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Abstract

Decision making or planning is a crucial part of AI research. In recent times, deploying

autonomous agents – such as search and rescue robots, autonomous unmanned vehicles,

planetary rovers, and many others – has been proposed as a feasible approach in many real-

world scenarios where sending humans is deemed either too risky or too expensive. Many

times, these agents are required to operate under uncertainty, which may arise either due

to the dynamics of the environment or due to the inaccuracies inherent in the sensors and

actuators of the autonomous agent. In order to accomplish its goal most efficiently, the

autonomous agent must compute an optimal plan for itself.

Decision making in partially observable stochastic settings is formalized by partially ob-

servable Markov decision processes (POMDPs) [35]. Interactive partially observable Markov

decision processes (I-POMDPs) [20] generalize POMDPs to multiagent settings where the

goal is to compute the optimal policy for an individual agent operating in the presence of

other agents whose goals and preferences may not align with that of the subject agent. The

solution to the problem of multiagent decision making under uncertainty suffers from several

sources of intractability. These sources of intractability arise due to the uncertainty inherent



in the environment, such as the stochastic state transitions, noisy or partial observations, and

uncertainty about the goals, capabilities, and beliefs of the other interacting agents. While

POMDP allows an agent to act rationally in single agent settings and most POMDP approx-

imation algorithms are generalizable to multiagent contexts such as I-POMDPs, additional

effort must be made to tackle problems specific to multiagent settings.

In my dissertation, I propose several techniques that target various sources of intractabil-

ity that plague multiagent decision making problems formalized by I-POMDPs. The first

approach is a simple enhancement to existing POMDP algorithms that limits the observation

space in certain contexts for quicker solution. The next approach is a generalized policy it-

eration technique that restricts the exponential growth of the model space, thereby speeding

up the computation of a locally optimal policy. Third, I propose an online bimodal approach

that in which the agent behaves as a POMDP treating other agents as a static noise un-

der higher uncertainty but once it has received sufficient information regarding the current

physical state of the environment, switches to full I-POMDP mode. This asymptotically

leads to better runtime. Finally, I target the problem of exponentially growing complexity

of I-POMDP solution with the number of interacting agents. This source of intractability

is overcome by exploiting commonly found problem structures such as anonymity [58] and

context-specific independence [7]. Exploiting these problem structures enables solution of

problems involving thousands of interacting agents in under six hours.

Index words: Artificial intelligence, rational decision making, interactive decision
theory, multiagent planning under uncertainty, interactive partially
observable Markov decision process, scalable algorithms
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Chapter 1

Introduction

Autonomous decision making under uncertainty has received much interest in recent times.

Over the past few years autonomous agents have found applications in the wide variety of

fields such as:

1. Healthcare: Autonomous agents could be used to guide patients with cognitive dis-

abilities in performing everyday tasks [29] [48]. Also, they may be used to formulate

the course of treatment in multi-treatment therapy [26].

2. Autonomous Navigation: The advent of self driving cars [71] [72] [41] and the use of

autonomous aerial drones for delivery [4] has opened up brand new avenues for efficient

autonomous planning in urban domains.

3. Security and Defense: The use of robotic agents such as autonomous unmanned

aerial vehicles (AUAV) in defense sector for surveillance and espionage has received

much attention in recent times. Autonomous agents may also be used in search and

rescue missions.

4. Space and Deep Sea Exploration: Autonomous robots could be used to explore

the regions of space and the depths of the oceans that are inaccessible to humans.

1



An autonomous agent must be equipped to handle various sources of uncertainty that

may be characteristic of its environment. For example, in the case of self driving cars often

there is some uncertainty about the traffic conditions. Also, the agent must be mindful of

the behavior of other vehicles that may merge or leave dynamically. Similarly, in a search

and rescue operation, the complete map of the affected area may not be available. Secondly,

disasters such as fire and earthquake could dynamically alter the layout of the operation

theatre or interfere with the sensor signals. Finally, the agents themselves could be equipped

with faulty sensors and actuators which may affect their performance. Regardless of these

shortcomings, the agent must guarantee a certain degree of performance before deployment

in the real world. Computing an optimal plan is critical for the autonomous agent if such

guarantees must be made.

Decision theory is the field of AI that deals with the problem of optimal plan computation

for an agent. Depending on the settings many frameworks have been suggested for plan-

ning. Markov decision processes (MDPs) [54] [60] and its derivatives have garnered much

popularity in this regard. Primarily, the decision theoretic planning problem consists of two

components – the agent(s) and the environment. The environment consists of the physical

world in which a given task (such as the search and rescue operation) must be carried out

and the agents are the software or hardware devices (or in some cases humans) that carry out

the task. An autonomous agent may perceive the environment, reason about its evolution

(possibly brought about as a result of its own action and the actions of all other agents),

and carry out the task assigned to it. Depending on the characteristics of the environment

and the type of interaction between the agents several generalizations of MDPs have been

proposed.
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1.1 Decision Making in Partially Observable Single

Agent Settings

A typical single agent setting may be illustrated as shown in figure 1.1. The possible cir-

cumstances of the environment are captured using a set of its states. At each time-step, the

agent may perform an action that may stochastically alter the state of the environment. As

a result the agent receives an observation about the updated state of the environment and

a reward that reflects the degree of its success in achieving its goals.

State
Actions

Observations

Rewards

Figure 1.1: Illustration of an agent operating in single agent settings. The agents action
affect the state of the environment as a result of which the agent receives its observation and
reward.

The goal of a rational agent operating in a sequential setting is to select a sequence of

actions that would maximize its long term rewards. In stochastic and partially observable

dynamic settings, an agent must predict all possible outcomes of its actions and compute

a conditional plan (commonly referred to as “policy”) that maximizes its expected utility

in the long term. Partially observable Markov decision processes (POMDPs) [35] formalize

decision making in single agent settings under uncertainty. The problem of single agent

planning under uncertainty as formalized by POMDPs has been studied quite intensively in

recent times.
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Formally a POMDP is defined as the following tuple:

POMDP = ⟨S,A, T,Ω, O,R,OC⟩

where:

• S is the set of states of the environment.

• A, is the set of actions that the agent may perform.

• T : S ×A× S → [0, 1], is the transition function which gives the distribution over the

next physical states given the current state and agent’s action.

• Ω is the set of observations that the agent may receive.

• O : S×A×Ωi → [0, 1], is the observation function which is the probability with which

the agent receives an observation conditioned on a its action and the resulting state.

• R : S ×A→ R, is the reward function which is the reward the agent receives given its

action and the start state.

• OC is the optimality criterion which may be the discounted sum of the rewards obtained

over a fixed number of steps (called horizon) or the converged sum.

In partially observable domains where the complete information about the current state is

not available, the agent bases its plan on the belief it has over the states of the environment.

The belief of an agent is a probability distribution that it assigns over the states of the

environment, i.e. b ∈ ∆(S) (where ∆(·) is the set of probability distributions over a set).

The computation of an optimal plan requires two major operations: belief update and value

iteration.

4



1.1.1 Belief Update

At time-step t, the agent performs an action at based on its belief bt, and receives an observa-

tion ωt+1 conditioned on the action and the altered state of the environment st+1. The agent’s

action at the next step is based on its updated belief bt+1 (also represented as τ(bt, at, ωt)).

The updated belief of the agent is obtained as follows:

bt+1(st+1) = Pr(st+1|bt, at, ωt+1)

= ηO(st+1, at, ωt+1)
∑
st
bt(st)T (st, at, st+1)

(1.1)

1.1.2 Value Iteration

As I mentioned earlier, the goal of an agent in sequential settings is to maximize its long-term

discounted rewards. POMDP value iteration maximizes the agent’s long term rewards for

horizon h and an initial belief bt as follows:

V h(bt) = max
at

{
ER(bt, at) + γ

∑
ωt+1

Pr(ωt+1|bt, at)V h−1(τ(bt, at, ωt+1))

}
= max

at

{∑
st
bt(st)R(st, at) + γ

∑
ωt+1

Pr(ωt+1|bt, at)V h−1(τ(bt, at, ωt+1))

} (1.2)

where ER(bt, at) is the expected immediate reward for performing at from belief bt, γ is the

discount factor and the term following γ is the reward that the agent expects to receive in

the future. A common term used in POMDP literature is the Q-value which is defined for a

belief and an action (Q(bt, at)) as the expected reward if the agent were to perform action at

in the first step and act optimally thereafter. Naturally, the value function could be defined

as:

V h(bt) = max
at

Q(bt, at) (1.3)

Since the space of beliefs is continuous, it is impossible to compute the optimal policy for
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every belief. Fortunately, the POMDP value function satisfies the piecewise linear convex

(PWLC) property. That is, the complete solution to a POMDP may be represented as a set

of vector Γ. For any given belief, the optimal value may be computed by computing a scalar

product of the belief with all vectors in Γ and picking the optimal value.

V h(bt) = max
α∈Γh

bt · α

The sets of vectors are computed iteratively starting from horizon 1 up to horizon h as

follows:

Step 1 : First we generate the vectors for horizon 1 as follows:

Γ1
a,∗

∪←− α1
a,∗(s) = R(s, a)

Step 2 : For horizon h we generate intermediate sets Γha,ω

Γha,ω
∪←− αha,ω(s) = γ

∑
s′

T (s, a, s′)O(s′, a, ω)αh−1(s′); ∀αh−1 ∈ Γh−1

Step 3 : Next we compute the vectors for policies with a as the first action by computing

the following cross-sum:

Γha = Γ1
a,∗ ⊕ Γha,ω1

⊕ Γha,ω2
⊕ . . .⊕ Γha,ω|Ω|

where Γ1 ⊕ Γ2 = {α1 + α2|α1 ∈ Γ1, α2 ∈ Γ2}.

Step 4 : Finally we compute the set of optimal vectors at horizon h as:

Γh = Prune(
∪
a

Γha)

6



where the operator Prune removes all vectors that are not optimal at any belief in the belief

space because they will never represent an optimal value.

As a result of the PWLC property, the Q-value for an action and by extension the value

function may be written as follows:

Qh(bt, at) =
∑
st
bt(st)R(st, at) + γ

∑
ωt+1

max
α∈Γh−1

{∑
st
bt(st)

∑
st+1

O(st+1, at, ωt+1)

T (st, at, st+1)α(st+1)

} (1.4)

1.1.3 Bounds on POMDP Value Function

POMDP complexity of POMDP value iteration is exponential in the number of observations

(refer to cross-sum step). However, we may quickly compute upper and lower bounds on the

POMDP value function which may then be used to guide quicker solutions [65] [63] [40] [53].

Two of the well known bounds on POMDP value function are fast informed bound which

serves as an upper bound and blind policy which serves as a lower bound [26] [27].

Upper Bound: Fast Informed Bound

The fast informed bound on the horizon h Q-value function is computed as follows:

Q
h
(bt, at) =

∑
st
bt(st)R(st, at) + γ

∑
ωt+1

∑
st
bt(st) max

α∈Γh−1

{ ∑
st+1

O(st+1, at, ωt+1)

T (st, at, st+1)α(st+1)

}
=

∑
st
bt(st)

[
R(st, at) + γ

∑
ωt+1

max
α∈Γh−1

{ ∑
st+1

O(st+1, at, ωt+1)T (st, at, st+1)α(st+1)

}] (1.5)

where Γ
h−1

is the set containing the FIB upper bound vectors for horizon h− 1.
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Notice that the max term over α has moved inside the summation over the initial states.

Hence the upper bound property. An interesting property of FIB is that irrespective of

the horizon, we always get one vector per action [26]. The upper-bound on POMDP value

function is obtained as V (bt) = max
at

Q
h
(bt, at).

Lower Bound: Blind Policy

A blind policy is obtained when the agent chooses the same future policy irrespective of

the observation it receives. This loss of information resulting from ignoring the observation

results in a sub-optimal value. The value of the blind policy is obtained as follows:

Qh(bt, at) =
∑
st
bt(st)R(st, at) + γ max

α∈Γh−1

{ ∑
ωt+1

∑
st
bt(st)

∑
st+1

O(st+1, at, ωt+1)

T (st, at, st+1)α(st+1)

}
=

∑
st
bt(st)R(st, at) + γ max

α∈Γh−1

{∑
st
bt(st)

∑
st+1

T (st, at, st+1)α(st+1)
∑
ωt+1

O(st+1, at, ωt+1)

}
=

∑
st
bt(st)R(st, at) + γ max

α∈Γh−1

{∑
st
bt(st)

∑
st+1

T (st, at, st+1)α(st+1)

}
(1.6)

where Γh−1 is the set containing the blind policy lower bound vectors for horizon h− 1.

Notice that in the first step, the max term over α has moved outside the sum over

observations. Hence the lower bound property. The lower-bound on POMDP value function

is obtained as V (bt) = max
at

Qh(bt, at).

1.2 Decision Making in Partially Observable

Multiagent Settings

In multiagent settings, the environment is inhabited by multiple agents. An agent’s rewards,

its observations, and the state of the environment may also be affected by the actions of
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other agents inhabiting its environment. For rational decision making under uncertainty in

multiagent settings, POMDPs have been generalized along two lines. While decentralized

POMDPs (Dec-POMDP) [6] generalize POMDPs to settings involving teams of agents op-

erating together towards achieving a common goal, interactive POMDPs (I-POMDP) [20]

formulate the multiagent decision making problem from the perspective of a self-interested

agent that shares its environment with other self-interested agents with common or contra-

dicting goals. My dissertation focuses on the later framework.

Naturally, the decision making process of the agent in multiagent settings is much more

complicated compared to decision making in single agent settings because in addition to

accounting for the uncertainty in the environment and the uncertainty arising from its faulty

actuators and sensors, the subject agent must also predict how the other agents behave over a

period of time and how their actions affect its own goals. To do so, in addition to maintaining

a probability distribution over the physical states of the environment, the subject agent must

also maintain a distribution over the models of other agents. The models of the other agents

reflect how the subject agent views the goals, capabilities, and beliefs of the other agents

and how they reason about the environment and all other agents (including the subject

agent itself) present in the environment. At each step, the agent must update its belief over

both the physical states and the models of other agents. This form of decision making is

formalized by the interactive POMDP (I-POMDP) framework [20]. Decision making from

the perspective of a single agent operating in a multiagent setting is illustrated in figure 1.2.

In recent times I-POMDP has been proposed as a viable framework for decision making

in a myriad of applications across several disciplines which testifies to its growing appeal.

1. Law Enforcement: I-POMDPs have been proposed to explore strategies for counter-

ing money laundering [42, 46].

2. Defense: I-POMDPs have been enhanced to include trust levels for facilitating defense

9



StateActions

Observations

Rewards

Interactive States

Figure 1.2: Illustration of an agent operating in multiagent settings. The state, observation,
and reward are affected by the actions of all agents. Therefore, the subject agent must model
the other agents to predict their behavior. These models are included in the interactive state
space.

simulations [62, 61].

3. Game Playing: I-POMDPs have been used to produce winning strategies for playing

the lemonade stand game [78], explored for use in playing Kriegspiel [11].

4. Robot Learning: I-POMDPs were discussed as a suitable framework for a robot

learning tasks interactively from a human teacher [76, 75].

5. Psychology: I-POMDPs have been modified to include empirical models for simulat-

ing human behavioral data pertaining to strategic thought and action [16].

The growing appeal of I-POMDPs have necessitated research for exploring scalable solution

algorithms for the framework. I illustrate the formalism for I-POMDPs in the context of the

multiagent tiger problem [20] – a two-agent generalization of the well-known single agent

tiger problem [35], often used for illustrating and evaluating POMDPs.
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Example 1 (Multiagent tiger problem). In this problem, two agents, i and j, face two closed

doors one of which hides a tiger while the other hides a pot of gold. An agent gets rewarded

for opening the door that hides the gold but gets penalized for opening the door leading to

the tiger. Each agent may open the left door (action denoted by OL), open the right door

(OR), or listen (L). On listening, an agent may hear the tiger growling either from the left

(observation denoted by GL) or from the right (GR). Additionally, the agent hears creaks

emanating from the direction of the door that was possibly opened by the other agent – creak

from the left (CL) or creak from right (CR) – or silence (S) if no door was opened. All

observations are assumed to be noisy. If any door is opened by an agent, the tiger appears

behind any of the two doors randomly in the next time step.

While the actions of the other agent do not directly affect the reward for an agent, they

may potentially change the location of the tiger thereby impacting the utility of the agent’s

previous observations. This motivates modeling the other agent. While other multiagent

formulations of the tiger problem also exist such as the team setting of Nair et al. [44], this

formulation of the problem differs from others in the presence of door creaks and that it is

not cooperative.

1.2.1 Finitely Nested Interactive POMDPs

As I mentioned previously, I-POMDPs generalize POMDPs to multiagent settings by con-

sidering dynamic behavioral models of other agents as part of the state space. These models

may themselves be I-POMDPs which may also be modelling the subject agent similarly (i.e.

as an I-POMDP). This leads to agents recursively modeling each other infinitely through an

infinitely-nested modeling space. In order to make the framework computable, the nesting is

limited to a strategy level, l, thereby leading to finitely-nested I-POMDPs, which makes the

framework operational. Formally, a level l I-POMDP for agent i interacting with one other
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agent j is defined as the following tuple:

I-POMDPi,l = ⟨ISi,l, A, Ti,Ωi, Oi, Ri, OCi⟩

where:

• ISi,l denotes the set of interactive states at strategy level, l, defined as, ISi,l = S ×

Mj,l−1, where S is the set of physical states, and Mj,l−1 is the set of models ascribed to

the other agent. We describe the model space after this definition in this subsection.

• A = Ai × Aj, is the set of joint actions of both agents.

• Ti : S ×A× S → [0, 1], is the transition function which gives the distribution over the

next physical states given the current state and a joint action.

• Ωi is the set of observations agent i may receive.

• Oi : A×S×Ωi → [0, 1], is the observation function which is the probability with which

agent i receives an observation conditioned on a joint action and the resulting state.

• Ri : S × A → R, is the reward function which is the reward agent i receives given a

joint action performed by both agents from a state.

• OCi is the optimality criterion which may be a the discounted sum of the rewards

obtained over a fixed number of steps (called horizon) or till convergence.

Dennett’s intentional stance [12] offers a way to organize the space of mental models

into those that are intentional and denoted by Θj, and others that are subintentional, de-

noted by SMj. Intentional models ascribe beliefs, capabilities, preferences and rationality

in action selection to the other agent. Examples of intentional models include the decision-

theoretic formalism of POMDPs. Subintentional models include a distribution over actions,
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∆(Aj), which may be history dependent as in fictitious play [19]. Here, ∆(·) denotes the

set of all probability distributions over the argument random variable. A special example

is the no-information model often represented by a uniform distribution. A more powerful

subintentional model is the finite state automaton. We may follow a recursive bottom-up

construction of the interactive state space.

ISi,0 = S, Θj,0 = {⟨bj,0, θ̂j,0⟩|bj,0 ∈ ∆(ISj,0)}, Mj,0 = Θj,0 ∪ SMj

ISi,1 = S ×Mj,0, Θj,1 = {⟨bj,1, θ̂j,1⟩|bj,1 ∈ ∆(ISj,1)}, Mj,1 = Θj,1 ∪Mj,0

...
...

...
...

ISi,l = S ×Mj,l−1, Θj,l = {⟨bj,l, θ̂j,l⟩|bj,l ∈ ∆(ISj,l)}, Mj,l = Θj,l ∪Mj,l−1

(1.7)

The 0-th level belief is a probability distribution over the physical states only, and the

0-th level models, Mj,0, are generally limited to be computable and consist of the set of

computable intentional models of level 0, Θj,0, and the subintentional models, SMj. An

intentional model, θj,0 = ⟨bj,0, θ̂j,0⟩, where bj,0 is agent j’s level 0 belief, bj,0 ∈ ∆(ISj,0), and

θ̂j,0 = ⟨Aj, Tj,Ωj, Oj, Rj, OCj⟩, is collectively labeled as j’s level 0 frame. Here, j is assumed

to be Bayesian and rational. 0-th level intentional models are the traditional POMDPs whose

parameters, Tj, Oj, and Rj are specified over j’s individual actions, Aj.
1 2 An agent’s first-

level beliefs are joint probability distributions over the physical states and level 0 models of

the other agent. First-level models are computable and include computable level 1 intentional

models and level 0 models of the agent. A level 1 intentional model, θj,1 = ⟨bj,1, θ̂j,1⟩, consists

of the agent’s first-level belief, bj,1, and its frame, θ̂j,1 = ⟨A, Tj,Ωj, Oj, Rj, OCj⟩. Note that

parameters in the level 1 frame, Tj, Oj and Rj are specified over the joint actions, A. An

1Note that the definition of a belief rests on first defining the underlying state space. The state space is
not explicitly stated in the intentional model for brevity.

2One way of obtaining a POMDP at level 0 is to use a fixed distribution over the other agent’s actions
and fold it into Tj , Oj , and Rj as noise.
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agent’s second-level beliefs are distributions over the physical states and level 1 models of

the other agent, and so on up to the level l.

This recursive construction of the interactive state space shares similarities with the hi-

erarchical belief spaces as defined in game theory [3, 9, 43]. For example, with the aim of

mathematically formalizing Harsanyi’s abstract definition of a type as a vector containing

private information [25], Brandenburger and Dekel [9] define a first-order belief as a distri-

bution over the underlying state space. A second-order belief is a joint distribution over

the state space and first-order beliefs, and so on. A type is then a hierarchy of first-order

belief, second-order belief, and so on. A distinction from the construction in (1.7) is that the

game-theoretic formalization assumes the other agent to jointly possess beliefs of each lower

order. Thus, an agent is assumed to simultaneously exhibit a first-order belief, a second-

order belief, and so on. While this construction facilitates its intended use of mathematically

formalizing the type, it complicates its operational use in predicting a behavior for the other

agent.

Example 2 (Beliefs). In the context of the multiagent tiger problem, the physical state space

consists of whether the tiger is behind the left door (TL) or the right door (TR). Therefore,

a 0-th level belief of agent j, bj,0 ∈ ∆(S), is a probability distribution over the two states.

For example, bi,0 = ⟨0.85, 015⟩, indicates that the agent believes that the tiger is behind the

left door with a probability of 0.85, and behind the other door with the remaining probability

of 0.15. An example subintentional model in SMj is a probability distribution, ⟨0.1, 0.8, 0.1⟩,

over the agent’s actions, L, OL and OR. 0-th level models, Mj,0, include subintentional

models, which are probability distributions in this example, and POMDP formalizations of

the single-agent tiger problem that constitute the frames, θ̂j,0, with initial beliefs, bj,0. These

intentional models are members of Θj,0. A level 1 belief, bj,1 ∈ ∆(ISj,1), is a joint distribution

over the physical states and level 0 models of the other agent. It is represented as two

probability distributions, each of which is over the countable 0-th level models of the other
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assumed to have identical frames, one for TL and another for TR. The marginal of these

distributions gives the probability over TL and TR, respectively.

Belief Update

An agent’s belief over its interactive states is a sufficient statistic, fully summarizing the

agent’s observation history [20]. Beliefs are updated after the agent’s action and observation

using Bayes rule. Compared to single agent settings, the belief update in multiagent settings

are further complicated due to two factors. First, since the state of the physical environment

depends on the actions performed by all agents the prediction of how it changes has to be

made based on the probabilities of various actions of the other agents. Probabilities of others’

actions are obtained by solving their models. Second, changes in the models of the other

agents have to be included in the update. The changes reflect the others’ observations and,

if it is modeled intentionally, the update of other agents’ beliefs. In this case, the agent has

to update its beliefs about the other agents based on what it anticipates the other agents

observe and how they update their model. For our two agent I-POMDP, agent i’s updated

belief over an interactive state, is′i,l = ⟨s′, ⟨b′j,l−1, θ̂
′
j⟩⟩, may be formalized using the following

state estimation function:

b′i,l(is
′
i,l) = Pr(is′i,l|ai, ωi, bi,l)

= η
∑

isi,l|θ̂j=θ̂′j

bi,l(isi,l)
∑

aj∈Aj
Pr(aj|θj,l−1)Ti(s, ai, aj, s

′)×

Oi(s
′, ai, aj, ωi)

∑
ωj∈Ωj

Oj(s
′, aj, ai, ωj)Pr(b

′
j,l−1|bj,l−1, aj, ωj)

(1.8)

where η is the normalization constant, bi,l and b
′
i,l are the initial and updated level l beliefs

of agent i, respectively, Ti is its transition function, Oi its observation function, and Oj is

the observation function of agent j, Pr(aj|θj,l−1) is the probability that aj is rational for a
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Bayesian agent j modeled using θj,l−1, and Pr(b
′
j,l−1|bj,l−1, aj, ωj) is 1 if bj,l−1 updated using

action, aj, and observation, ωj, equals b
′
j,l−1, and 0 otherwise. 3

When there are more than two agents in the environment, the models of other agent mj

and its action aj are replaced by the joint models and the joint actions of all other agents

respectively.

Value Iteration

A solution to an I-POMDPi,l is a policy, πi : ∆(ISi,l)→ ∆(Ai), which maps agent i’s belief to

a distribution over its actions, analogous to that of a POMDP. Using the Bellman equation,

each belief state in an I-POMDP has a value which is the maximum sum of future discounted

rewards the agent can expect starting from that belief state. Previous approaches for solving

I-POMDPs utilize value iteration to compute the value for a belief, which is represented using

the following equation:

Vi(⟨bi,l, θ̂i⟩) = max
ai∈Ai

{ ∑
isi,l

bi,l(isi,l)ERi(isi,l, ai) + γ
∑
ωi∈Ωi

Pr(ωi|ai, bi,l)

× Vi(SEθi,l(bi,l, ai, ωi))

} (1.9)

where, ERi(isi,l, ai) =
∑

aj
R(s, ai, aj)Pr(aj|θj,l−1), and SE(.) is the state estimator func-

tion which denotes the belief update of agent i given initial belief bi,l, action, ai, and its

observation, ωi, as shown in Eq. 1.8.

3Precluding considerations of computability, if the prior belief over ISi,l is a probability density function,
then

∑
isi,l|θ̂j=θ̂′

j
is replaced by an integral over the continuous space. In this case, Pr(b′j,l−1|bj,l−1, aj , ωj)

is replaced with a Dirac-delta function, δD(SEθj,l−1(bj,l−1,aj ,ωj) − b′j,l−1), where SEθj,l−1
(·) denotes state

estimation involving the belief update of agent j. These substitutions also apply elsewhere as appropriate.
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Analogous to POMDPs, the I-POMDP value function in Eq. 1.9 is composed of a set of

linear value vectors [20]. A vector assigns an expected value to every interactive state:

αi(⟨s, θj,l−1⟩) = max
ai∈Ai

∑
aj∈Aj

Pr(aj|θj,l−1)

{
Ri(s, ai, aj) + γ

∑
ωi∈Ωi

max
α
ωi
i

∑
s′

∑
θ′j,l−1

Ti(s, ai, aj, s
′)Oi(s

′, ai, aj, ωi)
∑
ωj

Oj(s
′, ai, aj, ωj)

×Pr(b′j,l−1|bj,l−1, aj, ωj) α
ωi
i (⟨s′, θ′j,l−1⟩)

} (1.10)

where αωii is a value vector in the set of value vectors for the next time step.

Approaches for solving I-POMDPi,l are founded on iteratively improving the value vec-

tors until they converge pointwise for every interactive state. The improvement commonly

involves a backup operation on the set of value vectors, Γhi , of the previous iteration, which

produces the set of optimal value vectors for the current iteration. This operation is called

a backup because it takes as input the value vectors for the next time step and utilizes them

in generating the value vectors for the current time step. It may be performed as follows,

which decomposes Eq. 1.10:

Γhai,∗
∪←− αai,∗(⟨s, θj,l−1⟩) =

∑
aj∈Aj

Ri(s, ai, aj)Pr(aj|θj,l−1)

Γhai,ωi
∪←− αai,ωi(⟨s, θj,l−1⟩) = γ

∑
s′

∑
θ′j,l−1

∑
aj∈Aj

Pr(aj|θj,l−1) Ti(s, ai, aj, s
′)

×Oi(s
′, ai, aj, ωi)

∑
ωj

Oj(s
′, ai, aj, ωj)

Pr(b′j,l−1|bj,l−1, aj, ωj) α
′
i(s

′, θ′j,l−1),

∀ α′
i ∈ Γh−1

i

Next, we cross sum the vectors, denoted by ⊕, across Γai,ωi for different ωi, which involves

picking vectors from the different sets and summing them. This sums out the observations,

and the set of vectors for differing actions is then pruned to remove the vectors that are very
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weakly dominated. A pruned vector is one that did not provide the largest value at any

belief, or whose value was identical to a previously retained vector at all beliefs (obtained by

performing an inner product between the vector and belief) because the two vectors overlap.

Γhai ← Γhai,∗ ⊕ Γh
ai,ω1

i
⊕ Γh

ai,ω2
i
⊕ ...⊕ Γh

ai,ω
|Ωi|
i

Γhi = Prune(
∪
ai

Γhai)

(1.11)

Notice that each Γhai contains an exponential number of vectors although the number

reduces after pruning. Furthermore, multiple approaches exist (for example, see incremental

pruning [10]) that reduce the number of vectors resulting from the cross sums.

Analogous to belief update, when there are more than one other agents in the environ-

ment, mj and aj are replaced by joint models and joint actions of other agents respectively.

1.3 Challenges and Contributions

Decision making in multiagent settings as formalized by I-POMDPs is more complicated than

single agent decision making. Next I outline the challenges involved in solving I-POMDPs

and the contributions made in this dissertation.

1.3.1 Challenges involved in solving I-POMDP

The challenges of intractibility are captured precisely in the terms of four curses:

• Curse of dimensionality results from the size of interactive state space. The space

of beliefs grows exponentially with the number of states thereby making the solutions

increasingly intractable.

• Curse of history is a result of partial observability and manifests as exponentially

growing solution space with each application of value iteration.
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• Curse of agent modeling is an effect of curse of history on the computable model

space of the other agents and indirectly the dimensionality of the subject agents in-

teractive state space. The size of model space grows exponentially at each time step

thereby further aggravating the curse of dimensionality.

• Curse of many agents manifests at each time step as the size of joint model space

and joint action space which grows exponentially with the number of agents in the

environment.

In this dissertation, I propose approaches to mitigate the effect of each of these curses in

order to solve I-POMDPs efficiently.

1.3.2 Contributions

In chapter 2, I present a simple enhancement for partially observable Markov decision pro-

cesses (POMDP) backup operator that identifies actions that lead to observations which

are only weakly informative. We call such actions as weak- (inclusive of zero-) information

inducing. Policy subtrees rooted at these actions may be computed more efficiently. While

zero-information inducing actions may be exploited without error, the quicker backup for

weak but non-zero information inducing actions may introduce error. I empirically demon-

strate the substantial computational savings that exploiting such actions may bring to exact

and approximate solutions of POMDPs while maintaining the solution quality.

In chapter 3, I present a generalized version of a well known policy iteration technique for

POMDPs, the bounded policy iteration (BPI) [51], to problems involving multiple agents.

BPI is known to achieve locally optimal solutions for POMDPs while avoiding the exponential

growth in the size of controllers. I propose an anytime technique that interleaves bounded

policy iteration steps in a bottom up fashion starting at level 0. By doing this, we are

able to check the exponential blow-up of the model space thereby alleviating the curse of
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nested reasoning. Using this approach, I am able to solve much larger problems (in terms

of number of states, actions, observations, and level of reasoning) than those solved by the

previous algorithms. I call this approach interactive bounded policy iteration (I-BPI). I also

adapt a method for biasing the policy improvement in regions of beliefs that are more likely

to be reached given an initial belief. This bias comes at an increased cost of computation

which I mitigate using a novel method to eliminate models of the other agents that may

never be reached. Further, I utilize the algorithm to solve, for the first time, a multiagent

version of the well known tiger problem involving up to 5 agents.

In chapter 4, I introduce a novel bimodal approach for online planning. We observe that

in settings where the actions of other agents are not observable directly by the subject agent

but can only be inferred indirectly given their effect on the physical states, observations are

more informative of the other agents’ model when the subject agent is more certain about the

correct physical states (i.e. the entropy of its belief over physical states is low). Hence under

high entropy of belief over the physical states, an agent may act as a POMDP modeling

the other agents as noise. In this phase, the agent may exploit faster POMDP solution

techniques. Once the subject agent has received enough information about its physical

states, it may switch to I-POMDP mode. We determine the point of switching using the

bounds on the value of I-POMDP and an input parameter.

In chapter 5 we address the exponential growth in the size of joint model space and the

joint action space by exploiting commonly found problem structures such as action anonymity

[58] and a form of context specific independence [7] that we call frame-action independence.

While traditional I-POMDP approches are able to scale only up to a few other agents (5

other agents), by exploiting these commonly found structures, we are able to solve problems

involving thousands of other agents in a resonable amount of time.

I conclude with a discussion on some venues to explore in the future for further improving

my work and for better scalability of I-POMDP in general in chapter 6.
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Chapter 2

Identifying and Exploiting Weak

Information Inducing Actions in

Solving POMDPs

In POMDP literature, a large portion of research deals with deals with exploiting problem

structure to approximate the solution [8, 37, 59] thereby leading to significant performance

gains in the particular problem domains exhibiting the relevant structure. Consistent with

this promising line of investigation, we exploit yet another problem structure by identify-

ing a type of action often found in problem domains that lead to observations that tend

to be only weakly informative of the state of the environment. Such actions could be ex-

ploited so that the related computations may be performed more efficiently. For example,

observations made during movement by a robotic vehicle (typically modeled sequentially

post action in a POMDP) tend to be far less informative than those resulting from an ac-

tion dedicated to observing the physical states. We call such actions as weak-information

inducing actions. A small subset of such actions are those actions that induce no informa-

tion about the environment on observations. We provide a simple and novel definition for
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weak information-inducing actions by utilizing a parameter that characterizes the weakness

of the following observations. We observe that the observations following zero-information

inducing actions could be ignored for the belief update leading to compressed policy tree

rooted at such actions and subsequently computational savings without any error. Hence,

we utilize a simplified backup operator that excludes considering observations following the

zero-information inducing actions without introducing any error in the value function. We

extend the operator to weak-information inducing actions. As a result, we observe significant

computational savings, albeit at some performance loss in terms of optimality that we are

currently unable to upper bound. We demonstrate the significant computational savings by

exploiting such actions in the context of an exact solution technique – incremental prun-

ing (IP) [10] – and an aproximate solution technique – the well-known point-based value

iteration (PBVI) [49] – and empirically show that the solutions are of comparable quality.

2.1 λ-Information Inducing Actions

First we begin by formalizing a definition of such actions and motivation for distinguishing

them in context of the classical tiger problem [35]. We then show how we may exploit such

actions thereby reducing the complexity of the backup operation.

Example 3 (Single-agent Tiger Problem). An agent is faced with the choice of two doors.

Behind one there is a pot of gold that the agent desires and behind the other is a tiger that the

agent must avoid. The state of the environment at any given time could be tiger-left (TL)

or tiger-right (TR). The agent may choose to open either of the doors by performing actions

open-left (OL) and open-right (OR) or it may choose to listen (L) to gain more observation

about the position of the tiger through some noisy observations. On listening, the agent may

hear a growl coming from behind the door containing the tiger with a probability 0.85 and

a growl from behind the other door with a probability 0.15. The observations received could
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Figure 2.1: An illustration of the single agent tiger problem described in example 3.

be growl-left (GL) or growl-right (GR). By opening a door, the agent resets the state of the

environment randomly with a uniform probability and the game continues. The observations

received on opening a door are also uniformly random.

For the aforementioned problem, the observations probabilities on each action of the

agent could be written as the following tables :

L Pr(GL|s, L) Pr(GR|s, L)
TL 0.85 0.15

TR 0.15 0.85

OL/OR Pr(GL|s,OL/OR) Pr(GR|s,OL/OR)
TL 0.5 0.5

TR 0.5 0.5

Table 2.1: Observation function for the single agent tiger problem introduced in example 3.
The table on the left shows the observation probability for each end state on listening and
the one on the right shows the observation probabilities on performing an action to open
either door.

2.1.1 Definition

In the classical tiger problem (example 3), observations subsequent to opening a door

(OL/OR) do not provide any information about the door containing the tiger. We gen-
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eralize this concept to actions leading to weakly informative observations. We label such

actions as λ-information inducing, and define them as:

Definition 1 (λ-Information Inducing Actions). An action, a ∈ A, is λ - information

inducing if for all observations:

1 ≤ maxs′∈SO(s′,a,ω)

mins′′∈SO(s′′,a,ω)
≤ λ ∀ω ∈ Ω

where λ ∈ R. We denote the action using aλ and the set of all such actions using Aλ . Let

Āλ = A\Aλ.

In general, low values of λ are representative of actions that generate weak observations

while high λ signals rich observation(s), although the actual values are subjective to the

problem domain. In the tiger problem, setting λ to 1 would identify actions OL and OR

as weak-information inducing actions (indeed they are zero-information inducing actions).

On the other hand setting lambda to a value ≥ 5.67 would identify all actions as weak-

information inducing. Naturally, the solution quality will be affected in the later case.

2.1.2 Approximate Solution

The POMDP belief update may be decomposed into the prediction step where the agent

updates its belief based solely on the previous belief and action performed and the correction

step where the agent incorporates the observation received to correct its predicted belief.

We observe that for zero-information inducing actions (λ = 1 in Def. 1) incorporating the

observation to update its predicted belief doesn’t change its value. Hence, correction step

may be considered unnecessary for such actions. We extend this approach of ignoring the

observations to λ-information inducing actions in general. We hypothesize that for weak-

information inducing actions, the corrected beliefs for on receiving any observation would be
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close to the predicted belief and to each other. Hence, the same policy may be optimal (or

near optimal) for all reachable beliefs.

OL

*

L

OL

L

GLGR

L

(b)(a)

Figure 2.2: (a) An example policy tree (alpha vector) generated by our approximate backup
for λ-information inducing action (OL). Here, ‘*’ denotes any observation.(b) Analogous
policy tree generated by the traditional backup; both policy subtrees rooted at L are identical
and therefore storing one of them is redundant.

Our approach is to shorten the belief update process for λ- information inducing actions

by ignoring observations. The abbreviated update leads to a different and quicker backup.

The approximate backup process is equivalent to generating policy trees analogous to the

one in Fig. 2.2(a) for actions in Aλ , in comparison to the traditional policy trees (Fig.

2.2(b))

Substituting just the prediction step within the Bellman equation leads to the following

backup for all actions, aλ ∈ Aλ . Let Γh1 be the set of horizon h1 alpha vectors. Then,

Γaλ,∗
∪← αaλ,∗ = R(s, aλ) + γ

∑
s′∈S

T (s, aλ, s
′)α(s′) ∀α ∈ Γh−1

Γλ =
∪

aλ∈Aλ

Γaλ,∗

The backup process proceeds as in the original procedure described in section 1.1 for all

other actions in Āλ resulting in the set Γ′ . We obtain the final set of vectors for horizon h

as:

Γhλ = prune (Γλ
∪

Γ′)

Notice the absence of cross-sum operations for actions in Aλ. Consequently, we generate
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|Āλ||Γh−1||Ω| + |Aλ||Γh−1| intermediate vectors in the worst case, which could be far less than

|A||Γh−1||Ω| vectors generated in the exact approach, if the set Aλ is not empty. The horizon

h value function is then obtained as: V h
λ (b) = max

α∈Γhλ
α · b.

2.2 Experiments

We implemented the approximate solution described in Section 2.1.2 in the context of both

IP and PBVI. We selected well-known benchmark problem domains often used to evaluate

POMDP solution techniques. In Table 2.2, we show results for a variety of problem domains.

Our methodology was to solve each problem exactly using IP and approximately using PBVI

– often for longer time horizon in the latter case. We noted the maximum expected reward

obtained by averaging over 1,000 or more random belief points (shown in column R). We

then measured the time taken by the approaches modified to exploit λ-information inducing

actions to reach the expected rewards obtained previously (including time taken to identify

such actions).

2.3 Discussion

While zero-information inducing actions (λ= 1 in Def. 1) could be exploited in many problem

domains for faster computation at no performance loss, for all other values of λ we see a loss

in expected rewards. Currently, we are unable to bound the difference between the corrected

and predicted beliefs for the action in terms of λ. As a result, the error introduced in the

reward function by the approximation may not be bounded. However, our empirical results

in Table 2.2 indicate that if λ is relatively low, we obtain solutions of quality comparable to

the original techniques. We selected IP for demonstration because it is one of the quickest

exact POMDP solution techniques, while PBVI is representative of a general class POMDP

approximation techniques that utilize a small subset of belief points in backup operator for
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Method R Time (secs) H |Γ| Speedup%

Tiger (2s, 3a, 2o)

IP 9.41 3.83 ± 0.2 226 9

IP + λ=1 9.41 3.4 ± 0.22 226 9 ∼12
PBVI 8.96 0.16 ± 0.2 30 9

PBVI + λ=1 8.96 0.1 ± 0.01 30 9 ∼23
Web-Mall (2s, 3a, 2o)

IP 3.24 3.52 ± 0.08 216 27

IP + λ=1 3.24 3.43 ± 0.03 216 27 ∼3
PBVI 3.09 0.37 ± 0.07 30 13

PBVI + λ=1 3.09 0.26 ± 0.02 30 13 ∼29
Machine Maintenance (3s, 4a, 2o)

IP 4.00 9.43 ± 0.20 216 27

IP + λ=1 4.00 6.50 ± 0.18 216 27 ∼31
PBVI 3.28 0.41 ± 0.01 36 12

PBVI + λ=1 3.28 0.30 ± 0.01 36 12 ∼26
Machine 256 (256s, 4a, 16o)

IP 1.62 0.08 10 2

IP + λ = 1 1.62 0.04 ± 0.01 10 2 ∼47
PBVI 1.33 266.76 ± 2.06 20 1

PBVI + λ = 1 1.33 233.98 ± 2.95 20 1 ∼12
Fugitive (9s, 5a, 4o)

IP 40.17 68.33 ± 0.88 3 1436

IP + λ=1 40.17 67.11 ± 0.42 3 1436 ∼2
PBVI 345.9 31.65 ± 1.07 31 20

PBVI + λ=1 345.9 18.93 ± 0.44 31 20 ∼40
Learning c2 (12s, 8a, 3o)

IP 0.40 0.72 2 338

IP + λ=10 0.39 0.03 2 27 91

PBVI 0.63 127.17 ± 3.57 6 873

PBVI + λ=10 0.63 16.65 ± 0.07 7 201 ∼87

scalability. If λ is high to the extent that all actions in a problem domain are identified

and exploited, the approach may not result in good quality solutions due to high error. The
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Learning c3 (24s, 12a, 3o)

IP 0.39 54.22 ± 1.93 2 2680

IP + λ=10 0.38 0.77 ± 0.01 2 54 ∼99
PBVI 0.78 608.94 ± 10.5 8 880

PBVI + λ=10 0.79 158.35 ± 1.79 10 312 74

Learning c4 (48s, 16a, 3o)

IP – – – –

IP + λ=10 – – – –

PBVI 0.78 2025.7 ± 41.8 11 896

PBVI + λ=10 0.79 636.39 ± 10.8 12 338 ∼69

Table 2.2: Significant speed ups are obtained for several problems from the POMDP repos-
itory when λ-information inducing actions are exploited for different λ. ‘–’ indicates that
the problem could not be solved by the approach for at least horizon two due to insufficient
memory. The run times were obtained on a Intel dual-core 2.8GHz, 4GB RAM platform
with Linux.

resulting solution would be the same as the value of the blind policy which is known to be a

lower bound on POMDP value function [26]. Thus, low values of λ that identify a subset of

actions are preferable. Consequently, the approach should not be used for problems where

the observation functions are identical for most actions.
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Chapter 3

Generalized and Bounded Policy

Iteration for Finitely Nested

I-POMDPs

One class of POMDP solution techniques involves searching the solution space directly to

find an optimal policy. Initially proposed in the context of POMDPs [23], the technique

represents the infinite horizon solution as a finite state automaton and iteratively improves it

until it converges to an optimal value. The benefit is that the finite state controller typically

converges before its value converges across all states and it is useful when the sequential

decision making is to be performed over an infinite number of time steps. However, nodes

in the controller grow quickly making it computationally difficult to evaluate the controller

and continually improve it. Bounded policy iteration (BPI) avoids this growth by keeping

the size of the controller fixed as it seeks to monotonically improve the controller’s value by

replacing a node and its edges with another one [51]. However, although this scales POMDP

solutions to larger problems the controllers often converge to a local optima. Nevertheless,
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the benefits of this approach are substantial enough that it has been extended to decentralized

POMDPs [5] leading to improved scalability.

I introduce a novel generalization of BPI to the context of finitely-nested I-POMDPs

leading to a new anytime approximation technique for decision making in multiagent settings.

The generalization must contend with an interactive state space that includes candidate

models of the other agents making the space infinite. The intentional models include beliefs

of the other agents that are updated with time, and the models themselves could be finitely-

nested I-POMDPs. The generalization improves on previous approximation techniques for

I-POMDPs on two important fronts thereby making it significant: we may solve significantly

larger problem domains and generate solutions with significantly better quality compared to

those generated by previous techniques.

In generalizing BPI to I-POMDPs, we first represent a solution of the other agent’s

I-POMDP at the next lower level as a finite state controller (FSC) and reformulate the

interactive state space of the subject agent to include the physical states, the set of nodes

in a controller ascribed to the other agent and how they transition, with possible loss of

generality in practice. For domains where the other agent may be ascribed multiple candidate

frames representing possibly different capabilities and preferences, we may include multiple

controllers in the set that is ascribed to the other agent. For multiple other agents, we may

ascribe joint controllers: one for each other agent. The solution of the I-POMDP at the

current level is also a FSC which is used in lieu of its models in solving the I-POMDP of

the next higher level. The presence of controllers at different levels for the agents leads to

novel challenges and alternative approaches. We do not follow an approach wherein we first

solve the I-POMDP of the lower level agent completely to get a fixed controller which we

then use in the I-POMDP of the next higher level. Instead, in order to facilitate anytime

behavior for the approach, we interleave the evaluation and improvement of the controllers

at different levels of nesting. Each iteration may recursively involve evaluating and possibly
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improving the controller of the other agent followed by improvement of the subject agent’s

controller. However, the dynamic embedded controller alters the state space. This motivates

first evaluating the current controller on the new interactive state space, the one with possibly

modified model space, before improving it. This approach differs from BPI’s implementation

in decentralized POMDPs where the controller for each agent is improved independently, but

an optional correlation device is introduced for coordination among them. Such a shared

source of randomness is usually not feasible in non-cooperative settings. Importantly, we

observe that the value of the subject agent’s controller can’t converge unless the lower-level

controllers converges first.

The benefit of this approach is that the space of possible models may be compactly

represented using the set of nodes in a controller. On the other hand, the presence of

controller(s) embedded in the state space makes evaluation and improvement for the subject

agent much more expensive than in the context of POMDPs or decentralized POMDPs.

However, the added cost is a result of the formalization of the I-POMDP framework.

Note that given a fixed controller which represents a solution of the lower-level models,

we may formulate the I-POMDP at a particular level as a POMDP with a complex state

space that is a join of the physical state space and the nodes of the other agent’s FSC. The

transition, observation, and reward function could be altered accordingly by marginalizing

the actions of the other agent from its nodes. Subsequently, we could apply single-agent BPI

directly to this POMDP. However, our focus on interleaving improvements at various levels

means that the ascribed controller at any level may change, and the POMDPs would be

repeatedly reformulated making this alternative approach inconvenient for anytime solution

purpose. We call our approach interactive BPI. We experimentally evaluate its properties

using benchmark problems. In particular, we show that the converged controller for the

subject agent generates solutions of significantly better value in proportionately less time

compared to results reported by the previous best I-POMDP approximation, interactive
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point-based value iteration (I-PBVI) [15]. Furthermore, we provide solutions of I-POMDPs

that are nested to levels as deep as four for the first time. Ultimately, this allows the appli-

cation of I-POMDPs to scale to more realistic domains with reduced trade off in value of the

solution compared to previous approximations, as we demonstrate by applying the technique

to substantially larger problem domains, which are inspired by real-world applications.

The policy improvement step suggested in our approach replaces a node in the current

controller with a new node whose value uniformly improves the value of the original node

over the entire belief simplex. This approach is suitable for offline planning when the initial

belief is not available. However, often an agent is equipped with an initial belief which could

be used to bias the improvement step in regions of belief that are of interest for the solution.

Hence, we extend interactive BPI with a method that improves the controller keeping the

initial belief in mind. This additionally requires solving a system of linear equations in

each iteration which could be computationally costly. We compensate for the additional

computations by utilizing beliefs reachable from the initial one to iteratively prune some

nodes in the other agent’s controllers that are of little significance for the solution. These

are nodes that cannot be reached given the initial belief and correspond to models that

are implausible. However, the impossible nodes may become probable as the controller is

iteratively improved. While it is difficult to estimate the future form of the controller, we

selectively prune those nodes, which as a heuristic lead to a small loss in current value

of the controller for any belief. This is a novel use of initial beliefs that is pertinent in

multiagent settings and specific to interactive BPI. We evaluate the improved performance

of the controllers and report on the run times as well.

I list the novel contributions of this article below:

• A straightforward method for extending BPI to the context of finitely-nested I-POMDPs

would be to evaluate and improve the controllers of the lower level until convergence

to a satisfactory local optima before moving to the next higher level. However, the
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higher-level controller may not be improved for some time until the ones at the lower

levels have converged. Hence, we present a more sophisticated approach, which inter-

leaves improvements of the other agent’s controllers with improvements of the subject

agent’s controller. This approach facilitates anytime behavior, with the challenge that

the interactive state space may change dynamically at every iteration. Therefore it is

necessary to re-evaluate the controller for the updated model space.

• The interactive state space in I-POMDPs includes candidate models of the other agents

which contain the belief of the other agent over its interactive states thereby making

the space uncountably infinite. Our approach solves the I-POMDPs of the other agents

as finite state controllers which may be used to predict other agents’ actions. Hence

the controllers could replace the models of the other agents in the interactive space of

the subject agent with some loss in solution quality. The benefit of this approach is

that the controllers finitely and compactly represent the model space.

• We extend our base approach to exploit the agent’s initial belief of the subject agent, if

available, toward obtaining a more compact and improved controller for the given initial

belief. This modification is significant mainly in larger problem domains. However, it

incurs additional computation costs, which we compensate by removing models that

are unlikely to be of much significance to the value of the initial belief.

• Our extensive evaluations demonstrate that the generalization of BPI improves on pre-

vious approximation techniques for I-POMDPs on two important fronts: we may solve

significantly larger problem domains and generate solutions of much better quality.

• We extend our approach to solve, for the first time, problems involving multiple other

agents and problems in which the other agents are ascribed multiple candidate frames.
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• Finally, while BPI has been extended to decentralized POMDPs, the context there is

strictly cooperative. Its novel generalization makes it useful in non-cooperative settings

as well.

The rest of this chapter is structured as follows. I provide a brief background on BPI in

the context of POMDPs, in Section 3.1. I generalize bounded policy iteration to multiagent

settings as formalized by I-POMDPs in Section 3.2. I discuss the interactive BPI algorithm

in Section 3.3 and analyze the computational savings that it brings. I show how we may

exploit the subject agent’s initial beliefs toward further improving the quality of the solution,

in Section 3.4. In Section 3.5, I evaluate interactive BPI’s performance on several problem

domains ranging from toy benchmarks to substantially larger problems, and as other param-

eters of the context are varied. Finally, I conclude this article with a discussion in Section 3.7

of open concerns and future avenues of work. In the Appendix, I show the general algorithm

for interactive BPI in the context where multiple agents are present, which are modeled

using several candidate frames.

3.1 Policy Iteration for POMDPs

In contrast to value iteration which iterates over the value function (Eq. 1.9) till convergence

or for a finite horizon, policy iteration searches directly over the policy space. The traditional

representation of a policy is as a function that maps beliefs to actions. An early method by

Sondik [66] for performing policy iteration in the context of single-agent POMDPs defined

a canonical representation of a policy as a stationary mapping from polytopes of beliefs to

actions where the polytopes were represented using linear inequalities. Hansen [23] proposed

that representing the converged policy of an agent as a finite state automaton is more conve-

nient for the purpose of policy iteration. The drawback being that it may not represent all

optimal infinite-horizon policies, though it will get arbitrarily close in value. At any point
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in the iteration, the finite state controller represents an infinite horizon policy of the agent

for any belief.

We may define a simple (deterministic) controller for an agent i in a single-agent setting,

as:

πi = ⟨Ni, Ei,Li, Ti⟩

where Ni is the set of nodes in the controller, Ei is the set of edge labels which are obser-

vations, Ωi, in a POMDP, Li is the mapping from each node to an action, Li : Ni → Ai,

and Ti is the edge transition (successor) function, Ti : Ni × Ei → Ni. Based on the edge

label (observation), a node transitions to another node in the deterministic controller. For

convenience of presentation, we group together Ei, Li and Ti in f̂i.

Policy iteration algorithms improve the value of the controller by interleaving steps of

evaluating the policy with improving it by backing up the linear vectors that make up

the value function similar to equation 1.11. We may view each node in the controller as

the root node of an infinite horizon policy such that it is associated with an action and

a value vector which represents the expected reward of following the policy. As the value

function is improved, new vectors may be introduced causing additional nodes to be added

in the controller. In order to somewhat check the size of the controller, some nodes may be

dropped if their corresponding vectors are dominated at all states by some other vector [23].

Nevertheless, the solution size still grows rapidly. Pruning vectors that are jointly dominated

by multiple vectors introduces stochastic transitions between the nodes of the controller [51].

Despite the best pruning methods, controllers often grow exponentially in size at every

improvement step making evaluation and further improvement intractable. Poupart and

Boutilier [51] show that the controller size may be minimized and, in fact kept bounded,

in two ways: First, we may prune a node whose corresponding vector is dominated by

a convex combination of a subset of other vectors. In order to determine if a vector is
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ε
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Figure 3.1: The dashed vectors constitute the optimal, backed up value function. Value
vector (solid line in bold), representing a node in the improved controller, is a convex com-
bination of the two dashed backed-up vectors in bold. It point-wise dominates a vector that
constitutes the value function of the previous controller, by ϵ. Notice that none of the dashed
vectors fully dominate the previous vectors by themselves.

dominated jointly by multiple vectors, a convex-combination vector passing through the point

of intersection of the combined vectors and parallel to the dominated vector is computed,

as illustrated in Fig. 3.1. This is equivalent to replacing multiple updated vectors with a

single candidate vector and allows us to prune nodes that are completely dominated by

this convex combination, which otherwise would not have been removed. This leads to a

controller whose transitions due to observations, Ti, may be stochastic. Second, note that if

the controller hasn’t converged to a fixed point, a backup that generates new linear vectors

and corresponding nodes is guaranteed to improve it in value [23]. Thus, short of performing

a full backup and risking an exponential growth in the size of the controller we may perform

a partial backup to compute a convex combination of backed up vectors that uniformly

improves the value of an existing vector to replace the latter in the controller. This causes

the action mapping, Li, to be stochastic as well. Consequently, we may redefine Li as,
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Li : Ni → ∆(Ai), and the edge transition function as, Ti : Ni × Ai × Ωi × Ni → [0, 1]. 1

Of course, the technique becomes susceptible to converging to local optima in our desire to

keep the number of nodes fixed.

P(OL)=1

P(OR)=1

(*, 1.0)

(GR, 1.0)

P(L)=1

P(L)=1

P(L)=1

(GL,1.0)

(GR,0.69)
(GR, 1.0)

(*, 1.0)
(GL,0.27)

(GR,0.31)

(GL,1.0)
(GL,0.73)

Figure 3.2: An example converged controller for the single agent tiger (Eg. 3) problem. In
this controller, all nodes represent deterministic actions, although in general they could be
stochastic. Note that transitions due to observations are stochastic with probabilities given
on the edge labels, and ‘*’ indicates any observation.

Example 4 (Finite state controller). We show an example stochastic finite state controller

for the single agent tiger problem, which has converged, in Fig. 3.2. Notice the proliferation

of edges in the controller because of stochastic transitions due to observations.

3.2 Generalized Policy Iteration for Multiagent Set-

tings

I generalize the bounded policy iteration technique of Section 3.1 to the context of I-POMDPs

nested to a finite level, l. For simplicity of presentation, I assume that the frame of the other

1A node in the controller mapped to an action distribution may be split into multiple nodes. Each node
is deterministically mapped to a single action and incoming edges to the original node now connect to the
split nodes with the action distribution.
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agent j, θ̂j,l−1, is known and remains fixed; it need not be the same as that of agent i. Our

approach generalizes to multiple candidate frames and other agents as mentioned later in

this section.

The subject agent ascribes a finite state automaton to the other agent, which replaces

the intentional models of the other agent. I formalize the corresponding transformation

of the interactive state space including the mapping of beliefs over the transformed space

in Section 3.2.1 and discuss its implications. In Sections 3.2.2 and 3.2.3, I describe the

evaluation and improvement of finite state controllers, and a method for escaping from local

optima in Section 3.2.4. Finally, in Section 3.2.5 I discuss the novel challenges and alternative

approaches for improving the controllers at the different levels.

3.2.1 Transforming the Interactive State Space

Let πi,l = ⟨Ni,l, f̂i,l⟩ be a controller for the level l agent i, where Ni,l is the set of nodes in the

controller and f̂i,l groups the remaining parameters of the controller as mentioned previously

in Section 3.1. Analogously, let j’s level l− 1 controller be defined as πj,l−1. Next, we define

a set, Fj,l−1, where fj,l−1 ∈ Fj,l−1 is, fj,l−1 = ⟨nj,l−1, f̂j,l−1, θ̂j,l−1⟩. Here, nj,l−1 is a node in the

set of nodes in the controller, nj,l−1 ∈ Nj,l−1; f̂j,l−1 is the remaining part of the controller,

πj,l−1; and θ̂j,l−1 is j’s frame.

Recall that an intentional model, θj,l−1 ∈ Θj,l−1, consists of j’s belief, bj,l−1, and the frame.

Additionally, recall from Section 3.1 that each node in a finite state controller is associated

with a value vector, which provides the converged value of performing the action(s) associated

with the node and following the controller thereafter. Consequently, each model, θj,l−1, may

be mapped to a node in the following way: Compute the inner product between the belief in

the model, bj,l−1, and the value vector associated with a node, for all nodes in the controller.

Then, map the model to the node whose vector results in the larger inner product breaking
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ties randomly. The mapped node gives the current action and subsequent behavior for the

model as prescribed by the controller.

Proposition 1 asserts an important property of this mapping, which we denote as, Kπj :

Θj,l−1 → Fj,l−1, and it forms the basis for our approach.

Proposition 1 (Partition). Given a finite state controller for agent j, πj,l−1, the mapping,

Kπj , induces an equivalence relation between j’s intentional models thereby partitioning the

intentional model space, Θj,l−1, ascribed to agent j.

Proof. As per the mapping procedure mentioned previously, each intentional model, θj,l−1 ∈

Θj,l−1, is mapped to a node in the controller, πj,l−1, and multiple models may be mapped

to a single node. These models are equivalent. Furthermore, if two or more value vectors

associated with different nodes lead to the largest inner product, we break ties randomly

and map the model to one of the nodes. Therefore, no model is mapped to more than one

node and all the models are mapped. Consequently, nodes in a controller, πj,l−1, allow the

map, Kπj , that partitions the intentional model space.

In other words, for a belief in any model in Θj,l−1, a node exists in the controller that

will provide the corresponding action(s). Corollary 1 then follows trivially:

Corollary 1 (Compact interactive state space). If the finite-state controller, πj,l−1, is opti-

mal over the infinite horizon for the frame, θ̂j,l−1, then without loss of generality the inter-

active state space, ISi,l = S ×Θj,l−1, becomes:

ISi,l = S ×Fj,l−1

where fj,l−1 ∈ Fj,l−1 is obtained as the output of Kπj(θj,l−1), for some model, θj,l−1 ∈ Θj,l−1.
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Given the general undecidability of the problem of obtaining an exact infinite-horizon

solution of a POMDP [47] and that not all POMDPs admit an optimal finite-state con-

troller [23], it may be difficult to obtain an optimal, πj,l−1, in practice. Therefore, in practice,

the transformation of the interactive state space given in Corollary 1 may be with some loss

in generality because the mapping of j’s models to the nodes in its controller cannot reflect

its optimal behavior in some cases, thereby leading to performance loss for agent i. The

loss in performance may be reduced by obtaining an infinite-horizon solution that is near

optimal. Because our approach involves progressively improving this controller, the given

controller may represent an initial solution for the entire intentional model space. Given

πj,l−1, this transformation of the interactive state space involves finding the mapped fj,l−1

for each intentional model. This involves determining the corresponding node of the con-

troller. For the |Θj,l−1| many intentional models, determining Kπj(θj,l−1) for all models takes

O(|Θj,l−1||Nj,l−1||ISj,l−1|) time.

If there are |Θ̂j| > 1 frames with differing capabilities and preferences, the finite set

Fj,l−1 in the interactive state space will be larger with fj,l−1 ∈ Fj,l−1 differing in f̂j,l−1 and

θ̂j,l−1 as well. In other words, Fj,l−1 may contain as many distinct controllers as there

are frames. Furthermore, if there are K other agents, the interactive state space becomes,

ISi,l = S ×Kk=1 Fk,l−1, where Fk,l−1 represents a controller for each agent k. This is because

the agents may differ in their frames and receive private observations. Consequently, their

controllers may evolve or transition differently from each other.

Because the set of nodes in Fj,l−1 is finite, an important benefit of the above represen-

tation is that the uncountably infinite model space is represented using a finite node space,

thereby making the interactive state space finite as well (assuming that the physical state

space is finite). The large model space has often been a hurdle for previous approximation

techniques that operate on it, such as the interactive point-based value iteration [15]. This

motivated arbitrary limitations on the models and on how they evolve, which are no longer
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necessary. Other parameterized representations of the model space are also under investiga-

tion. Notable among them is the quantal response model, which assumes different models

as a single parameter is varied [22]. The parameterized quantal response allocates non-zero

probability to each action, which is an exponential function of the action’s value. However,

the space of models obtained in this way does not exhaustively cover the entire space of

models because the action distributions are constrained to follow the logit function.

An interesting question is, “Given the transformed interactive state space, can we repre-

sent I-POMDPi,l as a POMDP with a large state space?” In particular, the subject agent’s

anticipation of how the other agent updates its models is reflected by the transitions between

nodes in the other agent’s controller, πj,l−1. If the controller does not change with time,

then the joint distribution of the next interactive state, ⟨s, fj,l−1⟩′, and observation, ωi, given

agent i’s current state, ⟨s, fj,l−1⟩, and action, ai, is given by: Pr(ωi, ⟨s, fj,l−1⟩′|ai, ⟨s, fj,l−1⟩) =∑
aj
Pr(aj|nj,l−1) Oi(s

′, ai, aj, ωi)
∑

ωj
Oj(s

′, ai, aj, ωj) Ti(s, ai, aj, s
′) Pr(n′

j,l−1|nj,l−1, aj, ωj),

where nj,l−1 is a part of fj,l−1, Oi and Ti are obtained from the I-POMDP definition, and Oj

is part of j’s frame in fj,l−1. Consequently, we may solve the transformed I-POMDPi,l given

j’s controller as a large POMDP. On the other hand, if the ascribed controller changes, we

would need to reformulate the POMDP.

Agent i’s belief over the original interactive state space, S × Θj,l−1, is transformed to

a belief over the state space, S × Fj,l−1. We may obtain this belief over the transformed

interactive state space as:

bi,l(s, fj,l−1) =
∑

θj,l−1:Kπj (θj,l−1)=fj,l−1

bi,l(s, θj,l−1) (3.1)

where Kπj is the mapping as defined previously. The complexity of the belief transformation

is dominated by the complexity of finding the mapped fj,l−1 for each intentional model.

This involves determining the corresponding node of the controller. For the |Θj,l−1| many
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intentional models, determining Kπj(θj,l−1) for all models takes O(|Θj,l−1||Nj,l−1||ISj,l−1|)

time. This increases to O(|Θj,l−1|K |Nj,l−1||ISj,l−1|) for K > 1 other agents in the context. 2

Because multiple belief distributions over the original interactive state space may sum to

the same belief over the transformed space, Corollary 2 states an important property of this

belief.

Corollary 2 (Many-to-one mapping). The belief transformation as defined in Eq. 3.1 is a

many-to-one mapping.

Let, πi,l be an initial level l controller for the subject agent i. Next, we move to evaluating

and improving agent i’s controller iteratively. Because the controller of the other agent is

embedded in i’s state space, these steps are used to recursively update controllers at the

lower levels as well thereby generalizing the iterations to multiagent settings.

3.2.2 Policy Evaluation

As I mentioned previously, each node, ni,l, in the controller is associated with a vector of

values, αi(·, ni,l), that gives the expected (converged) value, at each interactive state, of

following the controller beginning from that node. In the context of I-POMDPs with one

other agent whose frame is known, this is a |S×Nj,l−1|-dimensional vector for each node. A

step of policy evaluation involves computing this vector for each node in the controller. We

may do this by solving the following system of linear equations each of which is analogous

to Eq. 1.10 but with controller nodes substituting for the models:

2Because probability measures are countably additive, Eq. 3.1 remains mathematically well-defined al-
though the subset of intentional models that map to some fj,l−1 could be countably infinite. Of course, in
practice we consider a finite set of intentional models for the other agent.
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αi(s, nj,l−1, ni,l) =
∑
ai∈Ai

Pr(ai|ni,l)
∑

aj∈Aj
Pr(aj|nj,l−1)

×

{
Ri(s, ai, aj) + γ

∑
ωi

∑
s′

∑
n′
j,l−1

Ti(s, ai, aj, s
′) Oi(s

′, ai, aj, ωi)

×
∑
ωj

Oj(s
′, ai, aj, ωj) Pr(n

′
j,l−1|nj,l−1, aj, ωj)

×
∑
n′
i,l

Pr(n′
i,l|ni,l, ai, ωi) αi(s′, n′

j,l−1, n
′
i,l)

}

∀s, nj,l−1, ni,l

(3.2)

In Eq. 3.2, we compute the expectation over i’s actions because multiple actions are pos-

sible from a single node of the stochastic controller. Given the multiagent setting, actions

of both agents appear in the transition, observation and reward functions in the equation.

The terms Pr(ai|ni,l), Pr(n′
i,l|ni,l, ai, ωi) and Pr(aj|nj,l−1), Pr(n

′
j,l−1|nj,l−1, aj, ωj) are ob-

tained from f̂i,l and f̂j,l−1, respectively, and Oj is obtained from j’s frame; f̂j,l−1 and j’s

frame are present in fj,l−1. Equation 3.2 is defined for each physical state, s, j’s controller

node, nj,l−1, and i’s controller node, ni,l. Notice that the update of the other agent’s belief,

Pr(b′j,l−1|bj,l−1, aj, ωj) in Eq. 1.10, is represented using a transition from one node to another

by the term, Pr(n′
j,l−1|nj,l−1, aj, ωj). Equation 3.2 extends the policy evaluation step of BPI

for single-agent POMDPs [51] by including the update of other agent’s behavior based on

its predicted action and anticipated observations. Alternately, we could apply BPI’s policy

evaluation directly to a complex POMDP. As we mention in Section 3.2.1, any change in

the ascribed controller would require a complete reformulation of the POMDP. On the other

hand, only the terms related to the ascribed controller change in Eq. 3.2.

Solution of the system, which contains |S||Nj,l−1||Ni,l| many variables and as many equa-

tions, results in value vectors over the reformulated model space for each node in agent

i’s controller. The asymptotic time complexity of solving the system of linear equations

is polynomial in the number of variables. This increases to |S|(|Nj,l−1||Θ̂j|)K |Ni,l| many
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variables in the presence of K other agents each with |Θ̂j| distinct frames. In the next

step, we improve the controller by introducing new nodes with updated value vectors that

may uniformly dominate, possibly in combination, those of an existing node and prune the

dominated node.

3.2.3 Policy Improvement

A straightforward way of improving the controller is to perform a backup operation on the

vectors of the current controller, analogously to the backup operation shown in Section 1.2

but with the models replaced with the nodes in the controller, to create new nodes and then

prune out the nodes whose corresponding vectors are dominated by those of one or more

other nodes. However, as I mentioned earlier, this method of policy improvement could lead

to exponential growth in the solution size at each improvement step.

An alternate approach was proposed by Poupart and Boutilier [51] in the context of

POMDPs. Instead of first updating the value vectors using the backup operation and then

checking for pointwise dominance, the approach performs a partial back up that integrates

the two in a single linear program. The controller is improved by evaluating whether a node,

ni,l, in i’s controller may be replaced with a new node, possibly a convex combination of

the updated vectors generated directly without explicitly generating those updated vectors,

whose value is better at all interactive states.

Our linear program extends that for a single-agent POMDP by involving additional terms

related to j’s dynamic behavior as guided by its controller embedded in the interactive state

space. While BPI’s improvement step could be directly used, the associated disadvantage of

repeatedly reformulating the large POMDP remains. We show the linear program below:
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max ϵ

s.t. αi(s, nj,l−1, ni,l) + ϵ ≤
∑
ai

cai
∑
aj

Pr(aj|nj,l−1)

×

{
Ri(s, ai, aj) + γ

∑
ωi

∑
s′

∑
n′
j,l−1

Ti(s, ai, aj, s
′)

× Oi(s
′, ai, aj, ωi)

∑
ωj

Oj(s
′, ai, aj, ωj)

×Pr(n′
j,l−1|nj,l−1, aj, ωj)

∑
n
ωi
i,l

cai,nωii,lαi(s
′, n′

j,l−1, n
ωi
i,l)


∀ s, nj,l−1;∑
ai

cai = 1;
∑
n
ωi
i,l

cai,nωii,l = cai ∀ai, ωi;

cai,nωii,l ≥ 0 ∀ai, ωi, nωii,l ; cai ≥ 0 ∀ai

(3.3)

The value function terms in Eq. 3.3 are obtained from the previous policy evaluation step.

We run this linear program for each of i’s nodes until a positive ϵ is obtained for a node. ϵ > 0

signals that node, ni,l, may be pruned because a convex combination of the backed up value

vectors dominate it at least by ϵ at all physical states and nodes of j’s controller. Because

a single ϵ value is sought for all s, nj,l−1, the dominating value vector will be parallel to the

pruned one. The solution of the program allows us to construct a new node (say, n′
i,l) with

stochastic actions of agent i as, Pr(ai|n′
i,l) = cai , and the transition probability to a node,

nωii,l , on performing action ai and receiving observation ωi as, Pr(n
ωi
i,l |n′

i,l, ai, ωi) = cai,nωii,l .

We iterate over the evaluation and improvement steps until a positive ϵ is not obtained

for any node in i’s current controller and the value vectors from Eq. 3.2 have fixated for

every node.

Proposition 2 (Value improvement). If the controller at level l, πi,l, has not converged, pol-

icy evaluation followed by improvement transforms πi,l into a controller whose value function

is as good for every belief state and better for some belief state(s).
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Proof. Performing policy evaluation first establishes the value vectors of πi,l over ISi,l given

the current level l − 1 controller of j. On improvement yielding ϵ > 0, a node is replaced

with a new node, n′
i,l, whose value vector, possibly a convex combination of implicitly backed

up value vectors, pointwise dominates the value vector of the previous node. Because edges

incoming to the previous node now point to n′
i,l, the value of some belief state(s) is improved.

The linear program is efficient in having |Ai||Ωi||Ni,l| + |Ai| + 1 variables and |S||Nj,l−1|

constraints, which increases to |S|(|Θ̂j||Nj,l−1|)K constraints if there are K > 1 other agents

and |Θ̂j| frames for each agent. As we mention later, we utilize the dual simplex method

to solve the linear program whose average-case running time is polynomial in the number

of variables and constraints [70] though it is possible to construct linear programs such that

the worst-case complexity is exponential [38].

3.2.4 Escape from Local Optima

Because of the strategy of obtaining a value vector that is a convex combination of backed

up nodes and which uniformly pointwise dominates another vector by ϵ, the iterations may

converge on a peculiar local optima in which all the value vectors touch from below, or in

other words, they are tangential to, the intersections of the backed up value function of the

nodes at that step. This is a very common form of local optima. If such conditions on

the value vectors are met, no further improvement using Eq. 3.3 is possible. We illustrate

this phenomena in Fig. 3.3. Such local optima may prevent the approach from reaching an

optimal controller for the given size. Of course, there are other conditions for a local optima

to occur as well.

Poupart and Boutilier [51] mention a simple approach of potentially dislodging from the

local optima caused by the tangent condition by adding new nodes, which is applicable
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in the context of I-POMDPs as well. Specifically, we arbitrarily pick a tangential vector

whose value we will seek to improve. The tangent point is obtained from the dual of the

LP in equation 3.3. Beliefs reachable from the tangential belief point of intersection are

generated followed by adding nodes to the controller that improve the value associated with

the reachable beliefs, as we show in Fig. 3.3. This is equivalent to performing a full-back up

on the computed reachable beliefs alone. The reachable beliefs are generated using Eq. 1.8 in

which the models of j are substituted with corresponding controller nodes. This allows the

value of the node representing the tangential vector to improve due to the improved values

of reachable nodes.

 i,lb  i,lb’  i,lb’’

reachable beliefs

Figure 3.3: The dashed vectors constitute the optimal, backed up value function while the
solid vectors constitute the current value function at an optima. Note that these vectors
are tangential to the intersections of the dashed vectors indicating that a local optima has
been reached. Solid dots represent improved values associated with the beliefs, b′i,l and b

′′
i,l,

obtained from the backed up value function. These beliefs are reachable from bi,l whose value
we seek to improve. Corresponding nodes are added to the controller.

Improving controllers while keeping the set of nodes bounded is often limited by local
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optima, whose value could be arbitrary. Subsequently, an escape technique provides an

important way to rescue the approach and produce good quality controllers although the

risk remains that it may converge to another local optima. While I-POMDPs permit escapes

using a simple approach, we may not quickly escape local optima in the context of other

multiagent frameworks such as the decentralized POMDP because it does not explicitly

maintain beliefs or defines belief updates.

3.2.5 Embeded Controller at Different Levels

Agent i’s controller at level l, πi,l, is associated with a value function composed of vectors

over an interactive state space in which each interactive state includes a node of j’s level

l − 1 controller and the other parameters of the controller. In other words, ISi,l embeds

j’s level l − 1 controller. Similarly, the interactive state space for agent j contains states

which include nodes of i’s level l−2 controller and the other controller parameters, i.e.ISj,l−1

embeds i’s level l − 2 controller. This embedding of controllers terminates at level 0 where

the corresponding state space consists of physical states only. In order to better understand

controllers at different levels, we show an example.

Example 5 (Controllers at different levels). In Fig. 3.4, we show an example controller at

level 2 that has converged for the multiagent tiger problem, and ascribed controllers at lower

levels. Notice that the controllers become more sophisticated as we go up the levels in order

to account for increasingly sophisticated behaviors by lower-level agents. Actions at all nodes

for each controller are deterministic, though the observations result in stochastic transitions

in agent i’s level 2 controller.

The presence of controllers at different levels leads to novel challenges. Given that the

other agent’s controller is embedded in agent i’s interactive state space, a naive but efficient

approach would be to iteratively improve i’s controller while holding j’s controller in the
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Pr(L) = 1

Pr(L) = 1

L, {GR,*}, 1

Pr(OR) = 1

L, {GL,*}, 1

Pr(L) = 1

L, {GL,*}, 1

Pr(OL) = 1

L, {GR,*}, 1

L, {GL,S}, 1 L, {GL,CL}, 1L, {GL,CR}, 0.39

L, {GR,CR}, 0.39L, {GR,S}, 1 L, {GR,CL}, 1Pr(L) = 1

L, {GR,CR}, 0.61L, {GL,CR}, 0.61

L, {GL,*}, 1

L, {GR,*}, 1 OL, {*}, 1

Pr(L) = 1

L, {GL,CL}, 1

L, {GR,*}, 1

L, {GL,CR}, 1

L, {GL,S}, 1

OR, {*},  1

Agent i’s level 2 controller

Pr(OL) = 1

Pr(L) = 1

OL, {*}, 1

Pr(OR) = 1

OR, {*},  1

Pr(L) = 1

L, {GL,*}, 1

L, {GR,*}, 1

Pr(L) = 1

L, {GR,*}, 1

L, {GL,*}, 1 L, {GL,*}, 1L, {GR,*}, 1

Agent j’s level 1 controller

Pr(L) = 1 L, {*}, 1

Pr(OL) = 1

OL, {*}, 1

Pr(OR) = 1

OR, {*},  1

Agent i’s level 0 controller

Figure 3.4: Controllers at different levels for I-POMDPi,2 in the context of the multiagent
tiger problem. An edge label such as L, {GL,CL},1 means that the transition occurs with
probability 1 due to the agent listening and hearing a growl from the left and creak from
the left. ‘*’ indicates any growl or creak as appropriate. The controller at each level has
converged possibly to a local optima.

state space fixed. This approach may be reasonable given a readily available good quality

controller for the other agent. However, this is rare and in general the approach is naive as

the corresponding solution will likely be poor as better quality controllers may be obtained
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to predict the other agent’s actions. This is particularly relevant because I-POMDPs model

the other agent as being rational.

Therefore, we adopt a more sophisticated approach, which interleaves improvements of

the other agents’ controller with improvements of agent i’s controller. However, not only

is this approach computationally more intensive, but agent i’s interactive state space may

change dynamically at every iteration. An alternate and appealing technique would be to

evaluate and improve the controller of the lower level until convergence before moving to

the next level. The former approach better facilitates anytime behavior in comparison to

the latter in which the higher-level controller may not be improved for many iterations

until the lower-level controller has converged. We illustrate this difference in the context

of multiple problems in Section 3.5. Note that Proposition 2 continues to apply for both

these techniques. Of course, the higher-level controllers in the two approaches additionally

may not converge to the same local optima although this is not the case in our illustration.

However, this doesn’t guarantee that both approaches will yield the same controllers.

Notice that the bounded improvement of j’s or i’s lower-level controller while keeping the

number of nodes fixed still alters the interactive state space because f̂j,l−1 or f̂i,l−2 changes.

Consequently, ISi,l or ISj,l−1 may dynamically change at each iteration. Therefore, another

alternate technique of evaluating the controllers at all levels first followed by recursively

improving them is not feasible because the previous value evaluation of a level l controller

is invalidated when lower-level controllers are modified by its improvement step.

Lastly, at level 0 the I-POMDP collapses into a POMDP. Consequently, we may utilize

the traditional BPI for POMDPs [51] in order to evaluate and improve the level 0 agent’s

controller.
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3.3 Algorithm and Computational Savings

Algorithm 1 outlines the procedure, labeled Interactive BPI (I-BPI), for performing BPI in

the context of finitely nested I-POMDPs with one other agent j. A general version for K

other agents is given in the Appendix. It begins by creating a trivial controller having a

single node with a randomly selected action, at each level for agent i or j as appropriate (see

Algorithm 2). Naturally, the node transitions into itself for all observations. The interactive

state space is then reformulated to include the node(s) from the other agent’s controller

(lines 1-2) incurring the associated computational expense. Please refer to Section 3.2 for

discussion on how the interactive state space is reformulated if multiple frames are ascribed

to the other agent or if more than one other agent is present in the setting.

Algorithm 1 Interactive BPI for I-POMDPs
Interactive BPI (I-POMDP: θi,l) returns solution, π∗

i,l

1: πi,l ← InitializeControllers (θi,l)
2: Reformulate, ISi,l at each level l in θi,l to contain the physical state and the controller

of other agent
3: Beginning with level, l = 0, perform a single-step full backup at each level, l, using the

transformed ISi,l, resulting in |Ni,l| ≤ |Ai| nodes in a controller, πi,l
4: repeat
5: repeat
6: πi,l ← Evaluate&Improve (πi,l, θi,l with reformulated ISi,l)
7: until no more improvement is possible
8: Push controllers at each level from local optima
9: until no more escapes are possible
10: return converged controller, π∗

i,l

We perform a single full backup at each level to expand the controller from size 1, which

is likely to demonstrate poor performance, to controllers of size |Ai| or |Aj|, as appropriate

(line 3) reformulating the interactive state space and reevaluating the controller at next

higher level in the process. If the frame of the other agent is unknown and the subject

agent maintains belief over various frames of other agent, a controller is initialized for each
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frame of the other agent. If there are more agents, then a controller is initialized for frame

of each other agent and we utilize the joint controllers to represent the joint model space.

Subsequent steps of evaluation and improvement are performed for each of these controllers,

whose interactive state spaces may themselves contain embedded controllers of the other

agent(s). This may give rise to a tree of controllers whose branching factor is the number of

frames scaled by the number of other agents in the setting.

Algorithm 2 Recursively initialize controllers at all levels down to 0

InitializeControllers (I-POMDP: θi,l) returns initial controller,
πi,l

1: if l ≥ 1 then
2: πj,l−1 ← InitializeControllers (θj,l−1)
3: Construct a controller, πi,l, with a single node, |Ni,l| = 1, mapped to a randomly selected

action

Algorithm 3, Evaluate&Improve, then recursively performs a single step of evaluation of

the nested controller(s) and its bounded improvement (lines 1-2). For the lowest-level con-

troller, the evaluation and improvement proceeds as outlined by Poupart and Boutilier [51]

in the context of single-agent POMDPs, which is briefly reviewed in Section 3.1 (lines 3-5).

At levels 1 and above, we evaluate the controller using Eq. 3.2 and improve it while keeping

the number of nodes fixed using Eq. 3.3 (lines 6-8). The computational complexity of the

algorithm is primarily determined by the complexity of the evaluation and improvement

steps on the controllers at the different levels. While the number of these steps is not fixed,

the complexity of the evaluation and improvement is discussed in Sections 3.2.2 and 3.2.3,

respectively. These steps are performed for each agent and its frame in general.

Observe that I-BPI interleaves the evaluation and improvement of the controllers at the

different levels. On convergence, Algorithm 1 attempts to push the controllers past any local

optima, by escaping it (line 8). When this is no longer possible or when the algorithms

exceeds a predetermined execution time, the converged controller is returned as the solution

of the level l I-POMDP.
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Algorithm 3 Evaluation and bounded improvement of the controllers at different levels.

Evaluate&Improve (controller: πi,l, I-POMDP model: θi,l) returns controller,
π′
i,l

1: if l ≥ 1 then
2: πj,l−1 ← Evaluate&Improve (πj,l−1, θj,l−1)
3: if l=0 then
4: Evaluate controller, πi,0 = ⟨Ni, Ei, Li, Ti⟩
5: Improve controller, if possible, analogously to a POMDP [51]
6: else
7: Evaluate controller, πi,l = ⟨Ni,l, Ei,l, Li,l, Ti,l⟩, using Eq. 3.2
8: Improve controller, if possible, while keeping |Ni,l| fixed using Eq. 3.3
9: return improved controller, π′

i,l

Example 6 (I-BPI). We illustrate a step within I-BPI on a level 2 I-POMDP for agent i in

Fig. 3.5. Beginning with a single node at each level, we perform a full backup followed by

bounded improvement. Because the controllers at each level converged, we perform an escape

of the controllers from local optima.

The complexity of solving I-POMDPs is dominated by the complexity of solving the

models. In general, the space of models ascribed to the other agent could be infinite because

each candidate model includes a possible belief as well. I-BPI reformulates the interactive

state space by mapping the space of models to a finite set of nodes in the other agent’s

controller (Corollary 1). However, if we limit the model space and let |Θ| be a bound on

the number of models ascribed to one other agent. Then, the interactive state space for

K other agents contains (K|Θ|)l models for all levels of the nesting. Mapping |Θ| to |N |

nodes of a controller, whose size remains fixed, we obtain a set of size (K|N |)l. This space is

significantly smaller because usually, |N | ≪ |Θ|, leading to much mitigated impacts of the

curses of both dimensionality and history. We empirically demonstrate the effect of these

savings in Section 3.5.

53



Level 0

Level 1

Level 2

Agent i Agent j

Iterations

L
full 

backup

bounded 

improve

OL

L

OR

OL

L

OR

L

L

OL

L

OR

escape

optima

L

OL

L

OR

OL

L

OR

L
bounded 

improve

L

OL

L

OR

escape

optima

L

OL

L

OR

OL

L

OR

L
bounded 

improve

L

OL

L

OR

escape

optima

Figure 3.5: Recursive invocations lead to evaluation and improvement beginning at the
bottom and up the nesting levels for I-POMDPi,2. Controllers were initialized with a single
node and a full backup takes place followed by evaluation and bounded improvement in
the previous iteration, which does not improve the controllers (shown dashed and greyed
out). Current iteration involves escaping the controllers from the local optima bottom up as
the recursion unwinds. We demonstrate this process in the context of the multiagent tiger
problem.

3.4 Accounting for Initial Beliefs

Although we may not always assume the presence of an initial belief over the interactive

state space, in some problem domains such as the money laundering discussed previously in

Section 3.5, initial beliefs may be known and could be utilized in order to possibly improve

the solution. Subsequently, we seek to extend I-BPI to account for initial beliefs. As I

mention in Chapter 1, a belief at level l is a distribution over the interactive state space.

Each interactive state includes an intentional model, which may contain a candidate belief

over the level l − 1 interactive state space.
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3.4.1 Occupancy Distribution

Poupart and Boutilier [52] compute the occupancy distribution over the physical state space,

which assigns an aggregate probability to each state based on the set of beliefs reachable

from a given initial belief over an infinite number of steps using the current controller. A

fixed point of the occupancy distribution is computed. Policy improvement is then biased

toward regions with high occupancy. Particularly, instead of constructing a node whose

vector uniformly dominates that of one of the existing nodes, a vector is obtained which

improves more in the region of state space exhibiting high occupancy.

This approach may be extended to possibly improve solutions for I-POMDPs as well with

associated challenges due to the presence of the other agent and strategy levels. Given an

initial belief of level l, b0i,l, which defines a distribution over the physical states and level

l − 1 models, each of which contains a belief over l − 2 models and so on, we begin by

mapping the models at each level up to l − 1 to the nodes in the initial nested controller

per Proposition 1. Subsequently, the initial belief over states and models is transformed to a

belief over the states and nodes of the controller using Eq. 3.1 and incurring the associated

computational complexity. Given this initial belief, we compute the occupancy distribution,

Occi, over all physical states, nodes of agent j’s l − 1 controller, and those of i’s controller,

by solving a system of linear equations as shown below:

Occi(s
′, n′

j,l−1, n
′
i,l) = ḃ0i,l(s

′, n′
j,l−1, n

′
i,l) + γ

∑
ni,l

∑
ai

Pr(ai|ni,l)

×
∑

s,nj,l−1

∑
aj

Pr(aj|nj,l−1)
∑
ωi

Oi(s
′, ai, aj, ωi)Ti(s, ai, aj, s

′)

×
∑
ωj

Oj(s
′, ai, aj, ωj)Pr(n

′
j,l−1|nj,l−1, aj, ωj)

×Pr(n′
i,l|ni,l, ai, ωi) Occi(s, nj,l−1, ni,l)

∀s′, n′
j,l−1, n

′
i,l

(3.4)
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Here, ḃ0i,l(s
′, n′

j,l−1, n
′
i,l) is equal to i’s initial level l belief, b0i,l, on the interactive state,

⟨s′, n′
j,l−1⟩, if n′

i,l is the node in i’s controller that the initial belief maps to – the value

vector associated with the node leads to the largest inner product with the belief over the

interactive state; for any other node the probability is 0. The computed distribution is not

normalized. Equation 3.4 generalizes the computation of the occupancy distribution for a

single-agent POMDP [52] to the multiagent setting by predicting the other agent’s action

and accounting for how j updates its policy based on its private observation per the controller

ascribed to it.

Analogously, we compute the occupancy distribution from the belief in each level l − 1

model of j and using j’s controller. We obtain a single aggregate occupancy distribution for

level l−1 by performing a convex combination of the different occupancies. The combination

weights are the marginal probabilities assigned to each model in i’s level l initial belief

summed over the physical states. Subsequently, we obtain an occupancy distribution at

each level.

Given the occupancy distribution, we may alter the policy improvement step of Eq. 3.3

to allow non-uniform improvements across all interactive states, ⟨s′, n′
j,l−1⟩, weighted by the

respective occupancy values for each node, ni,l, as shown in Eq. 3.5:
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max
∑

s,nj,l−1

ϵs,nj,l−1
·Occi(s, nj,l−1, ni,l)

s.t. αi(s, nj,l−1, ni,l) + ϵs,nj,l−1
≤

∑
ai

cai
∑
aj

Pr(aj|nj,l−1)

×

{
Ri(s, ai, aj) + γ

∑
ωi

∑
s′

∑
n′
j,l−1

Ti(s, ai, aj, s
′)Oi(s

′, ai, aj, ωi)

∑
ωj

Oj(s
′, ai, aj, ωj)Pr(n

′
j,l−1|nj,l−1, aj, ωj)

∑
n
ωi
i,l

cai,nωii,lαi(s
′, n′

j,l−1, n
ωi
i,l)


∀ s, nj,l−1;

∑
ai

cai = 1;
∑
n
ωi
i,l

cai,nωii,l = cai ∀ai, ωi;

cai,nωii,l ≥ 0 ∀ai, ωi, nωii,l ; cai ≥ 0 ∀ai

ϵs,nj,l−1
≥ 0 ∀s, nj,l−1

(3.5)

The occupancy measures bias the value improvement in the reachable regions of the belief

space. Specifically, the objective value is larger when larger improvements are obtained for

those interactive states that exhibit a higher occupancy as given by Occi. Adding the

constraint, ϵs,nj,l−1
≥ 0 for all interactive states ensures a non-negative improvement across

the entire belief simplex; it may vary for the different states. The linear program above

extends an analogous linear program for single agent POMDPs [52] to our multiagent setting.

Algorithm 2 now solves the linear program above at each level in order to improve the nested

controller, with the occupancy distributions computed just before the improvement step

using the previously updated controller.

Computing occupancy is roughly equivalent in complexity to the policy evaluation step

of Eq. 3.2 with both systems containing the same number of similar equations. In particular,

the system has |S||Nj,l−1||Ni| many variables that increases to |S|(|Θ̂j||Nj,l−1|)K |Ni| for K

agents and |Θ̂j| possible frames, and as many equations, with the asymptotic time complexity
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of solving the system being polynomial in the number of variables. Therefore, computing

occupancy distributions may impact the execution time non-trivially especially for larger

problems, as we demonstrate in the next section.

3.4.2 Pruning Nodes

We aim to compensate for the additional complexity that the revised policy improvement

step adds to I-BPI. We may utilize the occupancy distribution to determine those models

of the other agent that become impossible given the initial belief. Because the models map

to the nodes in j’s controller, we utilize the marginal distribution over nj,l−1 obtained by

summing out s and ni,l from the occupancy distribution, Occi(s, nj,l−1, ni,l):

Pr(nj,l−1) =
∑
s,ni,l

Occi(s, nj,l−1, ni,l)

Nodes with probability zero in the above marginal on the left are pruned, and these corre-

spond to the nodes in the controller that are unreachable given the initial belief. Reasoning

backwards, their incoming edges, if any, do not get traversed and nodes connected to these

edges are unreachable as well and must have zero marginalized occupancy. Otherwise, any

probability mass on these nodes would “flow” to the former (unreachable) node through the

edge making it reachable. Therefore, both incoming and outgoing edges are also removed.

By pruning these nodes, we reduce the size of the embedded controller and consequently,

the size of the interactive state space by |S| each time a node is pruned.

A limitation of this approach is that as the controller is iteratively improved by sub-

stituting nodes in the improvement step and adding nodes during the escape, previously

unreachable nodes may become subsequently reachable. While it is difficult to estimate the

form of the controller in the future, a straightforward approach to address this would be to

reintroduce the pruned nodes into the updated controller before the start of the next itera-
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tion, compute the new occupancy distribution and utilize it to again determine the nodes of

the other agent’s controller with zero marginal. Obviously, this approach repeatedly brings

back the pruned nodes.

We seek to avoid this repeated contraction and expansion of the controller; we partially

address this challenge in two ways. (i) We prune the nodes infrequently: only after the

controller has converged and before we have performed an escape from the local optima by

adding new nodes. Subsequently, we do not prune nodes while the controller is iteratively

improved. (ii) Although pruning the nodes does not impact the value of the controller

keeping the occupancy distribution in mind, it reduces the overall value in general. Therefore,

among all the nodes with a zero marginal, we selectively pick those whose negative impact

on the current value of the controller in general is among the least. Specifically, for each

node with a zero marginal, n̂j,l−1, we may compute the current regret due to pruning it,

denoted ε, using the simple linear program below:

max ε

s.t. αj(s, ni,l−2, n̂j,l−1) + ε ≤
∑

nj,l−1∈Nj,l−1−{n̂j,l−1}
cnj,l−1

αj(s, ni,l−2, nj,l−1) ∀s, ni,l−2;

∑
nj,l−1∈Nj,l−1−{n̂j,l−1}

cnj,l−1
= 1; cnj,l−1

≥ 0 ∀nj,l−1 ∈ Nj,l−1 − {n̂j,l−1}

(3.6)

As ε < 0, the node with the maximum ε obtained from the linear program above gives the

minimum regret, and is pruned. As we mentioned previously, it is difficult to estimate the

future form of the controller and the impact of node removal on future values due to the

presence of local optima. Therefore, this latter technique of selecting nodes for removal with

minimum current regret acts as a heuristic.

I illustrate the effect of selectively removing nodes with zero marginals in the occupancy

distribution by showing a controller obtained by using the occupancy in Fig. 3.6, and the

controller when the nodes are selectively pruned as well in Fig. 3.7. These controllers are
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Figure 3.6: Converged controllers at different levels for I-POMDPi,2 in the context of the
multiagent tiger problem using I-BPI with occupancy computations. An initial belief of agent
i is used according to which it is unaware of the tiger’s location and knows that j is unaware
too.

for the level 2 multiagent tiger problem with an initial belief of agent i that the tiger could

be behind any one of the doors with equal probability, and i knows that j is unaware of the
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Figure 3.7: A converged controller for I-POMDPi,2 in the context of the multiagent tiger
problem using I-BPI with occupancy distribution and removal of nodes for the same initial
belief as in Fig. 3.6. This controller differs from the latter in having one less node at level 1,
which differentiates the level 2 controller as well.
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tiger’s location as well. The two controllers differ at level 1 with the controller in Fig. 3.7

having one node less than the other. Observe that this in turn affects the level 2 controller,

which has the same number of nodes as the other, but is structurally different. In particular,

agent i performs more listen actions in a sequence according to the revised controller.

3.5 Experiments

We implemented Algorithms 1 and 3 for I-BPI shown in Section 5.4. In order to exploit

the sparseness of values in the definitions of some of the problem domains, we used the

open-source library IML++ [13] for solving the system of linear equations while using effi-

cient sparse matrix computations, and we utilized the dual simplex method as implemented

in IBM’s CPLEX for solving the linear programs. We comprehensively evaluate various

performance parameters of I-BPI in Section 3.5.1 and evaluate I-BPI’s performance in the

context of multiple frames and agents in Section 3.5.2. 3 Next, we implemented the exten-

sions described in Section 3.4 in I-BPI to account for initial beliefs, and evaluate the impact

in Section 3.5.3.

3.5.1 Anytime Property, Scalability to Deeper Levels and Larger

Problems

We evaluated I-BPI’s properties on two benchmark problem domains: a non-cooperative

version of the multiagent tiger problem and a cooperative version of the multiagent machine

maintenance (MM) problem, each of which has two agents, i and j. While the multiagent

tiger problem is described in chapter 1, the multiagent MM problem generalizes Smallwood

and Sondik’s [64] MM problem to a two-agent setting in which both agents operate on the

3Example problems such as the multiagent tiger problem or user-specified problems may be solved using
an implementation of I-BPI in our new online problem-solving environment using POMDP-based frameworks
at http://lhotse.cs.uga.edu/pomdp.
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machine with two components that could fail. Each agent may choose to manufacture the

product, examine the product, inspect the machine or repair it before the next production cy-

cle. On examining the product, it may be defective with a high probability if the components

have failed. Doshi and Gmytrasiewicz [14] provide the details on these problem domains.

While these problems have small dimensions, they have been used as benchmarks for pre-

vious I-POMDP approximation techniques, such as the interactive particle filter [14] and

interactive point-based value iteration (I-PBVI) [15], both of which employ value iteration.

In addition to these toy problems, we evaluate I-BPI’s performance and demonstrate scal-

ability using two significantly larger problem domains: the money laundering problem [46]

and an autonomous unmanned aerial vehicle (AUAV) reconnaissance problem on a grid both

of which are non-cooperative.

The money laundering problem, introduced by Ng et al. [46] and possessing realistic

underpinnings, is a game between law enforcement (blue team) and the money launderers

(red team) who aim to move their assets from a ‘dirty’ pot to a ‘clean’ one through a

series of financial transactions while evading capture by the blue team. The blue team can

place sensors at various locations such as bank accounts, trusts and real estate to detect

the presence of the ‘dirty’ money. The physical state is defined by the joint location of the

dirty money and that of the sensor. The possible locations of the red team’s assets are:

dirty pot, bank accounts, insurance, securities, offshore accounts, shell companies, trusts,

corporate loan, casino accounts, real estate, and clean pot. The possible locations of the blue

team’s sensor are: bank accounts, insurance, securities, shell companies, trusts, corporate

loan, casino accounts, real estate and none. The red team may perform any of the three

nondeterministic actions of placement, layering or integration to move its assets from one

location to another or it could listen to gain noisy information about the location of the

blue team’s sensor. The blue team may place its sensors in one of eight locations or it could

confiscate the assets of the red team. As Ng et al. mention [46], this problem is about 20

63



times larger than previous problem domains solved using I-POMDPs. It exhibits a physical

state space of 99 states for the subject agent (blue team), 9 actions for the subject agent

and 4 for the opponent, and 11 observations for the subject and 4 for the other.

S.H.

Fugitive

UAV

Figure 3.8: AUAV reconnaissance problem on a 4X4 grid. The goal of the fugitive is to reach
the safe house (marked S.H.). The goal of UAV is to intercept the fugitive before it reaches
the safe house.

The AUAV problem involves reconnaissance in a grid in which an AUAV is tasked with

capturing a fugitive who seeks to escape to a safe house (fixed at a predetermined grid

location). We model the AUAV using levels 1 and 2 I-POMDP. Given a fixed location of

the safe house, the physical state is the joint location of both agents thereby leading to 256

physical states for a 4 × 4 grid, which is much larger than any problem solved by previous

I-POMDP solution techniques. Each agent may take one of 5 actions of moving in one of

the four cardinal directions or listening to get an observation about the target’s location.

We assumed that the actions taken by both agents on the grid are deterministic. The 4

observations for UAV allow it to sense the cardinal direction of its target relative to its own

location. The fugitive has 12 observations which allow it to sense the cardinal directions of

its target and the pursuer. We assume that the observations are noisy.
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Figure 3.9: Average rewards for the (a) multiagent tiger problem on I-POMDPi,l with l
ranging from 1 to 4, and (b) AUAV reconnaissance on a 3× 3 grid with I-POMDPi,l ranging
from l = 1 to 2. The rewards generally improve and stabilize as we allocate more nodes
to controllers to facilitate escaping local optima, in I-BPI. As we may expect, higher-level
controllers generated for more strategic agents eventually lead to better rewards. Vertical
bars indicate the standard deviation over trials, and is small.

Our experimentation in the non-cooperative context seeks to answer the following two

questions: (a) How are the obtained controllers performing against the best possible ad-

versary? (b) Is there a benefit of computing controllers that are more strategic, which in

I-POMDPs translates to deeper levels? We begin by focusing on the tiger problem and the

AUAV reconnaissance on a 3× 3 grid, and note the average rewards obtained from simulating

converged controllers of different node sizes, and of different levels against the highest level

(most strategic) controller for the other agent, in Fig. 3.9. This not only allows a meaningful

comparison of the performance of controllers of differing levels but is also indicative of the
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pragmatic performance of the computed controllers against sophisticated agents. Observe

the generally increasing trend of the average rewards as the controllers increase in size on

escaping from local optima. This property lends itself to an anytime behavior for I-BPI. Fur-

thermore, controllers that are more strategic exhibiting a higher level, l, eventually perform

better. Each reward data point is averaged over 5 trials. Each trial in the tiger problem

involved 100 initial beliefs randomly generated and 3 representative initial configurations

of the AUAV and the fugitive were utilized, and for each belief, 1000 simulation runs were

carried out. In each simulation run, agent i’s actions are guided by the converged controller

of the particular level up to 4 while agent j is always acting based on a level 4 controller

for the tiger problem and a level 2 controller for the AUAV problem. The latter are the

highest-level converged controllers we obtain and represents the highest-valued behavior of

an agent in the multiagent tiger and AUAV problems so far to the best of our knowledge. 4

We note the rewards of agent i accumulated over 20 steps as both agents act and receive

observations due to which their respective controllers transition.
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Figure 3.10: Sizes of the level l controllers that are reached in a given amount of time for
the multiagent tiger problem. Expectedly, higher-level controllers take more time as the
controllers at all lower levels are improved as well.

How much time is needed in obtaining the controllers of increasing sizes that demonstrate

4Policy iteration [23] may result in near-optimal controllers and provides an upper bound for BPI. An
implementation of policy iteration for solving these controllers did not converge even for the smaller mul-
tiagent tiger problem due to the large number of nodes added at each iteration. In particular, it failed to
extend beyond two steps of improvement.

66



the improving performance? In Fig. 3.10, we show the sizes of the level l controller reached

in a given amount of time in the context of the tiger problem. Initially, time is spent

in improving controllers at all levels up to l by escaping local optima. Subsequently, the

lower-level controllers stop improving and time is spent on the top-level controller only with

corresponding quicker increases in size.
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Figure 3.11: Interleaved improvement of the controllers across the different levels in I-BPI
demonstrates anytime behavior for (a) I-POMDPi,4 in the multiagent tiger context, and (b)
I-POMDPi,2 in the larger money laundering problem. It takes more than 500 seconds in the
multiagent tiger problem before i’s level 4 controller begins to improve when the approach
is not interleaved (labeled as ‘Non-interleaved’). Thereafter, it quickly improves as we may
expect given the good quality predictions for the other agent. Analogously, more than 1,000
seconds elapse before the level 2 controller improves in the money laundering context.

In Fig. 3.11 we demonstrate the flexible anytime performance of I-BPI in the multiagent

tiger and money laundering contexts and compare with the alternative technique of improv-

ing the lower-level controllers until convergence before moving to the higher-level one. Notice

that the latter approach is distinctly non-anytime taking more than 500 seconds before the
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lower-level controllers up to level 3 converge and the upper-level controller for the subject

agent starts improving for the tiger problem. Until this time, the initial level 4 controller

would be available only in comparison to the improving controller available from the anytime

approach. Analogously, more than 1,000 seconds elapse before the level 2 controller for the

subject agent starts improving in the money laundering problem. In order to understand

the quick improvement that I-BPI brings to the controller, we perform a simple experiment

in the context of the multiagent tiger problem. We improved a level 1 controller until con-

vergence with, (a) the lower-level controller improved using a single iteration, and (b) the

lower-level controller not improved beyond the seed. We obtained an average reward of 7.143

with a standard deviation of 0.32 across 5 trials for the first approach compared to 4.99 with

a standard deviation of 0.17 for the second against a common level 1 opponent. This is

demonstrative of the positive impact on the level 1 controller to attain significantly better

performance when the behavior ascribed to the other agent is improved.

Next, in Table 3.1, we report the average rewards obtained from simulating the controllers

that I-BPI generates along with the associated I-BPI run times, as we scale I-POMDPi,l in the

context of the number of strategy levels, l. We compare these rewards with those reported

using the previous best I-POMDP approximation technique, I-PBVI [15], where the latter are

obtained from actual simulation runs as well. We report on policies obtained from I-PBVI

using 100,000 belief points in times that were comparable to those of I-BPI or moderately

exceeded them. We limit our runs in the simulations to a finite number of 20 steps in order to

facilitate comparison between I-BPI whose controllers could be viewed as having a look ahead

of an infinite number of time steps and I-PBVI policy whose look ahead is finite. Performance

of both approaches is averaged on 5 trials with each trial run for 100 initial beliefs and 10,000

simulation runs per belief. While the original I-PBVI operated on an interactive state space

that contained intentional models, we modify the space to include nodes that correspond

to the backed up value vectors constituting the other agent’s policy. This compacts the
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Problem Level Method Time(s) Avg. Rwd Property

Multiagent tiger 1

I-BPI 20 10.96 ± 0.09 |Ni,1| = 20

I-PBVI 81 8.81 ± 0.06 h = 8

αi,1 = 73

|S|=2, |Ai|=|Aj |=3 2

I-BPI 84 12.95 ± 0.10 |Ni,2| = 29

|Ωi|=6, |Ωj |=2

I-PBVI 584 6.50 ± 0.03 h = 5

αi,2 = 59

3
I-BPI 758 13.20 ± 0.09 |Ni,3| = 41

I-PBVI — — —

4
I-BPI 1,944 13.32 ± 0.08 |Ni,4| = 43

I-PBVI — — —

Machine Maintenance 1
I-BPI 15 20.22 ± 0.13 |Ni,1| = 20

I-PBVI 60 18.71 ± 0.01 h = 20

αi,1 = 5

|S|=3, |Ai|=|Aj |=4
2

I-BPI 39 20.55 ± 0.06 |Ni,2| = 20

|Ωi|=|Ωj |=2

I-PBVI 97 20.21 ± 0.02 h = 20

αi,2 = 4

3
I-BPI 117 21.28 ± 0.05 |Ni,3| = 20

I-PBVI — — —

4
I-BPI 157 21.36 ± 0.09 |Ni,4| = 20

I-PBVI — — —

3.1(a)

interactive state space analogous to I-BPI resulting in an improved performance compared

to the original I-PBVI. Notice that I-PBVI is able to reasonably scale up to two levels only

within the time limit and the corresponding rewards are sometimes significantly lower than

those obtained by I-BPI. In the Property column of Table 3.1, |Ni,l| denotes the number of

nodes in the converged controller, h denotes the horizon of the policy obtained from I-PBVI,

and |αi,l| denotes the number of alpha vectors in this policy. These parameters are indicative

of the sophistication of the respective policies.

As we see from Table 3.1(a), I-BPI allows scaling solutions of I-POMDPs of up to four
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Problem Level Method Time(s) Avg. Rwd Property

Money Laundering 1
I-BPI 3,275 12.09 ± 0.97 |Ni,1| = 23

|S|=99, |Ai|=9, |Aj |=4
I-PBVI 4,462 0.51 ± 0.13 h = 5

αi,1 = 29

|Ωi|=11, |Ωj |=4 2
I-BPI 4,463 14.21 ± 1.54 |Ni,2| = 42

I-PBVI — — —

AUAV Reconnaissance 1
I-BPI 806 13.33 |Ni,1| = 19

|S|=81 (3 × 3), |Ai|=|Aj |=5
I-PBVI 2,215 13.33 h = 4

αi,1 = 63

|Ωi|=4, |Ωj |=12 2
I-BPI 1,548 50 |Ni,2| = 17

I-PBVI — — —

AUAV Reconnaissance 1
I-BPI 5,695 -15.25 |Ni,1| = 11

|S|=256 (4 × 4), |Ai|=|Aj |=5
I-PBVI — — —

|Ωi|=4, |Ωj |=12 2
I-BPI 9,308 1.27 |Ni,2| = 15

I-PBVI — — —

3.1(b)

Table 3.1: Average rewards of the controllers obtained by solving I-POMDPi,l for various
levels, for (a) benchmark toy problems, and (b) large domains. Rewards were obtained
from executions of the controllers in simulated problem domains against the highest-level
controller of the other agent. Run time for I-BPI and I-PBVI was cutoff at one hour in (a)
and at two hours in (b) with all methods allowed to complete any iteration that was started
before the cutoff. ’—’ indicates that the corresponding values were not available by the cutoff
time. Standard deviation from the mean is shown and is 0 where not indicated. Student’s
unpaired t-test indicates that the difference in I-BPI’s average rewards between levels for
each problem is significant at p ≤ 0.05 level. These results were generated on a RHEL 5
system with Xeon Core2 duo, 2.8GHz each and 4 GB of RAM.

levels deep in time duration that is within one hour. Note that previous approaches have

not scaled solutions beyond two levels. It also scales to larger problem domains. This

improvement is primarily due to, (i) use of BPI that improves the controller directly without

explicitly backing up the vectors; and (ii) representing the model space compactly using

a finite number of nodes. We additionally report the number of nodes at level l in the

nested controller and note that smaller-sized controllers are preferable as they consume less
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memory. Comparison with I-PBVI reveals that the quality of the controllers is significantly

better in many of the problems. While we solved I-PBVI for as long a horizon as possible in

the imposed time limit, Table 3.1 shows that the maximum horizon does not exceed 20 for

the small problems.

A reason for the difference in reward could be due to I-BPI ascribing controllers to the

other agent that are compact and of higher quality. We investigate this by cross-utilizing the

same controller for agent j in I-PBVI as the one used in I-BPI in the context of the multiagent

tiger problem at level 1. In 96 seconds, we obtained a policy from I-PBVI containing 68

vectors and whose average reward is 9.26 ± 0.06. At level 2, a policy with average reward of

7.88± 0.1 is obtained in 602 seconds. Therefore, a better quality policy obtained from I-PBVI

when a lower-level controller from I-BPI is used indicates that the difference in performance

between the two approaches is, in part, due to the difference in how the other agent is

modeled. A second reason for the difference in reward is due to the comparatively smaller

look ahead of the policies from I-PBVI when utilized in the simulations. On the other hand,

I-BPI’s converged controllers utilize an infinite-horizon look ahead though the controllers

may not be optimal.

Next, we demonstrate the performance and scalability of the algorithm on the two large

and real-world inspired problems, money laundering and AUAV reconnaissance on a grid,

in Table 3.1(b). Although the former has been solved previously by Ng et al. using the

interactive particle filtering [46], the approach assumed an initial belief over the interactive

state space and reported run times were more than an order of magnitude greater compared

to the time taken by I-BPI. Furthermore, our approach provides a general solution valid over

the entire belief space. Table 3.1 shows the run times for generating converged controllers

of good quality for the larger problem domains. Rewards obtained across 100 simulation

runs each for 500 different beliefs were averaged and are reported. In the money laundering
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problem, we utilized random initial beliefs for the simulations while the AUAV started out

in the neighborhood of the fugitive for the reconnaissance problems. While the AUAV

reconnaissance on a 4 × 4 grid consumes slightly more than two hours at level 2, the money

laundering problem takes about an hour. The sizes of the stable controllers for the different

problem domains are also shown in Table 3.1. We may improve on the controllers reported

in Table 3.1 by allocating more time to the algorithm in order to execute more iterations of

evaluation and improvement of the stochastic controllers and escape from local optima. We

point out that the reported average reward for the money laundering problem is competitive

in comparison to those reported by Ng et al. [46] for particular initial beliefs and parameter

configurations. Specifically, Ng et al. reported a reward of about -450 for the blue team at

level 1 compared to 12.09 obtained by I-BPI for identical beliefs and configurations. They

did not report rewards for level 2 agents.

An empirical observation in all of these problem domains is that the level l controller, πi,l,

converged – it stops improving and its value vectors obtained by solving the system of linear

equations given by Eq. 3.2 fixate – after the lower-level controller, πj,l−1, converges. This is

to be expected because the lower-level controller is a part of the evaluation and improvement

steps for the level l controller.

3.5.2 Scalability to Multiple Frames and K > 2 Agents

We evaluate the performance of I-BPI when agent i is uncertain about j’s frame and thinks

that j might have a different model of the problem, thereby attributingmultiple frames to the

other agent. We also evaluate I-BPI when the subject agent shares its environment with more

than one other agent. Because each new frame may contain different transition, observation

and reward functions, a new controller is attributed to the other agent per frame. For |Θ̂j|

frames, as many controllers are utilized and if each controller has say, |Nj,l−1| nodes, this

adds |Θ̂j||Nj,l−1| nodes to the interactive state space of i causing a linear increase. However,
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this occurs for each controller at every level making the net increase exponential in the levels.

Subsequently, I-BPI evaluates and improves each controller attributed to the other agent as

well. We show the time performance of level 2 I-BPI as up to 5 frames are ascribed to the

other agent in the multiagent tiger problem, in Fig. 3.12(a). The differing rates of increases

in time with more nodes is due to the level 2 controller taking more time to converge in

some cases because, in part, the lower-level controllers do not converge quickly compared to

other cases. In simulations where the other agent’s frame was unknown but from within the

candidate set, we observed an increase in average reward over 10,000 runs from 9.38 to 9.7

for controllers obtained by ascribing more frames. In the context of the larger problem of

AUAV reconnaissance on a 3×3 grid when the strategy level is 1, I-BPI consumed 2,285s in

generating a stable controller when 2 frames were ascribed to the fugitive, and 4,174s when

3 frames were ascribed to the fugitive. Both the controllers averaged a reward of 48.33 in

simulations with a fugitive at level 2.
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Figure 3.12: (a) Execution time of using I-BPI to solve I-POMDPi,2 in the context of the
multiagent tiger problem as multiple frames are attributed to the other agent. The number of
nodes on the x-axis are those of the upper-level controller and the time is until convergence
of the nested controller for that many nodes. (b) Results from using I-BPI for solving I-
POMDPi,1 in the multiagent tiger context as the setting is shared with multiple other agents.

The presence of more than one other agent in the environment leads to an exponential in-

crease in the size of the interactive state space. This is because we form a Cartesian product

of the nodes in the controllers attributed to the other agents leading to |Nj,l−1||Agents| many
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nodes in the interactive state space. We report the execution time performance of I-BPI for

solving a level 1 I-POMDP with multiple agents, in Fig. 3.12(b). The initial steep increases

are due to the lower-level controller also improving until it converges followed by an escape.

Thereafter, the increase in time is due to adding nodes to agent i’s level 1 controller from

escapes and improving until local convergence. Notice that I-BPI takes about 17 minutes in

generating a 15-node controller for agent i with 2 other agents (total of 3). The presence of

increasingly more agents in the setting reduces the average reward of the subject agent from

9.7 (3 agents) to 5.21 (5 agents) because of increasing likelihood of some agent opening a

door at any time step due to which the tiger resets. This makes the subject agent listen for

observations again.

In summary, I-BPI improves on the previous best approximation technique for finitely-

nested I-POMDPs by solving problems for deeper levels of strategic nesting, and problems

with much larger dimensions. Simultaneously, the generated solutions are of improved value,

although the presence of multiple local optima in its updates may make it difficult for I-BPI

to get arbitrarily close to global optimality. While I-BPI may be utilized for agents that

ascribe a small number of frames to others and to settings with up to 5 agents, further

optimizations specific to these extended settings are needed for more frames and agents.

Notwithstanding this, these results reflect scalability that significantly improves on previous

I-POMDP techniques.

3.5.3 Improved Controllers given Initial Beliefs

I label I-BPI with occupancy computations as I-BPI+Occ, and additionally with node pruning

as I-BPI+Occ+RM (RM denotes removing models). In Table 3.2, I compare the converged

controllers obtained from I-BPI, I-BPI+Occ and I-BPI+Occ+RM by simulating them in the
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multiagent tiger problem and in the larger problem domains of money laundering and AUAV

reconnaissance on a 4×4 theater. The comparison is based on multiple metrics: simulation

rewards, execution times and controller sizes. For the money laundering problem, we utilized

the initial belief as used by Ng et al. [46], in which the blue team believes that the money is

in the dirty pot and that there are no sensors. For the AUAV problem, we averaged over 5

realistic initial beliefs. In all of these, the AUAV is aware of its own location but is uncertain

about the fugitive’s location. Furthermore, it believes that the fugitive believes that the

AUAV is at a Manhattan distance of between 1 to 3 places from itself. We performed 1,000

simulations of the controller for a corresponding initial belief, and the other agent was guided

by the best possible controller at the highest level we could generate.

Table 3.2 demonstrates that utilizing the initial belief in I-BPI using occupancy com-

putations for the larger problems leads to a controller that significantly improves on the

one obtained from the original approach. This is because I-BPI’s improvements are not

guided by the initial beliefs and it may stabilize on a local optima that is worse compared to

I-BPI+Occ despite escapes. While this improvement is not large for the smaller tiger prob-

lem, it is obtained from a smaller-sized corresponding controller compared to I-BPI. Note

that all simulations in a domain used the same initial beliefs. Furthermore, as we mentioned

previously, pruning nodes causes a drop in the quality of the controller because some of the

nodes gain prominence as the controller is improved. However, other than the level 1 AUAV

reconnaissance problem where the average reward dropped from 26.72 to 4.2, we did not

observe large drops in the value, and importantly, the corresponding controllers continue to

outperform those obtained from I-BPI in most cases.

As we may expect, the run times for I-BPI+Occ are larger than those for I-BPI for the

larger problems because of the additional occupancy computation in each iteration, despite

the lesser number of nodes in the converged controllers. In particular, the ML problem

having 11 observations for each agent shows a large increase in run time of I-BPI+Occ and
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Problem Lvl Method Avg. Time(s) Avg. Rwd
Property

|Ni,l| |Nj,l−1|

Multiagent
tiger

1

I-BPI 20 10.82 ± 0.05 20 10

I-BPI+Occ 7 11.25 ± 0.11 13 10

I-BPI+Occ+RM 7 11.25 ± 0.11 13 9

2

I-BPI 84 12.45 ± 0.11 29 10

I-BPI+Occ 101 12.54 ± 0.11 23 13

I-BPI+Occ+RM 67 12.51 ± 0.11 23 10

3

I-BPI 758 12.31 ± 0.08 41 29

I-BPI+Occ 563 12.87 ± 0.11 24 24

I-BPI+Occ+RM 216 12.81 ± 0.10 26 19

4

I-BPI 1,944 12.46 ± 0.07 43 35

I-BPI+Occ 1,170 12.91 ± 0.11 39 24

I-BPI+Occ+RM 432 12.75 ± 0.06 31 14

Money
Launder-
ing

1

I-BPI 3,275 -6.43 ± 0.13 23 5

I-BPI+Occ 9,891 -0.99 ± 0.21 21 6

I-BPI+Occ+RM 4,861 -2.86 ± 0.05 19 5

2

I-BPI 4,463 1.90 ± 0.18 42 4

I-BPI+Occ — — — —

I-BPI+Occ+RM — — — —

AUAV
Recon.
(4 × 4)

1

I-BPI 5,695 -38.37 11 5

I-BPI+Occ 12,734 26.72 9 5

I-BPI+Occ+RM 9,644 4.20 10 4

2

I-BPI 9,308 -22.42 15 5

I-BPI+Occ 18,166 28.25 9 5

I-BPI+Occ+RM 14,151 21.78 9 4

Table 3.2: Agent’s initial beliefs when available may be utilized to learn controllers that
obtain better rewards. These results were generated on a RHEL 5 system with Xeon Core2
duo, 2.8GHz each and 4 GB of RAM. Run time was cutoff at five hours with iterations
allowed to complete. The values for the AUAV problem is the average over the values of the
5 controllers obtained, one for each initial belief. ‘—’ indicates that the controller did not
stabilize by the cutoff time. Differences in average rewards between I-BPI and I-BPI+Occ
are significant (Student’s t-test, p ≤ 0.05) except for the level 2 tiger problem.
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I-BPI+Occ+RM that exceeds the cutoff. This is because occupancy computations scale with

the number of joint observations (see Eq. 3.4) – a factor that is large for ML. However, these

computations are not intensive for the smaller tiger problem and the associated smaller con-

troller sizes yield run time benefits. I-BPI+Occ+RM reduces the run times significantly to

more manageable levels for the larger problems. In particular, the run time for the level 1

money laundering problem is halved due to additionally pruning a single node in the agent

j’s controller. We note that each less node in the other agent’s controller causes a reduc-

tion of |S| states in the interactive state space. Furthermore, the smaller-sized controller

converges more quickly, which led the level 1 controller of agent i to converge quickly. Both

these together contributed to the speed up. Finally, nodes sizes of the controllers indicate

the impact of selectively pruning nodes and the expressiveness of the policies. In particular,

considering the initial belief generates controllers that are smaller and targeted. A node

pruned from the other agent’s controller implies that the intentional models mapped to that

node became implausible due to the initial belief.

In summary, we provide a method for accounting for an initial nested belief of agent i, if

available, within I-BPI. It generates controllers of improved value compared to I-BPI at the

expense of increased computations. However, improvements are not guaranteed especially

if the overall policy generated by I-BPI is already of high quality. Because our aim is to

keep the complexity manageable, we introduce a novel and principled way to prune some of

the nodes in the other agent’s controller using the occupancy distributions. The increased

computation times suggest that these extensions should be utilized if the controller from I-

BPI is thought to be of poor quality. As such, we do not view I-BPI+Occ and I-BPI+Occ+RM

as independent methods for solving I-POMDPs with initial beliefs.
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3.6 Related Work

Tractable POMDP solution approaches specifically target the factors that aggravate the

computational complexity such as curse of dimensionality which results in exponential growth

in the size of the belief space over which the solution must be optimized with the increase in

number of states. The other significant factor affecting the solution complexity is the curse

of history. In the context of policy iteration, it is the exponential growth in the size of policy

space over which the search for optimal policy should be performed with each application of

the backup operator. Being a generalization of POMDPs, solutions of I-POMDPs are also

affected by the curses of dimensionality and history that affect POMDPs. The dimensionality

hurdle is further aggravated because an agent maintains belief not only over the physical state

but also over the models of the other agents, and the number of candidate models grows

over time as the agents act and observe. We term this added complexity on modeling the

other agent as curse of agent modeling.

Previous approximations for finitely-nested I-POMDPs include interactive particle filter-

ing [14] and interactive point-based value iteration [15]. Particle filtering seeks to mitigate

the adverse effect of the curse of dimensionality by forming a sampled, recursive representa-

tion of the agent’s nested belief, which is then propagated over time. However, its efficiency

is still impacted by the number of models because this increases the need for more samples,

and it is better suited for solving I-POMDPs with a given prior belief. Interactive point-

based value iteration generalizes point-based value iteration [50] to multiagent settings, and

reduces the effect of the curse of history by optimizing the value function over a finite sub-

set of the belief space instead of the entire space. While this approach significantly scales

I-POMDPs to longer horizons, we must include all reachable models of the other agent in

the state space, which grows exponentially over time, thereby making it susceptible to the

dimensionality hurdle. Our implementation of I-PBVI overcomes this problem by modifying

the state space to include nodes that correspond to the backed up value vectors constitut-
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ing the other agent’s policy. This compacts the interactive state space analogous to I-BPI

resulting in an improved performance compared to the original approach.

We may also group together models that are behaviorally equivalent resulting in a parti-

tion of the model space of the other agent into a finite number of equivalence classes [56, 79].

This approach, analogously to using finite state controllers, allows a compact representation

of the model space. However, computing the exact equivalence classes requires solving the

models.

As we mentioned previously, BPI [51] has been extended to the context of decentral-

ized POMDPs as well [5], which is a framework for joint decision making in cooperative

settings. A stochastic finite state controller is initialized for each agent along with a cor-

relation device, which is a shared source of randomness between the agents. Though not

necessary, the correlation device provides a mechanism for the agents to coordinate their

actions efficiently. Each controller and the correlation device is improved independently us-

ing the two steps of evaluation and improvement until convergence. While I-BPI differs in

its use of controllers embedded at different levels which are iterated and bring its own set

of unique challenges, policy iteration demonstrated significant scalability in the context of

decentralized POMDPs as well, allowing problem domains of larger sizes to be solved with

good quality solutions. A recent approach [1] generates optimal controllers of a fixed size in

the context of both POMDPs and decentralized POMDPs using a quadratically-constrained

linear program. Although the complex formulation makes the problem non-convex thereby

admitting many additional local optima, empirical results verify that it generates controllers

of improved value compared to BPI for the same number of nodes. However, solving a non-

linear program is computationally much more intensive and often exhibits reduced stability,

making it suitable for controllers of small sizes only. Furthermore, embedding controllers

of the other agent in the state space in the context of I-POMDPs makes this formulation

additionally computationally complex. We improve the value of the controllers by utilizing

79



escape techniques and exploiting initial beliefs.

Somewhat analogous to our exploit of sparseness of non-zero values in the transition and

observation functions of the problem domains, Hansen [24] noted the sparseness of non-zero

parameters obtained from the linear program of BPI in the context of POMDPs. While the

linear program computes |Ai| + |Ai||Ωi||Ni| parameters, just a few of these typically have

non-zero values for multiple problem domains. Using a series of reduced linear programs,

Hansen showed that we could get the same result as solving the full linear program, but

more efficiently by iteratively focusing on just the non-zero parameters.

A recent incremental policy iteration approach [21] yields small controllers with signifi-

cantly improved values for POMDPs using a series of heuristic based escape techniques and

a quadratic optimization program that guarantees escape. Its generalization to multiagent

scenarios is yet to be explored.

3.7 Discussion

Recently emerging applications for I-POMDPs in defense and robotics necessitate the need

for approaches that allow its solutions to scale. We introduced a generalized policy iteration

algorithm for multiagent settings in the context of finitely-nested I-POMDPs. This is, to

the best of our knowledge, the first policy iteration algorithm proposed for I-POMDPs. We

construct a finite state controller for each differing frame of other agents, and models of

other agents get naturally mapped to nodes in the respective controllers. The application of

generalized BPI to these controllers ensures that the size of the model space doesn’t increase

rapidly thereby subduing the effect of the curse of agent modeling, which excessively impacts

I-POMDPs. As a result, we provide solutions of I-POMDPs that are nested to levels as deep

as four for the first time. Ultimately, this allows the application of I-POMDPs to scale to

more realistic domains with reduced trade off in value of the solution compared to previous
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approximations. We demonstrate this by applying the technique to substantially larger

problem domains, which are inspired by real-world applications.

Section 3.2 discussed transforming the original interactive state space consisting of the

physical states and models of the other agent into a more compact space given a finite-state

controller for the other agent. If the initial controllers are improved using policy iteration [23]

at all levels, we may obtain an ϵ-optimal solution of the I-POMDPi,l after a finite number of

iterations. However, our use of the generalized BPI makes the approach an approximation

technique because BPI is not guaranteed to reach (ϵ-)optimality often converging to local

optima despite the presence of an escape technique.

Higher strategy levels usually correlate with more sophisticated behavior leading to con-

trollers whose size increases with strategy levels, as we demonstrated in Fig. 3.6. However,

the presence of local optima additionally impacts the controller sizes. Interactive BPI scales

better for domains in which high quality behavior at lower levels may be represented using

controllers having just a few nodes. This reduces the size of the interactive state space for

higher levels and the impact of the curse of dimensionality. In this regard, uncovering prop-

erties of domains that allow smaller-sized controllers to represent high-quality behavior is an

important direction of investigation.

A limitation of interactive BPI is its predilection of convergence to local optima leading

to controllers whose quality could be unpredictable. While techniques for escaping from

local optima help (Section 3.5.1), this is not guaranteed and the globally optimal value may

not be achieved. In particular, the approach of seeking an improved value vector that is

pointwise uniformly greater than a previous vector leads to multiple local optima; relaxing

the constraint of uniform improvement may help as we demonstrated in our use of initial

beliefs.

An important limitation and line of future work is to improve the performance of this

approach on problem domains having more than two agents. As we mentioned previously, a
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separate controller is embedded in the state space for each other agent, and iteratively im-

proved. Although the state space grows exponentially in the number of nodes in a controller

with more agents, its size is much reduced in comparison to using models because many

models map to a single node of the controller. Therefore, I-BPI obtains converged controllers

for up to K = 5 agents (Section 3.5.2), although it remains to be investigated whether fur-

ther optimizations that specifically target simplifying structure in problems involving many

more agents are possible. Furthermore, it is easy to see that I-PBVI would suffer much more

given multiple other agents. While the state space would also grow exponentially with the

number of agents as in I-BPI, backups in I-PBVI often produce many more alpha vectors

compared to the nodes in a bounded finite state controller. While the number of vectors are

limited by the belief points considered, these are usually far more than the bound on the

number of nodes, and grow over time (see Table 3.1). Consequently, the interactive state

space is larger in the context of I-PBVI and grows over time.

Additionally, the finite state controllers that we use are a type of automata called Moore

machines. Recently, Mealy machines [30] were utilized in the context of decentralized

POMDPs to good effect [2]. Therefore, another avenue is to investigate the utility of dif-

ferent types of controllers including Mealy machines in the context of I-POMDPs. Finally,

the non-linear program formulation for POMDPs [1] is shown to generate smaller-sized con-

trollers with values that improve on BPI despite also being prone to local optima. As such,

pursuing a generalized non-linear formulation for I-POMDPs is a viable direction for future

work.
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Chapter 4

Bimodal Switching for Online

Planning in Multiagent Settings

Execution time planning (often referred to as online planning) involves computing the op-

timal policy for the subject agent in a limited amount of time given its initial belief (the

prior) that evolves over time as the agent acts and observes. As a result of the additional

constraint of limited time, online planning techniques emphasize on reduced planning time

by trading off optimality and relying on approximations. Traditionally, the focus of online

planning research has been on the single-agent settings [57], albeit isolated approaches for

cooperative problems do exist [77].

I attend to online planning in the context of finitely-nested interactive partially observable

Markov decision processes (I-POMDPs) [20, 17]. More specifically, I focus on a subset of I-

POMDP problems in which the actions of the other agents are not directly observable to

the subject agent but can be inferred from their effect on the state of the environment. In

I-POMDP literature, interactive particle filtering [14] offer a way to plan at execution time

given an initial belief. However, this approach is time consuming and does not scale to

settings with more than tens of physical states or to long horizons.
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The chief reason of poor scalability is that the subject I-POMDP agent must deliberate

over the behavior of the other agents present in the environment by simultaneously updating

its belief over both the physical states and the models of the other agents conditioned on the

states based on its own actions and observations (curse of dimensionality and curse of agent

modeling). The belief over the models of the other agents is updated based on their predicted

actions and their observed effects on the physical states. These observations become more

informative when the agent’s belief over the physical state has reduced uncertainty (entropy).

For example, in the context of a variant of the the well-known multiagent tiger problem [20]

(example 1) in which the observation of creaks is not available to the subject agent, let the

agent strongly believe that the tiger is on the left but on listening hear a growl from the

right. If the observation is reliable with a high probability, the agent infers that the other

agent likely opened the door causing the tiger to change its location.

We present a novel two stage online planning approach. In the first phase, the agent

behaves as if it were alone in the environment by marginalizing the effect of the other agents

as a fixed noise. During this phase, the goal of the agent is to reduce the uncertainty in

its belief over the physical states. In this mode, the agent is modeled as a POMDP and

planning in this phase could be performed efficiently fast POMDP planning techniques such

as SARSOP [40], that takes orders of magnitude less time to execute as compared to the

I-POMDP solver. As the agent operates in the POMDP phase and its uncertainty in its

belief over physical states reduces, it switches to the I-POMDP mode combining its updated

belief over the physical states and the initial belief over the models. From this point onwards,

the agent performs online planning using interactive particle filtering technique.

The question then becomes, “When should the agent switch from the POMDP to the

I-POMDP mode?” To facilitate the switching, we compute the upper and lower bound on

the optimal value of the subject agent’s current belief at each step. Switching takes place

when the ratio between the difference between the current upper and lower bound values
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to the difference between the maximum upper bound value and the minimum lower bound

value becomes less than a parameter, ϵ. Because of the convexity property of the lower-bound

value function (the POMDP value function is PWLC), the difference between the two bounds

typically reduces as beliefs become less uncertain (near the vertices of the PWLC curve).

Nevertheless, the bounds may not converge, and switching may not occur for very small

values of ϵ.

The bimodal approach yields computational savings because during the initial steps of

online planning (POMDP phase), the agent utilizes a fast and scalable single-agent solution

algorithm. However, this computational saving may come at a cost. We estimate the error

entailed by this approach. We illustrate the results of this approach on a persistent variant of

the multiagent tiger problem where the agent can’t directly observe the actions of the other

agent through creaks and show that the total time elapsed over several steps of bimodal

approach is significantly less compared to using an I-POMDP approach right from the start

at the expense of reduced cumulative reward.

4.1 Bimodal Online Planning

Let b0i,l be agent i’s initial belief over the interactive state space (at time-step 0). Agent

i initially views the problem as a single-agent POMDP and its belief is the portion of b0i,l

that represents the distribution over the physical states only, b0i,l(s). In the first phase, the

agent only updates the distribution over b0i,l(s). Conditional beliefs over the models given

the state, b0i,l(·|s), are held fixed. After some steps, in the second phase, the agent switches

to updating the conditionals as well.

A key observation motivating the bimodal approach is that in problem domains where

direct (including noisy) observations about the other agent’s actions are not available and

its actions are inferred by sensing the next state, perhaps noisily, knowing the current state
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provides greater information about the true model of the other agent. We prove this claim

next.

Definition 2 (Unobservable actions). Actions of agent j are directly unobservable to agent i

iff observations of i are conditionally independent of j’s action, Oi(s, ai, aj, ωi) = Oi(s, ai, ωi);

∀ aj ∈ Aj, ωi ∈ Ωi, ai ∈ Ai, s ∈ S.

Let Pr(θ̇t+1
j,l−1|ω

t+1
i , ati, b

t
i,l) be i’s probability of the true model of the other agent, θ̇t+1

j,l−1,

on observing, ωt+1
i , and performing action, ati, given belief, bti,l. We may write it as:

Pr(θ̇t+1
j,l−1|ω

t+1
i , ati, b

t
i,l) =

∑
st+1

Pr(st+1, θ̇t+1
j,l−1|ω

t+1
i , ati, b

t
i,l)

Notice that the term on the right is agent i’s updated belief over a state and true model

of j obtained using the I-POMDP belief update. Under Def. 2 applied to both agents,

Pr(θ̇t+1
j,l−1|ω

t+1
i , ati, b

t
i,l) =

∑
st+1

∑
st
bti,l(s

t)
∑
θtj,l−1

bti,l(θ
t
j,l−1|st)

∑
atj

Pr(atj|θtj,l−1) Ti(s
t, ati, a

t
j, s

t+1)

Oi(s
t+1, ati, ω

t+1
i )

∑
ωt+1
j

Oj(s
t+1, atj, ω

t+1
j ) τ(θtj,l−1, a

t
j, ω

t+1
j , θ̇t+1

j,l−1)

(4.1)

where τ is an indicator function that is 1 when model, θtj,l−1, updates to θ̇
t+1
j,l−1 on performing

action, atj, and receiving observation, ωt+1
j ; otherwise 0. Equation 4.1 shows that i’s belief

over j’s true model at t + 1 is influenced by j’s predicted actions from its models, the

observations that j may likely receive and agent i’s transition and observation functions.

Let agents i and j perform actions, ati and a
t
j respectively, due to which the state tran-

sitions from st to st+1. As j’s actions are unobservable, state transitions allow valuable

inference of j’s actions.
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Definition 3 (Maximally informative transition). The above state transition is maximally

informative about j’s action iff Ti(s
t, ati, a

t
j, s

t+1) ≥ Ti(s̄
t, ati, a

t
j, s

t+1) for any other state, s̄t,

and T (st, ati, a
t
j, s

t+1) > T (st, ati, ā
t
j, s

t+1) for all other actions, ātj, of j.

Consider domains where the other agent’s actions are unobservable (Def. 2). In such

settings, observations are more informative about the other agent’s models if the uncertainty

over the physical state is mitigated. In order to show this, let the transition that occurs

from the current state, ṡt, due to joint actions be maximally informative (Def. 3). Let j’s

performed action solely lead to its true model. Agent i then receives the observation, ωt+1
i ,

that is most likely. Then, the following proposition holds:

Proposition 3. If bt,1i,l is a belief which assigns probability 1 on the current state, ṡt, then,

Pr(θ̇t+1
j,l−1|ω

t+1
i , ati, b

t,1
i,l ) ≥ Pr(θ̇t+1

j,l−1|ω
t+1
i , ati, b

t,2
i,l ), for any other belief, bt,2i,l , under the assump-

tion that the conditional distributions over the models of j in both beliefs are identical and

do not change with state.

Proof. For convenience, we may rewrite Eq. 4.1 as,

Pr(θ̇t+1
j,l−1|ω

t+1
i , ati, b

t
i,l) =

∑
st
bti,l(s

t) X (st, ati, ωt+1
i , θ̇t+1

j,l−1)

where X (st, ati, ωt+1
i , θ̇t+1

j,l−1) denotes the remaining terms of Eq. 4.1 as a function of st, ati,

ωt+1
i , and θ̇t+1

j,l−1. Under the assumption that i’s conditional distribution over the models

is identical for any state, if the current state is ṡt, then X (ṡt, ati, ωt+1
i , θ̇t+1

j,l−1) is greater

than X (s̄t, ati, ωt+1
i , θ̇t+1

j,l−1) for any other state, s̄t. This is because,
∑
st+1

Ti(s̄
t, ati, a

t
j, s

t+1)

Oi(s
t+1, ati, ω

t+1
i ) ≤

∑
st+1

Ti(ṡ
t, ati, a

t
j, s

t+1) Oi(s
t+1, ati, ω

t+1
i ), as any transition to a possible

next state, st+1, is maximally informative about j’s action given i’s action, from the current

state, ṡt. While some other action of j could result in a next state, st+1, from some s̄t, it

does not lead to the true model of j as per τ . As bt,1i,l puts a probability 1 on ṡt, it follows
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that X (ṡt, ati, ωt+1
i , θ̇t+1

j,l−1) is greater than
∑
st
bt,2i,l (s

t) X (st, ati, ωt+1
i , θ̇t+1

j,l−1), for any other belief,

bt,2i,l , which differs from bt,1i,l in its distribution over the physical states only.

While we sought to reduce some of the possibilities due to uncertainty, Proposition 3

formalizes the intuition that in domains where behavioral information about the other agent

must be inferred by sensing the dynamic state, received observations (that are not noise)

tend to be more informative about the other’s model when the uncertainty over the current

physical state is as less as possible.

If agent i’s conditional belief over models is decoupled from its belief over the physical

state, the proposition becomes useful as the beliefs, bt,2i,l and b
t,1
i,l , could be those that are in the

sequence of beliefs that i may have as it acts and observes. Consequently, in problems where

j’s actions are unobservable, it motivates that we update the distributions over the models

as late as possible in the game. Of course, the trade off is that the conditional distributions

over models are held fixed for a longer time affecting early predictions.

4.1.1 Lower Bound: POMDP model with noise

Our lower bound is a POMDP for agent i, POMDPi, that we adapt from the its level

l I-POMDP, I-POMDPi,l. For POMDPi, the state space is the set of physical states, S,

in I-POMDPi,l. The set of actions and observations for POMDPi is the same as the set of

actions and observation for agent i in I-POMDPi,l. Since we focus on the subset of I-POMDP

problems where the observation function is independent of the actions of the other agent, i.e.

other agent’s actions are unobservable, the observations function of POMDPi is the same

as the observation function of I-POMDPi,l. The transition and reward function in POMDPi

are the marginals of their counterparts in I-POMDPi,l. They are obtained by summing out

agent j’s actions in the respective functions using a marginalization factor that we compute

next. The optimality criterion remains a sum of discounted rewards over the finite horizon.
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In order to compute the marginalization factor for actions of agent j used to sum them

out in the transition and reward functions of I-POMDPi,l, we first solve the I-POMDP of

agent j by performing bounded policy iteration (BPI) [51] on the level 0 I-POMDP and using

interactive BPI [67] (chapter 3) otherwise. The solution thus obtained is in the form of a finite

state controller (FSC). Each node in the FSC corresponds to a distribution over j actions.

Also, each node in the FSC is associated with a value vector that gives the expected reward

of performing the action(s) corresponding to the node from each state, and then following

the remaining controller until the values converge. Any model of agent j could be mapped

to the node that maximizes the value of the inner product between the corresponding belief

bj,l−1 with the associated value vector, i.e. nodes in Nj,l−1 partition the continuous model

space. Doing so allows us to map the model space of j to the set of nodes in the FSC for

agent j, Nj,l−1. Note that multiple models may be mapped to a single node. A benefit of

this approach of mapping models to nodes is that the uncountably infinite model space is

reduced to a finite set of nodes, Nj,l−1. We may obtain the distribution over j’s actions for

summing out as:

Pr(aj|s) =
∑

nj,l−1∈Nj,l−1

b0i,l(nj,l−1|s) Pr(aj|nj,l−1) (4.2)

where Pr(aj|nj,l−1) is the probability assigned to action, aj, by the node, nj,l−1, and

b0i,l(nj,l−1|s) is the conditional probability mass in i’s initial belief over models that get

transferred to nj,l−1 due to the mapping: b0i,l(nj,l−1|s) =
∑

θj,l−1 7→nj,l−1

b0i,l(θj,l−1|s).

Equation 4.2 provides the distribution over the other agent’s actions used for formulating

the marginalization factors. This distribution is static and the resulting POMDPi models

the other agent as noise in the environment. Solution of this POMDP is obtained by using

SARSOP [40], which is a fast and scalable POMDP solution technique that produces a policy

graph.
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Next, we show that the expected reward from our formulation of POMDPi is a lower

bound to the expected reward from I-POMDPi,l in which the model space, Θj,l−1 has been

substituted with the FSC for j, Fj,l−1. Here, fj,l−1 ∈ Fj,l−1 is, fj,l−1 = ⟨nj,l−1, f̂j,l−1, θ̂j⟩,

where nj,l−1 is a node in the set of nodes in j’s level l − 1 controller, nj,l−1 ∈ Nj,l−1; f̂j,l−1

includes the set of edge labels, distributions of actions for each node and the edge transition

function of the controller; and θ̂j is j’s fixed frame. In other words, treating the other agent

as noise is less valuable than correctly modeling it.

In order to compare between the two value functions, we obtain the value of i’s marginal

belief over the physical state in the I-POMDPi,l as: V (bi,l(s)) = max
α̂

∑
s∈S

bi,l(s)α̂(s). Here,

α̂(s) =
∑
nj,l−1

b0i,l(nj,l−1|s) α(s, nj,l−1) (4.3)

where b0i,l(nj,l−1|s) is the initial conditional belief over nodes as defined previously, and

α(s, nj,l−1) is an alpha vector that composes the value function for I-POMDPi,l.

Proposition 4 (Lower bound). Let V denote the value function of I-POMDPi,l. Let H and

H be the backup operators for POMDPi and I-POMDPi,l, respectively. Then, it holds that

HV ≥ HV .

Proof. Let bi,l(s) be a belief over the physical states, and bi,l(s, nj,l−1) = bi,l(s) b
0
i,l(nj,l−1|s),

where b0i,l(nj,l−1|s) is the initial conditional distribution.

We begin by showing that for horizon 1, for any bi,l(s), value of this belief given by

POMDPi is the same as the value of the belief, bi,l(s, nj,l−1), shown previously:

V (b̂i,l) = max
ai∈Ai

∑
s

bi,l(s)R̂i(s, ai)

90



where R̂i(s, ai) is agent i’s reward function in POMDPi. Introducing aj gives,

V (bi,l) = max
ai∈Ai

∑
s

bi,l(s)
∑

aj
Ri(s, ai, aj)Pr(aj|s)

= max
ai∈Ai

∑
s

bi,l(s)
∑
aj

Ri(s, ai, aj)
∑
nj,l−1

b0i,l(nj,l−1|s) Pr(aj|nj,l−1) (from Eq. 4.2)

= max
ai∈Ai

∑
s,nj

bi,l(s, nj,l−1)
∑
aj

Ri(s, ai, aj) Pr(aj|nj,l−1)

= V (bi,l)

Next, we move to the case where the horizon is 2, and apply the I-POMDPi,l backup

operator to the value function, V :

HV (bi,l) = max
ai∈Ai

∑
s,nj,l−1

bi,l(s, nj,l−1)ERi(s, ai) +
∑
ωi

Pr(ωi|ai, bi,l) max
α

b′i,l · α

= max
ai∈Ai

∑
s

∑
nj,l−1

bi,l(s)b
0
i,l(nj,l−1|s)

∑
aj

Pr(aj |nj,l−1)

{
Ri(s, ai, aj) +

∑
ωi

∑
s′
Pr(s′, ωi|s, ai, aj)

∑
ωj

Oj(s
′, aj , ωj)

∑
n′
j,l−1

Pr(n′j,l−1|nj,l−1, ai, ωj) α
k(s′, n′j,l−1)

}

where k is the index of the alpha vector that provides the maximal value at the up-

dated belief, b′i,l. We may rewrite the above dynamic programming update by noting that∑
ωj

Oj(s
′, aj, ωj)

∑
n′
j,l−1

Pr(n′
j,l−1|nj,l−1, ai, ωj) represents the updated belief over the models

conditioned on the updated state, b′j,l−1(n
′
j,l−1|s′).

HV (bi,l) = max
ai∈Ai

∑
s

∑
nj

bi,l(s)b
0
i,l(nj,l−1|s)

∑
aj

Pr(aj |nj,l−1)

{
Ri(s, ai, aj)

+
∑
ωi

∑
s′
Pr(s′, ωi|s, ai, aj)

∑
n′
j

b′j,l−1(n
′
j,l−1|s′)αk(s′, n′j,l−1)

}

≥ max
ai∈Ai

∑
s

∑
nj,l−1

bi,l(s)b
0
i,l(nj,l−1|s)

∑
aj

Pr(aj |nj,l−1)

{
Ri(s, ai, aj)

+
∑
ωi

∑
s′
Pr(s′, ωi|s, ai, aj)

∑
nj′
b0j,l−1(n

′
j,l−1|s′)α̂k(s′, n′j,l−1)

}
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The above holds because αk(s′, n′
j,l−1) is maximal at b′i,l = b′i,l(s

′)b′i,l(n
′
j,l−1|s′). For the belief

in the above equation, b′i,l(s
′)b0i,l(n

′
j,l−1|s′), it may continue to remain maximal if b′i,l(n

′
j,l−1|s′)

and b0i,l(n
′
j,l−1|s′) are identical, otherwise it’s suboptimal. Using Eq. 4.3, above equation may

be rewritten.

HV (bi,l) ≥ max
ai∈Ai

∑
s

∑
nj

bi,l(s)b
0
i,l(nj,l−1|s)

∑
aj

Pr(aj |nj,l−1)

{
Ri(s, ai, aj)

+
∑
ωi

∑
s′
Pr(s′, ωi|s, ai, aj)α̂k(s′)

}
= max

ai∈Ai

∑
s
bi,l(s)

∑
aj

∑
nj,l−1

b0i,l(nj,l−1|s)Pr(aj |nj,l−1)

{
Ri(s, ai, aj)

+
∑
ωi

∑
s′
Pr(s′, ωi|s, ai, aj)α̂k(s′)

}
= max

ai∈Ai

∑
s
bi,l(s)

∑
aj

Pr(aj |s)
{
Ri(s, ai, aj) +

∑
ωi

∑
s′
Pr(s′, ωi|s, ai, aj)α̂k(s′)

}
(Using Eq. 4.2)

= max
ai∈Ai

∑
s
bi,l(s)

{∑
aj

Ri(s, ai, aj)Pr(aj |s) +
∑
ωi

∑
s′

∑
aj

Pr(s′, ωi|s, ai, aj)Pr(aj |s)α̂k(s′)
}

= max
ai∈Ai

∑
s
bi,l(s)

{
R̂i(s, ai) +

∑
ωi

∑
s′
Pr(s′, ωi|s, ai)α̂k(s′)

}
= HV (bi,l)

Here, R̂ is the reward function in POMDPi as defined previously, Pr(s′, ωi|s, ai) is the joint

observation and transition functions, and H is the corresponding backup operator.

As V = V , we also get, HV ≥ HV from the above proof, and furthermore, H(HV )

≥ H(HV ). Because the I-POMDPi,l backup operator is isotonic, H(HV ) ≥ H(HV ). This

implies, H(HV ) ≥ H(HV ). Thus, repeatedly applying the two backup operators maintains

the lower bound.

This is intuitive and demonstrates the benefit of closely tracking the other agent’s dy-

namic models.
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4.1.2 Upper Bound: I-POMDPi,l with perfectly observable state

In the first phase, agent i utilizes the policy resulting from solving POMDPi using the fast

and scalable POMDP solution technique SARSOP to guide its actions. The value of the

policies thus obtained for any belief over the physical states is guaranteed to be a lower

bound to the value of the I-POMDP obtained from I-POMDPi,l where the models of j in

the the interactive states are replaced by Fj,l−1. Eventually, the agent switches to using an

online solution of I-POMDPi,l for acting. In order to facilitate the switching, we utilize an

upper bound on the value of I-POMDPi,l for its belief over the physical states.

If an observation reveals the physical state perfectly to agent i in an I-POMDPi,l, the

proposition below shows that the resulting value of bi,l is an upper bound to the general

I-POMDP value. We redirect you to [68] for the proof. Notice that despite the physical state

being perfectly observable, the resulting model does not collapse into an MDP because the

model of the other agent continues to remain uncertain. Let V be the value function of this

model, which we denote as I-POMDPS
i,l. The value function is composed of possibly multiple

vectors for each state, s. For each state, we obtain the maximal value of the inner product

between the initial conditional belief, bi,l(nj,l−1|s), and the updated alpha vectors for that

state. These values form a single alpha vector over the physical states.

V (bi,l) =
∑

s bi,l(s) maxαs

∑
nj,l−1

bi,l(nj,l−1|s)αs(nj,l−1)

=
∑

s bi,l(s) maxai∈Ai

∑
nj,l−1

bi,l(nj,l−1|s)
∑

aj
Pr(aj|nj,l−1)

{
Ri(s, ai, aj)+

∑
s′ Pr(s

′|s, ai, aj)
∑

ωj
Oj(s

′, aj, ωj)
∑
n′
j,l−1

Pr(n′
j,l−1|nj,l−1, ai, aj)α

s′,k′(n′
j,l−1)

} (4.4)

Proposition 5 (Upper bound). Let H be the backup operator for the value function of I-

POMDPS
i,l as defined in Eq. 4.4. Then, it holds that HV ≤ HV , where H is the backup

operator for I-POMDPi,l as defined previously.
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Proof. Value of a belief, bi,l, for horizon 1 in I-POMDPi,l is,

V (bi,l) = max
ai∈Ai

∑
s,nj

bi,l(s, nj,l−1)Ri(s, ai, aj)Pr(aj |nj,l−1)

= max
ai∈Ai

∑
s
bi,l(s)

∑
nj

bi,l(nj,l−1|s)Ri(s, ai, aj)Pr(aj |nj,l−1)

≤
∑
s
bi,l(s)max

ai∈Ai

∑
nj

bi,l(nj,l−1|s)Ri(s, ai, aj)Pr(aj |nj,l−1)

= V (bi,l)

For a horizon greater than one, we obtain,

HV (bi,l) = max
ai∈Ai

∑
s bi,l(s)

∑
nj,l−1

bi,l(nj,l−1|s)
∑
aj

Pr(aj |nj,l−1) {Ri(s, ai, aj)+

∑
ωi

∑
s′ Pr(s

′, ωi|s, ai, aj)
∑

ωj
Oj(s

′, aj , ωj)
∑

n′
j,l−1

Pr(n′j,l−1|nj,l−1, ai, aj)α
s′,k′(n′j,l−1)

}
The alpha vector, αs

′,k′(n′
j,l−1), is the one in the set of vectors for the next state, s′, that gives

the largest value for the updated conditional belief over the models. Its selection from the

set does not depend on the observation, ωi, unlike in I-POMDPi,l. Therefore, the equation

above simplifies to,

HV (bi,l) = max
ai∈Ai

∑
s bi,l(s)

∑
nj,l−1

bi,l(nj,l−1|s)
∑

aj
Pr(aj|nj,l−1)

{
Ri(s, ai, aj)

+
∑

s′ Pr(s
′|s, ai, aj)

∑
ωj
Oj(s

′, aj, ωj)
∑

n′
j,l−1

Pr(n′
j,l−1|nj,l−1, ai, aj)α

s′,k′(n′
j,l−1)

}
≤

∑
s bi,l(s)maxai∈Ai

∑
nj,l−1

bi,l(nj,l−1|s)
∑

aj
Pr(aj|nj,l−1)

{
Ri(s, ai, aj)

+
∑

s′ Pr(s
′|s, ai, aj)

∑
ωj
Oj(s

′, aj, ωj)
∑

n′
j,l−1

Pr(n′
j,l−1|nj,l−1, ai, aj)α

s′,k′(n′
j,l−1)

}
= HV

Under the isotonicity property of the I-POMDP backup operator and V ≤ V , we obtain,

H(HV ) ≤ H(HV ). Similarly, H(HV ) ≤ H(HV ). We may reapply the above proof and
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assert that, H(HV ) ≤ H(HV ). This implies that, H(HV ) ≤ H(HV ), which means that

the upper bound is maintained over any number of applications of the two backup operators

to their respective value functions.

4.1.3 Bimodal switching

Let the difference between the upper and lower bound values for a belief, bi,l, over the physical

states be, Diff = V i(bi,l)− V i(bi,l). Let Rmin and Rmax be the smallest and highest rewards

in agent i’s reward function, Ri. Subsequently, Rmin
1−γH
1−γ and Rmax

1−γH
1−γ are the minimum

and maximum rewards that agent i could obtain over a finite horizon of H with a discount

factor of γ. These may be easily calculated from the model definition.

Because of the piecewise linear and convexity property of the value function of POMDPi,

and the relatively flat value function of I-POMDPS
i,l, we expect Diff to reduce as the uncer-

tainty in agent i’s belief over the state space reduces and the belief approaches the edges of

the belief simplex. Our approach switches from online planning using POMDPi to planning

using I-POMDPi,l when
Diff·(1−γ)

(1−γH)·(Rmax−Rmin) drops to below a parameter, ϵ ∈ [0, 1]. In other

words, ϵ is the fraction of the largest possible difference in value, which triggers the switch.

However, not all values of ϵ may be reached. Specifically, there is no guarantee that the up-

per and lower bounds converge near the vertices of the belief simplex. Moreover, extremely

small values of ϵ may not ever be reached and hence may never cause a switch.

4.1.4 Computational Savings and Error Bound

Instead of solving a multiagent planning problem from the start, our approach exploits single-

agent planning in the early stages subsequently switching to multiagent planning on reaching

a belief distribution over the physical states that admits reduced error bound. Hence, compu-

tational savings are obtained in the early steps when fast and scalable single-agent planning
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is performed. In order to obtain an estimate of the savings, let us suppose that we use

an exact POMDP-based approach for online planning that generates a perfect reachability

tree of H − 1 steps whose branching factor is (|Ai||Ωi|), from a belief. The tree contains

(|Ai||Ωi|)H−1 nodes each of which is associated with a single real number whose computation

takes time O(|Ai||S|) if the node is a leaf node, otherwise it takes O(|Ai||Ωi||S|2). On the

other hand, let us suppose that we use an exact I-POMDPi,l-based approach for the planning.

The reachability tree from a belief over the interactive state space would continue to have a

branching factor of (|Ai||Ωi|) and as many nodes as mentioned previously. However, calcu-

lating the value of the belief associated with each leaf node takes time O(|Ai||S||Nj,l−1||Aj|)

and the time for calculating the value at a non-leaf node takes O(|Ai||S|2|Nj,l−1||Aj|Ωi||Ωj|).

The difference in computation time at each node is due to modeling the other agent, and

the savings at all the nodes accumulates over the number of steps for which planning uses

POMDPi, which may vary.

Our choice of SARSOP – a state of the art approach – minimizes the time taken to

perform the POMDP-based planning. SARSOP generates policy trees that are near-optimal

for a given horizon from any belief, and the initial computation time is amortized over the

multiple steps for which the graph is used. The I-POMDPi,l-based online planning utilizes

I-PF and generates a reachability tree for a given horizon from a given belief resulting in an

approximate action.

If an exact approach is utilized for online multiagent planning after the switch, error is

incurred until the approach switches when ϵ is achieved. At this point, the difference between

the upper and lower bounds is, ϵ · (1−γ
H)·(Rmax−Rmin)

1−γ , which bounds the error as well. If T

steps were performed before switching, then the error is at least, T · ϵ · (1−γ
H)·(Rmax−Rmin)

1−γ .

This also serves as a reasonable estimate of the error because our bounds are tight resulting

in small ϵ values, as I illustrate next.
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4.2 Experimental Evaluation

To illustrate the effectiveness of the bimodal approach, we used a version of the multiagent

tiger problem (example 1) which is modified to make the actions of agent j unobservable.

Also, we use a persistent version of the problem where on opening a door the tiger remains

behind the same door with a probability 0.75 and moves to behind the other door with the

remaining probability. The reward function remains the same. The modified observation

function is as shown in table 4.1.

ai = L Oi(s
′, ai, GL) Oi(s

′, ai, GR)

TL 0.85 0.15

TR 0.15 0.85

ai = OL/OR Oi(s
′, ai, GL) Pr(s′, ai, GR)

TL 0.5 0.5

TR 0.5 0.5

Table 4.1: Observation function for the modified version of multiagent tiger problem where
the actions of agent j are unobservable to agent i (definition 2). Notice that the observation
probabilities for agent i are independent of the actions of j.

Next, we modify the transition function to let the agent persist behind its original door

with probability 0.75 when either agent opens a door. The modified transition function is

illustrated in table 4.2.Furthermore, we mitigate the amount of noise in j’s observations of

the state as modeled by i to 0.05.

In Figure 4.1, I illustrate the lower and upper bound values for changing beliefs of agent

i over the physical states for the multiagent tiger problem [20]. Beginning at a belief of

bi,1(TR) = 0.5 indicating that the tiger is believed to be behind the right door with a

probability of 0.5, the beliefs are updated as the agent listens and receives observations. We

obtained j’s controller using BPI, which has 5 nodes. Agent i’s initial distribution over these

nodes is obtained by mapping a distribution over level 0 models of j to a distrbution over

the nodes. Notice that the fraction, ϵ, becomes smaller as the beliefs show less uncertainty

although not monotonically. The increase from steps 2 to 3 occurs due to i opening the left

door causing the uncertainty in its beliefs to increase and reducing the lower bound value.
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ai = L, aj = L Ti(s, ai, aj, TL) Ti(s, ai, aj, TR)

TL 1.0 0.0

TR 0.0 1.0

ai = OL/OR, aj = ∗ Ti(s, ai, aj, TL) Ti(s, ai, aj, TR)

TL 0.75 0.25

TR 0.25 0.75

ai = L, aj = OL/OR Ti(s, ai, aj, TL) Ti(s, ai, aj, TR)

TL 0.75 0.25

TR 0.25 0.75

Table 4.2: Transition function for the modified version of multiagent tiger problem. Notice
that the tiger remains behind the same door with a probability 0.75 when either agent
opens the door. Allowing the tiger to persist ensures that the information gained from the
observations till the point when a door is opened is not completely lost by the act of opening
the door.
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Figure 4.1: (top) Beginning with bi,l(TR) = 0.5, we show the lower and upper bound values
obtained from POMDPi and I-POMDPS

i,l, respectively, for a run of the multiagent persistent
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Figure 4.2: (top) Average time taken per simulation run for different values of ϵ (Xeon i3
2.6GHz, 4GB with Linux). (bottom) Cumulative rewards averaged over the 300 runs with
differing ϵ.

Taking an online planning horizon of H = 5, we simulated agent i’s play of the tiger

problem for 30 steps. We vary ϵ and show the time and cumulative reward averaged over 5

trials of 300 simulation runs each. Notice the low values of ϵ indicating that our bounds are

tight. The feasible range of ϵ is [0.075,0.1], with the approach unable to reach ϵ < 0.075 and

degenerating into POMDPi for all the steps, while satisfying ϵ < 0.1 at the first step itself

thereby running using I-PF for all the steps. For the smallest ϵ value which causes a bimodal

switch, the average time is about 50% less than I-PF albeit obtaining average reward that is

significantly lower. However, as ϵ increases, POMDPi runs for less steps and both the time

and rewards increase approaching that of I-PF.
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4.3 Conclusion

I presented a new approach for online planning in multiagent settings where actions of the

other agent are not directly observable and must be inferred from the state transitions. For

typical initial beliefs with high uncertainty over the physical states, our approach utilizes

POMDP-based planning and switches over to online multiagent planning. The mode changes

when the fraction of the difference between the upper and lower bounds reduces to less than

a parameter. This technique of utilizing bounds is analogous to previous approaches such

as HSVI [65] and SARSOP [40], although these compute bounds relevant to single agent

settings. Our demonstration on a toy problem domain indicates that the bimodal approach

is flexible and could trade-off computation time with the rewards received.
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Chapter 5

Individual Planning in Agent

Populations: Exploiting Anonymity

and Frame-Action Hypergraphs

Finally, I address the intractability arising due to the number of interacting agents sharing the

same environment as the subject agent by exploiting common problem structures. While

the previous approaches for solving I-POMDPs such as interactive particle filtering [14],

point-based value iteration [15] and interactive bounded policy iteration (I-BPI) [69] focus

on mitigating the curses of dimensionality, history, and agent modeling, there has been no

directed effort to solve I-POMDPs involving many – say, a population of more than a thousand

– interacting agents. To the best of my knowledge, the most scalability reported in terms

of number of agents for I-POMDPs was for five agent tiger problem [20] by I-BPI [69]. We

exploit some problem structures that are inherent in many real world problem domain and

demonstrate the scalability to problems involving thousands of agents.

For illustration, consider the decision-making problem of the police when faced with

monitoring and controlling protests that could take place at multiple sites. The degree of
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police response (the size of police force deployed) at any site is often determined by the

number of protesters and the type (formally referred to as frame) of the protesters (peaceful

or disruptive) participating at that location. The individual identity of the protester within

each type seldom matters. This key observation of frame-action anonymity motivates us in

how we model the agent population in the planning process. Furthermore, the size of police

troop deployed at any site is decided in response to the number of disruptive and peaceful

protesters predicted to converge at that particular site and much less by the number of

protesters joining protest at any other site. Therefore, police actions depend on just a few

actions of note for each type of agent.

The example above illustrates two known and powerful types of problem structure in

domains involving many agents: action anonymity [58] and context-specific independence [7].

Action anonymity allows the exponentially large joint action space to be substituted with

a much more compact polynomial space of action configurations where a configuration is a

tuple representing the number of agents performing each action. Secondly, context-specific

independence – wherein given a context such as the state and agent’s own action, not all

actions performed by other agents are relevant – permits the space of configurations to be

further compressed by considering counts only over a subset of other agents’ actions and

grouping all other irrelevant actions as a dummy null action. We extend the definition

of both action anonymity and context-specific independence to allow considerations of an

agent’s frame as well. 1 The specific contributions of this paper are listed below:

1. I-POMDP solutions are severely challenged in settings involving multiple other agents.

The space complexity for representing the I-POMDP problem and the time complexity

for solving the problem grows exponentially due to the exponential growth in the space

of joint models and joint actions. By exploiting commonly found problem structures

1I-POMDPs distinguish between an agent’s frame and type with the latter including beliefs as
well. Frames are similar in semantics to the colloquial use of types.
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such as frame-action anonymity and context-specific independence, we present a new

method for considerably scaling the solution of I-POMDPs to many agents. We call

our approach Many-agent I-POMDP.

2. We reformulate the I-POMDP definition in terms of multiple contexts and present

a systematic way of modeling the context-specific independence in transition, obser-

vation and reward functions using frame-action hypergraphs. We integrate our new

formulation in a simple method for solving I-POMDPs that models other agents using

finite-state machines, builds reachability trees given an initial belief, and computes the

value in a bottom-up manner.

3. We prove that the Bellman equation modified to include frame-action configurations

and frame-action context-specific independence continues to remain optimal.

4. We theoretically verify the improved savings in computational time and memory, and

empirically demonstrate it on two new problem domains – one that of policing protest

at multiple locations and the other a gaming scenario based on the popular mobile

game Clash of Clans (http://clashofclans.com) – and show results for both

domains in settings involving hundreds of interacting agents.

5. While the exploitation of the aforementioned problem structures mitigates the curse

of many agents, it does not lessen the impact of the curse of history which could

still be prominent. To address this curse, first I describe how we adapt bounds on

POMDP value function described in section 1.1.3 – blind policy lower bound and fast

informed bound (FIB) upper bound [27] [26] – to efficiently compute novel bounds for

I-POMDP involving many agents. Next, I introduce a branch and bound approach

that utilizes these novel bounds for pruning reachability subtrees without the need of

evaluating them first thereby significantly diminishing the effects of curse of history.
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We demonstrate the efficiency of the branch and bound method by exactly solving

aforementioned problems for up to 2000 agents in less than 6 hours.

5.1 Related Work

Building on graphical games [36], action graph games (AGG) [32] utilize problem structures

such as action anonymity and context-specific independence to concisely represent single

shot complete-information games involving multiple agents and to scalably solve for Nash

equilibrium. The context-specific independence in the utility function is modeled using a

directed graph known as action graph whose nodes are actions and an edge between two

nodes indicates that the reward of an agent performing an action indicated by one node

is affected by other agents performing action of the other node. Lack of edges between

nodes encodes the context-specific independence. The context in such games is the action

performed by the agent. Action anonymity is useful when the action sets of agents overlap

substantially. In action graph games, the rewards on performing a certain action depend

on the number of agents performing each of its neighboring actions in the action graph.

Significant savings are obtained because the set of the vectors of counts over the set of

distinct actions, called a configuration, is much smaller than the set of action profiles.

We substantially build on AGGs by extending anonymity and context-specific indepen-

dence to include agents’ frames, and generalizing their use to a partially observable stochastic

game solved using decision-theoretic planning as formalized by I-POMDPs. Indeed, Bayesian

AGGs [31] extend the original formulation to include agent types. These result in type-

specific action sets with the benefit that the action graph structure does not change although

the number of nodes grows with types: |Θ̂||A| nodes for agents with |Θ̂| types each having

same |A| actions. If two actions from different type-action sets share a node, then these ac-

tions are interchangeable. A key difference in our representation is that we explicitly model
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frames in the graphs due to which context-specific independence is modeled using frame-

action hypergraphs. Benefits are that we naturally maintain the distinction between two

similar actions but performed by agents of different frames, and we add less additional nodes:

|Θ̂| + |A|. However, a hypergraph is a more complex data structure for operation. Finally

another extension of AGGs, temporal AGGs [33] extend AGGs to a repeated game setting

and allow decisions to condition on chance nodes. These nodes may represent the action

counts from previous step (similar to observing the actions in the previous game). TAGGs

come closest to multiagent influence diagrams [39] although they can additionally model the

anonymity and independence structure. Overall, I-POMDPs with frame-action anonymity

and context-specific independence significantly augment the combination of Bayesian and

temporal AGGs further by utilizing the structures in a partially observable stochastic game

setting with agent types.

Varakantham et al. ([73]) building on previous work [74] recently introduced a decen-

tralized MDP that models a simple form of anonymous interactions: rewards and transition

probability specific to a state-action pair are affected by the number of other agents regard-

less of their identities. The interaction influence is not further detailed into which actions of

other agents are relevant as in action anonymity due to which both configurations and hyper-

graphs are not used. Furthermore, agent types are not considered. Finally, the interaction

hypergraphs in networked-distributed POMDPs [45] model complete reward independence

between agents – analogous to graphical games – which differs from the hypergraphs we

use (and action graphs) that model independence in reward (and transition, observation

probabilities) along a different dimension: actions.
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5.2 Background

In this section, I generalize the two agent definition of a finitely-nested interactive I-POMDP

defined in chapter 1 for an agent (say agent 0) of strategy level l operating in a setting

inhabited by any general number of agents as the following tuple:

I-POMDP0,l = ⟨IS0,l, A, T0,Ω0, O0, R0, OC0⟩

where:

• IS0,l denotes the set of interactive states defined as, IS0,l = S ×
∏N

j=1Mj,l−1, where S

and Mj,l−1 are defined in the same manner as in section 1.2.1.

• A = A0 × A1 × . . .× AN is the set of joint actions of all agents;

• T0 : S × A0 ×
∏N

j=1Aj × S → [0, 1] is the transition function.

• Ω0 is the set of agent 0’s observations;

• O0 : S × A0 ××
∏N

j=1Aj × Ω0 → [0, 1] is the observation function.

• R0 : S × A0 ×
∏N

j=1Aj → R is the reward function.

• OC0 is the optimality criterion, which is identical to that for POMDPs.

Besides the physical state space, the I-POMDP’s interactive state space contains all pos-

sible models of other agents. Therefore, agent 0’s belief is a distribution over its interactive

states, i.e. b0,l ∈ ∆(IS0,l). In its belief update, an agent has to update its belief about

the physical states as well as about the other agents’ models based on an estimation about

the other agents’ observations and how they update their models. As the number of agents

sharing the environment grows, the size of the joint action and joint model spaces increases
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exponentially. Therefore, the memory requirement for representing the transition, observa-

tion, and reward functions grows exponentially as does the complexity of performing belief

update over the interactive states and value iteration. In the context of N agents, interactive

bounded policy iteration [69] generates good quality solutions for an agent interacting with

4 other agents (total of 5 agents) without exploiting any problem structure. To the best of

our knowledge, this result illustrates the best scalability in terms of number of agents.

5.3 Many-Agent I-POMDP

To facilitate understanding and experimentation, I introduce a pragmatic running example

that also forms one of our evaluation domains.

Figure 5.1: protesters of different frames (colors) and police troops at one of 3 sites in the policing

protest domain. The state space of police decision making is factored into the protest intensity

levels at the sites.

Example 7 (Policing Protest). Consider a policing scenario where police (agent 0) must

maintain order in 3 geographically distributed and designated protest sites (labeled 0, 1, and

2) as shown in Fig. 5.1. A population of N agents are protesting at these sites. Police may

dispatch one or two riot-control troops to either the same or different locations. Protests

with differing intensities, low, medium and high, occur at each of the three sites. The goal

of the police is to deescalate protests to the low intensity at each site. Protest intensity at

any site is influenced by the number of protesters and the number of police troops at that

107



location. In the absence of adequate policing, we presume that the protest intensity escalates.

On the other hand, two police troops at a location are adequate for deescalating protest of

any intensity.

5.3.1 Factored Beliefs and Update

As I mentioned previously, the subject agent in the I-POMDP framework maintains a belief

over the physical state and joint models of other agents, b0,l ∈ ∆(S ×
∏N

j=1Mj,l−1), where

∆(·) is the space of probability distributions. For settings where N is large, the size of the

interactive state space is exponentially larger, |IS0,l| = |S||Mj|∗N , where |Mj|∗ is the largest

size of the model space among all other agents. Hence, the belief representation quickly

becomes unwieldy as the number of agents grows. For example, if |Mj|∗ = 2, a problem

domain with N > 30 would require many gigabytes of memory to store the belief in the

aforementioned joint form. For problem domains involving thousands of agents such as the

one described in Example 7, it is impossible to represent beliefs in this form. However, the

representation becomes manageable for large N if the belief is factored:

b0,l(s,m1,l−1,m2,l−1, . . . ,mN,l−1) = Pr(s) Pr(m1,l−1|s)× Pr(m2,l−1|s)

× . . .× Pr(mN,l−1|s) (5.1)

This factorization assumes conditional independence of models of different agents given the

physical state. Consequently, beliefs that correlate agents may not be directly represented,

although correlation could be alternately supported by introducing models with a correlating

device.

The memory required to store belief in factored form is O(|S|+N |S||Mj|∗). This is linear

in the number of agents, which is much less than the exponentially growing memory required

to represent the belief as a joint distribution over the interactive state space, O(|S||Mj|∗N).
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Given agent 0’s belief at time t, bt0,l, its action at0 and the subsequent observation it

receives, ωt+1
0 , the updated belief at time step t+ 1, bt+1

0,l , may be obtained as:

bt+1
0,l (s

t+1,mt+1
1,l−1, . . . ,m

t+1
N,l−1) = Pr(st+1,mt+1

1,l−1, . . . ,m
t+1
N,l−1|b

t
0,l, a

t
0, ω

t+1
0 )

= Pr(st+1|bt0,l, at0, ωt+1
0 )Pr(mt+1

1,l−1|s
t+1,mt+1

2,l−1, . . . ,m
t+1
N,l−1, b

t
0,l, a

t
0, ω

t+1
0 )

× . . .× Pr(mt+1
N,l−1|s

t+1, bt0,l, a
t
0, ω

t+1
0 ) (5.2)

Each factor in the product of Eq. 5.2 may be obtained as follows. The update over the

physical state is:

Pr(st+1|bt0,l, at0, ωt+1
0 ) =

1

Pr(ωt+1
0 |bt0,l, at0)

Pr(st+1, ωt+1
0 |bt0,l, at0) (Bayes Rule)

∝ Pr(st+1, ωt+1
0 |bt0,l, at0)

=
∑
st

∑
mt

−0

∑
at−0

Pr(st+1, ωt+1
0 , st,mt

−0, a
t
−0|bt0,l, at0)

=
∑
st

bt0,l(s
t)
∑
mt

−0

bt0,l(m
t
1|st)× . . .× bt0,l(mt

N |st)×
∑
at−0

Pr(at1|mt
1,l−1)× . . .× Pr(atN |mt

N,l−1)

×Ot+1
0 (st+1, ⟨at0, at−0⟩, ωt+1

0 ) T0(s
t, ⟨at0, at−0⟩, st+1) (5.3)

and the update over the model of each other agent, j = 1 . . . N , conditioned on the state at

t+ 1 is:

Pr(mt+1
j,l−1|s

t+1,mt+1
j+1,l−1, . . . ,m

t+1
N,l−1, b

t
0,l, a

t
0, ω

t+1
0 )

=
∑
st

bt0(s
t)

∑
mt

−j,l−1

bt0,l(m
t
j+1,l−1|st)× . . .× bt0,l(mt

N,l−1|st)
∑
atj

∑
at−j

Pr(at1|mt
j+1,l−1)

× . . .× Pr(atn|mt
N,l−1)×

∑
ωt+1
j

Oj(s
t+1, ⟨aj, at−j⟩, ωt+1

j )Pr(mt+1
j |mt

j, a
t
j, ω

t+1
j ) (5.4)
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Derivations of Eqs. 5.3 and 5.4 are straightforward. In particular, note that models of

agents other than j at t + 1 do not impact j’s model update in the absence of correlated

behavior. Thus, under the assumption of a factored prior as in Eq. 5.1 and absence of model

correlations, the I-POMDP belief update may be decomposed into an update of the physical

state and the models of the N agent conditioned on the state.

5.3.2 Frame-Action Anonymity

As noted by Jiang et al.[32], many non-cooperative and cooperative problems exhibit the

structure where given the agent’s own action, its payoffs depend on the number of agents

performing certain actions rather than which agent is performing what action. This problem

structure is particularly evident in Example 7 where the outcome of policing at any given

site depends only on the number of peaceful and disruptive protesters converging at that site

rather than their identities. Building on this idea, we observe that in partially observable,

dynamic, and stochastic settings such as the one described in example 7, the state transitions

and the observations of the police at a site are also influenced by the number of peaceful and

disruptive protesters converging to protest at that site. This is noted in the example below:

Example 8 (Frame-action anonymity of protesters). The transient state of protests reflect-

ing the intensity of protests at each site depends on the previous intensity at a site and the

number of peaceful and disruptive protesters entering the site. Police (noisily) observes the

intensity of protest at each site which is again largely determined by the number of peaceful

and disruptive protesters at a site. Finally, the outcome of policing at a site is contingent on

whether the protest was largely peaceful or disruptive. Consequently, the identity of the indi-

vidual protesters beyond their frame and action is unnecessary and hence can be disregarded.

Here, peaceful and disruptive nature of the protesters are captured by different frames of

others in agent 0’s I-POMDP, and the above definition may be extended to any number of
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frames. Frame-action anonymity is an important attribute of the above domain. Formally,

frame-action anonymity is defined in the context of agent 0’s transition, observation and

reward functions as follows:

Definition 4 (Frame-action anonymity). Let ap−0 be a joint action of all peaceful protesters

and ad−0 be a joint action of all disruptive ones. Let ȧp−0 and ȧd−0 be permutations of the two

joint action profiles, respectively. An I-POMDP models frame-action anonymity iff for any

a0, s, s
′, ap−0 and ad−0 :

T0(s, a0, a
p
−0, a

d
−0, s

′) = T0(s, a0, ȧ
p
−0, ȧ

d
−0, s

′),

O0(s
′, a0, a

p
−0, a

d
−0, ω0) = O0(s

′, a0, ȧ
p
−0, ȧ

d
−0, ω0), and

R0(s, a0, a
p
−0, a

d
−0) = R0(s, a0, ȧ

p
−0, ȧ

d
−0)

∀ ȧp−0, ȧ
d
−0.

Recall the definition of an action configuration, C, as a tuple where each value represents

the action count for an action of the other agent. A permutation of joint actions of other

agents of the same frame, say ȧp−0, assigns different actions to individual agents of that

frame. Despite this, the fact that the transition and observation probabilities, and the

reward remains unchanged indicates that the identity of the agent performing the action is

irrelevant (beyond the frame identity). Importantly, the action configuration of the joint

actions and its permutation stay the same: C(ap−0) = C(ȧd−0). This combined with Def. 4

allows redefining the transition, observation and reward functions to be over configurations

as: T0(s, a0, C(ap−0), C(ad−0), s
′), O0(s

′, a0, C(ap−0), C(ad−0), ω), and R0(s, a0, C(ap−0), C(ad−0)).

Let Ap1, . . . , A
p
n be the sets of actions of n peaceful protesters, and Ap−0 is the Cartesian

product of these sets. Let C(Ap−0) be the set of all action configurations for Ap−0. Observe

that multiple joint actions from Ap−0 may result in a single configuration; these joint actions

are configuration equivalent. Consequently, the equivalence partitions the joint action set

Ap−0 into |C(Ap−0)| classes. Furthermore, when other agents of same frame have overlapping

sets of actions, the number of configurations could get much smaller than the number of joint
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actions. Therefore, definitions of the transition, observation and reward functions involving

configurations could be more compact.

For the sake of simplicity, let C be a tuple representing configuration over the actions

performed by agents of all types. Then, we may represent transition, observation, and reward

function as T0(s, a0, C, s′), O0(s
′, a0, C, ω), and R0(s, a0, C).

5.3.3 Frame-Action Hypergraphs

In addition to frame-action anonymity, domains involving sizable agent populations often

exhibit context-specific independences. This is a broad category and includes the context-

specific independence found in conditional probability tables of Bayesian networks [7] and in

action-graph games. It offers significant additional structure for computational tractability.

We begin by illustrating this in the context of Example 7.

Example 9 (Context-specific independence in policing). At a protest site, payoff for policing

is independent of the movement of the protesters to other sites. Similarly, the transient

intensity of the protest at a site given the level of policing at the site as context is independent

of the movement of protesters between other sites.

The context-specific independences above builds on the similar independence in action

graphs in two ways: (i) We model such partial independence in the transitions of factored

states and in observation function as well, in addition to the reward function. (ii) We allow

the context-specific independence to include the frames of other agents in addition to their

actions. For example, the reward from passive policing (deploying only one troop) at a site is

independent of the number of peaceful protesters, instead influenced primarily by the number

of disruptive protesters.

The latter difference generalizes the action graphs into frame-action hypergraphs, specif-

ically 3-uniform hypergraphs where each edge is a set of 3 nodes.
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(a) (b)

Figure 5.2: Levi (incidence) graph representation of a generic frame-action hypergraph for (a)

the transition function, and (b) the reward function. The shaded nodes represent edges in the

hypergraph. Each edge has the context, ψ, denoted in bold, agent’s action, a, and its frame, θ̂,

incident on it. For example, the reward for a state and agent 0’s action, ⟨s, a0⟩1 is affected by

others’ actions a1j and a2j performed by any other agent of frame θ̂1j only.

Definition 5 (Frame-action hypergraph). A frame-action hypergraph for agent 0 is a 3-

uniform hypergraph G = ⟨Ψ, A−0, Θ̂−0, E⟩, where Ψ is a set of nodes that represent the

context, A−0 is a set of action nodes with each node representing an action that any other

agent may take; Θ̂−0 is a set of frame nodes, each node representing a frame ascribed to an

agent, and E is a set of 3-uniform hyperedges where each hyperedge contains one node from

each set Ψ, A−0, and Θ̂−0, respectively.

The context nodes differ based on whether the hypergraph applies to the transition,

observation or reward functions:

• For the transition function, the context is a set containing a pair of states between

which a transition may occur and an action of agent 0, Ψ = S×A0×S, and the action

nodes includes actions of all other agents, A−0 =
∪N
j=1Aj. Neighbors of a context node

ψ = ⟨s, a0, s′⟩ are all the frame-action pairs that affect the probability of the transition.
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An edge (⟨ s, a0, s′⟩, a−0, θ̂) indicates that the probability of transitioning from s to

s′ on performing a0 is affected (in part) by the number of other agents of frame θ̂

performing the particular action in a−0.

• The context for agent 0’s observation function is the state-action-observation triplet,

Ψ = S×A0×Ω0, and the action nodes are identical to those in the transition function.

Neighbors of a context node, ⟨s, a0, ω0⟩, are all those frame-action pairs that affect

the observation probability. Specifically, an edge (⟨s, a0, ω0⟩, a−0, θ̂) indicates that the

probability of observing ω0 from state s on performing a0 is affected (in part) by the

number of other agents performing action, a−0, who possess frame θ̂.

• For agent 0’s reward function, the context is the set of pairs of state and action of agent

0, Ψ = S × A0, and the action nodes the same as those in transition and observation

functions. An edge (⟨ s, a0⟩, a−0, θ̂−0) in this hypergraph indicates that the reward for

agent 0 on performing action a0 at state s is affected (in part) by the agents of frame

θ̂−0 who perform action in a−0.

I illustrate a general frame-action hypergraph for context-specific independence in a tran-

sition function and a reward function as Levi graphs in Fig. 5.2(a) and (b), respectively.

I point out that the hypergraph for the reward function comes closest in semantics to the

graph in action graph games [32] although the former adds the state to the context and

frame nodes. Hypergraphs for the transition and observation functions differ substantially

in semantics and form from action graphs.

To use these hypergraphs in our algorithms, I first define the general frame-action neigh-

borhood of a context node.

Definition 6 (Frame-action neighborhood). The frame-action neighborhood of a context

node ψ ∈ Ψ, ν(ψ), given a frame-action hypergraph G is defined as a subset of A × Θ̂ such

that ν(ψ) = {(a−0, θ̂)|a−0 ∈ A−0, θ̂ ∈ Θ̂, (ψ, a−0, θ̂) ∈ E}.
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As an example in Fig. 5.2(b) , the frame-action neighborhood of a state-action pair, ⟨s, a0⟩

in a hypergraph for the reward function is the set of all action and frame nodes incident on

each hyperedge anchored by the node ⟨s, a0⟩.

I move toward integrating frame-action anonymity introduced in the previous subsec-

tion with the context-specific independence as modeled above by introducing frame-action

configurations.

Definition 7 (Frame-action configuration). A configuration over the frame-action neighbor-

hood of a context node, ψ, given a frame-action hypergraph is a vector,

Cν(ψ) △
= ⟨ C(aθ̂1−0), C(aθ̂2−0), . . . , C(a

θ̂|Θ̂|
−0 ), C(ϕ) ⟩

where each a included in aθ̂−0 is an action in ν(ψ) with frame θ̂, and C(aθ̂−0) is a configuration

over actions by agents other than 0 whose frame is θ̂. All agents with frames other than those

in the frame-action neighborhood are assumed to perform a dummy action, ϕ.

Definition 7 allows us to further compress the representation of the transition, observa-

tion and rewards functions of the I-POMDP using context-specific independence. Specifi-

cally, we may redefine these functions one more time (see previous redefinition in section

5.3.2) to limit the configurations only over the frame-action neighborhood of the context as,

T0(s, a0, Cν(s,a0,s
′)⟩, s′), O0(s

′, a0, Cν(s
′,a0,ω0), ω0) and R0(s, a0, Cν(s,a0)). 2

2Context in our transition function is ⟨ s, a0, s′ ⟩ compared with the context of just ⟨ s, a0 ⟩ in Varakantham
et al’s [73] transition function.
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5.3.4 Framework with Anonymity and Context-Specific Indepen-

dence

In order to benefit from structures of anonymity and context-specific independence, we switch

to a factored representation and redefine I-POMDP for agent 0 as follows:

I-POMDP0,l = ⟨IS0,l, A,Ω0, T0,O0,R0, OC0⟩

where:

• IS0,l, A, Ω0 and OC0 remain the same as before. The physical states are factored as,

S =
∏K

k=1Xk.

• T0 is the transition function, T0(x, a0, Cν(x,a0,x
′), x′) where Cν(x,a0,x′) is the configuration

over the frame-action neighborhood of context ⟨x, a0, x′⟩ obtained from a hypergraph

that holds for the transition function. This transition function is significantly more

compact than the original that occupies space O(|X|2|A0||A−0|N) compared to the

O(|X|2|A0|( N
|ν∗|)

|ν∗|) of T0, where the fraction is the complexity of
(
N+|ν|∗+1
|ν∗|+1

)
, |ν∗| is the

maximum cardinality of the neighborhood of any context, and ( N
|ν∗|)

|ν∗| ≪ |A−0|N . The

value
(
N+|ν|∗
|ν|∗

)
is obtained from combinatorial compositions and represents the number

of ways |ν∗|+1 non-negative values can be weakly composed such that their sum is N .

• The redefined observation function is O0(x
′, a0, Cν(x

′,a0,ω0), ω0) where Cν(x′,a0,ω0) is the

configuration over the frame-action neighborhood of context ⟨x′, a0, ω0⟩ obtained from

a hypergraph that holds for the observation function. Analogously to the transition

function, the original observation function consumes space O(|X||Ω||A0||A−0|N), which

is much larger than space O(|X||Ω||A0|( N
|ν∗|)

|ν∗|) occupied by this redefinition.
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• R0 is the reward function defined as R0(x, a0, Cν(x,a0)) where Cν(x,a0) is defined analo-

gously to the configurations in the previous parameters. The reward for a state and

actions may simply be the sum of rewards for the state factors and actions (or a more

general function if needed). As with the transition and observation functions, this

reward function is compact occupying space O(|X||A0|( N
|ν∗|)

|ν∗|) that is much less than

O(|X||A0||A−0|N) of the original.

Belief Update with Anonymity and Context-Specific Independence

For this extended I-POMDP, we compute the updated belief over a physical state as a

product of its factors using Eq. 5.5 and belief update over the models of each other agent

using Eq 5.6 as shown below:

Pr(st+1|bt0,l, at0, ωt+1
0 ) ∝ Pr(st+1, ωt+1

0 |bt0,l, at0)

= Pr(ωt+1
0 |st+1, bt0,l, a

t
0)× Pr(st+1|bt0,l, at0)

=

{ K∏
k=1

Pr(ωt+1
0,k |x

t+1
k , bt0,l, a

t
0)

}
×

{ K∏
k=1

Pr(xt+1
k |b

t
0,l, a

t
0)

}

=

{ K∏
k=1

∑
st

bt0,l(s
t)Pr(ωt+1

0,k |x
t+1
k , bt0,l, a

t
0, s

t)

}
×

{ K∏
k=1

∑
st

bt0,l(s
t)Pr(xt+1

k |b
t
0,l, a

t
0, x

t)

}

=

{ K∏
k=1

∑
st

bt0,l(s
t)
∑
mt

−0

bt0,l(m
t
−0|st)

∑
at−0

Pr(at−0|mt
−0)Pr(ω

t+1
0,k |x

t+1
k , at0, a

t
−0)

}
×

{ K∏
k=1

∑
st

bt0,l(s
t)
∑
mt

−0

bt0,l(m
t
−0|st)

∑
at−0

Pr(at−0|mt
−0)Pr(x

t+1
k |x

t, at0, a
t
−0)

}

Let’s introduce a projection function δν(ψ) that maps joint actions to the corresponding

frame-action configurations as defined in definition 7. Formally δν(ψ) : a → Cν(ψ), where

Cν(ψ) is the set of all possible configurations C for the context ψ such that for all agents j
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with frame θ̂, C(a, θ̂) = |{j : aj = a, θ̂j = θ̂, (aj, θ̂) ∈ ν(ψ)}|. Next we partition the set of

joint action of all other agents A−0 into smaller subsets A1
−0, . . . , A

|Cν(ψ)|
−0 such that the

projection function δν(ψ) maps all joint actions belonging to any given partition Ac
−0 to the

same configuration. Hence, we may rewrite the above equation as:

=

{ K∏
k=1

∑
st

bt0,l(s
t)

|Cν(x
t+1
k

,at0,ω
t+1
0,k

)|∑
c=1

∑
mt

−0

bt0,l(m
t
−0|st)

∑
at−0∈Ac

−0

Pr(at−0|mt
−0)O0(x

t+1
k , at0, a

t
−0,

ωt+1
0,k )

}
×
{ K∏
k=1

∑
st

bt0,l(s
t)

|Cν(x
t
k,a

t
0,x

t+1
k

)|∑
c=1

∑
mt

−0

bt0,l(m
t
−0|st)

∑
at−0∈Ac

−0

Pr(at−0|mt
−0)

T0(x
t
k, a

t
0, a

t
−0, x

t+1
k )

}

Under frame-action anonymity (Definition 4) given a context, all at−0 that map to the same

configuration yield the same value. Hence ∀at−0 ∈ Ac
−0 T0(x

t, at0, a
t
−0, x

t+1
k ) = T0(xtk, at0,

Cν(xtk,at0,xt+1
k ), xt+1

k ) where Cν(xtk,at0,xt+1
k ) = δν(C

ν(xtk,a
t
0,x

t+1
k

)
)(at−0). Similarly, O0(x

t+1
k , at0, a

t
−0, ω

t+1
0,k )

= O0(x
t+1
k , at0, C

ν(xt+1
k ,at0,ω

t+1
0,k ), ωt+1

0,k ). Therefore the above equation becomes:

=

{ K∏
k=1

∑
st

bt0,l(s
t)

|Cν(x
t+1
k

,at0,ω
t+1
0,k

)|∑
c=1

∑
mt

−0

bt0,l(m
t
−0|st)

∑
at−0∈Ac

−0

Pr(at−0|mt
−0)

O0(x
t+1
k , at0, Cν(x

t+1
k ,at0,ω

t+1
0 ), ωt+1

0,k )

}
×
{ K∏
k=1

∑
st

bt0,l(s
t)

|Cν(x
t
k,a

t
0,x

t+1
k

)|∑
c=1

∑
mt

−0

bt0,l(m
t
−0|st)

∑
at−0∈Ac

−0

Pr(at−0|mt
−0)T0(x

t
k, a

t
0, Cν(x

t
k,a

t
0,x

t+1
k ), xt+1

k )

}
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Also we may compute the probability of a given configuration using the probability of

the models of other agents and the probability of their actions using a dynamic program

that computes configurations and their corresponding probabilities by successively adding

the actions of each agent at a time (described later in section 5.4). Therefore, we may rewrite

the equation as:

Pr(st+1|bt0,l, at0, ωt+1
0 )

∝
{ K∏
k=1

∑
st

bt0,l(s
t)

∑
Cν(x

t+1
k

,at0,ω
t+1
0 )

Pr(Cν(x
t+1
k ,at0,ω

t+1
0 )|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

O0(x
t+1
k , at0, Cν(x

t+1
k ,at0,ω

t+1
0 ), ωt+1

0 )

}
×
{ K∏
k=1

∑
st

bt0,l(s
t)

∑
Cν(x

t
k
,at0,x

t+1
k

)

Pr(Cν(xtk,at0,x
t+1
k )|

bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))T0(xtk, Cν(x
t
k,a

t
0,x

t+1
k ), xt+1

k )

}
(5.5)

Here, the term, Pr(Cν(xt+1
k ,at0,ω

t+1
0 )|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st)), is the probability of a

frame-action configuration (see Def. 7) that is context specific to the triplet, ⟨xt+1
k , a0, ω

t+1
0,k ⟩.

It is computed using the factored beliefs over the models of each individual other agents

and the probability of their individual actions conditioned on their models. I discuss this

computation in the next section. The second configuration term has an analogous meaning

and is computed similarly.

The factored belief update over the models of every other agent, j = 1 . . . N , conditioned

on the state at t+ 1 becomes:
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Pr(mt+1
j,l−1|s

t+1,mt+1
−j,l−1, b

t
0,l, a

t
0)

=
∑
st

bt0,l(s
t)

∑
mt1,l−1

bt0,l(m
t
1,l−1|st)

∑
at1

Pr(at1|mt
1,l−1) . . .

∑
mtN,l−1

bt0,l(m
t
N,l−1|st)

∑
atN

Pr(atN |mt
N,l−1)

∑
ωt+1
j

{ K∏
k=1

Oj(xt+1
k , atj, a

t
−j, ω

t+1
j,k )

}
Pr(mt+1

j,l−1|m
t
j,l−1, a

t
j, ω

t+1
j )

=
∑
st

bt0(s
t)
∑
mtj

bt0(m
t
j|st)

∑
atj

Pr(atj|mt
j)
∑
ωt+1
j

{ K∏
k=1

∑
Cν(x

t+1
k

,at
j
,ωt+1
j,k

)

Pr(Cν(x
t+1
k ,atj ,ω

t+1
j,k )|

at0, b
t
0,l(M1,l−1|st), . . . , bt0,l(Mj−1,l−1|st), bt0,l(Mj+1,l−1|st), . . . , bt0,l(MN,l−1|st))

Oj(xt+1
k , atj, C

ν(xt+1
k ,atj ,ω

t+1
j,k ), ωt+1

j,k )

}
Pr(mt+1

j |mt
j, a

t
j, ω

t+1
j ) (5.6)

The term for computing the probability of configuration in the last line of equation 5.6 is

derived by summing out the probability of joint action and joint models in a similar manner

as in the derivation of equation 5.5.

Value Function

The finite-horizon value function of the many-agent I-POMDP continues to be the sum of

agent 0’s immediate reward and the discounted expected reward over the future:

V h(bt0,l) =max
at0

ER0(b
t
0,l, a

t
0) + γ

∑
ωt+1
0

Pr(ωt+1
0 |bt0,l, at0)V h−1(bt+1

0,l ) (5.7)

where ER0(b
t
0,l, a

t
0) is the expected immediate reward of agent 0 and γ is the discount factor.

In the context of the redefined reward function of the I-POMDP framework in this section,

the expected immediate reward is obtained as:
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ER0(b
t
0,l, a

t
0) =

∑
st

bt0,l(s
t)

( K∑
k=1

∑
Cν(x

t
k
,at0)

Pr(Cν(xtk,at0)|

bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))R0(x
t
k, a

t
0, Cν(x

t
k,a

t
0)

)
(5.8)

where the inner sum is over all the state factors, st = ⟨xt1, . . . , xtK⟩, and the term, Pr(Cν(xtk,at0)|

bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st)) denotes the probability of a frame-action configuration

that is context-specific to the factor xtk and action at0. Importantly, Proposition 6 estab-

lishes that the Bellman equation above is exact.

Proposition 6 (Optimality). The Bellman equation in Eq. 5.7 provides an exact computa-

tion of the value function for the many-agent I-POMDP.

Proof. We provide a mathematical induction based proof for proposition 6. For horizon 1

the value function may be written as:

V 1(bt0,l) = max
at0

ER0(b
t
0,l, a

t
0)

= max
at0

∑
st

bt0,l(s
t)
∑
mt

−0

bt0,l(m
t
−0|st)

∑
at−0

Pr(at−0|mt
−0)

K∑
k=1

R0(x
t
k, a

t
0, a

t
−0)

= max
at0

∑
st

bt0,l(s
t)

K∑
k=1

{ ∑
Cν(x

t
k
,at0)

Pr(Cν(xtk,at0)|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

R0(x
t
k, a

t
0, Cν(x

t
k,a

t
0))

}

Here the probability of configuration is computed using the probability of each individual

agent’s models given the state and the probability of its actions given the model in a similar

manner as in equation 5.5. Next let’s assume that for horizon h − 1 the value function is

exact.
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V h(bt0,l) = max
at0

ER0(b
t
0,l, a

t
0) + γ

∑
ωt+1
0

Pr(ωt+1
0 |bt0,l, at0)V h−1(bt+1

0,l )

The first term is the horizon one value function which is exact and the term V h−1(bt+1
0,l ) is

exact by inductive hypothesis. Finally the term Pr(ωt+1
0 |bt0,l, at0) is merely the normalization

constant for the belief update which is also exact. As seen in derivations of equations 5.5

and 5.6, the belief update is also exact. Hence, V h(bt0,l) is exact.

5.4 Algorithms

In this section, I present an algorithm that computes the distribution over frame-action

configurations using the conditional belief over the models of each individual agent and the

probability of their individual actions given the model. This value is used in equations 5.5,

5.6, and 5.8. Next, I outline our simple exhaustive search based method for solving the

many-agent I-POMDP defined previously. Finally, I present efficiently computable bounds

on the value function of many-agent I-POMDPs and describe an efficient branch and bound

algorithm that utilizes these bounds to mitigate the curse of history.

5.4.1 Computing Distribution Over Frame-Action Configurations

Algorithm 4 generalizes an algorithm by Jiang and Lleyton-Brown [32] for computing config-

urations over actions given mixed strategies of other agents to include frames and conditional

beliefs over models of other agents. It computes the probability distribution of configurations

over the frame-action neighborhood of an action given the belief over the agents’ models:

Pr(Cν(x
t+1
k ,a0,ω

t+1
0,k )|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st)) and Pr(Cν(x

t
k,a0,x

t+1
k )|bt0,l(M1,l−1|st), . . . ,

bt0,l(MN,l−1|st)) in Eq. 5.3, Pr(Cν(x
t+1
k ,atj ,ω

t+1
j,k )|bt0,l(M1,l−1|st), . . . , bt0,l(Mj−1,l−1|st),
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bt0,l(Mj+1,l−1|st), . . . bt0,l(MN,l−1|st)) in Eq. 5.4, and Pr(Cν(xtk,a0)|bt0,l(M1,l−1|st), . . . ,

bt0,l(MN,l−1|st)) in Eq. 5.8.

Algorithm 4 Computing Pr(Cν(·)|b0,l(M1,l−1|s), . . . , b0,l(MN,l−1|s))
Input: ν(·), ⟨b0,l(M1,l−1|s), . . . , b0,l(MN,l−1|s)⟩
Output: A trie Pn representing distribution over the frame-action configurations over
ν(·)
1: Initialize c0 = (0, · · · , 0) one value for each frame-action pair in ν(·) and one for dummy

action ϕ representing all other actions. Insert it into an empty trie P0

2: Initialize P0[c0] = 1.0
3: for j = 1 to N do
4: Initialize Pj to be an empty trie
5: for all cj−1 from Pj−1 do
6: for all mj,l−1 ∈Mj,l−1 do
7: for all aj ∈ Aj such that Pr(aj|mj) > 0 do
8: cj = cj−1

9: if ⟨ ˆmj,l−1, aj⟩ ∈ ν(·) then
10: cj[aj]+ = 1
11: else
12: cj[ϕ]+ = 1
13: if Pj[cj] does not exist then
14: Initialize Pj[cj] = 0

15: Pj[cj]+ = Pk−1[cj−1]× Pr(aj|mj,l−1)× bt,s
t,j

0 (mj,l−1)
16: return Pn

Algorithm 4 successively adds the actions of each agent at a time. We utilize a trie

data structure to store the probabilities of configurations. This enables efficient insertion

and access of the configuration probabilities in the algorithm. We begin by initializing the

configuration space for 0 agents (P0) to contain one tuple of integers (c0) with |ν| + 1 0s

and assign its probability to be 1 (lines 1-2). Using the configurations at the previous step,

we construct the configurations over the actions performed by j agents by adding 1 to a

relevant element depending on the agent j’s action and its frame (lines 3-15). If an action

aj performed by an agent j ascribed frame m̂j is in the frame-action neighborhood ν(·)

the we increment its corresponding count by 1. Otherwise, it is considered as a dummy

action and the count of ϕ is incremented (lines 9-12). Similarly, we update the probability
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of a configuration using the probability of aj and that of the base configuration cj−1 (line

15). This algorithm may be invoked multiple times for different values of ν(·) as needed for

computing belief update and value function.

Computational Savings

The complexity of accessing an element in a ternary search trie is Θ(ν). The maximum

number of configurations encountered at any iteration is upper bounded by total number of

configurations for N agents, i.e. O(( N
|ν∗|)

|ν∗|). The complexity of Algorithm 4 is polynomial

in N , O(N |M∗
j ||A∗

j ||ν∗|( N
|ν∗|)

|ν∗|) where M∗
j and A∗

j are largest sets of models and actions for

any agent.

For the traditional I-POMDP belief update, the complexity of computing Eq. 5.3 is

O(|S||M∗
j |N |A∗

j |N) and that for computing Eq. 5.4 is O(|S||M∗
j |N |A∗

j |N |Ω∗
j |) where ∗ denotes

the maximum cardinality set for any agent. For a factored representation, belief update

operator invokes equation 5.3 for each value of all state factors and it invokes equation

5.4 for each model of each agent j and for all values of updated states. Hence the total

complexity of belief update is O(N |M∗
j ||S|2|M∗

j |N |A∗
j |N |Ω∗

j |). The complexity of computing

updated belief over state factor xt+1 using Eq. 5.5 is O(|S|NK|M∗
j ||A∗

j ||ν∗|( N
|ν∗|)

|ν∗|) (recall

the complexity of Algorithm 4). Similarly, the complexity of computing updated model

probability using Eq. 5.6 is O((|S|N |M∗
j ||A∗

j ||ν∗| + |Ω∗
j |)( N

|ν∗|)
|ν∗|). These complexity terms

are polynomial in N for small values of |ν∗| as opposed to exponential in N as in Eqs. 5.3

and 5.4. The overall complexity of belief update is also polynomial in N .

Complexity of computing the immediate expected reward in the absence of problem

structure is O(|S|K|M∗
j |N |A∗

j |N). On the other hand, the complexity of computing expected

reward using Eq. 5.8 is O(|S|KN |M∗
j ||A∗

j ||ν∗|( N
|ν∗|)

|ν∗|), which is again polynomial in N for

low values of |ν∗|.
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5.4.2 Many-Agent I-POMDP Solution Algorithm

We first utilize a simple method for solving the many-agent I-POMDP given an initial belief,

each other agent is modeled using a finite-state controller which is included as part of the

interactive state space as described in chapter 3. A reachability tree of beliefs as nodes

is projected for as many steps as the horizon (using Eqs. 5.5 and 5.6) and value iteration

(Eq. 5.7) is performed on the tree in a bottom up manner.

b0,l
t

a1 a|A|

W(b0,l
t
,a1,o0) W(b0,l

t
,a1,o|:|) W(b0,l

t
,a|A|,o0) W(b0,l

t
,a|A|,o|:|)

Figure 5.3: Computing beliefs reachable from a given belief in one step. One belief is
reachable for each action-observation pair ⟨at0, ωt+1

0 ⟩. In order to compute the horizon h
reachable tree, the same process is applied repeatedly to all inner nodes. The leafs represent
the horizon 1 beliefs.

Figure 5.3 illustrates computation of belief reachable from initial belief bt0,l in one step.

For each action at0 and observation ωt+1
0 , the updated belief τ(bt0,l, a

t
0, ω

t+1
0 ) is reachable. A

horizon h reachability tree is projected by computing 1 step reachability for the root node

and all inner nodes. Note that the number of beliefs in the reachability tree is O((|A0||Ω0|)h)

which affects the computational complexity exponentially. Therefore, in order to mitigate

the curse of history, we utilize a branch and bound method that utilizes novel upper and

lower bounds on the value function of many-agent I-POMDPs to prune action nodes of the

reachability tree without the need of exactly evaluating the subtree below them first. I derive

these bounds and outline the branch and bound algorithm in this section.
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5.4.3 Upper and Lower Bounds for ManyAgent I-POMDP

We adapt POMDP bounds from section 1.1.3, namely blind policy lower bound and fast

informed bound (FIB) upper bound [27], to obtain quickly computable bounds for many-

agent I-POMDP.

Pessimistic Blind Policy Lower Bound

In POMDP, a blind policy is one where an agent chooses the same policy irrespective of

the observation it receives. In other words, it ignores the information contained in the

observation. This loss of information leads to an underestimation of the expected value. We

extend this concept to many-agent I-POMDPs. Next, in the interest of quicker computation,

instead of iterating over configurations for any given context we take a pessimistic approach

by utilizing the configuration that would lead to the least value.

Proposition 7 (Pessimistic Blind Policy). The pessimistic blind policy yields a lower bound

on the value of many-agent I-POMDP.

Proof. We begin with the horizon 1 value function and obtain a pessimistic lower bound for

it.

Q1
0,l(b

t
0,l, a

t
0)

=
∑
st
bt0,l(s

t)
∑
mt−0

bt0,l(m
t
−0|st)

{
K∑
k=1

∑
C
ν(xt

k
,at0)

Pr(Cν(xtk,a
t
0)|mt

−0)R0(x
t
k, a

t
0, C

ν(xtk,a
t
0))

}

≥
∑
st
bt0,l(s

t)
∑
mt−0

bt0,l(m
t
−0|st)

{
K∑
k=1

∑
C
ν(xt

k
,at0)

Pr(Cν(xtk,a
t
0)|mt

−0) min
C
ν(xt

k
,at0)

R0(x
t
k, a

t
0, C

ν(xtk,a
t
0))

}
=

∑
st
bt0,l(s

t)
∑
mt−0

bt0,l(m
t
−0|st)

{
K∑
k=1

min
C
ν(xt

k
,at0)

R0(x
t
k, a

t
0, C

ν(xtk,a
t
0))

∑
C
ν(xt

k
,at0)

Pr(Cν(xtk,a
t
0)|mt

−0)

}
=

∑
st
bt0,l(s

t)

{
K∑
k=1

min
C
ν(xt

k
,at0)

R0(x
t
k, a

t
0, C

ν(xtk,a
t
0))

}
= Q1

0,l
(bt0,l, a

t
0)
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Therefore the pessimistic lower bound for horizon 1 value of many-agent I-POMDP is:

Q1

0,l
(bt0,l, a

t
0) =

∑
st
bt0,l(s

t)

{
K∑
k=1

min
C
ν(xt

k
,at0)

R0(x
t
k, a

t
0, C

ν(xtk,a
t
0))

}

Analogous to POMDP value function, we may define the lower bound value in vector

form for each action as Q1

0,l
(bt0,l, a

t
0) =

∑
s

α1(s) · bt0,l(s).

α1(s) =

{
K∑
k=1

min
C
ν(xt

k
,at0)

R0(x
t
k, a

t
0, C

ν(xtk,a
t
0))

}
(5.9)

Let’s assume that for horizon h−1, the pessimistic blind policy provides a lower bound to

the value function and could be represented using a set of value vectors similar to equation

5.9. We derive the lower bound value vectors for horizon h. For the sake of simplicity

in derivation, we temporarily forgo the changes made to accommodate the factored state

representation and context specific independence. Also unlike equation 5.8 where we directly

compute the probability of a configuration given the conditional distribution over the models

of each agent, we write the value functions in a form where the joint models are explicitly

enumerated and the probability over configuration is computed using a given joint model.

Qh
0,l(b

t
0,l, a

t
0) = Q1

0,l(b
t
0,l, a

t
0) + γ

∑
ωt+1
0

max
αh−1

[∑
st
bt0,l(s

t)
∑
mt−0

bt0,l(m
t
−0|st)

∑
st+1{∑

C

Pr(C|mt
−0)O0(s

t+1, at0, C, ω
t+1
0 )

}{∑
C

Pr(C|mt
−0)T0(s

t, at0, C, s
t+1)

}
∑
mt+1

−0

Pr(mt+1
−0 |mt

−0, a
t
0, s

t+1) · αh−1(st+1,mt+1
−0 )

]
Replacing Q1 and αh−1 by their respective lower bounds we have:
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≥ Q1

0,l
(bt0,l, a

t
0) + γ

∑
ωt+1
0

max
αh−1

[∑
st
bt0,l(s

t)
∑
mt−0

bt0,l(m
t
−0|st)

∑
st+1{∑

C

Pr(C|mt
−0)O0(s

t+1, at0, C, ω
t+1
0 )

}{∑
C

Pr(C|mt
−0)T0(s

t, at0, C, s
t+1)

}
∑
mt+1

−0

Pr(mt+1
−0 |mt

−0, a
t
0, s

t+1) · αh−1(st+1)

]
At this point, we make the blind policy modification. The agent chooses the same policy

irrespective of the observations. Therefore, we may take the term maximizing over αh−1

outside the summation over observations.

≥ Q1

0,l
(bt0,l, a

t
0) + γmax

αh−1

[ ∑
ωt+1
0

∑
st
bt0,l(s

t)
∑
mt−0

bt0,l(m
t
−0|st)

∑
st+1

{∑
C

Pr(C|mt
−0)O0(s

t+1, at0, C, ω
t+1
0 )

}{∑
C

Pr(C|mt
−0)T0(s

t, at0, C, s
t+1)

}
∑
mt+1

−0

Pr(mt+1
−0 |mt

−0, a
t
0, s

t+1)αh−1(st+1)

]
= Q1

0,l
(bt0,l, a

t
0) + γmax

αh−1

[∑
st
bt0,l(s

t)
∑
mt−0

bt0,l(m
t
−0|st)

∑
st+1

{∑
C

Pr(C|mt
−0)

T0(s
t, at0, C, s

t+1)

}
αh−1(st+1)

∑
ωt+1
0

{∑
C

Pr(C|mt
−0)O0(s

t+1, at0, C, ω
t+1
0 )

}
∑
mt+1

−0

Pr(mt+1
−0 |mt

−0, a
t
0, s

t+1)

]

The model update probability sums to 1. Next, by interchanging the position of
∑
ωt+1
0

and

the following
∑
C

, we have:

= Q1

0,l
(bt0,l, a

t
0) + γmax

αh−1

[∑
st
bt0,l(s

t)
∑
mt−0

bt0,l(m
t
−0|st)

∑
st+1

{∑
C

Pr(C|mt
−0)

T0(s
t, at0, C, s

t+1)

}
αh−1(st+1)

{∑
C

Pr(C|mt
−0)

∑
ωt+1
0

O0(s
t+1, at0, C, ω

t+1
0 )

}]
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The nested summation after the term αh−1(st+1) sums to 1. Therefore the above term

becomes:

= Q1

0,l
(bt0,l, a

t
0) + γmax

αh−1

[∑
st
bt0,l(s

t)
∑
mt−0

bt0,l(m
t
−0|st)

∑
st+1

{∑
C

Pr(C|mt
−0)

T0(s
t, at0, C, s

t+1)

}
αh−1(st+1)

]

At this point, we may reintroduce the necessary modifications to handle factored state rep-

resentation and context-specific independence:

= Q1

0,l
(bt0,l, a

t
0) + γmax

αh−1

[∑
st
bt0,l(s

t)
∑
mt−0

bt0,l(m
t
−0|st)

∑
st+1

{
K∏
k=1

∑
C
ν(xt

k
,at0,x

t+1
k

)

Pr(Cν(xtk,a
t
0,x

t+1
k )|mt

−0)T0(x
t
k, a

t
0, C

ν(xtk,a
t
0,x

t+1
k ), xt+1

k )

}
αh−1(st+1)

]
≥ Q1

0,l
(bt0,l, a

t
0) + γmax

αh−1

[∑
st
bt0,l(s

t)
∑
mt−0

bt0,l(m
t
−0|st)

∑
st+1

{
K∏
k=1

∑
C
ν(xt

k
,at0,x

t+1
k

)

Pr(Cν(xtk,a
t
0,x

t+1
k )|mt

−0) min
C
ν(xt

k
,at0,x

t+1
k

)

T0(x
t
k, a

t
0, C

ν(xtk,a
t
0,x

t+1
k ), xt+1

k )

}
αh−1(st+1)

]
(Pessimistic step.)

= Q1

0,l
(bt0,l, a

t
0) + γmax

αh−1

[∑
st
bt0,l(s

t)
∑
st+1

{
K∏
k=1

min
C
ν(xt

k
,at0,x

t+1
k

)

T0(x
t
k, a

t
0, C

ν(xtk,a
t
0,x

t+1
k ), xt+1

k )

}
· αh−1(st+1)

]

=
∑
st
bt0,l(s

t)

{
K∑
k=1

min
C
ν(xt

k
,at0)

R0(x
t
k, a

t
0, C

ν(xtk,a
t
0))

}
+ γmax

αh−1

[∑
st
bt0,l(s

t)

∑
st+1

{
K∏
k=1

min
C
ν(xt

k
,at0,x

t+1
k

)

T0(x
t
k, a

t
0, C

ν(xtk,a
t
0,x

t+1
k ), xt+1

k )

}
· αh−1(st+1)

]
Notice that after the pessimistic step, the sum over joint models is moved to the end of the

equation and sums to 1. Therefore, the computation of the lower bound isn’t affected by the

exponential size of joint model space.
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Let αh−1∗ be the vector the maximizes the future reward of the pessimistic blind policy.

Substituting it in the equation we have:

Qh

0,l
(bt0,l, a

t
0) =

∑
st
bt0,l(s

t)

{
K∑
k=1

min
C
ν(xt

k
,at0)

R0(x
t
k, a

t
0, C

ν(xtk,a
t
0))

}
+ γ

[∑
st
bt0,l(s

t)

∑
st+1

{
K∏
k=1

min
C
ν(xt

k
,at0,x

t+1
k

)

T0(x
t
k, a

t
0, C

ν(xtk,a
t
0,x

t+1
k ), xt+1

k )

}
· αh−1∗(st+1)

]

⇒ Qh

0,l
(bt0,l, a

t
0) =

∑
st
bt0,l(s

t)

[{
K∑
k=1

min
C
ν(xt

k
,at0)

R0(x
t
k, a

t
0, C

ν(xtk,a
t
0))

}
+ γ

∑
st+1

{
K∏
k=1

min
C
ν(xt

k
,at0,x

t+1
k

)

T0(x
t
k, a

t
0, C

ν(xtk,a
t
0,x

t+1
k ), xt+1

k )

}
· αh−1∗(st+1)

]
≤ Qh

0,l(b
t
0,l, a

t
0)

Finally, the lower bound vectors for horizon h may be obtained for all actions by using

lower bound vectors from horizon h− 1 as follows:

αh(st) =

[{
K∑
k=1

min
C
ν(xt

k
,at0)

R0(x
t
k, a

t
0, C

ν(xtk,a
t
0))

}
+ γ

∑
st+1

{
K∏
k=1

min
C
ν(xt

k
,at0,x

t+1
k

)

T0(x
t
k, a

t
0, C

ν(xtk,a
t
0,x

t+1
k ), xt+1

k )

}
· αh−1(st+1)

] (5.10)

Note that the vectors computed for lower bounds are over the physical states of the

environment and not over the interactive state space. Hence, they are immune to the curse

of many agents.

Given agent 0’s belief bt0,l, the lower bound on the horizon h value function could be

obtained as:

V h
0,l(b

t
0,l) = max

at0

Q
0,l
(bt0,l, a

t
0) (5.11)
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Optimistic Fast Informed Bound Upper Bound

Fast informed bound [26] [27] provide a tighter upper bound to the POMDP value function

than is obtained by using the MDP based method. One may imagine the FIB value to

be obtained when the initial state of the environment is perfectly observable but in the

subsequent steps the states become partially observable. Yet again in our adaptation to

many-agent I-POMDPs, we utilize optimistic values of configurations in the interest of faster

computation while maintaining the upper bound property.

Proposition 8 (Optimistic Fast Informed Bound). The optimistic fast informed bound gives

an upper bound to many-agent I-POMDP value function.

Proof. We begin by computing optimistic upper bounds on horizon 1 Q-value for each action

a0 as follows:

Q1
0,l(b0,l, a

t
0)

=
∑
st
bt0,l(s

t)
∑
mt−0

bt0,l(m
t
−0|st)

{
K∑
k=1

∑
C
ν(xt

k
,at0)

Pr(Cν(xtk,a
t
0)|mt

−0)R0(x
t
k, a

t
0, C

ν(xtk,a
t
0))

}
≤

∑
st
bt0,l(s

t)
∑
mt−0

bt0,l(m
t
−0|st)

{
K∑
k=1

∑
C
ν(xt

k
,at0)

Pr(Cν(xtk,a
t
0)|mt

−0) max
C
ν(xt

k
,at0)

R0(x
t
k, a

t
0, C

ν(xtk,a
t
0))

}
=

∑
st
bt0,l(s

t)
∑
mt−0

bt0,l(m
t
−0|st)

{
K∑
k=1

max
C
ν(xt

k
,at0)

R0(x
t
k, a

t
0, C

ν(xtk,a
t
0))

}
=

∑
st
bt0,l(s

t)

{
K∑
k=1

max
C
ν(xt

k
,at0)

R0(x
t
k, a

t
0, C

ν(xtk,a
t
0))

}
= Q

1

0,l(b0,l, a
t
0)

Therefore optimistic upper bound for horizon 1 value may be obtained as follows:

Q
1

0,l(b0,l, a
t
0) =

∑
st
bt0,l(s

t)

{
K∑
k=1

max
C
ν(xt

k
,at0)

R0(x
t
k, a

t
0, C

ν(xtk,a
t
0))

}
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These upper bounds may be represented as a set of vectors one for each action a0.

α1(s) =

{
K∑
k=1

max
C
ν(xt

k
,at0)

R0(x
t
k, a

t
0, C

ν(xtk,a
t
0))

}

Next we derive the upper bound on horizon h value function.

Qh
0,l(b

t
0,l, a

t
0) = Q1

0,l(b
t
0,l, a

t
0) + γ

∑
ωt+1
0

max
αh−1

[∑
st
bt0,l(s

t)
∑
mt−0

bt0,l(m
t
−0|st)

∑
st+1{

K∏
k=1

∑
C
ν(xt+1

k
,at0,ω

t+1
0,k

)

Pr(Cν(xt+1
k ,at0,ω

t+1
0,k )|mt

−0)O0(x
t+1
k , at0, C

ν(xt+1
k ,at0,ω

t+1
0,k ), ωt+1

0,k )

}
{

K∏
k=1

∑
C
ν(xt

k
,at0,x

t+1
k

)

Pr(Cν(xtk,a
t
0,x

t+1
k )|mt

−0)T0(x
t
k, a

t
0, C

ν(xtk,a
t
0,x

t+1
k ), xt+1

k )

} ∑
mt+1

−0

Pr(mt+1
−0 |mt

−0, a
t
0, s

t+1) · αh−1(st+1,mt+1
−0 )

]

By replacing Q1
0,l and α

h−1 with corresponding upper bound value and inserting fast informed

bound approximation by moving max over αh−1 inside the summation over st we have:

≤ Q
1

0,l(b
t
0,l, a

t
0) + γ

∑
ωt+1
0

∑
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Utilizing the optimistic values of the observation and transition probabilities we have:
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Now, summation over the joint models may be moved to the end and marginalized. There-

fore, the optimistic fast informed bound is:
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Finally, analogous to POMDP fast informed bound, irrespective of the horizon, we would

obtain one unique value vector for each action at0 which may be computed as follows:
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The upper bound on the value function is obtained as:

V 0,l(b
t
0,l) = max

at0

Q0,l(b
t
0,l, a

t
0) (5.13)

As in the case of lower bound, the vectors are over the physical states and we don’t need

to utilize joint models or joint actions for their computation. Hence, these bounds aren’t

affected by curse of many agents.
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5.4.4 Updating Upper and Lower Bounds

Let’s compute Q̇
h

0,l as the value by using exact I-POMDP value for 1 step followed by

upper bound value for h − 1 steps. Formally, Q̇
h
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where τ(bt0,l, a
t
0, ω

t+1
0 )(S) represents the portion of the updated belief that is over the physical

states.
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Substituting the belief update with equations 5.5 and 5.6 followed by the optimistic upper

bound estimate, we get:
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Similarly, we define Q̇
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Proposition 10 (Updating Lower Bound). Q̇
h

0,l
is a tighter upper bound on Qh

0,l than Q
h

0,l
.

Proof. The proof proceeds in a similar manner as the proof or proposition 9.

Since the I-POMDP value function is isotonic, successively updating the bounds at non-

root node of the reachability tree using Q̇ and Q̇ operator, makes the bound at root increas-

ingly tighter.

5.4.5 Efficient Solution using Branch and Bound Based Method

Despite its remarkable effect on the curbing the curse of many agents, the solution approach

of computing the entire reachability tree and performing value iteration bottom up is still

plagued by the curse of history. The number of nodes in the reachability tree is exponential

in the number of horizons and the dynamic program described in algorithm 4 must be

invoked for each context at each belief to perform belief update and value iteration. This is

a cumbersome and time-consuming operation. Hence, to address this issue, we utilize the

bounds presented in section 5.4.3 to prune portions of reachability tree that are guaranteed to

be suboptimal. Note that pruning an inner node of the reachability tree without expanding
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the subtree rooted at it saves us the cost of computing the value of all the nodes in the

subtree. We update the bounds according to the process described in section 5.4.4.

Next, I present our approach for computing the exact horizon h value of a belief bt0,l

using branch and bound method. We begin by initializing the root node of the reachability

tree using algorithm 5. The algorithm takes the belief and horizon as an input. Next, for

each action of agent 0, a0, the algorithm initializes the upper and lower bound values for

policies with a0 as the first action (Q(bt0,l, a0) and Q(bt0,l, a0) respectively) as described in

section 5.4.3. The upper and lower bound on the overall value of the node is initialized to be

maximum values of these bounds as V = max
a0

Q(bt0,l, a0) and V = max
a0

Q(bt0,l, a0) respectively.

All actions for which the upper bound on the Q-value is smaller than the lower bound of

the overall value function are guaranteed to produce sub-optimal policy. Hence they may be

pruned without affecting the solution quality.

Algorithm 5 InitializeNode

Input: Current belief (bt0,l), horizon (h)
Output: A node (n) in the reachability tree with initial value of upper bound and lower
bound values for all actions

1: Initialize a new node n and set its belief to be bt0,l and horizon to h
2: for all a0 ∈ A0 do

3: UB[a0] ← Q
h
(bt0,l, a0) (Initialize to optimistic FIB value)

4: LB[a0] ← Qh(bt0,l, a0) (Initialize to pessimistic blind policy value)

5: V = max
a0

UB[a0]

6: V = max
a0

LB[a0]

7: for all a′0 do
8: if UB(a′0) < V then
9: Prune reachability subtree with action a′0 at root node

Next we recursively tighten the upper and lower bounds on the value of the root node

using the branch and bound approach outlined in algorithms 6, 7, and 8. Particularly,

we repeatedly run algorithm 6 for the root node of the reachability tree. The termination

condition is reached when the upper and lower bound have the same value.
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Algorithm 6 UpdateBounds

Input: A node (n) of the reachability tree
Output: Boolean value representing if the node has been exactly
solved

1: if V = V then
2: return true
3: a0 ← Pick action according to a heuristic
4: if ¬branched[a0] then
5: Branch(n, a0)
6: branched[a0] ← true
7: else
8: if h > 1 then
9: for all ω0 do
10: UpdateBounds(NextNode[a0][ω0])
11: Bound(n, a0)
12: V = max

a0
UB(a0)

13: V = max
a0

LB(a0)

14: for all a′0 do
15: if UB(a′0) < V then
16: Prune reachability subtree with action a′0 at root node
17: return false
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The algorithm partially unfolds the reachability tree for some action a0 and computes

tighter bounds on the Q-value based on the unfolded reachability tree. We base the choice of

action on which to expand the reachability tree on a heuristic function (line 3 in algorithm 6).

Both the upper bound and lower bound could provide equally good guesses as to which ac-

tion is likely to be optimal given the current belief. Hence, the heuristic function may pick an

action that maximizes either bound (i.e. argmaxa0 UB[a0] or argmaxa0 LB[a0]). Depending

on the choice of the heuristic function used, algorithm 6 tightens at least one of the bounds.

However, choosing the action based on upper bound has one major advantage. As we update

the upper bound for an action a0, we may discover its suboptimality whenever its value drops

below the upper bound value for some other action. On the other hand updating bounds

based on lower bound will always pick the same action, whose value will increase mono-

tonically, without the possibility of discovering its suboptimality till the entire reachability

subtree below that action’s node has been expanded and evaluated. Therefore, our heuristic

function picks the action that maximizes the value of the upper bound (argmaxa0 UB[a0]).

This heuristics is also referred to as IE-Max heuristics [34] and is utilized in a number of

heuristics based POMDP algorithms [65] [63] [40].

Algorithm 7 Branch

Input: A node (n) of the reachability tree and action (a0)

1: if h > 1 then
2: for all ω0 do
3: NextNode[a0][ω0] ← InitializeNode(τ(b0,l, a0, ω0), h− 1)

Our approach partially expands the reachability tree for the action chosen by the heuristic

function one horizon at a time. This is referred to as the branch step and is detailed in

algorithm 7. For any given node and action, the branch function needs to be invoked only

once. For the non-leaf nodes, the branch function computes the updated belief for all possible

observations and initializes their respective nodes in the reachability tree using equation 5.
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Algorithm 8 Bound

Input: A node (n) of the reachability tree and action (a0)

1: ER0 ← Compute expected immediate reward for b0,l
2: UB[a0] ← ER0

3: LB[a0] ← ER0

4: if h > 1 then
5: for all ω0 do
6: UB[a0] ← γ Pr(ω0|b0,l, a0) × NextNode[a0][ω0].V
7: LB[a0] ← γ Pr(ω0|b0,l, a0) × NextNode[a0][ω0].V

If the node has already been branched for the chosen action, we make a recursive call to

update the bounds of each updated belief.

Next, the bound step described in algorithm 8 tightens its upper and lower bound for the

Q-value of the chosen action using the method outlined in section 5.4.4. The overall value

function of the node are computed using the updated Q-value bounds. Although, for the

action chosen according to the IE-max algorithm, only the upper bound is guaranteed to be

updated. If the action chosen also happens to be the one that maximizes the lower bound

value, the lower bound value is updated as well.

After each step of updating the bounds, we prune all actions whose upper bound values

have become smaller than the (possibly) updated lower bound. Note that once a subtree

has been fully expanded for an action a0 and all its subtrees have been exactly evaluated,

the upper and lower bound value for a0 are the same (i.e. UB[a0] = LB[a0]). At this point,

either the lower bound value for a0 is greater than upper bound value for all other actions

or there exists some other action a′0 such that its upper bound value is greater than UB[a0]

(i.e. either LB[a0] ≥ UB[a′0], ∀a′0 or ∃a′0 such that UB[a′0] > UB[a0]). In the first case, we

may conclude that a0 is the optimal action and its corresponding value is the exact solution
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for the subtree. In the latter case, the heuristics will pick a′0 the next time algorithm 6 is

invoked for the node.
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Figure 5.4: An illustration of the branch and bound algorithm performed on an example problem

with 3 actions. Note the numbers beside the action nodes are the upper and lower bounds on Q-

value for the action. Similarly, the number beside the belief nodes are the upper and lower bounds

on the value of the belief. Note that the upper and lower bounds on the value of the belief are the

maximum upper and lower bound on the Q-value for any action.

Figure 5.4 illustrates the branch and bound approach for an example problem domain.

For simplicity of representation, I consider a domain with 3 actions for agent 0. In the first

step, we initialize the node for the initial belief, b00,l. In this step, we compute the upper

and lower bounds on the Q-value for each action. The bounds on the value of b00,l are the
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maximum values if upper and lower bound for any action (300 and 200 respectively). Next,

notice that the upper bound value for action a20 is less than the lower bound on the value of

b00,l. Hence space of policy trees with action a20 at root node could be pruned without further

expanding the reachability tree below it.

In the second step, we pick action a10 using the IE-max heuristic function (notice that

action a10 has the maximum value of the upper bound). Next, the branch step computes the

updated belief for a10 and all observations and initializes the value of the nodes reachable in

1 step. This is followed by the bound step that uses the value of upper and lower bounds on

the value of children node to update the Q-value for initial belief and action a10.

Similarly, the bounds are updated for action a30 in the third step. At this point, notice

that the value of lower bound on the value of b00,l (230) is greater than the value of the upper

bound on the Q-value for a10 (225). Hence the entire space of policy trees with action a10 could

be pruned without further exploring it. The algorithm continues by expanding remaining

beliefs at the next time step and running branch and bound till the values of the upper and

lower bounds for b00,l converge.

5.5 Experiments

We first implemented the simple and systematic I-POMDP solving technique that computes

reachable beliefs over the finite horizon and then calculates the optimal value at the root

node using the Bellman equation for the Many-Agents I-POMDP framework in a bottom

up fashion starting at the leaf nodes. We evaluate its performance in the aforementioned

non-cooperative policing protest scenario (|S| = 27, |A0| = 9, |Aj| = 4, |Oj| = 8, |Oi| = 8).

We model the other agents as POMDPs and solve them using bounded policy iteration [51],

representing the models as finite state controllers. This representation enables us to have

a compact model space. We set the maximum planning horizon to 5 throughout the ex-
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periments. The frame-action hypergraphs are encoded into the transition, observation and

reward functions of the Many-Agent I-POMDP (Fig. 5.5). All computations are carried out

on a RHEL platform with 2.80 GHz processor and 4 GB memory.
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Figure 5.5: A compact levi graph representation of a the Policing Protest scenario as a frame-

action hypergraph for (a) the transition function, and (b) the reward function for site 0. The

variables x and x′ represent the start and end intensity of the protest at location 0 and the action

shows the location of the two police troops. Since two police troops are sufficient to deescalate any

protest, the contexts in which both troops are at location 0 are independent of the actions of other

agents. All other contexts depend only on the agents belonging to either frame choosing to protest

at site 0.

To evaluate the computational gain obtained by exploiting problem structures, we im-

plemented a solution algorithm similar to the one described earlier that does not exploit

any problem structure. A comparison of the Many-Agent I-POMDP with the original I-

POMDP yields two important results: (i) When there are few other agents, the Many-Agent

I-POMDP provides exactly the same solution as the original I-POMDP but with reduced

running times by exploiting the problem structure. (ii) Many-Agent I-POMDP scales to

larger agent populations, from 100 to 1,000+, and the new framework delivers promising

results within reasonable time.

In the first set of experiments, we consider up to 5 protesters of different frames. As

shown in table 5.1, both the traditional and the Many-Agent I-POMDP produce policies

with the same expected value. However, as Many-Agent I-POMDPs losslessly compress joint
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protesters H I-POMDP Many-Agent Exp. Value

2
2 1 s 0.55 s 77.42

3 19 s 17 s 222.42

3
2 3 s 0.56 s 77.34

3 38 s 17 s 222.32

4
2 39 s 0.57 s 76.96

3 223 s 17 s 221.87

5
2 603 s 0.60 s 76.88

3 2,480 s 18 s 221.77

Table 5.1: Comparison between traditional I-POMDP and Many-Agent I-POMDP both following

same solution approach of computing the reachability tree and performing backup in a bottom up

fashion. Notice that the rate of change of time taken with number of agents is much slower for

Many-Agents I-POMDP.

actions to configurations, the Many-Agent I-POMDP requires much less running time. Also,

note that the rate of increase in runtime with increase in number of agents is much slower

for Many-Agent I-POMDPs. This result suggests that Many-Agent I-POMDPs may scale to

significantly larger number of agents.

In the second set of experiments, we test settings involving many more agents. The

traditional I-POMDP doesn’t not scale to such settings. Hence, we first scale up the exact

solution using Many-Agent I-POMDP. This allows us to solve problems involving up to a

few hundred other agents. Although the exploitation of the problem structures reduces the

curse of many agents that plagues I-POMDPs, the curse of history is unaffected by such

approaches. To mitigate the curse of history we implement the more efficient branch and

bound based solution technique presented in section 5.4.5. We evaluate our algorithm on

two problem domains (i) the non-cooperative policing domain and (ii) a gaming scenario

based on a popular mobile game. We describe the second problem domain next.
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5.5.1 Gaming Problem Domain

We base our second problem domain on the popular mobile game Clash of Clans

(http://clashofclans.com) which is a massively multiplayer online (MMO) strategy

game. The game has two aspects, the first is to gather resources through various activities

(including raiding settlements of other players using own armies) and the second is to build

a strong settlement and to defend own resources against the invasion of the other players’

armies. For our purpose, we focus on the latter aspect of the game.

The objective of the subject agent (agent 0) is to defend it resources against the invasion

by the armies of the other player. To do so it may erect a boundary walls in the four cardinal

directions around its settlement and install cannons along side each wall that may ward off

the attack by invading armies. We illustrate the setting for the game using a screen shot of

the game shown in figure 5.6.

Figure 5.6: A screen shot of the game Clash of Clans. The image shows a simple settlement in

which the resources are stored in the central structure which is surrounded by walls on four sides.

The walls are guarded using cannons which are situated on the outside of the walls.

The physical state is factored into four factors, one for each direction. The state of each

factor represents the defense status in the respective cardinal direction, i.e. is it completely
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unprotected in that direction, just walled, or is it walled and guarded using canons. Each

value representing increasing level of protection. Therefore |S| = 81 (3 values for each

cardinal direction). At any time step, the agent may fortify its defenses on any one cardinal

direction (|A0| = 4) and receive observation providing information about the direction with

weakest defense status (|Ω0| = 4). The action of fortifying defenses in any direction raises

the level of protection from unprotected to walled and from walled to guarded with a certain

probability. When attacked by an opponent’s army, the subject agent may suffer losses and

its defenses may be weakened or even completely destroyed.

The army of the opponent consists of N other agents that may have one of two frames:

tier 1 attacker or tier 2 attacker. The game defines tier 1 to be a class of weaker soldiers

(consisting of barbarians, archers, and goblins) that are injured easily by the canons but

could recuperate quickly as well. Tier 2 attackers (consisting of giants and wizards) are

more resilient to attack by the canons and cause more damage than the tier 1 attackers. But

when injured, they recover slowly. The other agents may attack from one of the four cardinal

direction or they may recover when injured(|Aj| = 5). A common strategy while attacking

a settlement is to attack from one of the sides with least protection. Once an agent picks a

side to attack from, it continues to attack from the same side until it has been injured by

a canon. When injured the agent retreats to recover. Once it has recovered, it may pick

another side to attack from. The state of defenses in any direction depends on the the action

of the subject agent and the number of agents of each type attacking from that direction.

5.5.2 Performance of Many-Agent I-POMDPs for Problems with

Large Agent Population

For settings consisting of many other interacting agents, we demonstrate the efficiency of

Many-Agent I-POMDPs on the two aforementioned problem domains. We show that while
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the simpler exhaustive approach of computing all reachable beliefs could be used to solve

problems involving hundreds of agents, significant savings and scalability could be obtained

by utilizing the branch and bound method presented in section 5.4.5. We refer to the two

methods as Exhaustive method and Branch&Bound method respectively.

We present the results for the policing problem in Table 5.2. We limit the duration of

the solution algorithm to 6 hours. Notice that while the exhaustive method can solve 1000

agents for 3 horizons in under 2 hours, it unable scale to longer horizons or more agents.

On the other hand the branch and bound method consistently outperforms the exhaustive

method and is able to solve 2000 agent problem for 4 horizons within the time limit. Also

note that both approaches are exact and yield the same value.

Table 5.3 compares the performance of the exhaustive mentod and the branch and bound

method on the gaming problem domain. Yet again, the branch and bound method outper-

forms the exhaustive method consistently. Using the branch and bound method, we are

able to solve problems involving up to 2000 attackers for 3 horizon. Whereas the exhaustive

method only scales to 1000 agent problem for 3 horizons. The expected rewards are negative

because we focus only on the aspect of game regarding defending the resources. Therefore,

while it is possible for agent to incurr some cost for fortifying its defenses and fending off

enemy’s attack, we do not model attacking other agents’ settlements or other activity that

could yield positive rewards.

5.6 Discussion

The key contribution of the Many-Agent I-POMDP is its scalability beyond 1,000 agents

by exploiting problem structures. We formalize widely existing problem structures – frame-

action anonymity and context-specific independence – and encode it as frame-action hyper-

graphs. Other real-world examples exhibiting such problem structure are found in economics
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# protesters H Exhaustive Branch&Bound Exp. Value

20

3 149 s 7 s 275.125

4 2816 s 27 s 384.468

5 — 86 s 482.877

50

3 157 s 8 s 274.901

4 3062 s 33 s 384.228

5 — 118 s 482.622

100

3 193 s 10 s 274.41

4 3651 s 44 s 383.724

5 — 187 s 482.107

200

3 350 s 19 s 273.384

4 6217 s 108 s 382.664

5 — 416 s 481.017

500

3 1137 s 73 s 270.409

4 18087 s 285 s 379.563

5 — 1462 s 477.822

1000
3 6782 s 465 s 265.022

4 — 2135 s 373.958

1500
3 — 1851 s 259.743

4 — 9858 s 368.44

2000
3 — 4189 s 254.9

4 — 21534 s 363.348

Table 5.2: Comparison between the performance of the Exhaustive and Branch&Bound methods
for the policing problem.
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# Attackers H Exhaustive Branch&Bound Exp. Value

20

3 4 s <1 s -3.25144

4 33 s 2 s -3.99474

5 228 s 7 s -4.66932

50

3 6 s 1 s -3.30767

4 45 s 3 s -4.0937

5 304 9 s -4.82919

100

3 14 s 2 s -3.43564

4 97 s 7 s -4.30115

5 648 27 s -5.13859

200

3 56 s 9 s -3.65139

4 445 s 53 s -4.66468

5 3359 293 s -5.70733

500

3 349 s 93 s -4.62299

4 3065 s 818 s -6.22968

5 — 4776 s -8.00939

1000
3 1897 s 1190 s -6.21816

4 — 14087 s -8.7851

1500 3 — 5043 s -7.89312

2000 3 — 11089 s -8.87943

Table 5.3: Comparison between the performance of the Exhaustive and Branch&Bound methods
for the gaming problem.
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where the value of an asset depends on the number of agents vying to acquire it and their fi-

nancial standing (frame), in real estate where the value of a property depends on its demand,

the valuations of neighboring properties as well as the economic status of the neighbors be-

cause an upscale neighborhood is desirable. Compared to the previous best approach [69],

which scales to an extension of the simple tiger problem involving 5 agents only, the presented

framework is far more scalable in terms of number of agents.

One drawback of Many-Agent I-POMDP is that it depends entirely on the prior belief of

the subject agent. The updated beliefs are necessary at each step to compute distribution

over the configurations (Algorithm 4) and to evaluate the value of a policy subtree which is

in turn used to compute the value of the root node. This makes it unsuitable for settings

requiring a general solution in the form of policies and corresponding value vectors. In this

regard, some other structures may be exploited.

Our future work includes exploring other types of problem structures and developing

approximation algorithms for I-POMDP. An integration with existing multiagent simulation

platforms to illustrate the behavior of agent populations may be interesting.
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Chapter 6

Conclusion

The ability to make rational decisions is a defining characteristic of human beings. From

an evolutionary perspective, natural selection favors individuals who could ensure their own

existence and that of their progeny by any means. Therefore, we may say that we are

evolutionarily driven to be self-interested beings. In the case of human beings (as in the case

of numerous other species), the best strategy for survival is to form cooperative societies

primarily to ensure a continued source of sustenance (such as through agriculture) and to

fend off other dangers to individuals. Thus, we may conclude that cooperative behavior

arose from the self-interest of individual agents.

I-POMDPs model such self-interested behavior for individual agents. While it is easy

to see the application of I-POMDPs in competitive settings where an agent may need to

outsmart all other competing agents, it is also important to realize its importance in settings

requiring agent cooperation. While Dec-POMDPs are ideal for settings where a team of

agents needs to be deployed, their utility is limited in settings where a group of heterogeneous

agents (agents developed and deployed by various sources) must be used. Heterogeneous

agents may not share a common reward or common prior. For example, consider a search

and rescue scenario where multiple rescue robots deployed by various medical teams must
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carry out their own operation. In doing so, an agent may realize that in order to complete a

sub-task, the best strategy is to cooperate with other interacting agents in the environment.

Such forms of dynamic cooperation may emerge when the agents are modeled as I-POMDPs.

I-POMDPs capture a crucial aspect of multiagent decision making that we encounter in

everyday life. Despite their theoretical significance, their application in real world domains is

precluded due to their computational complexity. In my dissertation, I have systematically

addressed the various sources of intractability and provided viable solutions to overcome

them. While the curses of history and dimensionality are inherited from POMDPs and could

be addressed extending efficient POMDP solution techniques – such as heuristic search value

iteration (HSVI) [65], forward search value iteration (FSVI) [63], SARSOP [40] and GapMin

[53] – multiagent settings present their own challenges in the form of curse of agent modeling

and curse of many agents. I summarize the solution I proposed for these curses and discuss

future improvements on these fronts.

6.1 Curse of Dimensionality

In POMDPs, the curse of dimensionality arises from the size of state space. The complexity

of belief update and value iteration is affected quadratically with the size of state space.

I-POMDPs extend the physical states to interactive states by including the models of other

agents. The model space for intentional models is continuous in theory. However, in practice,

the set of models of other agents is assumed to be computable. Nevertheless, the model space

could still be large. This further aggravates the curse of dimensionality.

In my dissertation, I proposed a simple bimodal approach that mitigates the effect of the

curse of dimensionality to some extent in certain online settings (Chapter 4). In this approach

under higher uncertainty, the subject agent starts by behaving as a POMDP while modeling

the other agents as noise. Once the agent has sufficiently identified the current state of the

151



environment, it switches to full I-POMDP mode. The key idea behind this approach is that

in settings where the observations don’t give direct information about other agent’s actions

(e.g. observation of creaks in the multiagent tiger problem 1), the observations regarding the

states are more informative of other agents actions when the uncertainty over the true state

is low. We utilize upper and lower bounds on the I-POMDP value function and a parameter

to determine the switching point. The computational savings arise from the fact that, in the

POMDP phase, the curse of dimensionality is tempered by ignoring other agent’s models

and that faster POMDP algorithms, such as SARSOP [40], could be utilized in this phase.

However, these savings come at the cost of loss in performance due to ignoring the models

of other agents in the initial phase.

6.1.1 Future Work

Eck and Soh [18] presented a similar approach for solving POMDPs in online settings with

high uncertainty. In their approach, the agent first picks actions that would reduce its

uncertainty about states the most. Once it has gained enough information about the current

physical state, it changes its objective to maximize its expected rewards. As opposed to

our method which uses bounds on the I-POMDP value function, this approach takes a more

direct approach to reduce the entropy of its belief. Extension of this approach to I-POMDPs

may provide some interesting insights in to the framework.

6.2 Curse of Agent Modeling

In addition to the worsened effects of curse of dimensionality, as the planning horizon in-

creases, the number of reachable models of other agents also grows exponentially due to

the effect of the curse of history on the other agents’ I-POMDP. Including these models in
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interactive state space further aggravates the curse of dimensionality. We term the effect of

curse of history on curse of dimensionality as the curse of agent modeling.

The obvious solution for this problem is to restrict the model space while maintaining

the solution quality. Finite state controllers (FSCs) provide a compact representation of the

other agents’ policies [23] [24] [51]. Thus FSCs may be utilized to capture the approximate

behavior of the other agents. Hence, it is logical to compress the interactive state space

to include the FSCs of the other agents instead of their beliefs. Building on this idea, we

proposed the interactive bounded policy iteration (I-BPI) algorithm (Chapter 3).

I-BPI represents the solution of agents at all levels in the form of FSCs, redefining the

interactive state space at level l as a joint between the physical states and the FSC of all

other agents at level l − 1. Level 0 I-POMDP is a POMDP and is solved using BPI [51].

While it is possible to formulate the level l I-POMDP as a POMDP by including the FSC

obtained by solving the level l−1 I-POMDP completely, in the interest of having an anytime

behavior, we interleave the solution at each level by dynamically redefining the interactive

state space at each iteration.

We extended our approach to utilize initial the belief to bias the solution in the region

of belief space that is more likely to be reached in a manner similar to one described in

VDCBPI [52]. This bias comes with an increased cost of computation which we compensate

for by removing nodes from other agents’ controllers that are cannot be reached. Next, we

adapt the algorithm to solve I-POMDP settings involving multiple other agents and settings

where the frames of the other agents may not be exactly known.

We demonstrated that I-BPI significantly outperforms the previous best I-POMDP solu-

tion algorithm, I-PBVI [15], both in terms of solution quality and the execution time. We

show that I-BPI could be used to solve significantly larger problems and present the solution

for five agent tiger problem for the first time to the best of our knowledge.
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6.2.1 Future Work

The major drawback of I-BPI, much like the parent algorithm BPI, is that it is prone to

local optima. Although in some cases the controller could be pushed out of local optima by

adding nodes that improve the value of the belief reachable from the tangent belief in one

step, it is not always possible. Secondly, the controller may not ever reach the global optima.

Moreover, it is impossible to guarantee the quality of the controller obtained with respect to

the global optima.

A recent work by Grzes and Poupart [21] presents a more principled and guaranteed

approach for escaping local optima. The ideas from this work are directly applicable to I-

BPI as well. Although the approach favors solution in settings where initial belief is known,

the advantage of this method is that it is guaranteed to generate the best quality controller of

any given size. Expectation maximization based solutions for I-POMDPs are also promising

[55].

6.3 Curse of Many Agents

In multiagent settings, the transient set of the environment, the observations received by

an agent, and the rewards received by an agent may depend on the actions performed by

all interacting agents sharing the environment. Therefore, to predict the behavior of other

agents and how it affects the attainment of its own goals, the subject agent must model

all other agents. If the other agents are individual rational agents, such as humans or

autonomous robots, they must be modeled as such for guaranteed optimality.

In traditional I-POMDPs, the actions and models of all other agents are captured in the

form of joint actions and joint models. Naturally, such a representation is exponential in

the number of agents and quickly becomes unruly. For example, we would require a few

gigabytes of memory just to store the belief of an agent in a 30 agent I-POMDP. Our goal
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was to present scalable solution methods that would scale to settings with thousands of

interacting agents. To do so, we extended the ideas from game theory, particularly action

graph games ([32]), to multiagent decision making using I-POMDPs (Chapter 5).

We extended the concept of action anonymity to frame-action anonymity and captured

the context specific independence using frame-action hypergraphs. Next, we incorporated

these problem structures in I-POMDP to create the Many-Agent I-POMDP framework. Using

more scalable factored representation of the belief, we devised scalable methods of computing

updated belief and value function. We theoretically derive the computational savings from

utilizing Many-Agent I-POMDPs and demonstrate it empirically in the context of two new

problem domains – the first being a domain for policing protest and the second a gaming

domain – that may involve thousands of agents. We show that while traditional I-POMDPs

don’t scale beyond a few agents (5 other agents), Many-Agent I-POMDPs are scalable to

hundreds of agents (thousands with slight improvements as summarized in the next section).

6.3.1 Future Work

Many-Agent I-POMDPs yield remarkable scalability in terms of number of agents by utilizing

commonly found problem structure. However, the approach relies heavily on the availabil-

ity of a prior belief which is used to compute reachable beliefs. The reachable beliefs are

then in turn used by the dynamic programming approach to compute a distribution over

configuration. This approach doesn’t suit offline settings where the initial belief of the agent

is not known. Particularly, the use of configurations instead of joint actions doesn’t work

with general solutions computed using equation 1.11. This issue necessitates research into

alternate methods of capturing problem structures, such as anonymity and context-specific

independence. Furthermore, other problem structures that could potentially aid scalability

should be explored as well.
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6.4 Curse of History

The final curse afflicting I-POMDP solutions is the curse of history. This curse arises due

to the partial observability inherent in the problem domains. Curse of history affects the

solution complexity exponentially with the number of observations. Being the more dominant

curse in the context of POMDPs, the curse of history has received much attention in POMDP

literature. A more popular approach to mitigate the curse of history is to use heuristics

guided point based value iteration [65] [63] [40] [53], which could be adapted to I-POMDP in

a straightforward manner. Isolated approaches for solving POMDPs with large observations

also exist [28].

In my dissertation, I proposed two methods to mitigate the effects of this curse. First

method involved identifying actions which are guaranteed to yield weakly informative ob-

servations (Chapter 2). Such actions could be leveraged in the backup step by ignoring the

resulting observations, hence speeding up the computation. We demonstrated the perfor-

mance gained from exploiting weak information inducing actions on some standard bench-

mark POMDP problem domains that contain such actions. The second method I proposed

is a novel branch and bound based method that prunes portions of the reachability tree that

are guaranteed to generate a suboptimal solution. We utilize this method in conjugation with

the Many-Agent I-POMDP (Chapter 5). We empirically demonstrate that the branch and

bound method significantly adds to the scalability of the Many-Agent I-POMDP framework

making it possible to exactly solve problems involving up to 2000 agents.

6.4.1 Future Work

The curse of history may be the biggest hindrance in the application of POMDP based al-

gorithms in real world scenario. The solution complexity is exponential in the number of

observations due to partial observability. Most heuristic based methods exploit the knowl-
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edge that, in many real world scenarios given the current state, only a few observations

are possible. Curse of history is more prominent in settings where the initial belief is not

available. Novel method of addressing this curse in such settings should be explored.
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Appendix A

Appendix

A.1 I-BPI Algorithm for N>2

In settings involving multiple agents, 1 . . . K, with the subject agent denoted as agent 1, and

uncertainty over the other agents’ frames with each being ascribed multiple frames, the joint

model space is the product of the model spaces of each other agent. Also, the transition,

observation and reward functions of an agent depend on the joint actions of all agents. In

such settings, Algorithms 1, 2 and 3 are adapted as follows.

168



Algorithm 9 Interactive BPI for I-POMDPs
Interactive BPI (I-POMDP: θ1,l) returns solution, π∗

1,l

1: Initialize Controller (θ1,l)
2: Reformulate, IS1,l = S ×Kk=2 Fk,l−1, in θ1,l and analogously for each frame of each other

agent at all levels l down to level 1
3: Beginning with level, l = 0, perform a single-step full backup for each frame at each

level, l, using the transformed ISk,l, resulting in |Nk,l| ≤ |Ak| nodes in a controller, πk,l
4: repeat
5: repeat
6: πk,l ← Evaluate&Improve (πk,l, θk,l with reformulated ISk,l)
7: until no more improvement is possible
8: Push controllers at each level from local optima
9: until no more escapes are possible
10: return converged controller, π∗

1,l

Algorithm 10 Recursively initialize all controllers at all levels down to 0.

InitializeControllers (I-POMDP: θk,l) returns initial controller,
πk,l

1: if l ≥ 1 then
2: for j ∈ {1 . . . K}, j ̸= k do
3: for each frame in the set, Θ̂j,l−1, included in θj,l−1 do
4: πj,l−1 ← InitializeControllers (θj,l−1)
5: Construct a controller, πk,l, with a single node, |Nk,l| = 1, mapped to a random action

Algorithm 11 Evaluation and bounded improvement of the controllers at different levels.

Evaluate&Improve (controller: πk,l, I-POMDP model: θk,l) returns controller,
π′
k,l

1: if l ≥ 1 then
2: for j ∈ {1 . . . K}, j ̸= k do
3: for each frame in the set, Θ̂j,l−1, included in θj,l−1 do
4: πj,l−1 ← Evaluate&Improve (πj,l−1, θj,l−1)
5: if l=0 then
6: Evaluate controller, πk,0 = ⟨Nk, Ek, Lk, Tk⟩
7: Improve controller, if possible, analogously to a POMDP [51]
8: else
9: Evaluate controller, πk,l = ⟨Nk,l, Ek,l, Lk,l, Tk,l⟩, analogous to Eq. 3.2 replacing aj

with joint actions of all other agents and nj,l−1 with joint nodes of all other agents as
formulated in line 2 of Alg. 9

10: Improve controller, if possible, while keeping |Nk,l| fixed analogous to Eq. 3.3
11: return improved controller, π′

k,l
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