

USE OF SEMANTICS IN DESIGNING AND EXECUTING SCIENTIFIC WORKFLOWS:

 A CASE STUDY USING GALAXY

by

SHEFALI SHASTRI

(Under the Direction of John Miller)

ABSTRACT

Galaxy is a bioinformatics framework which contains a number of tools to perform

analysis on biological data. There exist a huge number of Web services for bioinformatics.

However, at present Galaxy does not have any support for Web services. The focus of this thesis

is to add Web service capability to Galaxy. For this purpose we have created a universal REST

client and a universal SOAP client and added them as tools to Galaxy. The thesis discusses these

two clients in detail. It also discusses how these clients can be used with other Galaxy tools in a

workflow. It also presents multiple ways of utilizing semantic annotations to facilitate discovery,

composition and user interaction with Web services and processes/workflows.

INDEX WORDS: Galaxy, bioinformatics Web services, REST, SOAP, Semantics,

SAWSDL, WSDL-S, WADL-S

USE OF SEMANTICS IN DESIGNING AND EXECUTING SCIENTIFIC WORKFLOWS:

A CASE STUDY USING GALAXY

by

SHEFALI SHASTRI

B. E., University of Mumbai, India, 2006

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2009

© 2009

Shefali Shastri

All Rights Reserved

USE OF SEMANTICS IN DESIGNING AND EXECUTING SCIENTIFIC WORKFLOWS:

A CASE STUDY USING GALAXY

by

SHEFALI SHASTRI

Major Professor: John Miller

Committee: Budak Arpinar

Eileen Kraemer

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

December 2009

 iv

DEDICATION

To my parents, brother and my husband, Chinmay.

 v

ACKNOWLEDGEMENTS

I would like to thank Dr. John Miller, my advisor, for all the guidance and support

provided to me in the course of this thesis and the one and a half years I spent at the LSDIS lab.

My colleagues Rui Wang and Srikalyan Swayampakula have always offered help whenever I

needed it. I thank them for their support and encouragement. Lastly I would like to thank my

family and friends for giving me much needed morale boosts from time to time.

 vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...v

LIST OF FIGURES ... viii

LIST OF TABLES ...x

CHAPTER

1 INTRODUCTION ...1

2 SURVEY OF SCIENTIFIC WORFLOW TOOLS ...3

2.1 Usability ..3

2.2 Support for Web Services ...5

2.3 Potential Use of Semantics ..6

2.4 Introduction to Galaxy ...7

3 WORKFLOWS IN GALAXY ...9

3.1 Workflows from Scratch ...9

3.2 Workflows from History ...10

4 INVOKING WEB SERVICES THROUGH GALAXY ...15

4.1 Approaches to Integrating Web Service Functionality15

4.2 Background on Web Services ...16

4.3 Invoking SOAP Services ...17

4.4 Invoking RESTful Services ...24

5 UTILIZING SEMANTICS FOR GALAXY WORKFLOW28

5.1 Utilizing Semantics in Workflow Design ...28

 vii

5.2 Semantic Annotations to WADL Documents ...29

5.3 Additional Semantics or Data and Process Mediation33

6 APPLICATION SCENARIOS ..35

6.1 Workflow Using SOAP Client on EBI Web Service ..35

6.2 Workflow Using REST Client on EBI Web Service ..36

7 EVALUATION..39

8 CONCLUSIONS AND FUTURE WORK ..41

REFERENCES ..42

APPENDICES ...44

A GALAXY WEB SERVICE EXTENSION USER‟S GUIDE44

B GALAXY WEB SERVICE EXTENSION DEVELOPER'S GUIDE49

 viii

LIST OF FIGURES

Page

Figure 3.1: An Example Workflow in Galaxy ...10

Figure 3.2: Data from EuPathDB...11

Figure 3.3: Filtering Only Those Genes Which Have Description ..11

Figure 3.4: Cutting Columns C1 and C3 from the Data ..12

Figure 3.5: Output Showing the Gene and Description Columns Only ..12

Figure 3.6: Choose Which Tools You Need In the Workflow ..13

Figure 3.7: Workflow Created From History ..13

Figure 4.1: SOAP Web Service Client Extension to Galaxy ...18

Figure 4.2: Enter the URL of the WSDL ...18

Figure 4.3: Output of the First Step of the SOAP Client ...19

Figure 4.4: Operations of the Web Service ..20

Figure 4.5: Output of the Second Step of the SOAP Client...20

Figure 4.6: Invoking the Web Service ...22

Figure 4.7: Output of the Chosen Operation ..23

Figure 4.8: Format Convertors for Web Services Toolset ...23

Figure 4.9: File Saved In Proper FASTA Format ..24

Figure 4.10: Restful Web Service Client Extension to Galaxy ...25

Figure 4.11: Inputs to Restful Web Service Through Universal REST Client26

Figure 4.12: Output of the Universal REST Client..27

 ix

Figure 5.1: Sample WADL Document ..30

Figure 5.2: Meta-Model For WADL-S ..33

Figure 6.1: Edited Workflow with Two Additional Tools ..36

Figure 6.2: Output of the SOAP Workflow ...36

Figure 6.3: Workflow Using REST Client and FASTA Manipulation Tools 37

Figure 6.4: Output of Step3 and Step4 of The Workflow..38

 x

LIST OF TABLES

 Table 5.1: Proposed WADL-S Semantic Annotation Attributes ..32

 1

CHAPTER 1

INTRODUCTION

Galaxy (Taylor, 2007) is a bioinformatics framework which provides various tools for

performing analyses on different types of bioinformatics data. Developers can create their own

tools to add them to their local instance of Galaxy. There exist many Web services for

bioinformatics analysis on the Internet. It would be easier for users to use these readymade Web

services rather than create a tool in Galaxy that performs exactly the same actions. However, at

present Galaxy does not have provision for executing Web services or adding them to the

existing workflow system. This thesis focuses on adding both REpresentational State Transfer

(REST) and SOAP
1
 Web service capability to Galaxy. Two universal clients for each kind of

Web service are added as tools to Galaxy. Using these tools a Web service can be executed both

individually as well as a part of a workflow in Galaxy. Since the users of Galaxy are biologists, it

is essential to keep the user interface simple and easy to use. Keeping that goal in mind it is

further discussed how semantic annotations to Web services can make it easier for the user to use

these clients. A preliminary design for a semantically annotated Web Application Description

Language (WADL-S) is also discussed.

The thesis is organized as follows. Chapter 2 contains a survey of contemporary scientific

workflow tools popular in the bioinformatics area. Chapter 3 will explain how workflows are

1
 Formerly an acronym for Simple Object Access Protocol

 2

designed in Galaxy. In Chapter 4, a brief background on Web services will be given. This will be

followed by the description of how SOAP Web services as well as RESTful Web services can be

executed through Galaxy. Chapter 5 will discuss utilizing semantics in workflow design and

workflow execution. Chapter 6 describes two scenarios where the SOAP and REST extensions to

Galaxy have been used. Chapter 7 gives a brief evaluation of the SOAP and REST extensions. In

Chapter 8, conclusions and future work will be discussed.

 3

CHAPTER 2

SURVEY OF SCIENTIFIC WORKFLOW TOOLS

In the last decade, due to advances in computing, scientific experiments have become

more evolved. As a result there is huge amount of scientific data generated and analytical tools

are required to make sense of this data. Since frequently the same set of analyses may have to be

performed on different sets of data the process can get repetitive. This is where scientific

workflows help. A number of repetitive interdependent tasks can be stored as a workflow and

this workflow then can be executed on different sets of data.

There exist a number of frameworks which help scientists analyze their data with

different tools and create workflows. Galaxy is one such framework which enjoys substantial

popularity with the bioinformatics community.

In this chapter, we will take a look at three such scientific workflow tools and evaluate

them on the basis of usability, support for Web services and potential use of semantics. The three

tools are Taverna (Oinn, 2004), Kepler (Ludascher, 2006) and BioExtract (Lushbough, 2008).

2.1 Usability

Scientists are generally not seasoned programmers and hence the user interface that the

workflow tools provide should allow the user to construct, edit and execute workflows but hide

the complexity behind these tasks.

 4

Taverna has a simple uncluttered interface which lets the user see the different Web

services and data sources available, the currently constructed workflow as well as the services

included in the current workflow, all in the same view. The view of the workflow can be adapted

to observe different aspects, to show all the ports for all the services, only those ports that have

been connected or bound, or to change the layout of the workflow from portrait to landscape

(Fisher, 2009). While the workflow is executing, it shows the progress of the workflow through

color codes. The Web services that have finished executing are green, ones currently being

executed are purple and those awaiting execution are grey.

In Kepler, workflows are built from actors that perform computational tasks (McPhillips,

2009). Each of these actors is a component in the workflow and performs specific tasks. Kepler

makes a distinction between the graphical representation of a workflow and the model of

computation used to execute it. This means that different models of computation can be

associated with the same workflow graph. Kepler inherits several common models of

computation from the Ptolemy (Lig, 1999) system, including Synchronous Data Flow (SDF),

Continuous Time (CT), Process Network (PN), and Dynamic Data Flow (DDF), etc. Thus, a

point of control is required that will specify the model of computation to interpret and execute a

workflow. This point of control is called a director in Kepler and has to be specified by the

workflow author. Kepler also provides a search tool that can search for actors based on their

functionality.

 5

Kepler makes scientific workflow creation simple, users can drag and drop components

on the workflow creation area, connect these components to indicate data flow. “Kepler

represents the overall workflow visually so that it is easy to understand how data flow from one

component to another. The resulting workflow can be saved in a text format, emailed to

colleagues, and/or published for sharing with colleagues worldwide” (Ludascher, 2006).

BioExtract Server is a web-based system. This means that users do not have a local

instance of the system. They have to go to http://bioextract.org/ and create a user account on the

BioExtract system. Once the user is logged in he/she can create new workflows, upload existing

workflows from their local system, edit existing workflows and share workflows. BioExtract

records tasks performed by the user on the system and saves this into a workflow. If these are

tasks that a user needs to perform repetitively then this saved workflow can be used to automate

the process. This is convenient, however, the disadvantage of this feature is that if a certain task

has failed during execution, the recorder does not realize this and includes it as a step in the

workflow. Though the user can delete steps from the workflow this can be cumbersome if the

workflow has a large number of steps. The whole workflow can be executed as it is or individual

steps can be executed separately. Execution can also be paused to allow the user to check

progress, or adjust input into a step. Steps in the workflow can be modified. This allows the user

to repeat the workflow on different data, or with modified parameters (BioExtract Server, 2008).

Workflows created by BioExtract are always sequential. Also, there is no way to add a step or

change the order of steps in a stored workflow.

http://bioextract.org/

 6

2.2 Support For Web Services

“Web services allow applications to communicate across platforms and programming

languages” (OASIS, 2009). More importantly, accessing them is completely independent of the

language in which they are coded. It is hence necessary that these frameworks have some Web

service functionality.

Taverna has good support of Web services. Not only does it have an extensive registry of

Web services but it also lets the user add external Web services without undue effort. Often users

will need to write snippets of Java code that will map inputs and outputs. The Web service

support is extended only towards SOAP Web services as of now. There is as yet no way to add

RESTful Web services to Taverna.

Kepler also provides support for Web services. Web services can be invoked using the

Web service actor in Kepler. This actor accepts the WSDL location, the method name to invoke

and input parameters from the user. Kepler too has no support for RESTful Web services.

BioExtract too provides a list of Web services through its registry to the user. These Web

services can be searched on keywords. BioExtract though provides no functionality to access

external Web services. Hence, the user can only use the Web services listed in BioExtract.

2.3 Potential Use Of Semantics

Semantic annotations add meaning to interface descriptions of software programs. During

workflow compilation it is important to know whether two interdependent tools are compatible

syntactically and semantically, since one does not guarantee the other. Also, semantic

annotations help during Web service discovery and composition.

 7

 Taverna itself does not have any provisions for semantic Web services but it can use the

Feta Plug-in to discover Web services on basis of semantics. In Taverna, services can be

discovered by exploiting their semantic descriptions. The semantic search works only on services

registered the Feta repository.

 The design of Kepler lets users register their dataset schemas and services with

semantics (Bowers, 2004). “Kepler has adopted the OWL web ontology language [OWL] (more

specifically, OWL-DL) as the primary language for capturing domain-specific terminologies

used in semantic metadata” (Berkley, 2005).

Kepler uses semantics to suggest semantically relevant services and data. During

workflow composition it checks whether two connected services or data sources are

„semantically compatible‟ based on their annotations. It is stated in (Berkley, 2005) that “given a

workflow service on the Kepler canvas, a user can search for all „semantically compatible‟

resources (either datasets or services) that can be connected to the input (or output) of the

service.”

BioExtract has no provisions for semantics.

2.4 Introduction To Galaxy

Until now, this chapter has given us a background on contemporary scientific

frameworks. Keeping these ideas in mind let us now discuss Galaxy. Galaxy is mainly developed

at Penn State with contributors from Emory, Harvard and University of California San Diego. It

is funded by NSF, Penn State and the Huck Institutes for Life Sciences. This framework provides

access to a number of bioinformatic data sources. It also provides various analysis tools for

bioinformatics. It lets users add their own tools to their local instance of Galaxy.

 8

There is a workflow component to Galaxy which lets you save workflows and share them

with colleagues. It is highly popular in the bioinformatics community due to its simple and easy

to use interface. However, Galaxy has no support for Web services and neither does it have any

semantic extensions. Considering its popularity it seemed like an ideal candidate to make

additions to. In the next few chapters we will discuss the workflow component of Galaxy, the

Web service extensions we have added to Galaxy and how they are compatible with existing

functionality of Galaxy.

 9

CHAPTER 3

WORKFLOWS IN GALAXY

Galaxy provides a number of tools for performing analyses on bioinformatics data. In

addition to this it also has a workflow application which lets the user arrange different tools in a

logical workflow, save this workflow, edit and execute it. There are two ways in which

workflows are created in Galaxy. It will be discussed in a later chapter how the Web service

extensions can be utilized in these workflows. This chapter discusses the workflow functionality

of Galaxy in detail.

3.1 Workflows From Scratch

As mentioned in the beginning of this chapter, there are two kinds of workflows in

Galaxy. The first kind which do not require any user input at runtime are termed as „from

scratch‟ (Galaxy Screencasts, 2009) workflows. These workflows can be directly created on the

Galaxy workflow canvas and executed. To create a workflow from scratch the user would go to

the Galaxy workflow canvas and select the tools to be arranged in the workflow. Figure 3.1

shows a representation of a sample workflow.

 10

Figure 3.1 An example workflow in Galaxy

In this example, the input dataset is a 6 column Browser Extensible Data (BED) formatted file. A

BED file has first 3 required columns, viz., chrom, chromStart, chromEnd. We will refer to the

columns in a BED file as c1, c2, c3, etc. To find the length of an interval in a BED file,

chromStart (c3) has to be subtracted from chromEnd (c1). The second tool in our workflow,

„Compute‟, computes the expression (c3-c2) for every row (interval) in the BED file to get the

length of the interval and adds this value as c7 of the BED file. The third tool in our workflow

sorts the BED file based on the values in c7 i.e., on the length of the intervals in descending

order. The fourth tool selects the first 50 lines from this sorted BED file. Thus the result of this

workflow is the 50 longest intervals for a given BED file. The inputs, to each of the tools in the

Galaxy are known prior to execution. Thus, this workflow is saved with these inputs and can be

executed directly.

3.2 Workflows From History

Workflow creation may not always be as simple as described in section 3.1. Many times

the input/s of a tool can only be determined at run time. This brings us to the second type of

workflow in Galaxy.

 11

Galaxy lets you create workflows from history. Each tool that we run in Galaxy is saved

in a local history that is visible to the user as the right panel in Galaxy. This means, the inputs as

well as the results of each tool run are stored in Galaxy. Galaxy lets the user choose different tool

runs from history to create a workflow.

Let us look at an example of such a workflow. In our example we query EuPathDB

(Aurrecoechea, 2009; Aurrecoechea, 2006) to get all the genes for organism „Plasmodium

falciparum‟.

Figure 3.2 Data from EuPathDB

As we see in Figure 3.2 the result has 5616 lines. The columns are Gene, Genomic Location,

Product Description and Organism. Now if we want to look at only those genes which have a

description. We choose the „Filter data on any column using simple expressions‟ tool from the

„Filter and Sort‟ toolset in Galaxy.

Figure 3.3 Filtering only those genes which have a description

 12

In Figure 3.3 we filter on c3, i.e., column 3, the Product Description column. Now if we wish to

see only the Gene and Product Description columns, we can use the „Cut columns from a table‟

tool from the „Text Manipulation‟ toolset in Galaxy.

Figure 3.4 Cutting columns c1 and c3 from the data

Figure 3.4 shows how we have chosen column c1 and c3 as the columns in our output.

Figure 3.5 Output showing the Gene and description columns only

 13

We can see in Figure 3.5 that our output has 5405 lines. Unless we know prior to looking at the

data obtained in step1, that c3 refers to the Product Description column, we cannot enter the filter

condition in the filter tool. Also, it could be possible that for some organism all the genes in the

data have a Product Description. In such a case the Filter tool would be unnecessary. Hence, it

would not be possible to do a „from scratch‟ workflow for the above set of tools. However, we

may still want these tools in a workflow so that we do not need to execute these three individual

tools each time we want to perform these same operations. For this we create a workflow from

the history in Galaxy. We do this by choosing the „Extract Workflow‟ history option. This lets

you choose the tools from history that you wish to combine in a workflow.

Figure 3.6 Choose which tools you need in the workflow

Galaxy then creates a workflow using the tools you selected. You can view this workflow and

edit it like any simple workflow as shown in Figure 3.7

Figure 3.7 Workflow created from history

 14

Before executing the workflow, the user can edit the input parameters of the tools if needed or

the workflow can be executed as it is.

In this chapter, we have familiarized ourselves with the concept of tools and workflows

in Galaxy. Tools are programs or scripts which fetch data from a remote or local resource or

perform a certain computation on the given data. A workflow is formed when these tools are

connected in a logical flow to reach a particular goal.

 The next chapter will explore the Web service functionality we have added to Galaxy.

 15

CHAPTER 4

INVOKING WEB SERVICES THROUGH GALAXY

As mentioned in Chapter 2, though Galaxy is popular framework for bioinformatics it

lacks Web service functionality. There are two approaches through which this functionality can

be added to Galaxy. The first approach deals with modifying the source code of Galaxy (Wang,

2009). The second explores the idea of adding these extensions as tools to Galaxy. For

developing our extensions we have chosen the latter approach. In the next section, the pros and

cons of both approaches are discussed.

4.1 Approaches To Integrating Web Service Functionality

Galaxy is an open source project and the source code is available on their Website. The

most natural approach to adding functionality to Galaxy would be to make changes to the source

code. Though time would have to be invested to study the source code the advantage of this

approach is that the developer is in complete charge of how the extension behaves. While this

seems like an intuitive approach, in reality Galaxy is ever evolving and so is the source code. By

the time changes are made to one version of the source code, another version may be released. It

might not always be simple to integrate the changes made in the previous version in to the next.

Also, the code is structured such that in order to reflect changes in one module, changes have to

be also made to a number of interdependent modules. Hence, the biggest disadvantage of this

approach is maintainability across versions.

 16

This brings us to the second approach. Galaxy lets users add their own tools to the

framework. The tools can be command line tools written in any programming language. An

XML file describing the tool has to be created and added to a Galaxy folder. The location of this

XML tool file has to be added to tool_conf.xml file to Galaxy. Other than the XML files there

does not need to be any interaction with Galaxy source code. This will definitely do away with

the disadvantage of the first approach. The disadvantage to this approach is that the behavior of

the extensions is restricted to the pre-defined behavior of tools in Galaxy. However, this

restriction also guarantees that our extensions will work with other tools in Galaxy as well as the

workflow module of Galaxy. Another advantage is that users are already familiar interacting

with tools in Galaxy and will easily adapt to using the added extensions.

Thus, weighing the relative pros and cons of the two approaches, we have decided to go

with the second approach, since it guarantees that our extensions will be compatible with

different versions of Galaxy code without sacrificing too much of the functionality.

In the rest of the chapter, the Web service extensions will be explained in detail with

examples.

4.2 Background On Web Services

W3C defines a Web service as “a software system designed to support interoperable

machine-to-machine interaction over a network” (Booth, 2004). This software system is nothing

but an application programming interface (API) that can be accessed remotely over the Internet.

There are two kinds of Web service protocols, SOAP and REST. We discuss these briefly here.

Every SOAP Web service has a description document attached to it viz. Web Service

Description Language (WSDL) document. A WSDL is an XML file which describes the Web

service in terms of different operations it performs, the inputs expected for the operations, the

 17

outputs provided by the operations, the data types of these inputs and outputs and the location of

the service.

Analogous to WSDL for SOAP Web services, there exists a Web Application

Description Language (WADL) for RESTful Web services. WSDL2.0 (cite WSDL2.0) can also

describe REST Web services, however, neither WADL nor WSDL2.0 are widely used to

describe REST Web services. This means that every RESTful Web service need not have a

description associated with it. Hence, to know the details of a RESTful Web service (in absence

of a description document) the Web service itself has to be studied to determine its operations

and input and output parameters. For the purpose of our extensions to Galaxy, we assume that

the user knows these details about the RESTful Web service, since it cannot be guaranteed that

the needed RESTful Web service has a description document attached to it. However, for the

SOAP Web service extension we access the corresponding WSDL to give the user all the details

about the SOAP Web service.

4.3 Invoking SOAP Web Services

In order to invoke a SOAP Web service operation we need a SOAP client. A SOAP client

is responsible for building a SOAP message containing the inputs to the Web service. This

SOAP message is sent to the Web service server over the Internet using an application protocol

like Hyper Text Transfer Protocol (HTTP). The Web service then processes the inputs, builds a

SOAP message containing the output and sends it back to the client.

 18

Figure 4.1 SOAP Web service client extension to Galaxy

We will now discuss the SOAP client extension added to Galaxy. In Figure 4.1 we see

that the SOAP client appears in the Tools section of Galaxy. The SOAP client has 3 steps.

 Get the operations of your SOAP Web Service

 Choose the operation you want to invoke

 Enter the inputs and invoke the selected operation

In the first step the user inputs the (Universal Resource Locator) URL to the WSDL of

the SOAP Web service. In our example, we are using the WSDbfetch Web service hosted by

European Bioinformatics Institute (EBI) (European Bioinformatics Institute, 2009).

Figure 4.2 Enter the URL of the WSDL

 19

In Figure 4.2 we see the SOAP client interface. On clicking the Execute button, the client fetches

the WSDL and parses it to find a list of operations that the Web service performs. The output of

this step is a tabular data file containing the list of operations of the Web service.

Figure 4.3 Output of the first step of the SOAP client

Figure 4.3 shows the output. Column 1 of the output file shows the operations. The client

handles SOAP messaging through the Zolera SOAP Infrastructure (ZSI) libraries (Salz, 2005).

The wsdl2py script in ZSI creates a client stub from the WSDL definition. For each Web service

that we invoke through our SOAP client, we create a python package which contains this client

stub. In Figure 4.3, column 2 in the output gives the name of this client stub in the form

„packagename.stubname‟. In this example the package name is WSDbfetch and the stub name is

WSDBFetchServerLegacyService_client.py

The second step of the SOAP client lets the user choose the operation that is to be

invoked.

 20

Figure 4.4 Operations of the Web service

In Figure 4.4 we see that user is shown all the operations of the Web service. The user can select

any one operation by selecting it from the drop down menu. For the purpose of this example, let

us select the fetchData operation. The output of this step is a tabular data file containing the

inputs for this operation as well their data types.

Figure 4.5 Output of the second step of the SOAP client.

 21

We see in Figure 4.5 that column 1 of the output are the input parameters to the operation,

column 2 are the data types for these inputs and column 3 is the name of the client stub in the

form „packagename.stubname‟ as described in Step 1 output.

In the third and final step of the SOAP client, the input values are given by the user and

the Web service is invoked. Figure 4.6 shows how input values can be given to the Web service.

The three input parameters format, query and style have been given input values of

„fasta‟,‟UNIPROT:ADH1A_HUMAN‟ and „raw‟, respectively. The service API description on

the EBI website explains what kind of input values are expected for the three inputs. In our

example we wish to fetch an entry with id „ADH1A_HUMAN‟ from the UNIPROT database.

We want the entry to be in FASTA format and raw style.

 22

Figure 4.6 Invoking the Web service

 23

Figure 4.7 Output of the chosen operation

Figure 4.7 shows the output of our fetchData operation. The output data seems to be in a

FASTA format, however, we also see a column number. This is because our SOAP client saves

all output data in tabular format. At present Galaxy recognizes this output data as tabular data

and not FASTA formatted data. Hence, to store this data as a FASTA file we will use the

„Format convertors for Web services‟ toolset.

Figure 4.8 Format convertors for Web services toolset

 24

This toolset saves the tabular output from the Web service into FAST Alignment

(FASTA), BED or Multiple Alignment Format (MAF) outputs depending on the tool chosen. For

our example, we will choose the „Converting Tabular output to FASTA‟ tool.

The output of this tool is shown in Figure 4.9

Figure 4.9 File saved in proper FASTA format.

In the above example, we saw that the SOAP client is made up of three steps. The reason

behind this design is that Galaxy does not allow a tool to read data during run time. Hence it is

necessary to complete execution of one step, store its results and then access those results as

input to the next step. Had the extensions been implemented using the first approach discussed in

section 4.1, it would have been possible to add the SOAP client as a single step.

4.4 INVOKING RESTful WEB SERVICES

RESTful Web services are simpler to invoke than SOAP based Web services. Given the

URL of the REST Web service GET, POST, PUT or DELETE HTTP requests are passed from

the client to the REST Web service server. There are no operations besides these four defined for

a REST Web service. However, as explained earlier in this chapter, REST Web services may not

 25

have a description document and hence the RESTful Web service client does not have access to

input parameter names. Generally, such information might be displayed for the user on the

Website which gives the link of the RESTful Web service.

Let us now look at the RESTful Web service client added to Galaxy. The example we use

for explaining the functionality of the REST client is similar to the example we used for the

SOAP client. In this example, we fetch an entry from the European Molecular Biology

Laboratories (EMBL) database in FASTA format and raw style.

Figure 4.10 RESTful Web service client extension to Galaxy

Figure 4.10 shows the REST client tool in Galaxy. We can see that it just has a single

step unlike the SOAP client. Figure 4.11 shows the REST client interface in Galaxy. The Web

service parameters as well as the values for the parameters are given by the user. Here the input

parameters are db, id, format and style. The meaning of these parameters and the type of values

they expect is described in the EBI webpage (http://www.ebi.ac.uk/cgi-bin/dbfetch). For our

example, we choose „embl‟ as our db value and „x12399‟ as the id to an entry in the EMBL

database. The format is FASTA and style is raw.

http://www.ebi.ac.uk/cgi-bin/dbfetch

 26

Figure 4.11 Inputs to RESTful Web service through Universal REST client

 27

The REST client just like the SOAP client saves the output data in tabular format. Figure

4.12 shows the output for our example. This output will have to be saved as a FASTA file by

using the Convertors for Web services toolset as shown in section 4.3.

Figure 4.12 Output of the Universal REST client

In this chapter, we have seen how the extensions can add Web service capabilities to

Galaxy. In the next chapter we will discuss how these extensions can be enhanced by using

semantics.

 28

CHAPTER 5

UTILIZING SEMANTICS FOR GALAXY WORKFLOWS

In the previous chapter, it was demonstrated how we can presently add Web services to

Galaxy. However, in this approach we have not used semantics of any kind. In this chapter, we

discuss whether use of semantics can provide any significant advantages in workflow design as

well as workflow execution for Galaxy.

5.1 Utilizing Semantics in Workflow Design.

“Scientific workflow tools like Kepler use domain ontologies for workflow design”

(Berkley, 2005). This is needed in Kepler, since it is a multi domain workflow tool unlike

Galaxy which is geared only towards the domain of Bioinformatics. However, even in the

domain of bioinformatics, there exist multiple ontologies. While designing a workflow there are

basically two kinds of issues that need to be considered. If the workflow consists of two tools T1

and T2, with T1 preceding T2 then, the output data type of T1 should match with the input data

type of T2. The other issue is that, the output if T1 and the input of T2 should be the same

conceptually. However, to determine whether the second requirement is satisfied, it is essential

to semantically annotate the inputs and outputs of each tool or service in the workflow to assign

meanings to them. For manual workflow design like Galaxy offers, the second requirement is not

essential, since the user manually designs the workflow and it is assumed that the user has

enough knowledge about the domain to conceptually match the inputs and outputs of Web

 29

services. However, for Web service discovery or for semi-automatic workflow design it

is essential that Web services or tools are semantically annotated.

Semantically annotated Web services can make adding Web services to workflows more

convenient. SOAP Web services are described by WSDLs and our SOAP client is able to give

some information about inputs and data type of inputs to the user. However, sometimes this

information could be insufficient. For instance if there is an input parameter „format‟ with data

type „string‟, it does not really tell the user much. Now if the user also knows that the „format‟ is

a property of the concept „Data File‟ in an ontology, then he/she has a little more information

about the values that could be assigned to the input. Semantic Annotations for WSDL (SAWSDL

(Farrell, 2007)) can be used for this purpose.

For REST Web services, WADLs can give information regarding the method to be used

(GET, POST, UPDATE or DELETE), input parameter names and data types. It can also give

documentation about some sample input values. For REST Web services semantically annotated

WADL (WADL-S) does not yet exist. However, if such a standard is developed there would be

significant use of it in Web service workflow design. In the next section a preliminary model for

WADL-S is proposed.

5.2 Semantic Annotations to WADL Documents

WADL documents are XML documents which describe RESTful Web services much

like a WSDL document describing a SOAP Web service. Figure 5.1 shows an example of a

WADL document (Hadley, 2009). While a WSDL describes various operations the SOAP Web

service performs, a WADL document describes the resource which is being accessed. The

operations in a REST Web service are fixed, GET, PUT, POST or DELETE. A REST Web

service can have one or more of these operations. Before we discuss a model for semantically

 30

annotated WADLs, it is at first necessary to familiarize ourselves with the tags contained in a

WADL file. The <application> element is the root element.

1 <?xml version="1.0"?>
2 <application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xsi:schemaLocation=http://wadl.dev.java.net/2009/02 wadl.xsd
4 xmlns:tns="urn:yahoo:yn"
5 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
6 xmlns:yn="urn:yahoo:yn"
7 xmlns:ya="urn:yahoo:api"
8 xmlns="http://wadl.dev.java.net/2009/02">
9 <grammars>
10 <include
11 href="NewsSearchResponse.xsd"/>
12 <include
13 href="Error.xsd"/>
14 </grammars>
15
16 <resources base="http://api.search.yahoo.com/NewsSearchService/V1/">
17 <resource path="newsSearch">
18 <method name="GET" id="search">
19 <request>
20 <param name="appid" type="xsd:string"
21 style="query" required="true"/>
22 <param name="query" type="xsd:string"
23 style="query" required="true"/>
24 <param name="type" style="query" default="all">
25 <option value="all"/>
26 <option value="any"/>
27 <option value="phrase"/>
28 </param>
29 <param name="results" style="query" type="xsd:int" default="10"/>
30 <param name="start" style="query" type="xsd:int" default="1"/>
31 <param name="sort" style="query" default="rank">
32 <option value="rank"/>
33 <option value="date"/>
34 </param>
35 <param name="language" style="query" type="xsd:string"/>
36 </request>
37 <response status="200">
38 <representation mediaType="application/xml"
39 element="yn:ResultSet"/>
40 </response>
41 <response status="400">
42 <representation mediaType="application/xml"
43 element="ya:Error"/>
44 </response>
45 </method>
46 </resource>
47 </resources>
48
49 </application>

Figure 5.1 Sample WADL document.

http://wadl.dev.java.net/2009/02%20wadl.xsd

 31

The <application> tag contains the WADL description. The elements which form the

main part of the WADL document are the <resources> and the <resource> elements. All WADL

files contain these tags. A <resources> element can have one or more <resource> elements. The

<resources> element also contains the base Uniform Resource Identifier (URI) of the resource.

The <resource> element has a path attribute which is optional. When it is present it is relative to

the base URI in resources and in combination with the base URI in resources provides a path to

the resource. The <method> element is an optional element which describes the method by

which the resource is to be accessed. The <method> element contains the <request> and

<response> elements. <request> describes the input parameters for the method and <response>

elements describe the <output> parameters for the method. A <response> is optional and may

not always exist. Last the <param> element describes the input parameters that the method takes.

Unless the „required‟ attribute for a <param> element is true, the input parameter is optional. The

<option> tag in parameter gives different possible input values that parameter.

Now that we have an understanding of the basic tags of WADL, we can move further to

contemplate about semantic annotations to these tags. We have proposed the model for WADL-S

based upon the initial idea of WSDL-S (Sivashanmugam, 2003; Rajasekaran, 2004). Table 5.1

shows the tags in WADL which can incorporate semantic annotations. Figure 5.2 shows a meta-

model for WADL-S. The dotted rectangles indicate the WADL-S tags

 32

Table 5.1 Proposed WADL-S semantic annotation attributes

WADL tag Semantic attributes Explanation

Resource wadls:concept Used to specify the meaning

of this resource.

Method wadls:concept Used to specify what this

operation does

Method wadls:pre Used to specify any

preconditions that need to be

satisfied for this operation

Method wadls:post Used to specify post

conditions for the operation

Param wadls:concept Used to specify the meaning

of this parameter

 33

Figure 5.2 Meta-Model for WADL-S

5.3 Additional Semantics for Data and Process Mediation

In section 4.2 it was discussed how semantics could be utilized in workflow design and

execution. In this thesis, the focus was on adding Web service capabilities to Galaxy with

minimum impact on current Galaxy code. This approach has its advantages in that our extensions

are independent of changes in the Galaxy code. However, another approach has been discussed

 34

in (Wang, 2009). This approach discusses how semantics can help during Data and Process

mediation.

This paper discusses a semi-automatic approach towards Web service workflow

composition in Galaxy. The enhanced Galaxy workflow system discussed in this approach can

provide Web service suggestions based on the current state and the overall goal of the workflow.

These suggestions can either be backward suggestions, forward suggestions or even bi-

directional suggestions and can be determined by a ranking algorithm. This process mediation

assumes that Web services are described using SAWSDL/WSDL-S and it uses Web Ontology

Language (OWL) and SWRL (Semantic Web rule Language) to specify the goal, pre-condition

and effect for each component in the workflow.

For data mediation, their approach again uses semantics to align the input and output of

Web services. If the input and output of Web services are simple type, there is relatively less

chance of a mismatch. However, if they are complex types, some sort of data mediation is

needed to map the messages between two Web service operations. This data mediation requires

semantic annotation of the inputs and outputs of Web services which helps determine if they

relate to the same concept in the ontology.

In this chapter, we have discussed different ways in which semantic annotations can

benefit the workflow design, we have discussed an approach towards semantically annotating

WADLs and we have looked at an existing approach where semantic annotations benefit data

and process mediation.

 35

CHAPTER 6

APPLICATION SCENARIOS

In this chapter, we will discuss two different scenarios in which we use the REST as well as

SOAP extensions to Galaxy. We will use these extensions along with generic Galaxy tools and in

a workflow and execute this workflow.

6.1 Workflow Using SOAP Client on EBI Web Service

In this scenario, we will be extending the example used in section 3.2. The SOAP Web

service used in the example fetched data from the UNIPROT database based on an id. This data

is a FASTA file. In this scenario, we will compute the sequence length of this FASTA output

using the „Compute Sequence Length‟ tool in the „FASTA manipulation toolset‟ provided by

Galaxy. The three steps of the SOAP client have to be composed in a workflow using Galaxy‟s

history feature. We will edit this workflow by adding two more tools, „Converting Tabular

output to FASTA output‟ and „Compute Sequence length‟. Figure 6.1 shows our edited

workflow.

 36

Figure 6.1 Edited workflow showing three steps of SOAP client and two additional tools

The „Compute sequence length‟ tool requires input about number of title characters of the

FASTA file to keep in the result. The user can change this number before running the workflow.

In out example we choose 47.

Figure 6.2 Output of the SOAP workflow

Figure 6.2 shows us the output of our edited workflow. We selected the 47 title characters and

the sequence length computed by the tool is 375.

6.2 Workflow Using REST Client On EBI Web Service

In this scenario, we will be extending the example we used in section 4.3. We had

extracted the entry for id x12399 from the EMBL database in FASTA format. In this scenario,

we will use the REST client to obtain three FASTA sequences from the EMBL database with

ids, „AE014292, AE017197 and AE017354‟. After this we will use the Web service format

convertor toolset to convert the tabular output into FASTA. Then we will create a workflow

where we use the „Compute sequence length‟ tool in the FASTA manipulation tool set of Galaxy

to compute sequence length for the sequences of these three ids. The last tool in our workflow

will be the „Filter by sequence length tool‟, which we will use to filter any sequences that are

 37

lesser than 1200000 characters in length. In Figure 6.3, we see the workflow for the above

mentioned scenario. Figure 6.4 shows the output of steps 3 and 4 of the workflow. Step3 shows

the sequence lengths for the three ids that we have chosen.

Figure 6.3 Workflow using REST client and FASTA manipulation tools

 38

Figure 6.4 Output of Step3 and Step4 of the workflow

In Step 4 we filter out all sequences which are lesser than 1200000 characters. Thus, in

the output of the workflow we see only the sequences for AE014292 and AE017354.

In this chapter, we have seen that our extensions to Galaxy can interact seamlessly with

native tools of Galaxy in a workflow.

 39

CHAPTER 7

EVALUATION

For the purpose of testing the Web service extensions to Galaxy, we set up a local Galaxy

instance and added the REST and SOAP clients as tools to this Galaxy instance. For testing the

extensions we used various RESTful and SOAP Web services from the EBI web site. The reason

for choosing EBI Web services was that it provided an extensive collection of both SOAP as

well as REST Web services with good documentation.

We chose to add Web service extensions to Galaxy because Galaxy is a widely used

Bioinformatics analysis framework and its many users can definitely benefit if Web service

capability is added to it.

The reason for using SOAP Web services was obvious, since at present the number of

SOAP Web services for bioinformatics is huge. Also, SOAP Web services have standard

description which can help guide the user towards adding inputs for the Web service.

RESTful Web services have gained high popularity in recent years owing to their

simplicity. Hence, it is expected that soon there would be increasing number of RESTful Web

services for bioinformatics as well. Thus, we decided to include a REST client extension to

Galaxy as well.

When compared to Taverna WSDL scavenger, we found that the interface of the Galaxy

SOAP client is a lot more intuitive. Also, in the WSDL scavenger, there is no mention of the data

type of the input value that a parameter takes. We provide this information in our SOAP client.

 40

Adding external Web services to Taverna through the WSDL scavenger is also a three

step process similar to the one we have for the SOAP client. However, for the SOAP client all

the steps take place on the same window and the user does not have to juggle different windows

or tabs. In Taverna the WSDL is entered on a pop up window, the WSDL then gets added to a

list on the main Taverna window and finally when the user wishes to execute it, another window

opens up where the user can edit the input values and execute the workflow. To see the result of

the workflow, the user has to go back to the main Taverna window.

Adding a SOAP Web service to Galaxy workflow involves executing the three steps for

the SOAP client and then using the „Extract workflow‟ history option. On the other hand in

Taverna, SOAP Web services can be added directly to a workflow.

There is nothing analogous to the REST client in Taverna. Taverna has no functionality

for adding REST Web services to the workflow.

Evaluating our Web service extensions against similar functionality of Taverna, it

appears that our extensions are easier to use and they also provide access to REST Web services,

which is not available in Taverna.

 41

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this thesis, we have demonstrated how Web service capability can be added to Galaxy.

It was the focus of this thesis to develop these extensions without affecting any native Galaxy

code so that these extensions could be relatively independent to changes in the Galaxy code.

Hence both these extensions are added as tools to Galaxy.

It has also been demonstrated that both RESTful and SOAP Web services can be invoked

through Galaxy and once invoked, workflows can be created using these Web services and

native Galaxy tools.

We introduced a preliminary model for semantic annotations to WADL or WADL-S.

Though in this thesis we have only introduced the idea, it is hoped that such a standard is

developed in the future.

In the future, the Web service extensions to Galaxy could be adapted to use semantically

annotated WSDLs as well as WADLs to making it more convenient for the user to enter input

values for the Web services. Also, some kind of caching mechanism could be developed which

would cache the Web services that a user has already used, so the user need not enter the data for

frequently used Web services.

 42

REFERENCES

Aurrecoechea, C., J. Brestelli, B. Brunk, S. Fischer, B. Gajria, X. Gao, A. Gingle, G. Grant, O.

Harb, M. Heiges, F. Innamorato, J. Iodice, J. Kissinger, E. Kraemer, W. Li, J. Miller, V.

Nayak, C. Pennington, D. Pinney, D. Roos, C. Ross, G. Srinivasamoorthy, C. Stoeckert

Jr., R. Thibodeau, C. Treatman and H. Wang (2009). EuPathDB: a portal to eukaryotic

pathogen databases. Nucleic Acids Research , 38, Dzzz-Dzzz.

Aurrecoechea, C., M. Heiges, H. Wang, Z.Wang, S. Fischer, P.Rhodes, J. Miller, E. Kraemer, C.

Stoeckert Jr., D. Roos and A. Gingle, G. Grant, O. Harb, F. Innamorato, J. Iodice, J.

Kissinger (2006). ApiDB: Integrated Resources for the Apicomplexan Bioinformatics

Resource Center. Nucleic Acids Research , 35, D427-D430.

Berkley, C., S. Bowers, M. Jones, B. Ludascher, M. Schildhauer and J. Tao. (2005).

Incorporating Semantics in Scientific Workflow Authoring. The 17th International

Conference on Scientific and Statistical Database Management.

BioExtract Server. (2008). Retrieved from http://bioextract.org/help/aboutWorkflows.html

Booth, D., H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris and D. Orchard. (2004).

Retrieved from Web Services Architecture: http://www.w3.org/TR/ws-arch/

Bowers, S., K. Lin and B. Ludascher. (2004). On Integrating Scientific Resources through

Semantic Registration. International Conference on Scientific and Statistical Database

Management.

European Bioinformatics Institute. (2009). WSDbfetch Web service. Retrieved from

http://www.ebi.ac.uk/Tools/webservices/services/dbfetch

Farrell, J. and H. Lausen (Ed.). (2007). Semantic Annotations for WSDL and XML Schema.

Retrieved from http://www.w3.org/TR/sawsdl/

Fisher, P. (2009). Taverna Workflows. Retrieved from

http://www.mygrid.org.uk/outreach/presentations/presentation-fisher2009a/

Galaxy Screencasts. (2009). Retrieved from http://galaxy.psu.edu/screencasts.html

Hadley, M. (2009). Retrieved from Web Application Description Language:

http://www.w3.org/Submission/wadl/

Lig H., C. Hylands, E. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong, Y. Zhao and H. Zheng

(1999). Overview Of The Ptolemy Project. Dept. EECS, Univ. California Berkeley, CA,

ERL Tech. Rep.UCB/ERL no.M99/37.

Ludascher, B., I. Altintas, C. Berkley, D. Higgins, E. Jaegar, M. Jones, E. Lee, J. Tao and Y.

Zhao. (2006). Scientific workflow management and the Kepler system. CONCURRENCY

AND COMPUTATION , 18 (10), 1039-1065.

Lushbough, C., M. Bergman, C. Lawrence, D. Jennewein and V. Brendel. (2008). BioExtract

Server - An Integrated Workflow-enabling System to Access and Analyze

Heterogeneous, Distributed Biomolecular Data. IEEE/ACM Transactions on

Computational Biology and Bioinformatics , 99 (1).

McPhillips, T., S. Bowers, D. Zinn and B. Ludascher. (2009). Scientific workflow design for

mere mortals. Future Generation Comp. Syst. , 25, 541-551.

OASIS. (2009). Retrieved from OASIS: http://www.oasis-open.org

 43

Oinn, T., M. Addis, J. Ferris, D. Marvin, M. Senger, T. Carver, M. Greenwood, K. Glover, M.

Pocock, A. Wipat and P. Li. (2004). Taverna: a tool for the composition and enactment of

bioinformatics workflows. Bioinformatics , 20 (7), 3045-3054.

Rajasekaran, P. (2004). Enhancing Web service Descriptions using WSDL-S.

Salz, R. (2005). ZSI: The Zolera Soap Infrastructure. Retrieved from

http://pywebsvcs.sourceforge.net/zsi.html

Sivashanmugam K., A. Sheth, J. Miller, K. Verma, R. Aggarwal and P. Rajasekaran. (2003).

Metadata and Semantics for Web services and Processes. Databases and Information

Systems , 245-271.

Taylor, J., I. Schenck, D. Blankenberg and A. Nekrutenko. (2007). Using galaxy to perform

large-scale interactive data analyses. Current protocols in bioinformatics , Chapter 10,

Unit 10.5.

Wang, R., D. Brewer, S. Shastri, S. Swayampakula, J. Miller, E. Kraemer and J. Kissinger.

(2009). Adapting the Galaxy Bioinformatics Tool to Support Semantic Web Service

Composition. International Conference on Web Services.

 44

APPENDIX A

GALAXY WEB SERVICE EXTENSION USER'S GUIDE

This guide assumes that the user has installed the Galaxy Web Service extensions on their

system. Download the WSExtensions.tar.gz from the http://www.cs.uga.edu/~guttula. After you

unzip the folder, for installation instructions check the README.txt file in the installation

folder.

This document is intended to be a step by step guide through the functionality of the Galaxy Web

Service Extensions.

Locating the extensions

The REST client, SOAP client and Web Service Format Convertors will appear at the end of the

Tools Menu.

Figure 1 Web service extensions in Galaxy

The SOAP client

To execute a SOAP Web service through the SOAP client, we have to execute three steps. On

clicking the SOAP client link in the Tools menu we see the three steps. These steps have to be

executed in order for the client to function properly.

http://www.cs.uga.edu/~guttula

 45

Figure 2 The 3 steps of SOAP client

Click on the first link and enter the URL for the WSDL file of the Web service. The result of this

step will be a tabular file with the operations of the Web service listed.

Now let us move onto Step 2 by clicking the second link. From the „Choose your operation‟ drop

down list, choose the operation you want to invoke. The result of this step is a tabular file with

the first column being the parameters for this operation and the second column being the data

types of those parameters.

Note: If column 1 and column 2 of this file are blank, it means that this operation does not

take any parameters.

Now click on the third and final step. In this step click the „Add new Input‟ button for each

parameter value you want to enter.

The ‟Inputs‟ area has three drop down lists.

• From the „Choose your inputs‟ drop down list select a parameter you wish to enter the value

for.

• From the „Choose your datatype‟ drop down list select the datatype corresponding to the

parameter you have selected in the first drop down.

• If your input to the parameter is a data file in Galaxy history, select „Yes‟ from the „Do you

need to upload data?‟ drop down list. This will give you a drop down list of all the data files in

Galaxy history and you can choose the appropriate one.

 46

• In case you do not wish to upload data, enter the input value for the parameter in the „Enter the

input value‟ text box.

After you have finished the above procedure for all the required parameters for the operation,

click on execute. The result of this step is the output of the Web service stored as a tabular file.

The REST client

If you wish to invoke a REST Web service then click on the „REST client‟ link in the Tools

menu. Now click on the „Universal REST Client‟ to see the interface.

Enter the URL for the REST Web service.

Click on the „Add new Inputs‟ button to enter a Web service parameter name and value. For each

parameter required by the Web service you will have to click the „Add new Inputs‟ button. In the

„Inputs‟ area, do the following:

• In the „Input the webservice parameter‟ textbox, enter the name of the parameter

• If your input to the parameter is a data file in Galaxy history, select „Yes‟ from the „Do you

need to upload data?‟ drop down list. This will give you a drop down list of all the data files in

Galaxy history and you can choose the appropriate one.

• In case you do not wish to upload data, enter the input value for the parameter in the „Enter the

input value‟ text box.

After you have finished entering values for all the required parameters, click the execute button.

The result will be the output of the Web service stored as a tabular file.

Format convertors for Web services

The output of the SOAP client and REST client are tabular files. Sometimes the output of a Web

service might be in a format other than tabular. In such cases you will observe that though the

content of the output file is formatted in a different format (e.g., FASTA), Galaxy recognizes it

 47

as tabular. In such a case you can convert this result from the Web service into either FASTA

format by using the „Format convertors for Web services‟ tools.

To do this, click on the appropriate convertor, choose the output file from the Web service stored

in history and click on execute. This will save your file in the correct format. Same applies to

BED and MAF formats.

Note: These convertors are different from the ‘Convert Formats’ tool supplied by Galaxy.

You should use this tool only if the content of the file is in the desired format, but only

saved as tabular.

Workflows using SOAP client

If you wish to include a SOAP Web service in a workflow, you will have to include the SOAP

client in the workflow.

To do this we use the „Extract Workflow‟ option from the History options of Galaxy.

First, we have to execute the three steps of the SOAP client individually. Then using the „Extract

Workflow‟ option we select those three steps while creating a workflow.

Once this workflow is created and saved, we can add any other tools in this workflow.

If the values to the SOAP Web service parameters need to be changed, you can click on Step 3 of

the SOAP client and change the values.

Note: Once the SOAP workflow is created, values to its parameters can be changed.

However, a different operation than the one used while executing the client cannot be

chosen.

 48

Workflows using REST client

The REST client can be added to a Galaxy workflow like any other tool. No special

considerations are required.

Thanks for using the Web service extensions tool. We hope you enjoy working with it!

 49

APPENDIX B

GALAXY WEB SERVICE EXTENSION DEVELOPER'S GUIDE

This guide is intended for developers who wish to further enhance the Web service extension to

Galaxy. It has technical documentation about the SOAP client, the REST client and the Web

Service format convertors. It is assumed that the developer has set up an instance of the Galaxy

server and the Galaxy Web service extensions.

 50

The Web service extensions to Galaxy are all added as tools to Galaxy. Hence, their source code

can be found in the tools folder of Galaxy. Also, each tool has an eXtended Markup Language

(XML) file attached to it. To learn more about adding tools to Galaxy refer to:

http://bitbucket.org/galaxy/galaxy-central/wiki/AddToolTutorial

To learn more about various tags used in Galaxy tool xml files refer to:

http://bitbucket.org/galaxy/galaxy-central/wiki/ToolConfigSyntax

http://bitbucket.org/galaxy/galaxy-central/wiki/AddToolTutorial
http://bitbucket.org/galaxy/galaxy-central/wiki/ToolConfigSyntax

 51

The SOAP client

Code Location: GALAXY_HOME/tools/SOAPclient

Modules: getOps.py, getInputs.py, invoke.py

Tool XML files: getInputs.xml, getOps.xml, invoke.xml

Packages used: clientGenerator

getOps.py

This module is the first step in the SOAP client.

This tool takes the WSDL URL as input from the user and writes a local file containing the

operations of the Web service.

This module uses the creatorEngineComplex and wsdl2path modules from the clientGenerator

package.

The wsdlUrl2path method from the wsdlLoader class in the wsdl2path module is used to execute

the wsdl2py program that generates the client stubs for the WSDL in a given folder.

Thus, for every Web service the SOAP client invokes a client folder with the name of its WSDL

is created in GALAXY_HOME/webservices folder. This client folder contains the client stubs

created by wsdl2py.

The path2Ops method from the ClientCreator class in the creatorEngineComplex module is used

to find the operations in the client stub of the Web service. This method returns dictionary

containing the operation names of the Web service and the SOAP objects relating to the

operation.

The resulting data file where the operations are written is a tabular file with the following details

Column 1: List of operations.

 52

Column 2: Name of the client folder.

It is necessary to write the name of the client folder since, the input to our next step is this file

and we need this information in the next step.

getInputs.py

This module is the second step in the SOAP client.

It takes the Web service client stub name, name of chosen operation and name output file as

arguments.

This module uses the creatorEngineComplex module from the clientGenerator package.

It uses the opname2inputs method of the ClientCreator class in the creatorEngineComplex

module which returns a dictionary of form {inputname: typecode} where typecode is the data

type of inputname.

The resulting data file where the operations are written is a tabular file with the following details

Column 1: List of input parameter names.

Column 2: List of parameter datatypes

Column 3: Name of the client folder

Column 4: Name of the chosen operation

It is necessary to write the name of the client folder and the chosen operation since, the input to

our next step is this file and we need this information in the next step.

invoke.py

This is the third and final step in the SOAP client.

This module takes the following as input:

 Name of the Web service client folder

 Name of the operation invoked

 53

 Input parameter names

 Input parameter datatypes

 Input parameter values

The datatypes are only used to verify that the user has entered a valid value. A dictionary of the

type {inputname:inputvalue}. This dictionary is passed to the invokeOp method.

The invokeOp method belongs to the ClientCreator class in the creatorEngineComplex module.

It invokes the operation and returns the Web service result.

This result is stored in a tabular file.

 54

The REST client

Code Location: GALAXY_HOME/tools/restclient

Modules: univClient.py

Tool XML files: RESTclient.xml

univClient1.py

This module accepts the following input from the user:

 URL to the Web service

 Parameter name

 Parameter value

A dictionary of the type {paramname:paramvalue} is created. This dictionary is then URL

encoded and passed to the Web service through the urllib.urlopen method.

The results of the invocation are written to a tabular file.

Also, this client maintains a history XML file (createdServices.xml) which contains a list of

REST Web services that have been invoked by the client with their parameter names.

 55

Web Service Format Convertors

Code Location: GALAXY_HOME/tools/Webservice_format_convertors

Modules: formatConvertor.py

Tool XML files: tabTofasta.xml, tabTobed.xml, tabTomaf.xml

This module takes two inputs, the file to read from and file to write to.

In the tool xml files for these tools, it is mentioned that the input type is tabular and the output

type is either fasta, bed or maf.

This module only saves a tabular file with .fasta, .bed or .maf extensions.

