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Abstract

Estimating forest biomass is an essential aspect of carbon (C) stock estimation and global

carbon balance studies. Biomass sampling strategies and estimation techniques were investi-

gated. The first Chapter is a general discussion on biomass modeling and sampling strategies.

In the second Chapter, sampling distributions of randomized branch samples were investi-

gated based on the destructive and intensive measurement of slash pine (Pinus elliottii) and

red maple (Acer rubrum) trees. In this study, biomass estimates for all possible randomized

branch sampling (RBS) paths per tree were determined for each sample tree. We found that

sampling distributions are more variable for red maple than for slash pine. When tested

with all available trees, we found that RBS alone or RBS in combination with importance

sampling (IS) procedure are not suitable for estimating biomass at individual tree level. In

the third Chapter, additive systems of individual tree biomass equations were developed for

both species. We found that more tree size attributes such as, diameter at breast height

(Dbh), tree height (Ht) and diameter at the base of live crown provided better prediction

of component biomass than using Dbh only or Dbh and Ht in the model. In the Chapter

four, we developed an indirect method, which utilizes inside bark volume predicted from



a taper function along with density and specific gravity information and crown component

information from an explicit biomass prediction model, to estimate biomass.

Index words: Randomized branch sampling, Importance sampling, Systems of
equations, Taper/volume equation
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Chapter 1

Introduction and literature review

1.1 Introduction

Forest ecosystems are a major part of the global carbon (C) cycle and are capable of storing

large amounts of carbon in solid wood, bark, leaf and other organic matter. More than

80% of all terrestrial aboveground C and more than 70% of all soil organic C are stored

in forest ecosystems (Jandl et al. 2007). Forests have both favorable and adverse roles in

atmospheric CO2 manipulation. Increases in plant biomass and organic matter accumulation

in forests may reduce the total amount of CO2 in the atmosphere, whereas atmospheric CO2

content increases due to deforestation, dying and decomposition of trees, and burning of

forest areas. Birdsey (1992) stated that because of high metabolic activities, the carbon

uptake in young plant communities is higher than the mature old aged plant communities.

He further explained that the amount of CO2 release to the atmosphere depends on the types

of forest products created from harvested timber. Forest products, such as furniture, wooden

bridges, wood frame houses and other solid wood products, store wood based carbon for long

periods (Elliot 1985). However, paper based forest products such as cardboard and various

types of paper are used and discarded rapidly, and the carbon they contain is released to

the atmosphere relatively quickly (Dewar 1990). Hence, the amount of carbon sequestered

in forests and forest products largely depends on the forest characteristics such as growth,

death and decomposition as well as the types of products that are produced from harvested

trees.
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Forest biomass and soils have major roles for temporary and long-term C storage (Gower

2003; Houghton 2005). In forest ecosystems, the largest quantities of aboveground biomass

and C storage is found within tree biomass components, such as stem, branches, twigs, and

foliage (Santa Regina and Tarazona 2001). Biomass of understory and ground vegetation, as

well as of dead and dry woody debris, also provides a significant contribution (e.g. Whittaker

and Woodwell 1968, Long and Turner 1975) in carbon storage in forest ecosystems. Apart

from aboveground vegetation in forest ecosystems, belowground biomass such as tree root,

forest floor, and mineral soil are major components of large C pools (Johnson et al. 2003,

Oliver et al. 2004). It is very difficult to get a precise estimate of tree root biomass, hence C

storage in tree roots is often neglected or estimated from standard root to shoot ratios (Kurz

et al. 1996, Cairns et al. 1997). A study conducted by Zhang et al. (2010) found that soil C

comprised of 23.8-29.6% of total forest ecosystem C.

After an absence of about 30 years from scientific research, forest biomass has regained

its historical importance (Zianis and Mencuccini 2003). Forest biomass monitoring and eval-

uation is becoming more important because forest ecosystems play vital roles in regulating

global carbon balance, and possibly mitigating global climate change (Tomppo et al. 2010).

Estimation of biomass at the tree, stand and regional levels using forest inventory data is an

essential component of monitoring carbon storage in forests (Kauppi et al. 1992, Nabuurs et

al. 2003).

1.2 Biomass sampling strategies

Forest ecosystems are typically very large and complex. Within a given forested area there

may be tens of thousands or even millions of individual trees. Consequently, it is not pos-

sible to know the characteristics of these trees with certainty. To obtain estimates of forest

characteristics of interest that are comprised of many individual trees (e.g. above ground
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and below ground biomass and carbon storage) it is necessary to use probability sampling

techniques (Shiver and Borders 1996).

Cochran (1977) described that the major benefits of sampling as compared with com-

plete enumeration are that it’s less expensive, less time consuming, and likely provides for

greater accuracy of measurement. Various sampling theories and sampling procedures (simple

random sampling, stratified sampling, sampling probability proportional to size etc.) have

been developed. The main objective of such sampling theories is to make sampling more

efficient.

During the past five decades, various sampling strategies have been developed and applied

in estimating an individual tree’s bark, stem, and foliage biomass or other tree characteristics,

such as mineral content, bole volume, bole surface area, and bark volume of the bole (e.g.

Gregoire et al. 1986, Gregoire et al. 1987, Gregoire et al. 1995, Valentine and Hilton, 1977,

Valentine et al. 1984, Valentine et al. 1992, Ozcelik and Eraslan 2011). Providing an efficient

and practical method of sampling to estimate biomass allows for testing current biomass

models or the development of new models. There are many sampling strategies based on

probability theory, specifically for tree characteristics, that have been used in ecological

studies (Gregoire and Valnetine 1996). Two of the sampling procedures that have been used to

estimate individual tree and component biomass are randomized branch sampling (RBS) and

importance sampling (IS) (e.g. Gregoire et al. 1995, Valentine and Hilton 1977, Ozcelik and

Eraslan 2012). RBS, a rigorous statistical method based on multistage probability sampling,

was first applied applied to determine total number of fruits in a tree (Jessen 1955). Since

then the procedure has been used to estimate various attributes of a tree, such as tree

component biomass (Good et al. 2001, Williams 1989), stem length and surface area for

various tree species (Gregoire and Valentine 1996), as well as aboveground carbon pools and

fluxes (Bascietto et al. 2012).
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Similarly, RBS with IS or IS alone has been applied to estimate biomass of an individual

tree. For example, IS procedure has been employed to estimate stem volume and volume

increment (Gregoire et al. 1987), RBS with IS has been used to estimate individual tree

biomass (Ozcelik and Eralsan 2012).

Burrows et al. (2000) used ratio sampling to estimate individual tree biomass. Using the

ratio sampling scheme, fresh weight of major tree components, including the main-stem, are

taken with subsamples to determine the ratio of fresh weight to dry weight. Total dry weight

is calculated simply by multiplying the ratio of dry to fresh weight with total fresh weight.

Although this method provides close estimates, it requires significant manpower, equipment

and cost.

1.3 volume/weight equations

As a precursor to component biomass modeling, there has been a lot of work done in indi-

vidual tree taper, volume and weight modelling. Aboveground biomass and stem volume are

major factors that characterize a forest productivity. For more than a hundred years, volume

equations have been developed and used in estimating individual tree and stand volume.

Heinrich Cotta was first to introduce the concept of a volume table around 1804 (Clark

1902). A volume table is a table showing average volume of trees, logs or sawtimber for given

diameter at breast height (Dbh) alone or Dbh and tree height (Ht) or Dbh, Ht and a measure

of stem form or rate of stem taper.

Individual tree volume equations are used to quantify volume of standing trees through

the measurement of variables such as Dbh and total or merchantable height (Burkhart 1977).

A volume equation developed by Schumacher and Hall (1933) is considered one of the earliest

volume equations found in literature (Bi and Hamilton 1998). The form of the Schumacher

and Hall equation serves as the basis for many modern day volume equations
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Volume = β0 + β1Dbh2Ht (1.1)

Note that the independent variable Dbh2 time Ht multiplied by a constant has a geometric

relationship with the volume contained in solids of various shapes (cylinder, paraboloid, cone,

etc.). It has also been determined that equations used to model tree volume are also useful

for modeling tree weight (and hence biomass). Traditionally, volume or weight is considered

as a function of tree Dbh, Ht and a measure of tree form, and can be expressed as (Clutter

et al. 1983)

Y = f(Dbh, Ht, F) (1.2)

where, F is a measure of stem form. The most commonly used measure of stem form is known

as a form quotient (Spurr 1052), which is a ratio of upper stem diameter at specified height

to tree Dbh.

Following are the commonly used equation forms for individual tree volume and weight

estimation (Clutter et al. 1983)

Table 1.1: Commonly used equation forms to estimate individual tree volumes and weights

Name of equation Equation form

1. Constant form factor Volume=b1 Dbh2Ht

2. Combined variable Volume = b0 + b1Dbh2Ht

3. Generalized combined variable Volume = b0 + b1Dbh2 + b2Dbh2Ht

4. Logarithmic Volume = b1Dbhb2Htb3

5. Generalized logarithmic Volume = b0 + b1Dbhb2Htb3

6. Honer transformed variable Volume = Dbh2/(b0 + b1H–1)

7. Form class Volume = b0 + b1Dbh2HtF
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where, b0, b1, b2 and b3 are constants and others are as described earlier.

These equations have been used to estimate total-stem cubic-foot volumes and weights

and merchantable-stem cubic-foot volumes and weights (Clutter et al. 1983). It is often nec-

essary to estimate merchantable volume or weights to a certain upper stem diameter or

height limit. Several volume and weight equations have been developed to estimate mer-

chantable volume (Honer 1964, Burkhart 1977, Brister et al. 1980). These equations use

merchantability limit as a predictor of volume hence the merchantable volume is predicted

as a percentage of total volume of a tree (Honer 1964, Burkhart 1977)). For example Brister

et al. (1980) developed a system of equations (Equation 1.3) that predicts total volume as

well as merchantable volume of a tree.

Vt = 0.00616Dbh2.05779Ht0.74679

Vm = Vt(1 – 0.61529d3.66827Dbh–3.47361) (1.3)

Bryne and Reed (1986) stated that a system of equations to predict total and mer-

chantable volumes to any upper stem diameter would be very useful for forest inventory

work. There are two common approaches that allow for stem volume/weight estimates to

any upper stem diameter limit: (1) volume ratio equations, and (2) stem taper equations.

Volume ratio equations provide the proportion of merchantable volume to total volume

based on variables such as Dbh and an upper-stem diameter. Merchantable volume equations

provide prediction of volume to a desired upper stem diameter. An example of a volume ratio

equation based on the equation form used by Burkhart (1977) is

R = 1 + β1
D
β2
t

Dβ3
(1.4)

where, R = Vm
Vt

which is less than 1.

Equation 1.4 may be fitted using R or merchantable volume as a dependent variable
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Vm = Vt(1 + β1
D
β2
t

Dβ3
) (1.5)

The term “taper” is used to express the decrease in stem diameter with increase in stem

height. A taper function is an equation that is used to model stem diameter at any point

on a tree starting at the base of the tree and going to the tip of the tree. The integration

of a taper function from base to any specified height provides an estimate of merchantable

volume to that height (Kozak et al. 1969). In addition, volume ratio equations can be derived

from taper equations (Reed and Green 1984).

Most taper functions have the following general form

d = f(h, D, H, β1, β2, . . . , βm) (1.6)

where,

d= stem diameter at upper-stem height h

h = height from ground to upper-stem diameter d

D= Dbh

H= total tree height, and

β1, β2, . . ., βm are parameters to be estimated.

The relatively simple parabolic function with three parameters (Kozak et al. 1969) is an

example of a simple taper function

d2

D2
= β0 + β1(

h

H
) + β2(

h2

H2
)

d = D

√
β0 + β1(

h

H
) + β2(

h2

H2
) (1.7)
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By using such a simple taper function the whole bole is represented with a single contin-

uous function. If stem shape is more complex than the shape that the function can assume

it may not provide an accurate representation of tree taper. Increased accuracy can be

achieved by using segmented polynomial taper models that consist of a sequence of grafted

sub-models representing different segments along the bole (Martin 1981, Amidon 1984). Max

and Burkhart (1976) presented a three segment taper function created by splining three poly-

nomial forms at two join points

d2 = D2{β1(
h

H
– 1) + β2(

h2

H2
– 1) + β3(α1 –

h

H
)2I1 + β4(α2 –

h

H
)2I2}

I1 =


1, h

H ≤ α1

0, otherwise

I2 =


1, h

H ≤ α2

0, otherwise

(1.8)

The parameters α1 and α2 are called join points or inflection points and I1 and I2 are their

associated indicator variables and all other variables are as described above. The indicator

variables allow additional polynomial terms to be added in the lower bole.

Other less commonly used taper functions include within-tree variable form (or variable

exponent equation), and between-tree variable form.

Ideally, volume and taper equations should be compatible that is the volumes estimated

by integration of the taper function are equal to the volumes obtained from total volume or

appropriate volume ratio equations (Demaerschalk 1972). As such, the accuracy and precision

of volume estimates that are derived from taper equations really depend on the fit of taper

equations.

8



1.4 Biomass Modeling

Biomass modeling is important for quantifying tree, stand and forest biomass. Estimation

of forest biomass aids in assessing forest growth, quantifying carbon, and potential for bio-

energy production. Various statistical models and methods have been proposed to estimate

biomass at local and national scales. Of course, individual tree biomass models are the basic

building block for biomass and C estimation at other scales. Individual trees are normally

separated into three aboveground components: (i) bole/ main stemwood, (ii) bole/main stem-

bark, and (iii) crown (branches and foliage). Sometimes a fourth component, belowground

biomass, which is typically considered stump and major roots within a fixed distance, is con-

sidered (Parresol 2001). Recently, considerable research effort has been devoted to estimating

biomass of individual trees. Most of this work makes use of the extensive knowledge base

that has been accumulated through development of individual tree taper, volume and weight

equations. Various individual tree biomass equations have been developed in which biomass

components of a tree are related with tree size characteristics, such as diameter at breast

height (Dbh), square of Dbh (Dbh2), total tree height (Ht), product of square of Dbh and

Ht, crown width, and crown length (Burkhart and Tome 2012). Biomass modeling in this

study focuses on aboveground components, namely stemwood, stembark, total stem, branch,

foliage, crown and total biomass.

Historically, there are three forms of equations, which have been used in individual tree

biomass modeling (Parresol 1999)

y = β0 + β1x1 + . . . + βjxj + ε (1.9)

y = β0x
β1
1 x
β2
2 . . . x

βj

j + ε (1.10)

y = β0x
β1
1 x
β2
2 . . . x

βj

j ε (1.11)

9



where y is tree total or component biomass, xj is a predictor variable (tree dimension vari-

able), βs are regression parameters to be estimated and ε is an error term which is identically

and independently distributed with ε
iid∼ N(0,σ2). Equations 1.9, 1.10, and 1.11 are also

known as linear additive error, nonlinear additive error and nonlinear multiplicative error

equations, respectively.

Equation 1.9 is the simplest form of individual tree biomass estimation equations. This

equation can be fitted with multiple linear regression techniques. Whereas, Equation 1.10

can be fitted using nonlinear least squares algorithms. And, Equation 1.11 can be fitted with

multiple linear regression techniques after transformation to a linear function of parameters

using logarithmic transformation. Equation 1.11 is the most commonly used model form for

whole tree and component biomass estimation (Fehrmann and Kleinn 2006, Zianism et al.

2005 ). As is typical when modeling individuals of different sizes, variance in biomass compo-

nents typically increase with increasing tree size. Clearly this problem needs to be accounted

for with any least squares fitting technique. It often turns out that the increasing variance

associated with larger trees is appropriately accounted for using the log transformation of

Equation 1.11 (Burkhart and Tome 2012). The logarithmic transformed equation can be

written as

lny = lnβ0 + β1lnx1 + β2lnx2 + . . . + βjlnxj + lnε (1.12)

where ln is natural logarithm. Test statistics and confidence intervals from original (model

1.11) and logarithmic transformed models are not directly comparable. It is required to take

the antilogarithm of predicted values of lny to get the estimated values of y in arithmetic

or untransformed units. However, when we take the antilog of lny we get the median of

the skewed arithmetic distribution rather than the mean. To correct bias due to logarithmic

10



transformation the predicted value of response variable i.e. ŷ is calculated as

ŷ = exp(μ̂+ σ̂2/2)

σ̂
2
a = exp(2σ̂2 + 2μ̂) – exp(σ̂2 + 2μ̂) (1.13)

where exp is the base of natural logarithm, ŷ is the estimated value in arithmetic units,

μ̂ = ˆlny, σ̂2 is sample variance of the logarithmic equation, and σ̂2a is the estimated vari-

ance of y in arithmetic units (Flewelling and Pienaar 1981, Yandle and Wiant 1981, Sprugel

1983). It has been determined that logarithmic bias correction factors, i.e. Equation 1.13,

sometimes overestimate the true bias (e.g. Madgwick and Satoo 1975, Hepp and Brister 1982).

Generalized least squares (GLS) is considered as an alternative to logarithmic transforma-

tion for stabilizing error variance and obtaining asymptotically efficient parameter estimates

(Burkhart and Tome 2012).

1.5 Additivity of biomass equations

Additivity of biomass is a desirable characteristic for a system of individual tree component

biomass equations. That is, the logical constraint that component biomass estimates (stem-

wood, stembark, branch and foliage) should sum to total aboveground biomass. In addition

to this, a system of additive biomass equations when estimated by taking into account the

inherent correlation among the biomass components has greater statistical efficiency than

separately estimated equations for individual components (Bi et al. 2004).

1.5.1 Additivity of linear biomass equations

As mentioned earlier, it is desirable that the prediction from a total tree biomass equation

should equal to the sum of the predictions from individual component estimates. Parresol

(1999) proposed three methods that ensure additivity of biomass equations.
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1.5.1.1 Procedure 1

Procedure 1 is a simple combination approach in which the total biomass regression function

is the sum of separately calculated k components biomass regression functions

ŷ1 = f1(xT1 )

ŷ2 = f2(xT2 )

...

ŷk = f2(xTk )

ŷtotal = ŷ1 + ŷ2 + . . . + ŷk (1.14)

where ŷ1, ŷ2, . . . , ŷk are predicted biomass components of an individual tree and ŷtotal is

total predicted biomass for the tree.

Variance of prediction can be given as: Var(ŷtotal) =
∑k

i Var(ŷi) + 2
∑

i<j
∑

Cov(ŷi, ŷj)

where Cov(ŷi, ŷj) = ρyi,yj

√
Var(ŷi)Var(ŷj) and ρyi,yj is correlation between yi and yj.

1.5.1.2 Procedure 2

In procedure 2, the same independent variables and the same weight function (if weighed least

squares is used) of biomass components and total tree biomass are used. In this procedure,

the sum of the regression coefficients of the component equations (the bi vectors) serve as

the regression coefficients of the total equation.

ŷ1 = (xTb1)

ŷ2 = (xTb2)

...

ŷk = (xTbk)

ŷtotal = xT[b1 +b2 + . . .+bk] (1.15)
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In Equation 1.15, k components yi(i = 1, 2, . . . , k) are assumed to be independent; i.e. error

terms εi (i = 1, 2, . . . , k) are not correlated to each other. Regression statistics and reliability

of estimates can be computed for the total equation (Chiyenda and Kozak 1984). The variance

is given as Var(ŷtotal) =
∑k

i=1 Var(ŷi). The covariance term is dropped out since the k

components are assumed to be independent.

1.5.1.3 Procedure 3

In procedure 3, generalized least squares (GLS) regression with a dummy variables approach

is used to fit the system of equations. This approach accounts for statistical dependencies

among the sample data. Sets of regression functions are calculated using GLS such that:

• each component equation has its own independent variables, and the regression function

for total tree biomass is calculated as a function of all independent variables that were

used in each component regression

• each component equation can have its own weight function; and

• additivity property of biomass is ensured by providing linear restrictions on the regres-

sion coefficients that we obtain from fitting each component biomass equation

Cunia and Briggs’ (1984, 1985) procedure 3 is the same as using joint generalized least

squares, also known as “seemingly unrelated regression (SUR)”. SUR is applicable when we

have a set of linear statistical models which are contemporaneously correlated with cross-

equation constraints. The system of equations in the framework of SUR with additive biomass

can be specified as

13



y1 = f1(X1) + ε1

y2 = f2(X2) + ε2

...

yk = f3(Xk) + ε1

ytotal = ftotal(X1,X2, . . . ,Xk) + εtotal (1.16)

The redundant columns in ftotal are not included. When linear restrictions in the models and

stochastic properties of the error vectors are specified, the structural equations produce a

statistical model which provide efficient parameter estimates and reliable prediction intervals.

Procedure 3 is considered as the best approach among the three procedures discussed

above for estimating parameters for a system of equations. Procedure 2 requires the assump-

tion of independence among components on the same tree, which is unrealistic. In procedure

2 the issue of multicolinearity would be a problem due to use of the same predictor variables

in all equations in a system.

1.5.2 Additivity of Nonlinear Biomass Equations

Parresol (2001) provided two procedures for forcing additivity for nonlinear models. The

procedures are unique based on how the separate components are aggregated.

1.5.2.1 Procedure 1

In this approach the additivity property is ensured by summing the component regression

functions to produce the total biomass function. The equation structure of this procedure is

given as
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ŷ1 = f1(X1,b1) =

ŷ2 = f2(X2,b2) =

...

ŷk = fk(Xk,bk) =

ŷtotal = ŷ1 + ŷ2 + . . . + ŷk (1.17)

1.5.2.2 Procedure 2

Procedure 2 is a nonlinear case of SUR. In this approach, statistical dependencies among

sample data are accounted for by using nonlinear joint generalized least squares regres-

sion, which is also known as nonlinear seemingly unrelated regressions (NSUR). The NSUR

approach originally developed for equation systems used for whole stand growth and yield

modelling by Borders (1987) and adapted to individual tree biomass equation systems by

Parresol (2001) has the same properties as in procedure 3 of additivity of linear biomass

equation described above. This procedure allows that (i) component regressions have their

own independent variables (ii) total tree regression uses all predictors that were used in com-

ponent regressions (iii) component regression can have their own weight function and (iv)

additivity property is satisfied by allowing constraints in regression coefficients. The equation

form of NSUR can be written as

y1 = f1(X1, β1) + ε1

y2 = f2(X2, β2) + ε2

...

yk = fk(Xk, βk) + εk

ytotal = ftotal(X1, X2, . . . , Xc, β1, β2, . . . , βc) + εtotal (1.18)
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When stochastic properties of the error vectors are specified in conjunction with coef-

ficient restrictions, the statistical model provides efficient parameter estimates and reliable

prediction intervals (Burkhart and Tome 2012). The NSUR procedure accounts for the con-

temporaneous correlations (correlation among errors in different equations) providing lower

variance (Borders 1989, Parresol 2001).

Although many studies have suggested using Dbh only as an independent variable to

estimate individual tree component biomass (Ter-Mikaelian and Korzukhin 1997, Clough

and Scott 1989), others point out that making use of both Dbh and Ht will improve these

estimates at the tree level as well as at larger regional and national scale (Jenkins et al.

2003). Lambert et al. (2005) developed two sets of equations: (i) Dbh based and (ii) Dbh and

Ht based systems of equations. Several studies suggested that using height as an additional

predictor, does not have significant change in predictive ability than Dbh only based biomass

equations (e.g. Ter-Mikaelian and Korzukhin 1997, Johansson 1999, Jenkins et al. 2003).

Parresol (1999) found height as a useful variable to predict stem wood, but not for stem

bark. Similarly, Lambert et al. (2005) and Bi et al. (2004) found tree height is an important

variable for stem component equations, but not for crown component equations. Likewise,

Pitt and Bell (2004) and Ter-Mikaelin and Parker (2000) found that use of tree height did

not improve the predictive ability of needle and branch biomass models. However, they also

found height as an important variable for predicting stem biomass.

1.6 Objectives

The broad objective of this study was to determine appropriate sampling strategies and

modeling approaches to estimate individual tree and component biomass. Specifically, in

Chapter 2, we evaluated sampling distribution of randomized branch samples and utilized

RBS and combination of RBS and IS to estimate tree total biomass. In Chapter 3, additive

biomass models for red maple and slash pine were developed. This procedure is also known as
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direct approach of estimating biomass. Two data sets, one from a UGA study and the other

from previous studies (Legacy data) were utilized separately, to develop system of equations

for both species. The UGA system of equations was tested against the legacy data and vice-

versa for both species. Finally, in Chapter 4, we utilized revised versions of the compatible

taper and volume model developed by Fang et al. (2000), to estimate tree and component

biomass.
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Chapter 2

Sampling strategies for estimating individual tree total biomass (wood

and foliage) : Randomized Branch Sampling With and Without Importance

Sampling

2.1 Introduction

Estimating forest biomass is an essential aspect of carbon (C) stock estimation and global

carbon balance studies. Forest ecosystems store about 80% of all above-ground and 40% of all

below-ground terrestrial organic carbon (IPCC 2001). Study of forest biomass is important

in the study of ecosystem productivity, energy and nutrient flows, standing tree carbon

and the effect of forestland dynamics on the global carbon cycle (Parresol 1999). Many

techniques have been applied for sampling and subsampling trees for biomass estimation.

Selection of sampling technique is controlled by many factors, for example, size of sampling

area, accuracy required, availability of time, money and manpower, tree species and tree

attributes of interest.

Commonly, sampling methods known as nondestructive and destructive sampling are used

for measuring sample tree biomass. A nondestructive method does not require tree felling

for estimating tree biomass (Montes et al. 2000). This method is generally applied when the

species of interest are rare and cannot be destructively sampled (Brown 1997, Montes et al.

2000). Destructive sampling requires sample tree felling and direct measurement of various

characteristics such as stem and crown weight.

Direct measurement of individual trees and their components is the most accurate method

of quantifying above-ground tree biomass. However, direct measurement of stem, foliage, and
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bark biomass is tedious, laborious and very costly. As a result simple allometric equations are

used to estimate total tree or component biomass. Fitted allometric equations are useful in

estimation and prediction of characteristics such as total tree, stem, foliage, bark , and root

biomass. However, fitted allometric equations are data dependent. Equations fitted to data

of one particular area or region may not work well for other geographic regions (Gregoire

et al. 1995). Hence sampling strategies, such as randomized branch sampling (RBS), and

importance sampling (IS), that do not require regression equations to estimate biomass may

be useful for biomass estimation across various site conditions.

As discussed above, direct measurement of whole tree and tree component biomass is cum-

bersome and time consuming therefore, sub-samples are often collected and used to quantify

fresh weight, dry weight, and volume of individual trees and tree components (Montes et

al. 2000). Selection of sub-samples varies with sample design. Example sample designs that

have been applied to select the sample are simple random sampling, systematic sampling, and

stratified random sampling (Temesgen et al. 2010). These sampling designs are considered

as simple approaches as they require only easily measured information such as counting and

identifying branches (Temesgen et al. 2010). Other examples of sampling designs, which use

sampling protocols that require detailed auxiliary information about the branch character-

istics (Temesgen et al. 2010) are randomized branch sampling (RBS), importance sampling

(IS) and probability proportional to size (PPS) sampling.

This chapter provides insight into RBS and RBS in conjunction with IS sampling strate-

gies. The purpose of these methods is to reduce the amount of work required to estimate

total tree biomass by selecting and obtaining detailed data for a portion of the tree rather

for the entire tree. The objectives of this study are to: (i) obtain tree biomass estimates for

all possible RBS paths for sample trees for which we have direct measurement of total tree

biomass (ii) investigate the sampling distribution of RBS estimates using all possible com-

bination of different numbers of paths (iii) investigate the number of RBS paths required to
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obtain reliable and unbiased estimates of wood and foliage weight and its variance by species

and (v) implement and evaluate the efficacy of RBS in combination with IS to estimate

individual tree biomass. Unlike previous studies, this study uses a larger number of sample

tree data to evaluate these methods.

2.2 Materials and Methods

2.2.1 Randomized branch sampling (RBS)

Randomized branch sampling (RBS), a special type of multistage probability sampling, was

first introduced by Jessen (1955) to quantify number of fruits on a tree. RBS has been used

to estimate different characteristics of individual trees or any other type of branch bearing

plants. The major objective in applying RBS is to determine a total quantity for a tree or a

branch. RBS, as well as other sampling methods, such as importance sampling (IS) (Gregoire

et al. 1986, 1987, 1995), Centroid sampling (Wood et al. 1990) and a combination of these

methods (Williams and Wiant, 1998), use a conditional probability sampling scheme for

tree and branch populations using easily available individual tree attributes such as branch

diameter and branch length, to develop unbiased and efficient estimates (Bascietto et al.

2012). The sampling scheme in RBS is design-unbiased, meaning the average estimated value

from all possible samples is equal to the population parameter (Gregoire et al. 1995). RBS

is easily extended from individual tree level to stand-level, in which selection of sample trees

is done with unequal probability (Gove et al. 2002, Snowdon et al. 2002).

Valentine and Hilton (1977) applied RBS to determine biomass, surface area and number

of leaves on Quercus species. The sampling scheme was carried out in two stages. In the first

stage, the total number of leaf clusters was determined on the selected branch. In the second

stage, average number of leaves, average dry weight, and average surface area per cluster

were estimated from systematically selected clusters. Finally, by combining the estimates
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from the two stages, tree level estimates of total number of leaves, leaf dry mass, and leaf

surface area were calculated.

Valentine et al. (1984) used RBS and importance sampling (IS) to determine individual

tree aboveground biomass, woody volume, and mineral content. For both RBS and IS tech-

niques, they used selection probability proportional to estimated size. They further discussed

that RBS and IS can be employed separately or combined together in such a way that mea-

surements taken on a single disk would be sufficient to estimate the aboveground woody

components of a tree. They performed a field test of RBS and IS with eight trees from a

mixed oak stand. One to four paths on a tree were selected where a path was terminated

when a 5 cm or smaller diameter was reached. For the purpose of IS they used only one disk

per path. Sampling error from their field test ranged from 5.6 to 14.4% of the actual green

weights of the trees and the overall sampling error from all the trees was relatively small (4.9

%).

Gregoire et al. (1995) proposed a variety of sampling methods including RBS to estimate

foliage and other attributes of individual trees. Bascietto et al. (2012) used RBS for direct

assessment of the aboveground carbon pools, fluxes and plant surface areas in three European

forests. They pointed out that RBS is less time-consuming than other traditional sampling

schemes because it requires fewer sample branches to achieve the target precision levels.

2.2.1.1 Terms used in RBS

Commonly used terminology in RBS include ‘branch’, ‘branch segment’ or simply ‘segment’,

‘object branch’, and ‘path’. A ‘branch’ is known as the entire system that develops from a

single bud (later or terminal) whereas a ‘branch segment’ is a part of branch between two

consecutive nodes. Node is considered a point from where branches arise. All side branches

including segments of the main stem are considered as a branch for the purpose of RBS.

An ‘object branch’ is considered as a branch (or tree) for which we need an estimate of the
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quantity of some attribute or characteristic. The ‘path’ is a sequence of connected branch

segments or internodes. The total number of possible paths in a tree is actually the total

number of terminal shoots. The path is a sample that results from a RBS scheme.

Figure 2.1, a modified form of Valentine (2002), (a) shows 9 possible paths from the butt

of the main stem (node 1) to a terminal shoot. The numbered circles are the nodes. There

are 6 nodes and 14 branch segments in total. Figure 2.1 (b) shows one possible path (dotted

lines) with 4 branch segments (a, b, c, d) selected. Any node can be selected as a final node

of RBS. In Figure 2.1 (c) , node 2 is considered as the final node and the entire component

of the branch emanating from the node 2 is considered as the terminal segment of the path.

RBS can be started from the butt of any branch. For example, Figure 2.1 (d) shows that the

RBS is started from node 2. In such case estimates obtained is of the entire branch, not the

entire tree.
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(a) (b)

(c) (d)

Figure 2.1: Tree diagram with branch segments, nodes, and a possible path in RBS.
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2.2.1.2 RBS procedure-path selection

For the purpose of RBS, a tree comprises two distinct elements, segments and decision nodes.

RBS sampling procedure starts from the butt of the basal segment object branch, which is

also known as the first node of the path. The basal segment is considered as the first segment

of the path. The first segment is the part of branch between first node (butt) and second

node (the first whorl of live branches). Similarly, the second segment of the path extends

from second node to third node, and so on for other segments. The last (nth) segment of the

path extends from the nth node (last node) to the terminal bud. This last segment is the

same as branch (Valentine et al. 1984). The total number of terminal branches in a tree, in

fact, represents the number of possible paths within that tree.

Using RBS, selection of a path is made in such a way that resultant segments of the

path comprise a probability sample of an entire branch or tree. As described above, the

starting point of the path is the butt of the first segment of the path. By convention, the

probability of selection of the first segment of the path is denoted by q1 and equals to one.

The first segment is followed acropetally to the second node. To determine a path, a selection

probability is assigned to each branch arising from the second node and one of the branches

is chosen randomly with probability proportional to this probability. The randomly selected

branch on the second node has selection probability denoted as q2. The selected branch fixes

the second segment of the path (Valentine et al. 1984). After the selection of the branch at

the second node, we follow the second segment to a third node where a selection probability

is assigned to each branch emanating from the third node and one is selected with probability

proportional to this probability. The selection probability of the randomly selected branch

at the third node is denoted as q3. The selection of this branch fixes the third segment of

the path. This procedure is repeated until a terminal shoot is selected at the final Rth node

with selection probability qR.
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Ozcelik and Eraslan (2012) also explained a RBS path selection procedure in which a

main stem is selected as a first branch at each node. And the remaining branches emanating

from the node are considered in a clockwise direction around the node, first choosing the

branch arising from the node on the left side of the main stem, facing towards the top of the

tree. The selection probability of each branch is computed and compared with the previously

drawn uniform (0,1) random number. Beginning with main stem, if the selection probability

of the main stem is greater than or equal to the random number, the path continues along

the main stem up to a main-stem diameter of less than or equal to 5 cm (Williams 1989).

If the selection probability of the main stem is found to be less than the random number,

the selection probability of the second branch at the same node is added to the selection

probability of the first branch at the node. If this sum is greater than the random number,

then the second branch is chosen for sampling and measurement is done. If the sum of

selection probabilities of the first and second branch is smaller than the random number,

the selection probability of the third branch is added, and the process is continued until the

selection probability is greater than the random number and a branch is selected at a node.

If one of the branches at a node is chosen, the path is stopped with the selection of that

branch. This selected branch is flagged and labeled and the process of selecting a second

path started (Williams 1989).

Gregoire and Valentine (1996) discussed that we do not necessarily need to select the

butt of the main stem as the starting point of a path and terminus of a path as a terminal

shoot. The starting point of a path, for example, can be a butt of a first-order branch and

terminus can be a terminal shoot. In this case, using RBS we get the estimate of quantity

of interest only for the entire first order branch rather than for the entire tree. Or, paths

may extend from the butt of the main stem to a high-order branch, in which case the entire

high-order branch is considered as the terminal segment of the path.
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2.2.1.3 RBS procedure-selection probabilities

Gregoire and Valentine (2008) described the selection probabilities assigned to branches

emanating from nodes as conditional probabilities because the branch selection at the node is

conditioned upon the path reaching the node from which the branch arises. The unconditional

probability of selection of the rth (r=1,2, . . . , R) branch segment included in the path is given

by

Qr = q1 × q2 × · · · × qr

=
r∏

k=1

qk (2.1)

where; Qr is the unconditional selection probability for the rth segment of the path and qr

is the selection probability of the selected branch at the rth node. Here R is the number of

segments in the path.

In general, the conditional selection probability of the rth segment of an ith path can be

denoted by qir. Then, the unconditional selection probability for the rth segment of the ith

path can be written as

Qir =
r∏

k=1

qik, r = 1, 2, 3, . . . , R (2.2)

An important aspect to note in RBS is, for each node, the sum of the selection proba-

bilities assigned to branches emanating from the nodes equals one. Assignment of selection

probabilities is based on what is being estimated.

Jessen (1955) provided three methods of calculating selection probabilities; namely“prob-

abilities equal”, “probabilities proportional to number”, and “probabilities proportional to

area”. In the “probabilities equal” method (also known as a uniform random selection of a

branch), all potential sample branches are identified and numbered prior to sampling. Out of

all the potential sample branches, a previously determined number of branches are randomly

selected with equal probability. With this scheme Jessen (1955) first, averaged the number
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of oranges in the selected branches and secondly, this averaged value was multiplied by the

total number of branches in the tree to obtain the total number of oranges in the tree. This

selection method requires identifying and counting all the branches in a tree, which some-

time are difficult and laborious tasks. Jessen (1955) proposed RBS, which does not require

a complete enumeration of branches in a tree, with this first method of calculating selec-

tion probabilities. This procedure of selecting branches uses equal probabilities, where the

unconditional probability of selecting any given terminal branch i is given as

Qi =
1

M
(2.3)

where M is number of terminal branches.

The second method was “probabilities proportional to number”, where the numbers of

branches arising from a particular node are the basis for deriving conditional selection prob-

abilities. For example, if we count 5 branches emanating from a given node, the conditional

selection probability for each branch is 1
5 . The unconditional selection probability for the

terminal branch, which is the product of the conditional probabilities at all R nodes within

a path, can be written as Equation 2.1. This method of selecting branches provides unequal

unconditional selection probabilities for the M terminal branches.

The third method provided by Jessen (1955) was “probabilities proportional to area”,

where he used the square of circumference of each branch directly above the forking to

obtain the branch selection probabilities. Similar to the second method, the product of all

probabilities within a path provides the unconditional branch selection probability. The con-

ditional probabilities in this sampling scheme are derived as

qr =
c2r∑nr
k=1 c2k

(2.4)

where,

cr = circumference of branch of the rth segment in a RBS path,
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ck = branch circumferences of the nr segments emanating from node r

-cr is also one of the ck.

Jessen (1955) found the “probability proportional to area” selection method as the best

method because it produced the least variability in estimates among all three methods.

Higher precision estimates can be obtained by choosing conditional selection probabilities

proportional to the quantities of interest borne by the respective branches from a decision

node (Gregoire et al. 1995). Valentine (2002) discussed the ideal selection probability of a

bth of B branches at a particular node should equal Xb∑B
i=1Xi

, where Xb (b=1,2,. . . , B) is the

quantity of interest that we want to estimate (e.g. biomass) borne by branch b. In general,

however, it is difficult to discern the quantity of interest, otherwise, we would not be taking a

sample (Valentine 2002). It would be wise to choose tree attributes such as branch diameter

(D), branch length (L), power of these (e.g. Du, Lv) , or product (eg. Du * Lv) which are

highly correlated with the quantity of interest (Valentine 2002). Here, powers u and v are

numbers such as 2, 3. RBS results in unbiased estimates regardless whatever power is used,

however , it is recommended to use a value that is biologically justifiable and produces precise

estimates (Pearce and Holland 1957).

Valentine et al. (1984) described if, for example, we want to quantify woody biomass, wood

volume, or total biomass of an individual tree, the ideal probability of selection assigned to

each branch should be equal to the fraction of total woody biomass, wood volume or total

biomass, respectively, beyond the node and contained in the branch. Similarly, if our main

objective is to estimate foliar biomass, the ideal selection probability assigned to each branch

should be equal to the fraction of the total biomass of foliage beyond the node and attached

to the branch.

Valentine et al.(1984) suggested using selection probabilities proportional to the product

of squared branch diameter and branch length to estimate woody biomass, woody volume or

total biomass of a tree. The product of squared branch diameter and branch length is related

34



to the volumes and weights of the branches. For a particular node, the probability of selection

p can be expressed as p =
D2
i Li∑n

i=1D
2
i Li

, where, D and L are diameter at the branch base and

length for a branch, respectively and i is from 1 to n branches at the node. Some other

alternatives for assigning selection probabilities are subjective probabilities proportional to

ocular estimates of woody biomass or volume, use of probability proportional the cube of

diameter etc.

While estimating biomass of foliage, a pipe model theory developed by Shinozaki and

others (1964) can be applied to assign a selection probability (Valentine et al. 1984). The

pipe model theory suggests that the branch foliage is related to squared diameter of the

branch. Therefore, for a particular node, a selection probability for each branch can be

assigned as the reciprocal of its own squared diameter and the sum of the squared diameters

for all the branches arising from the node. The probability of selection can be expressed as

p =
D2
i∑n

i=1D
2
i
, where D and i are as described above.

2.2.1.4 RBS estimation

Once a RBS path has been fully determined, the tree attributes of interest are measured on

each of the selected segments within the path (Gregoire and Valentine 2008). Let yr be the

quantity of a characteristic of interest (e.g. biomass) measured on the rth branch segment of

a path, an unbiased estimator of the total amount of the characteristic of interest, say Φ, of

all branches arising from the first node of the path is given by

Φ̂ =
y1
Q1

+
y2
Q2

+, . . . , +
yR
QR

=
R∑
r=1

yr
Qr

(2.5)

where, r= 1,2,. . . ,R branch segments at a node and Qr is as in Equation 2.1. Here, Q1=q1=1,

Q2=q1 × q2, Q3=q1 × q2 × q3 and so on.
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As described above, it is necessary to select more than one path in order to get the

variance of the estimator (Gregoire and Valentine 2008). Suppose Φ̂i is the estimate from

path i for i = 1, 2, . . . , m paths within a tree, where Φ̂i is calculated using Equation 2.5 for

ith path, then an unbiased estimator of the tree level total for the variable of interest is:

ˆ̄
Φ =

Φ̂1 + Φ̂2+, . . . , +Φ̂m
m

=
1

m

m∑
i=1

Φ̂i (2.6)

and an unbiased estimate of variance of ˆ̄
Φ is given by

Var( ˆ̄
Φ) =

1

m(m – 1)

m∑
i=1

(Φ̂i – ˆ̄
Φ)2 (2.7)

provided m ≥ 2.

When more than one path is selected per tree, the number of segments in one path

may be different from number of segments in another path. Hence, the conditional and

unconditional probabilities of selection of the segments may also vary by path (Gregoire and

Valentine 1996). We sometimes write qri and Qri, respectively, to denote conditional and

unconditional probabilities of selection of the rth segment in the ith path.

Gregoire and Valentine (1996) suggested excluding the measurement of small epicormic

branches or spur shoots when selecting paths, otherwise the variance of ˆ̄
Φ will be inflated

unnecessarily. To avoid bias resulting from excluding small branches in the selection of a

path, its characteristic of interest is considered part of the characteristic from the branch

segment to which it is associated.

2.2.2 Importance sampling (IS)

Valentine et al. (1984) were first to apply importance sampling in forestry. IS, which is a

continuous analogue of sampling discrete units with probability proportional to size (pps), is

based upon a Monte Carlo integration technique. This sampling technique allows for estima-

tion of tree biomass by selecting disks which results in unbiased estimates and also reduces
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work by eliminating need to section and weigh the heavy segments of a path. In fact, a single

disk can be selected and weighed for each path (Valentine et al. 1984).

In IS, the stem diameter of the tree is measured at various points along the path from the

butt (first node) to a point where the tip is cut. Measurements such as diameter, distance

from the butt, and the path segment number are recorded. We can calculate a quantity

proportional to the inflated cross-sectional area of the stem at each measured diameter as

A(Ls) =
D(Ls)

2

Qk
(2.8)

where, D(Ls) is the stem diameter on the segment of the path at a distance Ls from the

butt and k is used to denote the path segment in which Ls occurs. To calculate the quantity

proportional to the inflated woody volume of the path, the following equation is used

V(λ) =

∫
λ

0
S(L)dL (2.9)

In calculating inflated woody volume of the path, an interpolation S(L) is fitted to values of

A(Ls) and is integrated over the length λ.

An exact location, say θ, on the path to cut a disk is selected at random with probability

proportional to S(L). The point, θ is selected such that V(θ) = uV(λ), where u is a randomly

generated number from a uniform distribution (0,1). In the next step, the disk is cut at L = θ

and the fresh weight per unit thickness of the disk cut, say B(θ), is determined. Equation

2.10 is used to determine inflated weight per unit thickness of the disk

B*(θ) =
B(θ)

Qk
(2.10)

where, k is an index to represent the path segment in which θ occurs. Finally, the estimate

of the inflated weight of the path and the actual woody weight of the tree is calculated as

Ŵ =
B*
θ× V(λ)

S(θ)
(2.11)

If cross-sectional area at θ is entered in Equations 2.10 and 2.11, we will get an unbiased

estimate of the woody volume of the tree (Valentine et al. 1984). Similarly, the estimation
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of weight of other quantities of interest for the tree can be accomplished by obtaining the

measurement of appropriate weight per unit length at an exact point, θ, and using Equations

2.10 and 2.11.

The estimated total weight of a tree, b̂, which includes inflated weight of the terminal

branch and inflated weights of all remaining small shoots and foliage associated with the

path is given as

b̂ = Ŵ +
bj
Qj

+

j–1∑
k=1

ek
Qk

(2.12)

where bj is weight of the terminal branch j and ek is the weight of the small shoots and

foliage associated with the kth segment of the path (Valentine et al. 1984).

Valentine et al. (1984) interpolated A(Ls) with a segmented linear function to get the

values between the measurements at various distances such as L1, L2,. . . ,Lt. In this case

L1=0 at the butt and Lt=λ, which is the total length. An integration to get a value of V(L)

is done piece by piece using Smalian’s formula also known as the trapezoidal rule over the

two successive lengths such as between L1 and L2, L2 and L3,and so on,to get the value of

Δ V(Lr) as

ΔV(Lr) =
[A(Lr+1) + A(Lr)]× (Lr+1 – Lr)

2
(2.13)

where, r=1,2,. . . , t – 1, next the value up to V(Ls+1) can be obtained summing ΔV(L) from

1 to s. This can be written as

V(Ls+1) =
s∑

r=1

Δ(Lr) (2.14)

where, s=1,2,. . . ,t – 1. We can select a segment in which the disk is to be cut by finding z

such that V(Lz) < u × V(λ) < V(Lz+1) and the value of θ, an exact location to cut the

disk, is obtained as

θ = Lz +
–b +

√
b2 – 4ac

2a
(2.15)
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where, a, b and c are calculated as

a =
[A(Lz+1)–A(Lz)]

(Lz+1–Lz)

b = 2A(Lz)

c = –2[u × V(λ) – V(Lz)] The value of interpolation function, S(θ), at the point of disk cut

(θ) is computed as

S(θ) = A(Lz) + a(θ – Lz) (2.16)

More than one disk can be selected and cut per path. Equation 2.11 is used to get the

separate estimate for the total quantity of interest of a tree for each path. When more than

one disk is cut, the final combined estimate of the total quantity of interest is obtained by

averaging the estimates from using various disks. Valentine et al. (1984) suggested using

more than one path, each with a single disk rather than using a single path with more than

one disk. The later being less efficient.

To estimate dry weights or dry biomass of the woody stem of a tree, the disk selected

and cut from the path is oven-dried and weighed. Dry weight of foliage and small shoots are

calculated separately and added to the dry weight of woody stem to obtain total weight of

the tree.

2.2.3 Data

This study is a part of a national effort on estimating tree biomass. Experts from academia,

forest industry, US Forest Service Forest Inventory and Analysis program (FIA) are working

collaboratively to develop nationally consistent forest volume, biomass and carbon models.

These models are developed at individual tree level by component (bark, bole, branch, foliage,

etc.) and species. Our study includes trees from southern part of the U.S., specifically from

Georgia and Florida. In this study, we selected red maple (Acer rubrun) and slash pine (Pinus

elliottii). The architecture of these two species is quite different. Slash pine, a softwood

tree species, has more regular tree structure than red maple, a hardwood tree species. The

39



crown structure of these species is also known as excurrent and deliquescent for slash pine

and red maple, respectively. In general, regular tree crown are characterized by paths with

approximately equal length and is expected to provide RBS estimates with smaller variance.

On the other hand, an irregular tree crown comprises paths having unequal lengths providing

large variance of the estimates.

2.2.3.1 Sample tree selection

Spatial location such as state, county , latitude, longitude, topographic information (slope,

aspect, elevation) and other stand characteristics were recorded for each sampled tree. Indi-

vidual trees were selected based on wide variation in tree form, specific gravity, size, geo-

graphic location, as well as many other factors that are related to biomass and carbon

content. Red maple and slash pine data were used to test sampling strategies and construct

models for predicting individual tree and tree component biomass. Thirty eight sample trees

from slash pine and 14 from red maple were felled and measured. Trees in this study were

destructively sampled and intensively measured.

Pertinent tree stem measurements for biomass calculation and modeling include total

green weight of each branch with foliage (0.1 lb), branch diameter (0.1 inch), total green

weight of stem (0.1 lb), stem disk diameter (0.1 inch), and weight (0.1 lb), diameter at

breast height (Dbh) (0.1 inch), total tree height (0.1 foot), height to live crown (0.1 foot),

diameter outside bark at ground line, stump height, 2.75 feet, 4.5 feet, 8 feet and then every

4 feet up the stem (0.1 inch).

2.2.3.2 Branch measurement

Branch number was assigned to each first order branch with diameter >0.5 inch starting

from base of a tree. If the first order branch contains very large second order branches then

the second order branch was measured treating it as a smaller first order branch. For each
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branch, height above ground (0.1 foot), diameter at the base (0.1 inch), length (0.1 foot) were

measured. Green weight of branch with foliage was also measured for all branches in a tree.

As a foliage sub-sample, approximately 35 individual leaves excluding twigs were removed

from the branch and were placed in a zip lock bag and stored in a cooler until transfer

to the lab. Green weight of sub-sampled foliage was measured. In addition, branch with

foliage (excluding foliage sub-sample) was weighed. All small twigs from the branch were

clipped and the small twigs and leaves off of the twig were placed in a paper bag for drying.

Branches were cut into pieces and placed in a paper bag and weighed to the nearest gram.

The foliage sub-sample, branch, and twigs were dried in 105◦ C until the weight stabilized.

These measurements of branch including sub-sample measurements were used to calculate

total green weight of branch and green weight of foliage for each branch in a tree.

For N branches on a tree, total green weight of branch and foliage at a tree level was

calculated as

TGBF =
N∑
i=1

GBFi
(2.17)

where TGBF is total green of weight branch and foliage , GBFi
is green weight of branch and

foliage for branch i = 1, 2,. . . , N.

For n sub-sample branches on a tree, green weight of foliage and green weight of branch

were calculated as

ĜFi
= DFi

(
GFSSi

DFSSi

) and

ĜBi
= GBFi

– ĜFi
(2.18)

where ĜFi
and ĜBi

are total estimated green weight of branch and green weight of foliage

for branch i, respectively. GFSSi and DFSSi are green and dry weight of foliage sub-sample

of branch i, respectively. DFi
is dry weight of foliage of a branch i and GBFi

is green weight

of wood and foliage of a branch i. There are i = 1, 2, . . ., n sub-sample branches on a tree.

For the branches that were not sub-sampled, we have the following information available:

41



GBFi
= green weight of branch and foliage for branch i

BDi
= basal diameter (0.1 inch) of branch i

BLi = length (0.1 foot) of branch i

We also have this information available for all sub-sampled branches in addition to DBi
and

DFi
.

To obtain the estimated value of DBi
(Dry branch), DFi

(Dry foliage), GBi
(Green branch)

and GFi
(Green foliage) for non-sub-sample branches we used the ratios:

DBi
GBFi

,
DFi
GBFi

,
GBi
GBFi

,

GFi
GBFi

, respectively. We also used weighted ratio for the branches with high variation in

diameter at base and length. For example, to calculate the green weight of a branch (without

foliage) we used the following ratio

WR=

∑n
i=1(

GBi
GBFi

)(D2
i Li)∑n

i=1(D
2
i Li)

and

ĜBj
= GBFj

× (WR) where, WR is the weighted ratio, ĜBj
is estimated green weight of

branch j, GBFj
is green weight of branch j with foliage, D and L are diameter at base and

length of branch, respectively, and others are as described above.

2.2.3.3 Main stem bolt, disk and bark measurement

Trees were felled at 0.5 foot from the ground level. The stem was then sectioned at 4.5 ft, 8

ft and every 8 ft. up the bole to a minimum dob of 4 inches. Each section was weighed. A

disk was removed from the base of each bolt. All disks were weighed green with and without

bark, had diameter measured with and without bark and then debarked disks were soaked

until saturation. Saturated disk volume was determined using water displacement and then

disks were dried at 105◦ C until weight change stopped. Additionally, a sample of bark from

each disk was selected, weighed green, saturated and had its volume determined using water

displacement and finally dried to constant weight at 105◦ C.
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2.2.3.4 Tree volume and weight calculations

Total tree volume was calculated using a combination of Newtown’s, Smalian’s and conic

formula. Measured diameters at the lower and upper end of each bolt (main stem section)

were used to calculate the bolt volume. Newton’s formula was used to calculate the volume

of a stem from base the breast height (4.5 ft) measurement point, whereas the cone formula

was used to calculate volume of last stem section assuming it has the shape of a cone and

Smalian’s formula was used to calculate volume of stem taper measurements from 4.5 feet

to the minimum 4-inch dob top using the taper measurements at 4.5, 8, 12 and every 4

feet up the stem. The total tree volume was then obtained by summing the volumes of the

component bolts.

Newton’s formula is

V =
Al + 4Am + As

6
× L (2.19)

Cone formula is

V =
A

3
× L (2.20)

Smalian’s formula is

V =
Al + As

2
× L (2.21)

where,

V = bolt volume (ft3)

Al = cross sectional area at large end (ft2)

As = cross sectional area at small end (ft2)

Am = cross sectional area at mid-point (ft2)

L = bolt length (ft)
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A = cross sectional area (ft2)

Total green bolt weight outside bark was calculated by simply summing the weight of com-

ponent bolts which were measured in the field using a platform scale. Total green bolt weight

can also be calculated using Equation 2.22. To calculate bolt weights inside bark, sample

disk (inside bark) data that include disk diameter inside bark and disk weight inside bark,

were used.

The green weight of a bolt (with bark) can also be calculated as

Wg =
L(AlDgu + 2AlDgl + 2AuDgu + AuDgl)

6
(2.22)

and, dry weight of bolt (without bark) is obtained as

Wd =
L(A′lDdu + 2A′lDdl + 2A′uDdu + A′uDdl)

6
(2.23)

where,

Wg = bolt green weight

Al = cross-sectional area of wood with bark at the lower end of the bolt

Au = cross-sectional area of wood with bark at the upper end of the bolt

Dgl = green-weight density at the lower end of the bolt

Dgu = green-weight density at the upper end of the bolt

L = bolt length

Wd = bolt dry weight

A′l =cross-sectional area of wood without bark at the lower end of the bolt

A′u =cross-sectional area of wood without bark at the upper end of the bolt
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Ddl = dry-weight density at the lower end of the bolt

Ddu = dry-weight density at the upper end of the bolt

Green-weight density (Dg) and dry-weight density (Dd) can be calculated as

Dg =
Green weight of wood and bark

Green volume with bark
(2.24)

and

Dd =
Oven – dry weight of wood only

Green volume without bark
(2.25)

Equations 2.22 and 2.23 are derived by integrating over the length of the bolt. Assuming

that both cross-sectional area and weight density vary in linear fashion along the bolt (Clutter

et al. 1983).

We used green volume with bark as a denominator for calculating dry-weight density

which was used in calculating dry weight of wood only. Similarly, the green volume with

bark was used in calculating stem green weight inside bark.

2.2.3.5 Sample data for RBS

The detailed data available for each destructively sampled tree allows us to evaluate the use

of RBS and RBS in combination with IS to develop estimates of tree biomass. Table 2.1

provides an example of variables that were used in the RBS procedure. Clearly, red maple

tree structure is quite different from slash pine and it exhibits much more variation from tree

to tree than does slash pine. Consequently, RBS and IS study is carried out separately for

these two distinctly different tree species.
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Table 2.1: Sample data structure for RBS estimation

Tree
no.

Species
code

Node (k)
no.

Branch
no. Face

Diameter
(inch)

Length
(ft)

Wt
(lbs)

Height to
node

11 111 1 1 5 6.60 29.20 185.11 0.00

11 111 2 1 5 3.40 3.00 14.53 29.20

11 111 2 2 3 0.70 7.40 1.37 29.20

11 111 3 1 5 3.30 3.30 14.02 32.20

11 111 3 2 4 0.90 7.60 1.16 32.20

11 111 3 3 3 0.50 3.90 0.34 32.20

11 111 3 4 2 0.70 4.40 0.52 32.20

11 111 4 1 5 2.95 2.10 7.22 35.50

11 111 4 2 4 1.30 8.60 3.03 35.50

11 111 4 3 2 0.60 6.00 0.88 35.50

11 111 5 1 5 2.68 3.43 9.24 37.60

11 111 5 2 3 0.80 5.30 1.14 37.60

11 111 5 3 2 0.70 5.90 1.19 37.60

11 111 6 1 5 2.00 12.47 10.57 41.03

11 111 6 2 3 0.50 2.50 0.20 41.03

11 111 6 3 3 0.80 5.70 2.06 41.03

11 111 6 4 1 1.00 6.00 2.40 41.03

2.2.4 Evaluation

With the detailed destructively sampled tree data, it is possible to know total tree biomass

using direct measurement. Furthermore, it is also possible to estimate total tree biomass

for all possible paths using RBS. This allows us to develop empirical sampling distributions

46



for the RBS procedure for use in individual tree biomass estimation. All possible paths in

each tree were determined and estimates from these paths were obtained. We obtained RBS

estimates of total tree biomass for all possible combinations of one path, two paths, three

paths, four paths and five paths. The total number of possible combinations of one path for

a given tree is equal to the number of first order branches plus one (for main-stem). Total

number of possible combinations of two paths, three paths, four paths and five paths was

determined using combinatoric formula as

nCr =
n!

r!(n – r)!
(2.26)

where n is number of first order branches and r (r=1,2,3,4,5) is a possible path.

Estimated green weight of wood and foliage from all possible combinations resulted in the

empirical sampling distribution for RBS using a given number of paths. Actual tree biomass

(obtained via direct measurement) was then related to the characteristics of this sampling

distribution. Bias was calculated as the difference of mean of the sampling distribution for

each number of paths used and actual measured tree biomass. Standard error of the empir-

ical sampling distribution is easily determined as the square root of variance of estimates

from all available combinations of a given number of paths. Standard error is a measure of

the dispersion of the distribution of all samples. Mean absolute percentage error (MAPE),

commonly used in time series analysis was also used to evaluate estimation from RBS using

different sampling paths (Equation 2.27).

MAPE = 1/n
n∑
i=1

|wi – ŵi

ŵi
| (2.27)

where n is number of possible combinations of a path, wi is actual weight of a tree from using

ith path and ŵi is estimated tree weight.

As an another measure, RBS precision was assessed using relative standard error (RSE)

using Equation 2.30 as described in Chirici et al. (2013). Using the data , it was possible to

obtain the selection probability QiR and the corresponding estimate Φ̂i for each of the M
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possible paths for each tree. Here, QiR is defined as the joint probability of selecting all R

segments in the ith path. Number of segments (R) may vary by path, however, for M possible

paths with unique terminal segments, we can get
∑M

p=1 QiR = 1. The variance of Φ̂ can be

calculated using

var(Φ̂) =
M∑
i=1

{Φ̂i – E(Φ̂)}2QiR (2.28)

Not surprisingly, with increase in number of paths, the variance of ˆ̄
Φm decreases i.e.

var( ˆ̄
Φm) =

var(Φ̂)

m
(2.29)

where m is the number of RBS paths.

Similarly, the relative standard error (RSE) of ˆ̄
Φm decreases with increase in m as shown

by

RSEm =

√
var(Φ̂)/m

Φ
× 100 (2.30)

where Φ is the actual weight of wood and foliage of a tree.

2.3 Results and discussion

2.3.1 Sampling distributions of RBS estimates

The shape of the sampling distribution of average estimated biomass for red maple changes

dramatically from one path to two path sampling and approaches a normal distribution as

number of paths increase further from three to five (Figures 2.2, 2.3, and 2.4 ). Empirical

sampling distribution of average estimated biomass of a small red maple (tree 48 with Dbh

4.8 inch) resulting from use of one, two, three, four, and five paths is presented in Figure 2.2.

There are 20, 190, 1140, 4845 and 15504 samples resulting from use of one, two, three, four,

and five paths, respectively. The sampling distribution of the average estimated biomass

is approximately normal after three paths. As expected, that the spread of the sampling
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distribution of average estimated biomass decreases with increase in number of paths. For an

average size red maple (tree 43 with Dbh 9.1 inch) the sampling distribution is approaching

normal only after four paths and for a large size red maple (tree 41 with Dbh 14.7 inch) we

may require more than five paths to obtain an approximate normal sampling distribution.
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Figure 2.2: Sampling distribution of mean estimated biomass of small red maple tree by path
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Figure 2.3: Sampling distribution of mean estimated biomass of average red maple tree by

path
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Figure 2.4: Sampling distribution of mean estimated biomass of large red maple tree by path
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For a small slash pine (tree 6 with Dbh 5.6 inch) the shape of the sampling distribution

is approaching normal after three paths (Figure 2.5). But, for an average size slash pine

(tree 18 with Dbh 7.8 inch) (Figure 2.6) and large size slash pine (tree 35 with Dbh 10.1

inch) (Figure 2.7) the sampling distribution is approximately normal after two paths. This

indicates, for slash pine, regardless of tree size the sampling distribution is approaching to

normal on or after two paths. For all size trees, the spread of distribution is decreasing with

increase in number of paths.
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Figure 2.5: Sampling distribution of mean estimated biomass of small slash pine tree by path
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Figure 2.6: Sampling distribution of mean estimated biomass of average slash pine tree by

path
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Figure 2.7: Sampling distribution of mean estimated biomass of large slash pine tree by path
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Sampling distribution of biomass estimates for all slash pine and red maple trees by Dbh

(small to large) and number of RBS paths is presented in Appendix A and B, respectively.

Table 2.2 and 2.3 present empirical sampling distribution characteristics for small, average

and large size trees resulting from use of one, two, three, four and five paths, for red maple

and slash pine, respectively. For example, for a small size red maple (tree 48) there are

20 possible paths from using one path sampling. Actual weight of the tree is 201.85 lbs,

whereas the mean estimated weight which was obtained by averaging estimates from all 20

possible paths is 191.41 lbs. Clearly, the empirical sampling distribution indicates a bias of

approximately 10 lbs for this tree. The mean estimated weight remained unchanged by paths.

This is because the mean estimated weight was derived by averaging the estimated weights

from all possible paths.

Regardless of tree size, the standard error (Std. err.) of estimates is smaller for larger

number of paths (total paths) (Table 2.2). Standard error decreased from 43.74 to 16.94 from

one to five paths for tree 48. If we were to choose one RBS path, for tree 48, our estimated

biomass would range from 109.80 to 275.90 lbs, where the actual biomass is 201.85 lbs.

Whereas, choosing five paths would produce an estimate between 131.40 lbs to 237.90 lbs.

This range is narrower than the range from choosing one path, which implies more sample

paths result in estimates that have a higher probability of being closer to the actual value.

As expected, the range of estimated biomass decreased with increase in number of paths. For

example, the range of estimates is 166.1 (275.90-109.80), 151.8 (263.2-111.4), 132.1 (250.3-

118.2), 118 (242.1-124.1), 106.5 lbs (237.9-131.4) using one, two, three, four, and five paths,

respectively for tree 48. Similarly, the range of estimates is decreasing with increase in sample

paths for average (43) and larger (41) size trees.

Similar results are found for slash pine (Table 2.3).
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Table 2.2: RBS empirical sampling distribution characteristics by Dbh and combinations of

path for small, average and larger red maple trees

Tree
id

Species
code

Dbh
(inch) Path

Total
paths

Actual
wt.

(lbs)

Mean est.
wt.

(lbs)
Std.
err.

Min.
est. wt.

(lbs)

Max.
est. wt
(lbs)

48 316 4.80 1 20 201.85 191.41 43.74 109.80 275.90

48 316 4.80 2 190 201.85 191.41 29.42 111.40 263.20

48 316 4.80 3 1140 201.85 191.41 23.92 118.20 250.30

48 316 4.80 4 4845 201.85 191.41 19.56 124.10 242.10

48 316 4.80 5 15504 201.85 191.41 16.94 131.40 237.90

43 316 9.10 1 10 708.05 708.93 36.04 635.80 752.60

43 316 9.10 2 45 708.05 708.93 23.05 652.50 749.10

43 316 9.10 3 120 708.05 708.93 17.48 664.10 742.60

43 316 9.10 4 210 708.05 708.93 13.99 674.20 739.20

43 316 9.10 5 252 708.05 708.93 11.42 682.10 735.80

41 316 14.70 1 19 3106.75 2904.68 1156.03 852.90 4131.00

41 316 14.70 2 171 3106.75 2904.68 775.49 871.40 4088.00

41 316 14.70 3 969 3106.75 2904.68 612.80 1021.00 4021.00

41 316 14.70 4 3876 3106.75 2904.68 513.65 1115.00 3980.00

41 316 14.70 5 11628 3106.75 2904.68 443.80 1193.00 3939.00
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Table 2.3: RBS empirical sampling distribution characteristics by Dbh and combinations of

path for small, average and larger slash pine trees

Tree
id

Species
code

Dbh
(inch) Path

Total
paths

Actual
wt.

(lbs)

Mean est.
wt.

(lbs)
Std.
err.

Min.
est. wt.

(lbs)

Max.
est. wt
(lbs)

6 111 5.60 1 12 275.55 244.95 23.31 214.00 282.00

6 111 5.60 2 66 275.55 244.95 15.16 215.90 277.10

6 111 5.60 3 220 275.55 244.95 11.68 216.90 274.00

6 111 5.60 4 495 275.55 244.95 9.53 217.40 269.90

6 111 5.60 5 792 275.55 244.95 7.97 221.90 266.50

18 111 7.80 1 27 586.52 569.52 49.80 475.30 673.60

18 111 7.80 2 351 586.52 569.52 33.93 484.50 654.50

18 111 7.80 3 2925 586.52 569.52 27.11 489.50 646.90

18 111 7.80 4 17550 586.52 569.52 22.98 493.40 639.90

18 111 7.80 5 80730 586.52 569.52 20.10 496.60 635.00

35 111 10.10 1 33 1189.04 1198.98 146.77 955.60 1447.00

35 111 10.10 2 528 1189.04 1198.98 100.68 960.20 1437.00

35 111 10.10 3 5456 1189.04 1198.98 80.80 963.30 1425.00

35 111 10.10 4 40920 1189.04 1198.98 68.79 979.50 1418.00

35 111 10.10 5 237336 1189.04 1198.98 60.46 990.70 1413.00

For all trees, RBS empirical sampling distribution characteristics by individual tree for

RBS estimates resulting from use of one path, two paths, three paths, four paths and five

paths are shown in Appendix C. In general, the sampling distribution characteristics in tables

in the Appendix C suggest that standard error and MAPE values decrease substantially with

increasing number of paths. Similarly, the range of estimates is smaller for larger number

of paths. This indicate that the samples comprised of more paths reduces variation among
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samples. It is interesting to note that for individual trees, RBS (for any number of paths

considered) shows a bias for estimating total tree biomass.

As expected, sampling distribution variation (standard error) is larger for larger trees.

Further, red maple shows higher variation among samples than does slash pine, likely due

to the irregular crown structure of red maple (Figures 2.8, and 2.9).

Figure 2.8: Standard error of sampling distribution by Dbh and path for red maple
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Figure 2.9: Standard error of sampling distribution by Dbh and path for slash pine

Moreover, when comparing these two species, average standard error of estimates, MAPE

values, and RSE are higher for red maple than slash pine (Figures 2.10, 2.11, and 2.12) .

In fact, the average standard error of estimates for red maple is more than four times and

MAPE and RSE are more than two times larger than for slash pine for all paths considered.

Tables for standard error, MAPE and RSE by species and path are given in Appendix D.

The reduction in average standard error, for slash pine, is about 20 lbs increasing from

one to two path RBS, 9 lbs from two to three, 5 lbs from three to four and 4 lbs from four

to five paths. For red maple, the change in average standard error is about 88 lbs from one

to two paths, 38 lbs from two to three, 23 lbs from three to four and 16 lbs from four to five

paths.

The change in average MAPE, for slash pine, is about 2% choosing from one to two paths,

1% from two to three , 0.5% from three to four and 0.3% from four to five paths. For red

maple, the change in average MAPE is about 5% from one to two paths, 2% from two to

three, 1% from three to four and 1% from four to five paths.
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The change in average RSE, for slash pine, is about 2% increasing from one to two path

RBS, 1% from two to three, 1% from three to four and 0.5% from four to five paths. For

red maple, the change in average RSE is about 6% from one to two paths, 3% from two to

three, 2% from three to four and 1% from four to five paths.

The change in average standard error (Figure 2.10 ), MAPE (Figure 2.11) and RSE

(Figure 2.12) is minimal after two paths for slash pine and after three paths for red maple.

This suggests that choosing from two to three paths for slash pine and three to four paths

for red maple, we do not gain much accuracy in estimates. Hence, the results suggest that

at least two path RBS should be used for slash pine and at least three path RBS should be

used for red maple.

The RSE of wood and foliage estimates with number of paths used on the same tree is

given in Table 2.14, Appendix E.

Figure 2.10: Average standard error of estimates by species and path combinations
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Figure 2.11: Average mape (%) by species and path combinations

Figure 2.12: Relative standard error (%) by species and path combinations

Tree structure, branchiness, and stem form play significant roles in estimating precision

(Chirici et al. 2013) of tree biomass estimates. Slash pine has a more regular tree structure

than red maple. Red maple with an irregular tree crown comprises paths having unequal
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lengths providing large variance of the estimates due to high unconditional selection proba-

bilities of the paths (Chirici et al. 2013). The results in this study support the findings from

Chirici et al. (2013) in that slash pine shows less variation in sampling distributions than red

maple.

2.3.2 Application of RBS and combination of RBS and IS to total tree

biomass

Based on study of RBS sampling distributions, it is clear that at least two paths should be

used to estimate above ground biomass for slash pine and at least three paths should be

used for red maple. When it is not possible to weigh entire sections of stem and/or branches,

importance sampling (IS) has been suggested as a viable alternative for weight and biomass

estimation. To evaluate the utility of IS in this context, we compare RBS estimates with

RBS/IS estimates for both slash and red maple. Based on our work above, we use two RBS

paths for slash pine and three RBS paths for red maple.

2.3.3 A Numerical Example of RBS and IS using D2L as selection proba-

bility

A numerical example to illustrate use of RBS with IS is presented below. RBS is applied

exactly as previously described above. First, dead branch material is removed and weighted

separately. The RBS procedure starts from the base of the tree where diameter at base of

the stem (Branch “a”) is 6.60 inches and length and weight are 29.20 ft and 185.11 lbs,

respectively. The base of the stem is defined as node 1 from where we proceed to the second

node and measure branch b and c. Two branches of which the first one i.e. b is stem and

second branch c is branch, are emanating from the second node. Diameter and length of b

are 3.40 inch and 3.00 ft, respectively. Branch c has diameter of 0.70 inch and length of 7.40

ft.
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Selection probability (qk) for b is calculated as 3.402×3.00
3.402×3.00+0.702×7.4 = 0.905 and for c

is 1-0.905 = 0.095. Selection probability of branch b (0.905) is greater than a randomly

drawn uniform(0,1) number u=0.222, therefore branch b is selected and followed to node

3. There are 4 branches including stem emanating from node 3. Selection probabilities for

these branches are calculated as described above. These are 0.794, 0.136, 0.022 and 0.048 for

branches d, e, f, and g, respectively. Since the selection probability of branch d = 0.794 is

greater than a random number u=0.270 (drawn for this node),branch d is selected and the

path followed to node 4. There are 3 branches emanating from node 4. Selection probability of

branch h= 0.523 is less than the random number u=0.800 hence the branch h is not selected.

Now, the selection probabilities of branch h and i are added and compared to the random

number. Cumulative selection probabilities (qksum) are shown by node in Table 2.4. Sum of

the selection probabilities of branches h and i is 0.523+0.415=0.938 and is greater than the

random number, 0.80, hence the second branch i is selected with a selection probability q3=

0.415. At this point the RBS path is ended and branch i is cut off and weighed. The weight

of branch and foliage of branch i is 3.03 lbs and the unconditional probability of reaching

branch i is calculated using Equation 2.1 as Q4 = 1 × 0.905 × 0.794 × 0.415 = 0.299. The

inflated weight of branch i is calculated as Wt/Q4 = 3.03/0.299 = 10.15 lbs. Total estimated

weight of branch and foliage of the tree can be calculated using Equation 2.5. Hence the

total estimated weight of the tree for this path is 185.11/1 + 14.53/0.905 + 14.02/0.719 +

3.03/0.299 = 230.81 lbs. Adding the dead branch the total weight is 230.81+1.5 = 232.31

lbs.
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Table 2.4: Data for Randomized Branch Sampling

Node Branch
Branch
name Face

D
(inch)

LBr
(ft)

Wt
(lbs) D2L

∑
D2L qk qksum u

Selected
branch Qk

Inflated
wt (lbs)

1 1 a 5 6.60 29.20 185.11 1271.952 1271.952 1.000 1.000 0.198 Yes 1.000 185.11

2 1 b 5 3.40 3.00 14.53 34.680 38.306 0.905 0.905 0.222 Yes 0.905 16.05

2 2 c 3 0.70 7.40 1.37 3.626 38.306 0.095 1.000 0.222

3 1 d 5 3.30 3.30 14.02 35.846 45.133 0.794 0.794 0.270 Yes 0.719 19.50

3 2 e 4 0.90 7.60 1.16 6.156 45.133 0.136 0.931 0.270

3 3 f 3 0.50 3.90 0.34 0.975 45.133 0.022 0.952 0.270

3 4 g 2 0.70 4.40 0.52 2.156 45.133 0.048 1.000 0.270

4 1 h 5 2.95 2.10 7.22 18.301 34.995 0.523 0.523 0.800

4 2 i 4 1.30 8.60 3.03 14.534 34.995 0.415 0.938 0.800 Yes 0.299 10.15

4 3 j 2 0.60 6.00 0.88 2.160 34.995 0.062 1.000 0.800

5 1 k 5 2.68 3.43 9.24 24.729 31.012 0.797 0.797 0.185

5 2 l 3 0.80 5.30 1.14 3.392 31.012 0.109 0.907 0.185

5 3 m 2 0.70 5.90 1.19 2.891 31.012 0.093 1.000 0.185

6 1 n 5 2.00 12.47 10.57 49.867 60.140 0.829 0.829 0.536

6 2 o 3 0.50 2.50 0.20 0.625 60.140 0.010 0.840 0.536

6 3 p 3 0.80 5.70 2.06 3.648 60.140 0.061 0.900 0.536

6 4 q 1 1.00 6.00 2.40 6.000 60.140 0.100 1.000 0.536

Note: Calculation may not be exact due to rounding effect

After selecting a path using RBS, IS can be conducted using measurement of diameter at

numerous points along the path. Table 2.5 shows the data such as stem height (distance from

the butt), diameter at base of the stem, node number and Qk based on the path selected

from RBS for this tree. Equations 2.8, 2.13, and 2.14 are used to calculate A(L), ΔV(L) and

V(L), respectively.

Basically, IS using a RBS path uses the following steps:

• Find a stem section where a disk is to be cut

• Find an exact disk cut position (θ) in the section

• Cut the disk, weigh it and calculate its inflated weight
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• Calculate the entire weight of the tree

The stem section or location to cut the sample disk is determined using the product of a

uniform(0,1) random number and V(λ). In our case the product of random number u =0.53

and V(λ)=760.04 is 402.8212 which is between 347.8575 and 436.5775 (refer to V(L) column

in Table 2.5). Hence the stem section to cut the disk is between L5 = 12 and L6 =16. Now,

the exact disk cut position (θ) is determined by solving Equation 2.15 where

a = (19.36-25)/(16-12) = -1.41

b = 2 × 25 = 50

c = -2 × (0.53 × 760.04-347.86) = -109.92

which produces θ = 14.35.

Therefore the sample disk is cut at 14.35 ft above the base of the tree. The width of the

disk cut is 0.1 ft and the overbark green weight at this position is 0.83127 lbs. The weight per

unit of thickness i.e. B(θ) is 0.83127/0.1 =8.3127 lbs/ft and this is also the inflated weight

per unit of thickness because Qk=1 at this disk cut position (see Node column in Table 2.5).

Using Equation 2.16, S(θ) can be calculated as

S(θ) = 25 -1.41*(14.35-12) = 21.68 ft2.

The calculated value of S(θ) is also used in Equation 2.11 to estimate the woody weight of

the tree from node 1 to the point where branch is severed as

Ŵ = (8.312 × 760.0367)/21.67965 = 291.422 lbs.

And, Green weight of the entire tree is estimated using Equation 2.12. Hence the total green

weight of entire tree is given by

b̂ = 291.42 + 10.15 + 1.57 = 303.14 lbs.

In summary, the total estimated green weight of the tree is 232.31 lbs from RBS and 303.14

lbs from IS whereas the actual tree weight is 266.33 lbs. In this case, RBS underestimated

the total weight whereas IS overestimated.
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Table 2.5: Data for Importance sampling

Length index
Stem height

(ft)
D

(inch) Node Qk A(L) ΔV(L) V(L)

L1 0.50 6.60 1 1.000 43.56 0.00 0.00

L2 2.50 5.60 1 1.000 31.36 74.92 74.92

L3 4.50 5.60 1 1.000 31.36 62.72 137.64

L4 8.00 5.30 1 1.000 28.09 104.04 241.68

L5 12.00 5.00 1 1.000 25.00 106.18 347.86

L6 16.00 4.40 1 1.000 19.36 88.72 436.58

L7 17.50 4.50 1 1.000 20.25 29.71 466.29

L8 20.00 4.20 1 1.000 17.64 47.36 513.65

L9 24.00 3.90 1 1.000 15.21 65.70 579.35

L10 28.00 3.40 1 1.000 11.56 53.54 632.89

L11 29.20 3.40 2 0.905 12.77 14.60 647.48

L12 31.20 3.40 2 0.905 12.77 25.54 673.02

L13 32.20 3.30 3 0.719 15.11 13.94 686.96

λ 35.50 2.95 4 0.299 29.18 73.08 760.04

We used RBS and RBS/IS to calculate individual tree biomass. Fit statistics such as root

mean square error (RMSE) as well as percent error were calculated to evaluate the methods

(Table 2.15). Percent error was calculated by RMSE
Actual weight × 100.

When using RBS alone, the sampling error varied from 0.35 to 37.58% for slash pine and

1.47 to 72.33 % for red maple (Table 2.15 in Appendix F). For combination of RBS and IS,

sampling error for slash pine varied from 12.19 to 87.47 % and for red maple from 7.13 to

108.63% (Table 2.16 in Appendix F). As expected, results indicate that RBS alone provided

more precise estimates compared to RBS and IS. Valentine et al. (1984) found sampling

error ranging from 4.9 to 14.4% when they tested their RBS and IS sampling procedure
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for estimating total fresh above-ground biomass of 6 different hardwood species. In their

tested tree, the number of paths varied from 1 - 4. They found total sampling error to be

4.9%. The within individual tree variation for hardwood (red maple) in our data is much

larger compared with the variation found in Valentine et al. (1984). They tested RBS and

IS on a single tree for 6 different species. Our work involves more trees hence the sources

of variability might be due to different size, foliage content among selected branches and

structure of trees. However, the sampling error for total biomass of across all red maple trees

tested in this study was smaller (2.52%) than that found for the total biomass of hardwood

trees they tested (4.9%). In another study, William (1989) found sampling error per tree

ranging from 5.3 to 28.9% with a total sampling error of 3.3% when they used two or three

RBS paths and IS to estimate Loblolly pine biomass. Similarly, Ozcelik (2012) used RBS

and IS to estimate individual tree biomass in their study where they found sampling error

ranging from 2.51 to 22.63% with the total of 2.65%.

Unlike results from Ozcelik (2012), it is observed that the combination of RBS and

IS generally overestimated the total biomass of the tree (Figures 2.13, 2.14). Both figures

show that estimates from RBS alone are closer to actual values than estimates from using

combination of RBS and IS. The higher sampling error associated with using RBS and IS

in combination than RBS alone is not very surprising given that only a single small disk is

weighed when using IS.
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Figure 2.13: Actual and estimated wood and foliage from RBS and IS for slash pine

Figure 2.14: Actual and estimated wood and foliage from RBS and IS for red maple

Although, the sampling error per tree in this study shows a wide range , the total sampling

error in both RBS and combination of RBS and IS are smaller than the total sampling error

found in similar studies. Consequently, we can not recommend use of RBS alone or RBS in

combination with IS when obtaining data to model individual tree biomass. However, for
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estimating biomass for larger populations using a large sample of trees RBS and RBS with

IS may be viable.

2.4 Conclusion

In this study we simulated estimates of wood and foliage weight from all possible RBS paths

for each tree. Data from 52 individual trees consisting of 38 slash pine and 14 red maple

trees were used to simulate RBS. The use of all possible RBS paths in each tree allowed us

to develop empirical sampling distributions for the RBS procedure. We generated sampling

distributions of estimates using one, two, three, four and five possible paths for each tree. For

these sampling distributions we determined standard error, mean absolute prediction error,

and relative standard error.

The shape of the sampling distribution of average estimated biomass is quite irregular

for one path RBS and becomes more normal as the number of paths increase. For red

maple (irregular tree structure), the approach toward normality required more RBS paths

for larger trees. But, for slash pine (regular tree structure), sampling distribution changed

from irregular shape for a single RBS path to a more normal shape for two or more RBS

paths.

Chirici et al. (2013) suggests using multiple RBS paths to obtain reliable estimates of tree

biomass. Our results support this conclusion in that for both slash pine and red maple it was

necessary to use at least two RBS paths to have sampling distributions that were approaching

normal and were capable of providing a nearly unbiased estimate of tree biomass. However, it

should be noted that many empirical sampling distributions do not in fact produce unbiased

biomass estimates as indicated by their mean value differing from the observed tree biomass

value. Further, the variation among estimates as measured by the range of estimates, standard

error of the sampling distribution and MAPE clearly indicate that for a given instance of

an RBS sample it is likely that the estimate can be quite different than the actual biomass
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of a given tree. This indicates that RBS sampling should not be used to generate data for

modeling individual tree biomass using allometric modelling techniques. In fact, RBS may

only be useful when obtaining a relatively large number of trees from a given population for

the purpose of estimating the total biomass of all trees in the population via a sub-sampling

approach.

Using RBS in combination with IS adds variation to sampling distributions and further

diminishes the utility of resulting information for the modeling of individual tree biomass

relationships. It may be possible to make use of RBS in combination with IS if large numbers

of sample trees are obtained in a probability sampling process. However, we recommend that

RBS be used without IS if at all possible.
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2.6 Appendix A: Sampling distribution of biomass estimates for slash pine

by Dbh size and path
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Figure 2.15: Sampling distribution by Dbh size resulting from using 1 path
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Figure 2.16: Sampling distribution by Dbh size resulting from using 2 path
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Figure 2.17: Sampling distribution by Dbh size resulting from using 3 path
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Figure 2.18: Sampling distribution by Dbh size resulting from using 4 path
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Figure 2.19: Sampling distribution by Dbh size resulting from using 5 path
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2.7 Appendix B: Sampling distribution of biomass estimates for red maple

by Dbh size and path
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Figure 2.20: Sampling distribution by Dbh size resulting from using 1 path
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Figure 2.21: Sampling distribution by Dbh size resulting from using 2 path
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Figure 2.22: Sampling distribution by Dbh size resulting from using 3 path
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Figure 2.23: Sampling distribution by Dbh size resulting from using 4 path
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Figure 2.24: Sampling distribution by Dbh size resulting from using 5 path
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2.8 Appendix C: RBS sampling distribution chracteristics

Table 2.6: RBS empirical sampling distribution characteristics by individual tree for RBS

estimates resulting from use of one path

Tree
id

Species
Code

Total
paths

Actual
wt.

(lbs)

Mean est.
wt.

(lbs) Bias
Std.
err.

MAPE
(%)

Min.
est. wt.

(lbs)

Max.
est. wt
(lbs)

1 111 25 410.46 397.30 13.16 34.79 7.16 333.8 455.40

2 111 25 275.53 279.15 3.62 28.99 9.28 218.4 318.90

3 111 27 528.34 509.63 18.70 73.55 11.74 338.1 620.30

4 111 38 911.27 961.77 50.50 221.63 21.73 549.2 1316.00

5 111 24 544.90 540.19 4.71 73.16 11.80 420.4 658.10

6 111 12 275.55 244.95 30.59 23.31 11.49 214.0 282.00

7 111 24 903.44 909.07 5.63 47.06 4.63 816.7 975.30

8 111 19 469.01 492.01 23.00 47.61 9.52 405.7 550.60

9 111 19 632.04 637.29 5.25 39.85 5.69 560.3 690.20

10 111 14 366.04 368.17 2.14 27.34 5.45 320.3 429.40

11 111 18 582.68 586.13 3.45 39.39 5.76 530.2 645.10

12 111 20 673.39 683.71 10.32 62.47 8.15 600.0 795.60

13 111 17 611.04 617.33 6.29 49.60 6.89 540.7 704.30

14 111 21 632.43 648.91 16.48 60.71 8.56 548.5 749.10

15 111 8 323.06 319.83 3.23 7.88 1.65 303.4 327.30

16 111 34 470.68 489.68 19.01 63.53 11.46 354.8 586.60

17 111 31 651.24 665.64 14.40 74.86 10.22 491.1 755.20

18 111 27 586.53 569.52 17.01 49.80 7.06 475.3 673.60

19 111 30 582.64 564.58 18.06 42.54 6.11 435.4 636.40

20 111 37 948.65 1003.17 54.52 152.42 14.86 695.8 1221.00

21 111 31 524.44 525.61 1.17 26.84 3.88 451.0 569.40
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Table 2.6 – continued from previous page

Tree
id

Species
Code

Total
paths

Actual
wt.

(lbs)

Mean est.
wt.

(lbs) Bias
Std.
err.

MAPE
(%)

Min.
est. wt.

(lbs)

Max.
est. wt.

(lbs)

22 111 27 913.61 985.16 71.55 135.49 14.62 750.3 1184.00

23 111 22 631.83 650.22 18.39 62.07 8.24 519.7 741.30

24 111 19 493.66 518.17 24.52 113.74 9.55 430.4 973.50

25 111 25 514.80 509.00 5.80 34.14 4.88 418.7 557.90

26 111 25 493.78 496.91 3.12 42.67 7.29 405.3 546.70

27 111 20 536.97 530.01 6.97 34.87 5.05 450.5 586.20

28 111 21 502.54 484.47 18.07 36.30 6.90 424.6 554.50

29 111 30 696.69 800.19 103.50 168.63 24.60 467.8 992.00

30 111 26 1117.50 1082.19 35.32 41.72 3.63 981.8 1137.00

31 111 14 660.09 637.18 22.91 40.11 5.50 576.3 726.90

32 111 20 1254.02 1224.04 29.97 70.03 4.93 1088.0 1343.00

33 111 18 901.00 868.61 32.39 58.79 6.04 789.6 964.30

34 111 13 557.36 520.97 36.38 11.97 6.53 494.4 546.40

35 111 33 1189.04 1198.98 9.94 146.77 10.57 955.6 1447.00

36 111 25 884.49 854.85 29.65 74.76 7.63 736.2 989.60

37 111 17 757.57 733.52 24.05 47.98 5.80 659.7 830.70

38 111 16 793.60 757.12 36.48 33.04 5.18 709.4 813.10

39 316 23 1362.28 1311.78 50.50 205.26 12.79 983.8 1634.00

40 316 23 1388.34 1269.33 119.00 182.70 12.44 934.9 1751.00

41 316 19 3106.75 2904.68 202.07 1156.03 30.84 852.9 4131.00

42 316 22 1064.34 1289.52 225.18 428.62 35.00 641.3 2309.00

43 316 10 708.05 708.93 0.89 36.04 3.95 635.8 752.60

44 316 10 606.20 619.19 12.99 103.65 15.73 496.9 746.60
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Table 2.6 – continued from previous page

Tree
id

Species
Code

Total
paths

Actual
wt.

(lbs)

Mean est.
wt.

(lbs) Bias
Std.
err.

MAPE
(%)

Min.
est. wt.

(lbs)

Max.
est. wt.

(lbs)

45 316 8 802.51 822.78 20.28 152.81 16.75 579.4 952.80

46 316 31 814.10 810.05 4.05 263.05 22.01 357.0 1865.00

47 316 17 489.38 502.09 12.71 125.48 20.67 263.2 673.50

48 316 20 201.85 191.41 10.43 43.74 16.77 109.8 275.90

49 316 19 562.47 573.86 11.40 176.12 24.03 262.9 979.00

50 316 19 1179.81 1378.87 199.06 566.06 24.72 851.5 3579.00

51 316 29 684.54 703.49 18.95 136.96 16.51 426.6 1004.00

52 316 23 612.65 705.89 93.25 150.95 19.17 462.5 1234.00
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Table 2.7: RBS empirical sampling distribution characteristics by individual tree for RBS

estimates resulting from use of two paths

Tree
id

Species
Code

Total
paths

Actual
wt.

(lbs)

Mean est.
wt.

(lbs) Bias
Std.
err.

MAPE
(%)

Min
est. wt.

(lbs)

Max
est. wt.

(lbs)

1 111 300 410.46 397.30 13.16 23.63 5.32 336.8 450.9

2 111 300 275.53 279.15 3.62 19.70 5.99 226.4 315.8

3 111 351 528.34 509.63 18.70 50.11 8.12 371.0 612.5

4 111 703 911.27 961.77 50.50 152.64 14.46 583.9 1299.0

5 111 276 544.90 540.19 4.71 49.62 7.42 426.5 650.5

6 111 66 275.55 244.95 30.59 15.16 11.12 215.9 277.1

7 111 276 903.44 909.07 5.63 31.91 2.94 826.8 975.0

8 111 171 469.01 492.01 23.00 31.94 6.98 417.0 549.1

9 111 171 632.04 637.29 5.25 26.73 3.58 565.2 684.3

10 111 91 366.04 368.17 2.14 18.00 3.90 324.8 412.8

11 111 153 582.68 586.13 3.45 26.35 3.77 532.6 644.5

12 111 190 673.39 683.71 10.32 42.02 5.20 601.2 785.0

13 111 136 611.04 617.33 6.29 33.07 4.46 548.0 700.5

14 111 210 632.43 648.91 16.48 40.93 5.70 557.5 737.9

15 111 28 323.06 319.83 3.23 4.91 1.33 308.6 326.9

16 111 561 470.68 489.68 19.01 43.62 8.30 372.3 586.0

17 111 465 651.24 665.64 14.40 51.25 6.89 514.8 754.6

18 111 351 586.53 569.52 17.01 33.93 5.22 484.5 654.5

19 111 435 582.64 564.58 18.06 29.09 4.57 471.3 631.6

20 111 666 948.65 1003.17 54.52 104.90 10.29 723.9 1208.0

21 111 465 524.44 525.61 1.17 18.38 2.80 460.2 567.3

22 111 351 913.61 985.16 71.55 92.32 10.61 755.4 1160.0
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Table 2.7 – continued from previous page

Tree
id

Species
Code

Total
paths

Actual
wt.

(lbs)

Mean est.
wt.

(lbs) Bias
Std.
err.

MAPE
(%)

Min.
est. wt.

(lbs)

Max.
est. wt.

(lbs)

23 111 231 631.83 650.22 18.39 41.94 6.04 521.1 737.1

24 111 171 493.66 518.17 24.52 76.30 7.98 437.3 752.5

25 111 300 514.80 509.00 5.80 23.20 3.62 430.2 549.2

26 111 300 493.78 496.91 3.12 28.99 4.95 409.9 546.7

27 111 190 536.97 530.01 6.97 23.45 3.65 464.5 584.1

28 111 210 502.54 484.47 18.07 24.48 5.02 431.6 545.8

29 111 435 696.69 800.19 103.50 115.33 18.77 497.3 990.6

30 111 325 1117.50 1082.19 35.32 28.39 3.29 986.7 1136.0

31 111 91 660.09 637.18 22.91 26.40 4.44 585.9 701.8

32 111 190 1254.02 1224.04 29.97 47.10 3.60 1108.0 1334.0

33 111 153 901.00 868.61 32.39 39.32 4.69 790.4 950.5

34 111 78 557.36 520.97 36.38 7.84 6.53 501.3 538.4

35 111 528 1189.04 1198.98 9.94 100.68 6.96 960.2 1437.0

36 111 300 884.49 854.85 29.65 50.79 5.43 740.9 978.6

37 111 136 757.57 733.52 24.05 31.99 4.35 663.5 813.1

38 111 120 793.60 757.12 36.48 21.95 4.72 710.9 810.4

39 316 253 1362.28 1311.78 50.50 138.96 9.14 995.3 1592.0

40 316 253 1388.34 1269.33 119.00 123.69 10.42 962.8 1648.0

41 316 171 3106.75 2904.68 202.07 775.49 21.71 871.4 4088.0

42 316 231 1064.34 1289.52 225.18 289.60 26.85 702.3 2198.0

43 316 45 708.05 708.93 0.89 23.05 2.67 652.5 749.1

44 316 45 606.20 619.19 12.99 66.29 8.62 500.1 742.8

45 316 28 802.51 822.78 20.28 95.30 9.61 616.4 952.1
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Table 2.7 – continued from previous page

Tree
id

Species
Code

Total
paths

Actual
wt.

(lbs)

Mean est.
wt.

(lbs) Bias
Std.
err.

MAPE
(%)

Min.
est. wt.

(lbs)

Max.
est. wt.

(lbs)

46 316 465 814.10 810.05 4.05 180.10 15.80 418.9 1497.0

47 316 136 489.38 502.09 12.71 83.65 14.87 265.7 640.7

48 316 190 201.85 191.41 10.43 29.42 12.42 111.4 263.2

49 316 171 562.47 573.86 11.40 118.15 16.93 273.8 868.6

50 316 171 1179.81 1378.87 199.06 379.73 20.44 923.1 2628.0

51 316 406 684.54 703.49 18.95 93.56 11.41 435.4 934.3

52 316 253 612.65 705.89 93.25 102.19 16.64 513.1 1089.0
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Table 2.8: RBS empirical sampling distribution characteristics by individual tree for RBS

estimates resulting from use of three paths

Tree
id

Species
Code

Total
paths

Actual
wt.

(lbs)

Mean est.
wt.

(lbs) Bias
Std.
err.

MAPE
(%)

Min.
est. wt.

(lbs)

Max.
est. wt.

(lbs)

1 111 2300 410.46 397.30 13.16 18.85 4.51 339.7 447.5

2 111 2300 275.53 279.15 3.62 15.71 4.80 230.7 313.6

3 111 2925 528.34 509.63 18.70 40.04 6.65 388.3 607.2

4 111 8436 911.27 961.77 50.50 122.81 11.88 601.8 1292.0

5 111 2024 544.90 540.19 4.71 39.52 5.94 431.1 643.6

6 111 220 275.55 244.95 30.59 11.68 11.10 216.9 274.0

7 111 2024 903.44 909.07 5.63 25.42 2.35 834.1 972.7

8 111 969 469.01 492.01 23.00 25.24 6.02 421.0 545.3

9 111 969 632.04 637.29 5.25 21.12 2.82 569.3 679.4

10 111 364 366.04 368.17 2.14 14.01 3.11 333.8 403.9

11 111 816 582.68 586.13 3.45 20.77 2.91 533.9 643.8

12 111 1140 673.39 683.71 10.32 33.27 4.18 603.7 775.1

13 111 680 611.04 617.33 6.29 26.01 3.54 554.5 690.1

14 111 1330 632.43 648.91 16.48 32.46 4.64 567.3 733.0

15 111 56 323.06 319.83 3.23 3.63 1.18 312.4 325.7

16 111 5984 470.68 489.68 19.01 35.02 6.85 388.9 583.2

17 111 4495 651.24 665.64 14.40 41.08 5.50 525.0 754.1

18 111 2925 586.53 569.52 17.01 27.11 4.40 489.5 646.9

19 111 4060 582.64 564.58 18.06 23.30 3.99 489.5 628.5

20 111 7770 948.65 1003.17 54.52 84.36 8.70 738.2 1203.0

21 111 4495 524.44 525.61 1.17 14.73 2.27 471.1 564.7

22 111 2925 913.61 985.16 71.55 73.77 9.41 758.1 1147.0
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Table 2.8 – continued from previous page

Tree
id

Species
Code

Total
paths

Actual
wt.

(lbs)

Mean est.
wt.

(lbs) Bias
Std.
err.

MAPE
(%)

Min.
est. wt.

(lbs)

Max.
est. wt.

(lbs)

23 111 1540 631.83 650.22 18.39 33.31 4.98 535.7 730.9

24 111 969 493.66 518.17 24.52 60.29 7.20 443.4 677.8

25 111 2300 514.80 509.00 5.80 18.50 2.96 438.0 546.1

26 111 2300 493.78 496.91 3.12 23.11 3.86 416.3 546.0

27 111 1140 536.97 530.01 6.97 18.57 2.95 476.9 582.6

28 111 1330 502.54 484.47 18.07 19.41 4.38 436.5 539.9

29 111 4060 696.69 800.19 103.50 92.38 16.81 513.9 985.9

30 111 2600 1117.50 1082.19 35.32 22.66 3.20 997.3 1135.0

31 111 364 660.09 637.18 22.91 20.55 3.95 591.0 691.4

32 111 1140 1254.02 1224.04 29.97 37.29 3.10 1117.0 1326.0

33 111 816 901.00 868.61 32.39 31.01 4.12 791.4 944.3

34 111 286 557.36 520.97 36.38 6.07 6.53 506.0 534.9

35 111 5456 1189.04 1198.98 9.94 80.80 5.55 963.3 1425.0

36 111 2300 884.49 854.85 29.65 40.50 4.64 744.5 971.6

37 111 680 757.57 733.52 24.05 25.16 3.81 668.0 804.8

38 111 560 793.60 757.12 36.48 17.21 4.62 715.0 806.0

39 316 1771 1362.28 1311.78 50.50 110.54 7.15 1001.0 1568.0

40 316 1771 1388.34 1269.33 119.00 98.39 9.50 972.1 1594.0

41 316 969 3106.75 2904.68 202.07 612.80 16.73 1021.0 4021.0

42 316 1540 1064.34 1289.52 225.18 230.05 24.27 723.4 2066.0

43 316 120 708.05 708.93 0.89 17.48 2.04 664.1 742.6

44 316 120 606.20 619.19 12.99 50.28 7.02 511.4 733.3

45 316 56 802.51 822.78 20.28 70.38 7.50 650.3 950.9
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Table 2.8 – continued from previous page

Tree
id

Species
Code

Total
paths

Actual
wt.

(lbs)

Mean est.
wt.

(lbs) Bias
Std.
err.

MAPE
(%)

Min.
est. wt.

(lbs)

Max.
est. wt.

(lbs)

46 316 4495 814.10 810.05 4.05 144.35 13.19 463.5 1337.0

47 316 680 489.38 502.09 12.71 65.79 11.43 270.2 628.9

48 316 1140 201.85 191.41 10.43 23.29 10.10 118.2 250.3

49 316 969 562.47 573.86 11.40 93.36 13.42 310.8 830.5

50 316 969 1179.81 1378.87 199.06 300.06 18.91 947.8 2232.0

51 316 3654 684.54 703.49 18.95 74.89 9.15 446.1 900.2

52 316 1771 612.65 705.89 93.25 81.29 15.86 536.9 985.4
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Table 2.9: RBS empirical sampling distribution characteristics by individual tree for RBS

estimates resulting from use of four paths

Tree
id

Species
Code

Total
paths

Actual
wt.

(lbs)

Mean est.
wt.

(lbs) Bias
Std.
err.

MAPE
(%)

Min.
est. wt.

(lbs)

Max.
est. wt.

(lbs)

1 111 12650 410.46 397.30 13.16 15.94 4.08 344.6 445.7

2 111 12650 275.53 279.15 3.62 13.29 4.07 232.8 312.2

3 111 17550 528.34 509.63 18.70 33.94 5.86 398.3 604.0

4 111 73815 911.27 961.77 50.50 104.82 10.36 613.9 1283.0

5 111 10626 544.90 540.19 4.71 33.39 5.00 435.0 638.1

6 111 495 275.55 244.95 30.59 9.53 11.10 217.4 269.9

7 111 10626 903.44 909.07 5.63 21.48 2.00 838.0 968.6

8 111 3876 469.01 492.01 23.00 21.16 5.58 425.2 543.5

9 111 3876 632.04 637.29 5.25 17.70 2.40 574.9 675.5

10 111 1001 366.04 368.17 2.14 11.56 2.60 338.6 398.9

11 111 3060 582.68 586.13 3.45 17.37 2.46 537.9 640.0

12 111 4845 673.39 683.71 10.32 27.94 3.56 605.0 769.4

13 111 2380 611.04 617.33 6.29 21.69 2.98 558.5 684.6

14 111 5985 632.43 648.91 16.48 27.31 4.09 572.5 728.6

15 111 70 323.06 319.83 3.23 2.80 1.09 314.5 325.1

16 111 46376 470.68 489.68 19.01 29.84 6.07 398.2 581.5

17 111 31465 651.24 665.64 14.40 34.93 4.78 532.9 751.8

18 111 17550 586.53 569.52 17.01 22.98 3.95 493.4 639.9

19 111 27405 582.64 564.58 18.06 19.80 3.68 498.7 624.8

20 111 66045 948.65 1003.17 54.52 71.97 7.83 748.0 1196.0

21 111 31465 524.44 525.61 1.17 12.52 1.94 476.5 563.0

22 111 17550 913.61 985.16 71.55 62.53 8.79 766.2 1141.0
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Table 2.9 – continued from previous page

Tree
id

Species
Code

Total
paths

Actual
wt.

(lbs)

Mean est.
wt.

(lbs) Bias
Std.
err.

MAPE
(%)

Min.
est. wt.

(lbs)

Max.
est. wt.

(lbs)

23 111 7315 631.83 650.22 18.39 28.07 4.38 548.7 727.7

24 111 3876 493.66 518.17 24.52 50.54 6.73 448.6 637.6

25 111 12650 514.80 509.00 5.80 15.65 2.56 447.6 543.8

26 111 12650 493.78 496.91 3.12 19.55 3.27 424.0 544.8

27 111 4845 536.97 530.01 6.97 15.59 2.54 483.4 576.2

28 111 5985 502.54 484.47 18.07 16.33 4.07 442.3 536.9

29 111 27405 696.69 800.19 103.50 78.50 15.97 522.6 983.5

30 111 14950 1117.50 1082.19 35.32 19.19 3.17 1007.0 1134.0

31 111 1001 660.09 637.18 22.91 16.96 3.70 593.5 683.6

32 111 4845 1254.02 1224.04 29.97 31.32 2.84 1127.0 1321.0

33 111 3060 901.00 868.61 32.39 25.93 3.87 792.0 939.2

34 111 715 557.36 520.97 36.38 4.99 6.53 509.0 532.2

35 111 40920 1189.04 1198.98 9.94 68.79 4.72 979.5 1418.0

36 111 12650 884.49 854.85 29.65 34.26 4.21 752.1 966.9

37 111 2380 757.57 733.52 24.05 20.99 3.54 674.1 795.9

38 111 1820 793.60 757.12 36.48 14.31 4.60 719.3 801.7

39 316 8855 1362.28 1311.78 50.50 93.29 6.19 1014.0 1548.0

40 316 8855 1388.34 1269.33 119.00 83.03 9.05 987.9 1540.0

41 316 3876 3106.75 2904.68 202.07 513.65 14.01 1115.0 3980.0

42 316 7315 1064.34 1289.52 225.18 193.86 22.93 747.0 1961.0

43 316 210 708.05 708.93 0.89 13.99 1.62 674.2 739.2

44 316 210 606.20 619.19 12.99 40.24 5.60 517.6 725.6

45 316 70 802.51 822.78 20.28 54.42 5.85 695.8 949.7
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Table 2.9 – continued from previous page

Tree
id

Species
Code

Total
paths

Actual
wt.

(lbs)

Mean est.
wt.

(lbs) Bias
Std.
err.

MAPE
(%)

Min.
est. wt.

(lbs)

Max.
est. wt.

(lbs)

46 316 31465 814.10 810.05 4.05 122.75 11.56 487.2 1253.0

47 316 2380 489.38 502.09 12.71 54.87 9.40 309.8 619.6

48 316 4845 201.85 191.41 10.43 19.56 8.80 124.1 242.1

49 316 3876 562.47 573.86 11.40 78.25 11.31 332.3 798.5

50 316 3876 1179.81 1378.87 199.06 251.51 18.11 977.1 2026.0

51 316 23751 684.54 703.49 18.95 63.59 7.85 464.6 882.4

52 316 8855 612.65 705.89 93.25 68.60 15.50 549.3 932.0
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Table 2.10: RBS empirical sampling distribution characteristics by individual tree for RBS

estimates resulting from use of five paths

Tree
id

Species
Code

Total
paths

Actual
wt.

(lbs)

Mean est.
wt.

(lbs) Bias
Std.
err.

MAPE
(%)

Min.
est. wt.

(lbs)

Max.
est. wt.

(lbs)

1 111 53130 410.46 397.30 13.16 13.92 3.82 348.1 443.1

2 111 53130 275.53 279.15 3.62 11.60 3.58 234.5 310.7

3 111 80730 528.34 509.63 18.70 29.69 5.31 405.9 599.7

4 111 501942 911.27 961.77 50.50 92.36 9.37 623.2 1278.0

5 111 42504 544.90 540.19 4.71 29.11 4.36 442.0 633.3

6 111 792 275.55 244.95 30.59 7.97 11.10 221.9 266.5

7 111 42504 903.44 909.07 5.63 18.72 1.75 841.2 965.0

8 111 11628 469.01 492.01 23.00 18.28 5.31 430.1 542.0

9 111 11628 632.04 637.29 5.25 15.30 2.08 581.1 673.2

10 111 2002 366.04 368.17 2.14 9.80 2.23 342.0 394.3

11 111 8568 582.68 586.13 3.45 14.97 2.12 541.6 636.2

12 111 15504 673.39 683.71 10.32 24.20 3.14 608.0 764.8

13 111 6188 611.04 617.33 6.29 18.64 2.59 562.1 677.6

14 111 20349 632.43 648.91 16.48 23.70 3.70 576.3 724.0

15 111 56 323.06 319.83 3.23 2.18 1.04 316.3 324.3

16 111 278256 470.68 489.68 19.01 26.24 5.57 404.1 580.5

17 111 169911 651.24 665.64 14.40 30.66 4.27 537.9 748.4

18 111 80730 586.53 569.52 17.01 20.10 3.66 496.6 635.0

19 111 142506 582.64 564.58 18.06 17.37 3.49 504.6 622.6

20 111 435897 948.65 1003.17 54.52 63.39 7.27 756.7 1191.0

21 111 169911 524.44 525.61 1.17 10.99 1.70 482.0 561.1

22 111 80730 913.61 985.16 71.55 54.70 8.42 776.5 1133.0
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Table 2.10 – continued from previous page

Tree
id

Species
Code

Total
paths

Actual
wt.

(lbs)

Mean est.
wt.

(lbs) Bias
Std.
err.

MAPE
(%)

Min.
est. wt.

(lbs)

Max.
est. wt.

(lbs)

23 111 26334 631.83 650.22 18.39 24.40 3.98 560.5 724.9

24 111 11628 493.66 518.17 24.52 43.66 6.40 453.5 612.5

25 111 53130 514.80 509.00 5.80 13.66 2.28 453.4 542.3

26 111 53130 493.78 496.91 3.12 17.07 2.86 428.7 543.3

27 111 15504 536.97 530.01 6.97 13.50 2.27 487.3 572.2

28 111 20349 502.54 484.47 18.07 14.17 3.88 445.9 534.0

29 111 142506 696.69 800.19 103.50 68.84 15.50 536.5 978.4

30 111 65780 1117.50 1082.19 35.32 16.77 3.16 1015.0 1131.0

31 111 2002 660.09 637.18 22.91 14.39 3.57 596.6 677.9

32 111 15504 1254.02 1224.04 29.97 27.12 2.68 1136.0 1313.0

33 111 8568 901.00 868.61 32.39 22.35 3.75 797.9 935.4

34 111 1287 557.36 520.97 36.38 4.20 6.53 510.8 530.6

35 111 237336 1189.04 1198.98 9.94 60.46 4.15 990.7 1413.0

36 111 53130 884.49 854.85 29.65 29.90 3.94 757.2 962.2

37 111 6188 757.57 733.52 24.05 18.03 3.38 678.9 790.3

38 111 4368 793.60 757.12 36.48 12.25 4.60 722.1 798.9

39 316 33649 1362.28 1311.78 50.50 81.21 5.64 1027.0 1530.0

40 316 33649 1388.34 1269.33 119.00 72.28 8.81 1023.0 1498.0

41 316 11628 3106.75 2904.68 202.07 443.80 12.51 1193.0 3939.0

42 316 26334 1064.34 1289.52 225.18 168.50 22.19 770.4 1886.0

43 316 252 708.05 708.93 0.89 11.42 1.33 682.1 735.8

44 316 252 606.20 619.19 12.99 32.84 4.64 523.8 714.6

45 316 56 802.51 822.78 20.28 42.23 4.64 745.9 926.3
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Table 2.10 – continued from previous page

Tree
id

Species
Code

Total
paths

Actual
wt.

(lbs)

Mean est.
wt.

(lbs) Bias
Std.
err.

MAPE
(%)

Min.
est. wt.

(lbs)

Max.
est. wt.

(lbs)

46 316 169911 814.10 810.05 4.05 107.74 10.37 502.3 1192.0

47 316 6188 489.38 502.09 12.71 47.15 8.11 341.5 613.8

48 316 15504 201.85 191.41 10.43 16.94 7.93 131.4 237.1

49 316 11628 562.47 573.86 11.40 67.61 9.83 354.8 773.9

50 316 11628 1179.81 1378.87 199.06 217.31 17.62 1007.0 1898.0

51 316 118755 684.54 703.49 18.95 55.72 6.95 485.5 871.3

52 316 33649 612.65 705.89 93.25 59.72 15.34 557.0 898.2
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2.9 Appendix D: Standard error and MAPE by species and path

Table 2.11: Standard error by species and path

Species
Code

Path
combination Minimum Mean Maximum Range

111 1 7.88 63.17 221.60 213.72

111 2 4.91 42.85 152.60 147.69

111 3 3.63 34.12 122.80 119.17

111 4 2.81 28.83 104.80 102.00

111 5 2.18 25.12 92.36 90.18

316 1 36.04 266.20 1156.00 1119.96

316 2 23.05 178.50 775.50 752.45

316 3 17.48 140.90 612.80 595.32

316 4 13.99 118.00 513.60 499.61

316 5 11.42 101.70 443.80 432.38
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Table 2.12: Mape(%) by species and path

Species
Code

Path
combination Minimum Mean Maximum Range

111 1 1.65 8.42 24.60 22.95

111 2 1.33 6.13 18.77 17.44

111 3 1.18 5.25 16.81 15.63

111 4 1.09 4.76 15.97 14.88

111 5 1.04 4.44 15.50 14.46

316 1 3.95 19.38 35.00 31.05

316 2 2.67 14.11 26.85 24.18

316 3 2.04 11.88 24.27 22.23

316 4 1.63 10.55 22.93 21.31

316 5 1.33 9.71 22.19 20.86
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Table 2.13: RSE (%) by species and path

Species
Code

Path
combination Minimum Mean Maximum Range

111 1 1.88 8.99 24.68 22.81

111 2 1.33 6.36 17.45 16.12

111 3 1.08 5.19 14.25 13.17

111 4 0.94 4.50 12.34 11.40

111 5 0.84 4.02 11.04 10.20

316 1 4.99 19.57 29.50 24.51

316 2 3.53 13.84 20.86 17.33

316 3 2.88 11.30 17.03 14.15

316 4 2.49 9.79 14.75 12.26

316 5 2.23 8.75 13.19 10.96
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2.10 Appendix E: Relative standard error (RSE) of estimates

Table 2.14: Relative standard error (in percent) of wood and foliage estimates with number

of paths (replications) used on the same tree

RBS paths (replications)

Tree id Species Code Actual weight (lbs) 1 2 3 4 5

1 111 410.46 8.66 6.12 5.00 4.33 3.87

2 111 275.53 10.16 7.18 5.87 5.08 4.54

3 111 528.34 13.44 9.50 7.76 6.72 6.01

4 111 911.27 24.68 17.45 14.25 12.34 11.04

5 111 544.90 12.60 8.91 7.27 6.30 5.63

6 111 275.55 7.20 5.09 4.16 3.60 3.22

7 111 903.44 5.16 3.65 2.98 2.58 2.31

8 111 469.01 8.97 6.34 5.18 4.48 4.01

9 111 632.04 6.19 4.38 3.57 3.10 2.77

10 111 366.04 6.32 4.47 3.65 3.16 2.83

11 111 582.68 6.41 4.53 3.70 3.21 2.87

12 111 673.39 7.93 5.61 4.58 3.96 3.55

13 111 611.04 7.75 5.48 4.48 3.88 3.47

14 111 632.43 8.30 5.87 4.79 4.15 3.71

15 111 323.06 2.40 1.70 1.39 1.20 1.07

16 111 470.68 12.40 8.77 7.16 6.20 5.55

17 111 651.24 12.53 8.86 7.23 6.26 5.60

18 111 586.53 6.45 4.56 3.72 3.23 2.89

19 111 582.64 8.40 5.94 4.85 4.20 3.76

20 111 948.65 15.09 10.67 8.71 7.55 6.75
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Table 2.14 – continued from previous page

RBS paths (replications)

Tree id Species Code Actual weight (lbs) 1 2 3 4 5

21 111 524.44 6.91 4.89 3.99 3.46 3.09

22 111 913.61 14.08 9.96 8.13 7.04 6.30

23 111 631.83 11.74 8.30 6.78 5.87 5.25

24 111 493.66 12.36 8.74 7.14 6.18 5.53

25 111 514.80 7.23 5.11 4.17 3.61 3.23

26 111 493.78 9.22 6.52 5.32 4.61 4.12

27 111 536.97 6.35 4.49 3.66 3.17 2.84

28 111 502.54 7.35 5.20 4.24 3.68 3.29

29 111 696.69 22.41 15.84 12.94 11.20 10.02

30 111 1117.50 4.25 3.01 2.45 2.13 1.90

31 111 660.09 5.24 3.70 3.02 2.62 2.34

32 111 1254.02 5.19 3.67 2.99 2.59 2.32

33 111 901.00 6.03 4.26 3.48 3.01 2.69

34 111 557.36 1.87 1.33 1.08 0.94 0.84

35 111 1189.04 12.41 8.77 7.16 6.20 5.55

36 111 884.49 8.02 5.67 4.63 4.01 3.59

37 111 757.57 5.73 4.05 3.31 2.86 2.56

38 111 793.60 4.18 2.95 2.41 2.09 1.87

39 316 1362.28 12.90 9.12 7.45 6.45 5.77

40 316 1388.34 9.69 6.85 5.59 4.84 4.33

41 316 3106.75 25.74 18.20 14.86 12.87 11.51

42 316 1064.34 27.96 19.77 16.14 13.98 12.50

43 316 708.05 4.99 3.53 2.88 2.49 2.23
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Table 2.14 – continued from previous page

RBS paths (replications)

Tree id Species Code Actual weight (lbs) 1 2 3 4 5

44 316 606.20 17.04 12.05 9.84 8.52 7.62

45 316 802.51 14.72 10.41 8.50 7.36 6.58

46 316 814.10 27.93 19.75 16.13 13.97 12.49

47 316 489.38 29.50 20.86 17.03 14.75 13.19

48 316 201.85 25.11 17.75 14.50 12.55 11.23

49 316 562.47 24.32 17.20 14.04 12.16 10.88

50 316 1179.81 19.30 13.65 11.14 9.65 8.63

51 316 684.54 18.63 13.17 10.76 9.31 8.33

52 316 612.65 16.20 11.46 9.36 8.10 7.25

Average 738.18 11.84 8.38 6.84 5.92 5.30
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2.11 Appendix F: Total abooveground biomass using RBS and RBS with IS

Table 2.15: Total aboveground biomass using RBS

Tree
id

Species
Code

Number of
paths

Actual
weight (lbs)

Estimated
weight (lbs) RMSE

Percent
error

1 111 2 420.62 378.20 61.40 14.60

2 111 2 281.49 253.10 31.17 11.07

3 111 2 541.41 541.62 6.67 1.23

4 111 2 931.90 985.85 178.99 19.21

5 111 2 558.68 531.62 54.87 9.82

6 111 2 281.78 269.42 12.36 4.39

7 111 2 918.70 926.98 50.25 5.47

8 111 2 478.70 423.31 57.67 12.05

9 111 2 646.12 625.18 38.18 5.91

10 111 2 373.15 365.64 12.84 3.44

11 111 2 595.46 533.39 62.11 10.43

12 111 2 688.90 650.46 61.50 8.93

13 111 2 623.95 589.10 37.11 5.95

14 111 2 647.12 572.91 77.28 11.94

15 111 2 330.35 323.60 6.92 2.10

16 111 2 480.21 469.28 26.18 5.45

17 111 2 664.83 562.15 102.68 15.44

18 111 2 597.43 583.11 19.25 3.22

19 111 2 594.98 522.40 73.72 12.39

20 111 2 968.36 845.70 131.57 13.59

21 111 2 535.75 532.73 8.12 1.52

22 111 2 935.28 793.99 144.01 15.40
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Table 2.15 – continued from previous page

Tree
id

Species
Code

Number of
paths

Actual
weight (lbs)

Estimated
weight (lbs) RMSE

Percent
error

23 111 2 645.32 618.86 102.63 15.90

24 111 2 505.16 518.23 13.07 2.59

25 111 2 525.96 528.17 9.18 1.75

26 111 2 504.33 495.55 45.86 9.09

27 111 2 547.94 506.54 41.42 7.56

28 111 2 514.41 501.23 39.32 7.64

29 111 2 708.95 974.17 266.39 37.58

30 111 2 1142.31 1106.10 45.84 4.01

31 111 2 674.73 667.22 63.34 9.39

32 111 2 1280.20 1233.34 51.39 4.01

33 111 2 919.29 875.18 63.08 6.86

34 111 2 570.17 522.21 48.01 8.42

35 111 2 1215.50 1069.72 176.98 14.56

36 111 2 903.71 980.15 77.23 8.55

37 111 2 775.16 695.21 80.01 10.32

38 111 2 811.57 810.45 2.85 0.35

39 316 3 1391.96 1130.00 274.96 19.75

40 316 3 1419.66 1431.34 93.07 6.56

41 316 3 3161.20 3307.34 146.34 4.63

42 316 3 1086.92 974.65 187.52 17.25

43 316 3 726.68 689.95 54.06 7.44

44 316 3 619.12 706.53 92.80 14.99

45 316 3 820.35 832.42 12.07 1.47

46 316 3 830.96 1156.63 601.04 72.33
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Table 2.15 – continued from previous page

Tree
id

Species
Code

Number of
paths

Actual
weight (lbs)

Estimated
weight (lbs) RMSE

Percent
error

47 316 3 497.78 487.56 159.14 31.97

48 316 3 205.65 222.70 60.61 29.47

49 316 3 572.33 537.82 69.95 12.22

50 316 3 1212.29 1297.44 295.14 24.35

51 316 3 701.25 620.28 199.75 28.48

52 316 3 624.17 560.68 152.72 24.47

Total 39210.21 38337.41 149.04 0.38
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Table 2.16: Total aboveground biomass using RBS and IS

Tree
id

Species
Code

Number of
paths

Actual
weight (lbs)

Estimated
weight (lbs) RMSE

Percent
error

1 111 2 420.62 534.84 114.92 27.32

2 111 2 281.49 444.81 167.65 59.56

3 111 2 541.41 700.86 159.59 29.48

4 111 2 931.90 926.50 273.20 29.32

5 111 2 558.68 773.61 216.99 38.84

6 111 2 281.78 330.23 48.44 17.19

7 111 2 918.70 1052.96 137.55 14.97

8 111 2 478.70 612.30 134.14 28.02

9 111 2 646.12 797.73 171.86 26.60

10 111 2 373.15 449.63 78.98 21.16

11 111 2 595.46 723.37 128.60 21.60

12 111 2 688.90 862.53 175.42 25.46

13 111 2 623.95 703.81 80.20 12.85

14 111 2 647.12 732.24 86.92 13.43

15 111 2 330.35 406.76 76.51 23.16

16 111 2 480.21 711.25 232.05 48.32

17 111 2 664.83 902.92 238.10 35.81

18 111 2 597.43 720.70 123.92 20.74

19 111 2 594.98 876.47 364.47 61.26

20 111 2 968.36 975.10 118.05 12.19

21 111 2 535.75 558.31 468.60 87.47

22 111 2 935.28 1090.47 156.12 16.69

23 111 2 645.32 732.56 128.76 19.95
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Table 2.16 – continued from previous page

Tree
id

Species
Code

Number of
paths

Actual
weight (lbs)

Estimated
weight (lbs) RMSE

Percent
error

24 111 2 505.16 773.85 268.69 53.19

25 111 2 525.96 736.76 210.92 40.10

26 111 2 504.33 690.84 188.51 37.38

27 111 2 547.94 688.14 140.21 25.59

28 111 2 514.41 663.59 154.57 30.05

29 111 2 708.95 965.14 450.30 63.52

30 111 2 1142.31 1452.38 310.37 27.17

31 111 2 674.73 929.32 267.44 39.64

32 111 2 1280.20 1582.57 302.39 23.62

33 111 2 919.29 1223.42 317.55 34.54

34 111 2 570.17 787.50 219.32 38.47

35 111 2 1215.50 1583.93 368.90 30.35

36 111 2 903.71 1270.18 367.13 40.63

37 111 2 775.16 956.32 181.25 23.38

38 111 2 811.57 1035.95 224.43 27.65

39 316 3 1391.96 1656.51 395.63 28.42

40 316 3 1419.66 1439.68 101.18 7.13

41 316 3 3161.20 3574.23 416.61 13.18

42 316 3 1086.92 1130.77 115.96 10.67

43 316 3 726.68 773.86 60.61 8.34

44 316 3 619.12 803.30 186.02 30.05

45 316 3 820.35 912.50 92.15 11.23

46 316 3 830.96 1437.00 902.69 108.63

47 316 3 497.78 473.21 205.53 41.29
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Table 2.16 – continued from previous page

Tree
id

Species
Code

Number of
paths

Actual
weight (lbs)

Estimated
weight (lbs) RMSE

Percent
error

48 316 3 205.65 170.63 99.62 48.44

49 316 3 572.33 589.74 46.66 8.15

50 316 3 1212.29 1472.43 423.41 34.93

51 316 3 701.25 435.76 475.87 67.86

52 316 3 624.17 475.28 203.98 32.68

Total 39210.21 47304.74 279.24 0.71
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Chapter 3

ADDITIVE EXPLICIT INDIVIDUAL TREE BIOMASS PREDICTION

FUNCTIONS FOR RED MAPLE AND SLASH PINE

3.1 Introduction

Forests are a major part of global the carbon (C) cycle and forest management practices

can influence the concentration of the greenhouse gases such as CO2, in the atmosphere

(Houghton and Woodwell 1989). Forest ecosystems store large amounts of carbon in solid

wood and other organic matter. Studies have shown that management activities such as

afforestation, fertilization, and prescribed burning have increased the amount of C residing

in forests (Tans et al. 1990, Cias et al. 1995, Pacala et al. 2001). Over the past four decades,

various studies on forest biomass have been conducted to better understand timber pro-

duction potential, ecosystem productivity, energy and nutrient flow, and forestland contri-

bution to the global carbon cycle (Zeide 1987; Waring and Running 1998; Parresol 1999).

Researchers have focused on carbon (C) stocks in forests because forest ecosystems are the

main terrestrial sinks for C (Murias et al. 2006).

Recently, interest in estimating individual tree and stand biomass has increased due to

increased concern about using biomass for fuel, energy and carbon sequestration around the

world. Quantification of forest biomass is important in evaluating the total carbon stock

and fluxes in forests (Brown 1997, Navar 2009), amount of energy available from forests

as an alternative source to fossil fuels (Richardson et al. 2002), as well as other goods and

services from forests. Zianis and Mencuccini (2003) point out that forest biomass is a crucial

factor for several ecological and eco-physiological models. Appropriate modeling strategies are

113



necessary to obtain reliable estimates of forest biomass. Individual tree biomass equations

, based on dendrometric tree measurements, underpin estimates of aboveground biomass

components (bole wood, foliage, and branches) and total tree biomass.

The most common method used in estimating individual tree and stand biomass is by

application of allometric equations (Brown et al. 1989, Chave et al. 2001, 2003, Navar 2009).

Functions, for example Equation 3.1, that calibrate relationship between plant biomass and

one or more tree size variates (eg. stem diameter or height) are sometimes called allometric

relationships (West 2009). A classic and widely used allometric equation of nonlinear form

is

Y = αDbhβ (3.1)

Tree biomass component Y is estimated based on an easily measured variable such as

diameter at breast height (Dbh). In Equation 3.1 α and β are scalar coefficients which are

typically estimated using least square techniques with appropriate data.

Many researchers use the logarithmic form of the Equation 3.1 (Martin et al. 1998) i.e.

the regression parameters lneα (or log10α) and β are estimated using linear regression applied

to the logarithm of biomass and Dbh values.

In general, biomass regression models are constructed for total aboveground biomass, and

tree components such as stem wood, stem bark, crown (branches and foliage), foliage, stump

and roots. Separate equations (univariate models) for each of the components have been

used to estimate and predict biomass. Often, models for each of the components is fitted

separately and parameters are estimated by ordinary least squares (OLS) (e.g. Brenneman

et al. 1978, Bridge 1979, Freedman et al. 1982, Ker 1984). A fundamental assumption in OLS

is the error terms of various component models are independent to each other. However, tree

biomass components are not independent of one another and hence it is likely that error

components of various prediction functions are, in fact, not independent but are correlated

with one another.
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Zellner (1962) developed the seemingly unrelated regression (SUR) estimator which

accounts for contemporaneous correlations (group of equations that share a common error

structure and have non-zero covariance is known to have contemporaneous correlations)

among error components for individual equations within the system of equations of interest.

In SUR, parameters of the system of equations involved are estimated simultaneously.

Equation 3.2 presents a typical SUR system in linear form (Borders 1989)

Y1 = β10 + β11X1 + β12X2 + ε1, ε1 ∼ N(0,σ21)

Y2 = β20 + β21X3 + β22X4 + ε2, ε2 ∼ N(0,σ22)

Y3 = β30 + β31X5 + β32X6 + ε3, ε3 ∼ N(0,σ23) (3.2)

In Equation 3.2, no analytical relationships exists between equations. When the covariance

term i.e. cov(εi, εj) = 0 then no relationship exist between between i and j. But, in the case

of correlated error components i.e. some cov(εi, εj) 6= 0, the equations are considered to be

dependent on one another which is also known as presence of cross-equation correlations. In

such case, Borders (1989) suggested Zellner’s (1962) three-step fitting procedure to estimate

the parameters associated with the equations.

Additivity of biomass is an important property in tree level biomass modeling. When

modeling total tree and biomass components, we expect that predicted total tree biomass

should equal the sum of the predicted biomass of components. This additivity can be guar-

anteed using SUR (Parresol 1999, 2001).

In this study, our main objective is to develop additive biomass models for slash pine

and red maple. In addition, we compare systems of equations developed using Dbh only,

Dbh and total tree height, Dbh, total tree height and diameter at the base of live crown

as independent variables, for both species. Finally, biomass predictions from the component

ratio method (CRM; Heath et al. 2009, Woodall et al. 2010), which is the biomass estimation

approach used by the USDA Forest Service Forest Inventory and Analysis program (FIA),

is compared with the prediction from the fitted systems of equations.
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3.2 Materials and methods

3.2.1 Data

Two data sets were used separately, to develop systems of individual tree biomass equations

for red maple and slash pine species. The first data, UGA data, consisted of 38 slash pine and

13 red maple trees. Trees in this study were destructively sampled and intensively measured.

Pertinent measurements for biomass calculation and modeling include diameter at breast

height (Dbh) (0.1 inch), total tree height (0.1 foot), height to live crown (0.1 foot), diameter

outside bark at ground line, stump height, 2.75 feet, 4.5 feet, 8 feet and then every 4 feet up

the stem (0.1 inch). The stem was then sectioned at 4.5 feet, 8 feet and every 8 feet up the

bole until a minimum dob of 4 inches. Each section was weighed. A disk was removed from

the base of each bolt. All disks were weighted green with and without bark, had diameter

measured with and without bark and then debarked disks were soaked until saturation.

Saturated disk volume was determined using water displacement and then disks were dried

at 105◦ C until weight change stopped. Additionally, a sample of bark from each disk was

selected, weighed green, saturated and had its volume determined using water displacement

and finally dried to constant weight at 105◦ C. All first order stem branches were measured

for diameter at the base of the branch, branch length and weighed with foliage. Foliage

was then removed and weighed separately or a subsample of foliage was taken. On some

trees all branches and foliage was dried to constant weight at 105◦ C. Some trees had a

representative sample of branches and foliage dried to constant weight at 105◦ C. These

measurements on branch including sub-sample measurements were used to calculate total

green weight of branch and foliage, separately for each branch in a tree.

For N branches on a tree, total green weight of branch and foliage at a tree level was

calculated as
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TGBF =
N∑
i=1

GBFi
(3.3)

where TGBF is total green of weight branch and foliage , GBFi
is green weight of branch and

foliage for branch i = 1, 2,. . . , N.

For n sub-sample branches on a tree, green weight of foliage and green weight of branch

were calculated as

ĜFi
= DFi

(
GFSSi

DFSSi

) and

ĜBi
= GBFi

– ĜFi
(3.4)

where ĜFi
and ĜBi

are total estimated green weight of branch and green weight of foliage

of branch i, respectively. GFSSi and DFSSi are green and dry weight of foliage sub-sample of

branch i, respectively. DFi
is dry weight of foliage of a branch i and GBFi

is green weight of

wood and foliage of a branch i. There are i = 1, 2, . . ., n sub-sample branches on a tree.

For the branches that were not sub-sampled, we have the following information available:

GBFi
= green weight of branch and foliage for branch i

BDi
= basal diameter (0.1 inch) of branch i

BLi = length (0.1 foot) of branch i

We also have this information available for all sub-sampled branches in addition to DBi

and DFi
. To obtain the estimated values of DBi

(Dry branch), DFi
(Dry foliage), GBi

(Green

branch) and GFi
(Green foliage) for non-subsample branches we used the ratios:

DBi
GBFi

,
DFi
GBFi

,

GBi
GBFi

,
GFi
GBFi

, respectively. For trees with large variation in branch size, we calculated the

green weight of a branch (without foliage) using weighted ratio:

WR=

∑n
i=1(

GBi
GBFi

)(D2
i Li)∑n

i=1(D
2
i Li)

and
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ĜBi
= GBFi

× (WR) where, WR is the weighted ratio, D and L are diameter at base and

length of branch, respectively, and others are as described above.

Sample tree characteristics for two species available for biomass modeling work from UGA

study are presented in Table 3.1 . Thirteen red maple trees ranging in Dbh from about 5 to

11 inches and ranging in Ht from about 39 to 74 ft, and 38 slash pine trees ranging in Dbh

from about 6 to 10 inches and ranging in Ht from about 44 to 82 ft were used for biomass

modeling work. Number of trees by one inch Dbh class for red maple and slash pine are

presented in Figures 3.1 and 3.2, respectively.

Table 3.1: Sample tree characteristics for UGA data available for biomass modeling

Dbh (inch) Tree height (ft)

Species No. of trees min mean max min mean max

Red maple 13 4.8 8.6 11 38.7 57.2 73.6

Slash pine 38 5.60 7.80 10.10 44.30 60.2 81.6

Figure 3.1: Data distribution by 1 inch Dbh class for red maple - UGA data
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Figure 3.2: Data distribution by 1 inch Dbh class for slash pine - UGA data

The second data set, we call it Legacy data, is comprised of biomass data from various

studies in the past. Legacy data are compiled within Forest Inventory and Analysis Program

(FIA) biomass project by Phil Radtkey and David Walker of Virginia Tech. Red maple trees

used in this study were gathered from studies conducted by Briggs et al. (1989), Clark et al.

(1985, 86a, 86b, 86c), and Martin et al. (1998). Out of 136 red maple trees, 16 trees were

taken from Briggs et al. (1988), 111 were taken from Clark et al. (1985, 86a, 86b, 86c), and

9 were taken from Martin et al. (1998) studies. These studies covered 15 locations in the

north east and southern part of the U.S, ranging from New York to Florida. Whereas, 10

slash pine trees were obtained from a biomass study conducted by Garbett (1977).

For red maple, 136 trees ranging in Dbh from about 5 to 21 inches and ranging in Ht

from about 40 to 110 ft and for slash pine 10 trees ranging in Dbh from about 5 to 13 inches

and ranging in Ht from about 44 to 72 ft were used for biomass modeling work (Table 3.2).

We excluded observations with Dbh less than and equal to 4.5 inches from the original

Legacy data.
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Table 3.2: Sample tree characteristics for Legacy data available for biomass modeling

Dbh (inch) Tree height (ft)

Species No. of trees min mean max min mean max

Red maple 136 4.7 9.2 20.6 40 66.5 110.1

Slash pine 10 4.6 7.9 12.3 44.3 56.4 71.9

Figure 3.3: Data distribution by 1 inch Dbh class for red maple - Legacy data

Figure 3.4: Data distribution by 1 inch Dbh class for slash pine - Legacy data
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3.2.2 Statistical Analysis

We first, investigated appropriate independent variables for each biomass component using

nonlinear regression. The parameters in the component models were estimated using ordi-

nary least squares method (OLS). At this stage, an appropriate weight function if needed

was used to stabilize the variance. The final biomass component equations were then fitted

simultaneously using nonlinear seemingly unrelated regression (NSUR) with additive error

terms in all equations. The underlying biomass equation structure was developed using the

form (Parresol 1999)

Y = exp(β0)x
β1
1 x
β2
2 . . . x

βn
n + ε (3.5)

The system of equations was fitted following the procedure described by Borders (1989).

Borders (1989) suggested following a 3-step fitting procedure to estimate coefficients in

system of equations when we have models that are recursive in nature (sequential rela-

tionships between some equations) but which also have intercorrelated error components:

1. Coefficients of individual equations are estimated by applying a two-stage instrumental

variable technique.

2. Residuals are obtained from step 1 and are used to estimate the cross-equation covari-

ance matrix.

3. Generalized least-squares approach is applied to account for correlated error compo-

nents.

Borders (1989) further described that the first step is implemented by fitting the equa-

tions that do not consist of Right Hand Side (RHS) endogenous variables using OLS. Next,

equations with RHS endogenous variables are fitted with OLS and using predicted values

of RHS endogenous variables in place of observed values. This procedure is known as an
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instrumental variable technique. This technique is important as it removes endogeneity from

the RHS endogenous variables (Fox 1968). Steps 2 and 3 are implemented using Zellner

estimation.

The structural equations that comprise of the system of nonlinear models is specified as

y1 = f1(X1, β1) + ε1

y2 = f2(X2, β2) + ε2

...

yk = fk(Xk, βk) + εk

ytotal = ftotal(X1, X2, . . . , Xk, β1, β2, . . . , βk) + εtotal (3.6)

where y1 to yk are 1 to k biomass components, respectively, and ytotal is total biomass,

X1 to Xk are predictor variables (tree dimension variables), βs are regression parameters to

be estimated and ε is error term which is identically and independently distributed with

ε
iid∼ N(0,σ2).

Statistical Analysis System (SAS) (SAS 2013) was used to implement fitting procedures.

Nonlinear fitting procedure for individual components was carried out with the NLIN pro-

cedure and the system of equations fit was implemented using the MODEL procedure. R (R

2013) statistical analysis software was also used for data management and graphical analysis.

We used University of Georgia and Legacy data separately for both species to build

models for estimating biomass components. Three types of models which are based on (1)

Dbh, (2) Dbh and Ht, and (3) Dbh, Ht and Dcrn were selected and fitted for red maple and

slash pine UGA data. These three system of equations were compared using (1) Average

residual (AR) (2) Average percent residual (APR) (3) Average absolute residual (AAR)

(4) Average absolute percent residual (AAPR) (5) Root mean square error (RMSE) and (6)

Percent variance explained (PVE). AR measures average bias in prediction. This indicates the
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expected error in prediction when several observations are to be combined by averaging. The

AAR measures accuracy in model prediction. This signifies the average error from prediction

of any one observation (Burk 1986). RMSE, square root of MSE, is the standard deviation of

prediction error for unbiased models (Burk 1986). It is a measure of average deviation. PVE

measures the goodness of fit of the model. It actually measures how well the fit accounts for

the variation in the data. It is a measure similar to fit index or R2.

AR =

∑n
i (yi – ŷi)

n

APR =

∑n
i (yi–ŷiyi

× 100)

n

AAR =

∑n
i |(yi – ŷi)|

n

AAPR =

∑n
i (
|(yi–ŷi)|

yi
× 100)

n

RMSE =

√√√√ n∑
i

(yi – ŷi)
2

n

PVE = (1 –

∑n
i (yi – ŷi)

2∑n
i (yi – ȳ)2

)× 100 (3.7)

where, yi refers to the observed ith response value (observed dry weight of components), ŷi

is the corresponding predicted response value, and n is the number of observations.

Dbh, and Dbh and Ht based models were used for both species from legacy data. Since

Dcrn variable was not available in the Legacy data we could not use it to develop equations

that use this information to predict tree biomass. Following are the best selected system of

equations based on Dbh, on Dbh and Ht and on Dbh, Ht and Dcrn for red maple and slash

pine trees.
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3.2.2.1 System of equations for red maple - UGA data

A Dbh only based equation is the simplest equation form for modeling biomass components.

The final system based on Dbh only for red maple from the UGA data is:

YStemwood = Dbhβ11 + εStemwood

YStembark = Dbhβ21 + εStembark

YBranch = Dbhβ31 + εBranch

YFoliage = Dbhβ41 + εFoliage

YStem = Dbhβ11 + Dbhβ21 + εStem

YCrown = Dbhβ31 + Dbhβ41 + εCrown

YTotaltree = Dbhβ11 + Dbhβ21 + Dbhβ31 + Dbhβ41 + εTotaltree (3.8)

where, left hand side of equations are tree biomass components in pounds (lbs), βs are

unknown regression parameters and Dbh is independent variable. This system of equations

ensures that the stem biomass is the sum of stem wood and bark biomass. Similarly, crown

biomass is the sum of branch and foliage biomass and the total tree biomass is the sum of

all components.
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In Equation 3.9, we used both Dbh and tree total height (Ht). Everything else is same

as defined in Equation 3.8.

YStemwood = exp(β10)Dbhβ11Htβ12 + εStemwood

YStembark = exp(β20)Dbhβ21Htβ22 + εStembark

YBranch = (Dbh2Ht)β32 + εBranch

YFoliage = (Dbh2Ht)β42 + εFoliage

YStem = exp(β10)Dbhβ11Htβ12 + exp(β20)Dbhβ21Htβ22 + εStem

YCrown = (Dbh2Ht)β32 + (Dbh2Ht)β42 + εCrown

YTotaltree = exp(β10)Dbhβ11Htβ12

+exp(β20)Dbhβ21Htβ22

+(Dbh2Ht)β32 + (Dbh2Ht)β42 + εTotaltree (3.9)

Equation 3.10 is a more complex model than the models above. It consists of Dbh, Ht

and Dcrn as independent variables.

YStemwood = exp(β10)(Dbh2Ht)β11 + εStemwood

YStembark = exp(β20)(Dbh2Ht)β21 + εStembark

YBranch = Dcrnβ30Htβ31 + εBranch

YFoliage = (Dbh2Ht)β40 + εFoliage

YStem = exp(β10)(Dbh2Ht)β11 + exp(β20)(Dbh2Ht)β21 + εStem

YCrown = Dcrnβ30Htβ31 + (Dbh2Ht)β40 + εCrown

YTotaltree = exp(β10)(Dbh2Ht)β11 + exp(β20)(Dbh2Ht)β21

+Dcrnβ30Htβ31 + (Dbh2Ht)β40 + εTotaltree (3.10)
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3.2.2.2 System of equations for slash pine - UGA data

For slash pine , the following Dbh based system was selected:

YStemwood = Dbhβ11 + εStemwood

YStembark = exp(β20)Dbhβ21 + εStembark

YBranch = exp(β30)Dbhβ31 + εBranch

YFoliage = exp(β40)Dbhβ41 + εFoliage

YStem = Dbhβ11 + exp(β20)Dbhβ21 + εStem

YCrown = exp(β30)Dbhβ31 + exp(β40)Dbhβ41 + εCrown

YTotaltree = Dbhβ11 + exp(β20)Dbhβ21 + exp(β30)Dbhβ31

+exp(β40)Dbhβ41 + εTotaltree (3.11)

Equation 3.12 was selected as Dbh and Ht based system of equations.

YStemwood = exp(β10)Dbhβ11Htβ12 + εStemwood

YStembark = β20Dbhβ21Htβ22 + εStembark

YBranch = DBHβ31Htβ32 + εBranch

YFoliage = exp(β40)Dbhβ41Htβ42 + εFoliage

YStem = exp(β10)Dbhβ11Htβ12 + β20Dbhβ21Htβ22 + εStem

YCrown = DBHβ31Htβ32 + exp(β40)Dbhβ41Htβ42 + εCrown

YTotaltree = exp(β10)Dbhβ11Htβ12 + β20Dbhβ21Htβ22

+DBHβ31Htβ32 + exp(β40)Dbhβ41Htβ42 + εTotaltree (3.12)
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Equation 3.13 is a more complex model than the previous models. It consists of Dcrn as

an additional variable in the model.

YStemwood = exp(β10)Dbhβ11Htβ12 + εStemwood

YStembark = β20(Dbh2Ht)β21 + εStembark

YBranch = exp(β30)Dcrnβ31 + εBranch

YFoliage = exp(β40)Dcrnβ41 + εFoliage

YStem = exp(β10)Dbhβ11Htβ12 + β20(Dbh2Ht)β21 + εStem

YCrown = exp(β30)Dcrnβ31 + exp(β40)Dcrnβ41 + εCrown

YTotaltree = exp(β10)Dbhβ11Htβ12 + β20(Dbh2Ht)β21

+exp(β30)Dcrnβ31 + exp(β40)Dcrnβ41 + εTotaltree (3.13)

3.2.2.3 System of equations for Red maple and slash pine - legacy data

For red maple from Legacy data, the following Dbh based system was selected:

YStemwood = exp(β10)Dbhβ11 + εStemwood

YStembark = exp(β20)Dbhβ21 + εStembark

YBranch = exp(β30)Dbhβ31 + εBranch

YFoliage = exp(β40)Dbhβ41 + εFoliage

YStem = exp(β10)Dbhβ11 + exp(β20)Dbhβ21 + εStem

YCrown = exp(β30)Dbhβ31 + exp(β40)Dbhβ41 + εCrown

YTotaltree = exp(β10)Dbhβ11 + exp(β20)Dbhβ21

+exp(β30)Dbhβ31 + exp(β40)Dbhβ41 + εTotaltree (3.14)

The following Dbh and Ht based system was selected
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YStemwood = exp(β10)Dbhβ11Htβ12 + εStemwood

YStembark = exp(β20)Dbhβ21Htβ22 + εStembark

YBranch = exp(β30)Dbhβ31 + εBranch

YFoliage = exp(β40)Dbhβ41 + εFoliage

YStem = exp(β10)Dbhβ11Htβ12 + exp(β20)Dbhβ21Htβ22 + εStem

YCrown = exp(β30)Dbhβ31 + exp(β40)Dbhβ41 + εCrown

YTotaltree = exp(β10)Dbhβ11Htβ12 + exp(β20)Dbhβ21Htβ22

+exp(β30)Dbhβ31 + exp(β40)Dbhβ41 + εTotaltree (3.15)

For slash pine from Legacy data, the following Dbh based system was selected

YStemwood = β10Dbhβ11 + εStemwood

YStembark = β20Dbhβ21 + εStembark

YBranch = Dbhβ31 + εBranch

YFoliage = Dbhβ41 + εFoliage

YStem = β10Dbhβ11 + β20Dbhβ21 + εStem

YCrown = Dbhβ31 + Dbhβ41 + εCrown

YTotaltree = β10Dbhβ11 + β20Dbhβ21

+Dbhβ31 + Dbhβ41 + εTotaltree (3.16)
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The following Dbh and Ht based system was selected

YStemwood = exp(β10)Dbhβ11Htβ12 + εStemwood

YStembark = (Dbh2Ht)β21 + εStembark

YBranch = exp(β30)Dbhβ31 + εBranch

YFoliage = Dbhβ41Htβ42 + εFoliage

YStem = exp(β10)Dbhβ11Htβ12 + (Dbh2Ht)β21 + εStem

YCrown = exp(β30)Dbhβ31 + Dbhβ41Htβ42 + εCrown

YTotaltree = exp(β10)Dbhβ11Htβ12 + (Dbh2Ht)β21

+exp(β30)Dbhβ31 + Dbhβ41Htβ42 + εTotaltree (3.17)

3.2.3 Component ration method (CRM)

In addition to system of equations fits, we used the component ratio method (CRM) to

estimate total tree and component biomass. Procedures described in Woodall et al. (2010)

were used to implement CRM for both red maple and slash pine for UGA and legacy data.

CRM is used by the USDA Forest Service Forest Inventory and Analysis Program (FIA) to

generate biomass estimates. This method generates biomass estimates by conversion of cubic

volume estimates and specific gravity and other information for branches, stems, bark and

stumps. CRM consists of a seven major steps (Woodall et al. 2010):

1. measure tree variables in the field

2. compute gross cubic-foot volume (VOLCFGRS) by using those tree measurements and

the appropriate volume model

3. compute sound cubic-foot volume (VOLCFSND) of wood in the bole by using VOL-

CFGRS
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4. convert VOLCFSND to mass and estimate bark biomass by utilizing already complied

sets of specific gravity (Miles and Smith 2009)

5. estimate tops and limb biomass as a proportion of the bole based on Jenkins et al.

(2003)

6. estimate stump volume based on equations from Raile (1982) and convert it to stump

biomass

7. estimate total aboveground biomass by summing all aboveground components biomass

Complete procedure of biomass calculation for all sapling, pole and sawtimber by species

type, growing condition and region are provided in Woodall et al. (2010).

3.3 Results and Discussion

All component models by species, were fitted using nonlinear seemingly unrelated regression.

Appropriate weight for each component model was investigated and used if necessary to

account for variance heterogeneity in the data. For UGA data, we had very small sample

size for both species. We could not find heterogeneity in variance related to tree size such

as Dbh , and Ht, hence no weight function was used to stabilize the variance. However, for

Legacy data, heterogeneity of variance was apparent and appropriate weight functions were

required for most of the components of both species to stabilize the variance.

3.3.1 Red maple - UGA data

All parameters in the Dbh only based system are significantly different from zero at α=0.05

level (Table 3.3). Statistical significance of all parameters indicate that Dbh is important in

predicting biomass components. Additionally, the positive coefficient of Dbh for all compo-

nent equations clearly indicate that the biomass component increases with increase in Dbh.

Residual plots (Figures 3.5, and3.6) show that the model fits the data well.
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Table 3.3: Parameter estimates, standard errors and test statistics of Dbh based biomass

equation fitted in the system of equations (3.8) for red maple - UGA data

Parameter
Parameter associated

with Estimate
Standard

error t-value p-value

ˆβ11 Dbh 2.58 0.019 37.44 <0.0001

ˆβ21 Dbh 2.06 0.037 56.25 <0.0001

ˆβ31 Dbh 1.99 0.065 30.43 <0.0001

ˆβ41 Dbh 1.07 0.054 19.89 <0.0001

(a) Residual vs predicted crown (b) Residual vs Dbh

Figure 3.5: Residual plot of crown - Dbh only based system
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(a) Residual vs predicted stem (b) Residual vs Dbh

Figure 3.6: Residual plot of stem - Dbh only based system

Parameter estimates and their test statistics show that tree height is an important variate

for stem equations (Table 3.4). This finding is similar to Lamber et al. (2005) and Bi et

al. (2004) where they found tree height was an important variable for stem equations but

not for crown equations. Dbh and Ht are positively related with stemwood, bark and total

stem biomass (refer Equation 3.9 and Table 3.4) . This implies, for the same Dbh, the

total stem biomass increases with increase in tree total height (a logical result). For some

components, such as branch and foliage, combination of Dbh and Ht (Dbh2Ht) is significant.

The distribution of residuals show that the model fits the data well (Figures 3.7, and 3.8).
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Table 3.4: Parameter estimates, standard errors and test statistics of Dbh and Ht based

biomass equation fitted in the system of equations (3.9) for red maple - UGA data

Parameter
Parameter associated

with Estimate
Standard

error t-value p-value

ˆβ10 -2.46 0.868 -2.84 0.0162

ˆβ11 Dbh 2.22 0.274 8.10 <0.0001

ˆβ12 Ht 0.80 0.229 3.49 0.0050

ˆβ20 -6.19 1.668 -3.71 0.0034

ˆβ21 Dbh 3.03 0.576 5.26 0.0003

ˆβ22 Ht 0.97 0.411 2.35 0.0384

ˆβ32 Dbh2Ht 0.52 0.017 30.26 <0.0001

ˆβ42 Dbh2Ht 0.28 0.016 17.05 <0.0001

(a) Residual vs predicted crown (b) Residual vs Dbh

Figure 3.7: Residual plot of crown - Dbh and Ht based system
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(a) Residual vs predicted stem (b) Residual vs Dbh

Figure 3.8: Residual plot of stem - Dbh and Ht based system

The most complex system of equations 3.10 uses Dcrn as an additional variable. Dcrn

did not enter all components equations. It was significant in predicting branch and crown

biomass but not for predicting stem wood and stem bark biomass. The positive coefficient

of Dcrn implies that for the same height, if diameter at the base of crown increases then a

tree contains more branch and crown biomass. It is evident from the residual plots that the

model satisfies the usual regression assumption of homogeneity of variance (Figures 3.9, and

3.10) and fits the data well.
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Table 3.5: Parameter estimates, standard errors and test statistics of Dbh, Ht and Dcrn

based biomass equation fitted in the system of equations (3.10) for red maple - UGA data

Parameter
Parameter associated

with Estimate
Standard

error t-value p-value

ˆβ10 -2.40 0.718 -3.33 0.0059

ˆβ11 Dbh2Ht 0.95 0.082 11.64 <0.0001

ˆβ20 -5.76 1.289 -4.46 0.0008

ˆβ21 Dbh2Ht 1.20 0.147 8.22 <0.0001

ˆβ30 Dcrn 1.14 0.453 2.51 0.0272

ˆβ31 Ht 0.56 0.224 2.49 0.0286

ˆβ40 Dbh2Ht -0.51 0.029 -17.59 <0.0001

(a) Residual vs predicted crown (b) Residual vs Dbh

Figure 3.9: Residual plot of crown - Dbh, Ht, and Dcrn based system
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(a) Residual vs predicted stem (b) Residual vs Dbh

Figure 3.10: Residual plot of stem - Dbh, Ht, and Dcrn based system

Since Dcrn is not always available in mensurational data, a simple function to predict

Dcrn based on Dbh was developed for red maple (Equation 3.18).

ˆDcrn = 2.81 + 0.45Dbh (3.18)

R2 value for Equation 3.18 was 0.35.

3.3.1.1 Model comparison : red maple (UGA data)

For Dbh only system, the average bias in prediction (AR) is not large (Table 3.6). Bark, stem

and foliage were over-predicted whereas, branch, crown and total were under-predicted. We

find larger percent average bias (APR) for predicting bark (-20.2%), branch (-18.6%) and

foliage (-64.97%) components. On average, percent prediction error (AAPR) is higher for

branch (50.96%), foliage (82.67%) and crown (47.08%) than other components. For the DBH

only system of equations stem wood, bark and total stem biomass are predicted better than
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crown components. This agrees with Sabatia et al. (2008) findings that PVE values are lower

for branch and foliage equations than for bole and total tree biomass.

Table 3.6: Average observed, average predicted component biomass, and fit statistics from

Dbh only system (3.8) fitted to UGA red maple data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 285.67 284.43 1.25 - 1.00 38.15 13.66 48.64 86.98

Bark 84.88 88.97 - 4.09 - 20.20 21.62 32.44 28.34 68.50

Stem 370.56 373.40 - 2.84 - 4.18 55.81 16.52 63.72 87.56

Branch 82.37 76.05 6.32 - 18.60 33.18 50.96 42.54 11.95

Foliage 9.68 10.06 - 0.38 - 64.97 3.39 82.67 4.25 42.28

Crown 92.05 86.11 5.94 - 17.01 35.41 47.08 44.69 18.95

Total 462.61 459.51 3.10 - 2.32 65.98 16.93 76.12 86.41

When Ht is added to the models, the error in prediction decreased for stemwood, bark,

stem, and total biomass, whereas it has slightly increased for branch, foliage and crown

biomass (Table 3.7). In fact, the prediction error has decreased by about 15% for stemwood,

32% for bark, 41% for stem, and 7% for total biomass, whereas, it has increased by about

4% for branch, 15% for foliage and 7% for crown biomass.

RMSE has decreased for stemwood, bark, stem, and total, whereas it has slightly increased

for branch, foliage and crown biomass, when Ht is added to the models. The RMSE has

decreased by about 19% for stemwood, 32% for bark, 31% for stem and 3% for total biomass,

whereas it has increased by about 1% for branch, 13% for foliage, and 3% for crown biomass.

PVE has increased from about 87% to 91% for stemwood, from 69% to 85% for stembark,

from 86% to 87% for total biomass when total height is added to the models. For all other

components the value of PVE has dropped slightly. Overall, better fit was obtained using

height as an additional variable in the model. Similar to Dbh based system of equations,
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branch, foliage and crown biomass model did not fit the data well as indicated by all fit

statistics (Table 3.7).

Table 3.7: Average observed, average predicted component biomass, and fit statistics from

Dbh and Ht system (3.9) fitted to UGA red maple data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 285.67 282.25 3.42 1.22 32.37 11.12 39.62 91.36

Bark 84.88 83.37 1.51 4.67 14.64 18.79 19.39 85.25

Stem 370.56 365.62 4.94 2.72 32.97 9.91 43.99 94.07

Branch 82.37 78.74 3.63 -29.05 34.52 57.54 43.04 9.90

Foliage 9.68 10.01 -0.33 -75.82 3.90 96.67 4.79 26.69

Crown 92.05 88.75 3.30 -26.70 37.97 54.43 45.94 14.33

Total 462.61 454.38 8.23 0.46 61.58 14.87 74.05 87.14

When using Dcrn as an additional variable in the models, the average prediction error

dropped for most of the components (Table 3.8). For example, comparing with Dbh and Ht

based system of equations, the average prediction error has decreased by about 5% for bark

and branch, 30% for foliage, 8% for crown, and 5% for total biomass, whereas, it has increased

by about 3%, and 7% for stemwood and stem, respectively. Overall, the addition of Dcrn

improved the model fit. RMSE from this system of equation is comparable to RMSE from

Dbh and Ht based system. Branch and crown biomass models using DCrn fit the data more

closely than do the previous models, however prediction of crown components is still rather

weak (Table 3.8). Similar results were found in the studies conducted by Sabatia (2007) and

Lambert et al. (2005).
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Table 3.8: Average observed, average predicted component biomass, and fit statistics from

Dbh, Ht and Dcrn system (3.10) fitted to UGA red maple data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 285.67 284.65 1.02 0 1.64 33.38 12.10 40.48 90.98

Bark 84.88 84.19 0.70 - 0.28 13.94 16.79 18.45 86.66

Stem 370.56 368.84 1.72 - 0.52 35.28 10.71 43.94 94.08

Branch 82.37 83.07 - 0.70 - 30.44 32.71 52.59 39.21 25.23

Foliage 9.68 9.94 - 0.26 - 44.58 2.74 60.63 3.59 58.86

Crown 92.05 93.01 - 0.96 - 27.30 34.92 48.49 41.54 29.98

Total 462.61 461.85 0.76 - 3.24 58.48 14.57 70.73 88.27

CRM method applied to UGA red maple data, does not provide adequate fit for bark and

branch biomass (Table 3.9). The goodness of fit of stemwood model from CRM is comparable

to the Dbh based system.

It should be noted that CRM method includes stump biomass and does not include

foliage biomass in total biomass calculation. Whereas, in our data, we do not have stump

biomass but we have information on foliage biomass. To make observed values comparable

with predicted values from CRM, for the fit statistics below, observed total biomass does not

include the foliage component. In fact, the total biomass here is sum of stemwood, bark and

branch components. In addition, branch biomass in CRM is defined as branch and tops which

is different than our branch biomass data. In CRM tops are defined as the main stem from a

minimum top diameter outside bark of four inches to the stem tip. Clearly, our available data

do not lend themselves to a clean comparison with CRM, but the fit statistics do indicate

that CRM is a poor predictor of components that we do have available.
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Table 3.9: Average observed, average predicted component biomass, and fit statistics from

component ratio method applied to UGA red maple data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 305.41 275.43 29.98 9.97 40.39 13.71 50.89 82.29

Bark 90.83 29.00 61.83 66.18 61.83 66.18 72.30 - 126.95

Stem 396.25 304.44 91.81 23.07 91.81 23.07 107.15 57.11

Branch 87.41 96.16 - 8.75 - 48.68 42.04 73.56 50.84 - 36.31

Total 483.66 400.60 83.06 16.44 94.67 19.34 112.53 60.54

For red maple, the Dbh only system of equations provides the weakest predictions of tree

biomass. When we add Ht to the system we improve stem component biomass prediction.

When Dcrn is added to the system, improved crown biomass predictions result.

3.3.2 slash pine - UGA data

Parameter estimates and fit statistics and residual plots from the final selected Dbh based

equation fitted to slash pine is presented in Table 3.10 and Figure 3.11.
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Table 3.10: Parameter estimates, standard errors and test statistics of Dbh based biomass

equation fitted in the system of equations (3.11) for slash pine - UGA data

Parameter
Parameter associated

with Estimate
Standard

error t-value p-value

ˆβ11 Dbh 2.68 0.016 169.47 <.0001

ˆβ20 0.95 0.396 2.39 0.0222

ˆβ21 Dbh 1.97 0.188 10.50 <.0001

ˆβ30 -3.50 1.204 -2.91 0.0061

ˆβ31 Dbh 3.15 0.560 5.63 <.0001

ˆβ40 -2.57 1.379 -1.86 0.0007

ˆβ41 Dbh 2.40 0.650 3.69 0.0708

(a) Residual vs predicted crown (b) Residual vs Dbh

Figure 3.11: Residual plot of crown - Dbh only based system
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(a) Residual vs predicted stem (b) Residual vs Dbh

Figure 3.12: Residual plot of stem - Dbh only based system

All parameters in the Dbh and Ht based system of equations fitted to slash pine, are

significant at α=0.1 (Table 3.11). It is evident from the residual plots that the model satisfies

the usual regression assumption of homogeneity of variance (Figures 3.13, and 3.14).
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Table 3.11: Parameter estimates, standard errors and test statistics of Dbh and Ht based

biomass equation fitted in the system of equations (3.12) for slash pine - UGA data

Parameter
Parameter associated

with Estimate
Standard

error t-value p-value

ˆβ10 -3.68 0.361 -10.18 <.0001

ˆβ11 Dbh 1.90 0.141 13.49 <.0001

ˆβ12 Ht 1.29 0.103 12.45 <.0001

ˆβ20 0.76 0.435 1.74 0.0899

ˆβ21 Dbh 1.74 0.222 7.84 <.0001

ˆβ22 Ht 0.42 0.159 2.61 0.0130

ˆβ31 Dbh 5.37 0.619 8.69 <.0001

ˆβ32 Ht -2.00 0.327 -6.11 <.0001

ˆβ40 1.99 1.213 1.64 0.1095

ˆβ41 Dbh 4.73 0.782 6.05 <.0001

ˆβ42 Ht -2.31 0.465 -4.98 <.0001
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(a) Residual vs predicted crown (b) Residual vs Dbh

Figure 3.13: Residual plot of crown - Dbh and Ht based system

(a) Residual vs predicted stem (b) Residual vs Dbh

Figure 3.14: Residual plot of stem - Dbh and Ht based system
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Parameter estimates, fit statistics and residual plots for the Dbh, Ht, Dcrn system are

presented in Table (3.12) and Figures 3.15 and 3.16. Dcrn is significant in predicting branch

and foliage biomass.

Table 3.12: Parameter estimates, standard errors and test statistics of Dbh, Ht and Dcrn

based biomass equation fitted in the system of equations (3.13) for slash pine - UGA data

Parameter
Parameter associated

with Estimate
Standard

error t-value p-value

ˆβ10 -3.46 0.376 -9.21 <.0001

ˆβ11 Dbh 1.82 0.144 12.67 <.0001

ˆβ12 Ht 1.27 0.106 11.97 <.0001

ˆβ20 0.78 0.411 1.91 0.0646

ˆβ21 Dbh2Ht 0.64 0.063 10.21 <.0001

ˆβ30 -1.34 0.321 -4.19 0.0002

ˆβ31 Dcrn 2.93 0.191 15.31 <.0001

ˆβ40 -2.03 0.510 -3.98 0.0003

ˆβ41 Dcrn 2.94 0.303 9.72 <.0001
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(a) Residual vs predicted crown (b) Residual vs Dbh

Figure 3.15: Residual plot of crown - Dbh, Ht, and Dcrn based system

(a) Residual vs predicted stem (b) Residual vs Dbh

Figure 3.16: Residual plot of stem - Dbh, Ht, and Dcrn based system
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As for the red maple, a simple function to predict Dcrn based on Dbh for slash pine

(Equation 3.19) was developed.

ˆDcrn = 0.92 + 0.75Dbh – 0.04Ht (3.19)

R2 values for Equation 3.19 was 0.61.

3.3.2.1 Model comparison : slash pine (UGA data)

For Dbh only system, higher average percentage bias and error are found for branch, foliage

and crown components then for stem components (Table 3.13). The goodness of fit statistics

show that more than 70% of variation is explained by the model for stemwood, bark, stem

and total biomass and poor fit is clear for branch, foliage and crown components.

Table 3.13: Average observed, average predicted component biomass, and fit statistics from

Dbh only system (3.11) fitted to UGA slash pine data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 254.36 255.89 - 1.53 -5.46 49.18 21.10 56.22 73.38

Bark 150.12 150.29 - 0.17 -2.21 20.88 13.95 24.45 71.84

Stem 404.48 406.18 - 1.70 - 2.80 58.77 14.46 70.62 77.84

Branch 21.14 20.86 0.27 -23.70 7.96 46.90 11.21 32.94

Foliage 11.06 10.93 0.13 -36.63 4.37 59.32 6.82 17.43

Crown 32.20 31.79 0.41 -23.82 11.87 46.14 17.39 28.39

Total 436.68 437.97 -1.29 -1.85 51.62 11.70 61.64 84.43

Addition of height in the model significantly increases the model fit (Table 3.14). For

example, average prediction bias is close to 0 for all components and the average percent

prediction error is smaller for all components compared to Dbh based system. RMSE has

significantly decreased for all components. PVE has increased from about 74% to 95%, 72%
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to 76%, 78% to 94%, 33% to 65%, 17% to 52%, 28% to 63%, and 84% to 94% for stemwood,

bark, stem, branch, foliage, crown and total biomass, respectively. Overall, better fit was

obtained using height as an additional variable in the system. Similar to Dbh based system

of equations, branch, foliage and crown biomass models predictions are not as good as for

stem components.

Table 3.14: Average observed, average predicted component biomass, and fit statistics from

Dbh and Ht system (3.12) fitted to UGA slash pine data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 254.36 254.06 0.30 - 0.93 19.36 8.37 24.23 95.05

Bark 150.12 149.94 0.18 - 1.71 18.06 12.40 22.38 76.41

Stem 404.48 404.00 0.48 - 0.29 26.22 6.34 36.01 94.24

Branch 21.14 20.48 0.65 - 5.02 6.32 33.91 8.10 65.01

Foliage 11.06 10.72 0.34 - 13.10 3.38 39.87 5.18 52.44

Crown 32.20 31.21 0.99 - 4.80 9.32 32.71 12.42 63.49

Total 436.68 435.21 1.47 0.13 28.81 6.54 39.14 93.72

Addition of Dcrn improved the model fit for branch, foliage, crown and total biomass

components (Table 3.15). In general the addition of Dcrn improved overall model fit as well

as individual component predictions (Table 3.15).
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Table 3.15: Average observed, average predicted component biomass, and fit statistics from

Dbh, Ht, and Dcrn system (3.13) fitted to UGA slash pine data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 254.36 254.58 - 0.22 - 1.57 19.40 8.48 24.22 95.06

Bark 150.12 150.29 - 0.17 - 3.01 17.93 12.82 23.77 73.39

Stem 404.48 404.87 - 0.39 - 1.10 26.44 6.71 37.15 93.87

Branch 21.14 21.09 0.05 - 5.56 3.74 21.64 5.33 84.84

Foliage 11.06 10.91 0.15 - 11.27 3.26 39.06 4.44 65.03

Crown 32.20 32.00 0.20 - 4.44 6.50 24.70 8.59 82.54

Total 436.68 436.87 - 0.19 - 0.92 26.05 6.28 36.25 94.61

CRM predicts the stemwood components for UGA slash pine very well (PVE=93.75)

(Table 3.16). It results in very poor fit for bark and branch components.

Table 3.16: Average observed, average predicted component biomass, and fit statistics from

component ratio method applied to UGA slash pine data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 254.36 245.64 8.72 2.98 22.51 9.64 27.24 93.75

Bark 150.12 28.66 121.46 81.23 121.46 81.23 126.67 - 655.83

Stem 404.48 274.30 130.19 33.45 130.19 33.45 137.80 15.64

Branch 21.14 45.10 - 23.96 - 188.88 25.03 190.60 30.82 - 406.94

Total 425.62 319.39 106.22 26.32 106.64 26.41 113.83 45.82

Results for UGA slash pine are similar to UGA red maple results. Addition of Ht improves

stem component biomass predictions. Addition of DCrn improves crown biomass predictions.
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Further, prediction of slash pine component biomass is generally superior to prediction of

red maple component biomass. CRM method works well for stemwood biomass component.

3.3.3 Red maple - Legacy data

Since Dcrn was not available in the legacy data set, we fitted only Dbh, and Dbh and Ht

based system of equations to red maple and slash pine.

Equations for red maple data were weighted as a function of Dbh to account for the

heterogeneous variance properties in the data (Parresol 2001). Appropriate weights were

determined by refitting the equation with weights in the model. For red maple, for Dbh

based system, the weight functions used were DBH2 for stemwood, bark, foliage, total stem

and total biomass,
√

DBH2.5 for branch biomass, and
√

DBH3 for crown biomass equation.

Significant parameters (Table 3.17) and representative residual plots (Figures 3.17 and

3.18) associated with the final Dbh based system of equations fitted to Legacy red maple

data show a good fit to the data.

Table 3.17: Parameter estimates, standard errors and test statistics of Dbh based biomass

equation fitted in the system of equations (3.14) for red maple - Legacy data

Parameter
Parameter associated

with Estimate
Standard

error t-value p-value

ˆβ10 0.44 0.056 7.84 <.0001

ˆβ11 Dbh 2.47 0.024 101.61 <.0001

ˆβ20 -1.18 0.126 - 9.33 <.0001

ˆβ21 Dbh 2.31 0.056 41.35 <.0001

ˆβ30 - 1.67 0.145 - 11.55 <.0001

ˆβ31 Dbh 2.84 0.056 50.72 <.0001

ˆβ40 - 1.59 0.164 - 9.72 <.0001

ˆβ41 Dbh 1.90 0.074 25.62 <.0001
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(a) Residual vs predicted crown (b) Residual vs Dbh

Figure 3.17: Residual plot of crown - Dbh based system

(a) Residual vs predicted stem (b) Residual vs Dbh

Figure 3.18: Residual plot of stem - Dbh based system
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All parameters in the Dbh and Ht based system of equations are highly significant (Table

3.18). In estimating branch and foliage components, only Dbh is important. We weighted the

stemwood, bark and stem, and total biomass equations by using DBH2, the branch equation

by using
√

DBH2, the foliage equation by using
√

DBH3, and the crown equation by using
√

DBH2.5. It is evident from the residual plots that the model satisfies the usual regression

assumption of homogeneity of variance (Figures 3.19, and 3.20).

Table 3.18: Parameter estimates, standard errors and test statistics of Dbh and Ht based

biomass equation fitted in the system of equations (3.15) for red maple - Legacy data

Parameter
Parameter associated

with Estimate
Standard

error t-value p-value

ˆβ10 - 3.03 0.199 - 15.18 <.0001

ˆβ11 Dbh 1.99 0.032 62.52 <.0001

ˆβ12 Ht 1.07 0.060 17.92 <.0001

ˆβ20 - 5.56 0.602 - 9.23 <.0001

ˆβ21 Dbh 1.69 0.096 17.50 <.0001

ˆβ22 Ht 1.36 0.182 7.52 <.0001

ˆβ30 - 1.61 0.148 - 10.82 <.0001

ˆβ31 Dbh 2.81 0.058 48.65 <.0001

ˆβ40 - 1.62 0.159 - 10.19 <.0001

ˆβ41 Dbh 1.90 0.070 27.05 <.0001
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(a) Residual vs predicted crown (b) Residual vs Dbh

Figure 3.19: Residual plot of crown - Dbh and Ht based system

(a) Residual vs predicted stem (b) Residual vs Dbh

Figure 3.20: Residual plot of stem - Dbh and Ht based system
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3.3.3.1 Model comparison : red maple (Legacy data)

For the Dbh only system, higher average percent prediction bias and error are evident for

branch, foliage and crown components. The system predicts stem components better than

crown components. PVEs for crown components are higher than the Dbh based system fitted

to UGA data.

Table 3.19: Average observed, average predicted component biomass, and fit statistics from

Dbh only system (3.14) fitted to Legacy red maple data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 466.81 464.90 1.91 - 3.93 69.54 16.47 134.27 92.67

Bark 63.34 62.59 0.74 - 9.21 14.93 25.89 25.54 86.00

Stem 530.14 527.49 2.65 - 3.73 80.65 16.10 155.71 92.34

Branch 140.24 142.21 - 1.96 - 35.00 41.67 55.76 65.62 85.60

Foliage 15.32 15.20 0.13 - 35.01 6.11 57.90 10.14 52.75

Crown 155.57 157.40 - 1.84 - 30.34 43.15 49.83 68.14 86.19

Total 685.71 684.90 0.81 - 3.20 90.73 14.35 177.89 94.12

Overall, better fit was obtained by using height as an additional variable in the system

(Table 3.20)
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Table 3.20: Average observed, average predicted component biomass, and fit statistics from

Dbh and Ht system (3.15) fitted to Legacy red maple data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 466.81 463.59 3.21 - 2.35 55.34 12.15 116.43 94.49

Bark 63.34 62.40 0.93 - 7.36 13.59 23.42 21.42 90.15

Stem 530.14 526.00 4.15 - 2.13 63.88 11.87 132.83 94.43

Branch 140.24 141.01 - 0.76 - 35.43 41.49 56.04 65.75 85.55

Foliage 15.32 15.02 0.30 - 33.19 6.06 56.87 10.14 52.72

Crown 155.57 156.03 - 0.47 - 30.40 42.96 49.92 68.20 86.17

Total 685.71 682.03 3.68 - 2.27 79.96 12.04 160.07 95.24

CRM method performs better when applied to legacy red maple data than UGA red

maple data. However, it has lower fit than the systems of equations.

Table 3.21: Average observed, average predicted component biomass, and fit statistics from

component ratio method applied to Legacy red maple data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 475.24 400.89 74.34 11.82 83.14 16.25 175.07 87.65

Bark 64.51 42.22 22.29 31.08 22.70 32.96 39.65 66.57

Stem 539.74 443.11 96.63 14.83 103.85 17.64 210.56 86.13

Branch 143.10 124.15 18.95 - 77.29 62.48 99.30 109.06 60.63

Total 682.84 567.26 115.58 7.14 132.15 14.66 294.31 83.63

3.3.4 Slash pine - Legacy data

Note that only ten trees were available for slash pine in the legacy database. Consequently

we can not draw widely applicable conclusions based on these model fits. However, for sake
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of completeness we present and discuss results of model fits to this small set of data. All

parameters in the Dbh based system of equations fitted to slash pine from Legacy data

are significant at α=0.05 (Table 3.22). Weight functions were not required to stabilize the

variance. Residual plots from the fitted model are shown in Figures 3.21 and 3.22.

Table 3.22: Parameter estimates, standard errors and test statistics of Dbh based biomass

equation fitted in the system of equations (3.16) for slash pine - Legacy data

Parameter
Parameter associated

with Estimate
Standard

error t-value p-value

ˆβ10 1.71 0.698 2.44 0.0371

ˆβ11 Dbh 2.47 0.171 14.48 <.0001

ˆβ20 0.44 0.035 12.63 <.0001

ˆβ21 Dbh 2.26 0.029 77.34 <.0001

ˆβ31 Dbh 1.92 0.042 46.16 <.0001

ˆβ41 Dbh 1.44 0.071 20.25 <.0001

(a) Residual vs predicted crown (b) Residual vs Dbh

Figure 3.21: Residual plot of crown - Dbh based system
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(a) Residual vs predicted stem (b) Residual vs Dbh

Figure 3.22: Residual plot of stem - Dbh based system

Significant parameters (Table 3.23) and representative residual plots (Figures 3.23, 3.24)

of Dbh and Ht based system fitted to Legacy slash pine data indicate a good fit.

Table 3.23: Parameter estimates, standard errors and test statistics of Dbh and Ht based

biomass equation fitted in the system of equations (3.17) for slash pine - Legacy data

Parameter
Parameter associated

with Estimate
Standard

error t-value p-value

ˆβ10 - 4.40 0.576 - 7.63 <.0001

ˆβ11 Dbh 1.79 0.108 16.64 <.0001

ˆβ12 Ht 1.56 0.172 9.06 <.0001

ˆβ22 DBH2Ht 0.50 0.006 85.02 <.0001

ˆβ30 - 4.99 0.697 - 7.15 <.0001

ˆβ31 Dbh 4.01 0.284 14.14 <.0001

ˆβ41 Dbh 5.29 0.666 7.94 <.0001

ˆβ42 Ht - 2.19 0.391 - 5.61 0.0005
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(a) Residual vs predicted crown (b) Residual vs Dbh

Figure 3.23: Residual plot of crown - Dbh and Ht based system

(a) Residual vs predicted stem (b) Residual vs Dbh

Figure 3.24: Residual plot of stem - Dbh based system
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3.3.4.1 Model comparison : slash pine (Legacy data)

For Dbh only system when fitted to Legacy slash pine data, models related to stem compo-

nents explain more than 90% variation in the data. Similar to other systems, average percent

error and bias are higher for crown related components.

Table 3.24: Average observed, average predicted component biomass, and fit statistics from

Dbh only system (3.16) fitted to Legacy slash pine data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 337.24 335.78 1.46 - 1.01 32.63 10.06 45.06 96.97

Bark 56.53 53.43 3.10 11.87 6.32 14.90 6.60 96.11

Stem 393.77 389.21 4.55 1.59 34.29 8.42 47.37 97.37

Branch 48.41 57.83 - 9.41 - 104.32 18.63 110.94 20.73 83.30

Foliage 15.56 20.08 - 4.52 - 147.01 10.32 158.80 10.98 60.78

Crown 63.98 77.91 - 13.93 - 111.65 28.96 119.64 31.32 78.72

Total 457.75 467.12 - 9.38 - 7.10 37.53 11.73 47.63 98.22

When height is added to the model, average percent bias and error in prediction signifi-

cantly decreased for most the components (Table 3.25). PVE has increased for all components

except for bark for which it has dropped from about 96% to 90%. Overall, better fit was

obtained by using height as an additional variable in the system.
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Table 3.25: Average observed, average predicted component biomass, and fit statistics from

Dbh and Ht system (3.17) fitted to Legacy slash pine data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 337.24 336.00 1.24 0.54 15.06 6.46 21.46 99.31

Bark 56.53 60.76 - 4.23 - 21.96 9.32 26.76 10.41 90.32

Stem 393.77 396.76 - 2.99 - 3.70 17.73 7.65 22.52 99.41

Branch 48.41 47.26 1.15 9.45 6.77 33.37 7.23 97.97

Foliage 15.56 14.98 0.59 14.09 3.89 39.76 4.82 92.44

Crown 63.98 62.24 1.74 11.79 10.49 33.95 11.46 97.15

Total 457.75 459.00 - 1.26 - 1.47 14.32 5.52 23.11 99.58

As for the Legacy red maple data, the CRM method works well for Legacy slash pine

data. Except for bark, all other component models provide a good fit to the data. Overall,

it does not perform better than the system of equations.

Table 3.26: Average observed, average predicted component biomass, and fit statistics from

component ratio method applied to Legacy slash pine data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 367.31 302.45 64.86 21.90 64.86 21.90 74.69 91.47

Bark 60.77 35.29 25.49 49.06 25.49 49.06 26.43 34.37

Stem 428.09 337.74 90.35 26.43 90.35 26.43 99.19 88.14

Branch 52.91 53.75 - 0.84 - 50.41 13.45 59.50 17.42 88.57

Total 481.00 391.49 89.51 22.20 89.51 22.20 102.94 90.72
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3.3.5 Model prediction on an independent data set

Model development techniques and evaluation often include various statistics of fit as dis-

cussed above. Another performance measure of how well a model represents its real world

counterpart is how it performs when used on totally independent data. In this study, we use

Dbh and Ht based system of equations developed using UGA data to predict component

biomass given the Dbh and Ht from legacy data and vice-versa.

First, we evaluated performance of models fitted to UGA data on the legacy data for

both red maple (Table 3.27) and slash pine (Table3.28). We used UGA data for developing

the models and legacy data as independent data set to validate the models.

The fit statistics for red maple (Table 3.27) show that the model fits well for the stem

biomass but it has a poor fit for crown biomass. Average percent bias and error are smaller

for stemwood, stem and total biomass compared to others. For stemwood more than 85%

and for stem and total biomass more than 90% of the total variation in the data has been

explained by the model. When compared to fit data, the fit statistics from independent data

show that the system does not perform as well. However, the poor fit on some components

may be due to extrapolation of the data. The range of UGA red maple data used to develop

the models consist is from 4.8 to 11 inch for Dbh and is 38.7 to 73.6 ft for Ht whereas these

range for Legacy data are 4.7 to 20.6 inch for Dbh and 40 to 110.1 ft.
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Table 3.27: Fit statistics from using models fitted to UGA red maple data on the Legacy

red maple data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 466.81 438.93 27.88 6.03 60.17 13.95 118.05 94.33

Bark 63.34 169.15 - 105.81 - 109.62 106.90 113.75 203.64 - 789.99

Stem 530.14 608.08 - 77.94 - 6.44 99.31 16.77 192.29 88.32

Branch 140.24 92.55 47.70 - 58.85 76.47 94.92 143.46 31.19

Foliage 15.32 10.72 4.61 - 32.40 7.65 72.18 13.73 13.39

Crown 155.57 10.72 4.61 - 32.40 7.65 72.18 13.73 13.39

Total 685.71 711.34 - 25.63 - 6.89 77.62 13.10 145.66 96.06

The performance of the UGA slash model is better than UGA red maple model. The

model fits the data well for all components except for bark (Table 3.28). Fit statistics from

this model when evaluated on the independent data is comparable to the fit data (Table

3.14) except for the bark component. The fit statistics show that the model has the worst fit

for bark biomass. The plots of observed values with predicted values in Appendix (B) also

support that this.
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Table 3.28: Fit statistics from using models fitted to UGA slash data on the Legacy slash

data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 337.24 278.94 58.30 16.89 58.30 16.89 75.34 91.53

Bark 56.53 161.50 - 104.97 - 183.18 104.97 183.18 124.04 - 1273.40

Stem 393.77 440.43 - 46.67 - 15.49 49.46 16.52 57.60 96.11

Branch 48.41 40.69 7.72 30.64 10.23 39.41 12.87 93.56

Foliage 15.56 17.67 - 2.10 - 18.02 4.75 47.51 5.85 88.86

Crown 63.98 17.67 - 2.10 - 18.02 4.75 47.51 5.85 88.86

Total 457.75 498.79 - 41.05 - 11.14 46.70 13.02 56.27 97.52

The average percent prediction bias and error are higher for branch, foliage and crown

models when legacy red maple model was used to predict UGA red maple data. This trend

is similar to the fit model (Table 3.20). The goodness of fit statistics (Table 3.29) indicate

that the legacy red maple model predicted stemwood, stem and total biomass better than

branch components when applied to new data. The plots of observed values with predicted

values for various components are presented in Appendix (C).
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Table 3.29: Fit statistics from using models fitted to Legacy red maple data on the UGA

red maple data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 285.67 295.37 - 9.69 - 3.83 35.64 12.45 45.39 88.66

Bark 84.88 39.84 45.04 49.51 45.04 49.51 56.17 - 23.72

Stem 370.56 335.21 35.35 8.72 46.48 11.93 58.52 89.51

Branch 82.37 94.80 - 12.44 - 42.56 39.67 69.02 52.00 - 31.55

Foliage 9.68 12.41 - 2.72 - 82.40 3.84 89.10 4.62 31.97

Crown 92.05 12.41 - 2.72 - 82.40 3.84 89.10 4.62 31.97

Total 462.61 442.42 20.19 4.40 62.79 14.07 76.95 86.12

Overall, the legacy slash model does not perform well when used for the independent

data from UGA study (Table 3.30). Goodness of fit statistics are better for stemwood, stem

and total biomass models compared to branch components. Observed versus predicted plots

in Appendix (D) also support this.

Table 3.30: Fit statistics from using models fitted to Legacy slash data on the UGA slash

data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 254.36 311.88 - 57.52 - 22.54 57.52 22.54 72.82 55.34

Bark 150.12 60.83 89.29 57.74 89.29 57.74 96.52 - 338.80

Stem 404.48 372.71 31.77 8.57 45.07 11.50 52.45 87.78

Branch 21.14 28.90 - 7.76 - 64.09 11.52 74.49 15.56 - 29.15

Foliage 11.06 7.84 3.22 18.14 4.31 43.76 6.26 30.44

Crown 32.20 7.84 3.22 18.14 4.31 43.76 6.26 30.44

Total 436.68 409.44 27.23 7.16 47.55 11.24 56.55 86.90
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In general, evaluation of the fitted biomass systems with independent data indicate that

stem biomass components are more reliably estimated than are crown components.

3.3.6 Model prediction for given Dbh, Ht and Dcrn

Models 1, 2 and 3 below refer to systems of equations 3.8, 3.9 and 3.10, respectively for red

maple. That is, Model 1 is the Dbh only system, Model 2 is the Dbh, total height system,

and Model 3 is the Dbh, total height and diameter at base of live crown system. These three

system of equations were used to predict biomass components by various Dbh, Dcrn and Ht

sizes. Dcrn is not always available in mensurational data hence a regression model based on

Dbh was developed to predict Dcrn (Equation 3.18 for red maple and 3.19 for slash).

As expected, the Dbh only model predicts an average of the Dbh and Ht models, where

as the Dbh, Ht and Dcrn models simply modify the Dbh, Ht models for crown size. For

example, for all height levels, Model 1 predicts 359.60 lbs of total biomass for 8 inch Dbh

(Table 3.31). Model 1 over-predicts the total biomass with increase in Dbh. For instance, if

we were to predict total biomass using Model 1 for a 50 ft tree, we would be predicting about

24, 110, 242, 426, 668, 974 lbs more total biomass for trees with Dbh 8, 10, 12, 14, 16, and

18 inches, respectively than when using Model 3. This clearly indicates that relative to the

Dbh, Ht, Dcrn equation system, the Dbh only equation system has more potential for large

prediction errors as tree size increases. Moreover, for a 8 inch Dbh tree with 6.40 inch Dcrn,

Model 1 predicts more total biomass relative to the Model 3 for shorter trees and less total

biomass for taller trees. But for increase in Dbh, most of the time, we are predicting more

total biomass with increase in height.

Model 2 uses more information than Model 1 to predict biomass components. We observed

that, for most size combinations considered, Model 2 predicts more total biomass relative to

Model 3. This is true for stemwood (Table 3.32), bark (Table 3.33), branch (Table 3.34) and

stem (Table 3.36) biomass. For foliage biomass Model 2 predicts less biomass than Model
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3 especially for larger Dbh and taller trees. For, for crown component biomass, predictions

from Models 2 and 3 are similar. This suggests that both models work equally well when

predicting crown component.

It should be noted that the ranges of Dbh, Ht and Dcrn used to develop the models 1,

2 and 3 are 4.8 to 11 inches, 38.7 to 73.6 ft, and 4 to 9.2 inches , respectively. Hence the

prediction of biomass components reported in Tables 3.31 through 3.37 beyond the range of

these Dbh, Ht and Dcrn variables represent extrapolation.
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Table 3.31: Prediction of total biomass from Dbh (Model 1), Dbh and Ht (Model 2) and

Dbh, Ht and Dcrn (Model 3) based system of equations for red maple for given Dbh, Dcrn

and Ht level

Ht

Dbh Dcrn Model 50 60 70 80

1 359.60 359.60 359.60 359.60

8 6.40 2 321.61 369.06 414.87 459.35

3 335.85 394.04 452.00 509.77

1 607.17 607.17 607.17 607.17

10 7.30 2 513.24 591.34 666.97 740.57

3 496.97 585.48 673.93 762.34

1 935.06 935.06 935.06 935.06

12 8.20 2 763.24 882.02 997.28 1109.65

3 692.98 818.79 944.81 1071.01

1 1350.40 1350.40 1350.40 1350.40

14 9.10 2 1077.91 1248.55 1414.41 1576.32

3 924.45 1094.70 1265.53 1436.86

1 1859.82 1859.82 1859.82 1859.82

16 10.00 2 1463.38 1698.20 1926.74 2150.10

3 1191.92 1413.91 1636.96 1860.91

1 2469.56 2469.56 2469.56 2469.56

18 10.90 2 1925.67 2238.10 2542.52 2840.33

3 1495.91 1777.09 2059.91 2344.13
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Table 3.32: Prediction of stemwood biomass from Dbh (Model 1), Dbh and Ht (Model 2)

and Dbh, Ht and Dcrn (Model 3) based system of equations for red maple for given Dbh,

Dcrn and Ht level

Ht

Dbh Dcrn Model 50 60 70 80

1 215.07 215.07 215.07 215.07

8 6.40 2 196.15 226.98 256.79 285.76

3 201.47 239.75 277.74 315.48

1 382.73 382.73 382.73 382.73

10 7.30 2 321.63 372.18 421.06 468.57

3 308.42 367.03 425.18 482.96

1 612.92 612.92 612.92 612.92

12 8.20 2 481.77 557.48 630.70 701.86

3 436.76 519.76 602.11 683.93

1 912.68 912.68 912.68 912.68

14 9.10 2 677.95 784.49 887.54 987.67

3 586.14 697.52 808.04 917.84

1 1288.56 1288.56 1288.56 1288.56

16 10.00 2 911.42 1054.65 1193.17 1327.79

3 756.26 899.96 1042.56 1184.22

1 1746.74 1746.74 1746.74 1746.74

18 10.90 2 1183.25 1369.20 1549.05 1723.82

3 946.86 1126.77 1305.31 1482.68
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Table 3.33: Prediction of bark biomass from Dbh (Model 1), Dbh and Ht (Model 2) and

Dbh, Ht and Dcrn (Model 3) based system of equations for red maple for given Dbh, Dcrn

and Ht level

Ht

Dbh Dcrn Model 50 60 70 80

1 72.61 72.61 72.61 72.61

8 6.40 2 49.02 58.47 67.86 77.21

3 52.54 65.43 78.78 92.52

1 115.00 115.00 115.00 115.00

10 7.30 2 96.36 114.92 133.39 151.77

3 89.92 111.99 134.84 158.36

1 167.44 167.44 167.44 167.44

12 8.20 2 167.37 199.63 231.71 263.63

3 139.49 173.73 209.17 245.65

1 230.04 230.04 230.04 230.04

14 9.10 2 266.96 318.41 369.57 420.49

3 202.19 251.83 303.19 356.08

1 302.91 302.91 302.91 302.91

16 10.00 2 400.02 477.12 553.78 630.08

3 278.88 347.35 418.19 491.14

1 386.12 386.12 386.12 386.12

18 10.90 2 571.49 681.63 791.16 900.16

3 370.35 461.27 555.35 652.22
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Table 3.34: Prediction of branch biomass from Dbh (Model 1), Dbh and Ht (Model 2) and

Dbh, Ht and Dcrn (Model 3) based system of equations for red maple for given Dbh, Dcrn

and Ht level

Ht

Dbh Dcrn Model 50 60 70 80

1 62.67 62.67 62.67 62.67

8 6.40 2 67.15 73.84 80.02 85.79

3 73.01 80.79 88.02 94.80

1 97.70 97.70 97.70 97.70

10 7.30 2 84.74 93.18 100.98 108.26

3 84.82 93.87 102.27 110.15

1 140.43 140.43 140.43 140.43

12 8.20 2 102.47 112.69 122.12 130.92

3 96.84 107.17 116.76 125.75

1 190.84 190.84 190.84 190.84

14 9.10 2 120.34 132.33 143.41 153.74

3 109.05 120.68 131.48 141.61

1 248.92 248.92 248.92 248.92

16 10.00 2 138.31 152.10 164.83 176.71

3 121.43 134.38 146.40 157.68

1 314.67 314.67 314.67 314.67

18 10.90 2 156.38 171.97 186.36 199.79

3 133.96 148.25 161.51 173.96
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Table 3.35: Prediction of foliage biomass from Dbh (Model 1), Dbh and Ht (Model 2) and

Dbh, Ht and Dcrn (Model 3) based system of equations for red maple for given Dbh, Dcrn

and Ht level

Ht

Dbh Dcrn Model 50 60 70 80

1 9.25 9.25 9.25 9.25

8 6.40 2 9.29 9.77 10.20 10.58

3 8.84 8.06 7.45 6.97

1 11.75 11.75 11.75 11.75

10 7.30 2 10.51 11.06 11.54 11.97

3 13.81 12.59 11.65 10.88

1 14.28 14.28 14.28 14.28

12 8.20 2 11.63 12.23 12.76 13.24

3 19.88 18.13 16.77 15.67

1 16.84 16.84 16.84 16.84

14 9.10 2 12.66 13.32 13.89 14.42

3 27.06 24.68 22.83 21.33

1 19.43 19.43 19.43 19.43

16 10.00 2 13.63 14.33 14.96 15.52

3 35.35 32.23 29.81 27.86

1 22.04 22.04 22.04 22.04

18 10.90 2 14.55 15.30 15.96 16.56

3 44.74 40.79 37.73 35.27
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Table 3.36: Prediction of stem biomass from Dbh (Model 1), Dbh and Ht (Model 2) and

Dbh, Ht and Dcrn (Model 3) based system of equations for red maple for given Dbh, Dcrn

and Ht level

Ht

Dbh Dcrn Model 50 60 70 80

1 287.68 287.68 287.68 287.68

8 6.40 2 245.17 285.45 324.65 362.97

3 254.01 305.19 356.52 408.00

1 497.72 497.72 497.72 497.72

10 7.30 2 417.99 487.10 554.45 620.34

3 398.34 479.02 560.02 641.31

1 780.36 780.36 780.36 780.36

12 8.20 2 649.14 757.11 862.41 965.49

3 576.25 693.49 811.28 929.58

1 1142.73 1142.73 1142.73 1142.73

14 9.10 2 944.91 1102.90 1257.11 1408.16

3 788.33 949.35 1111.23 1273.92

1 1591.47 1591.47 1591.47 1591.47

16 10.00 2 1311.44 1531.77 1746.95 1957.87

3 1035.14 1247.30 1460.75 1675.36

1 2132.86 2132.86 2132.86 2132.86

18 10.90 2 1754.75 2050.84 2340.20 2623.97

3 1317.21 1588.04 1860.66 2134.91
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Table 3.37: Prediction of crown biomass from Dbh (Model 1), Dbh and Ht (Model 2) and

Dbh, Ht and Dcrn (Model 3) based system of equations for red maple for given Dbh, Dcrn

and Ht level

Ht

Dbh Dcrn Model 50 60 70 80

1 71.92 71.92 71.92 71.92

8 6.40 2 76.44 83.62 90.22 96.37

3 81.84 88.85 95.48 101.77

1 109.45 109.45 109.45 109.45

10 7.30 2 95.25 104.24 112.52 120.23

3 98.63 106.46 113.91 121.03

1 154.71 154.71 154.71 154.71

12 8.20 2 114.10 124.92 134.88 144.16

3 116.73 125.30 133.53 141.43

1 207.68 207.68 207.68 207.68

14 9.10 2 133.00 145.65 157.30 168.16

3 136.11 145.36 154.30 162.94

1 268.35 268.35 268.35 268.35

16 10.00 2 151.94 166.43 179.78 192.23

3 156.78 166.61 176.21 185.54

1 336.70 336.70 336.70 336.70

18 10.90 2 170.93 187.27 202.32 216.36

3 178.70 189.04 199.24 209.22
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Tables 3.38 - 3.44 provide prediction of biomass components for slash pine from using

three system of equations 3.11, 3.12, 3.13. Models 1, 2 and 3 below refer to system of equations

3.11, 3.12 and 3.13, respectively.

Similar to red maple, the Dbh based equation for slash pine is over-predicts the total

biomass with increasing Dbh (Table 3.38). The range of Dbh is 5.6 to 10.1 inches, of Ht is

44.30 to 81.6 ft and of Dcrn is 2.2 to 6.6 inches, that was used to develop models for slash

pine. The values of the variables in the table below beyond the respective range represents

the extrapolation of the data.

Similar to red maple, Model 2 tends to predict more total and component biomass relative

to Model 3. Additionally, differences in stem biomass (stemwood + bark) predictions for

Models 2 and 3 (Table 3.43) are smaller than differences in predictions of crown biomass

(branch + foliage) (Table 3.44).
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Table 3.38: Prediction of total biomass from Dbh (Model 1), Dbh and Ht (Model 2) and

Dbh, Ht and Dcrn (Model 3) based system of equations for slash pine for given Dbh, Dcrn

and Ht level

Ht

Dbh Dcrn Model 50 60 70 80

1 451.15 451.15 451.15 451.15

8 6.40 2 387.69 437.72 495.14 557.12

3 379.40 439.90 503.32 569.48

1 782.21 782.21 782.21 782.21

10 7.30 2 656.96 709.70 783.15 868.52

3 574.54 660.64 751.02 845.42

1 1232.18 1232.18 1232.18 1232.18

12 8.20 2 1082.18 1104.73 1177.42 1277.95

3 818.42 933.55 1054.52 1180.97

1 1815.32 1815.32 1815.32 1815.32

14 9.10 2 1759.75 1688.53 1725.36 1820.98

3 1116.19 1263.62 1418.65 1580.79

1 2545.32 2545.32 2545.32 2545.32

16 10.00 2 2829.93 2557.11 2496.53 2550.13

3 1473.14 1656.02 1848.40 2049.74

1 3435.46 3435.46 3435.46 3435.46

18 10.90 2 4486.20 3843.20 3587.37 3538.44

3 1894.62 2115.94 2348.91 2592.80
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Table 3.39: Prediction of stemwood biomass from Dbh (Model 1), Dbh and Ht (Model 2)

and Dbh, Ht and Dcrn (Model 3) based system of equations for slash pine for given Dbh,

Dcrn and Ht level

Ht

Dbh Dcrn Model 50 60 70 80

1 263.26 263.26 263.26 263.26

8 6.40 2 200.60 253.65 309.32 367.32

3 201.87 254.58 309.74 367.09

1 478.76 478.76 478.76 478.76

10 7.30 2 306.21 387.19 472.16 560.70

3 303.30 382.49 465.37 551.55

1 780.43 780.43 780.43 780.43

12 8.20 2 432.61 547.02 667.07 792.16

3 423.00 533.43 649.02 769.20

1 1179.67 1179.67 1179.67 1179.67

14 9.10 2 579.41 732.65 893.44 1060.97

3 560.37 706.67 859.79 1019.01

1 1687.27 1687.27 1687.27 1687.27

16 10.00 2 746.28 943.66 1150.75 1366.54

3 714.95 901.61 1096.97 1300.10

1 2313.55 2313.55 2313.55 2313.55

18 10.90 2 932.95 1179.70 1438.59 1708.35

3 886.34 1117.74 1359.93 1611.76
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Table 3.40: Prediction of bark biomass from Dbh (Model 1), Dbh and Ht (Model 2) and

Dbh, Ht and Dcrn (Model 3) based system of equations for slash pine for given Dbh, Dcrn

and Ht level

Ht

Dbh Dcrn Model 50 60 70 80

1 155.31 155.31 155.31 155.31

8 6.40 2 142.50 153.71 163.87 173.22

3 136.77 153.68 169.61 184.73

1 241.14 241.14 241.14 241.14

10 7.30 2 209.98 226.50 241.48 255.25

3 181.95 204.45 225.63 245.75

1 345.43 345.43 345.43 345.43

12 8.20 2 288.23 310.91 331.47 350.38

3 229.74 258.15 284.90 310.30

1 468.10 468.10 468.10 468.10

14 9.10 2 376.75 406.40 433.27 457.98

3 279.81 314.42 347.00 377.94

1 609.07 609.07 609.07 609.07

16 10.00 2 475.13 512.51 546.40 577.57

3 331.93 372.98 411.63 448.33

1 768.26 768.26 768.26 768.26

18 10.90 2 583.02 628.89 670.48 708.72

3 385.90 433.63 478.56 521.23
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Table 3.41: Prediction of branch biomass from Dbh (Model 1), Dbh and Ht (Model 2) and

Dbh, Ht and Dcrn (MOdel 3) based system of equations for slash pine for given Dbh, Dcrn

and Ht level

Ht

Dbh Dcrn Model 50 60 70 80

1 21.30 21.30 21.30 21.30

8 6.40 2 28.60 19.87 14.60 11.18

3 26.86 20.86 15.82 11.65

1 43.05 43.05 43.05 43.05

10 7.30 2 94.86 65.89 48.42 37.08

3 58.76 48.51 39.52 31.70

1 76.51 76.51 76.51 76.51

12 8.20 2 252.62 175.48 128.95 98.75

3 108.91 93.34 79.32 66.76

1 124.40 124.40 124.40 124.40

14 9.10 2 578.28 401.69 295.19 226.05

3 181.26 159.31 139.19 120.82

1 189.53 189.53 189.53 189.53

16 10.00 2 1184.94 823.10 604.86 463.19

3 279.71 250.34 223.07 197.84

1 274.78 274.78 274.78 274.78

18 10.90 2 2231.06 1549.77 1138.87 872.12

3 408.13 370.28 334.83 301.69
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Table 3.42: Prediction of foliage biomass from Dbh (Model 1), Dbh and Ht (Model 2) and

Dbh, Ht and Dcrn (MOdel 3) based system of equations for slash pine for given Dbh, Dcrn

and Ht level

Ht

Dbh Dcrn Model 50 60 70 80

1 11.27 11.27 11.27 11.27

8 6.40 2 15.99 10.49 7.34 5.39

3 13.90 10.78 8.16 6.00

1 19.25 19.25 19.25 19.25

10 7.30 2 45.92 30.12 21.09 15.49

3 30.53 25.19 20.50 16.42

1 29.82 29.82 29.82 29.82

12 8.20 2 108.72 71.32 49.93 36.66

3 56.78 48.62 41.28 34.72

1 43.16 43.16 43.16 43.16

14 9.10 2 225.32 147.79 103.47 75.98

3 94.75 83.22 72.66 63.02

1 59.46 59.46 59.46 59.46

16 10.00 2 423.58 277.84 194.52 142.83

3 146.55 131.08 116.73 103.46

1 78.87 78.87 78.87 78.87

18 10.90 2 739.17 484.85 339.44 249.25

3 214.25 194.28 175.59 158.12
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Table 3.43: Prediction of stem biomass from Dbh (MOdel 1), Dbh and Ht (Model 2) and

Dbh, Ht and Dcrn (Model 3) based system of equations for slash pine for given Dbh, Dcrn

and Ht level

Ht

Dbh Dcrn Model 50 60 70 80

1 418.58 418.58 418.58 418.58

8 6.40 2 343.10 407.36 473.19 540.54

3 338.64 408.26 479.34 551.82

1 719.90 719.90 719.90 719.90

10 7.30 2 516.18 613.69 713.64 815.95

3 485.25 586.94 691.00 797.30

1 1125.86 1125.86 1125.86 1125.86

12 8.20 2 720.84 857.94 998.54 1142.54

3 652.73 791.58 933.92 1079.50

1 1647.77 1647.77 1647.77 1647.77

14 9.10 2 956.16 1139.05 1326.71 1518.96

3 840.18 1021.09 1206.79 1396.94

1 2296.34 2296.34 2296.34 2296.34

16 10.00 2 1221.41 1456.17 1697.16 1944.11

3 1046.88 1274.59 1508.60 1748.44

1 3081.81 3081.81 3081.81 3081.81

18 10.90 2 1515.97 1808.59 2109.07 2417.07

3 1272.24 1551.38 1838.50 2132.99
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Table 3.44: Prediction of crown biomass from Dbh (Model 1), Dbh and Ht (Model 2) and

Dbh, Ht and Dcrn (Model 3) based system of equations for slash pine for given Dbh, Dcrn

and Ht level

Ht

Dbh Dcrn Model 50 60 70 80

1 32.58 32.58 32.58 32.58

8 6.40 2 44.60 30.36 21.94 16.57

3 40.76 31.64 23.98 17.65

1 62.31 62.31 62.31 62.31

10 7.30 2 140.78 96.01 69.51 52.56

3 89.29 73.70 60.01 48.12

1 106.33 106.33 106.33 106.33

12 8.20 2 361.34 246.79 178.88 135.41

3 165.69 141.96 120.60 101.47

1 167.56 167.56 167.56 167.56

14 9.10 2 803.59 549.48 398.66 302.02

3 276.01 242.53 211.85 183.84

1 248.99 248.99 248.99 248.99

16 10.00 2 1608.52 1100.94 799.38 606.02

3 426.26 381.42 339.80 301.30

1 353.65 353.65 353.65 353.65

18 10.90 2 2970.23 2034.61 1478.30 1121.36

3 622.38 564.57 510.41 459.81
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3.4 Conclusion

In this study, we used two independent individual tree biomass data sets (UGA data and

legacy data), to fit systems of biomass prediction equations for red maple and slash pine.

Nonlinear regression with parameter estimated using ordinary least square method was used

to investigate important variables for individual biomass components. For UGA data, inde-

pendent variables Dbh, Ht, and Dcrn were tested for each component equation. Dcrn variable

was not available in legacy data, therefore only Dbh and Dbh and Ht based biomass pre-

diction equations were developed. For each data set and species, final biomass component

equations were fitted simultaneously following the procedure described by Borders (1989).

Borders’ (1989) method is an instrumental technique known as nonlinear seemingly unrelated

regression (NSUR). NSUR accounts fro cross equation correlation among equations within a

system and allows for cross equation parameter constraints as well. Using this method it was

possible to ensure that individual biomass component equation estimates were constrained

to sum to total tree biomass.

Detailed analysis of fit statistics evaluated with both fit data and independent data

indicate that more tree size information (e.g. Dbh, Ht, Dcrn) leads to better predictions of

component biomass than does less tree size information (Dbh only or Dbh and Ht). Further,

it is evident that stem biomass components are more reliably predicted than crown biomass

components for all models considered.

Our work suggests that individual tree biomass prediction equations that rely on Dbh

only are not useful for predicting total tree or tree component biomass. Further, it is clear

that improved crown biomass prediction equations will require more detailed crown size

measurements from the field. These measures include crown length, crown width, number

of branches, and possibly others. Further work needs to be carried out to identify the most

beneficial tree and crown measurements that will improve component biomass prediction

models.
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3.6 Appendix A: Correlation of residuals

Table 3.45: Correlations of residuals - Dbh based system of equations for red maple (UGA

data)

stemwood Bark Branch Foliage Stem Crown Total

Stemwood 1.00 0.32 0.23 -0.27 0.91 0.19 0.87

Bark 0.32 1.00 -0.45 -0.04 0.69 -0.43 0.33

Branch 0.23 -0.45 1.00 0.47 -0.03 1.00 0.56

Foliage -0.27 -0.04 0.47 1.00 -0.22 0.54 0.13

Stem 0.91 0.69 -0.03 -0.22 1.00 -0.05 0.81

Crown 0.19 -0.43 1.00 0.54 -0.05 1.00 0.55

Total 0.87 0.33 0.56 0.13 0.81 0.55 1.00

Table 3.46: Correlations of residuals - Dbh and Ht based system of equations for red maple

(UGA data)

Stemwood Bark Branch Foliage Stem Crown Total

Stemwood 1.00 -0.01 0.56 -0.05 0.90 0.52 0.85

Bark -0.01 1.00 -0.23 -0.28 0.43 -0.25 0.10

Branch 0.56 -0.23 1.00 0.57 0.40 1.00 0.85

Foliage -0.05 -0.28 0.57 1.00 -0.17 0.64 0.30

Stem 0.90 0.43 0.40 -0.17 1.00 0.36 0.81

Crown 0.52 -0.25 1.00 0.64 0.36 1.00 0.83

Total 0.85 0.10 0.85 0.30 0.81 0.83 1.00
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Table 3.47: Correlations of residuals - Dbh, Ht and Dcrn based system of equations for red

maple (UGA data)

Stemwood Bark Branch Foliage Stem Crown Total

Stemwood 1.00 -0.03 0.58 0.09 0.91 0.56 0.89

Bark -0.03 1.00 -0.36 -0.03 0.39 -0.35 0.04

Branch 0.58 -0.36 1.00 0.62 0.38 1.00 0.82

Foliage 0.09 -0.03 0.62 1.00 0.07 0.67 0.44

Stem 0.91 0.39 0.38 0.07 1.00 0.37 0.84

Crown 0.56 -0.35 1.00 0.67 0.37 1.00 0.82

Total 0.89 0.04 0.82 0.44 0.84 0.82 1.00

Table 3.48: Correlations of residuals - Dbh based system of equations for slash pine (UGA

data)

Stemwood Bark Branch Foliage Stem Crown Total

Stemwood 1.00 0.45 - 0.58 -0.58 0.95 -0.60 0.92

Bark 0.45 1.00 -0.32 -0.39 0.70 -0.36 0.70

Branch -0.58 -0.32 1.00 0.85 -0.58 0.98 -0.38

Foliage -0.58 -0.39 0.85 1.00 -0.60 0.94 -0.42

Stem 0.95 0.70 -0.58 -0.60 1.00 -0.61 0.97

Crown -0.60 -0.36 0.98 0.94 -0.61 1.00 -0.41

Total 0.92 0.70 -0.38 -0.42 0.97 -0.41 1.00
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Table 3.49: Correlations of residuals - Dbh and Ht based system of equations for slash pine

(UGA data)

Stemwood Bark Branch Foliage Stem Crown Total

Stemwood 1.00 0.19 0.22 0.07 0.79 0.17 0.78

Bark 0.19 1.00 0.01 -0.12 0.75 -0.04 0.68

Branch 0.22 0.01 1.00 0.74 0.16 0.96 0.45

Foliage 0.07 -0.12 0.74 1.00 -0.03 0.90 0.26

Stem 0.79 0.75 0.16 -0.03 1.00 0.09 0.95

Crown 0.17 -0.04 0.96 0.90 0.09 1.00 0.40

Total 0.78 0.68 0.45 0.26 0.95 0.40 1.00

Table 3.50: Correlations of residuals - Dbh, Ht and Dcrn based system of equations for

slash pine (UGA data)

Stemwood Bark Branch Foliage Stem Crown Total

Stemwood 1.00 0.20 0.10 -0.10 0.78 0.01 0.80

Bark 0.20 1.00 -0.27 -0.36 0.77 -0.35 0.70

Branch 0.10 -0.27 1.00 0.54 -0.11 0.90 0.10

Foliage -0.10 -0.36 0.54 1.00 -0.29 0.85 -0.10

Stem 0.78 0.77 -0.11 -0.29 1.00 -0.22 0.97

Crown 0.01 -0.35 0.90 0.85 -0.22 1.00 0.01

Total 0.80 0.70 0.10 -0.10 0.97 0.01 1.00
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Table 3.51: Correlations of residuals - Dbh based system of equations for red maple (Legacy

data)

Stemwood Bark Branch Foliage Stem Crown Total

Stemwood 1.00 0.41 0.06 - 0.05 0.98 0.05 0.76

Stembark 0.41 1.00 0.15 - 0.27 0.60 0.10 0.54

Branch 0.06 0.15 1.00 0.19 0.09 0.99 0.65

Foliage - 0.05 - 0.27 0.19 1.00 - 0.11 0.33 0.11

Stem 0.98 0.60 0.09 - 0.11 1.00 0.07 0.80

Crown 0.05 0.10 0.99 0.33 0.07 1.00 0.63

Total 0.76 0.54 0.65 0.11 0.80 0.63 1.00

Table 3.52: Correlations of residuals - Dbh and Ht based system of equations for red maple

(Legacy data)

Stemwood Bark Branch Foliage Stem Crown Total

Stemwood 1.00 0.41 0.06 - 0.05 0.98 0.05 0.76

Stembark 0.41 1.00 0.15 - 0.27 0.60 0.10 0.54

Branch 0.06 0.15 1.00 0.19 0.09 0.99 0.65

Foliage - 0.05 - 0.27 0.19 1.00 - 0.11 0.33 0.11

Stem 0.98 0.60 0.09 - 0.11 1.00 0.07 0.80

Crown 0.05 0.10 0.99 0.33 0.07 1.00 0.63

Total 0.76 0.54 0.65 0.11 0.80 0.63 1.00
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Table 3.53: Correlations of residuals - Dbh based system of equations for slash pine (Legacy

data)

Stemwood Bark Branch Foliage Stem Crown Total

Stemwood 1.00 0.29 - 0.10 - 0.36 0.99 - 0.19 0.86

Stembark 0.29 1.00 - 0.97 - 0.98 0.41 - 0.98 - 0.24

Branch - 0.10 - 0.97 1.00 0.95 - 0.23 0.99 0.42

Foliage - 0.36 - 0.98 0.95 1.00 - 0.48 0.98 0.16

Stem 0.99 0.41 - 0.23 - 0.48 1.00 - 0.32 0.78

Crown - 0.19 - 0.98 0.99 0.98 - 0.32 1.00 0.34

Total 0.86 - 0.24 0.42 0.16 0.78 0.34 1.00

Table 3.54: Correlations of residuals - Dbh and Ht based system of equations for slash pine

(Legacy data)

Stemwood Bark Branch Foliage Stem Crown Total

Stemwood 1.00 - 0.14 0.26 - 0.27 0.05 0.89 0.89

Stembark - 0.14 1.00 - 0.56 - 0.45 - 0.54 0.33 0.05

Branch 0.26 - 0.56 1.00 0.80 0.97 - 0.01 0.47

Foliage - 0.27 - 0.45 0.80 1.00 0.93 - 0.46 0.01

Stem 0.05 - 0.54 0.97 0.93 1.00 - 0.20 0.30

Crown 0.89 0.33 - 0.01 - 0.46 - 0.20 1.00 0.87

Total 0.89 0.05 0.47 0.01 0.30 0.87 1.00
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3.7 Appendix B: Actual vs predicted plots by components from predicting

Legacy red maple data using UGA model

193



Figure 3.25: Actual vs predicted plots of various components from predicting Legacy red

maple using UGA red maple model
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3.8 Appendix C: Actual vs predicted plots by components from predicting

Legacy slash pine data using UGA model
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Figure 3.26: Actual vs predicted plots of various components from predicting Legacy slash

pine using UGA slash model
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3.9 Appendix D: Actual vs predicted plots by components from predicting

UGA red maple data using Legacy model
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Figure 3.27: Actual vs predicted plots of various components from predicting UGA red maple

using Legacy red maple model
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3.10 Appendix E: Actual vs predicted plots by components from predicting

UGA slash data using Legacy model
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Figure 3.28: Actual vs predicted plots of various components from predicting UGA slash pine

using Legacy slash pine model
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Chapter 4

Use of compatible taper, volume equations to estimate individual tree

total and component biomass

4.1 Introduction

Various studies on individual tree taper, volume, and weight equations have been conducted

in recent decades. The term “taper” is used to express the decrease in stem diameter with

increase in stem height. Tree total height (Ht), diameter at breast height (Dbh), and height at

a specific point above ground level are independent variables used in establishing taper equa-

tions (Clutter et al. 1983). Using taper equations, stem inside-bark or outside-bark diameter

can be predicted at any given tree height, or conversely tree height can be predicted at any

given diameter (Li et al. 2012). These equations are also used as a basis for deriving volume

equations, merchantable volume equations, and weight equations. Individual tree volume and

weight equations are important for obtaining estimates of standing tree volume and biomass.

Volume equations derived by integration of taper equations are useful in estimating total, as

well as merchantable, stem volume. Theoretically correct taper/volume functions fitted to

appropriate data are often preferred over existing volume tables/equations for prediction of

individual tree volume as they provide accurate estimates of diameter outside-bark (dob) or

diameter inside-bark (dib) at any specified height (Li and Weiskittel 2010). It is important

to note that, stem taper is an important factor that determines quality of timber as it has

direct impact on efficiency of timber processing, hence the market value of timber (Knauft

2004).
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Taper equations differ by species as tree form varies by species. Also, a single equation

may not be sufficient to cover all stand conditions in which a single species may be grown

(Clutter et al. 1983) and no single taper model is applicable for all purposes (McClure and

Czaplewski 1986). Furthermore, Newnham (1998) explained that no single theory or model

form is available that can be applied to various stem forms of all species. Hence, researchers

have developed different forms of taper equations that are used for various purposes.

Depending upon the form, the taper equation can be used to estimate upper-stem diam-

eters and volume of the stem between stump and the top of the tree. They can also be

used in estimating volume of a section of a log or main stem. Many studies have focused on

developing relationships between taper functions, volume equations, and weight equations

(Behre 1923, Demaerschalk 1972, Bailey 1994, Zhang et al. 2002). Volume equations can be

developed by integrating taper functions when the equation is rotated around the longitu-

dinal direction of a tree (Bruce et al. 1968). In this way, the volume and taper equations

are compatible, meaning the estimated volume using the volume function is the same as the

volume obtained by integrating the taper equation along the bole. Kozak (2004) points out

that taper functions are useful in estimating:

• outside or inside-bark diameter at any given point of the stem

• tree height at a given diameter

• total outside or inside-bark volume of a tree

• outside or inside merchantable volume to any merchantable height or minimum upper-

stem diameter from any stump height

• volumes of any length log

Fonweban et al. (2011) stated that taper equations can be categorized based on the variety

of functional form of models as: simple (e.g Kozak et al. 1969 ), polynomial ( e.g. Bruce et al.
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1968), segmented polynomial ( e.g. Max and Burkhart 1976), geometric-orientated (e.g. Par-

resol and Thomas 1996), and variable-exponent taper functions (e.g. Kozak 1988). Although

many equations have been used to model taper in the forestry literature, a very common

approach is to divide a tree into different segments and apply a mathematical function on each

segment where the regression function represents the change in stem diameter with increase

in tree height (Li and Weiskittel 2010). Max and Burkhart (1976) used this approach by

splining polynomials used in different sections of tree stems. They divided a tree into three

sections using two join points in which the lower section represents a neiloid shape and the

upper and middle sections represent conic and parabolic shape, respectively. Another com-

monly used approach in taper modeling is the use of a variable-exponent function (e.g. Kozak

1988; 2004). The variable-exponent model uses different exponents to represent different stem

shapes moving from ground to top of tree. (Li and Weiskittel 2010).

These variations in model forms are due to variation in stem form, which is influenced

by factors such as genetics, climate, site quality, species types, and stand characteristics

(Muhairwe et al. 1994). Heger (1965) stated that if two trees with comparable Ht and Dbh

are considered, trees with less taper can have up to 20% more volume than trees with more

taper.

In this study, our main goal is to make use of the taper function along with a small

sample of data where we have information on wood density and specific gravity, to estimate

component biomass. That is we make use of a compatible taper-volume set of equations,

but we are not carrying out a study of tree taper in and of itself. For this purpose we used

a revised version of the Fang et al. (2000) compatible taper-volume models to fit the data

for red maple (Acer rubrun) and slash pine (Pinus elliottii). Outside-bark and inside-bark

taper-volume models were developed for both species using two sets of data, one from a

relatively small set of trees recently obtained in a whole tree biomass study carried out

at the University of Georgia (UGA) and the other from a large regionwide taper database
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consisting of individual tree taper data from across the southern U.S. which was obtained over

the past 30 years (Legacy data). A compatible function for total volume is derived by direct

integration of the taper model. We fitted the taper model and estimated the parameters using

nonlinear ordinary least square (NOLS) method. The estimated parameters from the taper

model were then used to predict total volume of a tree. This predicted volume was used to

obtain individual tree and component dry biomass. This is an indirect method of predicting

tree biomass. Since it is expensive and time consuming to obtain weight information from the

field, an indirect method such as this can make use of available taper-volume functions and

newly acquired wood density, specific gravity and crown component biomass information to

estimate total and component tree biomass. Finally, we compared the prediction of individual

tree and component biomass from additive biomass system of equations, developed for red

maple and slash pine in Chapter 3, and from the indirect taper-volume approach put forth

in this chapter.

4.2 Materials and methods

4.2.1 Data

Taper measurement data from the UGA study and Legacy data were used separately, to

model taper-volume functions for this study. Two species, red maple and slash pine, were

selected for modeling from each set of data. The architecture of these two species is quite

different. Slash pine, a softwood tree species, has more regular tree structure than red maple, a

hardwood tree species. Of course, the two species not only differ in stem taper characteristics,

but their crown structures are quite different. Slash pine being an excurrent crown form and

red maple a deliquesent crown form.

Trees from the UGA data were destructively sampled and intensively measured. Pertinent

measurements for biomass calculation and modeling include-diameter at breast height (Dbh)

(0.1 inch), total tree height (0.1 foot), height to live crown (0.1 foot), diameter outside-bark
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at ground line, stump height, 2.75 feet, 4.5 feet, 8 feet and then every 4 feet up the stem

(0.1 inch). All stems were then sectioned at 4.5 feet, 8 feet and every 8 feet up the bole to

a minimum dob of 4 inches. Each section was weighed. A disk was removed from the base

of each bolt. All disks were weighed green with and without bark, had diameter measured

with and without bark and then debarked disks were soaked until saturation. Saturated disk

volume was determined using water displacement and then disks were dried at 105◦ C until

weight change stopped. Additionally, a sample of bark from each disk was selected, weighed

green, saturated and had its volume determined using water displacement and finally dried

to constant weight at 105◦ C.

Total tree volume was calculated using a combination of neiloid, paraboloid and cone

shapes. Measured diameters at the lower and upper end of each bolt (main stem section)

were used to calculate each bolt volume. Newton’s formula was used to calculate the volume

of a stem from base to 4.5 feet using three diameter measurements and assuming the stem

shape is represented by a neiloid frustrum. The tip of the tree stem from the minimum

four inch dob top was assumed to be represented by a cone. Smalian’s formula was used

to calculate volume of four foot stem sections between 4.5 feet and the four inch dob top

diameter. Total tree volume was then obtained by summing the volumes of the component

bolts.

Thirty eight slash pine trees ranging in Dbh from about 6 to 10 inches and ranging in Ht

from about 44 to 82 ft (Table 4.1), and 14 red maple trees ranging in Dbh from about 5 to

15 inches and ranging in Ht from about 39 to 74 ft were available for taper-volume modeling

work from the UGA data.
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Table 4.1: Sample tree characteristics for UGA data available for taper-volume model by

species

Dbh (inch) Tree height (ft)

Species No. of trees min mean max min mean max

Slash pine 38 5.60 7.80 10.10 44.30 60.16 81.60

Red maple 14 4.80 9.07 14.70 38.70 57.61 73.60

The second data set, Legacy data, consisted of taper measurement data from previous

taper/volume studies (Clark et al. 1991). For slash pine, 868 trees ranging in Dbh from

about 5 to 21 inches and ranging in Ht from about 21 to 103 ft and for red maple 905 trees

ranging in Dbh from about 5 to 32 inches and ranging in Ht from about 29 to 114 ft were

used for taper-volume modeling work (Table 4.2). Diameters were measured to the nearest

0.1 inch. Several other measurements, such as dob (0.1 inch) and dib (0.1 inch) at various

heights from the ground (taper measurement), total tree height (ft), total tree outside and

inside-bark volume, and cumulative outside and inside-bark volume, were available in this

data set.

Table 4.2: Sample tree characteristics for legacy data* available for

the taper-volume model by species

Dbh (inch) Tree height (ft)

Species No. of trees min mean max min mean max

Slash pine 868 4.6 9.12 20.8 21 61.36 103

Red maple 905 4.6 11.63 32 29 61.14 114

*Legacy data are compiled within Forest Inventory and Analysis (FIA)

biomass project by Phil Radtkey and David Walker of Virginia Tech.
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Number of trees by one inch Dbh class for each species by data type are given in Tables

4.3, 4.4, 4.5, and 4.6 and corresponding distributions are shown in Figures 4.1, 4.2, 4.3, and

4.4.

Table 4.3: Number of trees by 1 inch Dbh class with average Dbh and Ht for slash pine -

UGA data

Dbh class Number of trees Average Dbh Average Ht

6 4 5.78 55.63

7 10 7.19 57.24

8 17 7.98 59.66

9 4 9.05 64.98

10 3 9.83 72.27

Figure 4.1: Data distribution by 1 inch Dbh class for slash pine - UGA data
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Table 4.4: Number of trees by 1 inch Dbh class with average Dbh and Ht for red maple -

UGA data

Dbh class Number of trees Average Dbh Average Ht

5 1 4.80 38.70

7 3 7.07 54.97

8 2 8.05 53.70

9 2 9.10 58.80

10 2 9.65 59.90

11 3 10.90 64.93

15 1 14.70 63.40

Figure 4.2: Data distribution by 1 inch Dbh class for red maple - UGA data
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Table 4.5: Number of trees by 1 inch Dbh class with average Dbh and Ht for slash pine -

Legacy data

Dbh class Number of trees Average Dbh Average Ht

5 102 5.16 43.33

6 151 6.04 47.36

7 155 7.08 53.92

8 95 8.11 58.74

9 96 9.03 62.84

10 80 10.01 65.63

11 58 11.03 68.64

12 59 12.01 71.39

13 22 13.03 76.18

14 27 14.07 77.63

15 8 15.01 75.50

16 5 15.86 78.60

17 4 17.20 80.00

18 4 18.05 79.75

20 1 19.70 93.00

21 1 20.80 86.00
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Figure 4.3: Data distribution by 1 inch Dbh class for slash pine - Legacy data
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Table 4.6: Number of trees by 1 inch Dbh class with average Dbh and Ht for red maple -

Legacy data

Dbh class Number of trees Average Dbh Average Ht

5 83 5.18 44.13

6 99 6.06 46.66

7 88 7.07 49.53

8 86 8.05 52.74

9 72 9.02 55.82

10 80 10.08 56.69

11 70 11.02 63.07

12 52 12.07 63.21

13 48 13.05 66.25

14 47 14.05 67.00

15 42 15.04 67.43

16 36 16.13 71.11

17 23 17.04 72.52

18 18 18.09 72.78

19 14 18.98 71.43

20 14 19.96 77.00

21 6 20.90 72.17

22 7 22.10 82.14

23 4 22.98 80.25

24 3 24.17 78.33

25 2 24.90 79.00

26 3 26.17 82.67

27 2 27.20 85.00
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Table 4.6 – continued from previous page

Dbh class Number of trees Average Dbh Average Ht

28 3 28.37 78.33

29 2 28.80 91.00

32 1 32.00 85.00

Figure 4.4: Data distribution by 1 inch Dbh class for red maple - Legacy data

4.2.2 Statistical analysis

A revised version of Fang et al. (2000) segmented taper-volume function was selected as a

base model, which has the form
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d = c1[Ht
k–β1
β1 (1 – p)

k–β
β α

I1+I2
1 α

I2
2 ]1/2

β = β
1–(I1+I2)
1 β

I1
2 β

I2
3 , α1 = (1 – p1)

(β2–β1)k
β1β2 , α2 = (1 – p2)

(β3–β2)k
β2β3

c1 =
D

(Ht – 4.5)
k–β1
2β1

, k =
π

576
, p =

h

Ht
, p1 =

4.5

Ht

I1 =


1, p1 ≤ p ≤ p2

0, otherwise

I2 =


1, p2 ≤ p ≤ 1

0, otherwise

V = c21Ht
k
β1 [β1t0 + (I1 + I2)(β2 – β1)t1 + I2(β3 – β2)α1t2 – β(1 – p)

k
β α

I1+I2
1 α

I2 ]

t0 = (1 – p0)
k
β1 , t1 = (1 – p1)

k
β1 , t2 = (1 – p2)

k
β2

p0 =
stumpht

Ht
(4.1)

where

d = diameter outside-bark (inch) at some specified height Ht

h = height (ft) from base of the tree to upper-stem diameter d

Ht = total tree height (ft)

D = diameter at breast height (inch)

k = constant (for English units - Dbh in inch and Ht in ft) to convert Dbh into basal area

p = proportion of height h to total height (h/Ht)

p1 = first join point (inflection point) (relative height of Dbh measurement)

p2 = second join point
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β1, β2 and β3 = stem form factors for three corresponding stem-segments, 1, 2 and 3,

respectively.

In general, form factor represents the ratio of the volume of a tree to the volume of a

specified geometric solid with similar length and basal diameter. Commonly, the form factor

is based on a cylinder with the same length and diameter as the tree. All other variables,

such as β, α1, α2, c1, t0, and t1, are functions of these variables and parameters.

The taper function presented above is a generalized form of three separate taper functions

representing three separate stem segments in a tree. These three separate functions along

with their range in a stem section can be presented as:

d = c1[Ht(1 – p)]
k–β1
2β1 for 0 ≤ p ≤ p1

d = c2[Ht(1 – p)]
k–β2
2β2 for p1 ≤ p ≤ p2

d = c3[Ht(1 – p)]
k–β3
2β3 for p2 ≤ p ≤ 1 (4.2)

where, c1, c2, and c3 are constants associated with each segment. The functions for the first

and the second segment are continuous at the first join point, p1, and the functions for second

and the third stem segments are continuous at the second join point, p2.

V in Equation 4.1 is a cubic volume equation which is obtained by integrating the taper

function. Cubic foot volume of a desired section above ground level can be estimated using

the volume equation. Fang et al. (2000) used three segments each with its own form factor

to model the stem profile. In their work, the join points of the stem segments were set to

be unknown; hence, were estimated as parameters and the model insured that total stem

volume was obtained by integrating the taper function. Furthermore, the volume implied by

integration of the taper function was consistent with a total stem volume prediction equation

that was fitted simultaneously. In this study, the Fang et al. (2000) model was formulated

as a three segment model with the first join point at p1 (4.5/H), and the taper function was

constrained to pass through Dbh at 4.5 feet above ground level. The second join point is at
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p2, which is generalized as a function of Dbh and/or total height. This formulation of the

Fang et al. (2000) taper-volume function 4.1 is very flexible as it allows the upper join point,

p2, and form factors β1, β2 and β3 to vary with tree Dbh and Ht

p2 = 1/(1 + exp(–(pp1 + pp2 log(Ht) + pp3*Dbh)))

β1 = bb1 + bb2*Dbh + bb3*Ht

β2 = mm1 + mm2*Ht + mm3*Dbh (4.3)

where, pp1, pp2, pp3, bb1, bb2, mm1, mm2, mm3 are parameters and estimated from the

data. Of course for any given species/set of data, p2, β1 and β2 may be functions of Ht only

or Dbh only or both.

It is interesting to investigate the properties of the three form factors, β1, β2 and β3,

associated with, lower, middle and upper section of stem, respectively. When these form

factor parameters are normalized by dividing by a constant “k”, where “k” is 0.005454154

(conversion factor to ft2 from inch2), the form factors are smallest at the bottom, largest in

the middle, and moderate at the top. These normalized form factors are, in fact, comparable

to the form factors for a neiloid (0.250), parabolid (0.500) and cone (0.333), respectively.

This taper function has some nice properties: it is a continuous function at join points, d

is predicted to be 0 when h=H and d is predicted to be Dbh at 4.5 feet above ground level.

The two join points occur at some upper stem height h and at 4.5 ft from the ground.

The number of inflection points required to model stem taper varies by species, site

conditions, and other tree growth factors (Fang et al. 2000). For most of the species, it is

sufficient to include two inflection points to represent tree taper, one near Dbh of a tree

and the other at an upper point on the bole. However, in our UGA data, we found that

when modeling inside bark taper and volume for both species that one inflection point (two

segment model) was sufficient. The two segment model is, in fact, a reduced form of the

Equation 4.1 and is presented as
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d = c1[Ht
k–β1
β1 (1 – p)

k–β
β α

I1
1 ]1/2

β = β
1–I1
1 β

I1
2 , α1 = (1 – p1)

(β2–β1)k
β1β2 ,

c1 =
Dbhib

(Ht – 4.5)
k–β1
2β1

, k =
π

576
, p =

h

Ht
, p1 =

4.5

Ht

I1 =


1, p1 ≤ p ≤ 1

0, otherwise

V = c21Ht
k
β1 [β1t0 + I1(β2 – β1)t1 – β(1 – p)

k
β α

I1
1 ]

t0 = (1 – p0)
k
β1 , t1 = (1 – p1)

k
β1

p0 =
stumpht

Ht
(4.4)

The two-segment model consists of two form factor parameters; β1 and β2, as described

above. The inside-bark model is different than outside bark model in that it requires volume

inside bark (vib), diameter inside bark (dib), and Dbh inside bark (Dbhib) variables to fit

the model. Dbhib is not typically available from tree measurement data, hence we developed

an appropriate Dbh based function to predict Dbhib for both species for both data sets.

Parameters for this Dbhib equations were estimated using ordinary least squares (OLS) and

the model fitting was implemented in SAS using REG procedure.

Our study involves development of compatible taper and volume models where parameters

were estimated for the taper function, which was then integrated to estimate stem volume.

We fitted the taper equation using nonlinear ordinary least square (NOLS) approach. The

function was fitted to both red maple and slash pine, separately. Therefore, there are two

taper models (outside and inside-bark) for red maple and two for slash pine for each of our

data sets.. All model fitting was implemented in Statistical Analysis System (SAS) (SAS

2013). The simple linear fitting procedure was implemented in SAS using REG procedure

and nonlinear fitting procedure was done using the MODEL procedure. R (R 2013) statistical
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analysis software was also used for data management and graphical analysis. We also tried to

fit taper-volume equation in a system using nonlinear seemingly unrelated regression (NSUR)

but in some cases we could not get convergence for NSUR.

4.2.2.1 biomass calculation

Using diameter outside-bark and diameter inside-bark taper equations, tree volume outside-

bark and volume inside-bark, respectively, were estimated. The estimated volume was used

to compute dry biomass. Hence, the procedure to calculate dry biomass begins with volume

prediction from compatible taper-volume functions. In the process of biomass calculation we

require green density and specific gravity information, which were calculated as

A) GD (Green weight wood density)

GDi =
GWIBi

TVIBi

GD =
n∑
i

GDi

n
(4.5)

B) SG (Wood specific gravity green volume dry weight)

Disk data were used to calculate specific gravity for each tree.

SGj =
DwtDskj
GvolDskj

SGi =

∑k
j=1(SGj)(Aj)∑k

j=1 Aj

A = 0.005454154*Dib2

SG =
n∑

i=1

SGi

n
(4.6)

where,

GDi = green weight wood density for tree i (lbs/ft3), where i from 1 to n trees
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GWIBi = green weight of stem inside bark for tree i (lbs)

TVIBi = total volume of stem inside bark for tree i (ft3)

GD = average green weight wood density by species (lbs/ft3)

SGj = specific gravity (gm/cc) of disk j, where j from 1 to k (number of disks)

SGi = specific gravity (gm/cc) of for tree i

SG = average specific gravity by species (gm/cc)

DwtDskj = dry weight of disk j (gm)

GvolDskj = green volume of disk j (cc)

Dib = disk diameter inside bark (inch)

A = area of disk (ft2)

n = number of trees

Table 4.7 reports calculated variables, required for biomass calculation, for both red maple

and slash pine. When we predict dry biomass of new trees, we consider these variables as

already given.

Table 4.7: Variables required to calculate dry biomass

Species GD(lbs \ ft3) SG (gm \ cc)

Red maple 53.49 0.48

Slash pine 63.99 0.56

To calculate stem wood, stem bark, and crown component biomass from green volume

estimates above, we make use of the information and relationships shown in Equations 4.7
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through 4.14 below. Calculation in the following a 8-step process can easily be carried out

by using hand held calculator or in other software such as in SAS using data step procedure.

Variables GD and SG are considered as given variables while calculating dry biomass. ˆVolob

and ˆVolib are predicted volumes for given Dbh and Ht of a tree using the taper-volume

model.

1) GWWi
(Green weight of wood biomass for tree i)

ˆGWWi
= ˆVolib ×GD (4.7)

2) DWWi
(Dry weight of wood biomass for tree i)

ˆDWWi
= ˆGWWi

× SG (4.8)

3) DWBi
(Dry weight of bark biomass for tree i)

ˆDWBi
= ˆDWWi

× R̂BSi

where, R̂BSi =
ŶStembarki

ŶStemwoodi

(4.9)

4) DWWBi
(Dry weight of stem (wood and bark) biomass for tree i)

ˆDWWBi
= ˆDWWi

+ ˆDWBi
(4.10)

5) DWBri (Dry weight of branch biomass for tree i)

ˆDWBri = ˆDWWi
× R̂BrSi

where, R̂BrSi =
ŶBranchi

ŶStemwoodi

(4.11)

6) DWFi
(Dry weight of foliage biomass for tree i)

ˆDWFi
= ˆDWWi

× R̂FSi

where, R̂FSi =
ŶFoliagei

ŶStemwoodi

(4.12)
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7) DWCrni (Dry weight of crown biomass for tree i)

ˆDWCrni = ˆDWBri + ˆDWFi
(4.13)

8) DWTi
(Dry weight of total biomass for tree i)

ˆDWTi
= ˆDWWBi

+ ˆDWCrni (4.14)

where,

R̂BSi = estimated bark to stem wood ( without bark) ratio

R̂BrSi = estimated branch to stem wood ratio

R̂FSi = estimated foliage to stem wood ratio

ŶStembarki = estimated bark weight for tree i, from using Dbh and Ht based system of

equations fitted to UGA data (Equation in chapter3)

ŶStemwoodi = estimated stem inside bark weight for tree i, from using Dbh and Ht based

system of equations fitted to UGA data (Equation in chapter3)

ŶBranchi = estimated branch weight for tree i, from using Dbh and Ht based system of

equations fitted to UGA data (Equation in chapter3)

ŶFoliagei = estimated foliage weight for tree i, from using Dbh and Ht based system of

equations fitted to UGA data (Equation in chapter3)

Legacy and UGA taper-volume models were used to predict UGA data that were used

to fit the explicit biomass prediction system of equations from chapter 3. Prediction of dry

biomass using the taper-volume function was compared against prediction of dry biomass

from using Dbh and Ht based system of equations in chapter 3 for both species. The accu-

racy and precision of diameter prediction as well as volume prediction of each model were
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compared using both graphical techniques and numeric analysis of residuals. The statistics

obtained from residuals used to compare the precision and accuracy include (1) Average

residual (AR) (2) Average percent residual (APR) (3) Average absolute residual (AAR) (4)

Average absolute percent residual (AAPR) (5) Root mean square error (RMSE) and (6) Per-

cent variance explained (PVE). AR measures average bias in prediction. This indicates the

expected error in prediction when several observations are to be combined by averaging. The

AAR measures accuracy in model prediction. This signifies the average error from prediction

of any one observation (Burk 1986). RMSE, square root of MSE, is the standard deviation of

prediction error for unbiased models (Burk 1986). It is a measure of average deviation. PVE

measures the goodness of fit of the model. It actually measures how well the fit accounts for

the variation in the data. It is a measure similar to fit index or R2.

AR =

∑n
i (yi – ŷi)

n

APR =

∑n
i (yi–ŷiyi

× 100)

n

AAR =

∑n
i |(yi – ŷi)|

n

AAPR =

∑n
i (
|(yi–ŷi)|

yi
× 100)

n

RMSE =

√√√√ n∑
i

(yi – ŷi)
2

n

PVE = (1 –

∑n
i (yi – ŷi)

2∑n
i (yi – ȳ)2

)× 100 (4.15)

where, yi refers to the observed ith response value (observed dry weight of components), ŷi

is the corresponding predicted response value, and n is the number of observations.

221



4.3 Results and discussion

4.3.1 Taper-volume outside and inside-bark model for slash pine using

legacy data

Three segment taper function was fitted to the Legacy data outside bark. For the outside-

bark taper-volume model for slash pine, all parameters are significant at α =0.05 except pp1,

which is marginally significant at α = 0.15 (Table 4.8). Statistical significance of pp1, pp2 and

pp3 indicate that the second join point (p2) in the taper model varies by tree size (Dbh and

Ht). Similarly, bb1 and bb2 are significant in the model, indicating the form factor associated

with the first segment of stem, β1, varies by Dbh. Similarly, the significant parameters mm1,

mm2 and mm3 indicate the form factor associated with second stem-segment, β2, varies by

tree Ht and Dbh. The form factor associated with the last stem-segment, β3, is also highly

significant, which was estimated using the data.

The parameters such as p2, bet1, and bet2 can be calculated using Equation 4.3. For

example, for an average size slash tree with 8 inch Dbh and 60 ft tall

p2 = 1/1(+exp(-(pp1+pp2*ln(Ht)+pp3*Dbh)))

= 1/1(+exp(-(-2.94806+1.738988*ln(60)-0.22149*8))) = 0.917.

bet1 = bb1 + bb2*Dbh =0.000863 - 0.00003 *8 = 0.000623.

bet2 = mm1+mm2*Ht + mm3*Dbh=0.002273 + 0.000007785 -0.00003*Dbh =0.0025001.

The value of p2 shows that the second join point occurs near the total tree height.

Specifically, the second outside-bark join point for this average size slash tree is around 92%

of the total height that is around 55 ft from the ground level.

For this average size slash β1 is 0..000623, β2 is 0.0025001, and β3 is 0.001978. The

resulting normalized form factors are 0.114, 0.458 and 0.363, respectively for β1, β2, and

β3. These outside-bark form factors are smallest at the bottom, largest in the middle, and
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moderate at the top. These form factors are comparable to the form factors for a neiloid

(0.250), paraboloid (0.500) and cone (0.333), respectively.

Table 4.8: Parameter estimates, approximate standard errors (Approx. SE) and test

statistics for outside-bark taper-volume function for slash pine - Legacy data

Parameter Estimate Approx. SE t-value p-value

pp1 - 2.948060000 2.054900000 - 1.43 0.1500

pp2 1.738988000 0.524800000 3.31 0.0000

pp3 - 0.221490000 0.026000000 - 8.52 <.0001

bb1 0.000863000 0.000004884 176.62 <.0001

bb2 - 0.000030000 0.000000376 - 81.07 <.0001

mm1 0.002273000 0.000023000 98.80 <.0001

mm2 0.000007785 0.000000493 15.78 <.0001

mm3 - 0.000030000 0.000002002 - 14.94 <.0001

bet3 0.001978000 0.000051000 38.94 <.0001

The fit statistics show that the taper model fits the data very well (Table 4.9). The

prediction (APRED) of dob and vob are very close to the actual values (AOBS). The model

explains more than 98% of variation about the mean values of d and V. Also, plots of observed

versus predicted dob and vob also indicate very good fit for the slash pine taper function

(Figure 4.5). The residual plots show reasonable residual patterns (see Appendix A).

Table 4.9: Average observed, average predicted dob and vob, and fit statistics from Legacy

slash taper - volume outside-bark model

Variables AOBS APRED AR APR AAR AAPR RMSE PVE

dob 7.43 7.46 -0.0229 -0.67 0.259 3.505 0.405 98.90

vob 8.75 9.01 -0.263 -3.41 0.553 6.560 1.235 98.93
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Figure 4.5: Actual vs predicted dob and vob for slash pine - Legacy model

Similar to the outside-bark taper-volume model, parameters (Table 4.10), fit statistics

(Table 4.11) and residual plots (see Appendix A) for inside-bark model indicate good fits to

the data. The taper-volume inside-bark model requires diameter at breast height inside-bark

(Dbhib) to predict dib and vib of a stem. We developed the simple Dbh based Equation 4.16

to predict Dbhib for slash pine.

ˆDbhib = –0.62 + 0.91×Dbh (4.16)
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Table 4.10: Parameter estimates, approximate standard errors (Approx. SE) and test

statistics for inside-bark taper- volume function for slash pine - Legacy data

Parameter Estimate Approx. SE t-value p-value

pp1 - 2.5680300000 1.2438000000 - 2.06 0.0400

pp2 1.2552110000 0.3252000000 3.86 0.0000

pp3 - 0.1681900000 0.0194000000 - 8.66 <.0001

bb1 0.0009410000 0.0000078030 120.65 <.0001

bb2 - 0.0000089900 0.0000007189 - 12.50 <.0001

bb3 - 0.0000053800 0.0000001829 - 29.40 <.0001

mm1 0.0023220000 0.0000300000 76.75 <.0001

mm2 - 0.0000300000 0.0000029680 - 9.46 <.0001

mm3 0.0000078350 0.0000006807 11.51 <.0001

bet3 0.0021610000 0.0000200000 107.31 <.0001

Table 4.11: Average observed, average predicted dib and vib, and fit statistics from Legacy

slash taper - volume inside-bark model

Variables AOBS APRED AR APR AAR AAPR RMSE PVE

dib 6.35 6.36 -0.015 -0.64 0.242 3.922 0.372 98.81

vib 6.55 6.68 -0.137 -3.06 0.422 7.000 0.925 98.94
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Figure 4.6: Actual vs predicted dib and vib for slash pine - Legacy model

The fitted curve in Appendix A for both outside and inside-bark models show good

agreement between model predictions and observed data trend.

4.3.2 Taper-volume outside and inside-bark model for red maple using

legacy data

Similar to slash pine, the 3-segment model was fitted to Legacy red maple data. For both

outside and inside-bark model, p2 was found to not vary with Dbh and Ht. The parameter

estimates and fit statistics for outside (Tables 4.12, 4.13) and inside-bark (Tables 4.14, 4.15)

model indicate good fits to the data.
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Table 4.12: Parameter estimates, approximate standard errors (Approx. SE) and test

statistics for outside-bark taper-volume function for red maple - Legacy data

Parameter Estimate Approx. SE t-value p-value

p2 0.59152500 0.01360000 43.41 <.0001

bb1 0.00074300 0.00000837 88.82 <.0001

bb2 - 0.00001000 0.00000056 - 17.93 <.0001

mm1 0.00194800 0.00002400 80.01 <.0001

mm2 - 0.00003000 0.00000109 - 31.70 <.0001

mm3 0.00000717 0.00000046 15.75 <.0001

bet3 0.00220000 0.00003200 68.14 <.0001

Table 4.13: Average observed, average predicted dob and vob, and fit statistics from Legacy

red maple taper - volume outside-bark model

Variables AOBS APRED AR APR AAR AAPR RMSE PVE

dob 8.86 8.82 0.004 -0.628 0.437 5.29 0.695 98.35

vob 13.67 17.68 -0.001 -2.521 1.200 7.913 3.553 97.18
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Table 4.14: Parameter estimates, approximate standard errors (Approx. SE) and test

statistics for inside-bark taper-volume function for red maple - Legacy data

Parameter Estimate Approx. SE t-value p-value

p2 0.58606700 0.01390000 42.05 <.0001

bb1 0.00072900 0.00000826 88.21 <.0001

bb2 - 0.00000952 0.00000056 - 17.15 <.0001

mm1 0.00186100 0.00002400 76.98 <.0001

mm2 - 0.00003000 0.00000109 - 30.16 <.0001

mm3 0.00000749 0.00000045 16.49 <.0001

bet3 0.00215300 0.00003100 68.60 <.0001

Table 4.15: Average observed, average predicted dob and vob, and fit statistics from Legacy

red maple taper - volume inside-bark model

Variables AOBS APRED AR APR AAR AAPR RMSE PVE

dib 8.26 8.22 0.004 -0.633 0.424 5.67 0.672 98.30

vib 12.03 12.03 -0.003 -2.63 1.08 8.09 3.224 97.11

The average versus observed plots for both outside (Figure 4.7) and inside-bark (Figure

4.8) show a slight deviation in predicted values from the actual values specially in larger

volume. The residual plots in Appendix (B) show that the both outside and inside-bark

model fits the data well. In addition, fit plots shown in Appendix (B) show that the predicted

value follow the observed data trend well.
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Figure 4.7: Actual vs predicted dob and vob for red maple - Legacy model
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Figure 4.8: Actual vs predicted dib and vib for red maple - Legacy model
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As for slash pine, we developed a Dbh based Equation 4.17 to predict Dbhib for red

maple.

ˆDbhib = –0.14 + 0.95×Dbh (4.17)

4.3.3 Taper-volume outside and inside-bark model for slash pine and red

maple from UGA data

A 3-segment taper-volume model was fitted to outside bark and a 2-segment model was fitted

to inside bark data for both species from our UGA study. Parameter estimates and various

fit statistics for outside-bark (Tables 4.16, 4.17) and inside-bark (Tables 4.18, 4.19) models

show that these models for slash pine reasonably work well.

Table 4.16: Parameter estimates, approximate standard errors (Approx. SE) and test

statistics for outside-bark taper - volume equation for slash pine - UGA data

Parameter Estimate Approx. SE t-value p-value

pp1 8.290034 2.108400 3.93 <.0001

pp2 -2.302510 0.483500 -4.76 <.0001

pp3 -0.099270 0.054300 -1.83 0.0682

bb1 0.001007 0.000130 7.76 <.0001

bb2 -0.000040 0.000016 -2.36 0.0188

mm1 0.005900 0.000746 7.91 <.0001

mm2 -0.000040 0.000011 -3.90 0.0001

mm3 -0.000220 0.000094 -2.40 0.0167

bet3 0.002450 0.000013 186.24 <.0001
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Table 4.17: Average observed, average predicted dob and vob, and fit statistics from UGA

slash outside-bark taper - volume model

Variables AOBS APRED AR APR AAR AAPR RMSE PVE

dob 5.26 5.25 0.0052 -0.264 0.150 3.645 0.300 99.32

vob 6.81 6.87 -0.0522 -1.71 0.279 4.322 0.395 99.17

Table 4.18: Parameter estimates, approximate standard errors (Approx. SE) and test

statistics for inside-bark taper - volume equation for slash pine - UGA data

Parameter Estimate Approx. SE t-value p-value

bet1 0.0007 0.000017 41.77 <.0001

bet2 0.0025 0.000009312 269.32 <0.0001

Table 4.19: Average observed, average predicted dib and vib, and fit statistics from UGA

slash inside-bark taper - volume model

Variables AOBS APRED AR APR AAR AAPR RMSE PVE

dib 4.53 4.54 -0.0054 -0.36 0.142 3.88 0.197 99.11

vib 4.95 5.06 -0.1122 -2.92 0.235 4.92 0.324 98.97

Plots of observed versus predicted dob and vob (Figure 4.9), dib and vib (Figure 4.10),

various residual and fitted plots (see Appendix C) indicate very good fit for the slash pine

taper function.
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Figure 4.9: Actual vs predicted diameter and vob for slash pine- UGA model
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Figure 4.10: Actual vs predicted diameter and volume inside-bark for slash pine- UGA model
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As for the other inside bark taper-volume models we developed an equation to predict

dbhib from dbh (Equation 4.18) for UGA slash data.

ˆDbhib = 0.02 + 0.84×Dbh (4.18)

Similar to slash pine, UGA red maple data were fitted with 3-segment outside and 2-

segment inside bark taper-volume models. As for slash pine the model for red maple shows

a good fit to the data. Parameter estimates, fit statistics for outside (Tables 4.20, 4.21) and

inside bark (Tables 4.22, 4.23) model below also indicate that these models fit the UGA red

maple data very well.

Table 4.20: Parameter estimates, approximate standard errors (Approx. SE) and test

statistics for outside-bark taper - volume equation for red maple - UGA data

Parameter Estimate Approx. SE t-value p-value

pp1 33.011010 8.278700 3.99 <.0001

pp2 - 6.758210 1.810200 -3.73 0.0000

pp3 -0.430640 0.061600 -6.99 <.0001

bb1 0.000883 0.000141 6.27 <.0001

bb2 0.000050 0.000015 3.31 0.0000

bb3 -0.000010 0.000003 -4.31 <.0001

mm1 0.002459 0.000153 16.07 <.0001

mm3 -0.000050 0.000017 -3.21 0.0000

bet3 0.003130 0.000068 46.07 <.0001
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Table 4.21: Average observed, average predicted dob and vob, and fit statistics from UGA

red maple outside-bark taper - volume model

Variables AOBS APRED AR APR AAR AAPR RMSE PVE

dob 6.53 6.53 -0.0033 -0.454 0.202 3.531 0.306 99.22

vob 9.23 9.56 -0.3233 -4.136 0.448 5.474 0.602 99.44

Table 4.22: Parameter estimates, approximate standard errors (Approx. SE) and test

statistics for inside-bark taper - volume equation for red maple - UGA data

Parameter Estimate Approx. SE t-value p-value

bet1 0.0006 0.00004 14.90 <.0001

bet2 0.0022 0.000035 63.64 <0.0001

Table 4.23: Average observed, average predicted dob and vob, and fit statistics from UGA

red maple inside bark taper - volume model

Variables AOBS APRED AR APR AAR AAPR RMSE PVE

dib 6.15 6.24 -0.0659 -2.3403 0.3554 7.2 0.523 97.22

vib 8.29 8.65 -0.3604 -6.806 0.8172 8.477 1.321 96.56

The various observed and predicted plots for outside (Figure 4.11) , inside bark (Figure

4.12), residual plots and fitted plot (see Appendix D) show that both outside and inside bark

models are appropriate.
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Figure 4.11: Actual vs predicted dob and vob for red maple- UGA model
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Figure 4.12: Actual vs predicted dib and vib for red maple- UGA model
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As discussed above, it was necessary to fit a function to predict dbhib from dbh for use

in the inside bark taper-volume functions for UGA red maple data. The function (Equation

4.19) fits the data very well.

ˆDbhib = 0.63 + 0.88×Dbh (4.19)

4.4 Biomass prediction comparison

Using the taper-volume equations and the other required variables from UGA destructive

sampling data, we estimated total as well as component biomass for both red maple and

slash pine. The biomass prediction from this method was compared with the prediction from

system of equations that was developed in Chapter 3. Specifically, we used Legacy and UGA

slash and red maple taper-volume functions to predict total and component biomass for each

species. The prediction from this method was compared with prediction from the system of

equations. The criteria used to compare prediction include AR, APR, AAR, AAPR, RMSE

and PVE.

4.4.1 Prediction comparison for slash pine

On average, all biomass components are slightly under-predicted when using the explicit

system of equations (Table 4.24). The larger percentage bias and larger percentage error

in prediction are for foliage, branch and crown components. The stemwood, stem and total

biomass models show better fit than other components as indicated by higher PVE.
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Table 4.24: Average observed, average predicted biomass and fit statistics from fitting

system of equations based on Dbh and Ht for UGA slash data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 254.36 254.06 0.30 - 0.93 19.36 8.37 24.23 95.05

Bark 150.12 149.94 0.18 - 1.71 18.06 12.40 22.38 76.41

Stem 404.48 404.00 0.48 - 0.29 26.22 6.34 36.01 94.24

Branch 21.14 20.48 0.65 - 5.02 6.32 33.91 8.10 65.01

Foliage 11.06 10.72 0.34 - 13.10 3.38 39.87 5.18 52.44

Crown 32.20 31.21 0.99 - 4.80 9.32 32.71 12.42 63.49

Total 436.68 435.21 1.47 0.13 28.81 6.54 39.14 93.72

The UGA slash pine taper-volume biomass estimation approach predicted observed

biomass components similarly to the explicit system of biomass equations. As for the system

of equations, the largest percentage bias and percentage error in prediction are for branch,

foliage, and crown component models (Table 4.25). Stemwood, stem and total stem biomass

predictions are closer to observed values than are crown component predictions.
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Table 4.25: Average observed, average predicted biomass and fit statistics for UGA slash

taper-volume model when used to predict UGA slash data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 254.36 264.20 - 9.84 - 6.98 25.00 11.69 30.57 92.13

Bark 150.12 157.46 - 7.33 - 7.52 21.29 14.89 25.50 69.36

Stem 404.48 421.65 - 17.17 - 6.17 39.94 10.39 47.66 89.91

Branch 21.14 21.84 - 0.70 - 10.62 6.21 34.78 7.91 66.65

Foliage 11.06 11.49 - 0.42 - 18.80 3.53 41.68 5.11 53.65

Crown 32.20 33.32 - 1.13 - 10.41 9.19 33.33 12.14 65.10

Total 436.68 454.98 - 18.30 - 5.70 41.83 10.07 50.34 89.62

All the components are over-predicted when using Legacy taper-volume model to predict

UGA slash data (Table 4.26). Similar to the other two methods, higher prediction bias and

prediction error are evident for branch, foliage and crown predictions.

Table 4.26: Average observed, average predicted biomass and fit statistics for legacy slash

taper-volume model when used to predict UGA slash data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 254.36 270.54 - 16.18 - 7.91 24.77 11.23 31.24 91.78

Bark 150.12 160.37 - 10.25 - 8.64 21.26 15.09 25.74 68.80

Stem 404.48 430.91 - 26.43 - 7.19 38.06 9.90 48.34 89.62

Branch 21.14 22.27 - 1.13 - 12.37 6.49 36.21 8.33 62.96

Foliage 11.06 11.67 - 0.61 - 20.89 3.65 43.42 5.27 50.77

Crown 32.20 33.94 - 1.74 - 12.17 9.65 34.97 12.76 61.47

Total 436.68 464.86 - 28.18 - 6.75 40.36 9.65 52.97 88.50
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Below, we compare the fit statistics for major component (stemwood, crown and total)

biomass using the explicit biomass system of equations, the UGA taper-volume model indi-

rect approach (UGA taper-volume) and the Legacy taper-volume indirect model (Legacy

taper-volume). Average percent prediction biases for the UGA taper-volume model and

legacy taper-volume model are close to each other but higher than the explicit system of

equations (Table 4.27). Prediction error is smallest for the explicit system of equations and

largest for Legacy taper-volume model for all three components. The average percent pre-

diction errors for both UGA taper-volume and Legacy taper-volume models are similar. For

stem and total biomass models, RMSE from the System of equations is smaller than the

other two estimation approaches. Whereas, crown biomass RMSE is very close from all three

approaches. The goodness of fit statistics show very good fit, specifically for stem and total

biomass models. It is usually higher for system of equations followed by UGA taper-volume

model.

In general, as expected, the system of equations, a direct approach of estimating biomass,

outperforms the other two approaches. However, based on the fit statistics, UGA taper-

volume equation is comparable to the system of equations which indicates that the taper-

volume equation approach of predicting component biomass is reliable.
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Table 4.27: Comparing fit statistics from system of equation, UGA taper model and Legacy

taper model prediction for UGA slash pine data

Components Method APR AAPR RMSE PVE

System of equations - 0.29 6.34 36.01 94.24

Stem UGA taper-volume - 6.17 10.39 47.66 89.91

Legacy taper-volume - 7.19 9.90 48.34 89.62

System of equations - 4.80 32.71 12.42 63.49

Crown UGA taper-volume - 10.41 33.33 12.14 65.10

Legacy taper-volume - 12.17 34.97 12.76 61.47

System of equations 0.13 6.54 39.14 93.72

Total UGA taper-volume - 5.70 10.07 50.34 89.62

Legacy taper-volume - 6.75 9.65 52.97 88.50

4.4.2 Prediction comparison for red maple

When using the red maple explicit system of equations, we find slight under-prediction of

biomass for all components except for foliage (Table 4.28). Similar to slash pine, the average

percent bias and percent error in prediction are higher for branch, foliage and crown compo-

nents than for stem components. Goodness of fit statistics show that stemwood, stembark,

stem and total components models, each explain more than 85% of variation in the data.

However, very poor fit is found for branch, foliage and crown components.
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Table 4.28: Average observed, average predicted biomass and fit statistics from fitting

system of equations based on Dbh and Ht for UGA red maple data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 285.67 282.25 3.42 1.22 32.37 11.12 39.62 91.36

Bark 84.88 83.37 1.51 4.67 14.64 18.79 19.39 85.25

Stem 370.56 365.62 4.94 2.72 32.97 9.91 43.99 94.07

Branch 82.37 78.74 3.63 - 29.05 34.52 57.54 43.04 9.90

Foliage 9.68 10.01 - 0.33 - 75.82 3.90 96.67 4.79 26.69

Crown 92.05 88.75 3.30 - 26.70 37.97 54.43 45.94 14.33

Total 462.61 454.38 8.23 0.46 61.58 14.87 74.05 87.14

From using UGA red maple taper - volume model to predict UGA red maple data,

we obtain higher average percentage bias and error in prediction on the same components

(branch, foliage and crown) as above (Table 4.29). Branch, foliage and crown biomass models

have poor (low PVE) fit relative to other components.

Table 4.29: Average observed, average predicted biomass and fit statistics for UGA red

maple taper - volume model when used to predict UGA red maple data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 285.67 275.82 9.85 0.98 31.50 11.59 41.22 90.65

Bark 84.88 80.97 3.91 5.25 13.74 16.91 19.29 85.41

Stem 370.56 356.79 13.76 2.66 38.09 10.80 45.52 93.65

Branch 82.37 77.83 4.54 - 29.57 35.22 59.01 42.97 10.18

Foliage 9.68 9.96 - 0.28 - 80.81 4.19 103.73 5.08 17.72

Crown 92.05 87.79 4.26 - 27.53 38.97 56.41 46.14 13.58

Total 462.61 444.58 18.03 0.10 63.33 16.22 74.89 86.85
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When the Legacy red maple taper - volume model is used, we have the highest percent

bias and error in foliage prediction compared to other components (Table 4.30). The percent

prediction error is higher for branch foliage and crown components. Goodness of fit statistics

show that the all component predictions, except branch, foliage and crown models, fit the

data well.

Table 4.30: Average observed, average predicted biomass and fit statistics for legacy red

maple taper - volume model when used to predict UGA red maple data

Components AOBS APRED AR APR AAR AAPR RMSE PVE

Stemwood 285.67 247.17 38.51 12.01 43.49 14.51 56.98 82.13

Bark 84.88 72.71 12.17 15.70 14.94 18.32 22.06 80.92

Stem 370.56 319.88 50.68 13.49 53.30 14.19 67.82 85.90

Branch 82.37 69.49 12.87 - 15.67 35.89 53.17 45.22 0.54

Foliage 9.68 8.88 0.81 - 61.33 4.12 91.51 5.20 13.78

Crown 92.05 78.37 13.68 - 13.73 38.89 49.68 48.67 3.85

Total 462.61 398.25 64.36 11.22 81.76 17.44 100.08 76.51

We compared the fit statistics for major component (stemwood, crown and total) biomass

predictions resulting from using the three methods for red maple. On average, for stem and

total biomass, larger percent bias and percent error in prediction are obtained from using

Legacy taper-volume model than the other two methods (Table 4.31). However, for crown

biomass, these statistics are lower for the Legacy model. The RMSE values from system of

equations are close to RMSE from using UGA taper-volume equation and these RMSE values

are smaller than RMSE from Legacy taper-volume model. In fact, comparing with the system

of equations, RMSE has increased by only about 3% for stem, less than 0.5% for crown and

about 1% for total biomass model, when the UGA taper-volume model is used. Further,

compared with the system of equations, the RMSE value has increased by about 54% for
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stem, 6% for crown and 35% for total biomass model, when Legacy taper-volume model is

used. There is a large increase in RMSE for these components when Legacy taper-volume is

used. Goodness of fit statistics show that system of equations and UGA taper-volume model

predict the stem and total biomass reasonably well.

Overall, based on the fit statistics, when we do not have direct measurements on biomass,

we can use UGA red maple taper-volume equation to predict individual tree and components

biomass. This indirect approach shows less agreement between predictions and observed

biomass components than the explicit system of biomass equations.

Table 4.31: Comparing fit statistics from system of equation, UGA taper model and Legacy

taper model prediction for UGA red maple data

Components Method APR AAPR RMSE PVE

System of equations 2.72 9.91 43.99 94.07

Stem UGA taper 2.66 10.80 45.52 93.65

Legacy taper 13.49 14.19 67.82 85.90

System of equations - 26.70 54.43 45.94 14.33

Crown UGA taper - 27.53 56.41 46.14 13.58

Legacy taper - 13.73 49.68 48.67 3.85

System of equations 0.46 14.87 74.05 87.14

Total UGA taper 0.10 16.22 74.89 86.85

Legacy taper 11.22 17.44 100.08 76.51

4.5 Conclusion

Although simple taper functions represent the general taper of trees, they do not reflect the

entire stem profile well; hence, they produce bias especially near the butt and the top section

of tree stems (Jiang 2004). More flexible, segmented taper functions represent the stem
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profile with different sub-functions for various parts of the stem, therefore reducing prediction

error. In this study, we used a revised version of Fang et al. (2000) compatible taper-volume

function, which is a complex and very flexible system that provides very accurate estimates

of upper stem diameter and stem volume. We used three segments or two segments functions

depending upon the data type and significance of the parameters.

Major characteristics of our function are: (1) the segmented taper-volume function is

continuous at join (inflection) points, (2) the function is constrained to go through Dbh (3)

the first join point is at 4.5/Ht and the second join point, is allowed to vary with Dbh and

Ht, and is estimated from the data, (4) each segment has its own form factor parameter, (5)

first and second form factor parameters are allowed to vary with Dbh and/or Ht whereas the

third is estimated directly from the data, (6) when relative height (h) = total height (Ht) ,

the diameter at the top of the tree (d) is 0, (7) volume is 0 at the stump height (i.e. when

h = h0, Vm=0), (8) the segmented taper-volume functions are compatible, that is when

integrated taper function results in volume function, (9) parameters in the function have a

biological basis and hence are informative, (10) cubic foot volume of any stem section can

be predicted using the function and, (11) the segmented taper-volume function represents

the stem profile very well.

We fitted segmented taper-volume function for outside and and inside-bark diameter

for slash pine and red maple. Two sets of data, one from UGA study and the other from

legacy data were separately used to build models. We found the taper functions provide a

good fit on diameter and volume prediction. When using inside-bark taper-volume function,

diameter inside-bark (Dbhib) is required. Therefore, we developed a species specific function

that predicts Dbhib based on Dbh for both data sets.

We have shown that the taper-volume indirect method (using the UGA data) of com-

ponent biomass estimation predicts similarly to the explicit individual tree biomass system

of equations. Hence, we can say that it is reasonable to use compatible taper/volume sys-
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tems that are known to represent tree volume for a given species in a given region in this

indirect approach to biomass estimation. However, to use this method we do in fact need

to have some ratios available for things such as bark/wood biomass, foliage/wood biomass,

branch/wood biomass. Typically, these ratios are difficult and expensive to develop and only

a small number of trees are usually sampled to develop them (e.g. our UGA data). How-

ever, taper/volume data is much cheaper to obtain and much larger data sets are available

for taper/volume modeling. In this study, we have shown that a reasonable process to use

to estimate tree biomass components and ultimately stand, forest, regional and ultimately

national scale estimates of tree biomass can indeed be performed using the taper-volume

indirect method along with ratios developed from smaller regional biomass studies.
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4.7 Appendix A: Residual diagnosis of fitted taper model - Legacy model

Predicted diameter outside bark (inch)

R
es
id
ua
l

-2

0

2

4

0 10 20 30 40

Relative height (ft)

R
es
id
ua
l

-2

0

2

4

0 20 40 60 80 100

Figure 4.13: Residual plots of fitted taper model of dob for slash pine- Legacy model

Figure 4.14: Plot of relative height with relative dob with fitted line for slash pine - Legacy

model
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Figure 4.15: Residual plots of fitted taper model of dib for slash pine - Legacy model

Figure 4.16: Plot of relative height with relative dib with fitted line for slash pine
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4.8 Appendix B: Residual diagnosis of fitted taper model of diameter out-

side and inside-bark for red maple - Legacy model
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Figure 4.17: Residual plots of fitted taper model of dob for red maple- Legacy model

Figure 4.18: Plot of relative height with relative dob with fitted line for red maple

250



Predicted diameter inside bark (inch)

R
es
id
ua
l

-4

-2

0

2

4

6

0 10 20 30 40

Relative height (ft)

R
es
id
ua
l

-4

-2

0

2

4

6

0 20 40 60 80 100

Figure 4.19: Residual plots of fitted taper model of dib for red maple- Legacy model

Figure 4.20: Plot of relative height with relative dib with fitted line for red maple
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4.9 Appendix C: Residual diagnosis of fitted taper model of diameter out-

side and inside-bark for slash pine - UGA model
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Figure 4.21: Residual plots of fitted taper model of dob for slash pine- UGA model

Figure 4.22: Plot of relative height with relative dob with fitted line for slash pine
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Figure 4.23: Residual plots of fitted taper model of dib for slash pine- UGA model

Figure 4.24: Plot of relative height with relative dib with fitted line for slash pine
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4.10 Appendix D: Residual diagnosis of fitted taper model of diameter out-

side and inside-bark for red maple - UGA model
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Figure 4.25: Residual plots of fitted taper model of dob for red maple- UGA model

Figure 4.26: Plot of relative height with relative dob with fitted line for red maple
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Figure 4.27: Residual plots of fitted taper model of dib for red maple- UGA model

Figure 4.28: Plot of relative height with relative dib with fitted line for red maple
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