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 Assessment centers (ACs) have remained a popular selection and development tool for 

years. Although ACs often demonstrate criterion-related validity, researchers have struggled with 

finding content validity for AC dimensions.  The problem exists for two reasons: 

nonconvergence and inadmissibility issues when using the MTMM framework, and dominance 

of dimension variance by exercise variance. The current study reexamined previously reported 

AC matrices, reclassified using three different schemes of broad dimension factors in order to 

increase each model’s indicator-to-factor ratio to promote convergence and admissibility. 

Additionally, a number of design modifications were examined as to their influence on 

increasing dimension variance. Results show a significant increase in convergence and 

admissibility rates as indicator-to-factor ratio increases. However, the remaining analyses 

reached inconclusive and nonsignificant results. Possible explanations for these results are 

discussed, as well as ramifications for the findings. 
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CHAPTER 1 

INTRODUCTION 

Assessment centers (ACs) have remained a popular selection and training tool for 

decades as they provide candidates with the opportunity to demonstrate job-related behaviors in 

a setting similar to that of the actual workplace (Gaugler, Rosenthal, Thornton, & Bentson, 1987; 

Thornton & Byham, 1982).  ACs were conceptualized to examine an individual’s standing on a 

number of constructs measured via a series of exercises simulating on-the-job tasks (Thornton & 

Byham, 1982). For example, a participant could be rated on dimensions such as consideration for 

others, verbal communication, and persuasiveness in a leaderless group discussion exercise. In a 

typical AC, raters score participants on several dimensions at the end of each exercise (post 

exercise dimension ratings, or PEDRs; Lance, 2008). Practitioners and researchers alike value 

this tool for its realistic simulations of job tasks (Klimoski & Brickner, 1987) and its ability to 

predict job performance and other work-related outcomes, such as promotability (Chan, 1996) 

and potential for future performance (Thornton & Gibbons, 2009). ACs routinely demonstrate 

criterion-related validity for the prediction of performance (Arthur, Day, & McNelly, 2003; 

Gaugler et al., 1987; Meriac, Hoffman, Woehr, & Fleisher, 2008). However, the construct 

validity of ACs remains an unresolved issue, as rated dimensions across exercises very often fail 

to show convergent validity (Cahoon, Bowler, & Bowler, 2012; Lance, Lambert, Gewin, 

Lievens, & Conway, 2004). Instead, different dimensions within individual exercises are highly 

correlated, calling into question the utility of AC dimension measurement (e.g. Klimoski & 

Brickner, 1987; Lance, 2008). 
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Researchers often examine AC ratings using the popular multitrait-multimethod design 

(MTMM; Campbell & Fiske, 1959) analyzed with confirmatory factor analysis (CFA). This 

framework assumes that each exercise represents a method and each dimension represents a trait. 

CFA functions to examine the similarity of the fit of the data to that of the theoretical model, and 

in this case helps to determine whether methods and traits have the same relationship in reality as 

was theorized (Kline, 2011). ACs were conceptualized to demonstrate correlated ratings for like 

dimensions across job-related exercises and minimally correlated ratings for unique dimensions 

within exercises (Sackett & Dreher, 1982). It is typically found in the resulting correlation 

matrices from CFA, however, that unique dimensions within exercises are correlated and like 

dimensions across exercises are minimally related, which fails to support the construct validity of 

ACs (Bycio, Alvares, & Hahn, 1987; Lance, Lambert et al., 2004; Neidig & Neidig, 1984).  As a 

result, AC researchers have placed a heavy focus on methods to fix the construct validity 

problem. 

 As ACs are quite complex in design, prior studies have focused on the effects of specific 

AC characteristics on demonstrating dimension construct validity (Lievens, 1998; Woehr & 

Arthur, 2003). Some characteristics for which they found significant effects include the number 

of dimensions rated, the length of rater training, and the occupation of AC raters. It has been 

speculated  that these characteristics play a role in construct validity, likely due to their 

differential functioning on rater cognitive strain, which is to say that if the characteristics are less 

prone to cause cognitive strain (i.e. fewer rated dimensions), ratings will be more accurate and 

researchers will have less difficult in finding construct validity. Unfortunately, results have been 

inconclusive regarding AC design characteristics, causing many to consider methodological 

modifications as the potential remedy to the construct validity problem. 
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Researchers have also focused on various methodological alterations to fix the construct 

validity problem. Whereas different MTMM structures have been suggested (Hoffman, 

Melchers, Blair, Kleinmann, & Ladd, 2011; Lance, Lambert et al., 2004; Lievens & Conway, 

2001), the correlated dimension-correlated exercise structural model (CDCE) has routinely been 

found to be the most conceptually appropriate in the study of ACs (Lance, Lambert et al., 2004; 

Monahan, 2011).  Despite its theoretical appropriateness, the CDCE model as applied to ACs 

often poses problems when analyzed using CFA, most frequently those of model 

nonconvergence and inadmissibility (Lance, Woehr, & Meade, 2007). As a result, some have 

called for the elimination of dimensions from AC studies altogether and have instead suggested a 

focus on exercises only (Jackson, Barney, Stillman, & Kirkley, 2007; Lance, 2008; Neidig & 

Neidig, 1984). This viewpoint is not popular, likely due to its antithetical stance toward the 

original purpose of ACs: to measure a participant’s standing on various dimensions needed for 

performance on the job (Bowler & Woehr, 2006; Bowler & Woehr, 2009; Howard, 2008). 

Despite issues with establishing construct validity, the use of multiple dimensions in ACs has 

occasionally been supported (Guenole, Chernyshenko, Stark, Cockerill, & Drasgow, 2013; 

Hoffman et al., 2011). Therefore, it remains necessary to develop a means of demonstrating 

construct validity in ACs in order to recommend their continued use. 

 It has recently been proposed that problems with construct validity might relate 

specifically to an artifact of measurement (Hoffman et al., 2011).  Researchers have found that 

by increasing the indicator-to-factor ratio of an MTMM-like matrix in CFA, one is more likely to 

obtain a convergent and admissible solution (Tomás, Hontangas, & Oliver, 2000). This could 

allow for an interpretation of construct validity that supports the continued use of dimensions in 

ACs (Hoffman et al., 2011; Monahan, 2011). One means of increasing the indicator-to-factor 
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ratio is the use of broad dimension factors, or catch-all categories that narrow down the list of 

measurable dimensions into several more concrete categories (Woehr & Arthur, 2003). For 

example, the unique dimensions of verbal communication, written communication, and 

responsiveness could all fall into the category of “communication”, and therefore serve as 

indicators of this broader dimension category. By increasing the number of indicators in 

proportion to the number of factors through the use of broad dimensions, the assessment of 

construct validity becomes a more straightforward process that eliminates some of the issues that 

typically accompany the CDCE model in AC studies. 

The present study attempts to build upon the results of Hoffman et al. (2011) and 

Monahan (2011) through the reanalysis of previously reported AC CDCE models. It is expected 

that when the originally reported dimensions are reclassified into broad dimension factors, this 

increase in indicator-to-factor ratio will lead to more frequent convergent and admissible 

solutions in CFA, demonstrating construct validity and subsequently supporting the continued 

measurement of dimensions in ACs. As this method will alter AC variance components, I will 

also reexamine the relationship between construct validity and AC design characteristics 

(Lievens, 1998; Woehr & Arthur, 2003) as to their potential contributions to dimension construct 

variance with respect to broad dimension factors. If successful in its goals, this study can help to 

put to rest the debate of construct validity in dimensions vs. exercises in ACs. In order to 

examine potential solutions to the AC construct validity problem, it is first important to 

thoroughly examine the nature of the problem and proposed solutions that have failed to work in 

the past. 
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CHAPTER 2 

LITERATURE REVIEW AND HYPOTHESES 

The Construct Validity Paradox 

The examination of construct validity has arguably been one of the most popular and 

controversial courses of study in AC literature, with recent years being no exception to this trend 

(Arthur, Day, & Woehr, 2008; Bowler & Woehr, 2009; Cahoon et al., 2012). However, 

researchers have had difficulty in demonstrating that the PEDRs of like constructs have high 

correlations across exercises (Bycio et al., 1987; Lance, Newbolt, Gatewood, Foster, French, & 

Smith, 2000). Distinct constructs within exercises, however, are often highly intercorrelated, 

supporting the content validity of AC exercises above that of constructs. This lack of 

discriminant validity within exercises calls into question the very nature and purpose of ACs 

(Lance, 2008).   

There have been numerous suggestions as to what would remedy the construct validity 

problem, including universal clarification of dimensions and exercises (Howard, 2008), use of 

different structural models (Hoffman et al., 2011; Lievens & Conway, 2001), and overall 

measurement and design characteristics of ACs (Arthur, Woehr, & Maldegen, 2000; Woehr & 

Arthur, 2003). However, these efforts have failed to fully remedy the construct validity problem.  

While there have been calls for the redesign of ACs to measure exercises instead of constructs in 

order to take advantage of robust exercise effects often present in ACs (Jackson et al., 2007; 

Lance et al., 2000; Neidig & Neidig, 1984), this idea has not been popular, as most researchers 

are hesitant to back away from what ACs were designed to measure: dimensions (Lance, 2008). 



6 

 

Numerous suggestions have been offered to improve AC design in order to see dimension 

effects, such as enhancing assessor training (Lievens, 2001; Schleicher, Day, Mayes, & Riggio, 

2002), using fewer rated dimensions (Gaugler & Thornton, 1989; Schneider & Schmitt, 1992), 

and employing “expert” raters (Lievens, 2001; Sagie & Magnezy, 1997). Although these 

interventions have resulted in slight improvements in construct validity for dimensions, exercise 

variance still dominates dimension variance (Bowler & Woehr, 2006; Lance, Lambert et al., 

2004). Therefore, academicians have been in an ongoing struggle to explain the challenges 

behind establishing construct validity for ACs. It is important to consider the unique 

measurement properties of ACs in order to gain a clear picture of the construct validity problem. 

Measurement. Assessment centers are used to examine the pattern of assessees’ ratings 

on dimensions across exercises. This structure is compatible with the idea of a multitrait-

multimethod matrix (Campbell & Fiske, 1959; Sackett & Dreher, 1982). Using the Campbell and 

Fiske (1959) methodology, the matrix is examined to determine convergent and discriminant 

validity evidence (Bagozzi & Yi, 1991). In order to establish evidence of convergent validity, the 

matrix must show significant monotrait-heteromethod correlations, demonstrating that measured 

traits account for covariance between the corresponding trait-method units. Discriminant validity 

can be demonstrated in part via relatively low heterotrait-monomethod correlations. Despite the 

usefulness of this method, it has several problems that are not conducive to its practical use. 

These problems include the assumption of equal reliability for all measures and the assumption 

that methods are uncorrelated (Bagozzi & Yi, 1991). Additionally, this method forces the 

researcher to interpret variance in a subjective manner, meaning interpretations of variance rely 

on the opinions of the individual conducting the analysis. Overall, the Campbell and Fiske 

methodology is not suitable for AC analysis.  
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The CFA method is often used to analyze MTMM matrices and is more appropriate for 

AC research (Bagozzi & Yi, 1991). AC researchers have often elected to view constructs as traits 

and exercises as methods, and the correlations in the matrix are those generated from PEDRs 

(Sackett & Dreher, 1982). A primary benefit of the CFA approach is that it allows one to 

partition total variance into that attributed by method (i.e. exercise), trait, and error components 

(Bagozzi & Yi, 1991). This facilitates the examination of construct validity in ACs. Additionally, 

CFA is a theoretically flexible approach, meaning it is possible for the researcher to examine a 

variety of theoretical factor structures by changing a model’s factor pattern matrix and factor 

covariance structure (Kleinmann & Köller, 1997). 

The CDCE structural model is predominant in AC analysis (Anderson, Lievens, Van 

Dam, & Born, 2006; Lance, Lambert, et al., 2004; Monahan, 2011). In particular, three reviews 

have assessed the best-fitting structure for AC analysis. Lievens and Conway (2001) used CFA 

to examine three models: dimension-only, with correlated dimensions; exercise-only, with 

correlated exercises; and a combination model which represented exercises as correlated 

uniquenesses (CU).  The CU model was found to have the best fit for the most sets of data. 

Additionally, it was found that dimension and exercise variance contributions were equal (.34), 

disconfirming the argument that exercises contribute more to variance than do dimensions. 

In another study, Lance, Lambert et al. (2004) drew attention to problems with the CU 

model, namely that this structure results in inflation of dimension effects, which is misleading to 

interpretation.  Furthermore, Lievens and Conway (2001) included inadmissible solutions in their 

evaluation of variance. When reanalyzing the same data sets, Lance, Lambert et al. (2004) found 

that a single dimension, correlated exercise model provided the best overall fit, followed by a 
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correlated exercise-only model. They then examined the admissible solutions and determined 

that exercise variance contributions were substantially higher than those of dimensions. 

In Bowler and Woehr’s (2006) meta-analysis, they recoded relevant studies using Arthur 

et al.’s (2003) six-dimension taxonomy and Spychalski, Quiñones, Gaugler, and Pohley’s (1997) 

six-exercise taxonomy. They examined six different structural models and found the CDCE 

model to be most appropriate. Although they found exercises to contribute more variance in 

indicators than dimensions, the magnitude of the range of variance was less than that found in 

Lance, Lambert et al. (2004).  It is crucial to note that Bowler and Woehr (2006) fixed several 

exercise intercorrelations to zero in order to circumvent nonconvergence and inadmissibility 

issues. Such modifications to models should only be made on the basis of theoretical rationale, 

not statistical convenience (Kline, 2011). Therefore, these results should be interpreted with 

caution. 

Overall, these reviews have inconsistent results with regard to the most appropriate 

model structure for ACs. There are problems with the CDCE model in achieving model 

convergence and proper solutions (Dumenci & Yates, 2012; Lance et al., 2007), even though this 

model is most theoretically compatible with AC structure. As there has not yet been a 

methodological solution to the AC construct validity problem, researchers have looked 

elsewhere; in addition to methodological considerations, various AC design characteristics have 

also been analyzed as to their role in construct validity. 

Design characteristics. Various AC characteristics have been assessed in the past in 

order to determine their role in the contribution of dimension variance (Arthur et al., 2000; 

Lievens, 1998; Woehr & Arthur, 2003).  In Lievens’ (1998) review, experimental and pseudo-

experimental studies were sorted into five categories based on their source of experimental 
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manipulation: dimensions, situational exercises, assessor characteristics, systematic observation 

and evaluation procedures, and integration of results. Differences in dimension, exercise, and 

assessor characteristics were found to impact construct validity (Lievens, 1998). Woehr & Arthur 

(2003) examined the history of a wide number of AC design and measurement characteristics in 

their extensive review and meta-analysis of these factors and their relationship to construct 

validity with varied results. The various characteristics studied were related to both AC design, 

as well as administration. 

Number of dimensions. It has been repeatedly found that dimension variance is more 

prevalent when raters are asked to assess fewer dimensions, as well as those dimensions that are 

squarely conceptually distinct from one another (Lievens, 1998; Russell, 1985; Woehr & Arthur, 

2003).  Specifically, the aforementioned reviews support using a lower number of dimensions 

and those dimensions which are conceptually distinct from one another as a means to increase 

dimension convergent validity (Lievens, 1998; Woehr & Arthur, 2003). These results are in line 

with the theory that the use of broad dimension factors should increase dimension variance 

(Hoffman et al., 2011). The use of fewer and more clearly operationalized dimensions is thought 

to both decrease cognitive load on raters (Gaugler & Thornton, 1989) and to impact convergence 

and admissibility rates (Hoffman et al., 2011).  

Participant-to-assessor ratio. On a similar note, Woehr & Arthur (2003) hypothesized 

that the participant-to-assessor ratio could impact construct validity in that when asked to rate too 

many participants, raters might face too heavy of a cognitive burden. Although this hypothesis 

was not supported, the review was conducted a number of years ago and therefore did not 

include more recent papers. It may be beneficial to reexamine the effect of participant-to-

assessor ratio when taking into account more recent findings. 
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Rating approach. There are two primary rating approaches most often used in the 

assignment of PEDRs (Sackett & Dreher, 1982). The within-exercise approach has raters assess 

participants on dimensions at the end of each individual exercise. The across-exercise approach 

has raters assign PEDRs at the end of all of the AC exercises. The across-exercise approach has 

been found to result in higher dimension construct validity, as it allows raters to see a fuller 

spectrum of participant behavior across any given dimension (Robie, Osburn, Morris, 

Etchegaray, & Adams, 2000; Woehr & Arthur, 2003).  

Rater type. AC administrators frequently make use of two main types of raters: managers 

and industrial-organizational psychologists (Woehr & Arthur, 2003). Both of these roles require 

understanding of job behaviors and the necessary traits for good performers. However, it has 

been found that there is higher dimension construct validity with psychologist raters instead of 

managers, likely due to the experience and knowledge required by the former group (Sagie & 

Magnezy, 1987; Woehr & Arthur, 2003).  

Training. It is common for AC raters, particularly managers, to undergo training prior to 

AC administration, and this training has been found to impact construct validity, presumably 

because those raters who receive training have a clearer and more systematic approach to judging 

and rating participant behavior than those raters who do not receive training (Woehr & Arthur, 

2003). Furthermore those raters who receive training for a longer period of time have increased 

opportunity to comprehend and practice the skills necessary for rating, further impacting 

dimension construct validity (Lievens, 1998; Woehr & Arthur, 2003). 

Purpose. ACs generally function for the purposes of either selection and promotion 

(administrative purposes) or training and development. Woehr and Arthur (2003) found that ACs 

that focused on training and development had higher construct validity because raters are more 
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cognitively focused on differentiating behaviors when examining participants in the context of 

development.  

Use of behavioral checklists. Behavioral checklists differ from traditional AC rating 

approaches in that instead of being rated directly on dimensions, applicants are rated in terms of 

the presence of a number of behaviors (Jackson et al., 2007). Researchers can increase the 

number of indicators through the use of behavioral checklists, which should theoretically help to 

find construct validity (Monahan, 2011). In his review, Lievens (1998) found mixed results for 

the hypothesis that those ACs using behavioral checklists for ratings would demonstrate higher 

dimension construct validity than those using other rating methods, such as graphical rating 

scales.  However, the increase in indicator-to-factor ratio has been subsequently found improve 

convergence and admissibility rates (Monahan, 2011). 

The aforementioned design characteristics, despite their potential role in resolving the 

construct validity problem, have not been examined since 2003 on a large scale. As a result, 

there have been many studies that have gone unexamined as to the impact of AC design 

characteristics on construct validity. Accordingly, it is time that a new review take place. 

Furthermore, Monahan (2011) demonstrated that the problems with construct validity appear to 

be reflections of measurement artifact. In particular, AC convergence problems appear to be at 

least somewhat concurrent with the use of small indicator-to-factor ratios in models (Tomás et 

al., 2000). If a solution for measurement issues can be found, perhaps we can achieve more 

conclusive results with respect to design characteristics. 

Indicator-to-factor ratio. It is generally considered a "rule-of-thumb" when conducting 

a CFA to use as many indicators as possible for each factor, with a practical minimum being 

three indicators per factor (Kline, 2011). On a practical level, this should ensure adequate 
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coverage of the domain of the factor in question, assuming that the indicators used have strong 

psychometric properties (Bandalos & Boehm, 2009). It has also been found that when using 

multiple indicators per factor, the CDCE model is better fitting and more theoretically 

appropriate than the CTCU model in that it achieves more stable estimates, and this finding is 

even more robust when more indicators are used (Tomás et al., 2000). A high indicator-to-factor 

ratio can also contribute to reaching a model solution. Using a series of Monte Carlo simulations, 

Marsh, Hau, Balla, and Grayson (1998) demonstrated that higher indicator-to-factor ratios 

increase one’s chances of achieving model convergence and admissibility when using CFA. In 

addition, it has been found that when the indicator-to-factor ratio is high, there is less need for a 

large sample size (Marsh et al., 1998; Velicer & Fava, 1998).  

Furthermore, they also found that higher indicator-to-factor ratios tended to have more 

accurate and stable (i.e. lower standard errors) parameter estimates than those models with lower 

ratios. Bandalos and Boehm (2009) described this phenomenon:  

Just as we need adequate samples of people to approximate population quantities related 

to characteristics of such people, we need adequate samples of variables to approximate 

the population quantities related to the variables. Sampling too few variables can result in 

the same types of instability in estimating variable-related properties as can sampling too 

few people when estimating population parameters (p. 79).  

Hoffman et al. (2011) found increased levels of convergence and admissibility using a 

CDCE + g hierarchical factor structure, with g representing a general performance factor. This 

model makes use of broad dimension factors, which are general thematic categories 

encompassing multiple AC dimensions that can increase the indicator-to-factor ratio when used 

in lieu of unique micro-dimensions. For example, aggressiveness, need for advancement, and 
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persistence are examples of specific dimensions that comprise the broad construct “drive” in 

Arthur et al.’s seven-dimension taxonomy (2003). This approach treats ratings as individual 

indicators, partially eliminating overlap between micro-level dimensions and allowing some 

dimensions to correlate more strongly than others (Hoffman et al., 2011). Constructs can be more 

easily distinguished from one another with the use of broad dimension factors, as very similar 

constructs instead serve as indicators of the same broad dimension factor. This helps to 

demonstrate construct variance and provide support for the inclusion of dimensions in ACs. 

Furthermore, there has been criticism about the lack of rigor in the psychometric analysis of 

dimensions in AC research (Howard, 2008) which could potentially be resolved with the 

employment of validated broad dimension factors. It has been suggested that the hybrid CDCE + 

g model may not be accounting for improved solution rates through its structure, but rather 

through its increase in indicator-to-factor ratio. Monahan (2011) demonstrated that the CDCE 

model had the best fit, even over the hybrid model, when higher indicator-to-factor ratios were 

used. Therefore, it is worthwhile to consider broad dimension factors further. 

Broad dimension factors.  The broad dimension categories of Arthur et al. (2003) 

resulted from a meta-analysis of AC dimension criterion-related validity, during which 168 

unique dimensions were consolidated into seven broader representative categories. The unique 

dimensions were first sorted into Thornton and Byham’s (1982) 33 commonly used dimensions, 

and were then further collapsed into a new list of seven overarching factors. Six of these 

dimension categories demonstrated criterion-related validity
1
.  The seven dimension factors are: 

communication, consideration/awareness of others, drive, influencing others, organizing and 

planning, problem solving, and tolerance for stress/uncertainty (Arthur et al., 2003). 

                                                 
1 One of the seven categories, tolerance for stress/uncertainty, was not examined in Arthur et al.’s (2003) study due 

to a dearth of data points available in the existing literature. 
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The Borman & Brush (1993) taxonomy arose from the need for clear and complete set of 

dimensions for the evaluation of managerial performance. In order for the resulting dimensions 

to be applicable, an effort was made to choose factors that were behaviorally relevant, stemming 

from critical incidents, instead of those theorized by researchers. This resulted in 246 empirical 

dimensions. These dimensions were evaluated and sorted, eventually resulting in 4 “mega-

dimensions” which were found to hold up with previous taxonomies of managerial performance. 

These dimensions are: technical activities/mechanics of management, leadership and 

supervision, communication and interpersonal facilitation, and other useful behavior.  

Prior to the aforementioned classification schemes, Shore et al. (1990) devised a system 

of two broad dimension factors: interpersonal-style and performance-style categories. They used 

eleven unique dimensions that fit into these categories in their examination of an AC. Such 

classification schemes stem from the need to identify observable behaviors that encompass the 

two main tasks of leaders: initiating structure and consideration (House, Filley, & Kerr, 1971). 

Initiating structure refers to the task-oriented aspects of leadership, such as organization and 

problem solving; consideration consists of expressive and emotional aspects of leadership 

(House et al., 1971). The influence of these two categories is clearly visible in the various 

schemes of broad AC dimension factors (see Table 2.1).The results indicated that cognitive 

ability test scores were significantly correlated with performance dimensions, but not 

interpersonal dimensions, showing convergent and discriminant validity for the broad dimension 

factors. Overall, the use of broad dimension factors was found to be beneficial to the 

demonstration of construct validity in this study. 

The three aforementioned classification schemes, despite their differing numbers of 

factors, have been found to encompass the same general pattern of AC dimensions (leadership 



15 

 

behaviors, task-oriented behaviors and communication-oriented behaviors) and are viewed as 

nested within one another, as demonstrated in Table 2.1 (Hoffman et al., 2011). When using 

broad dimension factors, one can eliminate overlap between similar dimensions: similar 

dimensions are interpreted as indicators of the same broad dimension factor, which increases the 

indicator-to-factor ratio (Hoffman et al., 2011). Thus, it is expected that the broader the 

taxonomy used, the larger the increase in indicator-to-factor ratio will be.  

The Present Study 

In order to build upon the findings of Hoffman et al. (2011) and Monahan (2011), my 

goal is to determine whether a higher indicator-to-factor ratio will result in a higher rate of 

convergent and admissible solutions in AC research. Using a research methodology similar to 

that of Lance, Lambert, et al. (2004), I will reanalyze existing AC CDCE matrices taken from the 

available literature, reclassifying their unique constructs into three taxonomies of broad 

dimension factors. These categories are the 7 dimensions of Arthur et al. (2003), the 4 

dimensions of Borman & Brush (1993), and the 2 dimensions of Shore et al. (1990).  By 

reassigning the empirical dimensions into broad dimension factors, I intend to increase the 

indicator-to-factor ratios of the models and subsequently achieve higher rates of convergence and 

admissibility. As I move into progressively broader categorizations, I expect that the rate of fit 

will improve, as the indicator-to-factor ratios will be getting higher. Furthermore, Hoffman et al. 

(2011) demonstrated that these taxonomies nested into one another, which adds more support to 

the argument that rates of admissibility should increase with each successive categorization (i.e. 

a move from Arthur’s seven categories to Shore’s two categories for the same study will result in 

an even higher indicator-to-factor ratio). Given this theoretical support, I hypothesize the 

following: 
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H1: The number of convergent and admissible solutions in previously reported studies 

will increase as model indicator-to-factor ratio increases. 

H2: Models with higher indicator-to-factor ratios will have better model fit than those 

with lower indicator-to-factor ratios. 

H3: As indicator-to-factor ratios increase, the contribution of dimension variance will 

increase. 

If increased indicator-to-factor ratios have an impact on dimension variance, then it is 

likely to find clearer and more consistent results on the impact of design characteristics on 

dimension variance than have been found in the past. Therefore, a reassessment of the effects of 

characteristics on dimension convergent validity on models with increased indicator-to-factor 

ratios is in order. In the same vein as Woehr & Arthur (2003), I will examine the effects of the 

different characteristics on construct validity in that it is predicted that same dimension, different 

exercise (SDDE) correlations will be higher for characteristics beneficial to dimension construct 

validity and different dimension, different exercise (DDDE) correlations will be lower.  

H4: With fewer rated dimensions, SDDE correlations will be higher and DDDE 

correlations will be lower than with more rated dimensions. 

H5: With lower participant-to-assessor ratios, SDDE correlations will be higher and 

DDDE correlations will be lower than with higher participant-to-assessor ratios. 

H6: With the across-exercise rating approach, SDDE correlations will be higher and 

DDDE correlations will be lower than with the within-exercise rating approach. 

H7: When using psychologists as raters, SDDE correlations will be higher and DDDE 

correlations will be lower than when using managers as raters. 



17 

 

H8: When training is reported, SDDE correlations will be higher and DDDE correlations 

will be lower than when training is not reported. 

H9:  When a higher number of hours of rater training is reported, SDDE correlations will 

be higher and DDDE correlations will be lower than when a lower number of hours is reported. 

H10: When ACs function for the purpose of training/development, SDDE correlations 

will be higher and DDDE correlations will be lower than when ACs function for the purpose of 

selection/promotion. 

H11: When behavioral checklists are used, SDDE correlations will be higher and DDDE 

correlations will be lower than when other methods of rating are used. 
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Table 2.1 

    

     Classification of Broad Dimensions Based on Popular Taxonomies 

     Arthur et al. (2003)   Borman and Brush (1993)   Shore et al. (1990) 

     Problem solving                             

 

Technical 

activities/mechanics of 

management 

 

Performance style 

Organizing and planning       

 

     Drive 

 

Other useful behavior 

  

     Tolerance for stress and 

uncertainty         

     
Influencing others   Leadership and supervision 

 

Interpersonal style 

     Communication                            

 

Communication and 

interpersonal facilitation 

  

Consideration of others         
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CHAPTER 3 

METHODS 

Literature Review and Inclusion Criteria 

 A literature review was conducted using the electronic databases Academic Search 

Complete, Business Source Complete, Google Scholar, and PsycINFO for published and 

unpublished AC research, namely for those studies that include MTMM matrices. Search terms 

included assessment center ratings and multitrait-multimethod, postexercise dimension rating 

correlations, and assessment center and CDCE.  An effort was made to include those papers 

referenced in similar studies, namely those cited in Bowler & Woehr (2006), Lance, Lambert, et 

al. (2004), and Lievens and Conway (2001) to ensure comprehensiveness. I contacted authors for 

those studies that included summary tables, but not actual CDCE matrices, as well as on the basis 

of abstracts of papers from Society for Industrial and Organizational Psychology conferences 

(2005-2012).  

In order to be included in this study, the collected studies had to meet several criteria. 

Firstly, studies needed to report sample sizes and descriptions of all rated dimensions and 

exercises. Studies needed to include a minimum of three rated dimensions due to the nature of 

this investigation and for identification purposes. Additionally, studies had to include ratings for 

each dimension individually within each exercise (PEDRs), as well as correlations or 

covariances among the PEDRs in the form of a CDCE matrix.  Excluded studies failed to meet 

these criteria in that they (a) provided ambiguous descriptions of rated dimensions or exercises, 

(b) only contained summary ratings, or (c) did not include CDCE matrices. A total of 25 studies 
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with 34 CDCE matrices were found to be suitable for inclusion, with 21 of these studies (84%) 

coming from peer-reviewed journals. The other studies are former SIOP presentations and 

unpublished theses and doctoral dissertations. Over 60 additional studies were initially 

considered for inclusion, but were deemed to be unsuitable due to the aforementioned criteria. 

The list of accepted studies and the number of dimensions and exercises reported can be found in 

Table 3.1. 

Coding 

 Broad dimension factors. The unique dimensions used in each study were coded into 

three schemes of broad dimension factors: Arthur et al.’s seven factors (2003), Borman and 

Brush’s four factors (1993), and Shore et al.’s two factors (1990). The dimensions were first 

recoded using Arthur et al.’s comprehensive list of AC dimensions and their respective 

overarching factors (2003). In the case of uncertainty, I consulted subject matter experts as to the 

appropriate category for the dimension in question until consensus was reached. However, this 

only occurred in the instance of one unique dimension and was quickly resolved by the SMEs. 

Using the Arthur dimensions, each dimension as then recoded into the Borman & Brush (1992) 

and Shore et al. (1990) taxonomies, respectively (see Table 1). All three of these taxonomies 

have been well-supported in the literature and have been shown to be nested within one another 

(Hoffman et al., 2011).  

 Characteristics. In line with the results of Lievens (1998) and Woehr and Arthur (2003), 

I examined the effects of the following characteristics on dimension and exercise variance in the 

retained models: (a) number of dimensions, (b) participant-assessor ratio, (c) rating approach 

(across-exercises or within-exercises), (d) rater occupation (psychologists vs. managers), (e) 

whether raters received training, (f) the length of rater training, the purpose of the AC 
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(administrative or developmental), and (g) whether raters used behavioral checklists. Table 3.2 

shows the measurement scales for each of the characteristics. 

Analyses 

 Using LISREL 8.80 (Jöreskog & Sörbom, 2004), I ran CFAs for each data set using their 

original coding schemes as well as each of the three previously described dimension taxonomies. 

Each model was run using maximum likelihood estimation procedures and the CDCE approach, 

which examines correlated dimensions and correlated exercises.  

 In order that models converge and reach admissible solutions, they must meet several 

requirements; specifically, a model that converges could still be inadmissible, indicating poor fit 

(Marsh, 1994). Therefore, retained models had proper solutions in that they contained no 

negative uniquenesses or standardized factor loadings and factor correlations greater than the 

absolute value of 1.00. The number of proper models for each taxonomy and model type was 

recorded. I ran the Rindskopf procedure (Rindskopf & Rose, 1988) which involves the addition 

of orthogonal dummy indicators to the model in an attempt to achieve admissibility for those 

models that neared admissibility (i.e. negative uniqueness values that very closely approached 

zero). This procedure only proved fruitful in the case of the Sagie model (the first dataset from 

this study, or “Sagie1”) under the Arthur et al. classification scheme. 

In order to examine the effect of broad dimension factors on model acceptability, I ran 

multiple logistic regression using convergence and admissibility status as the dependent variable. 

The status was coded as a dichotomous variable, being convergent and admissible or 

nonconvergent and/or inadmissible. This latter category included all those models which failed 

to converge, were inadmissible, or both. The system of broad dimension factors served as the 
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categorical independent variable with four levels: original coding, Arthur et al. coding, Borman 

& Brush coding, and Shore et al. coding.  

As a second step, I compared the fit of those models that were retained after the initial 

step. There is no one universal fit index to indicate which model is “best” overall. However, 

using a combination of fit indices can help one cover different areas of the fit spectrum and paint 

a fuller picture with regards to the suitability of a model (Hu & Bentler, 1999; Tanaka, 1993). 

Therefore, I conducted likelihood-ratio chi-square difference test to examine incremental fit, as 

this is the only statistic available for the assessment of model fit (Hu & Bentler, 1999). I also 

conducted comparisons of the  Aikake information criteria (AIC) and Bayesian information 

criteria (BIC) in order to compare model fit. Additionally, I examined the root mean square error 

approximation (RMSEA), standardized root mean square residual (SRMR), Tucker-Lewis index 

(TLI), and comparative fit index (CFI) of each convergent and admissible model as stand-alone 

fit indices.  

Estimation of Variance and Characteristics 

 In order to calculate dimension and exercise variance components, I squared dimension 

and exercise factor loadings. By squaring these loadings, one can avoid issues involving the 

addition of negative and positive factor loadings. I then converted each of the squared loadings to 

z-scores using Fisher’s r to z transformation and found the mean of the z-scores for dimensions 

squared loadings and exercise squared loadings, respectively. This conversion is intended to 

prevent the possibility of an upward bias in mean correlation as oft occurs when taking the mean 

of raw correlations coefficients (Lance, Lambert, et al., 2004; Silver & Dunlap, 1987). Finally, I 

back-converted the z-score averages to the unstandardized r averages. In addition to finding the 



23 

 

mean-squared dimension and exercise loadings for each retained model, I found the overall mean 

dimension and exercise variance terms under each classification scheme.  

 In order to examine the effects of the various AC measurement and design characteristics 

on dimension construct validity, I ran a series of t-tests and correlation analyses. As a first step, I 

confirmed the normality of the distributions of the dimension and exercise variances under each 

classification scheme using the Shapiro-Wilk test. For each dichotomously measured 

characteristic, I ran two t-tests with the characteristic as the independent variable and proportion 

of variance accounted for as the dependent variable in the case of dimensions and exercises, 

respectively. The same was performed with each continuously measured characteristic, but 

instead using correlation analysis. The analytic method for each characteristic can be found  in 

Table 3.2. 
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Table 3.1 

  

   Studies for Reanalysis  

   Study #Dimensions #Exercises 

   Arthur et al., 2000 9 3 

   Becker, 1990 5 4 

   Bowler & Woehr, 2009 13 5 

   Brannick et al., 1989 5 2 

   Brummel et al., 2009 8 6 

   Bycio et al., 1987 8 5 

   Fredericks, 1989 8 3 

   Haaland & Christiansen, 2002 5 5 

   Jackson et al., 2007 7 3 

   Jansen & Stoop, 2001 8 2 

   Joyce et al., 1994 7 4 

   Kleinmann, 1997 3 2 
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   Kleinmann & Koller, 1997 3 3 

   Kleinmann et al., 1996 3 3 

   Kolk et al., 2003 3 4 

   Kudisch et al., 1997 6 4 

   Lance, Foster et al., 2004 8 3 

   Lance, Foster et al., 2007 6 3 

   Lievens et al., 2009 5 4 

   Parker, 1991 15 3 

   Pittman, 1998 4 3 

   Sagie & Magnezy, 1987 5 3 

   Schleicher et al., 2002 3 3 

   Schneider & Schmitt, 1992 3 4 

   Van der velde et al., 1994 10 3 

. 
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Table 3.2 

    

     AC Characteristics and Proposed Method of Analysis 

  

     Characteristic  

 

Dichotomous/Continuous 

 

Analysis Method 

     Number of dimensions 

 

Continuous 

 

Correlation 

     Participant-to-assessor ratio 

 

Continuous 

 

Correlation 

     Rating approach 

 

Dichotomous 

 

t-test 

  

(across vs. within 

exercises) 

  Rater type 

 

Dichotomous 

 

t-test 

  

(psychologists vs. 

managers) 

  Rater training 

 

Dichotomous 

 

t-test 

  

(yes or no) 

  Length of training 

 

Continuous 

 

Correlation 

     AC purpose 

 

Dichotomous 

 

t-test 

  

(selection vs. training) 

  Behavioral checklists  

 

Dichotomous  

 

t-test 

             (yes or no)
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CHAPTER 4 

RESULTS 

 Table 4.1 shows all convergent and admissible models under each classification scheme 

as well as their respective model fit indices. As predicted, the number of convergent and 

admissible solutions increased as the classification schemes became more broad  (2 solutions 

using original coding
2
; 6 solutions using Arthur et al.’s coding; 7 solutions using Borman & 

Brush’s coding; and 11 solutions using Shore et al.’s coding). Additionally, under the broadest 

classification scheme (Shore et al.), there were only three nonconvergent models. Despite this 

apparent support for Hypothesis 1, it was necessary to determine if the difference in convergence 

and admissibility rates was significant. Logistic regression analysis was performed in order to 

determine if this increase in admissible solutions was significant. The omnibus test of model fit 

yielded a likelihood ratio chi-square of 7.157 (df=3; p=.067; α=.10). This demonstrates that the 

specified model had a significant improvement in fit from the null model (containing no 

predictors). This indicates that there was a change in convergence and admissibility rates as 

indicator-to-factor ratio increased, supporting hypothesis 1. As the omnibus test was significant, 

the next step was to examine the individual path coefficients (Cohen, Cohen, West, & Aiken, 

2012). The coefficients for Borman & Brush (B=1.429, p<.10) and Shore et al. (B=1.908, p<.05) 

were both significant, indicating that the convergence and admissibility rates of the tested models 

increased when moving from original coding to the Borman & Brush and Shore et al. coding 

schemes, respectively. Therefore, Hypothesis 1 was supported. 

                                                 
2 As these two solutions (Arthur et al., 2000; Lievens et al., 2009) did not change when transitioning between their 

original dimension coding and the Arthur et al. classification scheme, no further analyses of solely original models 

are reported. 
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 The next step was to compare the fit of models across dimension schemes. However, 

there were very few studies that were found to be admissible and even fewer studies that were 

retained across multiple dimension schemes (see Table 4.1). Therefore, the examination of 

Hypothesis 2 was limited to several studies, specifically Arthur, Kudisch, Lievens, and Sagie2 

(under all three broad dimension factor schemes) and Becker and Haaland (under the Borman & 

Brush and Shore et al. dimension schemes). The results of this examination are presented in 

Tables 4.2 and 4.3.  

 The stand-alone fit indices (see Table 4.2) show that most models indicated acceptable fit 

(Kline, 2011).  The mean model fit indices across the Arthur et al. dimension scheme were 

indicative of good model fit, while the means for the other dimension schemes indicated 

acceptable fit. Although mean fit became worse when moving from smaller to larger indicator-

to-factor ratios, this difference in fit is not substantial. This suggests that in terms of stand-alone 

fit, a higher indicator-to-factor ratio did not lead to better model fit. 

Overall, the results for comparative fit indicated improvement over the Arthur et al. 

coding, but comparable fit for the Borman & Brush and Shore et al. schemes. As provided in 

Table 4.3, the AIC and BIC were fairly evenly split as to the best fitting models amongst the 

three broad dimension factor schemes. For the AIC, two studies supported the Arthur et al. 

scheme, one study supported the Borman & Brush scheme, one model showed no difference 

between Arthur et al. and Borman & Brush, and one model showed no difference between 

Borman & Brush and Shore et al. The results for AIC therefore indicate that using either the 

Arthur et al. or Borman & Brush schemes would yield the best fit. For the BIC, one study 

supported Arthur et al., one supported Borman & Brush, three supported Shore et al., and one 

supported either Borman & Brush or Shore et al. The BIC therefore indicates that the best model 
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fit is achieved when using the Shore et al. dimension scheme. When using the chi-square 

difference test, the results were once again split, supporting both the Borman & Brush and Shore 

et al. classifications for best model fit. I tested each of the available schemes for each study 

against each other, and the best-fitting models are indicated in bold type. The best-fitting models 

supported the use of the Shore et al. model in three cases and either Borman & Brush or Shore et 

al. in three cases. The Shore et al. models were not predominantly better-fitting as to indicate that 

the further broadening of dimension factors substantially influenced model fit. Overall, the 

different comparisons across indices yielded different results, and Hypothesis 2 was not 

supported. 

Table 4.4 contains the dimension and exercise variance components for each of the 

retained models under all three classification schemes. Contrary to what was predicted, 

dimension variance showed decreases and exercise variance, increases when moving into 

broader dimension factors on both the individual-study and mean levels. The Arthur study had 

higher dimension than exercise variance in the model using the Arthur et al. dimension factors, 

but showed the same pattern as all other studies under the Borman & Brush and Shore et al. 

classifications. The results of t-tests comparing variance components between the coding 

schemes (Arthur et al. vs. Borman & Brush, Arthur et al. vs. Shore et al., Borman & Brush vs. 

Shore et al.) indicated that the only significant change in variance was a decrease in dimension 

variance from the Arthur et al. vs. Shore et al. comparison, which is contrary to what was 

expected (p=.043). Hypothesis 3 not only failed to be supported, but results took the opposite 

form of the hypothesized effect. 

The results of the t-tests and correlation analyses conducted to examine Hypotheses 4 

through 11 can be found in Table 4.5. When considering the number of dimensions, there were 
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two significant results: for dimension variance under the Arthur et al. factor scheme (r=0.809, 

p<.05) and for exercise variance under the Borman & Brush scheme (r=-0.839, p<.05).  The first 

significant correlation went in the opposite direction of the hypothesized effect, which would 

suggest that dimension variance becomes higher when more dimensions are rated, rather than 

less. The second significant correlation shows that exercise variance became higher when less 

dimensions were rated. This effect was hypothesized to have the reverse implication for exercise 

variance. Although all of the other correlations were negative, as hypothesized, none of them 

were significant, failing to support Hypothesis 4. 

When considering participant-to-assessor ratio, results went in the expected direction, 

with dimension variance being higher than exercise variance under each of the dimension 

schemes. However, none of these correlations were significant, providing no support for 

Hypothesis 5.  

The t-tests on the categorically measured characteristics yielded similarly disappointing 

results. The examination of rating approach yielded no significant results under any classification 

scheme, nor did that of rater type. Therefore, Hypotheses 6 and 7 were not supported. 

In the case of rater training, analyses could not be conducted using the Arthur et al. broad 

dimension factors, as all admissible solutions came from studies that reported the administration 

of training. None of the results for the other two classification schemes were significant; 

therefore Hypothesis 8 was not supported. Furthermore, none of the correlation coefficients 

between dimension or exercise variance and length of rater training were significant, and all of 

the dimension variance correlations were negative, contrary to the hypothesized effect. 

Hypothesis 9 was not supported. 
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I obtained a significant t-test result when considering AC purpose for dimension variance 

under the Borman & Brush scheme, t(4)=18.852, p<.05. As hypothesized, this suggests that 

those ACs operating for developmental and training purposes result in higher dimension variance 

than would administrative ACs. However, as none of the results under the other coding schemes 

were significant, Hypothesis 10 does not receive overall support. 

It was possible to analyze the effect of behavioral checklists on dimension and exercise 

variance under the Arthur et al. classification scheme, as it contained the only admissible study 

that used behavioral checklists (Jackson et al., 2007). However, the results of the t-test were not 

significant and did not support Hypothesis 11. Overall, none of the predicted hypotheses could 

be supported.  

In addition to the previous analyses, I ran sign tests to determine if the overall direction 

of the results was in the expected direction (Pagano, 2004). The results can be found in Table 

4.6. The expected direction for each of the variance components refers to the predictions made in 

Hypotheses 4 through 11. The obtained direction refers to either (a) the direction of the estimated 

correlation between the characteristic and the coding scheme or (b) the facet of the characteristic 

in question with the highest average variance component. A “+” indicates that the data supported 

the expected direction, whereas a “-” indicates that the data went in a different direction than was 

expected. For example, it was expected that ACs that utilized across-exercise dimension ratings 

would yield higher dimension variance than those ACs that used other rating approaches. 

However, the average exercise variance component for the within-exercise approach was higher 

than those of the across-exercise or combined approaches. Accordingly, this result was coded 

with a “-”. 
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These tests did not yield significant results according to the binomial distribution 

(Pagano, 2004). Both dimension and exercise variance achieved the same number of results in 

the expected direction. Accordingly, no definitive conclusion could be drawn regarding the 

directionality of the results. The next section contains possible rationale for the expected 

findings. 
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Table 4.1 

         

          Convergence and Admissibility of Tested Models 

     

          

 

Arthur et al. Borman & Brush Shore et al. 

 

C & A C & I 

NC & 

IA C & A C & I 

NC & 

IA C & A C & I 

NC & 

IA 

Arthur x 

 

  x 

 

  x 

  Becker 

  

x x 

 

  x 

  Bowler 

 

x   

  

x 

 

x 

 Brannick 1 

 

x   

 

x   

 

x 

 Brannick 2 

 

x   

 

x   

 

x 

 Brummel 1 

 

x   

 

x   x 

  Brummel 2 

 

x   

  

x 

 

x 

 Bycio 

 

x   

  

x 

 

x 

 Fredricks 

 

x   

  

x 

 

x 

 Haaland 

 

x   x 

 

  x 

  Jackson x 

 

  

 

x   

 

x 

 Jansen 

 

x   

 

x   x 

  Joyce 

 

x   

  

x x 

  1Klein97 

  

x 

  

x 

 

x 

 2Klein97 

  

x 

  

x 

 

x 

 KleinKoller 

 

x   

 

x   

 

x 

 KleinKuptsch1 

  

x 

  

x 

  

x 

KleinKuptsch2 

  

x 

  

x 

  

x 

Kolk 1 

 

x   

 

x   

 

x 

 Kolk 2 

  

x 

  

x x 

  Kudisch x 

 

  x 

 

  x 

  1Lance04 

 

x   

 

x   

 

x 

 2Lance04 

 

x   

 

x   

 

x 

 Lance07 

 

x   

 

x   

 

x 

 Lievens x 

 

  x 

 

  x 

  Parker 

 

x   x 

 

  

 

x 

 Pittman 

 

x   

  

x 

  

x 

Sagie 1 x 

 

  

 

x   

 

x 

 Sagie 2 x 

 

  x 

 

  x 

  Schleicher 1 

  

x 

  

x 

 

x 

 Schleicher 2 

  

x 

  

x 

 

x 

 Schneider 

 

x   

 

x   

 

x 

 Van der velde     x   x     x   

 

Note. C=convergent; A=admissible; NC=nonconvergent; IA=inadmissible 
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Table 4.2 

                     Model Fit Indices--Stand-Alone 

        

           

 

Study chi-sq df RMSEA CONF. INT. SRMR TLI CFI AIC BIC 

Arthur et al. 

Arthur 13.600 33 0.000 {0.000,0.000} 0.019 1.020 0.990 103.240 238.778 

Jackson 78.720 66 0.030 {0.000,0.053} 0.034 1.000 0.980 186.270 366.947 

Kudisch 215.58** 121 0.062 {0.043,0.079} 0.066 0.910 0.940 322.030 555.561 

Lievens 120.61** 51 0.043 {0.033,0.053} 0.029 0.970 0.980 229.970 478.31 

Sagie1 129.36** 69 0.047 {0.032,0.060} 0.035 0.970 0.970 221.220 426.033 

Sagie2 157.56** 69 0.056 {0.044,0.068} 0.040 0.960 0.960 251.220 459.697 

Borman & 

Brush 

Arthur 17.21 36 0.000 {0.000,0.000} 0.022 1.020 1.000 101.190 227.376 

Becker 227.76** 95 0.081 {0.065,0.098} 0.079 0.890 0.920 312.390 522.841 

Haaland 255.54** 155 0.077 {0.054,0.098} 0.089 0.880 0.910 379.140 587.618 

Kudisch 227.82** 124 0.069 {0.052,0.086} 0.071 0.910 0.930 337.110 553.019 

Lievens 154.09** 54 0.049 {0.040,0.059} 0.029 0.950 0.970 255.090 491.917 

Parker 814.19** 366 0.054 {0.049,0.060} 0.054 0.930 0.940 974.550 1402.01 

Sagie2 157.56** 69 0.056 {0.044,0.068} 0.040 0.960 0.980 251.220 459.697 

Shore et al. 

Arthur 46.75 38 0.047 {0.000,0.079} 0.036 0.990 0.990 130.450 246.908 

Becker 227.76** 95 0.081 {0.065,0.098} 0.079 0.890 0.920 312.390 522.841 

Brummel1 554.42** 359 0.046 {0.027,0.061} 0.062 0.950 0.960 644.880 1042.57 

Haaland 250.68** 157 0.066 {0.040,0.088} 0.082 0.890 0.920 358.510 574.019 

Jansen 113.38 81 0.023 {0.010,0.033} 0.028 0.990 0.990 220.350 472.014 

Joyce 328** 200 0.074 {0.053,0.094} 0.084 0.870 0.900 433.130 656.129 

Kolk2 53.69* 35 0.065 {0.000,0.100} 0.064 0.920 0.960 135.710 251.28 

Kudisch 234.59** 126 0.071 {0.054,0.087} 0.072 0.900 0.930 340.280 549.934 

Lievens 158.52** 56 0.049 {0.040,0.058} 0.030 0.950 0.970 256.240 483.099 

Sagie2 163.65** 71 0.057 {0.045,0.069} 0.042 0.960 0.980 254.680 371.121 
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Note.Chi-sq=chi-squared statistic; df=degrees of freedom; conf. inf.=RMSEA confidence interval; *=p<.05; **=p<.01 
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Table 

4.3 

    

     Mean Variance Components  

  

     

   

Dimension Var.  Exercise Var. 

 

Arthur et al. 

Arthur 0.510 0.207 

 

Jackson 0.194 0.604 

 

Kudisch 0.215 0.421 

 

Lievens 0.158 0.453 

 

Sagie1 0.216 0.403 

 

Sagie2 0.137 0.414 

 

M 0.238 0.417 

 

Borman & 

Brush 

Arthur 0.306 0.424 

 

Becker 0.115 0.476 

 

Haaland 0.136 0.511 

 

Kudisch 0.205 0.423 

 

Lievens 0.100 0.455 

 

Parker 0.053 0.331 

 

Sagie2 0.136 0.415 

 

M 0.150 0.434 

 

Shore et al. 

Arthur 0.257 0.422 

 

Becker 0.115 0.476 

 

Brummel1 0.039 0.646 

 

Haaland 0.140 0.456 

 

Jansen 0.050 0.474 

 

Joyce 0.208 0.342 

 

Kolk2 0.093 0.616 

 

Kudisch 0.173 0.430 

 

Lievens 0.076 0.468 

 

Parker 0.030 0.332 

 

Sagie2 0.129 0.409 

 

M 0.119 0.461 

 

Note. M=total mean 
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Table 4.4 

        

         Comparative Model Fit--Best Models 

     

         

 

Models AIC BIC Comparison chi-diff df diff sig. chi-best 

Arthur A, B, S B B A vs. B 3.61 3 0.31 A/B 

  

   

B vs. S 29.54 2 0.00 S 

        A vs. S 33.15 5 0.00 S 

Becker B, S B/S B/S B vs. S 0.00 0 x B/S 

Haaland B, S S S B vs. S 4.86 2 0.09 B/S 

Kudisch A, B, S A S A vs. B 12.24 3 0.01 B 

        B vs. S 6.77 2 0.03 S 

Lievens A, B, S A A A vs. B 33.48 3 0.00 B 

        B vs. S 4.43 2 0.11 B/S 

Sagie 2 A, B, S A/B S A vs. B 0.00 0 x A/B 

        B vs. S 6.09 2 0.05 S 

Note. A=Arthur et al.; B=Borman & Brush; S=Shore et al.; Bold denotes best-fitting model; chi-diff=chi-square 

difference test; df diff=difference in 

degrees of freedom; sig.=significance; chi-best=best-fitting model from chi-sqare difference test 
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Table 4.5 

        

         Correlations & t-tests of AC Design Characteristics and Variance Components 

  

           Arthur et al. 

 

Borman & Brush 

 

Shore et al. 

  

          Dimension Exercise   Dimension Exercise   Dimension Exercise 

  

  

  

  

  

  No. dimensions .890* -0.454   -0.157 -0.839*   -0.217 -0.458 

  

  

  

  

  

  P-to-A ratio 0.989 -0.993   0.41 -0.192   0.558 -0.503 

  

  

  

  

  

  Rating approach 0.539 1.417   0.545 0.115   0.910 0.020 

  

  

  

  

  

  Rater type 0.227 2.291   2.757 1.186   1.199 0.245 

  

  

  

  

  

  Rater training n/a n/a   0.029 2.836   0.058 0.014 

  

  

  

  

  

  Length of training -0.732 0.847   -0.558 -0.709   -0.426 -0.136 

  

  

  

  

  

  AC purpose 0.956 0.209   18.852* 4.462   1.177 1.329 

  

  

  

  

  

  Behavioral 

checklists 0.103 4.346   n/a n/a   n/a n/a 

Note. *=p<.05; italics indicate correlation analysis; plain text indicates t-test; n/a 

indicates could not be estimated 

   



39 

 

Table 4.6 

 

Sign Test Results 

 Dimension 

Variance: 

Obtained 

Dimension 

Variance: 

Expected 

Dimension 

Variance: 

Difference 

Exercise  

Variance: 

Obtained 

Exercise  

Variance: 

Expected 

Exercise 

Variance: 

Difference 

# of dimensions Negative 

correlation 

Negative 

correlation 

+ Negative 

correlation 

Negative 

correlation 

+ 

Participant-

assessor ratio 

Positive 

correlation 

Negative 

correlation 

- Negative 

correlation 

Negative 

correlation 

+ 

Rating 

approach 

Across-exercises Within-exercises - Within-exercises Within-exercises + 

Rater type Psychologists and 

managers 

Psychologists - Psychologists and 

managers 

Psychologists - 

Training Training reported Training reported + Training reported Training reported + 

Length of 

training 

Negative 

correlation 

Positive 

correlation 

- Negative 

correlation 

Positive 

correlation 

- 

AC purpose Developmental Developmental + Developmental Developmental + 

N=7   p(3+)=0.2743   p(5+)=0.1641 

 Note. + indicates that variance component went in the expected direction; - indicates that variance component did not favor the 

expected direction; p=probability in the binomial distribution=.50. 
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CHAPTER 5 

DISCUSSION 

For years, AC researchers have been plagued with difficulty in establishing construct validity for 

dimensions (Arthur et al., 2003; Bycio et al., 1987; Cahoon et al., 2012; Lance et al., 2000). This 

challenge stems, in part, from a dearth of convergent and admissible model solutions when using 

the theoretically suitable CDCE model structure (Lance, Lambert et al., 2004). It has recently 

been suggested that the construct validity problem could stem from the methodological artifact 

of specifying too few indicators per factor in models (Hoffman et al., 2011; Monahan, 2011; 

Tomás et al., 2000).  

This study reexamined previously published models under the assumption that higher 

indicator-to-factor ratios would positively influence convergence and admissibility rates. This 

ratio increase was accomplished through the reassignment of originally reported dimensions into 

broad dimension factors—broad categories of dimensions that are representative of a wide 

number of unique dimensions. Due to similarities in unique dimensions measured in ACs, 

reclassification into broad dimension factors allows the unique dimensions to serve as indicators 

of broader dimension factors, increasing the indicator-to-factor ratio (Hoffman et al., 2011).  

 This study demonstrated a significant effect of increased indicator-to-factor ratios (and 

broad dimension factors) on the subsequent convergence and admissibility rates of models. 

However, for those models that were convergent and admissible with higher indicator-to-factor 

ratios, exercise variance still dominated dimension variance, providing no remedy to the 
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construct validity problem in ACs. Therefore, although this study attempted to contribute to the 

literature by demonstrating the prevalence of dimension variance when using measurement and 

design modifications, it showed that exercise variance is still dominant. If research continues to 

demonstrate the importance of exercise variance, it should follow that administrators revise 

measurement and reporting procedures to reflect that the effects we are seeing are those of the 

exercises, not of dimensions. In other words, ACs should be based around tasks in their structure, 

measurement, and feedback mechanisms (Jackson et al., 2007; Lance, 2008). 

Limitations 

 There were a number of limitations in this study that could have contributed to its results. 

The main limitation was sample size—at all levels of analysis. To begin with, there is not an 

abundance of MTMM and AC studies, severely limiting the pool of available models I had to 

work with at the onset of this process. Additionally, the unexpectedly low number of retained 

models resulted in difficulty when analyzing the role of design characteristics. Since it was 

anticipated that the higher indicator-to-factor ratios would have a very strong impact on 

nonconvergence and inadmissibility, examination of design characteristics on the retained 

models seemed feasible. In order for this section of the study to have had conclusive and clear 

results, it would have been beneficial for more models to have been retained as admissible. 

When examining Hypotheses 4 through 12, the limited sample size proved to be a hindrance in 

examining the effects of characteristics on AC construct validity. Various characteristics, such as 

use of behavioral checklists and AC purpose, proved to be identical for most or all studies under 

certain classifications, making it impossible to examine the effect of the characteristics. 

Therefore, the limited number of studies available in the first place was a challenge to this study, 



42 

 

and the further dwindling of availability as the study progressed made achieving significant 

results even more difficult. 

 On a related note, the obtained results likely suffered from problems with model 

specification. Although the use of broad dimension factors increased each model’s indicator-to-

factor ratio, it is likely, if not certain, that this increase was not substantial enough in certain 

models. A recent MTMM study using both real and simulated data found that the commonly 

used ratio of three indicators-per-factor failed to reach convergent and admissible solutions over 

80% of the time (Dumenci & Yates, 2012). However, these problems were eradicated when 

increasing the ratio to five indicators-per-factor. In the present study, an increase in indicator-to-

factor ratio did not necessarily guarantee even three indicators per factor, even when using the 

Shore et al. dimension scheme, due to the original AC design employed in each of the studies. 

Therefore, my difficulty in reaching the predicted results was probably at least partially 

attributable to the use of too few indicators per factor, despite the use of broad dimension factors. 

In addition, the complexity behind the design and administration of ACs may have served 

as a limitation to this study. As there are no standard operating procedures for ACs, each center 

runs with its own nuances and idiosyncrasies (Howard, 2008). Therefore, there is likely a 

plethora variables at play beyond the design characteristics examined in this study that impacts 

AC ratings. If a move is made to standardize AC design and measurement across the field, it is 

possible that researchers will come to more consistent results in their analyses of construct 

validity and other AC-related phenomena. For example, Monahan (2011) achieved results 

supporting the use of higher indicator-to-factor ratios, but used the same AC for all 

measurements in the study, meaning that the differences at play when using various ACs were 
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not relevant. As this was not the case in this study, the differences between ACs could have been 

harmful to the eventual results.  

Implications and Future Directions 

Despite a dearth of significant findings, this study demonstrated that using higher 

indicator-to-factor ratios may affect model fit to a point—the Borman & Brush and Shore et al. 

models were found to have comparable fit, but still generally had better fit than the Arthur 

models when considering comparative fit indices. Additionally, a significant pattern of increased 

convergence and admissibility was established when using higher indicator-to-factor ratios 

Specifically, under the Shore et al. dimension scheme, which was the broadest factor scheme 

used, there were the most admissible models and the fewest nonconvergent models. These results 

do not help to eradicate the construct validity paradox, but they do offer a bit of hope to the 

process of finding a solution. 

Furthermore, AC designers should consider the implications of constructing ACs so that 

subsequent models have at least five indicators per factor (Dumenci & Yates, 2012). There were 

too few models in the current study that adhered to this guideline, which could have accounted 

for the low convergence and admissibility rates, even after increasing model indicator-to-factor 

ratios. It is possible that if ACs are designed to have a minimum of five indicators-per-factor, an 

effort such as the current study could yield more definitive results. 

Another under-explored area of research is the use of hybrid models in ACs (Hoffman, 

2012; Hoffman et al., 2011). A recently proposed hybrid model contains exercises, broad 

dimension factors, and a general performance factor, with exercises and general performance 

serving as uncorrelated first-order factors (Hoffman et al., 2011). This model was found to be 

better fitting than the CDCE model and without nonconvergence and inadmissibility issues. 



44 

 

Additionally, it is still theoretically relevant to AC research. Although dimension variance was 

still dominated by exercise variance, this hybrid model and other proposed models should be 

further explored in order to combat nonconvergence and inadmissibility problems.  

When considering the results of both this study and the existing body of AC construct 

validity literature, the best course of action may finally be to move away from dimensions and 

start focusing on AC exercises. This might not have been the original intention for the use of 

ACs, but exercises have repeatedly demonstrated their worth in the AC context—they continue 

to dominate dimensions in construct validity, despite numerous interventions intended to remedy 

such results. Perhaps ACs do not suffer from a construct validity “problem”, but rather a 

misdirection in the search for construct validity (Lance, 2008b). 

This study is the most recent in a long line of studies attempting to salvage AC 

dimensions (e.g. Bowler & Woehr, 2006; Hoffman et al., 2011; Lievens & Conway, 2001) 

without achieving its desired results. Despite treatment by some researchers of exercises as error 

(Lievens & Conway, 2001), it is clear that exercises play an important, if not leading, role in 

ACs. It may be time for practitioners to come to terms with the idea that dimension effects are 

simply not as robust as exercise effects, regardless of methodological and design considerations. 

Task-based ACs (TBACs) have been suggested since the 1980s as a solution to the AC 

construct validity problem (Jackson, 2012; Lance, 2008). TBACs have assessors rate participants 

on task lists within each exercise, instead of focusing on personality-related dimensions within 

exercises (Jackson, 2012). The behavioral ratings on the task lists are combined in order to form 

exercise scores, which serve as samples of role-relevant behavior. TBACs suggest criterion-

related validity with supervisory ratings of employee performance and are theoretically 

representative of what AC research has been demonstrating for years (Lance, 2012). However, 
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researchers have shied away from TBACs, likely due to their nontraditional approach to AC 

ratings. Accordingly, more criterion-related validity evidence of TBACs needs to be established, 

as well as more research as to TBACs’ general properties and best practices in comparison to 

traditional dimension-based ACs (DBACs; Lance, 2012). Although DBACs are widely accepted 

and trusted by researchers, practitioners, and participants, the overwhelming evidence that has 

been presented over the years of the cross-situational specificity in ACs has been consistently 

ignored. Therefore, further examination of TBACs could only serve to improve upon a much-

valued administrative and developmental tool (Jackson, 2012; Jackson et al., 2007; Lance, 2012). 

Conclusion 

 Although the use of higher indicator-to-factor ratios demonstrated a significant pattern of 

improvement on model nonconvergence and inadmissibility in ACs, dimension variance was still 

dominated by exercise variance. Instead of achieving its goal of demonstrating the prevalence of 

dimension variance, this study only further acknowledged the dominating role of AC exercises in 

construct validity. Accordingly, it may be time to step away from AC dimensions and continue 

working toward the improvement of TBACs. 
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