
STATISTICAL INTERPRETATION OF EXPERIMENTS WITH LAYING HENS

by

EUGINE SONG

(Under the Direction of Lynne Billard)

ABSTRACT

The effects of series of balanced dietary protein levels on egg production and egg quality parameters

in lying hens from 18 through 74 weeks of age were investigated in this experiment. One hundred

and forty four pullets were equally assigned to three different protein level series. The results clearly

demonstrated that balanced dietary protein level was the limiting factor for body weight, average

daily feed intake (ADFI), egg weight, and egg production. As the cost of research increases,
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consumption for poultry research and production. Different models have been proposed to fit those

curves. To test differences of fitted curves, the sum of squared reduction test is used. The results

of repeated measures using response variables are appealing.
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Chapter 1

Introduction

Since the diet fed to commercial laying hens can vary depending on factors such as the strain of

layer, production goals, age, and weather conditions (Schaible and Patrick, 1980), the composition

of laying hen feed has gone through many changes. Since a laying hen produces eggs depending

on the nutrients provided in its diet, the quality and formulation of the diet is important to a

producer, especially considering that 65 to 75% of the cost to produce eggs is due to feed costs

(Bell and Weaver, 2002). Due to this fact, it has become increasingly important for producers to

find a balance between feeding their birds on a least-cost basis and feeding the appropriate amounts

of nutrients in the diet when the hen needs them throughout her lay cycle. This will help producers

maximize their profits. This can be done through a phase feeding program, involving a pre-lay diet,

and diets of different compositions to suit the stages of the hens’ lay cycle.

As more producers become interested in least-cost and maximum profit diets, mathematical

models and formulations in diet would be valuable tools to answer research questions. A major

application of mathematical modeling is accurate estimation of production performance, growth,

and feed consumption for poultry research and production. To fit these curves, several models have
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been proposed. For instance, the Adams-Bell (1980) and modified compartmental (Miyoshi et al.,

1996) models have been applied to fit egg production; Lokhorst (1996) introduced models to fit egg

weight and feed intake; also, Gompertz (1825), and Richard (1959) proposed models to fit hens’

body weight curves. Gunawardana et al. (2008) and Parsons et al. (1993) studied the effect of

protein levels on egg production and egg weight.

The goals of this thesis are to determine whether mathematical models (the Adams-Bell, 1980;

modified compartmental, Miyoshi et al., 1996; Lokhorst, 1996; Gompertz, 1825; and Richard, 1959,

models) could fit curves (egg production, egg output, egg weight, feed intake, and body weight),

and whether there are differences among three protein levels in hens’ diet. Unlike previous research

(Mazzuco et al., 2011 and Keshavarz, 2003) which compares the protein levels using a one or

two-way analysis of variance (ANOVA), this study focuses on comparing treatments (three protein

levels) using nonlinear regression analysis and repeated measures designs. First, we compared

differences among fitted curves, and then discuss the benefits of using a repeated measures designs

instead of a one or two-way analysis of variance (ANOVA).
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Chapter 2

Liturature Review

In order to interpret statistically the results of experiments with laying hens, we need to review

the biological and statistical background. The biological background section described how protein

affects egg production, egg weight, and hens body weight; and also proposed three protein levels in

hens’ diet based on guidelines of the National Research Council. The statistical background section

was focused on the statistical methods used in poultry science.

2.1 Biological Background

Since the nutrients provided in diet of a laying hens affect the hens’ capacity to produce eggs

and build body tissue, the formulation of the diet is important to producers considering feed cost.

Especially, protein is essential in the diet to provide amino acids. These amino acids are needed to

provide body tissue and egg production. Since 65 − 75% of the cost to produce eggs is spent in

feed costs (Bell and Weaver, 2002), it is important for producers to find a diet formulation based

on least cost and maximum profit.

The National Research Council (NRC, 1994) reported that a Leghorn-type laying hen requires
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18.8, 15.0, or 12.5% protein in the diet for feed intakes of 80, 100, or 120 g/hen/day. Even tough,

laying hens do not require protein, protein in the diet needs to be available to provide a supply

of nonessential amino acids (National Research Council, 1994). Increasing levels of protein have

resulted in improvements in egg size and weight (Leeson, 1989; Parsons et al., 1993; Keshavarz

and Nakajima, 1995). Thus, methods of influencing egg weight through diet are main issues for

producers. Based on these facts, we choose three levels of protein to study diet formulation. First,

diets were separated into 4 phases (18 − 22, 23 − 32, 33 − 44 and 45 − 74 age in weeks). The high

protein (H) series contained 21.62, 19.05, 16.32 and 16.05% protein, respectively. Medium protein

(M) and low protein (L) series were 2% and 4% lower in balanced dietary protein.

Gunawardana et al. (2008) reported that, when testing dietary protein levels to birds over a

12 week trial, increasing dietary protein would increase feed intake to provide energy. This energy

needed for increased egg production was satisfied by increased protein. One thousand nine hundred

and twenty molted birds at 87th week of age, in phase of two of their second cycle, were fed two

protein levels (15.5 and 16.1 %). Hens fed high-protein (16.1%) in their diet had significantly higher

egg weights than hens fed low protein (15.5%) in their diet. Therefore, the choice of protein levels

was dependent on cost.

Parsons et al. (1993) reported that there was a substantial effect on grade of egg weight and

size by increasing dietary protein from 16% to 18%. Much of this response from 20 to 28 weeks

was probably due to the low feed intakes, resulting in birds fed the 16% crude protein in diet

having protein and synthetic amino acids intakes below the NRC (1984) recommended levels. Egg

production (20 to 40 weeks) was not influenced by feeding diets containing 16%, 18% and 20%

protein (Parsons et al., 1993).

Dietary protein affected egg production and hens body weight gain in two experiments (Pesti,
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1991). Pesti (1991) observed that birds fed high protein had increased growth and egg production,

and egg weight was maximized at high protein. Hens body weight gain was reduced with level of

significance p ≤ 0.02 by lowering the protein for 39 to 50 weeks of age by 3% (Novak et al., 2008),

indicating that the level of protein or amino acids was important in maintaining optimal gain.

2.2 Statistical Background

In science, researchers use statistical methods to analyze their experiment data, since they need

scientific evidence to support their conclusions. To find out whether the test in which they are

interested is statistically significant, many researchers in poultry science have often used one of

procedures of Statistical Analysis System (SAS, 2006). If the statistical methods which they used

are appropriate for their data, the results would be a powerful scientific basis to support their

hypotheses.

Faridi et al. (2011) fitted several different curves (for egg production, feed intake, egg weight,

hens body weight, and egg mass) and compared several nonlinear models (three Narushin-Takma,

Adams-Bell, Lokhorst, Richard, Gompertz, and modified compartmental models) to evaluate the

ability of three Narushin-Takma models applied to fit curves using the NLIN (nonlinear) procedure

(Marquardt, 1963, algorithm). To reveal an accuracy of fit with these models, the mean square

error (MSE), coefficient of determination (R2), Akaike information criterion (AIC), and Bayesian

information criterion (BIC) are used.

Bell et al. (1991) studied the shape (linear, quadratic, asymptotic, and cyclic) of the production

curve, the relationship between the two laying cycles, and the effect of strain and season on various

measures of egg production. To compare performance traits between strain and the age at peak

production and at molting, a one-way analysis of variance was run. Repeated measures analysis of
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variance was used to compare the early lay cycle slope with the slope over the last 10 weeks.

In Mazzuco et al. (2011), their goal was to evaluate alternative molting protocols assessing hen

welfare and performance during and after molt. Six different treatments were applied, and PROC

GLM, MIXED, and LOGISTIC of SAS were run to perform orthogonal contrasts for treatment

comparisons. By using the LOGISTIC procedure, the effect of treatment, age, and treatments ×

age interaction were evaluated.

Keshavarz (2003) determined the effect of different nonphytate phosphorus diets with and with-

out phytase on performance of four strain of laying hens. A two-way ANOVA and Duncan’s (1995)

test were run to test the interaction effect of strain × diet and to compare means. When the

interaction effect was significant, Keshavarz used a one-way ANOVA (SAS, 2006) to test the main

effects of strain and diet.

In this work, nonlinear models in poultry science are applied to fit the five response variables;

specifically, egg production (y5), egg output (y6), average daily feed intake (ADFI) (y2), egg weight

(y3), and body weight (y1) (Chapter 4). Since the goal of this work is to test whether there are

differences among the three protein treatments, statistical methods which were not used in previous

stated research were applied using nonlinear models (Section 4.7).
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Chapter 3

Nonlinear Regression - Models

This chapter describes nonlinear models which have been proposed to fit to various entities in

poultry science, as well as methods which compare several treatments in a nonlinear regression

analysis. Six functions (Adams-Bell, modified compartmental, Gompertz, Richards, and egg weight

and feed intake equations of Lokhorst) which have commonly been used to fit response variables are

considered. All models were fitted using the NLIN (non-linear) procedure of SAS (SAS Institute,

2006).

3.1 Models

In all models, t is the age in weeks of the hens and y is the output variables measured each week.

Egg production is the number of egg per 100 live hens. This is also called ”hens-day egg production”

and has the unit percentage. Egg output is the grams of egg produced by the average hen.
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3.1.1 Adams-Bell equation

The Adams-Bell equation was proposed to fit egg production and egg mass by Adams and Bell

in 1980. Here, egg production and egg output (egg production × egg weight) are considered as

response variables, y5 and y6, respectively. This equation is given by

y = 100(
1

(1 + abt)
− ct+ d) (3.1)

In (3.1), the response y corresponds, respectively, to y5 for egg production (%) or y6 for egg output

at age t weeks, and a, b, c and d are parameters. These parameters have no interpretation other

than being model parameters. In this thesis, since there are three treatments (High, Medium, Low)

which are dietary protein levels, the response variable is fitted by this equation for each treatment.

In other words, there are three equations with the same response variable.

3.1.2 Modified Compartmental equation

The Modified Compartmental equation has been applied to fit egg production y5 and egg output

y6 by Miyoshi et al. (1996). The equation is given by

y = a(
exp(−bt)

1 + exp(−c(t− d))
) (3.2)

where y corresponds, respectively, to y5 for egg production (%) or y6 for egg output, t is age in

weeks and a, b, c and d are parameters. These parameters have no particular interpretation.
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3.1.3 Lokhorst egg weight equation

Lokhost (1996) also proposed an equation for egg weight y3, specifically

y = a+ brt. (3.3)

In this equation, y(≡ y3) is egg weight(g/ egg), a is the theoretical maximum egg weight, b (< 0)

should be added to a to determine the initial egg weight, r (0 < r < 1) refers to the growth rate,

and t is the age of the hens in weeks.

3.1.4 Lokhorst feed intake equation

Lokhorst (1996) proposed different equations for egg weight(g), second-grade eggs, and feed intake.

The Lokhorst feed intake equation is

y = (
a

1 + b exp(−act)
) + dt+ ft2 (3.4)

where y(≡ y2) is feed intake(g/ hen/ day), a is the horizontal asymptote of the restricted growth

curve, b represents the feed consumption at the start of the laying period, and c refers to the rate

of the increases in feed consumption in the restricted growth phase. Parameters d and f indicate

that feed consumption increases or decreases during the rest of the laying period, and t is the age

of the hens in weeks.
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3.1.5 Gompertz equation

The Gompertz (1925) equation was proposed to fit growth curves according to

W = N exp[−α exp(−Nβt)]. (3.5)

In our application of this equation, W corresponds to the body weight(kg) (y1) of the hen, β is

the intrinsic growth rate, N is the asymptotic or maximum growth response, and α is a parameter.

Ricklefs (1985) showed that this equation was applied to fit the growth curve of Japanese quail.

He described that the variation of the parameters changes the growth curve and so should be used

to compare treatments, and effects of treatments on growth.

3.1.6 Richards equation

Richard (1959) introduced an equation which was applied to fit egg weight as

W =
N

[1 + α exp(−Nβt)]γ
(3.6)

where W corresponds to body weight(kg) (y1) of the hen, β is the intrinsic growth rate, N is the

asymptotic or maximum growth response, and α and γ are parameters. This model was developed

from the von Bertalanffy equation (Bertalanffy, 1941).

3.2 Repeated Measures Designs

For this work, experimental designs were generated with two factors and six response variables.

One factor is the dietary protein level series (high protein H, medium protein M, and low protein
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L), and the other factor is the age, in weeks, of the hen. There were three groups of hens and

each was fed a different series of diets. The management guide recommendations were that the

medium (M) level contained 19.05%, 17.05%, 15.05%, and 15.05% protein during weeks 18 − 22,

22 − 32, 32 − 44, and 44 − 74, respectively. Hens fed the high (H) and low (L) protein level series

of diets record 2% more and 2% less protein at each age, respectively. Here, we can consider hens

id number as a repeated measures factor, because we collect data each week from the same hen at

the same diet level. Therefore, this section describes two-factor repeated measures designs.

3.2.1 Two Factors

First of all, let us suppose that one of the factors is A with levels A1, . . . , Aa, and the other one is

B with levels B1, . . . , Bb. The general case of two factors repeated measures designs is that each

of the subjects receives all ab treatment combinations (AiBj). In one special case, subjects in one

level of A factor receive the b treatment combinations (AiBj , j = 1, . . . , b). This design is useful

when factor A is a qualitative factor. The data for this work were considered as this special case,

because the first forty-eight hens were on a high protein diet, the next forty-eight hens were on a

medium protein diet, and the last forty-eight hens were on a low protein diet, and each hen received

all b combinations (AiBj , j = 1, . . . , b).

The model for the general case is

Yijk = µ+ τij + πk + δijk + eijk, i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , p, (3.7)

where τij = Ai + Bj + (AB)ij with Ai, Bj , (AB)ij being the effect of the i level of A, the j

level of B, and the interaction of Ai and Bj , and δijk = (Aiπk) + (Bjπk) + (AB)ijπk with the

interaction of subjects between factor A, factor B and the AB interaction. The assumptions are
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πk ∼ IN(0, σ2π), eijk ∼ IN(0, σ2), and πk and eijk are mutually independent.

The model for our special case is

Yijk = µ+Ai +Bj + (AB)ij + πk + βjk(i) + eijk, i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , p, (3.8)

where πk is the effect of subject k, and βjk(i) is the interaction of subject k with the jth level of

factor B and nested in the ith level of factor A. Since nested factors do not have interaction with

factors within which they are nested, there is no interaction effect of subjects and factor A. The

assumptions are πk ∼ IN(0, σ2π), and βjk(i) ∼ IN(0, σ2β).
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Chapter 4

Nonlinear Model- Results

In this chapter, the six equations given in Chapter 3 were used to fit each of five response curves,

respectively, egg production (y5), egg output (y6), average daily feed intake (ADFI) (y2), egg weight

(y3), and body weight (y1), by diet expressed as protein levels (high H, medium M, and low L,

respectively). The coefficient of determination (R2 = 1−SS(Residual)/SS(TotalCorrected)) is used

to evaluate goodness of fit for all models. Then the treatments (protein levels) are compared. Table

4.1 summarizes the range, mean, and standard deviation of each protein level for the six response

variables. Based on Table 4.1, the range of each response variable is wide, i.e., the data are ”noisy”,

there is considerable variation amongst the hens fed the same diet. Therefore, it is of interest to

know how well the equations are fitted to the individual data and to the mean data of each age

level. In order to fit three nonlinear regression models and to compare protein levels, the nonlinear

procedure (proc NLIN) of SAS (SAS Institute, 2006) with the Marquardt algorithm (Marquardt,

1963) is used.

13



4.1 Data Description

One of the goals of this work is to test whether there is a difference between the effects of dietary

protein levels on several response variables. Thus, in this experiment, one hundred forty-four laying

hens were randomly assigned to individual cages with separate feeders and were equally assigned

to three different protein levels.

As previously stated in Section 3.2, the data were generated with two factors and six response

variables. One factor is A (dietary protein level), and the other is B (week age of hens). The

response variables are egg production (%) (y5) (number of eggs per 100 hens per day), egg output

(y6) (egg productions× egg weight), egg weight (g) (y3), ADFI (y2), layer body weight (kg) (y1),

and egg cumulative number (y4) (cumulated from value of observation at age 19 ). There are three

levels of factor of A (high protein(H), medium protein(M), and low protein(L)). There are fifty-six

levels of B (from 19 weeks to 74 weeks) for egg production, egg output, egg weight(g), and egg

cumulative number; fifty-seven levels of B (from 18 weeks to 74 weeks) for ADFI; and fifteen levels

of B (every four weeks from 18 to 72) for layer body weight. Table 4.1 gives a description of some

basic statistics for the data used in this paper.

In this chapter, we determine the fitted equations for the different models described in Chapter

3 for both the individual data and mean data sets. We will plot these equations for the three diets

(high, median, and low protein levels) on the same graph so they can be visually compared. For

illustrative clarity, the observed mean data set values are used on both sets of graphs. Statistical

tests of comparison are given in section 4.7.
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Table 4.1: Summary of descriptive statistics for data

Variables Treatment Observation no. Range Mean ± SD

Egg production (%) (y5) H 48 0 to 100 89.90 ± 22.27
M 48 0 to 100 87.69 ± 21.93
L 48 0 to 100 72.17 ± 21.98

Egg output (g) (y6) H 48 5.53 to 74.53 55.33 ± 9.57
M 48 5.16 to 68.79 51.24 ± 9.10
L 48 5.42 to 64.71 39.28 ± 9.89

Egg weight (g) (y3) H 48 38.1 to 74.53 59.09 ± 5.24
M 48 36.9 to 70.43 56.26 ± 4.27
L 48 37.75 to 66.06 52.85 ± 3.83

ADFI (g) (y2) H 48 12.8 to 135.39 101.19 ± 12.87
M 48 19.1 to 139.63 99.17 ± 13.98
L 48 6.23 to 138.99 86.75 ± 17.33

Layer body weight (kg) (y1) H 48 1.02 to 2.23 1.56 ± 0.21
M 48 1.03 to 1.91 1.46 ± 0.16
L 48 0.93 to 1.71 1.30 ± 0.17

Egg cumulative number (y4) H 48 0 to 327 172.59 ± 106.00
M 48 0 to 375 166.62 ± 105.24
L 48 0 to 356 143.31 ± 85.93

4.2 Egg Production (%) (y5)

4.2.1 Adams-Bell Model

First, the Adams-Bell (1980) model of (3.1) was fitted to the individual data of egg production

and to the mean data of egg production (y5). A summary of the model parameters in each case,

for each treatment level (i.e., each level of A) is presented in Table 4.2. Based on Table 4.2, the

parameters a, b, c, and d are very similar for each treatment level (dietary protein levels). However,

the value of R2 for the mean data fits is higher than when the individual hen data are used, since

as expected there is more variation in the individual data than in the mean data. Figure 4.1 shows

the three fitted curves of this model with the plots for the individual data in Figure 4.1(a), and

these for the mean data in Figure 4.1(b). The shapes of the three curves are very similar to each

other. The gap between the curve of the L level and the other two (H and M) is wide, suggesting
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Table 4.2: Adams-Bell model-parameter estimates and goodness of fit for egg production (y5)

Individual data Mean data
Entity H M L H M L

a 1.152E13 9.717E16 5.174E14 1.208E13 9.29E16 5.133E14
b 0.2315 0.1465 0.1833 0.2310 0.1468 0.1834
c 0.000419 0.000857 0.00246 0.000443 0.000861 0.00247
d -0.0436 -0.0489 -0.1370 -0.0429 -0.0492 -0.1365
R2 0.4906 0.4634 0.2787 0.9843 0.9762 0.7465

there are differences between them; which we shall test statistically (see Section 4.7). Even though

there is a small gap between the curves of the H and M levels, we also need to test whether there

are statistically significant differences between them. By comparing the coefficient of determination

(R2) values given in Table 4.2, we see that the Adams-Bell model fits the data from hens fed the H

and M series very well, but not those fed the L series of diets. The Adams-Bell model was designed

to fit normal egg production curves well, but the hens response to the L series was not normal: Egg

production of hens fed the L series of diets increased normally in the early growth weeks but then

decreased much more quickly then normally and did not decrease in a linear manner (Figure 4.1).

4.2.2 Modified Compartmental Model

Since the modified compartmental model (Miyoshi et al., 1996) of (3.2) has been applied to fit egg

production (y5), two cases (individual and mean data) were fitted to this model for our data. The

resulting estimated parameters are very similar for the two cases as shown in Table 4.3. However,

R2 for the mean data is higher, since there is more variation in the individual data than in the

mean data. When comparing this with the results of the Adams-Bell model, the R2 values of the

M and L treatments in the Adams-Bell model are lower than these in the modified compartmental

model suggesting that the modified compartmental model is a better fit. This is, in contrast to
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Table 4.3: Modified compartmental model-parameter estimates and goodness of fit for egg production (y5)

Individual data Mean data
Entity H M L H M L

a 95.6733 94.9712 87.0207 95.7401 94.9419 87.0641
b 0.000450 0.000902 0.00330 0.000475 0.000907 0.00330
c 1.5853 2.1654 2.3451 1.5874 2.1645 2.3425
d 20.6515 20.4610 20.2862 20.6513 20.4605 20.2862
R2 0.4899 0.4632 0.2831 0.9828 0.9757 0.7414

results of experiments from previous research (Faridi et al., 2011), in which R2 in the Adams-Bell

model was higher. The plots given in Figure 4.2(a) for the individual data and Figure 4.2(b) for

the mean data for this modified compartmental model show the same trends as for the Adams-Bell

model. Similar to the fits of the Adams-Bell model, the modified compartmental model did not fit

the data from hens fed the L series of diets as well as for the H and L diets.

4.3 Egg Output (y6)

4.3.1 Adams-Bell Model

In this work, the Adams-Bell (1980) model of (3.1) has been used to fit egg output (y6). The

estimated parameter values for each level of A (H, M, L) and each of the individual and mean data

sets are shown in Table 4.4. Based on Table 4.4, the estimation of the parameters b, c, and d is very

similar in each treatment level, but that for a is not. A consequence of this dissimilarity is observed

in Figure 4.3 where Figure 4.3(a) indicates that the predicted value of the H level at age 19 with

the individual data is different from that when using the mean data (Figure 4.3(b)). Since there is

less variation in the mean data, R2 for each of three levels for the mean data is higher than for the

individual data. We see from Figure 4.3 the gap among the three fitted curves is wider than those

in Figures 4.1-4.2 for egg production. As age increases, the two egg output curves corresponding
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Table 4.4: Adams-Bell model-parameter estimates and goodness of fit for egg output (y6)

Individual data Mean data
Entity H M L H M L

a 41400.9 1.2961E8 1.67E10 427849 13485517 1.118E8
b 0.5634 0.3737 0.2793 0.5115 0.4246 0.3715
c -0.00058 -0.00085 0.000527 -0.00058 -0.00046 0.000541
d -0.4619 -0.5208 -0.5798 -0.4675 -0.5059 -0.5792
R2 0.2632 0.2104 0.0249 0.9804 0.9520 0.7252

Table 4.5: Modified compartmental model-parameter estimates and goodness of fit for egg output (y6)

Individual data Mean data
Entity H M L H M L

a 53.5426 47.8148 42.2015 52.0804 41.8585 41.9949
b -0.00113 -0.00173 0.00139 -0.00143 0.00166 0.00131
c 0.7184 1.3525 1.9466 1.2822 2.3564 2.2727
d 20.2150 20.1833 19.7543 20.9650 20.4723 20.4033
R2 0.2619 0.2120 0.0356 0.9786 0.9659 0.7616

to the H and M levels are both increasing. However, the curve of diet L level is decreasing.

4.3.2 Modified Compartmental Model

The estimated parameter values when the modified compartmental model of (3.2) was fitted to the

egg output responses (y6), for each of the individual and the mean data sets, are shown in Table

4.5. Based on Table 4.5, the parameters a, b, c, and d are very similar for each treatment level, as

observed when the Adams-Bell model was fitted. The value of R2 for the mean data is much higher

than these for the individual data for each diet, since there is less variation in the mean data. The

plots of this model for each diet (H, M, L) are shown in Figure 4.4. We see these give essentially

the same results as was observed in Figure 4.3 when fitting the Adams-Bell curve.
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Table 4.6: Lokhorst egg weight model-parameter estimates and goodness of fit for egg weight (y3)

Individual data Mean data
Entity H M L H M L

a 60.7704 59.7684 54.8426 60.7176 57.3861 54.1269
b -260.0 -23.3146 -26.8402 -370.8 -825.0 -109.1
r 0.8630 0.9480 0.9368 0.8504 0.8114 0.8828
R2 0.3230 0.3134 0.2365 0.9356 0.8329 0.8685

4.4 Egg Weight (y3)

4.4.1 Lokhorst Egg Weight Model

The Lokhorst model of equation (3.3) was applied to the egg weight response values (y3) for the

individual and the mean data. The estimated parameter values for each level of diets (H, M, L)

and each of the individual and mean data sets are given in Table 4.6. For each diet, there are

slightly different values among the estimations of parameters a and r, but the parameter estimates

of b in the M and L levels are quite different from those for the H level, and are quite differnt

for the individual and the mean data sets, see Table 4.6. This result has affected the graph of

fitted curves as shown in Figure 4.5. Thus, the curves of the M and L diet levels for the individual

data are flatter than these for the mean data. The R2 of the mean data is larger than that for the

individual data for each diet (consistent with what previous results have shown). Since r represents

the increase in egg weight, the growth rate of M level is higher than when diets H and L are used.

The meaning of parameter a is the theoretical maximum egg weight. Even though the value of a

for each diet in Table 4.6 is not the same as for the corresponding values for maximum egg weight

in Table 4.1, the diet level of the highest and lowest maximum egg weight is the same.
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4.5 Average Daily Feed Intake (y2)

4.5.1 Lokhorst Feed Intake Model

The Lokhorst Feed Intake Model (1996) of equation (3.4) was applied to fit curves to the average

daily feed intake (ADFI) response variables (y2) for the original and the mean data. The estimated

parameter values for each level of A (H, M, L) and each of the individual and mean data sets are

given in Table 4.7. Based on Table 4.7, the parameters a, b, c, and d are very similar for each

treatment level. Further, R2 of the mean data is much higher than for the individual data for each

diet, since there is less variation in the mean data. From Figure 4.6, we see that the gap between the

curve of L level and the curves for H and M levels is wider than that between the curve for H and M

levels, and shows these represent different patterns after the peak point. As age is increasing, the

curves of the H and M levels increase and then decrease. However, the curve of the L level decreases

and then increases for the individual and mean data. These patterns are affected by the sign of the

parameters d and f , since d and f indicate that feed consumption increases or decreases after the

starting of the laying period. The estimated values of parameter a are interesting. Since a refer

to the horizontal asymptote of the restricted growth curve, we expect that the highest estimated

value of a is in H level based on Figure 4.6. However, from Table 4.7, we see that the highest

estimated value of a is actually for in the L level diet. The highest estimated value of b (which

represents the feed consumption at the start of the laying period) is in M level. Thus, the highest

feed consumption at the start is in M level. However, the highest estimated value of c (which refers

to the speed of the increases in feed consumption in the restricted growth phase) is in M level.

The Lokhorst Feed Intake Model very nicely models both types of responses observed here.

For hens fed the H and M series of diets, ADFI increased quickly and then increased slowly and
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Table 4.7: Lokhorst feed intake model-parameter estimates and goodness of fit for ADFI (y2)

Individual data Mean data
Entity H M L H M L

a 77.2431 80.0693 94.4412 77.0445 79.9941 93.7631
b 4.261E12 3.938E13 1.88E14 4.763E12 4.145E13 2.546E14
c 0.0210 0.0218 0.0197 0.0212 0.0218 0.0200
d 1.0324 0.7895 -0.4493 1.0414 0.7924 -0.4127
f -0.00949 -0.00682 0.00576 -0.00959 -0.00684 0.00532
R2 0.3126 0.2650 0.0747 0.8277 0.7887 0.3475

decreased. For hens fed the L series of diets, ADFI increased quickly but then decreased slowly

before increasing.

4.6 Laying Hens Body Weight (y1)

4.6.1 Gompertz Model

The Gompertz model of equation (3.5) was applied to the body weight response values (y1) for

the individual and the mean data. The estimated parameter values for each level of A (H, M, L)

and each of the individual and mean data sets are given in Table 4.8. The estimated values for β

(the growth rate) of H level for the individual data are different from those for the mean data. As

expected, the highest value of the N (maximum growth response) is in H level. From the result of

R2 in Table 4.8, and the fitted curves in Figure 4.7, we conclude that this model is not as good

as other models, specifically, the fitted line of L level is flat. Since there is a high variation in the

L level of dietary protein, the Gompertz equation used in previous research (Faridi et al., 2011)

could not give nicely fitted curves. However, Rogers et al. (1987) demonstrated that the linear and

quadratic models predict more accurately for specific parts of the data. Thus, we should consider

both linear and quadratic models for body weight; see section 4.6.3.
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Table 4.8: Gompertz model-parameter estimates and goodness of fit for body weight (y1)

Individual data Mean data
Entity H M L H M L

α 6.3192 0.4163 4.815E36 13.5127 0.2459 4.073E36
β 0.1031 0.0315 3.6600 0.1257 187.2 3.6600
N 1.6337 1.5599 1.2963 1.6215 1.4888 1.3100
R2 0.3272 0.2392 0.0588 0.9757 0.9578 0.6248

4.6.2 Richards Model

The Richard model of equation (3.6) was applied to the body weight response values (y1) for the

individual and the mean data. The estimated parameter values for each level of diet (H, M, L) and

each of the individual and mean data sets are given in Table 4.9. Even though R2 in Table 4.9 is

higher than for the Gompertz model, we see from Figure 4.8 that the flat line of the plot for the

L level exhibits the same problem as we had with the Gompertz model. Especially, the estimated

value of parameter N in the M level for the individual data is -0.0186. Since N indicate the

asymptotic or maximum growth response, we cannot expect there be a minus sign of the estimated

parameter value. The estimated values of β in the H and M level for the individual and mean data

are lower than these in the L level. Since β refers to the intrinsic growth rate, estimated values in

the H and M levels would be higher than these in the L level. Thus, this is also evidence that the

Richards model is not appropriate to fit body weight. Therefore, other kinds of regression models

will be applied, such as linear, quadratic, or cubic regression models; see section 4.6.3.

4.6.3 Linear regression

Before fitting basic linear regression curves, we should consider the shape of the curves based on

those of Figure 4.7. In particular, we observe that there is an initial linear trend up to age 21.

There are linear, quadratic, or cubic trends after age 21 weeks. Thus, we need to split the data
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Table 4.9: Richards model-parameter estimates and goodness of fit for body weight (y1)

Individual data Mean data
Entity H M L H M L

α 0.000522 -1.0408 8.785E42 0.5671 -1.0374 6.433E42
β 0.1032 0.00141 4.6283 0.1263 0.00132 4.6283
N 1.6337 -0.0186 1.2963 1.6214 1.5474 1.3100
γ 12119.3 1.5569 5218.7 24.4221 -0.0139 5218.7
R2 0.3272 0.2882 0.0588 0.9756 0.9720 0.6248

into two groups. The first two points (age 18, and 21) are in the first group (group1), and points

from the second (age 21 - 75) are in the second group (group2). The equations of linear, quadratic,

and cubic regressions are, respectively, for the response variable (y1)

y = a+ b× t, (4.1)

y = a+ b× t+ c× t2, (4.2)

y = a+ b× t+ c× t2 + d× t3, (4.3)

where t is age in weeks and a, b, c, and d are model parameters. These equations were applied to

fit body weight curves (y1), for each of the there different dietary protein levels. Since there are

only two time points (t=18, and 21) in the first group, clearly only a linear regression (connecting

the two observations) can be used to fit two observed values of the body weight. Thus, when

fitting these models to the mean data, there are no models for group 1. However, since there are

replications in the individual data, we can fit a linear (only) model to the group 1 data.

The estimated parameter values for each model are shown in Table 4.10 and Table 4.11 for the

individual and mean data, respectively, for the H level, in Tables 4.12-4.13 for the individual and

mean data, for the M level, and in Tables 4.14-4.15 for the individual and mean data for the L
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level. Since there is less variation for the mean data, the R2 for the mean data is higher than that

for the individual data in each case. Also based on Tables 4.10, 4.12, and 4.14 , the R2 of the linear

regression in the first group is higher than these of the quadratic and cubic regressions in second

group. The reason is there are less variation in first group, since there are only two points (age=

18, 21).

Let us now compare the model fits for second graph (i.e., for observations after 21 weeks). First,

take the models for the H diet level. From Table 4.10 for the individual data, we see that, although

these are significant fits (p < .0001) for all three models, the R2 values are relatively small but

are also comparable. Likewise, when fitting these models to the mean data, again all models are

significant with p < .05 (though the quadratic regression fit has p = .0202) and the R2 values are

comparable. However, in this case, the R2 values are now high at .08651, .9257, and .9311 for the

linear, quadratic, and cubic models, respectively. This suggests that all three fits are adequate.

Therefore, on the grounds of parsimony (i.e., as few parameters as necessary), we consider the

linear regression model fits these data well.

For the M and L diet levels, we also see from Tables 4.12 and 4.14 for the individual data that

all three regression models have reasonably comparable R2 values for each level and are statistically

significant (p < .0001), except that the linear model for the L level has p = .0382 and an R2 value

much less than for the quadratic and cubic fits (i.e., the linear regression model is not adequate for

the L level diet). When we look at the corresponding fits to the mean data, in Table 4.13 and 4.15,

it is clear that the fit of the linear regression model at the L level is not at all good (p = .4396)

and R2 (.0309) being much larger than the R2 values for the quadratic and cubic regression fits

(R2 = .7254 and .8728, respectively). For the M level diet, it is the cubic regression fit that is

clearly better than are the linear and quadratic regression fits.
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Table 4.10: Treatment H - Linear regression-parameter estimates and goodness of fit for body weight (y1)
with individual data

Group Regression Type a b c d p-value R2

1 Linear -0.7856 0.1072 < .0001 0.7669
2 Linear 1.4104 0.0040 < .0001 0.1162
2 Quadratic 1.2843 0.0101 -0.00006 < .0001 0.1224
2 Cubic 1.5142 0.0126 -0.0001 0.0000004 < .0001 0.1225

Table 4.11: Treatment H - Linear regression-parameter estimates and goodness of fit for body weight (y1)
with mean data

Group Regression Type a b c d p-value R2

2 Linear 1.4432 0.0034 0.0072 0.8651
2 Quadratic 1.3027 0.0103 -0.00008 0.0202 0.9257
2 Cubic 1.2643 0.0117 -0.0001 0.0000003 < .0001 0.9311

Especially, in Table 4.13 and Table 4.15, the p-values of the linear or quadratic regression

(p=.446 and .4396 respectively), are not lower than 0.05. However, in Table 4.11, since p-values

(0.0072 and 0.0202) are lower than 0.05, only for the H level, the linear and quadratic regression

are fitted well. That is, the linear or quadratic regression does not fit well for M and L level except

that the linear and quadratic model for H. Even though, the highest R2 of the each diet level is

for cubic regression (H=.9311, M=.9276, and L=.8727), the R2 of quadratic regression is little bit

lower than cubic regression in the H and M levels (R2 = .9257 and .8132, respectively). Thus, we

can say that quadratic regression is the best fit for the H level. However, when considering that

the R2 of the cubic regression model for the L level treatment (see Tables 4.14-15) is the highest

(R2 = .0975 and .8728, respectively), and from the respective fits shown in Figures 4.9 - 4.11, we

conclude the cubic regression is the best fit to the body weight curve.
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Table 4.12: Treatment M - Linear regression-parameter estimates and goodness of fit for body weight (y1)
with individual data

Group Regression Type a b c d p-value R2

1 Linear -0.7401 0.1051 < .0001 0.8171
2 Linear 1.4010 0.0018 < .0001 0.0404
2 Quadratic 1.5084 -0.0034 0.00005 < .0001 0.0483
2 Cubic 1.6855 -0.0169 0.0004 -0.000002 < .0001 0.0506

Table 4.13: Treatment M - Linear regression-parameter estimates and goodness of fit for body weight (y1)
with mean data

Group Regression Type a b c d p-value R2

2 Linear 1.4068 0.0017 0.0446 0.6759
2 Quadratic 1.5279 -0.0042 0.00006 0.0808 0.8132
2 Cubic 1.6950 -0.0174 0.0004 -0.000002 < .0001 0.9276

Table 4.14: Treatment L - Linear regression-parameter estimates and goodness of fit for body weight (y1)
with individual data

Group Regression Type a b c d p-value R2

1 Linear -0.6823 0.1015 < .0001 0.7636
2 Linear 1.3542 -0.0009 0.0382 0.0064
2 Quadratic 1.7484 -0.0200 0.0002 < .0001 0.0763
2 Cubic 2.4175 -0.0706 0.0014 -0.000008 < .0001 0.0975

Table 4.15: Treatment L - Linear regression-parameter estimates and goodness of fit for body weight (y1)
with mean data

Group Regression Type a b c d p-value R2

2 Linear 1.3380 -0.0006 0.4396 0.0309
2 Quadratic 1.8011 -0.0233 0.0002 < .0001 0.7254
2 Cubic 2.6446 -0.0866 0.0017 -0.00001 < .0001 0.8728
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4.7 Comparing Treatments

To compare treatments using nonlinear regression analysis, we use the sum of squares reduction

test. Nonlinear models were applied to fit response variables in two cases. One case is the full

model with all parameters of all treatments, and the second case is the reduced model with fewer

parameters of the full model. For example, in our Adams-Bell model, the full model contains twelve

parameters (four parameters × three treatments), i.e.,

yij = 100(
1

(1 + ajbtj)
− cjt+ dj), i = 5, 6, j = 1, 2, 3. (4.4)

where y51, y52, and y53 corresponds to the response at level H, M, and L of egg production, and

y61, y62, and y63 corresponds to the response at level H, M, and L of egg output. The reduced model

contains eight parameters, since we assume that there is no difference between the two treatments.

That is, two particular treatments share the same a, b, c, and d. Therefore, the hypothesis is

H0 : There is no difference between the two treatments.

The test statistic is

Fobs =
(SS(Residual)Reduced − SS(Residual)Full)/(df(Residual)Reduced − df(Residual)Full)

MSError(Full)

(4.5)

∼ F [(df(Residual)Reduced − df(Residual)Full), df(Residual)Full].

See Gallant (1987, Chapter 4) for details of this test. Since two treatments were compared in any

one test, we considered three cases. First, equality of the H and M levels were tested, then the H

and L levels, and finally the M and L levels.
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Table 4.16: Comparing treatments for egg production (y5)

H and M H and L M and L
Model Data F-value p-value F-value p-value F-value p-value

Adams-Bell Individual 10.746 < .0001 406.993 < .0001 303.520 < .0001
Mean 3.338 0.0118 126.027 < .0001 93.601 < .0001

Modified Individual 9.527 < .0001 334.975 < .0001 253.614 < .0001
compartmental Mean 3.365 0.0112 127.566 < .0001 96.693 < .0001

4.7.1 Egg Production (%) (y5)

The F-values from (4.5) and the corresponding p-values results of this test (comparing the H and M

levels, the H and L levels, and the M and L levels) are summarized in Table 4.16 for egg production

(y5) for each of the fits of the Adams-Bell and the modified compartmental models and for each

of the individual and mean data. Based on the p-values in Table 4.16, H0 is rejected for each

comparison at the 1% level of significance in each case except that for the H and M comparison of

the mean data, H0 is rejected at the 5% but not the 1% level of significance (since p < .05 in these

cases). That is, we conclude that the three nonlinear curves are significantly different from each

other. That is, the different protein levels produce significantly different egg production responses.

4.7.2 Egg output (y6)

The F and p-values of comparing egg output (y6) for the H and M levels, the H and L levels,

and the M and L levels for each of the fits of the Adams-Bell and modified compartmental models

and each of the individual and mean data appear in Table 4.17. From the p-values of Table

4.17, we conclude that any two diets when fitting curves of each of the Adams-Bell and Modified

compartmental models are not the same as each other. Thus, the three nonlinear curves for each of

the individual and mean data are significantly different from each other. When comparing p-values
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Table 4.17: Comparing treatments for egg output (y6)

H and M H and L M and L
Model Data F-value p-value F-value p-value F-value p-value

Adams-Bell Individual 9.961 < .0001 142.699 < .0001 78.405 < .0001
Mean 18.797 < .0001 245.395 < .0001 131.180 < .0001

Modified Individual 78.848 < .0001 1055.393 < .0001 572.374 < .0001
compartmental Mean 20.420 < .0001 289.033 < .0001 158.789 < .0001

Table 4.18: Comparing treatments for egg weight (y3)

H and M H and L M and L
Model Data F-value p-value F-value p-value F-value p-value

Lokhorst Individual 375.639 < .0001 1800.290 < .0001 540.793 < .0001
Mean 37.244 < .0001 229.739 < .0001 79.593 < .0001

of the H and M levels for egg production of the mean data (in Table 4.16) with the p-values of the

H and M levels for egg output of the mean data (in Table 4.17), we see the p-values for egg output

are lower.

4.7.3 Egg Weight (y3)

The F-values from (4.5) and the corresponding p-value results of the sum of square reduction test

(comparing H and M levels, H and L levels, and M and L levels ) are summarized in Table 4.18

for egg weight (y3) for each of the fits of the Lokhorst egg weight models (1996) and each of the

individual and mean data. Since the p-values in Table 4.18 are lower than 0.01, we can say these

are statistically significant different models across the model comparisons. Thus, the three curves

for the different diet levels for each of the individual and mean data are significantly different from

each other for the different diets.
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Table 4.19: Comparing treatments for ADFI (y2)

H and M H and L M and L
Model Data F-value p-value F-value p-value F-value p-value

Lokhorst Individual 50.995 < .0001 340.676 < .0001 281.264 < .0001
Mean 3.617 0.0039 54.056 < .0001 35.688 < .0001

4.7.4 Average Daily Feed Intake (y2)

For average daily feed intake (y2) (ADFI), the resulting F- and p-values from (4.5) when comparing

treatments are shown in Table 4.19 for the H and M levels, the H and L levels, and the M and L

levels for each of the fits of the Lokhorst feed intake model (1996) and for each of the individual

and mean data. Since the p-values in Table 4.18 are lower than 0.01, H0 is rejected at the 1%

level of significance for all comparisons. Thus, there is not enough evidence to indicate that there

is no difference among the three treatments, i.e., equivalently, all three diet levels for each of the

individual and mean data are significantly different from each other. I. e., the ADFI is significantly

different for the three different diets.

4.7.5 Laying Hens Body Weight (y1)

For laying hens body weight (y1), the results from (4.5) of comparing the treatments are shown

in Table 4.20 for the H and M levels, the H and L levels, and the M and L levels for each of the

fits of the cubic model for each of the individual and mean data. The large F values and small

p-values in Table 4.20 suggest that there are statistically significant differences among three cubic

regressions of protein diet levels for each of the individual and mean data. Thus, the three curves

for the different diet levels for each of the individual and mean data are significantly different from

each other for the difference diets.
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Table 4.20: Comparing treatments for body weight (y1)

H and M H and L M and L
Model Data F-value p-value F-value p-value F-value p-value

Cubic Individual 202.110 < .0001 773.494 < .0001 1039.641 < .0001
Mean 5.970 0.0310 88.623 0.0001 10.595 0.0062

4.8 Repeated Measures

As previously stated in Section 3.2, we can consider the hen’s id number, as a repeated measures

analyses factor. In this section, the results of one and two factors repeated measures designs are

shown for egg production (y5), egg output (y6), egg weight (y3), average daily feed intake (ADFI)

(y2), hens body weight (y1), and egg cumulative number (y4). One of the goals of this thesis is to

investigate whether balanced dietary protein levels have an effect on the response variables. For

the one factor repeated measures design, the factor used corresponds to the three different protein

levels. For the two factors repeated measures design, the factors are the age and the protein levels.

For our two factors repeated measures design, we used forty-eight hens for each protein level, H,

M, and L, and kept those hens on the same diet level through all levels of the age factor. This is

the special case in Section 3.2.1. Since there are slight differences between the H and M levels in

the plots of the observed response values (in Figures 4.1-4.8), we especially focus on the contrast of

the H and M levels, and the average of the H and M levels with the L level. Based on the observed

response variables (for egg production (y5), egg output (y6), egg weight (y3), average daily feed

intake (ADFI) (y2), hens body weight (y1), and egg cumulative number (y4)) in Figures 4.1-4.8, we

can find the peak point in each diet level for the individual and mean data. We also need to test

whether there are differences among the peak point and other points.
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4.8.1 Egg Production (y5)

Table 4.21 gives the analysis of variance (ANOVA) results of the one and two factors repeated

measures for egg production (y5). Based on Figure 4.1-4.2, the observed values of egg production

increased rapidly and decreased slowly. We consider the twenty-third week point for egg production

as the peak point. For the one factor repeated measures model, there is a significant difference in

the dietary protein levels between the H and M levels, and also between the average of the H and M

levels and the L level at the 1% level of significance. Thus, the different diet levels and the different

between H and M levels, and the different between the average of H and M levels and L level make a

difference in egg production. However, for the two factors repeated measures design, the difference

between the H and M levels is not significant (p = .1280 > .05). That is, the difference between

the H and M levels does not result in a statistically significant difference in egg production. Also the

interaction between diet levels and age is significant at the 1% level of significance. Thus, there are

differences in egg production among the three diet levels for the different age in weeks. However,

when testing the contrasts as a component of the age × id within diet variation, we see that the H

and M levels are not significantly different at the 5% level of significance (p = .1280 > .05). The

average of the H and M levels is statistically significant different from the L level (p < 0.0001) in

egg production. Finally, we also compare ages producing the peak egg production values with the

other ages as a ”Peak & Others” contrast comparent of dietary protein; since p < 0.001, we can

conclude these age groupings produce statistically different responses.

4.8.2 Egg Output (y6)

The ANOVA results of the one and two factors repeated measures designs for egg output (y6)

are displayed in Table 4.22. Based on Figure 4.3-4.4, the H and M levels are on an increasing
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Table 4.21: Repeated Measure for egg production (y5)

Method Treatment Repeated p-value

One-Way Dietary protein Age < .0001

Contrast H vs M < .0001
Contrast (H,M) vs L < .0001

Two-Way Dietary protein Age < .0001
Age Age < .0001

Dietary protein× Age Age < .0001

Contrast Peak & Others < .0001
Contrast H vs M 0.1280
Contrast (H,M) vs L < .0001

trend, but the L level is on a decreasing trend after the twenty-third week. Thus, the twenty-third

week is considered as the peak point. The result of comparing the difference between the peak

point and other points is significant at the 5% level of significance but not significant at the 1%

(.01 < p = 0.0133 < .05). For both the one and two factors repeated measures designs, there

is a significant difference in the dietary protein levels, in the interactions between diet levels and

age in weeks, the H and M levels, and the average of the H and M levels and the L level, at

the 1% level of significance. Thus, the different diet levels and the difference between the H and

M levels, and the difference between the average of the H and M levels and the L level, make a

difference in egg production for the one factor repeated measures. The comparison of responses at

the peak ages with nonpeak ages is significant at the 5% level but not at the 1% level of significance

(.01 < p = .0133 < .05). As in section 4.8.1, the contrast of peak and others (ages) is a component

of the age × id within diet variation. There are differences in egg output among the three diet

levels with the different age in weeks; the difference between the H and M levels, and the difference

between the average of the H and M levels and the L level make a difference in egg output. However,

since there are interaction effects, rather than the tests of difference in the dietary protein levels
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Table 4.22: Repeated Measure for egg output (y6)

Method Treatment Repeated p-value

One-Way Dietary protein Age < .0001

Contrast H vs M < .0001
Contrast (H,M) vs L < .0001

Two-Way Dietary protein Age < .0001
Age Age < .0001

Dietary protein× Age Age < .0001

Contrast Peak & Others 0.0133
Contrast H vs M < .0001
Contrast (H,M) vs L < .0001

and age in weeks, per se, it is more meaningful to talk about the interaction effects. Hence, we can

say that the effect of age on the egg output is different for the different diets (or, equivalently, the

effects of the diets on egg output differs over different ages).

4.8.3 Egg Weight (y3)

The ANOVA results of the one and two factors repeated measures analyses for egg weight (y3) are

summarized in Table 4.23. Based on Figure 4.5, the observed values for the three protein levels

rapidly increase before the twenty-third week. Thus, the twenty-third week is considered as the

peak. The result of this contrast test (peak and other points) is significant at the 1% level of

significance. Since all p-values are lower than 0.0001, there is a significant difference in the dietary

protein levels, in the interactions between diet levels and the age in weeks, between the H and M

levels, and between the average of the H and M levels and the L level at the 1% level of significance

both in the one and two factors repeated measures design. Thus, the different diet levels and the

difference between the H and M levels, and the difference between the average of the H and M levels

and the L level make a difference in egg weight for these one factor repeated measures design. There

are statistically significant differences in egg weight among the three diet levels across the different
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Table 4.23: Repeated Measure for egg weight (y3)

Method Treatment Repeated p-value

One-Way Dietary protein Age < .0001

Contrast H vs M < .0001
Contrast (H,M) vs L < .0001

Two-Way Dietary protein Age < .0001
Age Age < .0001

Dietary protein× Age Age < .0001

Contrast Peak & Others < .0001
Contrast H vs M < .0001
Contrast (H,M) vs L < .0001

ages in weeks; the difference between the H and M levels, and the difference between the average

of the H and M levels and the L level make a difference in egg weight for the two factors repeated

measures design. However, since there are interaction effects rather than the tests of difference in

the dietary protein levels and age in weeks, it is meaningful to talk about the interaction effects.

Thus, we can say that the effect of age on the egg weight is different for the different diets or,

equivalently, the effects of the diets on egg output differs over different ages.

4.8.4 Average Daily Feed Intake (y2)

The results of the analyses for the one and two factors repeated measures designs for average daily

feed intake (ADFI) (y2) appear in Table 4.24. Based on Figure 4.6, the observed values in the three

protein levels are on a rapid growth curve before the twenty-third week. Thus, the twenty-third

week is considered as the peak point. The result of this contrast test (peak and other points)

is significant at the 1% level of significance (p < .0001). For the one factor repeated measures

design, there is a significant difference in the dietary protein levels, between the H and M levels,

and between the average of the H and M levels and the L level at the 1% level of significance. Thus,

the different diet levels and the difference between the H and M levels, and the difference between
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Table 4.24: Repeated Measure for ADFI (y2)

Method Treatment Repeated p-value

One-Way Dietary protein Age < .0001

Contrast H vs M < .0001
Contrast (H,M) vs L < .0001

Two-Way Dietary protein Age < .0001
Age Age < .0001

Dietary protein× Age Age < .0001

Contrast Peak & Others < .0001
Contrast H vs M 0.1895
Contrast (H,M) vs L < .0001

the average of the H and M levels and the L level make a difference in average daily feed intake for

the one factor repeated measures design. However, for the two factors repeated measures design,

the H and M levels are not significantly different at the 5% level of significance (p = .1895 > .05).

There are differences in average daily feed intake among the three diet levels with the different age

in weeks; the difference between the average of the H and M levels and the L level make a difference

in ADFI. However, the difference between the H and M levels does not make a difference in ADFI.

Since there are interaction effects rather than the tests of difference in the dietary protein levels

and age in weeks, it is more meaningful to talk about the interaction effects. Hence, we can say

that the effect of age on the ADFI is different for the different diets.

4.8.5 Laying Hens Body Weight (y1)

Table 4.25 shows the ANOVA results of one and two factors repeated measures analyses for hens

body weight (y1). As observed in the linear regression Section 4.6.3, the twenty-first week is

considered as the peak point. The result of this contrast test (peak and other points) is significant

at the 1% level of significance. Since all p-values are lower than 0.0001, there is a significant

difference in the dietary protein levels, in the interactions between diet levels and the the different
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Table 4.25: Repeated Measure for body weight (y1)

Method Treatment Repeated p-value

One-Way Dietary protein Age < .0001

Contrast H vs M < .0001
Contrast (H,M) vs L < .0001

Two-Way Dietary protein Age < .0001
Age Age < .0001

Dietary protein× Age Age < .0001

Contrast Peak & Others < .0001
Contrast H vs M < .0001
Contrast (H,M) vs L < .0001

ages in weeks, between the H and M levels, and between the average of the H and M levels and

the L level at the 1% level of significance in the one factor repeated measures. Thus, the different

diet levels and the difference between the H and M levels, and the difference between the average

of the H and M levels and the L level make a difference in body weight for the one factor repeated

measures design. There are differences in body weight among the three diet levels with the different

ages in weeks; the difference between the H and M levels, and the difference between the average

of the H and M levels and the L level make a difference in body weight for the two factors repeated

measures. Since there are interaction effects, rather than the tests of difference in the dietary

protein levels and age in weeks per se, it is more meaningful to talk about the interaction effects.

Hence, we can say that the effects of the diets on egg output differs over different ages.

4.8.6 Egg Cumulative Number (y4)

Figure 4.12 shows the trend of egg cumulative number (y4) in each diet levels. Clearly, in this case,

since our response is a cumulative value, there is no ”peak” value possible (except at the end). The

ANOVA results of one and two factors repeated measures designs for egg cumulative number are

summarized in Table 4.26. There is a significant difference in the dietary protein levels, between
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the H and M levels, and between the average of the H and M levels and the L level for the one

factor design; there is a significant difference in the average of the H and M levels and the L level

for the two factor repeated measures design at the 1% level of significance. However, the difference

between the H and M levels for the two factor design is not significant at the 5% level of significance

(p = .1621 > .05). Thus, the different diet levels and the difference between the H and M levels,

and the difference between the average of the H and M levels and the L level make a difference

in egg cumulative number for the one factor repeated measures model. There are differences in

egg cumulative number among the three diet levels with the different age in weeks; the difference

between the average of the H and M levels and the L level makes a difference in body weight for

the two factors repeated measures model. Especially, the result of contrast ”H and M ” of the one

way repeated measures design is not same as the result of the two way design. When testing this

contrast, we consider the error term to be the within hens variation for the one factor model, but

the between hens variation for the two factors design. Thus, because of the differing error terms,

the results of the two contrast tests are not the same. Finally, since there are interaction effects,

rather than the tests of difference in the dietary protein levels and age in weeks per se, it is more

meaningful to talk about the interaction effects. Hence, we can say that the effect of age on the

egg cumulative number is different for the different diets (or, equivalently, the effects of the diets

on egg output differs over different ages).
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Table 4.26: Repeated Measure for Egg Cumulate Number (y4)

Method Treatment Repeated p-value

One-Way Dietary protein Age < .0001

Contrast H vs M < .0001
Contrast (H,M) vs L < .0001

Two-Way Dietary protein Age < .0001
Age Age < .0001

Dietary protein× Age Age < .0001

Contrast H vs M 0.16213
Contrast (H,M) vs L < .0001
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Figure 4.1: Adams-Bell model for egg production (y5)
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Figure 4.2: Modified compartmental model for egg production (y5)
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Figure 4.3: Adams-Bell model for egg output (y6)

42



Figure 4.4: Modified compartmental model for egg output (y6)
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Figure 4.5: Lokhorst egg weight model for egg weight (y3)
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Figure 4.6: Lokhorst feed intake model for ADFI (y2)
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Figure 4.7: Gompertz model for body weight (y1)
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Figure 4.8: Richards model for body weight (y1)
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Figure 4.9: Linear regression for body weight (y1)
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Figure 4.10: Quadratic regression for body weight (y1)
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Figure 4.11: Cubic regression for body weight (y1)
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Figure 4.12: Egg Cumulate Number (y4)
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Chapter 5

Conclusions

The results of this study illustrate that some models (the Adams-Bell, modified compartmental,

and Lokhorst egg weight and feed intake) are able to fit curves (to egg production, egg output,

egg weight, and feed intake response values) of the high (H) and medium (M) protein levels in the

hens’ diet. However, the curves of the low (L) protein level did not fit well, when comparing the

results of the calculated goodness-of-fit criteria and plots of fitted curves. In particular, the cubic

regression fitted better than the Gompertz and Richard models to body weight curves. Overall, the

results of the mean data with less variation than the individual data gave better predictions in most

cases, as would be expected. Throughout this study the results of comparing three diet levels using

nonlinear regression analysis and repeated measures designs, indicated that the different dietary

protein levels make a difference in egg production, egg output, egg weight, and body weight. That

is, hens fed high protein diets have higher egg production, egg weight, and body weight than hens

fed low protein diets. Thus, the choice is between a higher cost for higher production and a lower

cost for lower production.

The diet fed to commercial laying hens can vary depending on the strain of layer, production
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goals, age, and weather conditions (Schaible and Patrick, 1980). We found feed intake of all hens

in the L series increased considerably after week 54 when the temperature of the house decreased

due to winter conditions. Thus, hens fed the L series seemed particularly dependent on house

temperature to maintain body weight and average daily feed intake (ADFI). For future research,

we can consider house temperature as a covariate, and age in weeks and diet levels as factors when

using an analysis of covariance. This would be helpful in demonstrating the effects of temperature

on average daily feed intake (ADFI) and bodyweight of hens fed low protein diets.
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Appendix A

Appendix

A.1 SAS Code

/*Adams-Bell model for egg production*/

/*Diet level - H*/

proc nlin data=y5_1 method=marquardt;

parms a=0.001 b=0.3 c=0.01 d=0.3; /*a, b, c, and d are parameters*/

model y5=100*(1/(1+a*b**(t))-c*t+d); /* y5 is egg production and t is age in week*/

output out=out1 predicted=pred1;

run;

/*Diet level - M*/

proc nlin data=y5_2 method=marquardt;

parms a=0.001 b=0.3 c=0.01 d=0.3;

model y5=100*(1/(1+a*b**(t))-c*t+d);

output out=out2 predicted=pred2;

run;
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/*Diet level - L*/

proc nlin data=y5_3 method=marquardt;

parms a=0.001 b=0.3 c=0.01 d=0.3;

model y5=100*(1/(1+a*b**(t))-c*t+d);

output out=out3 predicted=pred3;

run;

/*Compare treatments in nonlinear models*/

/* Full model*/

ods output Anova=full;

proc nlin data=y5 method=marquardt ;

parms a1=0.001 b1=0.3 c1=0.01 d1=0.3;

parms a2=0.001 b2=0.3 c2=0.01 d2=0.3;

parms a3=0.001 b3=0.3 c3=0.01 d3=0.3;

model y5=100*(1/(1+a1*b1**(t))-c1*t+d1)*(diet=1)+

100*(1/(1+a2*b2**(t))-c2*t+d2)*(diet=2)+

100*(1/(1+a3*b3**(t))-c3*t+d3)*(diet=3)

; run;

/* Reduce model 1 */

ods output Anova=reduce1;

proc nlin data=y5 method=marquardt;

parms a1=0.001 b1=0.3 c1=0.01 d1=0.3;

a2=a1; b2=b1; c2=c1;d2=d1;

parms a3=0.001 b3=0.3 c3=0.01 d3=0.3;
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model y5=100*(1/(1+a1*b1**(t))-c1*t+d1)*(diet=1)+

100*(1/(1+a2*b2**(t))-c2*t+d2)*(diet=2)+

100*(1/(1+a3*b3**(t))-c3*t+d3)*(diet=3)

; run;

/* Calculate F and P-value of the sum of square reduction test*/

data one;

set full reduce1;

retain dfF sseF mseF dfR sseR;

if _N_=2 then dfF=DF;

if _N_=2 then sseF=SS;

if _N_=2 then mseF=MS;

if _N_=5 then dfR=DF;

if _N_=5 then sseR=SS;

s=(sseR-sseF)/(dfR-dfF);

F=s/mseF;

pv=1-probf(F,dfR-dfF, dfF );

file print;

put ’F-statistic=’ F;

put ’p-value=’ pv;

run;

/* Reduced model 2 */

proc nlin data=y5 method=marquardt;

parms a1=0.001 b1=0.3 c1=0.01 d1=0.3;
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parms a2=0.001 b2=0.3 c2=0.01 d2=0.3;

a3=a1; b3=b1; c3=c1;d3=d1;

model y5=100*(1/(1+a1*b1**(t))-c1*t+d1)*(diet=1)+

100*(1/(1+a2*b2**(t))-c2*t+d2)*(diet=2)+

100*(1/(1+a3*b3**(t))-c3*t+d3)*(diet=3)

; run;

/* Reduced model 3 */

proc nlin data=y5 method=marquardt;

parms a1=0.001 b1=0.3 c1=0.01 d1=0.3;

parms a2=0.001 b2=0.3 c2=0.01 d2=0.3;

a3=a2; b3=b2; c3=c2;d3=d2;

model y5=100*(1/(1+a1*b1**(t))-c1*t+d1)*(diet=1)+

100*(1/(1+a2*b2**(t))-c2*t+d2)*(diet=2)+

100*(1/(1+a3*b3**(t))-c3*t+d3)*(diet=3)

; run;

/*Repeated measures designs*/

/*one factor repeatd */

proc glm data=y5_row;

class diet t;

/* y5 is egg production, t is age in week, and diet is protein level in diet*/

model y5=diet|t ;

lsmeans diet/pdiff adjust=tukey;

contrast "H vs M" diet 1 -1 0 ;

contrast "H & M vs L" diet -1 -1 2 ;
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test h=diet e=diet*t;

run;

proc glm data=y5_row;

class diet t;

model y5=t diet(t) ;

test h=t e=diet(t);

run;

/*two factors repeated */

proc glm data=y5_row;

class t diet id ;

/* y5 is egg production, t is age in week, diet is protein level in diet,

and id is hens id neumber */

model y5=diet id(diet) /ss3;

test h=diet e=id(diet);

contrast "H vs M" diet 1 -1 0 ;

contrast "H & M vs L" diet -1 -1 2 ;

run;

proc glm data=y5_row;

class diet t ;

model y5=t diet*t;

contrast " peak vs others" t -0.2 -0.3 -0.5 -1 83 -3 -3 -3 -3 -3 -3 -3 -3 -3

-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1; run;
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