly larger lifespan than any of the other identified loops in the

data (Figure 5.4a). The variables considered in this case are the students’ final

grades and their responses to the statement, “My Calculus Instructor discouraged

me from wanting to continue taking Calculus.” The third variable is the normalized

frequency of the combinations of responses. Notice the one H1 loop with a much

higher persistence than the rest of the identified loops. Its birth is just above ε = 1

and it persists until its death at just over ε = 3, giving it a persistence value of
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(a) Frequency table of grades vs. grades.

(b) 3D-plots of grades with normalized frequency values at two different angles.

(c) Persistence diagram of grades with frequency.

Figure 5.3: Topological data analysis of final grades vs. final grades vs. normalized
frequency.
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(a) Persistence Diagram.

(b) 3-D plots at different angles.

Figure 5.4: Topological data analysis of grades, discouragement from continuing
Calculus, and frequency.
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approximately 2. The low starting value of the loop indicates that the points in

the point cloud that resulted in the loop are closely spaced together. The large

persistence value indicates a much larger loop than the one given in the unit square

example earlier. In order for a loop to persist for a large range of ε, the variable in

the third dimension must be spaced much further away from the points included in

the loop. There does appear to be a large loop around the seqx-seqy plane in the

3-D plot of this situation (Figure 5.4b), which corresponds to the survey responses

and their grades. Prior analysis of the grades shows that the students’ grades were

unequally distributed; in fact, much of the grades are distributed between the values

6-12 (corresponding to C-A grade-wise). Thus, a loop with high persistence might

indicate that a majority of students leaned towards a narrow range of responding

to the question. This leaning would cause higher frequency values and result in

moving the points away from the seqx-seqy plane while the remaining combinations

of responses would have lower frequencies and thus a much shorter persistence. In

the diagram, this conclusion is noted by the large cluster of values around ε = 1.

The 3-D plot structure seems to indicate that many of the responses of the students

were 2-3 (i.e., ”Strongly disagree” and ”disagree” because a value of 1 was reserved

for missing responses). Thus, we can conclude that most students did not feel as

though their Calculus I instructors discouraged them from wanting to continue to

take Calculus.

There are limitations to this analysis. First, it is difficult to note how students

who scored lower grades (which occurred much less frequently) responded to the

questions because the frequencies of these combinations of responses are already likely

to be smaller and closer together in value than the others. Thus, future research could

consider normalizing the variables in a way that accounts for an unequal distribution

of the results of a variable. Second, when a student did not respond to a question,
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Figure 5.5: Persistence diagram and 3-D plot of grades, prior experience with group
work, and frequency.

they were given a score of a 1. Only a handful of students did not respond to any

particular question in this study, and so this portion of the 3-D graph usually results

in a line close to the seqx-seqy plane. Consequently, this information appears to

form part of the loop that appears in the 3-D graph. Thus, the loop would remain

undetected if missing responses were not included in the data cloud.

Nevertheless, we can compare this result to Figure 5.5, which shows the results

of the persistence diagram and 3-D plot of three variables. The first variable is the

students’ grades and the second variable is the students’ responses to the following

statement: “The teacher of my last mathematics course in high school frequently had

us work in groups.” The third variable is the normalized frequency of the pairs of

responses. The persistence diagrams have several loops away from the (1,
√

2) point,

most of which do not persist for a large range of ε. This result seems to indicate
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that there several combinations of responses that have varying levels of frequencies

where some points forms loops close together and others are farther apart, unlike

the previous example. Considering the context, particularly keeping in mind the

unequal distribution of the variables, this result seems to indicate that students at

all different grade levels have all had varying degrees of experience with group work

in their previous mathematics course in high school. Thus, it seems likely that past

experiences with group work is not a good predictor of student success in Calculus I

(in terms of final grades).

5.3 Pre- and Post- Data

The purpose of testing pre- and post-course data analysis in this study is to get a

sense of (1) whether or not structural changes exist in the persistence diagrams, and

(2) whether or not these results relate to the results of the CSPCC.

Figure 5.6 shows the persistence diagrams of the students’ responses to questions

that were asked in both the pre- and post-course surveys. In this example, only three

variables were considered. These variables include the students’ responses to the

following statements: “I am confident in my mathematics abilities,” “I enjoy doing

mathematics,” and “Do you intend to take Calculus II?”. The last variable has the

possible responses “No,” “I don’t know yet,” and “Yes,” and were given the values 1,

2, and 3, respectively. These three variables were used as an “Attitude” composite

score based on their high correlations with one another (r = 0.52 to r = .70) [4, p.

17]. The variable “confidence in math” had the largest effect size (Table 5.1) [4, p.

18], but even that size is not typically considered to be a large effect size. However,

the persistence diagrams between the pre-course and post-course attitude variables

are different, so some structural change was observed. In particular, the ε values for
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Table 5.1: CSPCC report of pre- and post-course survey responses to attitude state-
ments.

the end of the connected components are more scattered and there are two plotted

locations where loops occurred that differ from the pre-course persistence diagram.

It is important to recall that one of the limitations of this study is that only

a random subset of all of the students were analyzed, and so a random sample

of 100 students is being used to represent the data cloud. Pre-course and post-

course persistence diagrams were compared with five different random samples of

100 students, and the ones in Figure 5.6 are typical graphs. The number of loops

varied slightly for different samples of 100 students, but it was always the case that

the number of post-course loops was greater than the number of pre-course loops (i.e.,

the Betti-1 of pre-course survey responses was greater than the Betti-1 of the post-

course survey responses). Future studies can be done to determine an optimal sample

size to consider and ways to interpret the differences in the persistence diagrams (e.g.,

looking at the 3-D plot of the variables).

In order to compare the pre-course and post-course survey data to one another,

the top two variables that contributed to the attitude composite score, confidence
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(a) Pre-course survey on attitude.

(b) Post-course survey on attitude.

Figure 5.6: Pre-course vs. post-course persistence diagrams of attitude variables.
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(a) Pre-course survey on confidence in mathematics (seqx), enjoyment of mathematics
(seqy), and the normalized frequency of combinations.

(b) Post-course survey on confidence in mathematics (seqx), enjoyment of mathematics
(seqy), and the normalized frequency of their combinations.

Figure 5.7: Pre-course vs. post-course persistence diagrams of confidence in mathe-
matics, enjoyment of mathematics, and the normalized frequency of their combina-
tions.
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and enjoyment, were compared to one another along with the frequency of the combi-

nations of the responses. Again, structural differences exist between the two resulting

persistence diagrams (Figure 5.7).

5.4 High Dimensional Input

To see how topological data analysis fared with high dimensional input, persistence

diagrams of six different variables were created. Two persistence diagrams were

created using six variables that were asked pre-course and post-course. The input

variables were responses to the following statements:“What grade do you expect in

this calculus course?” (scaled 0=F to to 4=A), “Do you intend to take Calculus II?”

(scaled 1=No, 2=Don’t know/unsure/N/A, 3=Yes), “How certain are you in what

you intend to do after college?” (scaled 0=Not certain at all to 3=Very certain),

“When experiencing a difficulty in my math class” (responses scaled 0= I try hard

to figure it out on my own to 3= I quickly seek help or give up trying), “I am

confident in my mathematics abilities” (scaled 1=missing, 1=Strongly disagree to

7=Strongly agree), and “I enjoy doing mathematics” (scaled same as previous).

Figure 5.8 shows the persistence diagrams of all the aforementioned pre-course

survey questions and all of the post-course survey questions using two different ran-

dom samples of 100 students’ responses. The same subsets of students were con-

sidered in the pre- and post-course persistence diagrams on the left, and another

subset of students were considered in the pre-and post- course persistence diagrams

on the right. Notice the short-lived prevalence of more H2 points visible in the

post-course persistence diagram than in the pre-course persistence diagram with the

same random sample. Furthermore, more H2 points were plotted in the post-course

persistence diagrams than their respective pre-course diagrams. However, it should
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be noted that when different random sample subsets of 100 students were compared,

there was a lot of variability in the persistence diagrams. Thus, it is difficult to make

any concluding remarks using a sample size of 100 points.

Therefore, a random sample size of 200 was used to compare persistence diagrams

(Figure 5.9). The persistence diagrams are organized in the same way as Figure 5.8.

Notice that although the post-course survey persistence diagrams with 200 responses

seem to match closely, the pre-course survey persistence diagrams still vary. However,

there does appear to be a consistent tower of two approximately equally spaced H1

loops, possibly indicating some underlying structure in the data in both the pre- and

post- course survey responses. However, comparisons between pre- and post-course

survey responses using these subsets is still difficult because of the variations not only

across different sample sizes but also between two different subsets of the same size.

Thus, it appears that creating persistence diagrams without choosing subsets of data

may not saturate all possible combinations of responses and a smaller sample is then

not necessary. However, recall that creating the complexes still requires exponential

time, and thus considering all the data points may not be a practical solution. Future

researchers could look into calculating an optimal subset sample size to test based

on the number of possible responses and the number of actual responses.
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(a) Persistence diagrams of six pre-course survey questions with two different random
samples of 100 students’ responses.

(b) Persistence diagrams of six post-course survey questions with with two different random
samples of 100 students’ responses.

Figure 5.8: Persistence diagrams of pre-course and post-course survey questions with
with two different random samples of 100 students’ responses.
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(a) Persistence diagrams of six pre-course survey questions with two different random
samples of 200 students’ responses.

(b) Persistence diagrams of six post-course survey questions with with two different random
samples of 200 students’ responses.

Figure 5.9: Persistence diagrams of pre-course and post-course survey questions with
two different random samples of 200 students’ responses.
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Chapter 6

Conclusion

The goal of this study was to analyze a dataset using topological data analysis. The

dataset came from a national study of Calculus I students in the United States.

After describing the dataset and going into detail the ways in which the dataset has

already been analyzed by the researchers involved in the study, there was a discussion

of topological data analysis. The goal of topological data analysis is to identify the

persistent homologies found in the dataset in order to get a sense of some of the

underlying structure in the data. In order to do topological data analysis of this

dataset, adaptations had to be made. For instance, all of the data needed to be given

a numerical value and some of the data was normalized in order to enable consistent

interpretations for different input variables. Moreover, two or three variables were

often chosen in order to be able to use plotting software to get a sense of how to

interpret the homologies at various dimensions that were visible in the persistence

diagrams. Unlike the higher dimensional input, point clouds produced from two or

three variables could be plotted in order to interpret the results in context. However,

hopefully the results from analyzing the lower dimensional data will provide insights

into how to interpret the persistence diagrams created from higher dimensional input.

In this study, no final conclusions were made about high dimensional input because

of the fragility of choosing random subsets of students’ responses.

Nevertheless, the following conclusions can be made as a result of this study.

First, the results indicate some of the structural patterns and common points exist
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when using discrete data; this study provided some insights into how to interpret

these patterns. For instance, the prevalence of the point (1,
√

2) is due to the discrete

nature of the points and the prevalence of clustered low frequencies of responses.

Second, topological data analysis seems to be able to indicate shifts in data that occur

with relatively small effect sizes. Third, if one loop persists while many others die

quickly in a case where frequencies of combinations are also considered, the resulting

persistence diagram may indicate favored responses. Fourth, if including frequencies

of combinations, several loops with varying levels of persistence may indicate that

the predictability power of one variable on the other is low. Lastly, when using large

numbers of variables with topological data analysis, it is important to consider how

different sample sizes will affect the resulting persistence diagrams.

Future studies could aim at exploring more of the results that come from using

topological data analysis on discrete datasets. Some efforts to use statistical measures

before or after topological data analysis is in progress, but further explorations into

making this form of analysis rigorous is another direction for future research. Overall,

this study is an exploratory first step to finding a way to bring topological data

analysis into mathematics education research.
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