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ABSTRACT 

Pedotransfer functions (PTFs) are used to predict saturated hydraulic conductivity (Ks) 

from more easily measured soil properties. Our objective was to determine if soil morphology 

was an important factor in predicting Ks using PTFs. We used soil profile descriptions for nine 

soils from the S-124 regional project dataset describing soils of the southeastern United States. 

Our best decision-tree model predicted log10 Ks (cm day
-1

) with an average log10 root mean 

square residual (RMSR) of 0.8017. The best models used bulk density and texture but not soil 

morphological descriptors. Sand textural class predicted the highest Ks. For the finer textured 

soils, the splits were based on bulk density. The NRCS method predicted Ks with a RMSR of 

0.9562. Morphological descriptors of soil structure may not have been important because bulk 

density acted as a surrogate for structure. 
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CHAPTER 1 

INTRODUCTION 

Pedotransfer functions (PTFs) are useful tools to estimate saturated and unsaturated soil 

hydraulic properties that would otherwise be too expensive and too time consuming to measure 

(Lilly et al., 2008; Wösten et al., 2001). The large amount of qualitative data in soil surveys also 

makes PTFs desirable as a way to predict soil hydraulic properties. PTFs commonly use soil 

texture to estimate saturated hydraulic conductivity (Ks), even though some researchers have 

concluded that soil texture does not yield accurate predictions (Wagner et al., 1998; Tietje and 

Hennings,1996 ).This inability to predict Ks occurs because different climates can have similar 

soil texture, but the soil structure can vary greatly due to differing rainfall and temperature 

regimes (Wagner et al., 1998; Tietje and Hennings,1996). For example, an unstructured clay 

could have a low Ks, while a structured clay could have a higher Ks. Therefore, PTFs that 

combine both structure and texture could be more accurate than PTFs that rely solely on texture. 

Soil structure is difficult to quantify, but Lilly et al. (2008) developed a method to incorporate 

structure in a PTF. They used the HYPRES (Hydraulic Properties of European Soils database, 

which contains many different soils from Europe (Wösten et al., 1999). Lilly et al. (2008) 

identified the structural elements using a binary approach. If a pedon had a particular class of 

structure, then it was given a value of one (member). If it was not a member, then it was given a 

value of zero. This member/non-member method was also applied to both field-determined 

textural classes and laboratory-determined textural classes. Using decision trees, Lilly et al. 
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(2008) predicted Ks within one order of magnitude of the true value.  

The S-124 dataset (published as a USDA Southeastern Cooperative Series Bulletin), 

similar to the HYPRES database, is a dataset that contains soil hydraulic properties. This is one 

of the few datasets that contain measured particle size, morphological descriptions of structure, 

and Ks of U.S. soils. These data include in situ field characterization and laboratory determined 

soil properties including Ks collected from 1977 to 1983. Twenty-one southeastern soils were 

included in the study: Troup and Lakeland (Dane et al., 1983); Norfolk, Dothan, Goldsboro, and 

Wagram (Quisenberry et al., 1987); Captina, Gigger, Grenada, Loring, Olivier, and Sharkey 

(Römkens et al., 1986); Bethany, Konawa, and Tipton (Nofziger et al., 1983); Vicksburg, 

Memphis, and Maury (Römkens et al., 1986); Cecil (Bruce et al., 1983), and Fullerton and 

Sequoia (Luxmore 1982). From this dataset, we developed PTFs using regression trees.  

The objective of this study was to use the morphological descriptions of soil structure and 

the quantitative data (particle- size distribution and bulk density) that are available in these 

Southern Cooperative Series Bulletins to predict Ks and compare these predictions with the 

method used by the USDA-NRCS Soil Survey (USDA, 2010).
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CHAPTER 2 

LITERATURE REVIEW 

 

Pedotransfer functions (PTFs) are important tools used for predicting soil hydraulic 

properties such as unsaturated hydraulic conductivity (K(h)) and saturated hydraulic conductivity 

(Ks). The term pedotransfer function was first introduced by Bouma (1989). PTFs are tools that 

allow for a translation of data from what is presently unavailable into some useful type of data.  

At present, most PTFs use readily available soil information such as texture, bulk density and 

organic matter for input variables (Tietje and Hennings, 1996).  

Bouma (1989) stated that PTFs can be separated into two types: continuous and class.  

Continuous PTFs use numerical values, for instance, percentage of sand, silt, and clay. Class 

PTFs, however, use different categorical data to relate to other soil properties, e.g. soil textural 

class. From these two main PTF categories, many different statistical modeling methods for 

predicting Ks have been developed. According to McBratney et al. (2002), the most common 

methods include: multiple linear regression, artificial neural networks, generalized linear models, 

general additive models, group method of data handling, multiple adaptive regression splines, 

and regression trees. Wösten et al. (2001) also discuss the major techniques used for PTFs: 

regression analysis, artificial neural networks, group method of data handling and 

classification/regression trees. These will be described in more detail in the following pages.  

Artificial Neural Networks 

Artificial Neural Networks (ANNs) can mirror the behavior of complex systems because 

they are capable of varying both the strength and structure of component connections (Pachepsky 
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and Schaap, 2004). This method has been used in PTFs by Schaap and Leij (1998), Pachepsky et 

al. (1996), Tamari et al. (1996), and Minasny et al. (1999). ANNs have an advantage over 

traditional regression methods because no preconceived model concepts are needed. These 

functions find optimum relationships between the soil and hydraulic properties using an iterative 

calibration procedure (Pachepsky and Schaap, 2004).  

ANNs are connected by processors called neurons; these neurons are further connected 

by positive or negative numbers (weights). These weights are used to describe the influence of a 

neuron on the computation of a particular scalar function (activation function or response; 

Siegelmann, 1999).  

Bigus (1996) explains three unique types of neural networks: supervised, unsupervised, 

and reinforcement. Supervised networks are some of the most frequently used, followed by 

unsupervised, and reinforcement. Supervised networks can be thought of as “programming by 

example” (Bigus, 1996). Supervised networks work by being given a problem. From this 

problem they work to determine a correct response. If the response/answer is incorrect, the 

program will be shown the correct answer and continue to work until the correct solution is 

determined.  

Unsupervised networks, are a clustering technique; however, there is no predetermined 

solution, making this a learning type of algorithm. This algorithm learns because it is capable of 

understanding inputs and outputs and how they are related to one another (Bigus, 1996).  

Reinforcement learning is a type of neural network in which there are examples of the 

problems but the exact solution is not known. This type of neural network is capable of solving 

difficult time-related problems (Bigus 1996).  
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All neural networks can be arranged in three forms: single-layer feed-forward networks, 

multilayer feed-forward networks, and recurrent networks (Haykin, 1999). The single layer 

network consists of both input and output nodes. The input node layer is used to predict the 

output node layers. This process is not reversible, meaning the input layer is always used to 

predict an output node (Haykin, 1999). The multilayer feed-forward network is similar to the 

single layer feed-forward network; however, the difference arises due to the presence of one or 

more hidden nodes (Haykin, 1999). Increasing the number of hidden nodes allows for the 

determination of higher order statistics. (Haykin, 1999). The recurrent network differs from the 

feed-forward loop because it has at least one feedback loop. These feedback loops have a large 

impact on the learning capability of the network and performance  

Multiple Linear Regression 

Multiple linear regression, like simple linear regression, is a technique that develops a 

linear relationship between a prediction variable and a response variable. However, in the case of 

multiple linear regression there is more than one prediction variable, while there is still a single 

response variable. An example relating to soils would be using particle size distribution, bulk 

density, and organic matter to predict Ks. Multiple linear regression equations are in the form 

(Timm, 2002): 

                                      y = β0 + x1β1 + x2β2  +… + xkβk+ e       

Equation 1 

where y is the response variable and x1… xk are the predictor variables. The coefficients for each 

of the variables are β1… βk and β0 is the intercept. The residual error is e.  
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Group Method of Data Handling 

The GMDH is a process which involves neural network type equations to relate input and 

outputs. This method is made up of three different steps as explained by Pachepsky and Schaap 

(2004). They give the example of input data x1, x2…,xn and y being the output variable. Step one 

involves getting estimates of y by using quadratic regression equations in the form: 

 

                      
                 

  

Equation 2 

where β0 … β5 are regression coefficients and zi is a preliminary estimate of y. All independent 

variables are taken two at a time forming xi and xi+1. The second step consists of eliminating the 

least effective preliminary estimates. Step three asks if these equations can be improved. If not, 

iteration ceases, and the network is built. If prediction improvement is made then steps one and 

two are continued until there is no improvement in the iteration from the previous set of 

equations.  

Decision Trees (Classification and Regression) 

Decision trees can be divided into two categories: classification and regression trees. The 

difference in these two statistical techniques arises from the fact that classification trees use only 

categorical data, while regression trees can have both numerical and categorical input. 

(Pachepsky and Schaap, 2004). 

Regression and classification trees are non-parametric methods (they make no 

assumption about the probability distributions of the variables) that are used to uncover 
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relationships in data. Regression trees work by first forming splits, called nodes. These splits 

form from a parent node, and from this new node form two other nodes, then four, and so on. 

This is referred to as recursive partitioning. A pre-determined grouping size must be set before 

any splitting can begin. The grouping size is the minimum number of samples that must be 

present in a particular group (at a node) to continue splitting. The criteria for splitting is based on 

whether the predictor variable is numerical or categorical. For instance, if the predictor variable 

is numerical, then the split will be less than or equal to some specified value of the variable on 

the left node and the right node will be greater than the value. If the predictor variable is 

categorical, then the split will be based on a yes or no question. In the case of categorical 

variables, there can be 2
k-1

-1 possible partitions, where k is the total number of levels (Pachepsky 

and Schaap, 2004).  

Each split must be made so that it maximizes homogeneity within each split group while 

simultaneously maximizing the heterogeneity between groups. The homogeneity of each group is 

measured by the deviance (D) within the group: 

 

         

 

   

Equation 3 

where yi is a response variable and    is the mean of all response variables. In order to determine 

which partition to choose, the change in deviance (ΔD) is calculated by subtracting the deviance 

of the right group (DR) and the left group (DL) from the deviance before splitting. (Pachepsky 

and Schaap 2004). The partition with the greatest deviance is chosen as the split. This splitting 
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can continue until a maximum number of terminal nodes are formed (Prasad et al., 2006). The 

maximum number of nodes depends on the number of samples in the dataset. A tree could 

theoretically form until each sample has a corresponding node. This of course causes an over 

parameterization of the data so the decision tree must be pruned back to an optimal size. 

According to Sutton (2005), the most common way to prune a regression tree is referred to as 

cost-complexity pruning. This method cuts the nodes that arise from non-terminal nodes, the 

selected node is one in which the “pruned nodes provide the smallest per node decrease in the 

resubstitution misclassification rate”. Sutton (2005) described two techniques that use this 

method. One method uses an independent dataset. The basis for this method involves using the 

least complex (fewer input variables), but accurate tree. If a less complex tree is within one 

standard error of a more complex tree which has the lowest estimated error, then the less 

complex tree can be chosen. Cross-validation is another pruning process (the process used in our 

study). This process grows a large tree and systematically prunes back the tree until the deviance 

is minimized with regard to the testing data set, and the tree with least error is selected (Sutton, 

2005).  

Soil Survey Method of Predicting Ks  

 The USDA Natural Resource Conservation Service (NRCS) Soil Survey Division has 

developed a PTF for estimating Ks, using only bulk density and textural classes, with some over-

riding conditions. The method first determines to which bulk density class a soil sample belongs. 

There are three classes: high (1.46 to 1.72 g cm
-3

), medium (1.19 to 1.59 g cm
-3

), and low (0.93 

to 1.32 g cm
-3

). There is overlap between the three groups, so samples falling in between two 

particular groups must be checked to ensure which group is suitable. Once the bulk density group 
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has been established, the textural class is used to predict Ks, by finding the Ks range for the soil 

sample. 

Pedotransfer Functions using Structure and Other Hydraulic Properties 

Many PTFs predict Ks without using morphological descriptors of soil structure (Jabro, 

1992; Rawls et al., 1998; Loague, 1993). Including qualitative measures of soil structure as a 

predictor variable when estimating soil hydraulic properties could yield better results than using 

only quantitative predictor variables such as particle size and bulk density (Wösten et al., 2001; 

Rawls et al., 2004). The increase in prediction power of structure comes about because models 

based purely on texture do not take into account worm holes, cracks, or root channels (Rawls et 

al., 2004). 

Other soil properties such as water retention and unsaturated hydraulic conductivity may 

also be predicted more accurately when a structural component is added. For example, 

Pachepsky and Rawls (2003) used regression trees to estimate water retention at -33 and -1500 

kPa, which were taken from the US National Soil Characterization database, consisting of 2140 

samples. They found that ped grade (which is a measure of the strength of the ped structure ) was 

a strong predictor of water retention: the stronger the grade the greater the water retention. 

Pachepsky et al. (2006) developed a PTF using both regression and classification trees from the 

same database. They used these trees to group soil samples to predict the -33 kPa water content. 

Grade was a significant parameter for all intermediate textures, while ped shape was not. They 

found a stronger grade increased water retention. Structure can play an important role in 

predicting other soil properties (Levine et al., 1995; Crawford, 1994, and Anderson and Bouma, 



 

 

10 

 

1973). Moreover, state soil surveys contain suitable structural data for the use of PTFs in the 

prediction of hydraulic properties, including Ks.  

McKeague et al. (1982) developed eight predictor variable classes to estimate Ks. These 

classes consisted of structure, porosity, texture, consistence, and the density of the horizons. 

They found that macroporosity and structure were major factors in predicting the Ks of many 

soils. Clayey soils, unlike coarser textured soils, had a higher prevalence of biopores. Low 

predicted Ks were associated with compacted, massive, clayey soils. 

Another study conducted by McKenzie and Jacquier (1997) tested the predictive 

capability of morphological data. They found a relationship between grade and Ks, although the 

data were variable. They used regression trees to search for more accurate interactions between 

many of these variables. From their research they concluded that field texture, grade, areal 

porosity, dispersion index, and horizon type improved the prediction. They also concluded that 

using simple morphological data (i.e. grade) could be used for simple land evaluation. 

 Lin et al. (1999) proposed a method that would allow for the quantification of soil 

structure, thus enabling this structure to be used in PTFs. They used texture, moisture, pedality, 

macroporosity, and root density from 96 horizons. The term pedality was used to describe ped 

grade, size, and shape (Lin et al., 1999a). Their findings indicated that soils with prismatic shape 

had higher infiltration rates than those with blocky shape. The reason was that soils with 

prismatic structure had more macropores than the blocky soils (Lin et al., 1999). In a second 

paper published by Lin et al. (1999b), they used the data collected to develop both a class and 

continuous pedotransfer function. The predictor variables for the class PTF included 

morphometric indices, initial moisture state, pedality, macroporosity, and root density. The 
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continuous function variables included mass fractions of sand, silt, and clay, organic matter 

content, dry bulk density, initial soil gravimetric water content, field estimated macroporosity, 

and very fine porosity at the root-soil interface. Using multiple regression, Lin et al. (1999b) 

found that the class PTFs yielded results similar to that of the continuous PTF even though the 

class PTFs used qualitative morphological data. They also showed that structure impacted Ks and 

macropore flow , while, texture influenced micropore flow.  

 Lilly (2000) studied the effects of soil structure on predicting field Ks in Scottish soils. 

Six hundred twenty-seven samples were taken from topsoil and subsoil horizons. Saturated 

hydraulic conductivity ranged from 0.06 to 1036.8 cm day
-1

. The author developed 49 unique 

structure classes, based on the FAO soil structure classes. Saturated hydraulic conductivity 

increased as the ped size decreased. Soils that had peds larger than 50 mm had Ks  < 10 cm day
-1

. 

Soils with peds < 20 mm had Ks ranging from 30 to 100 cm day
-1

. With this data, Lilly (2000) 

concluded that the lowest conductivities occurred with no structure (massive) and vertical 

structure (coarse and very coarse prismatic).  

 Lilly et al. (2008) used regression trees to predict Ks, while incorporating structure. They 

were able to incorporate structure and other qualitative predictor variables into the PTF using a 

binary approach. Their data came from the HYPRES (Hydraulic Properties of European Soils) 

database. This is a database of soils from Europe containing both quantitative and qualitative 

data. There were a total of 5521 samples with replicates (Lilly et al., 2008).  

A total of six input variables were used: three were qualitative and three were 

quantitative. The groups were ped size (PED), crack orientation (CRK), particle size distribution 

(PSD), field texture determined by hand (TXT), bulk density (BD), and horizon designation 
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(HOR). The dataset consisted of 502 samples, each with a measured Ks. The Ks for each of the 

samples was log-transformed (Lilly et al., 2008). 

 The regression technique used by Lilly et al. (2008) used the jackknife cross-validation 

technique, re-sampling without replacement, to prune the decision trees. This method 

systematically eliminated each of the input groups, until all combinations were evaluated. This 

resulted in 63 unique combinations of predictor variables. Each combination produced unique 

decision trees during 100 re-sampling steps. The optimization yielded a group size of 91, 

terminal node size of 5, and a training dataset size of 411 samples.  

 They found that the best model predictor of Ks consisted entirely of qualitative variables 

(HOR, PED, and TXT). The difference between the best and worst model was only 0.128 log10 

Ks in cm d
-1

 (Lilly et al., 2008). This small difference showed that the models in the top quarter 

could perform as well as the models in the lowest quarter (Lilly et al., 2008). The full model that 

used all predictor variables was ranked 20
th

 and had a mean RMSR of 0.9696 log10 Ks, indicating 

that it could predict Ks within an order of magnitude. Lilly et al. (2008) found that field 

determined data along with structure were the most important predictor values. 
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Abstract 

Pedotransfer functions (PTFs) are useful tools that can predict saturated hydraulic 

conductivity (Ks) from more easily measured soil properties. However, most PTFs do not include 

soil structure. Soil structure can be categorized using morphological descriptors, found in many 

soil survey databases. The objective of our study was to determine if soil morphological 

descriptions of structure were important factors in predicting Ks using PTFs. We used soil profile 

descriptions for nine soil series from the S-124 regional project dataset describing soils of the 

Southeastern United States. The dataset contains qualitative morphological descriptions of soil 

structure as well as quantitative measures of particle size, bulk density, and Ks. We used six 

qualitative predictor variables: horizon position (HOR), textural class (TXT), ped size (PED), 

crack orientation (CRK), grade (GRD), and moist consistence (CST). We also used two 

quantitative predictor variables, bulk density (Db) and particle size distribution (PSD).  Our best 

decision tree model predicted log10 Ks (cm day
-1

) with an average root mean square residual 

(RMSR) of 0.8017, indicating that the estimation was better than an order of magnitude. None of 

the best tree models used soil morphological descriptors. Instead they all used bulk density and 

texture. The top split in our tree models always separated out the high sand content soils and 

assigned a high predicted Ks. For the finer textured soils, the splits were based on bulk density. 

The NRCS Soil Survey method of predicting Ks did nearly as well as our best model with a 

RMSR of 0.9562 log10 Ks in cm day
-1

. Morphological descriptors of soil structure may not have 

been important because bulk density acted as a surrogate for structure in the finer textural classes 

or because the descriptors did not capture the effect of structure on Ks. 
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Introduction 

Pedotransfer functions (PTFs) are important tools for predicting soil properties such as 

saturated hydraulic conductivity (Ks). At present, most PTFs use a combination of readily 

available soil properties such as textural class, particle size distribution, bulk density, and organic 

matter for predictor variables (Tietje and Hennings, 1996). Pedotransfer functions can be broken 

into two categories: continuous and class PTFs (Bouma, 1989). Continuous PTFs use numerical 

values, for instance, percentage of sand, silt, and clay. Class PTFs use categorical data, e.g. soil 

textural class. From these two main PTF categories, different statistical modeling methods for 

predicting Ks have been developed. McBratney et al. (2002) and Wösten et al. (2001) discuss 

these including: multiple linear regression, artificial neural networks, generalized linear models, 

general additive models, group method of data handling, multiple adaptive regression splines, 

and decision trees. Decision trees are one of the methods suitable for PTFs based on qualitative 

predictor variables. Decision trees can be divided into two categories: classification and 

regression trees. Classification trees use only categorical data, while regression trees can use 

numerical as well as categorical input (Pachepsky and Schaap, 2004). 

Regression and classification trees are both non-parametric methods that are used to 

uncover relationships in data. Decision trees work by recursively bifurcating. This splitting is 

referred to as recursive partitioning (Pachepsky and Schaap, 2004). 

 Soil structure is defined as the association of void space and peds, including void spaces 

within the peds themselves (Thomasson, 1978). Regression PTFs for predicting Ks, which 

include morphological descriptions of structural components have been shown to increase 

prediction capability (McKeague et al., 1982; Lin et al., 1999a; Lin et al., 1999b; Lilly, 2000; 
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O’Connell and Ryan, 2002; Lilly et al., 2008). Other soil properties such as water retention and 

unsaturated hydraulic conductivity can also be predicted more accurately when a structural 

component is considered (O’Neal, 1952; Pachepsky and Rawls, 2003; Pachepsky et al. 2006). 

Moreover, there is a large amount of information in state soil surveys on soil morphological 

descriptions that could be used in PTFs for the prediction of hydraulic properties such as Ks. In 

fact, the Soil Survey method uses this information to predict a range for Ks that is given in the 

NASIS database. However, the NRCS Soil Survey method uses only bulk density and textural 

class with some over-riding conditions, some of which are related to soil structure (these are 

described later). The method first determines the bulk density class: high (1.46 to 1.72 g cm
-3

), 

medium (1.19 to 1.59 g cm
-3

), or low (0.93 to 1.32 g cm
-3

). There is overlap between the three 

groups, so samples falling into two groups must be checked to ensure which textural class and 

bulk density class they should be grouped in. Once the bulk density group has been established, 

the particle size distribution can be used to predict the Ks (USDA, 2010). 

Many PTFs predict Ks using percentages of sand, silt, and clay and bulk density 

(continuous PTFs).  Wösten et al. (2001) found that using texture or particle size distribution 

yielded accurate predictions of Ks. Wösten et al. (2001) and Rawls et al. (2004) reported that 

estimating soil hydraulic properties using structure could yield better results. The use of 

morphological descriptors could lead to better transferability of PTFs according to Lilly and Lin 

(2005). The increase in prediction power of using structural attributes may be expected because 

models based purely on texture and bulk density do not take into account the effect of mesopores 

and macropores (Rawls et al., 2004). A study conducted by Jabro (1992) using data from the S-

124 project found a relationship between Ks, bulk density, and particle size distribution. Results 
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indicated that silt, clay, and bulk density performed well when comparing predictions to the 

measured Ks.   

The objective of this study was to use qualitative morphological descriptors of soil 

structure as well as quantitative data on soil physical properties that are available in the Southern 

Cooperative Series Bulletins to predict Ks. These bulletins were part of the S-124 regional 

project. These predictions will be compared with the predictions using the Soil Survey method 

(USDA, 2010).  

Materials and Methods 

Input Data  

The dataset used in this study was a subset of the S-124 dataset contained in the Southern 

Cooperative Series Bulletins 262-268. There were a total of 1664 samples, including replicates. 

The S-124 project included 21 different soil series from the Southeastern US (Bruce et al., 1983; 

Dane et al., 1983; Luxmore, 1982; Römkens et al., 1986a and 1986b; Nofziger et al., 1983; and 

Quisenberry et al., 1987). However, not all of these soils had sufficient data for inclusion in our 

data set. The bulletins contain data on Ks, particle size distribution (PSD), organic matter, 

morphological descriptions of soil structure, and horizon identification. We considered samples 

that contained close to all of these data, however, only a few samples had organic matter content 

determined. Soils that had no Ks data were not included.   

With these data, we developed eight input groups: two quantitative and six qualitative. 

The qualitative groups included: horizon designation (HOR) to indicate if the sample was from a 

topsoil (A horizon) or subsoil horizon (soils below the A horizon), ped size (PED), crack 

orientation (CRK), grade (GRD), moist consistence (CST), and textural class (TXT). Unlike 
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Lilly et al. (2008), the textural class was solely based on the particle size distribution because 

there was not sufficient data on hand texture to allow for its inclusion. The two quantitative 

groups were particle size distribution (PSD) and bulk density (Db). Table 1 shows a breakdown 

of all input variables. Group 1 (HOR) shows the horizon position of the sample: topsoil or 

subsoil. Group 2 (PED) indicates the size of a particular ped. In some cases the ped size was not 

given. In these instances the ped variable received a designation of PS8, indicating the ped size 

was unknown. Group 3 (CRK) described the cleavage planes of the structural cracks. Group 4 

(GRD) indicated the particular grade to which a sample belonged. We included massive and 

single grain even though these classes can be considered structure-less. Group 5 (CST) indicated 

the moist consistence of a ped. This is simply a measure of how easy it was to crush a ped. 

Group 6 (TXT) indicated which of the 12 textural classes each sample belong to. In our dataset 

this was determined by using the PSD data taken from the bulletins. Group 7 (PSD) indicated the 

percent sand, silt, and clay. These were based on the USDA system (< 0.002 mm for clay, 0.002 

to 0.05 mm for silt, 0.05 to 2 mm for sand). Group 8 (Db) was bulk density. In all qualitative 

groups (i.e. one to six), membership of a sample was indicated by a binary dummy variable (1 

for membership, 0 for non-membership).    

The Decision Tree Technique 

Our decision tree program was coded in MATLAB (The Math Works, 2009). In order to 

ensure that over fitting of the model did not occur, a stopping criterion had to be established. 

This was accomplished by using a pruning process. There are general guidelines for limiting 

combinations of prediction variables in the pruning processes. However, Lilly et al. (2008) found 
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that these settings are data-set specific Therefore, like Lilly et al. (2008), we found optimized 

settings by using all possible combinations of predictor variables.  

The dataset had to be subdivided into a training data set for developing a full decision 

tree and a testing data set for pruning the full decision tree. We optimized the ratio between the 

sizes of the training and testing data sets, the maximum number of samples in each node before 

tree pruning, and the maximum number of terminal nodes after pruning. A trial and error 

approach was used in the optimization process. The size of the training data set was varied from 

14 to 214 in steps of 10. Jackknife cross-validation (re-sampling without replacement) was used 

100 times to generate 100 training and testing data set pairs for the optimization procedure. The 

maximum number of samples within each node before pruning was varied from 10 to 150 by 

steps of 10. The development of tree models was stopped when the number of samples in each 

node became smaller than the allotted value. This optimization process yielded 315 different tree 

models, each of which had 100 replicates which were used to estimate the mean log10-

transformed Ks. In each of the 100 replicates, estimations were made for samples of the test data 

set, first using the full tree models. Subsequently, the root mean square residuals (RMSRs) were 

calculated separately for each of the 100 replicates using equation 4:  

 

         
 

  
                 

 

   

                  

Equation 4 
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 where n is the total number of samples in the test dataset, log (Ks i, meas ), and log(Ks i, pred ) refer 

to the measured and predicted log transformed Ks. We then pruned each of the trees by removing 

non-terminal nodes, one-by-one in the order of adding the least deviance to the tree. This pruning 

process continued until there were only two terminal nodes remaining (one partition). Statistical 

measures of the tree models’ performance were evaluated at each step of pruning. Once the tree 

models were completed, the RMSRs for each of the 100 replicates were averaged for every 

combination of the training and testing data set sizes, the maximum number of samples in each 

terminal node, and the number of terminal nodes. These values were then ordered using the mean 

RMSR + 1 standard deviation and the running average of the above three factors were calculated 

over the best 100 models. These running averages yielded the ratio of developmental and testing 

data set, number of samples in each terminal node, and the total number of terminal nodes that 

we used in the further steps of our study. The optimum ratio between the developmental and 

testing data set was 160/55 (74%/26%), which is near to what was found optimal by Lilly et al. 

(2008) (82%/18%). The optimal maximum number of samples in each node was 25 and the 

optimal number of terminal nodes was found to be five.  

Determining the Best Combination of Input Variables using the Optimized Settings 

These optimized settings were then used to run our data set, using all combinations of 

input variables, repeating the jackknife cross-validation approach, which generated 100 

replicates of every input combination that we considered (Figure 1).  All the replicates and the 

corresponding predictor variables were used to predict the log10 Ks for the training dataset. The 

RMSR was calculated for the test dataset of each of the 100 replicates using the input parameters 

from the pruned model. The RMSR values were then averaged over the 100 replicates for each 
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tree model. Using 100 replicates of the tree models allowed for probability estimates of the best 

input combinations to be made.     

Once the 100 runs were made for each input combination, the pruned decision tree 

models were used to make predictions of Ks. There were a total of eight unique input groups: ped 

size (PED), crack orientation (CRK), grade (GRD), consistence (CST), particle size distribution 

(PSD), textural class (TXT), bulk density (Db), and horizon designation (HOR). When looking at 

these input groups, there is an obvious overlap between PSD and TXT. However, the systematic 

elimination of inputs showed which of these were the most important in our model in a similar 

manner as used by Lilly et al. (2008).  

Using the optimized settings from the full model, we evaluated the performance of the 

model after systematic elimination of all possible combinations of input variables. When all the 

possible combinations of input variables had been evaluated, we analyzed the model structure of 

the best ranking model, and also described some models with practical applications. It should be 

noted that we did not use only one input from some groups because that would not have allowed 

for our optimum numbers of terminal nodes. Take for instance, HOR. There were only two 

options, either a topsoil or subsoil, yielding only two terminal nodes. However, textural class 

(TXT) and ped size (PED) were run as the only inputs because these two groups allowed for the 

optimum number of terminal nodes.  

Soil Survey Method 

The Soil Survey method uses texture and bulk density, as shown in Figure 2. Bulk 

density is divided into three main groups: low (0.93 to 1.32 g cm
-3

), medium (1.19 to 1.59 g cm
-

3
), and high (1.46 to 1.72 g cm

-3
). There is overlap between the three groups, so samples that fall 
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into two of those groups must be checked to find out which group is most suitable. The low 

density group has a predicted Ks range from 0.1 µm s
-1

 to 100 µm s
-1 

(0.864 to 864 cm day
-1

) 

depending on the textural class. The medium bulk density group has a predicted Ks range of 0.01 

µm s
-1

 to 100 µm s
-1

 (0.0864 to 864.0 cm day
-1

). One of the main differences between the 

medium and low density ranges is that the medium bulk density group predicts lesser Ks values 

than the low bulk density group for the same textural classes. This shift is even more pronounced 

in the high bulk density group where the predicted Ks ranges from 0.01 µm s
-1

 to 10 µ ms
-1

 

(0.0864 to 86.4 cm day
-1

).  

 Although the general approach of the Soil Survey method uses texture and bulk density, 

there are over-riding conditions, which deal mainly with the soil structure. These over-riding 

conditions take precedent over the method involving bulk density and texture, and assign 

predicted values as follows: 

-Soils with all fragmental, cindery, or pumiceous particle size classes (≥ 864 cm day
-1

) 

-Soils with many medium or coarser vertical pores that extend through the layer. Medial-

pumiceous, medial-skeletal, ashy-pumiceous, ashy-skeletal, or hydrous-pumiceous 

material that is very friable, friable, soft, or loose (≥ 864 cm day
-1

) 

-When material is moderately moist or wetter, structure is moderate or strong granular, 

strong blocky, or prismatic smaller than very coarse; no stress surfaces or slickensides 

(86.4 to 864 cm day
-1

) 

- Soils with common medium or coarser vertical pores extend through the layer  

(86.4 to 864 cm day
-1

) 
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- Soils with strong very coarse blocky or prismatic structure and no stress surfaces or 

slickensides (86.4 to 864 cm day
-1

) 

- Soils with ≥ 35 percent clay that is soft, slightly hard, very friable or friable; no stress 

surfaces or slickensides and the clay is subactive after subtracting the quantity [2 x (OC x 

1.7)] (8.64 to 86.4 cm day
-1

) 

- Soils with few stress surfaces and/or slickensides (8.64 to 86.4 cm day
-1

) 

- Soils with massive structure and very firm or extremely firm consistence or weakly 

cemented (0.864 to 8.64 cm day
-1

) 

- Soils with continuously moderately cemented (0.864 to 8.64 cm day
-1

) 

- Soils with common or many stress surfaces and/or slickensides (0.0864 to 0.864 cm 

day
-1

)  

- Soils with continuously indurated or very strongly cemented (<0.0864 cm day
-1

) 

Comparing Methods 

 Once the decision trees had been developed, we wanted to compare the decision trees and 

the Soil Survey method. The Soil Survey method assigns a range, whether using the bulk density 

and textural triangles (Figure 2) or the overriding conditions. When calculating the RMSR, we 

used the midpoint of the range as the predicted Ks for the Soil Survey method. The RMSR was 

calculated by taking 55 test samples (subset of the 215 total samples) and re-sampling 100 times 

(the same re-sampling procedure as the decision tree technique). The RMSR for each run was 

determined and averaged for the 100 replicates. 
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Results and Discussion 

The S-124 Data Set  

Calculating correlations between variables can aid in understanding how variables 

interact and show if any relationships between structure and Ks exist. We found statistically 

significant correlations between many combinations of variables in our dataset, which led to a 

large matrix (45 by 45), making it impractical to show all correlations. The 45 by 45 matrix was 

created out of 8 different input groups. Each input group had several members, which led to this 

large matrix. For example, the grade (GRD) group is made up of weak, moderate, strong, single 

grain, massive, and none. Table 2 shows some of the significant correlations, ranking from 

highest to lowest (absolute value of R). The first major correlation was between topsoil (TOP) 

and 2-5 mm ped size (PS2) (R = 0.64). This correlation showed that samples that were topsoils 

tended to have smaller ped sizes. Topsoil and PS1 had a similar relationship, however, 1-2 mm 

peds were not as strongly correlated with topsoil as the 2-5 mm peds. Another positive 

correlation was between Ks and sand content, as one would expect. Saturated hydraulic 

conductivity and clay content were negatively correlated. An interesting positive correlation 

between bulk density (Db) and very firm consistence (VERY FIRM) was found. Bulk density 

and Ks had a weak positive correlation. This relationship is counter-intuitive because higher bulk 

densities have slower Ks, however, in our dataset a weak positive relationship between the two 

was found probably due to the number of coarse textured soils (sands, loamy sands, sandy 

loams). Bulk density (Db) and Ks had a weak positive correlation (R = 0.15).  

However, if the data set was limited to clayey and intermediate textured soils, a different 

relationship was found. For clay soils, bulk density and Ks were inversely correlated (R = -0.508) 
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with a significance level of 0.001. The loam, silt loam, silt, sandy clay loam, clay loam, silty clay 

loam textural classes had a similar correlation with Ks (R = -0.307) with a significance level of 

0.001.  

 Trying to predict Ks based solely on texture can be difficult because finer textures do not 

always yield smaller Ks values. This can be seen in table 3 which shows the average Ks, with and 

without the log10 transform, of all textural classes in our data set. The textural classes are listed in 

the order of the mean Ks.  It is interesting to see that the clay textural class had the fourth highest 

Ks of the 12 classes. In the data base of 1323 U.S. samples compiled by Rawls et al. (1982), the 

clay textural class had the lowest mean Ks. However, the order of textural classes in our data set 

was nearly identical to that in the Rosetta data base of over 2000 soils compiled by Schaap et al. 

(2001) (see Table 1 of Radcliffe and West, 2009). The values for mean Ks were also remarkably 

similar to the Rosetta database. The only real exception was the silt textural class which was 

higher in the order and in mean Ks in the Rosetta data base. It is also interesting to note the 

pattern in coefficient of variation (CV) of the textural classes. The CV was quite small for the 

sandy textures but increased sharply for the clay, sandy clay loam, silt loam, silty clay loam, and 

clay loam classes. In finer textured soils, we expect that soil structure plays an important role in 

determining the Ks. One of the distinguishing characters of the S-124 data base was the high 

incidence of samples from clayey textural classes. Proportionally fewer samples from these 

classes occurred in the Rosetta data base (Schaap et al., 2001).    

It should also be noted that soils in the clay textural class had a relatively large ped size, 

most falling within the ped size range of the 10-20 mm (PS4). The remaining soils fell in the ped 
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size range of 5-10 mm (PS3). Each of these soils also had grade of  either weak, moderate, or 

strong, indicating structure development.  

 Decision Tree Models 

 Table 4 shows a list of some of the 247 decision tree models (each using a different 

combination of input groups), ranked in increasing order of the mean RMSR. Included in the 

table is the minimum RMSR, maximum RMSR, and standard deviation of the RMSR (taken 

from 100 replicates), all log10-transformed Ks (cm day
-1

). The table shows what the RMSR was 

in 100 replicates when the input variables listed were made available. It is important to note that 

not all of the available input variables were used in the model as the decision trees were 

developed, however. This will be seen later when we discuss common decision trees that were 

developed from a given set of input variables. The full model that used all 8 input variables was 

ranked 62
nd

. The best and worst model had a mean RMSR difference of 0.2008. By comparison, 

Lilly et al. (2008) had a mean difference between best and worst models of 0.128. Our best 

model performed better than that of Lilly et al. (2008) with an average of 0.8017 log10-

transformed Ks (cm day
-1

) while Lilly et al. (2008) had an average value of 0.9510.    

When looking at the standard deviation, the model ranked 196
th 

was within one standard 

deviation of the best model. It could be argued that all models ranked higher than this model 

were equal in their prediction power. All the possible number of input groups, from eight input 

groups (full model) to two input groups, were represented in the top quarter of the models. The 

best model with seven input groups available included all but GRD as a predictor. The best 

model with six input groups available included all inputs except TXT and HOR. The best model 

with five input groups available was ranked eighth, and did not use PED, CST, or HOR. The best 
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model with four input groups available (CRK, GRD, PSD, and Db) was ranked fourth. The best 

model with two input groups available was ranked first and included PSD and Db. From Table 4, 

the best models with fewer inputs performed better than most models with more inputs. Unlike 

Lilly et al. (2008), there were no models that simply used qualitative (structure) variables in the 

best 20 models.  

The mean RMSR of many of the models ranked close to each other or often had the same 

value, to four decimal places (Table 3). These models were probably using the same splits even 

though the available input groups differed slightly. For example, the models ranked second 

(using GRD, PSD, and Db) and first (using PSD and Db) had the same mean RMSR, SD, Min, 

and Max values indicating that they used the same splits to form trees, even though the model 

ranking second had more inputs. The addition of the GRD input group in this case had no effect 

on the estimations. Not only did GRD not seem to be an important variable in this case, but the 

same pattern with GRD appeared in the best 87 models. For these particular cases it showed that 

GRD was not important for improving Ks predictions. Another interesting point about all of these 

trees was that each used a measure of texture (PSD or TXT) and Db. This pattern appeared in all 

models except for those where the PSD and Db were excluded. These results are contrary to 

those of Lilly et al. (2008). The best models in their study included structure, whereas in our 

study we found that structural components only appeared in models where PSD, Db, and TXT 

were all excluded, indicating a weak relationship between soil morphological measures of 

structure and Ks. However, when PSD, Db, and TXT were excluded these measures became 

important. Some of these trees will be discussed further. 
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Decision Tree Full Model  

 The first model we discuss is the full decision tree model which resulted from using all of 

the available input variables. This model was used to identify which were the most important 

input parameters and to set the number of partitioning levels. Lilly et al. (2008) only went to the 

fourth partitioning level because five terminal nodes could be obtained at the third or fourth 

splitting level. Since our study also had an optimized value of five terminal nodes, analyzing four 

splitting levels of the tree structures was also sufficient in our study.  

 Table 5 shows a list of partitioning variables used in the full model decision trees (model 

number 62 in Table 4). It also shows the average splitting value, frequency, and probability of 

occurrence at each level. The frequency is the probability of a variable occurring at least once at 

that particular splitting level. The sum of probabilities within a splitting, unlike frequency, can be 

greater than one because variables can occur more than once at a particular level due to the fact 

that the variable can be present in different nodes at a particular level.  

 For the full model, the first split was sand content and, on average, the split occurred at a 

value of 65.8% sand content. The right branch of this split (sand > 65.8%) included the sandy 

loam, loamy sand, and sand textural classes. Sand content was the primary splitting variable in 

all cases at the first level, because these types of soils had the highest Ks (see Table 3). At the 

second partitioning level, Db was the primary splitting variable with a frequency of 0.72. This 

was followed by percent clay (CLAY) with a frequency of 0.16, and VERY FRIABLE 

consistence with a frequency of 0.06. For the first two splitting levels the main predictors were 

quantitative input variables, with the exception of consistence. At the third level, the percentage 
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of silt (SILT) was the top splitting variable with a frequency of 0.38, followed by percentage of 

sand (SAND) with a frequency of 0.30, and Db with a frequency of 0.17.  

Best Decision Tree Models 

The best ranking model used only PSD, and Db. The only important splitting variables 

were percentages of sand, silt, clay, and Db. Table 6 provides a breakdown of the most important 

variables at each partitioning level. At the first partitioning level, soils were split based on sand 

content (on average at 65.9%). This was the same split that appeared in the full model. At the 

second splitting level, Db was the most frequent splitting variable. At level three, percentage of 

silt was the most important variable, having a frequency of 0.42. SAND was an alternative 

important splitting variable at this level, with a frequency of 0.31. Figure 3 shows the most likely 

tree structure of the best model (with input variables PSD, and Db). The test RMSR that resulted 

from a run with 100 randomly selected subsets from the data set using this model, is also shown. 

For each terminal node, the average predicted Ks and SD is given. The test RMSR (0.7663 in 

Figure 3) for this particular tree was slightly less than the RMSR for all tree models using this 

combination of inputs (0.8017 in Table 4). There were four terminal nodes in this tree with 

predicted log-transformed Ks of 2.45, 1.66, 0.84, and 0.73 in cm day
-1

. At the first level, soils 

with sand content greater than 65.9 % (part of the sandy clay loam and sandy loam textural 

classes and all of the loamy sand and sand textural classes) formed the right branch which leads 

to a terminal node. The reason for this split was these textural classes tended to have high Ks (see 

Table 3). On the left branch, the next partitioning split soils with Db greater than 1.51 g cm
-3

 to 

the right branch. This branch leads to a terminal node with the lowest predicted Ks (0.73 cm day
-

1
). Soils in this group (sand < 65.9% and Db > 1.51 g cm

-3
) ranged from sandy loams to clays. 
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However, 63% of these soils were silt loam, sandy clay loam, or clay textural classes. It should 

be noted that the clays in this section were well structured, (no massive, single grain, or 

structureless designations) and still are in the group with the lowest Ks. This implies that Db was 

a better predictor of Ks than morphological descriptors in finer textural classes. As was shown 

earlier, within the finer textured soils, a high Db is associated with a low Ks. 

 Going to the third splitting level (26.4% < sand ≤65.9% and Db ≤ 1.51 g cm
-3

), both 

branches from this level lead to terminal nodes with intermediate predicted Ks. Half of all clays 

in this data set were routed to the right branch terminal node with the second highest Ks. There 

were a few clay samples that were massive or structureless for ped shape. The remaining samples 

had morphological descriptors that indicated well structured soils. This node had the second 

highest Ks average value. The remaining soils in this node came from the silt loam, silt, sandy 

clay loam, and clay loam textural classes. The final left branch node consisted of 70% silt loams, 

25% silty clay loams and the remaining samples were silt and clay loam. Only 11% of the 

samples had a massive or structureless morphology.  

 The  morphological descriptors of structure did not seem to perform as well in predicting 

Ks as the combination of Db and texture. When looking at our data set, the ped size 2 to 5 mm 

(PS2) had the lowest average Ks, while ped size 50 to 100 mm (PS6) had the highest Ks. The 

remaining ped size classes had similar values (around 0.7 log10 transformed cm day
-1

). The wide 

range in morphological descriptors with similar values for Ks made structure seem less important 

in our data set, which can be seen throughout most of the decision tree models.  

Many of the best models in Table 4 had RMSRs that were within one SD of each other. 

Therefore, using a model that was not ranked the highest can still yield predictions that are not 
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significantly different from the highest ranking model. In this study, we wanted to see if easily 

obtainable morphological data (structural data) could be used to predict Ks. Therefore we 

investigated models that used only easily categorical data. 

As noted earlier, the model ranking 69
th

 was the highest ranking model when only 

qualitative input variables were made available as inputs, in this case TXT and HOR. However, 

the actual decision tree models developed used only TXT (Figure 4). The splits simply 

segregated the first four textural classes in the order shown earlier in Table 3 where the mean Ks 

for each textural class in our data set was shown.   

An example of a model where qualitative variables appeared in the decision tree is the 

one that had PED, CRK, GRD, and CST available as inputs. This model ranked 202
nd

 overall 

(Table 4). Table 7 provides a breakdown of the partitioning variables. At the first partitioning, 

loose consistence was the main splitting variable with a frequency of 0.83, followed by single-

grained crack orientation and very friable consistence. Single grain crack orientation was 

included in the crack orientation, as well as in the grade class, because single grain is given as a 

structural component. These variables replaced the high sand content that was present in the first 

splitting level of the best model (see Table 7). Loose consistence, single-grain crack orientation, 

and very friable consistence all correlated strongly with a high sand content (see Table 2). 

The variable of highest frequency of occurrence at the second splitting level was very 

friable consistence (probability of occurrence 0.87), followed by loose consistence, 2-5 mm ped 

size (PS2), and 10-20 mm ped size (PS4), with frequencies of 0.07, 0.06, and 0.04, respectively. 

These splits resulted in sorting of the coarser material at partitioning levels one and two. At the 

lower levels, further splitting mostly occurred within groups of the finer material. In the third 
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partition level, the primary partitioning variable was 10-20 mm ped size (PS4) with a frequency 

of 0.44. This was followed by very firm consistence, with a frequency 0.27, showing that at this 

level finer-textured soils (silt loam and finer) were being grouped together. There was a 

correlation between PS4 and textural class: 30% of soils that were PS4 size were also in the clay 

textural class. The remaining soils were in the silt loam, silt, sandy clay loam, clay loam, silty 

clay loam, and clay textural classes. The forth partitioning primary split was the 2-5 mm ped size 

(PS2) with a frequency of occurrence of 0.38.  

Figure 5 shows the most likely tree structure of the model using only morphological 

variables (PED, CRK, GRD, and CST), along with the RMSR, average predicted Ks, and SD for 

each terminal node. The test RMSR (0.8534 in Figure 5) for these hard coded splits were slightly 

less than the RMSR for all tree models using this combination of inputs (0.8235 in Table 4). As 

expected, the first split separated soils with high sand content, (high sand content and loose 

consistence was positively correlated, R = 0.47, in Table 2) grouping all sands from the dataset 

in the right branch and predicting the highest log10-transformed Ks (2.75). The terminal node 

with the second highest Ks (1.85) separated out textures with high silt content (loamy sand, sandy 

loam, and silt loams). Very friable consistence was positively correlated with loamy sands and 

sandy loams. Many of these soils had morphological descriptors indicating a lack of structure 

(massive, single grained, or structure-less), but this might be expected in high-silt soils.  

The terminal node with the third highest Ks (0.95) selected samples that were silt loams, 

silt, sandy clay loam, clay loam, silty clay loam, and clay. The silty loam and sandy clay loams 

were weakly correlated with friable consistence. The clay textural class was correlated with the 

firm consistence (each of these two soil consistence groups were in this node). It is interesting to 
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note that this group included all clays in the data set (18% of the S-124 data set were clays). As 

noted earlier, all of the soils in the clay class had evidence of structure development (not massive 

or single grained). The mean Ks of all the clays was 1.25 log10 cm day
-1

, showing that the clay 

textured soil actually increased the mean of this node (refer to Table 3). Even though the clay 

textured soils had greater Ks, the reason for this node’s lower Ks (compared to the highest and 

second highest terminal nodes) was because of the consistence. The soils at this node had a 

consistence of firm or friable.  

The very friable consistence soils were segregated at level two and routed to the terminal 

node with the lowest Ks (-0.51). This group only contained two samples, both of which were C or 

B/C horizons. Although both soils were well structured,  the low Ks could be due to the fact that 

these horizons can have little pore inter-connectivity.  

The second lowest Ks was probably due to these soils having a designation of a fragipan 

(defined by a restriction of water flow). Just as with the lowest Ks node these were well 

structured but the fragipan designation (most of the soils in this node had this designation) is 

probably the cause for such a low Ks.   

Another model of interest was one that used both qualitative and quantitative variables. 

An example of such a model is the one that used only PED, CST, and Db as inputs. This model 

ranked 209
th

 overall (Table 4). This model was significantly different from the top ranking 

model, however, the prediction capabilities between the two is only 1.26 cm day
-1

. Table 8 

provides a breakdown of the partitioning variables. At the first partitioning, loose consistence 

was the predominant splitting variable with a frequency of 0.91 This variable replaced the sand 

content (sand content and loose consistence was positively correlated, R = 0.47, Table 2) that 
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was present in the first splitting level of the best model and can be considered a qualitative 

descriptor for the sands (see Table 8).   

The second splitting level with the highest frequency of occurrence was very friable 

consistence (frequency of occurrence 0.82), followed by loose consistence, 2-5 mm ped size 

(PS2), and 10-20 mm ped size (PS4), with frequencies of 0.07, 0.06, and 0.04, respectively. 

These splits resulted in sorting of the coarser material at partitioning levels one and two. The 

lower levels yielded less uniform groups, which can be seen by the wider distribution of splitting 

variables at those levels. At the third partition level, the primary partitioning variable was 10-20 

mm ped size (PS4) with a frequency of 0.43. This was followed by Db with a frequency 0.35.  

Figure 6 shows the most likely tree structure for this model, along with the RMSR, 

average predicted Ks, and SD for each terminal node. The test RMSR (0.8482) for these hard 

coded splits were slightly less than the RMSR for all the tree models with this combination of 

inputs available (0.9009 in Table 4). As expected, the first split separated soils with high sand 

content, grouping all sands from the dataset in the right branch and predicting the highest log10-

transformed Ks (2.75 cm day
-1

). The terminal node with the second highest Ks (1.85 cm day
-1

) 

were soils that were very friable and had a ped size other than 10-20 mm (this combination 

probably selected the smaller ped sizes). This again selected coarser textured soils (i.e. loamy 

sands and sandy loams).   

The terminal node with the third highest Ks (1.62 cm day
-1

) selected samples that were 

not of loose consistence or very friable and had a lower bulk density. The other node at the 

lowest splitting level with the next to lowest Ks had a higher bulk density, which probably were 

the compacted soils.  It is difficult to understand (because the samples in this node were well 
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structured) why the node with the lowest Ks was lower than the other nodes (over an entire order 

of magnitude different from the next lowest node). This node only contained two values, which 

could be an explanation for the low value. The soils in this node were deep in the soil profile 

(B/C and C horizons); this could also be an explanation for such a low Ks (low interconnectivity 

between the pores).  

Comparing Soil Survey Predictions to Best Decision Tree Model Predictions 

 The Soil Survey PTF model is based on bulk density and textural classes for the 

prediction of Ks. Using equation 1, we calculated the RMSR for our dataset using the Soil Survey 

method. The RMSR in log10-transformed Ks (cm day
-1

) was 0.9562 compared to 0.8017 for our 

best model and 0.8911 for our best model using only qualitative data. As mentioned earlier, 

neither the NRCS method nor our best model to estimate Ks take into account structure directly. 

There are, however, overriding factors in the NRCS method which are used in some cases to 

estimate Ks instead of the bulk density and texture method. Our dataset used such conditions for 

only 15 samples, all of which were related to structure. These samples all had strong sub-angular 

blocky structure. If the overriding conditions were not taken into account then the RMSR was 

0.9152. In the case of our dataset, using the overriding conditions increased the error.  

 Conclusions 

 Even though much of the literature indicates that using only texture and bulk density 

does not yield accurate results (Loague, 1992; Wagner et al., 1998) there are some studies 

showing that one can use texture and bulk density to adequately predict Ks. Jabro (1992) found 

that texture and bulk density were in fact good predictors of Ks using the S-124 data set. Since 

we used soils from the same data set, it should not be surprising that we found that the strongest 
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predictors of Ks were texture and bulk density. McKenzie and Jacquier (1997) found that 

morphological descriptors of structure, bulk density, and texture could be used to predict Ks, 

however, all of these relationships showed variability  

Using decision tree analysis, we found that texture and bulk density were the most 

important variables in the prediction of Ks in a subset of the S-124 data set (selected based on 

data availability) consisting of soils from the Southeastern U.S. Contrary to the study by Lilly et 

al. (2001) on European soils, morphological descriptors of structure did not appear in the 

decision trees of our best models. However, it is important to note that models that relied solely 

on morphological descriptors of structure could be used to predict with similar results with our 

top model (PSD and Db).  

We found that high sand contents were the most important splitting variable in our best 

models. This was due to the consistently high Ks present in coarse-textured soils. When looking 

at the models that used only morphological descriptors of structure, the best model was ranked 

202
nd

. The worst of these models was ranked 238
th

. The only time that a structural component 

appeared was when texture and bulk density were excluded as potential input variables. The Soil 

Survey method PTF performed nearly as well as our region-specific best model with a RMSR of 

0.9562 for the Soil Survey method and a RMSR of 0.8017 for our best model. However, our 

model best model using only morphological descriptors of structure outperformed the Soil 

Survey method with an RMSR of 0.8911. It is interesting that both our best model and the Soil 

Survey method used only bulk density and texture. This is probably because bulk density in 

combination with texture acted as a surrogate for soil structure or because the descriptors did not 

capture the effect of structure on Ks. For instance, finer-textured soils with high bulk densities 
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could indicate compacted soils with no structure, whereas finer textured soils with low bulk 

densities could indicate well-structured soils. Future research should examine larger datasets 

(spatially) which may increase a PTFs prediction capability by taking into account soils from 

different climatic regions. The study relied on soils from similar climatic regions making it more 

difficult for estimations outside these regions.  
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Table 1. Description and grouping of input variables and output variable. 

 

 

 

 

 

  

Group Variable Number of 

Members 

Description 

1-HOR HOR 169(0) ;  46(1) 0 for subsoil; 1 for topsoil 

2-PED PS1 12 1-2 mm ped size class 

 PS2 24 2-5 mm ped size class 

 PS3 10 5-10 mm ped size class 

 PS4 89 10-20 mm ped size class 

 PS5 14 20-50 mm ped size class 

 PS6 9 50-100 mm ped size class 

 PS7 0 >100 mm ped size class 

 PS8 57 ped size not determined 

3-CRK BOTH 154 horizontal and vertical cracks 

 TRANS 1 Horizontal cracks 

 VERT 21 Vertical cracks 

 MASSIVE 16 Massive 

 SINGLE 9 Single 

 NONE 14 Structureless 

4-GRD MASSIVE 16 Massive grade 

 SINGLE 9 Single grade 

 WEAK 91 Weak grade 

 MODERATE 43 Moderate grade 

 STRONG 15 Strong grade 

 NONE 41 No grade given 

5-CST LOOSE 11 Loose consistence 

 VERY FRIABLE 47 Very Friable consistence 

 FRIABLE 64 Friable consistence 

 FIRM 19 Firm consistence 

 VERY FIRM 4 Very Firm consistence 

 NONE 70 No consistence given 

6-TXT S 13 sand textural class (USDA) 

 LS 17 Loamy sand textural class (USDA) 

 SL 18 Sandy loam textural class (USDA) 

 L 5 Loam textural class (USDA) 

 ZL 76 Silt loam textural class (USDA) 

 Z 2 Silt textural class (USDA) 

 SCL 19 Sandy clay loam textural class (USDA) 

 CL 9 Clay loam textural class (USDA) 

 ZCL 28 Silty clay loam textural class (USDA) 

 ZC 0 Silty clay textural class (USDA) 

 SC 0 Sandy clay textural class (USDA) 

 C 28 Clay textural class (USDA) 

7-PSD CLAY 215 Clay content (<2µm; USDA) 

 SILT 215 Silt content  (2-50µm; USDA) 

 SAND 215 Sand content (50-2000µm; USDA) 

8-BD D(b) 215 Bulk density 

Output LOGKS 215 Transformed Ks, log10 (cm d-1) 
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   Table 2. Correlations between variables in the S-124 data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Db (bulk density), TOP (topsoil), (PS2) ped size 2-5 mm, PS4 (ped size 10-20 mm), VERY 

FRIABLE (very friable consistence, VERY FIRM (very firm consistence), SAND (percentage of 

sand), LOOSE CONSISTENCE (loose consistence, SINGLE GRAIN CRACK (single grain 

crack orientation, WEAK (weak grade), MODERATE (moderate grade), STRONG (strong 

grade), Ks (log10-transformed Ks). 

 

 

     

 

 

 

 

 

  

*Variables R Significance Level 

Absolute 

value of R 

TOP vs. PS2 0.64 0.001 0.64 

SILT vs.   Db -0.53 0.001 0.53 

Ks vs. Sand 0.53 0.001 0.53 

PS1 vs. TOP 0.47 0.001 0.47 

SAND vs. LOOSE         

CONSISTENCE 0.47 

 

0.001 

 

0.47 

Ks  vs. Clay -0.44 0.001 0.44 

SAND vs. SINGLE 

GRAIN CRACK 0.43 0.001 0.43 

SAND vs. VERY 

FRIABLE 0.43 0.001 0.43 

 MODERATE vs. PS4 0.38 0.001 0.38 

STRONG vs. C 0.38 0.001 0.38 

 PS4 vs. TOP -0.37 0.001 0.37 

 MODERATE vs. C 0.36 0.001 0.36 

Ks  vs. SILT -0.35 0.001 0.35 

STRONG vs.PS4 0.33 0.001 0.33 

 WEAK vs. BOTH 0.31 0.001 0.31 

WEAK vs.PS2 0.29 0.001 0.29 

Db  vs. VERY FIRM 0.17 0.05 0.17 

Ks  vs.   Db 0.15 0.05 0.15 

WEAK vs.   Db 0.14 0.05 0.14 
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Table  3. Mean and coefficient of variance (CV) of untransformed and log10-transformed Ks 

by textural class for the S-124 data set. 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Textural Class 

Number 

of 

members 

Mean Ks  

cm day
-1

 

CV Ks  

% 

Mean log10 

transformed Ks 

cm day
-1

   

Sand 13 508.74 0.5 2.71   

Loamy Sand 17 258.52 0.7 2.41   

Sandy Loam 18 66.74 16.8 1.82   

Clay 28 17.58 71.4 1.25   

Silt 2 12.26 9.8 1.09   

Loam 5 10.44 38.7 1.02   

Sandy Clay Loam 19 8.41 101.4 0.93   

Silt loam 76 7.12 86.2 0.85   

Silty Clay Loam 19 4.41 109.5 0.64   

Clay Loam 9 3.24 435.0 0.51   

Silty Clay* 0 N/A N/A N/A   

Sandy Clay* 0 N/A N/A N/A   
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Table 4. Performance of decision tree models, in terms of root mean squared residual 

(RMSR), calculated by the mean of 100 model runs, using 247 different combinations of 

input variables.  

*PED (ped size), CRK (crack orientation), GRD (grade), CST (consistence), PSD  

(particle size distribution), TXT (textural class), Db (bulk density), HOR  

(topsoil or subsoil).  

** Indicates the best performing model using the same number of input groups. 

  

Rank Input Groups 

Mean 

RMSR 

SD 

RMSR 

Minimum 

RMSR 

Maximum 

RMSR 

                  -------Log10 transformed Ks-------- 

1**        PSD   Db   0.8017 0.0855 0.5680 0.9710 

2**     GRD    PSD   Db   0.8017 0.0855 0.5680 0.9710 

3   CRK    PSD   Db   0.8034 0.0854 0.5680 0.9831 

4**   CRK GRD    PSD   Db   0.8034 0.0854 0.5680 0.9831 

5     GRD   PSD TXT Db   0.8039 0.0881 0.5680 1.0149 

6         PSD TXT Db   0.8039 0.0881 0.5680 1.0149 

7   CRK    PSD TXT Db   0.8056 0.0880 0.5680 1.0149 

8**   CRK  GRD   PSD TXT Db   0.8056 0.0880 0.5680 1.0149 

17     GRD   PSD   Db HOR 0.8120 0.0806 0.6587 0.9710 

18         PSD   Db HOR 0.8120 0.0806 0.6587 0.9710 

35 PED CRK   CST PSD   Db   0.8152 0.0896 0.5680 1.0166 

36** PED CRK GRD CST PSD   Db   0.8152 0.0896 0.5680 1.0166 

37 PED    CST PSD   Db   0.8160 0.0892 0.5680 1.0166 

38 PED   GRD  CST PSD   Db   0.8160 0.0892 0.5680 1.0166 

60 PED   GRD CST PSD   Db HOR 0.8221 0.0841 0.6587 1.0166 

61** PED CRK   CST PSD TXT Db HOR 0.8235 0.0867 0.6587 1.0166 

62** PED CRK GRD CST PSD TXT Db HOR 0.8235 0.0867 0.6587 1.0166 

75   CRK      TXT Db HOR 0.8387 0.0746 0.6862 1.0790 

76   CRK GRD      TXT Db HOR 0.8387 0.0746 0.6862 1.0790 

77     GRD     TXT Db HOR 0.8387 0.0746 0.6862 1.0790 

196 PED CRK   CST     Db   0.8868 0.0656 0.7539 1.1334 

197   CRK GRD       Db HOR 0.8886 0.0629 0.7442 1.0439 

198     GRD       Db HOR 0.8886 0.0629 0.7442 1.0439 

199   CRK   CST     Db HOR 0.8899 0.0660 0.7565 1.0731 

200     GRD CST     Db   0.8899 0.0670 0.7555 1.0929 

201 PED     CST     Db HOR 0.8900 0.0657 0.7641 1.0945 

202 PED CRK GRD CST        0.8911 0.0654 0.7450 1.0746 

203   CRK         Db HOR 0.8915 0.0633 0.7513 1.0524 

204   CRK   CST     Db   0.8932 0.0636 0.7648 1.0692 

205 PED CRK   CST     Db HOR 0.8952 0.0662 0.7641 1.0945 

206 PED   GRD       Db HOR 0.8965 0.0678 0.7726 1.0964 

207 PED CRK GRD       Db HOR 0.8990 0.0677 0.7726 1.0964 

208 PED   GRD CST     Db HOR 0.9006 0.0714 0.7641 1.0945 

209 PED     CST     Db   0.9009 0.0718 0.7738 1.1916 

219 PED CRK         Db HOR 0.9054 0.0596 0.7925 1.0574 

245   CRK GRD       Db   0.9673 0.0651 0.8498 1.1787 

246   CRK         Db   0.9766 0.0627 0.7759 1.1787 

247     GRD       Db   1.0025 0.0604 0.8254 1.1787 
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Table 5. Input variables and their probabilities in each splitting level for the decision tree 

model considering all input variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* SAND, sand content, (>50μm); SILT, silt content (2-50 μm);  and CLAY, clay content (<2 

μm) values based on the USDA  classification; PS2, ped size 2-5mm; PS3, ped size 5-10mm; 

PS8, no structure; CLAY LOAM, refers to the textural class, clay loam; VERY FIRM, FRIM,   

VERY FRIABLE, and NONE refers to the consistence; Db refers to the bulk density; CRK 

(SING and NONE) refers to the single grained crack orientation and no structure reported, 

respectively; GRD (SING and NONE) refers to the single grained grade and no grade reported. 

†Average of value, N/A refers to the qualitative variables; the numerical values indicate splitting 

values for each group 

  

Splitting 

level Variable* 

†Average 

splitting 

value 

†SD of 

splitting 

value 

Total 

Count 

within 

level 

Frequency 

as 

partitioning 

in level 

Probability 

of 

occurrence 

in level 
1 SAND 65.8 3.7 100 1 1 

2 Db 1.5 0.1 105 0.72 0.76 
 CLAY 26.8 14.0  0.16 0.17 
 VERY FRIABLE N/A N/A  0.06 0.06 
 SAND 1 N/A  0.04 0.04 
 SILT 26.5 N/A  0.01 0.01 
 CLAY LOAM N/A N/A  0.01 0.01 
 VERY FRIABLE N/A N/A  0.01 0.01 

3 SILT 35.4 15.7 112 0.38 0.43 
 SAND 26.3 14.1  0.30 0.34 
 Db 1.5 0.1  0.17 0.19 
 CLAY 40.0 7.1  0.11 0.12 
 PS2 N/A N/A  0.03 0.03 

4 Db 1.5 0.1 83 0.57 0.47 
 SILT 43.5 19.6  0.11 0.09 
 SAND 20.1 21.7  0.11 0.09 
 CST(NONE) N/A N/A  0.07 0.06 
 GRD (NONE) N/A N/A  0.05 0.04 
 CLAY 38.7 2.5  0.04 0.03 
 PS3 N/A N/A  0.01 0.01 
 PS8 N/A N/A  0.01 0.01 
 VERY FRIABLE N/A N/A  0.01 0.01 
 FIRM N/A N/A  0.01 0.01 
  VERY FIRM  N/A N/A   0.01 0.01 
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Table 6. Input variables and their probabilities in each splitting level, for the best decision 

tree model considering particle size distribution (PSD), grade (GRD), and bulk density 

(Db). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* SAND, sand content, (>50μm); SILT, silt content (2-50 μm);  and CLAY, clay content (<2 

μm) values based on the USDA  classification; PS2, ped size 2-5mm; PS3, ped size 5-10mm; 

PS8, no structure; CLAY LOAM, refers to the textural class, clay loam; VERY FIRM, FRIM,  . 

VERY FRIABLE, and NONE refers to the consistence; Db refers to the bulk density; CRK 

(SING and NONE) refers to the single grained crack orientation and no structure reported, 

respectively; GRD (SING and NONE) refers to the single grained grade and no grade reported. 

†Average of value, N/A refers to the qualitative variables; the numerical values indicate splitting 

values for each group 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Partitioning 

level Variable* 

†Average 

splitting 

value 

†SD of 

splitting 

value 

Total 

Count 

within 

level 

Frequency 

as 

partitioning 

within 

level 

Probability 

of 

occurrence 

within 

level 
1 SAND 65.9 3.7 100 1 1 

2 Db 1.5 0.1 106 0.74 0.79 
 CLAY 28.2 14.7  0.19 0.20 

  SAND 1.0 N/A   0.07 0.07 
3 SILT 39.3 15.9 108 0.42 0.45 
  SAND 26.4 14.1   0.31 0.33 

  Db 1.5 0.1   0.19 0.20 
 CLAY 37.3 8.0  0.09 0.10 

4 Db 1.5 0.1 86 0.52 0.56 
  SILT 37.3 20.7   0.16 0.14 
  SAND 15.4 19.5   0.11 0.12 

  CLAY 25.4 13.2   0.05 0.04 
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Table 7. Input variables and their probabilities in each splitting level for the decision tree 

model considering ped size (PED), crack orientation (CRK), grade (GRD), and consistence 

(CST). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* PS2, ped size 2-5mm; PS4, ped size 10-20mm; PS6, ped size 50-100mm , PS8, no ped size 

given; VERY FIRM,VERY FRIABLE,  LOOSE, and refers to the consistence; WEAK and 

MODERATE refers to the grade; CRK SINGLE, MASSIVE, BOTH, and VERTICAL) refers to 

the crack orientation, single, massive, both, and vertical, respectively. 

 

 

 

Splitting 

level Variable* 

Total 

Count 

within 

level 

Frequency as 

partitioning 

within level 

Probability of 

occurrence 

within level 

1 LOOSE 100 0.83 0.83 

 SINGLE (CRK)  0.08 0.08 

 VERY FRIABLE  0.05 0.05 

 PS8  0.04 0.04 

2 VERY FRIABLE 108 0.81 0.87 

 LOOSE  0.07 0.08 

 PS2  0.06 0.07 

 PS4  0.04 0.04 

 MASSIVE (CRK)  0.01 0.01 

 FRIABLE  0.01 0.01 

3 PS4 176 0.44 0.77 

 VERY FIRM  0.27 0.48 

 PS2  0.11 0.19 

 PS6  0.05 0.09 

 VERTICAL  0.03 0.06 

 WEAK  0.03 0.06 

 VERY FRIABLE  0.03 0.06 

 BOTH  0.01 0.02 

 PS8  0.01 0.01 

 SINGLE (CRK)  0.01 0.01 

 MODERATE  0.01 0.01 

4 PS2 16 0.38 0.06 

 PS4  0.19 0.03 

 BOTH  0.19 0.03 

 VERY FIRM  0.13 0.02 

 PS6  0.06 0.01 

  WEAK   0.06 0.01 
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Table 8. Input variables and their probabilities in each splitting level, for the decision tree 

model considering ped size (PED), consistence (CST), and bulk density (Db). 

*VERY FIRM,VERY FRIABLE,  LOOSE, and refers to the consistence; * PS2, ped size 2-

5mm; PS4, ped size 10-20mm; PS6, ped size 50-100mm , PS8, no ped size; Db refers to bulk 

density. 

 

 

 

 

 

 

Splitting 

level Variable* 

Average 

splitting 

value 

SD of 

splitting 

value 

Total 

Count 

within 

level 

Frequency 

as 

partitioning 

in level 

Probability 

of 

occurrence 

in level 

1 LOOSE N/A N/A 100 0.91 0.91 

 VERY FRIABLE N/A N/A  0.06 0.06 

 PS8 N/A N/A  0.03 0.03 

2 VERY FRIABLE N/A N/A 107 0.82 0.88 

 LOOSE N/A N/A  0.07 0.08 

 PS2 N/A N/A  0.06 0.06 

 PS4 N/A N/A  0.04 0.04 

 FRIABLE N/A N/A  0.01 0.01 

3 PS4 N/A N/A 176 0.43 0.75 

 Db 1.35 0.07  0.35 0.61 

 VERY FIRM N/A N/A  0.13 0.22 

 PS6 N/A N/A  0.05 0.08 

 PS2 N/A N/A  0.04 0.07 

 VERY FRIABLE N/A N/A  0.02 0.03 

4 VERY FIRM N/A N/A 17 0.29 0.05 

 PS2 N/A N/A  0.24 0.04 

 Db 1.38 0.16  0.24 0.04 

 PS4 N/A N/A  0.12 0.02 

 PS6 N/A N/A  0.06 0.01 

  VERY FRIABLE N/A N/A   0.06 0.01 
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Figure 1. Flow diagram of algorithm for developing decision trees. 
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Figure 2. The Soil Survey method for estimating Ks using only texture and bulk density 

(USDA, 2010). The low, medium, and high density triangles in the left column indicate Db 

for particular soil textures. The triangles in the right column predict the range for Ks. 
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Test RMSR: 0.7663 (0.0617) 

Figure 3.  Most likely tree structure of best ranking decision tree model, the average 

saturated hydraulic conductivity (Ks) in bold and standard deviation (SD) in parenthesis, 

all values are log10 transformed.   

  

Term. node  

1.60  (0.08) 

 

Term. node 

0.83  (0.04) 

  

Term. node          (39%) 

Percentage of sand              (26%) 

Percentage of silt                 (23%) 

Bulk Density                        (10%) 
Percentage of clay                 (2%)     

 

 

 

 

Percentage  of sand               (100%) 

Term. node  

0.73  (0.04) 

       

 

Term. node 

2.45  (0.13) 

Bulk Density                      (79%) 

Percentage of clay               (14%)     
Percentage of sand                (7%) 

 

<=65.9 >65.9 

<=1.51 

<=26.4 

 

>1.51 

>26.4 



 

 

54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test RMSR: 0.8104 (0.0627) 

Figure 4. Decision tree considering only textural class (TXT) and horizon designation 

(HOR), the average saturated hydraulic conductivity (Ks) in bold and standard deviation 

(SD) in parenthesis, all values are log10 transformed.   
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Test RMSR: 0.8534 (0.0612) 

Figure 5.  Most likely decision tree structure considering only morphological descriptors of 

structure (PED, CRK, GRD, and CST), the average saturated hydraulic conductivity (Ks) 

in bold and standard deviation (SD) in parenthesis, all values are log10 transformed.   
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Test RMSR : 0.8482 (0.0593) 

 

Figure 6.  Most likely decision tree structure considering only using ped size (PED), 

consistence (CST), and bulk density (Db), the average saturated hydraulic conductivity (Ks)  

in bold and standard deviation (SD) in parenthesis, all values are log10 transformed. 
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