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ABSTRACT 

Evolutionary Algorithms (EAs) used in complex optimization domains usually need to 
perform a large number of fitness function evaluations in order to find near-optimal solutions. In 
real world application domains such as engineering design problems, such evaluations can be 
extremely computationally expensive. It is therefore common to estimate or approximate the 
fitness. A popular method is to construct a so-called surrogate or meta-model, which can 
simulate the behavior of the original fitness function, but can be evaluated much faster. An up-
to-date survey of fitness approximation applied to EA is presented in this dissertation. The main 
focuses are the methods of fitness approximation, the working styles of the fitness approximation, 
and management of the fitness approximation during the optimization process. Working with 
fitness approximations creates a problem in that it is difficult to determine which approximate 
model is appropriate for each domain and how often the model should be used. Even for one 
domain the answer is not usually fixed, but varies within the different stages of the optimization 
process. To solve this problem, an adaptive fitness approximation GA (ASAGA) is presented. 
ASAGA adaptively chooses the appropriate model type by adjusting the model complexity and 
the frequency of model usage according to time elapsed and model accuracy. ASAGA also 
introduces a stochastic penalty function method to handle constraints. Experiments show that 
ASAGA performs better than or comparable to several state-of-art surrogate-assisted EAs in 
benchmark domains and engineering design domains. Statistical analysis suggests that ASAGA 
outperforms a fixed surrogate-assisted GA in constrained function domains with statistical 
significance. 
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Chapter 1 

Introduction 

 

Background: 

 Evolutionary Algorithms (EAs) have repeatedly proven to be a powerful method for solving 

optimization problems, and are consequently used in a wide range of real-world applications 

such as engineering design domains. In such domains, it is not uncommon to see fitness 

functions that are discontinuous, non-differential, highly multi-modal, noisy and ambiguous [1, 

58]. It is therefore not surprising that EAs usually perform better than conventional optimizers 

such as sequential quadratic programming and Simulated Annealing [1, 2]. 

 

Problem Statement: 

Many challenges still arise in the application of EAs to real-world domains. For engineering 

design problems, a large number of objective evaluations may be required in order to obtain 

near-optimal solutions. Moreover, the search space can be complex, with many constraints and a 

small feasible region. However, determining the fitness of each point may involve the use of a 

simulator or analysis code that takes an extremely long time to execute. Therefore it would be 

difficult to be cavalier about the number of objective evaluations used for an optimization [58]. 

Another challenge is that the environment of an Evolutionary Algorithm can be noisy, which 

means that the exact fitness cannot be determined, and an approximate fitness must be assigned 

to each individual. An average fitness solution to the noise problem requires even more 

evaluations [51]. 
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For such problems surrogate-assisted evolution methods based on fitness approximation are 

preferable, as they can simulate the exact fitness at a much lower computational cost. A good 

fitness approximation method can still lead an EA process to find optimal or near-optimal 

solutions and is also tolerant to noise (refer to Schwefel et al. [3] and Jin et al. [6] for details). 

However, working with fitness approximations creates a problem in that it is difficult to 

determine which approximate model is appropriate and how often the model should be used in 

each domain. Even for one domain the answer is not usually fixed, but varies with the different 

stages of the optimization process. A fixed approximate model cannot possibly fit well in all 

kinds of optimization problems, or in all stages of optimization. 

 

Proposed Solution: 

In this dissertation we present ASAGA (Adaptive Surrogate-Assisted Genetic Algorithm). 

ASAGA‘s backbone consists of GADO (Genetic Algorithm for Design Optimization) [1, 58], a 

GA that has proved to be powerful for solving engineering design problems. ASAGA makes use 

of global and local approximate models, using a clustering technique with one local model for 

each cluster. The global model can adaptively evolve from a quadratic polynomial model to a 

Support Vector Machine (SVM) model. The model evolution depends on time spent and model 

accuracy. The local models follow similar rules, except that they can evolve from a simple 

average of the fitness of all individuals in a cluster to a final quadratic model (not SVM), since 

each local model is based on a sample set which is not as large. The number of clusters is also 

adaptively controlled according to the type of model currently being used, model accuracy, and 

the size of the cluster. 
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In ASAGA, the frequency of model usage is also adaptively adjusted according to a formula 

that takes into account the percentage of runtime spent on fitness approximation, as well as 

model accuracy. Intuitively, if the approximate model formation and usage make up a significant 

amount of the total optimization time, the frequency should be reduced. On the other hand, if the 

approximate model fits very well, the frequency should be increased. A formula that takes into 

account both factors to reach a trade-off point is applied in ASAGA. 

A stochastic penalty function method is introduced in ASAGA to further strengthen its 

performance when dealing with constrained problem domains. 

 

Dissertation Structure: 

The remainder of this dissertation is organized as follows.  

 

Chapter 2: Several kinds of fitness approximation methods and their incorporation mechanisms 

are discussed. Multiple surrogate usage in current EA research is introduced. Comparative 

studies of different surrogate-assisted EA methods are given.   

 

Chapter 3: The proposed approach (ASAGA) is described in detail. 

 

Chapter 4: Experimental results are presented, including comparisons to state-of-art 

surrogate-assisted EA methods in unconstrained benchmark function domains, constrained 

benchmark function domains, and a real engineering design problem. 
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Chapter 5: Parameter tuning for ASAGA via performance analysis is discussed 

 

Chapter 6: The dissertation is concluded in this chapter with a summary and a discussion of open 

questions and future work. 
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Chapter 2 

Fitness Approximation Methods and Comparative Studies 

 

The optimization problem usually deals with non-linear functions. There are some classic 

approximation methods, such as transforming the original function to a simpler one. This method 

entails transforming the original functions to linear ones, and then using a linear programming 

technique, such as the Frank-Wolfe method [61] or Powell’s quadratic approximation [62]. Other 

classical methods like the Fourier approximation and Walsh function approximation use a set of 

basis functions and find a weighted sum of such basis functions to use as an approximation. 

These techniques have been used to first transform the original problem into an easy one, and 

then apply EA to find the optima of the easier version of the original fitness function [63, 64]. 

 

Another type of method determines a function’s approximation using a chosen set of 

evaluated points extracted from the whole design space or from the evaluation history. This class 

includes instance learning methods, machine learning methods and statistical learning methods. 

The relationships between the different types of fitness approximation methods are shown in Fig. 

2.1. 
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Fig. 2.1 Fitness approximation methods, FI: Fitness Inheritance; KNN: K-Nearest Neighbors; 

RBF: Radial Basis Functions; NN: Neural Networks; DT: Decision Tree; PM: Polynomial 

Model; SVM: Support Vector Machines 
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Instance-based Learning and Machine Learning Methods: 

Many Instance-based Learning and other Machine Learning methods have been used for 

fitness approximation in GAs. In this section, several of the most popular of these methods are 

reviewed. 

 

1. Fitness Inheritance 

Fitness inheritance techniques are one of the main subclasses of fitness approximation 

techniques. One such technique consists of setting the fitness of a new solution (child) based on 

the average fitness of its parents or a weighted average based on how similar the child is to each 

parent [7]. To deal with a noisy fitness function, a re-sampling method combined with a simple 

average fitness inheritance method is used to reduce the computational cost [10]. Another 

approach is to divide the population into building blocks according to certain schemata. Under 

this approach, an individual obtains its fitness from the average fitness of all the members in its 

building block [8]. More sophisticated methods such as conditional probability tables and 

decision trees are used in [9] for fitness inheritance. 

 

2. Radial Basis Functions Model 

The Radial Basis Functions (RBF) model is another instance learning method. RBF 

networks are actually a type of neural network. Since it is a very popular technique for fitness 

approximation in EA [2, 14, 26], it is worthy of being introduced independently from normal 

multilayer perceptron neural networks. An RBF network consists of an input layer with the same 
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number of input units as the problem dimension, a single hidden layer of k nonlinear processing 

units, and an output layer of linear weights w i. Fig. 2.2 shows the structure of an RBF network. 

The size of the hidden layer (k) can be equal to the problem dimension if the sample size is small. 

In the case of a larger sample size, k is usually smaller than the problem dimension to avoid 

expensive implementation. This type of RBF network is called a generalized RBF network. The 

output y(x) of the RBF network is given as a linear combination of a set of radial basis functions 

expressed in the following way: 

||)(||)(
1

0 ii

k

i
i cxwwxy −+= ∑

=

φ                                         (1) 

where w 0 and w i are the unknown coefficients to be learned. The term ||)(|| ii cx −φ , also 

called the kernel, represents the ith radial basis function. It evaluates the distance between the 

input x and the center c i. For the case of the generalized RBF network, the center c i is also 

unknown and has to be learned by other methods such as the K-means method. Typical choices 

for the kernel include linear splines, cubic splines, multi-quadrics, thin-plate splines, and 

Gaussian kernels. A Gaussian kernel is the most commonly used in practice, having the form:  

)
2

||||exp(||)(|| 2

2

σ
φ i

ii
cxcx −

−=−
                                        (2) 

A detailed comprehensive description of RBF networks can be found in [27]. 
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Fig. 2.2 Structure of RBF models 

 

3. Clustering Techniques 

Clustering algorithms include those based on hierarchy clustering (such as single-linkage, 

complete-linkage, average-linkage and Ward’s method), partition clustering (such as Hard 

C-Means and K-Means algorithm), and overlapping clustering (such as Fuzzy C-Means and 

B-Clump algorithm). Among them, the K-Means algorithm appears to be the most popular one 

for application to GAs due to its relative simplicity and low computational cost. In [11, 12], the 

entire population is divided into many clusters, and only the center of each cluster is evaluated. 

Other individuals’ fitness values in the clusters are computed using their distance from these 

centers. Another approach is to build an approximate model based on sample points composed of 

the clusters’ centers. Every other individual’s fitness is estimated by this approximate model, 
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which may be a neural network model [13] or an RBF model [15]. One important clustering 

technique applied in EA is to divide the population into several clusters, and then build an 

approximate model for each cluster. Multiple approximate models are believed to utilize more 

local information about the search space and fit the original fitness function better than a single 

model [4, 15, 16]. ASAGA, the method proposed in this dissertation, also uses this method. 

 

4. Multilayer Perceptron Neural Network 

Multilayer Perceptron Neural Networks (MLPNNs) usually utilize the back-propagation 

algorithm. MLPNNs have been proven to be powerful tools for fitness approximation. An 

MLPNN model is generally used to accelerate the convergence by replacing the original fitness 

function [29, 31]. In engineering design domains and drug design, MLPNNs have been used to 

reduce the evaluation times of complex fitness functions [30, 32, 33].  

A simple feed-forward MLPNN with one input layer, one hidden layer and one output layer 

can be expressed as:  

0
11

)()( θθ ++= ∑∑
==

ji

n

i
ij

K

j
j xwfwxy

                                (3) 

where n is the number of input neurons (which is usually equal to the problem dimension), K is 

the number of nodes of the hidden layer, and the function f is called the activation function. The 

structure of a feed-forward MLPNN is shown in Fig. 2.3. W and θ are the unknown weights to be 

learned. The most commonly used activation function is the logistic function, which has the 

form:  
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cxe
xf −+

=
1

1)(
                                           (4) 

where c is a constant. The function is plotted in Fig. 2.4. Readers can refer to Bishop et al. [27] 

for a comprehensive study. 
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Fig. 2.3 Structure of the feed-forward MLPNN model 
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Fig. 2.4 Logistic function with C = 1 

 

Other machine learning techniques are also applied for fitness approximation in EA. An 

individual’s fitness can be estimated by its neighbors using K-nearest-neighbors algorithm [17]. 

The screening model technique has been used for pre-selection [1, 58]. Decision Tree (DT) is 

another machine learning technique which has been used in [9]. 

 

Statistical Learning Methods: 

Statistical learning methods for fitness approximation (basically statistical learning models) 

as applied to EA have gained much interest among researchers, and have been used in several 
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successful GA packages. In these methods, single or multiple models are built during the 

optimization process to approximate the original fitness function. These models are also referred 

to as approximate models, surrogates or meta-models. Among these models, Polynomial Models, 

Kriging Models, and Support Vector Machines (SVM) Models are the most commonly used. 

 

1. Polynomial Models 

Polynomial models are sometimes called Response Surface methods. Commonly used 

quadratic polynomial models have the form: 

ji

nn

ji
iji

n

i
i xxaxaaXF ∑∑

===

∧

++=
,

1,11
0)(

                         (5) 

where a0, ai and aij are the coefficients to be fitted, n is the dimension of the problem, and xi is 

the ith design variable. 

Usually the least-squares approximation method is used to fit the unknown coefficients a0, ai 

and aij. The main limitation of the least-squares method is that the number of sample points (N) 

must exceed (n+1)(n+2)/2 for a second-order polynomial model. Even if this condition is 

satisfied, the fitting cannot be guaranteed because the singularity problem will still arise if two 

sample points are too close to each other. Another drawback of the least-squares method is that 

its computational complexity grows quickly with the problem’s dimension. This growth can be 

unacceptable when the problem’s dimension is high. The gradient method is introduced to 

address the problems of the least-squares method. More implementation details for using these 

two methods to fit a polynomial model can be found in [18].  
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2. Kriging Model 

The Kriging model consists of two component models which can be mathematically 

expressed as: 

)()()( xZxfxy +=                                                      (6) 

where f(x) represents a global model and Z(x) is the realization of a stationary Gaussian random 

function that creates a localized deviation from the global model. f(x) is a polynomial and can be 

considered to be an underlying constant β in many cases, so that equation (6) becomes:  

)()( xZxy += β                                                    (7) 

The estimated model in equation (3) is given as:  

)()( 1
∧

−
∧∧

−+= ββ fyRxry T
                                      (8) 

where y is a vector of length N as defined in equation (7), 
∧

y  is the estimated value of y given 

the current input x, f is a column vector which is filled with ones, and R is the correlation matrix 

which can be obtained by computing the correlation function between any two sampled data 

points. The form of the correlation function is specified by the user. Gaussian exponential 

correlation functions are commonly used, which is why the Kriging model is also called a  

Gaussian process:  

]||exp[),( 2

1
xx j

k

i

k

n

k
k

ji xxR −−= ∑
=

θ
                             (9) 

The correlation vector between x and the sampled data points is expressed as:  
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TnT xxRxxRxxRxr )],(),...,,(),,([)( 21=         (10) 

Estimation of the parameters is often carried out using the generalized least squares method 

or the maximum likelihood method. Detailed implementations can be found in [19, 20]. 

In addition to the approximate values, the Kriging method can also give accuracy information 

about the fitting in the form of confidence intervals of the estimated values without extra 

computational cost. In [5, 23], a Kriging model is used to build the global models because it is 

believed to be a good solution for fitting complex surfaces. A Kriging model is used to pre-select 

the most promising solutions in [24]. In [21, 22, 25], a Kriging model is used to accelerate the 

optimization or reduce the expensive computational cost of the original fitness function. One 

disadvantage of this method is that it is sensitive to the problem’s dimension. The computational 

cost is unacceptable when the dimension of the problem is high. 

 

3. Support Vector Machines (SVM) 

The SVM model is primarily a classifier method that performs classification tasks by 

constructing hyper-planes in a multidimensional space to separate cases of different class labels. 

SVM models support both regression and classification tasks and can handle multiple continuous 

and categorical variables. A detailed description of SVM can be found in [35, 36]. Beneficial 

features of SVM compared to other approximate models are that it is not sensitive to local 

optima, the optimization process does not depend on the problem dimensions, and overfitting is 

seldom an issue. Applications of SVM for fitness approximation can be found in [37]. The 

regression SVM is used for constructing approximate models. There are two types of regression 
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SVMs:  epsilon-SVM regression and nu-SVM regression. The epsilon-SVM regression model 

is more commonly used for fitness approximation, where the linear epsilon-insensitive loss 

function is defined by: 

))(,0max()(),,( εε −−=−= xfyxfyfyxL                    (11) 

The sum of the linear epsilon-insensitive losses must be minimized:  

∑
=

+
N

i
ii

T fyxLCww
1

),,(
2
1 ε

                                  (12) 

which is equivalent to a constrained minimization problem having the form:  

∑∑
=

∗
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i
i
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T CCww
112

1 ζζ
,                          (13) 

subject to the following constraints: 

∗+≤−+ iii
T ybxw ζεφ )(  

iii
T

i bxwy ζεφ +≤−− )(  

Niii ,...,1,0, =≥∗ζζ                                      (14) 

where )(xφ  is called the kernel function. It may have the forms of linear, polynomial, Gaussian, 

RBF and sigmoid functions. The RBF is by far the most popular choice of kernel type used in 

SVMs. This is mainly because of their localized and finite responses across the entire range of 

the real x-axis. This optimization problem can be solved by using quadratic programming 

techniques. 

 

 



 17

Existing research in Multi-surrogate Assisted EA: 

For some real world applications, special approximation methods have been used. For example, 

a one dimensional approximation of the Kubelka Munk model is used to replace the expensive 

Monte Carlo method in an EA for analyzing colon tissue structure [50]. In [52], a classifier with 

confidence information is evolved to replace time consuming evaluations during tournament 

selection. 

In some applications, several approximate methods have been combined to construct a type of 

fitness approximation model known as a Multi-surrogate. In [13, 28] the MLPNN model was 

combined with clustering methods for constructing approximate models (shown in Fig. 2.5). Fig. 

2.6 shows another strategy using clustering techniques and polynomial models together [4]. A 

trained RBF model was used to generate sample points for the construction of polynomial 

models for fitness approximation in [34]. In [23, 46], the Kriging method was used to construct a 

global approximate model for pre-selection. Then RBF models were built using those 

pre-selected sample points for further fitness approximation. Fig. 2.7 shows the structure of this 

model. Multiple approximate models formed in a hierarchical structure have been used to assist 

the fitness evaluations in [47]. In [65, 66], multiple local approximate models are built for each 

individual, then these local models are aggregated by an average or weighted average of all 

approximate models. In [67, 68], multiple surrogates are built, then the best surrogate is used [63] 

or the weighted sum of all surrogates is used, where the weights associated with each surrogate 

are determined based on the errors of the surrogate [64]. Fig. 2.8 shows this model in detail.  

Multi-surrogates are also used for multi-objective optimization problems. In [69], a NSGA-II 

algorithm multi-objective EA using PM and RBF surrogates together is presented. A local 
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surrogate-assisted evolution strategy using KNN and RBF models is introduced in [59]. For each 

new offspring in this strategy, a cubic RBF surrogate is built using the k-nearest previously 

evaluated points. This local RBF surrogate is then used to estimate the new offspring’s fitness. 

Fig. 2.9 shows the model structure used in [59]. In [70], Polynomial Models are used to estimate 

the coefficients of the fitness surrogate. Thus the surrogate is made adaptive to characteristics of 

the specific optimization problems. 

 

 

Fig. 2.5 A multiple surrogate structure used in [13, 28] 

Cluster 1 Cluster 2 Cluster N 

Fit a MLPNN or RBF 

All cluster centers

The whole population 
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Fig. 2.6 A multiple surrogate structure used in [4] 

 

 

Fig. 2.7 A multiple surrogate structure used in [23, 46] 
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Fig. 2.8 A multiple surrogate structure used in [65] 

 

 

Fig. 2.9 A multiple surrogate structure used in [59] 

 

 

New offspring 

Use KNN methods to get sample points 

Build a cubic RBF model upon these sample points to evaluate the new offspring 

For each individual 

Model 1 

Perform local search by using an aggregate model created from above N models 

Model 2 Model N 



 21

Surrogate Incorporation Mechanisms: 

There are two categories of surrogate incorporation mechanisms in EAs, as shown in Fig. 

2.10. In one category the original fitness is directly replaced by the estimated fitness when the 

individual is evaluated throughout the optimization. Only a few individuals have their exact 

fitness calculated for control purposes. In the other category, the original fitness is kept for each 

individual and the approximate fitness is not used to directly replace the original fitness. These 

two methods are reviewed next. 

 

1. Direct Fitness Replacement 

Direct fitness replacement is straightforward. Individuals are evaluated by surrogates and 

then the estimated fitness is assigned to each individual. During the course of the EA process, the 

approximate fitness assumes the role of the original fitness. This method has been used in 

numerous research efforts [5, 11, 12, 13, 14, 21, 22, 23, 25, 26, 28, 29, 30, 31, 32, 34, 37, 41, 42, 

43, 46, 52]. The obvious drawback is that the inaccuracy of the approximate fitness may lead the 

EA to inferior local optima. Consequently, the direct fitness replacement method needs a 

continuous calibration process called Evolution Control. Even with Evolution Control, 

convergence to true optima cannot be guaranteed. 

For direct fitness replacement methods the management of fitness approximation is 

necessary to drive the EA to converge to global optima with the cost reduced as much as possible. 

There are several ways to conduct the model management, as shown in Fig. 2.11. 
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Fig. 2.10 Surrogate Incorporation Mechanisms 

 

 

Fig. 2.11 Management of fitness approximation 
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Evolution Control uses surrogates together with original fitness functions in an EA process 

where the original fitness functions are used to evaluate some/all individuals in some/all 

generations. There are two categories of Evolution Control methods: fixed Evolution Control 

(including generation-based control and individual-based control) and adaptive Evolution 

Control. A detailed description of Evolution Control can be found in [6]. There are two ways to 

conduct the Evolution Control. 

 

 Offline model training 

Offline model training constructs surrogates based on human evaluation or previous 

optimization history data. In this case, either the approximate model is of high fidelity or the 

original fitness cannot be easily evaluated during an EA process, so the original fitness is never 

used. An example of this method can be found in [55]. 

 

 Online model updating 

Fitness approximation may be constructed at an early stage of the EA process. Because of 

the limited sample points, a surrogate may concentrate on the region spanned by the existing 

sample points and not cover the rest of search space well. As the EA continues and new 

individuals enter into the population, the accuracy of the previously built surrogate model will 

decrease. Thus the surrogate model needs to be reformed using the old sample points together 

with the new sample points. This technique is known as online surrogate updating. There has 

been considerable research with this method [2, 4, 5, 12, 15, 22, 25, 26, 29, 31, 38, 43, 44, 46]. 



 24

2. Indirect Surrogate Method 

The indirect surrogate method computes the exact fitness for each individual during an EA 

process and the approximate fitness is used in other ways. For example, approximate fitness can 

be used for population pre-selection. In this method, instead of generating a random initial 

population, an individual for the initial population can be generated by selecting the best 

individual from a number of uniformly distributed random individuals in the design space 

according to the approximate fitness [4, 38, 44].  

Approximate fitness can also be used for crossover or mutation in a similar manner, through 

a technique known as Informed Operators [4, 12, 38, 44]. Under this approach, the approximate 

models are used to evaluate candidates only during the crossover and/or mutation process. After 

the crossover and/or mutation process, the exact fitness is still computed for the newly created 

candidate solutions. Using the approximate fitness indirectly in the form of Informed Operators – 

rather than direct evaluation - is expected to keep the optimization moving toward the true global 

optima and to reduce the risk of convergence to suboptimal solutions because each individual in 

the population is still assigned its exact fitness [44]. On the other side, the direct fitness 

replacement methods need a correction process often called evolution control, and even then 

convergence to the true global optima still cannot be guaranteed. Experimental results have 

shown that a surrogate-assisted informed operator-based multi objective GA can outperform 

state-of-art multi objective GAs for several benchmark problems [4]. Informed Operators also 

make it easy to use surrogates adaptively, as the number of candidates can be adaptively 

determined. 
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3. Hierarchical Surrogates and Model Migration 

The hierarchical surrogates method builds multiple models with a hierarchical structure 

during the course of an EA process [46, 56]. In [46], a Gaussian process model is built for the 

so-called global model. A user-specified percentage of the best individuals according to the 

global model are selected to form a local search space. Then Lamarckian evolution is performed 

involving a trust region-enabled gradient-based search strategy that employs RBF local 

approximate models to accelerate convergence in the local search space. In [56] the whole 

population is divided into several sub-populations. Each sub-population constructs its own 

surrogate with different accuracy. At a certain interval, the individuals in the different 

sub-populations can migrate into other sub-populations. This is called an island model. To gain a 

balance between the model performance and the population diversity, the selection of migration 

size and migration interval is important. It has been found that the migration interval plays a 

more dominant role than migration size [57].  

Existing research into surrogate incorporation mechanisms and fitness management has been 

surveyed. So far none of these methods have used an adaptive strategy to incorporate surrogates 

into an EA process, and very few have used an adaptive technique for model construction or 

management. 

 

Comparative Study for Fitness Approximate Methods: 

Many approximation methods have been introduced for special problem domains. Even 

though these methods are claimed to save many function evaluations and to be nearly as good as 

the original fitness function, they are bound to their special domains, and thus no comparative 
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studies have been conducted on them. On the other hand, the performance of many 

general-purpose approximation methods has been compared in early papers, especially for 

popular methods such as statistical learning methods. 

The neural network model and the polynomial model were compared in [41]. The study 

concluded that the performance of the two types of approximation was comparable in terms of 

the number of function evaluations required to build the approximations and the number of 

undetermined parameters associated with the approximations. However, the polynomial model 

had a much lower construction cost. In [38], a quadratic polynomial model was found to be the 

best method among the polynomial model, RBF network, and the Quickprop neural network 

when the models were built for regions created by clustering techniques. The authors were in 

favor of the polynomial model because they found that it formed approximations more than an 

order of magnitude faster than the other methods and did not require any tuning of parameters. 

The authors also pointed out that the polynomial approximation was in a mathematical form 

which could be algebraically analyzed and manipulated, as opposed to the black-box results that 

neural networks give. 

The Kriging model and the neural network model were compared using benchmark problems 

in [42]. However, no clear conclusion was drawn about which model is better. Instead, the author 

showed that optimization with a meta-model could lead to degraded performance. Another 

comparison was presented in [40] between the polynomial model and the Kriging model. By 

testing these two models on a real-world engineering design problem, the author found that the 

polynomial and Kriging approximations yielded comparable results with minimal difference in 

predictive capability. Comparisons between several approximate models were presented in [39], 
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which compared the performance of the polynomial model, the multivariate adaptive splines, the 

RBF model, and the Kriging model using fourteen test problems with different scales and 

nonlinearities. Their conclusion was that the polynomial model is the best for low-order 

nonlinear problems, and the RBF model is the best for dealing with high-order nonlinear 

problems (details shown in Table 2.1). 

 

 Low-order Nonlinearity High-order 

Nonlinearity 

Small Scale Polynomial RBF 

Large Scale Kriging RBF 

Overall Polynomial RBF 

Table 2.1 Summary of best methods in [39] 

 

In [65], four types of approximate models – Gaussian Process (Kriging), RBF, Polynomial 

model and Extreme Learning Machine Neural Network (ELMNN) – were compared on artificial 

unconstrained benchmark domains. Polynomial Models (PM) were found to be the best for final 

solution quality and RBF was found to be the best when considering correlation coefficients 

between the exact fitness and estimate fitness. Table 2.2 shows the performance ranks of these 

four models in terms of the quality of the final solution. 
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Rank of Search Performance Benchmark Domains 

Kriging PM RBF ELMNN 

Ackley 2 1 4 3 

Griewank 3 1 2 4 

Rosenbrock 1 3 2 4 

Step 3 1 2 4 

Table 2.2 Final quality measures for Kriging, PM. RBF and ELMNN models in [65] 

 

So far different approximate models have been compared based on their performance, but 

the word performance itself has not been clearly defined. This is because the definition of 

performance may depend on the problem to be addressed, and multiple criteria need to be 

considered. Model accuracy is probably the most important criterion, since approximate models 

with a low accuracy may lead the optimization process to local optima. Model accuracy also 

should be based on new sample points instead of the training data set points. The reason for this 

is that for some models such as the neural network, overfitting is a common problem. In the case 

of overfitting, the model works very well on training data, yielding good model accuracy, but 

may perform poorly on new sample points. The optimization process could easily go in the 

wrong direction if it is assisted by a model suffering from overfitting. There are other important 

criteria to be considered, including robustness, efficiency, and time spent on model construction 

and updating. A fair comparison would consider the model accuracy as well as all of these 

criteria. 
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It is difficult to draw a clear conclusion on which model is the best for the reasons stated 

above, though the polynomial model seems to be the best choice for a local model when dealing 

with local regions or clusters and enough sample points are available [38]. In such cases, the 

fitting problem usually has low-order nonlinearity and the polynomial model is the best 

candidate according to [39]. The polynomial model is also believed to perform the best for 

problems with noise [39]. As for high-order nonlinear problems the RBF model is believed to be 

the best and it is the least sensitive to the sample size and has the most robustness [39]. So the 

RBF model is a good choice for a global model with or without plenty of samples. 

The SVM model belongs to the class of kernel methods and is a very powerful model fitting 

tool. Because of the beneficial features of SVM (see above), the SVM model becomes a very 

good choice for constructing the global model, especially when the problem has a high 

dimensionality, many local optima, and a large amount of sample points. 
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Chapter 3 

The Proposed Method - ASAGA 

 

A General View of ASAGA: 

ASAGA‘s backbone consists of GADO, a GA that was designed with the goal of being 

suitable for use in engineering design. It uses new operators and search control strategies that 

target the domains that typically arise in such applications. GADO has been applied in a variety 

of optimization tasks that span many fields [1, 58]. It has demonstrated a great deal of robustness 

and efficiency relative to competing methods. 

In ASAGA, each individual in the GA population represents a parametric description of an 

artifact, such as an aircraft or missile. All parameters take on values in known continuous ranges. 

The fitness of each individual is based on the sum of a proper measure of merit computed by a 

simulator or analysis code, and a penalty function if relevant. The penalty function consists of an 

adaptive penalty coefficient multiplied by the sum of all constraint violations (if any). A steady 

state GA model is used, in which operators are applied to two parents selected from the elements 

of the population via a rank-based selection scheme, one offspring point is produced, and then an 

existing point in the population is replaced by the newly generated point via a crowding 

replacement strategy.  Floating point representation is used.  Several crossover and mutation 

operators are used, most of which were designed specifically for the target domain type.  

ASAGA has a surrogate assistance component which forms approximate models and uses them 

for speedup through informed genetic operators. These operators are described briefly here and 
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in more detail in [44]. The main idea is to make genetic operators such as mutation and crossover 

more informed by using approximate models. Whenever a random choice is made, for example 

when a point is mutated, instead of generating just one random mutation we generate several, 

rank them using the approximate model, then take the best to be the result of the mutation. The 

Informed Operators in ASAGA are used in the following operations: 

 Informed initialization: Approximate fitness is used for population pre-selection. Instead of 

generating a random initial population, an individual for the initial population can be 

generated by selecting the best individuals from a number of uniformly distributed random 

individuals in the design space according to the approximate fitness. 

 Informed mutation: To perform informed mutation, several random mutations of the base 

point are generated. Each random mutation is generated according to the regular method 

used in ASAGA by randomly choosing from among several different mutation operators and 

then randomly selecting the proper parameters for the mutation method. The mutation with 

the best approximate fitness value is returned as the result. 

 Informed crossover: In crossover, two parents are selected at random according to the usual 

selection strategy. These two parents are not changed in the course of the informed crossover 

operation. Several crossovers are conducted by randomly selecting a crossover method, 

randomly selecting its internal parameters and applying it to the two parents to generate a 

potential child. The internal parameters depend on the crossover method selected; for 

example, to perform point crossover the cut-and-paste point has to be selected. The surrogate 

is used to evaluate every potential child, and the best child is selected as the outcome of the 

informed crossover. 
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 Informed guided-crossover: Guided crossover [49] is used in ASAGA to replace some of the 

regular crossover-mutation operations in order to improve convergence towards the end of 

the optimization. Guided crossover does not involve mutation, so we treat it differently. 

Informed guided crossover works as follows: 

 Several candidates are selected at random using the usual selection strategy of ASAGA 

to be the first parent (P1) for a guided crossover. 

 The second parent is selected from the population in a different way: for each point X in 

the population other than P1, a quantity Mutual_fitness(X, P1) is computed, where 

2

2
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=
. A choice for X that maximizes 

Mutual_fitness(X, P1) is taken to be the second parent (49). Several random points are 

generated from the guided crossover of the two parents and ranked using the surrogate. 

 The best of the random points generated is taken to be the result of the guided crossover. 

ASAGA adds many features to existing GADO and make it even more powerful. These features 

include: 

 Adaptive surrogate selection 

 Adaptive clustering technique 

 Adaptive surrogate usage with informed operators 

 Stochastic constraints handling 

The rest of this chapter includes more details about these features. 

 

 



 33

Adaptive Surrogate Selection: 

ASAGA utilizes both a global and local model structure. It fits one global approximate 

model for all the points evaluated so far during the course of the optimization and many local 

models for different regions (clusters). ASAGA first attempts to use the local model. However, if 

an individual belongs to a cluster for which no local model exists (e.g., when a new cluster is 

formed and does not have enough sample points to form a local model), this individual will be 

evaluated by the global model. One advantage of this structure is that local models can achieve a 

better fit because the approximate model will be defined over a smaller, less complex search 

region. Thus more local details can appear in successive approximations. On the other hand, the 

global model takes into account more global information and may prevent the search from falling 

into local optima. Ideally all the points previously evaluated in the course of the optimization 

should be used to construct the approximations. However, if the number of iterations is very 

large or if runtime needs to be reduced, a large reservoir (the default size is 2000) of evaluated 

points can be used to construct the approximate models. When the reservoir is full, each newly 

evaluated point is added by replacing an old point selected randomly. ASAGA’s global model 

and local models are formed based on the points in the reservoir. A beneficial feature of ASAGA 

is that all current individuals retain exact fitness values and approximate models are used for 

Informed Operators and initialization, never directly replacing the original fitness values. This 

prevents the search process from converging to false optima. 

Based on the discussion in Chapter 2, we know that the polynomial model is a good 

candidate for low-order nonlinearity problems; thus it becomes a good choice for the local 

approximate models. Because of the beneficial features of SVM (described above), it is generally 
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considered to be a good choice for a global optimization model. In ASAGA, the SVM model is 

implemented using the lightSVM  package. Implementation details about lightSVM  can be found 

in [53, 54]. 

ASAGA provides an adaptive mechanism to switch between different approximate models. 

Here the switching is one-way, upgrading from lower to higher complexity only. The Global 

model upgrade path and the local model upgrade path are shown in Fig. 3.1 and Fig. 3.2 

respectively. 

The upgrade is triggered by a threshold. A formula calculates a value taking into account the 

model accuracy and the time spent at the approximation phase. If this value is less than a certain 

threshold, an upgrade occurs. The formula to determine the threshold is:  

)/1( 21 TTRv +×=                                                            (15) 

where R is the correlation coefficient between the exact fitness and the approximate fitness, 

1T is the time spent at the surrogate phase which includes the time spent in forming surrogates 

and the time spent in using surrogates, and 2T  is the total running time. 1T  and 2T are recorded 

during the program’s run. 

 

Fig. 3.1 Approximate model upgrading path for global models 
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Fig. 3.2 Approximate model upgrading path for local models 

 

The reason the correlation coefficient is used to measure the model accuracy is because of 

the way ASAGA utilizes approximate models. In ASAGA, Informed Operators (described above) 

are used as the approximate model incorporation mechanism. Because of the way Informed 

Operators work, the absolute difference between the approximate fitness and exact fitness is not 

important; the correlation between them is what matters for informed initialization, crossover 

and mutation. The correlation coefficient equation is given by: 
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where x is a vector of all exact fitness values for the sample points and y is the corresponding 

estimated fitness values given by an approximate model. The resulting value R is between -1 and 

Population Average and KNN 

Linear Polynomial Model 

Quadratic Polynomial Model 
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+1. In our proposed algorithm, the R is usually between 0.5 and 1 for fitness models and between 

0 and 1 for violation models, since approximate models fit very well. 

According to the formula (15), 21 / TT is between 0 and 1 but never reaches 1. As a result, 

the formula (15) output is usually between 0.5 and 1.5 for fitness models and is between 0 and 

1.5 for violation models. A good threshold can achieve a balance between optimization time and 

performance, using the least optimization time without hurting the final performance. In order to 

choose a good threshold we ran a set of experiments with different thresholds. For this purpose, 

we use a 5 dimension Ackley’s function as the following: 
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The average best fitness for 30 runs with different random starting populations is reported 

with the corresponding number of function evaluations in Table 3.1. From the table we can see 

that all threshold settings except for 0.2 have very little difference, and that the threshold 0.9 

yields the best final value. It was further found that any threshold larger than 0.95 performs 

similarly to 0.95 and any threshold smaller than 0.65 performs worse than 0.65. Table 3.1 shows 

the statistics analysis which demonstrates that a small threshold 0.2 has worst performance, 

whereas other values have no statistically significant difference. Two T-tests are conducted to 

compare the performance with different thresholds. A T-test value less than 0.05 suggests a 

statistically significant difference between two objects. Table 3.2 shows an experiment in a 20 

dimension Griewank’s function domain with 6000 fitness function evaluations. Griewank’s 
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function definition is as follows: 
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It shows no significant difference between threshold values of 0.9 and 1.6, while the small 

threshold value of 0.2 performs much worse. Fig. 3.3 shows the best fitness found so far with the 

fitness function evaluations. Consequently, we believe that the threshold setting does not affect 

the final performance much as long as the threshold is within a reasonable range, whereas overly 

small threshold values will result in ASAGA retaining simple surrogate levels and damaging the 

optimization. Thus in ASAGA the threshold is set to 0.9 for objective function models. 

 

Following the same process, the threshold was set to 0.5 for the constraint violation function 

models in all experiments. Fig. 3.4 shows performance for three threshold values. The figure 

shows that a threshold of 0.5 yields the best result, while threshold settings 0.3 and 0.7 have little 

difference, showing that a threshold setting of 0.5 is within a reasonable range. Fig. 9 shows the 

performance of the three threshold settings.  Table 3.3 shows the statistics analysis of this 

experiment.  The test function used in this experiment is introduced in Chapter 4 and the 

violation function is explained later in this chapter. 
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Threshold Mean ( 310 −× ) SD ( 310 −× ) 

0.95 5.223 3.162 

0.9 4.938 3.878 

0.85 6.051 4.153 

0.8 5.874 3.289 

0.75 6.124 3.689 

0.7 5.548 2.901 

0.65 5.858 3.665 

0.2 13.161 10.631 

T-test (0.9, 0.75) 0.1149 

T-test (0.9, 0.2) 0.0001 

Table 3.1 Statistical analysis of pre-threshold selection for objective function tested by a 5D 

Ackley function, where SD stands for Standard Deviation. 

 

Threshold Mean SD 

1.6 0.1667 0.0584 

0.9 0.1579 0.0480 

0.2 0.5253 0.2856 

T-test (0.9, 0.2) 0.0000 

T-test (0.9, 1.6) 0.2634 

Table 3.2 Statistical analysis of pre-threshold selection for objective function tested by a 20D 

Griewank function 
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Fig. 3.3 ASAGA performances with different thresholds tested by a 5D Ackley’s function 
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Fig. 3.4 ASAGA performance with different thresholds for constraint violations tested by the 

Sandgren’s number 13 domain 
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Threshold Mean SD 

0.7 26.789 0.0102 

0.5 26.786 0.0107 

0.3 26.789 0.0124 

T-test (0.5, 0.3) 0.1602 

 

Table 3.3 Statistical analysis of pre-threshold selection for violation function tested by 

Sandgren’s domain number 13 

 

A model update is triggered if the v value in formula (15) is smaller than the pre-set 

threshold. In addition, the objective function threshold value of 0.9 suggests that as long as a 

surrogate has an R value equal to or greater than 0.9, ASAGA will always keep the surrogate in 

the current level, which is meaningful. ASAGA also provides a way for user to modify the 

threshold. If a user doesn’t care about the surrogate phase time (for example, when the user is 

dealing with difficult optimization problems), the user can set a large threshold (if the user sets 

the threshold to 2 or larger, ASAGA will always go to the final models for both global and local 

models), which will make the surrogates evolve to higher levels faster. The downside is that a 

large threshold will lead to unnecessarily long optimization time in some cases. 
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Adaptive Clustering Technique: 

Since clusters are introduced in ASAGA, determining the number of clusters becomes a 

critical issue. Dividing the optimization trace (i.e. all the points evaluated using the actual fitness 

function so far) into too many clusters may lead to failure of the local model to fit because a lack 

of sample points may restrict us to a model that does not capture the local space information well. 

ASAGA uses least-squares approximation to develop polynomial models for the local model 

construction. In addition, a lack of sample points may result in a singularity problem. On the 

other hand, a model with too few clusters loses the benefit of the global and local model system. 

Large clusters are still complex and difficult to fit with any approximate model. 

To solve this problem, ASAGA uses an adaptive clustering technique to adjust the number 

of clusters during the optimization. After the number of sample points reaches twice the 

population size, the first two clusters are created by splitting the current sample points into two 

clusters via the K-means algorithm. Then it is periodically determined whether the number of 

clusters needs to be increased based on two factors. The first factor is the requirements of fitting 

a polynomial model. The minimal number of sample points needed for fitting a linear 

polynomial model is (n+1); it is (n+1)(n+2)/2 for fitting a quadratic polynomial model. In 

practice, more sample points than these minimal numbers are needed to avoid the singularity 

problem. In ASAGA 1.5 times the minimal numbers are applied. To be eligible for splitting, a 

cluster should have 3.5 times the minimal required number of sample points to ensure that the 

resulting sub-clusters still have enough points to fit models. The second factor is the correlation 

coefficient R introduced in formula (16) above.  

The number of clusters is increased when a cluster satisfies two conditions:  
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1. The cluster has 3.5 times more sample points than the minimal requirement for its next 

level model. 

2. The R of this cluster is lower than certain threshold. In ASAGA, this value is 0.9 for a 

fitness function and 0.5 for a violation function (in statistics, R=0.9 is considered a good 

correlation, while R=0.5 is considered a fairly good correlation). 

 

The reason for using the specific value of 3.5 is that we found it to be the minimal number for 

which the singularity problem does not occur. The splitting is recursively performed (i.e., the 

resulting sub-clusters can be further split) as long as they satisfy the two conditions. These two 

conditions are checked periodically at fixed intervals of actual fitness evaluations. The interval is 

usually set to equal the population size. 

 

Adaptive Surrogate Usage: 

ASAGA uses Informed Operators guided by approximate models in the same way as GADO, 

its ancestor, uses them. In informed mutation for example, a number of random mutations are 

generated as candidate children and ranked using the approximate model. The best mutation 

according to that ranking is then evaluated using the actual fitness function. However, GADO 

with surrogate assistance uses a fixed number of such random mutations. A fixed number is not 

suitable for all problems. If not enough mutations are performed, the model will not gain the full 

benefit of the usage of the approximate model, whereas too many mutations will greatly increase 

the computational cost for little or no additional gain. The same argument holds for informed 

crossover and initialization. ASAGA uses an adaptive number of candidate children based on a 
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formula considering the model accuracy and computational cost simultaneously. The formula is 

as follows: 

)
)/(

(
21 TTC

RRoundN
×

=
                                         (19) 

where N is the number of the potential children with a minimum of 1, R, T1 and T2 are defined 

in the same manner as in (15), and C is a small constant which was set to 0.2 based on 

experimental results. Fig. 3.5 shows ASAGA performances on Ackley’s function for different 

values of C. The curves have little difference but the line C=0.2 stays at the bottom most of the 

time and reaches the minimum value among all three lines at the end. Like we chose the 

threshold value in the previous section, the user can adjust this parameter value. Table 3.4 shows 

that a statistically significant difference does not exist among different values of C when C is 

within a reasonable range. If the user doesn’t care about surrogate phase time (e.g., when the user 

deals with difficult optimization problems), the user can always set a small C value (in practice, 

C=0.02 is a small enough value to let ASAGA generate more than 20 offspring from two parents, 

though this requires more computational time). Table 3.5 shows a further experiment on a higher 

dimension Griewank’s function, where we can see that C=0.2 has no statistical difference from 

C=0.02, whereas C=2 has much worse performance. Fig. 3.6 shows optimization trends. We 

keep a C value of 0.2 in ASAGA for the following experiments in this paper. 
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Parameter C Mean ( 310 −× ) Standard Deviation ( 310 −× ) 

0.3 5.602 3.636 

0.2 4.938 3.878 

0.1 6.197 3.781 

T-test between 0.2 and 0.1 0.1040 

Table 3.4 Statistical analysis of parameter C selection tested by a 5D Ackley’s function 

 

 

Parameter C Mean Standard Deviation 

0.2 0.1579 0.0480 

0.02 0.1384 0.0510 

2 0.2101 0.0735 

T-test between 0.2 and 0.02 0.1327 

T-test between 0.2 and 2 0.0021 

Table 3.5 Statistical analysis of parameter C selection tested by a 20D Griewank’s function 
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Fig. 3.5 ASAGA performance with different parameter C tested by a 5D Ackley’s function 
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Fig. 3.6 ASAGA performance with different parameter C tested by a 20D Griewank’s 

function 

 

Stochastic Constraint Handling: 

ASAGA inherits the penalty function method used in GADO to deal with constraints. In 

GADO, the fitness is the sum of the objective function value and a penalty coefficient multiplied 

by the violation function [1]. The violation function is determined by the sum of the violations of 
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all violated constraints. The penalty coefficient is adaptively changed according to the feasible 

points found so far. ASAGA makes a further improvement on this penalty function method by 

making this fitness assignment stochastic. ASAGA randomly decides, with a small probability, 

to switch from the normal method above to a method in which only the objective function value 

or only the violation function value is considered instead of both. When it chooses to switch, it 

then checks whether any feasible points have been found. If so, the objective function alone is 

considered in the fitness, placing more pressure on objective improvement. On the other hand, if 

feasible points have not been found, ASAGA uses only the violation function as fitness, placing 

more pressure on finding feasible points. 
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Chapter 4 

Experimental Support 

 

Benchmark Unconstrained Functions: 

 In this section ASAGA is compared with three surrogate-assisted EA methods published in 

[43], [46], and [59]. In this section, for every experiment the population size was set to its default 

value of 2.5 times the problem dimension (the population size can be increased by the user 

according to problem difficulty). The EA used in [43] is assisted by a one-type fixed surrogate 

whereas global and local model structure is used in [46]. In [59], local models are used to help 

the optimization. These are all state-of-the-art methods with demonstrated strength in several 

benchmark domains and/or real-world applications. However, their surrogates are fixed and no 

adaptive modeling or usage techniques have been applied in them. We used these methods for 

comparison because, as we mentioned earlier, no adaptive surrogate-assisted methods were 

found in literature. 

 

1. Comparison with a Regression Model Assisted EA 

In [43], both interpolation and regression models have been used to estimate the fitness. 

Only a part of the population is evaluated with the exact fitness function and the remaining 

individuals are evaluated with the approximate models. Experiments show that both approximate 

models speed up population convergence. The empirical results in [43] showed a slight 

performance advantage for the regression method. ASAGA is compared here with the better 

method which is the regression EA. Ackley’s function and Fletcher-Powell’s  function have 
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been used as benchmark domains in [43] with 5-dimensions and 2000 true fitness function 

evaluations. ASAGA is tested in the same benchmark domains and under exactly the same 

conditions.  The Ackley function is defined in Equation (17) above and the Fletcher-Powell 

function definitions are as follows. 

∑
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                                      (20) 

 

The Ackley’s function corresponds to a simple function overlaid with high frequency noise 

and it reaches its global minimum of zero when all xi are equal to zero. The Fletcher-Powell 

function is smoother, but not symmetric and has randomly distributed zero minima when every xj 

equals αj . 

In the experiment, ASAGA ran 30 times using random starting populations. The fitness of 

the best individual according to the exact fitness function was recorded at certain function 

evaluations for each run. The average best fitness values of the 30 runs with corresponding 
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number of actual fitness evaluations are shown. The data for the regression EA were provided to 

us through the courtesy of the authors of [43]. 

Figure 4.1 and 4.2 show ASAGA and the regression EA running in the two benchmark 

domains, respectively. ASAGA global model goes to the SVM model for the Ackley’s function 

and stays at quadratic PM for the Fletcher-Powell function. ASAGA local models go to the 

quadratic PM for both functions. In the Ackley domain we can see that ASAGA performs 

slightly better than the Regression EA at the early stages and obviously outperforms the 

Regression EA from the middle stage to the end. In the Fletcher-Powell domain, ASAGA 

performs much better throughout all stages of the optimization. 

 

2. Comparison with a Global and Local Model Assisted GA: SAGA-GLS 

SAGA-GLS is introduced in [46]. It is a surrogate-assisted evolutionary optimization 

framework which combines both global and local surrogate models for solving computationally 

expensive problems. The first level of the optimization framework involves a strategy that 

employs a Data Parallel Gaussian Process (DPGP) surrogate model to identify the promising 

individuals in the EA population. The DPGP approach was devised to reduce the high 

computational costs associated with Gaussian Process modeling. Subsequently, the promising 

individuals undergo Lamarckian learning based on a trust-region enabled gradient-based search 

strategy that accelerates local search using computationally cheap RBF surrogate models. 

Lamarckian learning forces the genotype to reflect the results of improvement by replacing the 

locally improved individual back into the population to compete for reproductive opportunities. 

Numerical results suggest that SAGA-GLS converges to good designs on a limited 
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computational budget with significant savings in computational cost compared to traditional 

evolutionary algorithms and other surrogate-assisted optimization frameworks [46]. 
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Fig. 4.1 Comparison of ASAGA and Regression EA for a 5D Ackley’s function with 2000 

function evaluations 
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Fig. 4.2 Comparison of ASAGA and Regression EA for a 5D Fletcher-Powell’s function 

with 2000 function evaluations 

 

In this work ASAGA is compared to SAGA-GLS in five function domains: Ackley’s, 

Griewank’s, Rastrigin’s, Rosenbrock’s and Sphere functions – the benchmark domains used in 

[46]. ASAGA is tested with the number of true fitness function evaluations set to 6000 and all 

the dimensions set to 20, again exactly the same as in [46]. In this experiment, ASAGA ran 30 
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times and the average fitness was reported as described previously in the previous section. The 

data for SAGA-GLS were provided to us through the courtesy of the authors of [46]. The 

Ackley’s function is defined the same as in Formula (17) except that the range of the design 

variable x is [-32.678, 32.678]. The Griewank’s function is defined the same as in Formula (18). 

The other three benchmark functions are defined as formula (21) through (23). 

For Griewank’s, Rastrigin’s and Sphere functions, the global minimum of zero is reached 

when each xi equals zero. For Rosenbrock’s function, the global minimum of zero is reached 

when each xi equals one. The ASAGA global model progresses to the final SVM model for 

Ackley, Griewank and Rastrigin’s functions, but stays at quadric PM in Rosenbrock and Sphere 

function domains. ASAGA local models go to the final quadratic PM for all test functions. 

Figures 4.3 through 4.7 show the comparison between the ASAGA and SAGA-GLS. 

According to these figures, we can see that ASAGA performs better than SAGA-GLS in 

Griewank’s and Rosenbrock’s function domains in all optimization stages except for  early 

periods in which it is slightly worse. In Rastrigin’s and Sphere function domains, ASAGA 

performs worse in most stages but outperforms SAGA-GLS at the end. However, in Ackley’s 

function domain, SAGA-GLS beats ASAGA in all stages except at the beginning. In most of 

these tests, ASAGA performs worse at the early stages. The reasons are that ASAGA always 

uses simple surrogates during the early stages of a run and that ASAGA needs enough sample 

points before it can form large clusters with good approximations. At later stages, when enough 

clusters are constructed, ASAGA performs much better in terms of convergence speed and the 

ability to find the global optima. Thus we can conclude that ASAGA’s performance is very 

competitive with SAGA-GLS in these benchmark function domains with better average final 
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performance in four out of five of them. In the following section, ASAGA will be further 

compared to an ESRBF algorithm [59] in Ackley’s and Rastrigin’s function domains, which 

happen to be the weak part of ASAGA’s performance compared to SAGA-GLS. 
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Fig. 4.3 Comparison on a 20D Ackley’s function domain 
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Fig. 4.4 Comparison on a 20D Griewank’s function 

 

The Griewank’s function is defined as the same as in formula (18). 
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Fig. 4.5 Comparison on a 20D Rastrigin’s function 

 

The Rastrigin’s function is defined as follow: 
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Fig. 4.6 Comparison on a 20D Rosenbrock’s function 

 

The Rosenbrock’s function is defined as follow: 
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Fig. 4.7 Comparison on a 20D Sphere function 

 

The Sphere’s function is defined as follow: 
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3. Comparison with a Local Model Assisted EA: ESRBF 

A local surrogate-assisted evolution strategy (ESRBF) is introduced in [59]. In this method, 

for a new offspring, a cubic RBF surrogate is built using the k-nearest previously evaluated 

points, where 2/)2)(1( ++= ddk and d is the dimension of the problem. Then, this local RBF 

surrogate is used to estimate the new offspring’s fitness. In addition, a symmetric Latin 

hypercube design (SLHD) is used to determine the initial points for function evaluation. In [59], 

experimental results showed that ESRBF was significantly better than conventional evolution 

strategies (ES), ES with SLHD and quadratic model assisted ES (ESQR) in a real world domain 

and two benchmark domains. The author pointed out that only ESRBF always succeeded in 

improving the performance of the ES and was superior to ESQR on all test functions. In this 

study, we therefore compare ASAGA with ESRBF in Ackley’s and Rastrigin’s functions, which 

were used as the test functions in [59]. The definition of these two functions in [59] was slightly 

different from what we used in section 4.1.2. They were defined as follows. 
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Notice that the only difference is that the constant part is taken out in formula (24) and (25). 

By this definition, Ackley’s function has a global minimum of -20-e and Rastrigin’s function has 

a global minimum value equal to the negative of the problem dimension. ASAGA was tested on 

a 10 dimensional version on these two functions and the total evaluations were set to 2000, 

which are the same values used in [59]. ASAGA ran 100 times with random starting populations 

and we reported average best fitness for different stages, exactly the same as in [59].  The data 

for ESRBF were provided to us through the courtesy of the authors of [59]. Figures 4.8 and 4.9 

show the performance traces of ASAGA and ESRBF. These figures show that ASAGA 

outperforms ESRBF in all optimization stages except the beginning of optimization for Ackley’s 

function. 

 

4. Comparison with Gaussian Process Assisted Evolution Strategies: 

A Gaussian Process pre-selection Evolution Strategy (ES) is introduced in [24]. In this ES 

method more than λ offspring are generated from previous generation, then the Gaussian Process 

model is used to pre-select λ offspring. Only these λ offspring are evaluated by the exact fitness 

function. The author introduced two selection criteria, Mean of Model Prediction (MMP) and 

Probability of Improvement (POI). The MMP criterion selects based on the mean of the 

predictions. The POI improves on this by additionally considering the confidence intervals. The 

author showed that either MMP or POI method is better than the standard ES, and the POI 

method is even better than the traditional MMP method. In the following section, ASAGA is 

compared to the MMP and POI methods in three multimodal benchmark domains, which are 

used in [24]. The experimental setting is exactly the same as what presented in [24]. The figures 
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for MMP and POI were provided to us through the courtesy of the authors of [24]. 
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Fig. 4.8 Comparison on a 10D Ackley’s function 
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Fig. 4.9 Comparison on a 10D Rastrigin’s function 

 

Fig. 4.10 shows ASAGA, MMP (GP MAES) and POI performances on a 20 dimension Step 

function. We can see that ASAGA finds the global optima before 1000 fitness evaluations 

whereas POI finds the global optima after 2500 fitness evaluations. The Step function is defined 

as follows: 
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Fig. 4.10 Comparison on a 20D Step function 

 

Fig. 4.11 shows ASAGA, MMP (GP MAES) and POI performances on a 5 dimension 

Griewank’s function. It shows that ASAGA outperforms MMP, but performs a little bit worse 

than POI. Fig. 4.12 shows the three methods’ performances on a 20 dimension Ackley’s function. 

It can be seen that ASAGA outperforms MMP and POI in this domain. ASAGA reached a 

solution of less than 5 whereas the other two methods did not find any solution less than 5. 



 65

 

Fig. 4.11 Comparison on a 5D Griewank’s function, the Griewank’s function is defined 

previously as Formula (20), except that x ranges in [-100, 100] 

 

 

Fig. 4.12 Comparison on a 20D Ackley’s function, the Ackley’s function is defined 

previously as Formula (17), except that x ranges in [-32.768, 32.768] 
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Benchmark Constrained Functions and Engineering Design Domains: 

In this section, ASAGA is tested on benchmark functions with constraints and an 

engineering optimization problem. In section 4.2, for every experiment the population size was 

set to its default value of 10 times the problem dimension (For constrained functions ASAGA 

increases its default population size by a factor of 4 compared to the default for unconstrained 

functions). The first four test domains were introduced by Eric Sandgren in his Ph.D. thesis [48] 

in which he presented 30 engineering design optimization problems. These domains have since 

been used as benchmarks for engineering design optimization [71]. Sandgren’s domains number 

3, number 13, number 21, and number 22 are used to test ASAGA because they are most 

difficult ones among the 30 benchmark functions and these four functions all have inequity 

constraints. Readers can refer to Sandgren et al. [48] for details. The fifth experimental domain 

comes from a real engineering design problem called Welded Beam Design previously used as 

benchmark in several studies such as [45]. The Welded Beam Design problem is illustrated in 

Fig. 4.13. The goal for this design is to use the least material to sustain a certain weight. It has 

four design variables ),,,( btjhx = ; the definition of Welded Beam Design problem is 

given below. The known optimal solution is 2.38116 with h = 0.2444, l = 6.2187, t = 8.2915, and 

b = 0.2444. 

 

Minimize: 

)14(04811.010471.1)( 2 ltblhxf BeamWelded ++=−  

Subject to: 
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0)(13600 ≥− xτ , 0)(30000 ≥− xσ , 0≥− hb  

06000)( ≥−xPc , 0)(25.0 ≥− xδ  

10125.0 ≤≤ h , 10,,1.0 ≤≤ btl  

The terms )( xτ , )( xσ , )( xP c , and )( xδ are given below: 
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We compared ASAGA to three methods: GADO, GADO with surrogate assistance 

(GADO-R), and ASAGA without the SVM model (ASAGA-NSVM). GADO was used with no 

approximate model assistance. GADO-R is based on GADO, and also includes a global and local 

model structured by clustering techniques. It incorporates fixed approximation models which are 

quadratic polynomial models through Informed Operators [44, 58]. ASAGA-NSVM is similar to 

the proposed ASAGA except that its final global model stops at Polynomial and is never 

upgraded to the SVM model. All four methods ran 30 times with different random starting 

populations on each problem. The average best fitness values of the 30 runs with corresponding 
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number of actual fitness evaluations are shown. 

 

 

Fig. 4.13 Welded Beam Structure (Source: http://mikilab.doshisha.ac.jp) 

 

Figures 4.14 through 4.18 show the performance of these four methods. Notice that only 

feasible regions are shown. Thus, the search traces in these figures do not start from the 

beginning since a certain amount of time is needed to find feasible solutions. In Sandgren’s 

domain number 3, the ASAGA-NSVM and ASAGA have almost the same performance but both 
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outperform GADO-R and GADO. In Sandgren’s domains number 13, 21 and 22, ASAGA is 

obviously the winner among all four methods. Notice that the ASAGA-NSVM also outperforms 

the other two methods which have no adaptive fitness approximation or usage. In the Welded 

Beam design problem, ASAGA-NSVM performs the best, and ASAGA is slightly worse than 

the ASAGA-NSVM, though it performs much better than the other two methods. Based on these 

experiments we can draw a conclusion: the surrogate-assisted GA performs better than the GA 

with no surrogate assistance at all, but the adaptive surrogate-assisted GA outperforms the 

non-adaptive surrogate-assisted GA. 

 

Table 4.1 shows the statistical analysis and performance comparison of GADO-R which is a 

fixed surrogate-assisted GA and ASAGA which is an adaptive surrogate-assisted GA. A T-test is 

conducted in the five test domains. A T-test value less than 0.05 suggests a statistically 

significant difference between two objects. In this experiment, all five p-values are less than 0.05, 

and some are even less than 0.01, suggesting that ASAGA performs better than GADO-R with 

statistical significance. Also notice that ASAGA has smaller standard deviations in all domains, 

which suggests that ASAGA has more stable performance than GADO-R. ASAGA reached the 

global optima in almost every run in Sandgren’s domain number 3 and number 13, which results 

in very small standard deviations in these two domains. 
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Fig. 4.14 Sandgren function #3 with global optima -3.0666 
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Fig. 4.15 Sandgren function #13 with global optima 26.78 
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Fig. 4.16 Sandgren function #21 with global optima 97.5 
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Fig.4.17 Sandgren function #22 with global optima 174.7 
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Fig. 4.18 Welded Beam design with global optimum 2.38116 
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Benchmark Mean SD T-test 

GADO-R -3.0665 0.0002 

#3 ASAGA -3.0666 0.0001 0.0019 

GADO-R 26.83 0.0637 

#13 ASAGA 26.79 0.0107 0.0005 

GADO-R 135.42 22.72 

#21 ASAGA 124.11 17.02 0.0177 

GADO-R 188.64 13.33 

#22 ASAGA 182.74 8.19 0.0267 

GADO-R 2.4396 0.0439 

WB ASAGA 2.4139 0.0440 0.0019 

 

Table 4.1 Statistical analysis of GADO-R and ASAGA in constrained benchmark function 

domains 

 

 

 

 

 

 

 



 76

Chapter 5 

Parameter Tuning by Performance Analysis 

 

Adjusting population size in ASAGA: 

 Like other GAs, ASAGA’s performance depends on its parameter settings, which include 

population size, surrogate model settings, model build interval etc. However, finding a best 

setting for all kinds of problems is impossible, since any given parameter setting may work very 

well in certain problems but poorly in others. In this dissertation, ASAGA is tested with different 

benchmark functions using different population sizes, population size being the parameter which 

has the most impact on ASAGA’s performance. 

 

 First ASAGA was tested in unconstrained benchmark domains. In the experiment, ASAGA 

was run 30 times using random starting populations. The fitness of the best individual according 

to the exact fitness function was recorded at certain function evaluations for each run. The 

average best fitness values of the 30 runs with the corresponding number of actual fitness 

evaluations are shown. The Ackley’s function used in this experiment is the same as formula 

(17), except that the range of the design variable X is [-32.678, 32.678]. 
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Fig. 5.1 ASAGA performance with different population sizes tested by a 20D Ackley’s function 
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Fig. 5.2 ASAGA performance with different population sizes tested by a 20D Griewank’s 

function 
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Fig. 5.3 ASAGA performance with different population sizes tested by a 20D Rastrigin’s 

function 
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Fig. 5.4 ASAGA performance with different population sizes tested by a 20D Rosenbrock’s 

function 
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Fig. 5.5 ASAGA performance with different population sizes tested by a 20D Sphere’s function 

 

Figures 5.1 through 5.5 show ASAGA’s performance with a population size of 50 and 200 

in five benchmark domains, which are all minimization problems having global optima at zero. 

ASAGA with a population size of 50 outperforms a population size of 200 in all problems and in 

almost all optimization stages, suggesting that a larger population size in these benchmark 

domains damages performance. In general, a larger GA population size results in higher 

population diversity making it less likely to become stuck in local optima. However, large 
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population sizes can lead to slower convergence. In the unconstrained benchmark domains 

selected, the search space is usually continuous and not very complex, and the optimization task 

is relatively easy, so using a large population size has some benefits, but negatively impacts the 

convergence speed. However, it is not the case that an even smaller population size will get 

better results. A population size of 20 was tested further; mixed results indicated that it does not 

perform better than a population size of 50. 

 GA population size is usually set according to the dimension of the optimization problem. 

The five benchmark problems used in these experiments all have 20 dimensions, so it is safe to 

set the default ASAGA population size to 2.5 times the problem’s dimension (50) for 

unconstrained problems. However, the user can easily change the population size in ASAGA if 

the problem complexity is known beforehand. 

 Following the same process, ASAGA was tested with different population sizes on 

constrained benchmark domains. Figure 5.6 shows ASAGA’s performance when tested on a 5 

dimension constrained function using population size of 20 and 50, which are 4 times the 

problem’s dimension and 10 times problem’s dimension, respectively. The results of this 

experiment still suggest that the smaller population size is better. Table 5.1 shows ASAGA’s 

performance when tested on a 13 dimension constrained function using population size of 52 and 

130. Only the first 10 runs are shown. ASAGA with a population size of 52 was unable to find 

any feasible points during all 10 runs, whereas ASAGA with a population size of 130 found 

feasible points in every run. This suggests that a larger population size is much better in 

Sandgren’s function number 21, since this function has very complex feasible regions. In general, 

constrained optimization problems are more difficult and have more complex and discontinuous 
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search spaces. It is worthwhile to use a larger population size even though we might face 

performance loss when we deal with simple problems like the one shown in Figure 5.6. 10 times 

the problem’s dimension was determined to be the default setting for ASAGA when dealing with 

constrained problems, which is 4 times larger than the setting for unconstrained problems. 
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Fig. 5.6 ASAGA performance with different population sizes tested by 5D Sandgren’s number 

13 function 
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Population size 52 Population size 130 16000 Fitness 

Evaluations Violation Fitness Violation Fitness 

Run 1 0.2829  0 120.48 

Run 2 0.2910  0 160.12 

Run 3 0.2893  0 107.37 

Run 4 0.2898  0 106.31 

Run 5 0.1931  0 134.46 

Run 6 0.2914  0 108.97 

Run 7 0.2306  0 161.02 

Run 8 0.2916  0 117.35 

Run 9 0.2917  0 148.08 

Run 10 0.2410  0 137.19 

Table 5.1 ASAGA performance with different population sizes tested by 13D Sandgren’s 

number 21 function having global optima 97.5 

 

SVM model parameter tuning: 

Another parameter of ASAGA which requires tuning is contained within the SVM surrogate 

which ASAGA uses as its final global model. Different parameter settings of the SVM model 

may yield different performance levels. ASAGA uses the lightSVM  package to implement the 
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SVM model. The lightSVM  package itself has a strategy to adjust its parameters. The most 

important parameter is C, from formula (12) and (13). The lightSVM  package adjusts its value 

according to the sample size, as well as how close the sample points are to each other. The 

lightSVM  package begins with a very small C value. In general, larger C values will result in better 

fitting in local regions, but also cause the model to run more slowly. Figure 5.7 and 5.8 show 

ASAGA run using a large SVM C value equal to 1. The larger C value ASAGA performs better 

in Ackley’s domain, but worse in Rastrigin’s domain. Considering that the larger C version 

needs much more time for the SVM model fitting, ASAGA keeps the default C setting from the 

original lightSVM  package, which is a relatively small C value. 

 

Surrogate model-accuracy-only strategy vs. ASAGA:  

In this section a model-accuracy-only strategy is compared to ASAGA. The 

model-accuracy-only strategy GA is similar to ASAGA, except that it uses model accuracy as 

the only criterion for upgrading the surrogates, and does not make use of the time criterion. 

When the correlation coefficient of the objective fitness function approximation falls below 0.9, 

the system switches to the next approximation model in the upgrade path. It should be able to 

achieve better fitting, since it does not consider the fitting time limit. Figures 5.9 through 5.13 

show the two methods working in five unconstrained benchmark domains that are introduced in 

the previous section. These figures show that ASAGA still performs better in Ackley’s and 

Rastrigin’s functions. The two methods perform equally in Rosenbrock’s function domains. The 

fixed surrogate selection GA outperforms ASAGA in Griewank’s and Sphere’s function domain. 

Note that the Ackley’s and Rastrigin’s domains are the most difficult domains among these five 
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benchmarks. Also note that ASAGA runs with much less CPU time. These results show that it is 

worth adding the adaptive surrogate selection to ASAGA. Considering both time and model 

accuracy in ASAGA can save optimization time and still yield good results. 
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Fig. 5.7 ASAGA performance with different SVM model parameter C tested by a 20D Ackley’s 

function 
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Fig. 5.8 ASAGA performance with different SVM model parameter C tested by a 20D 

Rastrigin’s function 
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Fig. 5.9 Performance comparison between a model-accuracy-only strategy and an adaptive 

surrogate selection GA (ASAGA) using a 20D Ackley’s function 
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Fig. 5.10 Performance comparison between a model-accuracy-only strategy and an adaptive 

surrogate selection GA (ASAGA) using a 20D Griewank’s function 

 

 

 

 

 



 90

2.7

3.1

3.5

3.9

4.3

4.7

5.1

5.5

0 1000 2000 3000 4000 5000 6000

Fitness function evaluations

Fi
tn

es
s 

va
lu

es
 (n

at
ur

e 
lo

g)

fixed

adaptive

Rastrigin's function

 

Fig. 5.11 Performance comparison between a model-accuracy-only strategy and an adaptive 

surrogate selection GA (ASAGA) using a 20D Rastrigin’s function 
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Fig. 5.12 Performance comparison between a model-accuracy-only strategy and an adaptive 

surrogate selection GA (ASAGA) using a 20D Rosenbrock’s function 
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Fig. 5.13 Performance comparison between a model-accuracy-only strategy and an adaptive 

surrogate selection GA (ASAGA) using a 20D Sphere’s function 

 

No Surrogate Selection vs. Adaptive Surrogate Selection: 

 In this section ASAGA is compared to GADO-R, which stands for GADO with Reduced 

models. GADO-R is a fixed quadratic polynomial model assisted version of GADO. Figures 5.14 

through 5.18 show the performance of ASAGA and GADO-R. It is clear that ASAGA 
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outperforms or matches the performance of GADO-R in all five benchmark domains. Because 

ASAGA considers the fitting time in the optimization process, it uses less time than GADO-R, 

even though ASAGA makes use of the much more complex SVM model. Note that ASAGA 

performs worse than GADO-R in the early stages of the optimization in some test domains. The 

reason for this is that ASAGA uses simple models at the beginning of the optimization, and this 

may hurt the performance in the early stages. 
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Fig. 5.14 Performance comparison between GADO-R and ASAGA using a 20D Ackley’s 

function 



 94

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

0 1000 2000 3000 4000 5000 6000

Fitness function evaluations

Fi
tn

es
s 

va
lu

es
 (n

at
ur

e 
lo

g)

GADO-R

ASAGA

Griewank's function

 

Fig. 5.15 Performance comparison between GADO-R and ASAGA using a 20D Griewank’s 

function 
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Fig. 5.16 Performance comparison between GADO-R and ASAGA using a 20D Rastrigin’s 

function 
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Fig. 5.17 Performance comparison between GADO-R and ASAGA using a 20D Rosenbrock’s 

function 
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Fig. 5.18 Performance comparison between GADO-R and ASAGA using a 20D Sphere’s 

function 
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Chapter 6 

Conclusion 

 

Using fitness approximation methods to assist GAs and other types of Evolutionary 

Algorithms has gained increasing popularity in recent years. An interesting question in this area 

is: what is the best model for fitness approximation? Though the answer depends on the problem 

and user requirements, we found an interesting generic solution, which is to try the simplest 

model first. If the performance is not satisfactory or degrades with time, more sophisticated 

models can be used. 

So far many researchers use only one type of approximation model, as in [25]. Some 

researchers use multiple models for different levels of approximation, but the approximate model 

itself is still fixed [13, 29, 46]. ASAGA introduces an interesting research direction because it 

uses an adaptive modeling method. This adaptive method can provide the best trade-off between 

model performance and efficiency by adaptively adjusting the fitness approximation. 

ASAGA makes use of global and local approximate models, using a clustering technique 

with one local model for each cluster. The global model can adaptively evolve from a quadratic 

polynomial model to a Support Vector Machine (SVM) model. The model evolution depends on 

time spent and model accuracy. The local models follow similar rules, except that they can 

evolve from a simple average of the fitness of all individuals in a cluster to a final quadratic 

model (not SVM), since each local model is based on a much smaller sample set. The number of 

clusters is also adaptively controlled according to the type of model currently being used, model 

accuracy, and the size of the cluster. 
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In ASAGA, the frequency of model usage is also adaptively adjusted according to a formula 

that takes into account the percentage of runtime spent on fitness approximation, as well as 

model accuracy. A formula that takes into account both factors to reach a trade-off point is 

applied in ASAGA. A stochastic penalty function method is introduced in ASAGA to further 

strengthen its performance when dealing with constrained problem domains. 

Experiments show that ASAGA performs better than or comparable to several state-of-art 

surrogate-assisted GAs in benchmark domains and engineering design. Performance analysis 

was used to tune the most influential parameters in ASAGA. 

There are still several open questions regarding this method that could be addressed in future 

work. One question is whether there is a better way to control model updates. Another question 

would be whether model updates should happen in the reverse direction as well, i.e. the more 

sophisticated model may be replaced by a simpler model at some point, perhaps when many 

more clusters are introduced. Finally, adaptive surrogate assistance can be incorporated into 

other EAs such as evolution strategies and evolution programming.  
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