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ABSTRACT 

Dew point temperature is the temperature at which water vapor condenses.  It is an 
important weather variable used to estimate frost, fog, rain, snow, dew, evapotranspiration, near-
surface humidity, and other meteorological variables.  Dew point temperature directly or 
indirectly contributes to productivity of plants, crop damage during freezes, human comfort 
levels, and the loss of human life during heat waves.  Although several studies have focused on 
the estimation of dew point temperature, little attention has been given to short term prediction.  
An artificial neural network (ANN) is a robust computational tool useful for prediction.  The 
goal of this research was to develop ANNs that predict hourly dew point temperatures for up to 
twelve hours.  This system of ANNs was trained on historical weather data from stations located 
throughout the state of Georgia.  These ANNs will be implemented as part of a web-based 
decision support system.   

 
 

INDEX WORDS: Artificial Neural Networks, Dew Point Temperature, Ensemble Networks, 
Decision Support System, Air Temperature, Weather Data, Fuzzy Logic. 



 

 

 

DEW POINT TEMPERATURE PREDICTION USING ARTIFICIAL NEURAL NETWORKS 

 

by 

 

DANIEL B. SHANK 

B.A., Harding University, 2003 

 

 

 

 

 

 

 

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment 

of the Requirements for the Degree 

 

MASTER OF SCIENCE 

 

ATHENS, GEORGIA 

2006 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2006 

Daniel B. Shank 

All Rights Reserved 



 

 

 

DEW POINT TEMPERATURE PREDICTION USING ARTIFICIAL NEURAL NETWORKS 

 

by 

 

 

DANIEL B. SHANK 

 
 
 
 
 
 
 
 
 
 

Major Professor: Dr. Ronald W. McClendon 
 

Committee: Dr. Gerrit Hoogenboom 
Dr. Michael A. Covington  
  
  

 
 
 
 
 
 
 
Electronic Version Approved: 
 
Maureen Grasso 
Dean of the Graduate School 
The University of Georgia 
August 2006  
 



 

 

 

DEDICATION 

I dedicate this thesis to Tim Baird, Steve Baber, and Scott Ragsdale, who 

influenced my academic priorities and more importantly my life priorities. 

 iv



 

 

 

ACKNOWLEDGEMENTS 

I would like to thank Dr. Michael Covington, for being on my committee as a 

replacement committee member, Dr. Gerrit Hoogenboom, for his domain knowledge he 

brought to this project, and Dr. Ron McClendon, for his constant suggestions and 

instruction in computational intelligence techniques.  In addition to my committee, Dr. 

Joel Paz and Kevin Crowell have been helpful throughout this project, and Brian Smith 

has been an invaluable teammate in our related projects. 

I would like to thank my family for their constant support: my brother Nathan, my 

mother Sally, and my father Harold, who always wanted to know about the latest thesis 

update.  In addition to my family, I would like to thank my Athens family, the Campus 

View Church of Christ, including my roommates: Tad, Tyler, and Ben.  Most of all I am 

thankful to God for all He has done in my life. 

This work was funded in part by a partnership between the USDA-Federal Crop 

Insurance Corporation through the Risk Management Agency and the University of 

Georgia and by state and federal funds allocated to Georgia Agricultural Experiment 

Stations Hatch projects GEO00877 and GEO01654. 

 v



 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS.............................................................................................................v 

CHAPTER 

1 INTRODUCTION .........................................................................................................1 

2 DEW POINT TEMPERATURE PREDICTION USING ARTIFICIAL 

NEURAL NETWORKS............................................................................................5 

3 ENSEMBLE ARTIFICIAL NEURAL NETWORKS FOR DEW POINT 

TEMPERATURE PREDICTION ...........................................................................37 

4 SUMMARY AND CONCLUSION ............................................................................71 

REFERENCES ..............................................................................................................................73 

 

 

 

 

 

 

 

 

 

 vi



 

 

CHAPTER 1 

INTRODUCTION 

 

Dew point temperature is the temperature at which water vapor in the air will 

condense into dew, frost, or water droplets given a constant air pressure.  It can be 

defined alternately as the temperature at which the saturation vapor pressure and actual 

vapor pressure are equal (Merva, 1975).  Dew point temperature together with relative 

humidity can be used to determine the moisture content in the air.  A dew point 

temperature below 0˚C is referred to as the frost point because frost is produced when the 

air cools to that temperature. 

Dew point temperature is a good estimate of near-surface humidity and can affect 

the stomatal closure in plants, where the productivity of the plants can be reduced by low 

humidity (Kimball et al., 1997).  Dew can be essential to plant survival, especially in arid 

regions that infrequently have rainfall (Agam and Berliner, 2006).  Many agronomical, 

ecological, hydrological, and climatological models require dew point temperature as an 

input to estimate evapotranspiration (Hubbard et al., 2003).  Dew point temperature may 

be used in calculating actual vapor pressure or estimating relative humidity (Mahmood 

and Hubbard, 2005).  Dew point temperature coupled with wet-bulb temperature can be 

used to calculate critical damage air temperature, allowing producers to respond to 

potential frosts that may damage crops (Snyder and Melo-Abreu, 2005).  During a 

summer heat wave in of 1995 in the Midwestern United States, over 1000 people died 
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due to a combination of high air temperatures and high dew point temperatures 

(Sandstrom et al., 2004). 

Hubbard et al. (2003) developed a regression model for estimating daily average 

dew point temperature with a mean absolute error (MAE) of 2.20˚C.  Although 

estimations of this type are useful for determining values for missing historical weather 

data, they do not allow the prediction of values in the future.  Diab and Saade (1999) used 

a fuzzy logic inference system to predict dew point temperature one day ahead with 

absolute errors ranging to 8˚C. 

An artificial neural network (ANN) is a robust computational technique primarily 

used for pattern recognition, classification, and prediction (Bose and Liang, 1996; 

Haykin, 1999).  The use of ANNs in meteorological applications includes prediction of 

ozone concentration, sulfur dioxide concentration, tornadoes, storms, solar radiation, 

carbon dioxide, pollutants, and monsoon rainfall (Gardner and Dorling, 1998), monthly 

and year precipitation levels (Bodri and Cermak, 2000), tide charts (Steidley et al., 2005), 

wave heights (Wedge et al., 2005), flash floods (Luk et al., 2000), and air temperature 

(Jain et al., 2003; Smith et al., 2006).  Mittal and Zhang (2003) developed an ANN model 

for estimation, not prediction, of dew point temperature and other weather variables using 

dry-bulb temperature and relative humidity as inputs.  Psychrometric charts were used for 

their dataset instead of actual historical data with an estimated dew point temperature 

MAE of 0.305˚C. 

Multiple ANNs can be combined into one model in what is referred to as an 

ensemble ANN.  Maqsood et al. (2004) use single ANNs and ensemble ANNs for 

prediction of air temperature, wind speed, and humidity.  Each of these models was not 
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only trained and evaluated individually, but also was incorporated into two ensemble 

network types: a winner-take-all and a weighted average, both based on classification 

certainty of the member networks.  Cannon and Lord (2000) used ensemble networks for 

the prediction of maximum hourly ozone concentration, useful for predicting extreme 

ozone conditions which may be hazardous. They developed multiple resilient error 

backpropagation ANNs to form an ensemble networks using bootstrap aggregation with 

resulting MAEs of 4.6 ppb to 6.6 ppb. 

Dew point temperature has been estimated (Kimball et al., 1997; Mahmood and 

Hubbard, 2005; Mittal and Zhang, 2003; Parlange and Katz, 2000) and analyzed for long-

term trends (Robinson, 1998; Robinson, 2000; Sandstrom et al., 2004), but there is little 

research on short-term dew point temperature prediction.  The goal of this thesis research 

is to develop ANN models to predicted dew point temperature for up to twelve hours 

ahead.  To accomplish this goal, Georgia statewide historical weather data from the 

University of Georgia Automated Environmental Monitoring Network (AEMN) is used.  

The AEMN provides applications through their website (www.georgiaweather.net) useful 

for natural resource management and agricultural decision-making (Hoogenboom, 2000).  

Over 70 weather stations spread throughout Georgia collect and aggregated weather data 

every 15 minutes into totals or averages from values collected each second.  The ANN 

dew point temperature prediction models will be incorporated as a decision support 

system application for the AEMN website. 

Chapter 1 provides background information to the dew point temperature domain, 

a brief review of related literature, and the goal of this thesis.  Chapter 2 introduces the 

problem fully, and then describes the model development, methodology, experiment 
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results, and primary conclusions and application potential.  Chapter 3 enhances the 

Chapter 2 model by introducing alternate ANN stopping criteria, seasonal models, and 

ensemble ANN networks with seasonal member ANNs and provides a discussion of the 

application of this model as part of a decision support system.  Chapter 4 summarizes all 

the research and draws conclusions suggesting possible future research. 
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1 Shank, D.B., G. Hoogenboom, and R. W. McClendon.  To be submitted to Agricultural and Forest 
Meteorology. 
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ABSTRACT 

 Dew point temperature is the temperature at which water vapor in the air will 

condense into liquid.  This temperature can be useful in estimating frost, fog, rain, snow, 

dew, evapotranspiration, and other meteorological variables.  Dew point temperature is 

useful in the estimation of near-surface humidity, which can affect the stomatal closure in 

plants and contributes to human and animal comfort levels.  The goal of this study was to 

use artificial neural networks (ANNs) to predict dew point temperature from one to 

twelve hours ahead using prior weather data as inputs.  This study explores using three-

layer backpropagation ANNs and weather data combined for three year from 20 locations 

in Georgia, United States, to develop non-location-specific models for dew point 

temperature prediction.  Specific objectives included selection of the important weather 

related inputs, setting of ANN parameters, and selection of the duration of prior data.  An 

iterative search found that in addition to dew point temperature, important weather 

related ANN inputs included relative humidity, solar radiation, air temperature, wind 

speed, and vapor pressure.  Experiments also showed the best models included 60 nodes 

in the ANN hidden layer, a ±0.15 initial range for the ANN weights, a 0.35 ANN learning 

rate, and a duration of prior weather related data used as inputs ranging from six to 30 

hours based on the prediction period.  The evaluation of the final models with weather 

data from 20 separate locations and a different year showed that the one-hour prediction 

had a mean absolute error (MAE) of 0.550˚C, the four-hour prediction model had an 

MAE of 1.234˚C, the eight-hour prediction had an MAE of 1.799˚C, and the twelve-hour 

prediction had an MAE of 2.280˚C.  These final models adequately predicted dew point 

temperature using previously unseen weather data, including difficult freeze and heat 
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stress extremes.  Future research could include exploring alternate stopping criteria for 

ANN training and developing seasonal ANN models that could be combined into an 

ensemble ANN. 
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INTRODUCTION 

 Dew point temperature is the temperature at which water vapor in the air will 

condense into dew or water droplets given that the air pressure remains constant.  

Alternatively, it can be defined as the temperature at which the saturation vapor pressure 

and actual vapor pressure are equal (Merva, 1975).  Dew point temperature coupled with 

relative humidity can be used to determine the amount of moisture in the air.  Dew point 

temperature is a good estimate of near-surface humidity, which can affect the stomatal 

closure in plants, where a low humidity can reduce the productivity of the plants 

(Kimball et al., 1997).  When the surface air temperature drops to the level of the dew 

point temperature, dew forms.  Especially in arid regions that have infrequent rainfall, the 

dew can be essential to plant survival (Agam and Berliner, 2006). 

Many agronomical, ecological, hydrological, and climatological models require 

dew point temperature as an input to estimate evapotranspiration (Hubbard et al., 2003).  

Dew point temperature may also be used to calculate actual vapor pressure or estimate 

relative humidity (Mahmood and Hubbard, 2005).  Dew point temperature coupled with 

wet-bulb temperature can be used to calculate critical damage air temperature for specific 

crops, allowing producers to respond to potential frosts that may damage them (Snyder 

and Melo-Abreu, 2005).  Heat waves, which cause damage and take the lives of people, 

are intensified by high dew point temperatures (Sandstrom et al., 2004).  A study by 

Robinson (2000) suggests that the dew point temperature in the United States is slowly 

increasing over time and, therefore, could be an important weather variable for studies on 

long-term climate change.  
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 Hubbard et al. (2003) developed a regression model for estimating the daily 

average dew point temperature, using the daily mean, minimum, and maximum air 

temperature as inputs.  Their research used 14 years of data for six cities from South 

Dakota, Nebraska, Colorado, and Kansas in the United States.  Their regression equation 

based on multiple cities was more accurate than the regression equations for each of the 

individual cities, with a mean absolute error (MAE) of 2.2˚C for the most accurate 

regression equation.  These types of estimations are useful for determining the values for 

missing historical weather data, but do not allow the prediction of future values. 

 Diab and Saade (1999) used a fuzzy inference system with rules developed based 

on their own intuition about the correlation of weather variables to predict dew point 

temperature for exactly 24 hours ahead.  The inference rules used the season of the year, 

barometric pressure, air temperature, and wind speed as inputs, each with their own fuzzy 

membership functions while the output dew point temperature membership functions 

were expressed as low, medium, and high.  The evaluation with 40 uniformly distributed 

days for all four seasons in 1994 resulted in absolute errors ranging to a maximum of 8˚C 

with no mean error presented. 

 An artificial neural network (ANN) is a robust computational technique modeled 

after biological neuron connections found in human brains (Bose and Liang, 1996; 

Haykin, 1999).  ANNs have been used for to help solve many real world problems such 

as pattern matching, classification, and prediction (Bose and Liang, 1996; Gardner and 

Dorling, 1998; Haykin, 1999).  Often ANNs have been often used in the atmospheric 

sciences. Gardner and Dorling (1998) review ANNs used for prediction of ozone 

concentration and daily maximum ozone, sulfur dioxide concentration, tornadoes, 
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thunderstorms, solar radiation, carbon dioxide, pollutants and monsoon rainfall.  More 

recently, Bodri and Cermack (2000) used an ANN and 38 years of rainfall data to predict 

monthly and yearly precipitation levels for multiple sites in the Czech Republic.  Using 

spatial and temporal data of recent rainfall, Luk et al. (2000) developed an ANN for 

short-term precipitation prediction focused on predicting flash flood rainfall amounts for 

15 minutes ahead for various areas of western Sydney, Australia.  Maqsood et al. (2004) 

used an ensemble of ANNs to provide 24-hour predictions for air temperature, wind 

speed, and humidity at the Regina Airport in Canada.  Wedge et al.(2005) developed an 

ANN for prediction of waves spilling over sea walls in using sea conditions and wall 

properties as inputs.  Steidley et al. (2005) use ANNs to predict tide charts for periods of 

3 to 48 hours ahead for a shallow embayment on the coast of Texas, United States. 

 Jain et al. (2003) developed ANNs to predict hourly air temperatures for one to 

twelve hours for three locations in Georgia, United States using inputs of current air 

temperature, relative humidity, solar radiation, and wind speed along with up to six hours 

of prior data.  The MAEs for each location varied from 0.6˚C to 0.7˚C for the one-hour 

prediction period and 2.4˚C to 3.0˚C for the twelve-hour prediction period.  Smith et al. 

(2006) improved on the results of Jain et al. (2003) by using cyclic variables to represent 

the day of year and time of day as additional inputs to the ANN.  Smith at el. (2006) also 

trained multiple ANNs with the same parameters but different initial weights and found 

that the minimum error on multiple networks provided an improved comparison during 

model development, with an MAE of 0.54˚C for a one-hour prediction and 2.33˚C for a 

twelve-hour prediction for the evaluation dataset. 
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 Mittal and Zhang (2003) developed ANNs to estimate several weather variables 

using other weather variables, a process used for estimating missing historical data.  

Their ANN estimations provided an alternative to the traditional estimations done with 

psychrometric charts and mathematical models.  They developed an ANN model to 

estimate wet-bulb temperature, enthalpy, humidity ratio, specific volume, and dew point 

temperature using dry-bulb temperature and relative humidity as inputs.  Their dataset 

included values obtained from the psychrometric charts which did not correspond to 

actual historical data or specific locations, but rather to known relationships among 

weather variables.  The MAE for the dew point temperature estimation was 0.305˚C.   

 Dew point temperature has been estimated (Kimball et al., 1997; Mahmood and 

Hubbard, 2005; Mittal and Zhang, 2003; Parlange and Katz, 2000) and analyzed for long-

term trends (Robinson, 1998; Robinson, 2000; Sandstrom et al., 2004), but there is little 

research on short-term dew point temperature prediction.  The overall goal of this project 

was to develop ANN models for predicting hourly dew point temperatures for up to 

twelve hours in advance.  Specific objectives included to identify the important weather 

related inputs that affect dew point temperature prediction, to determine the preferred 

values of the ANN parameters, and to determine the preferred duration of prior data for 

each prediction period. 

 

METHODOLOGY 

 The University of Georgia Automated Environmental Monitoring Network 

(AEMN) provides web-based delivery of current and historical weather data, as well as 

weather-based tools and applications useful for decision-making in agricultural 
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production and natural resource management (www.georgiaweather.net) (Hoogenboom, 

2000).  With over 70 weather stations distributed throughout Georgia, each station 

collects weather data for variables such as air temperature, relative humidity, vapor 

pressure, wind speed and wind direction, solar radiation, atmospheric pressure, and 

rainfall.  Vapor pressure deficit and dew point temperature are calculated based on these 

variables.  The totals or averages, depending on the variable, are determined for each 15-

minute interval based on one-second observations.  Although the AEMN data collection 

began for some locations in 1992, the determination of dew point temperature only 

started in September 2002 following requests from the horticultural industry. 

 Data from 40 of the AEMN weather stations were used in this study.  Twenty 

sites were used for model development, and 20 different sites were used for model 

evaluation.  These sites were selected to represent the geographic and regional diversity 

of Georgia as shown in Figure 2.1.  The years 2002 through 2004 were used for model 

development and the year 2005 was reserved for a final evaluation.  

 The initial weather related inputs considered included current and prior values of 

air temperature, relative humidity, vapor pressure, vapor pressure deficit, wind speed, 

solar radiation, rainfall, and dew point temperature.  A sequence of prior values through 

the current value constitutes a history of that variable and is referred to as prior data.  For 

each of the weather related variables, an hourly rate of change was calculated for prior 

points in time and used as an additional input.  For example, the rate of change for dew 

point temperature between two and three hours prior to the time of prediction t is Td(t-2) – 

Td(t-3).  Smith et al. (2006) found that including the rate of change of weather related input 

variables reduced the MAE for air temperature prediction.  Both time of day and day of 
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year were included as inputs and encoded, due to the cyclic nature of days and years, 

using four cyclical variables with fuzzy logic type membership functions.  An example of 

the fuzzy logic type membership function used for time of day is shown in Figure 2.2.  If 

the time of day is 1200 hours, then the fuzzy logic membership functions shows 1.0 as 

the degree to which it is noon, and the degree to which it is the other three as 0.0.  If the 

time of day is 0900, the fuzzy logic membership function shows the degree to which it is 

noon and morning as 0.5, and the degree to which it is evening and midnight as 0.0.  If 

the time of day is an intermediate value, the fuzzy membership function gives a scaled 

value indicating how much that time of day is represented by the adjacent cyclic 

categories.  Four similar fuzzy membership functions for seasons were used to represent 

the day of year. 

 An error backpropagation (EBP) algorithm was used as described by Haykin 

(1999) with a separate ANN model developed for each prediction period.  The ANN had 

a Ward architecture with three fully-connected layers: input, hidden, and output.  This 

architecture has three slabs of nodes in the single hidden layer with each the nodes in 

each slab using an alternative activation function (Ward System Group, 1993).  The Ward 

architecture has been used for air temperature prediction (Jain et al., 2003; Smith et al., 

2006) and dew point temperature estimation (Mittal and Zhang, 2003).  Each of the three 

slabs had the same number of nodes and used the Gaussian, Gaussian complement, and 

hyperbolic tangent activation functions as shown in Figure 2.3.  The number of nodes in 

each slab of the hidden-layer and number of input nodes were varied during model 

development.  The output layer always consisted of a single node using a logistic 

activation function, and it represented the predicted dew point temperature (°C).  Twelve 
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separate models were developed to predict hourly dew point temperatures for prediction 

periods of one to twelve hours.  The input layer was scaled to a range of 0.1 to 0.9 based 

on the extreme values for each input in the development dataset.  These settings were 

based on previous work by Jain at al. (2003) and Smith et al. (2006), who showed that 

this type of ANN was suitable for air temperature prediction. 

 An EBP ANN model of this type has two modes.  The first is a feed-forward 

mode where a set of inputs, xi, where i ranges from 1 to I, is mapped to a single output z, 

by the following equations: 
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where jiα  are the weights from the input layer to the hidden layer, jβ  are the weights 

from the hidden layer to the output node, and yj is output of the nodes in the hidden layer, 

where j ranged from 1 to J.  The logistic activation function g is defined as follows: 
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where n is the input to the activation function.  The second mode of the ANN is 

backpropagating the error to adjust the weights.  The weight adjustment ( )jβ∆  for each 

weight from the hidden layer to the output node jβ  is defined as: 
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where η  is the learning rate and t is the target output value.  The nodes y0 and x0 are bias 

nodes that are always set to one.  The adjustments for all the weights were added after 

every training pattern and this is referred to as a learning event.  An EBP ANN with all 

the parameters including inputs, initial weight range, number of hidden nodes per slab, 

and learning rate was referred to herein as a model.  A single instantiation of the model 

with random initial weights and a randomly ordered set of training patterns selected from 

the development dataset was referred to as a network.   

 Traditionally, EBP ANNs use patterns in a training dataset to search iteratively 

for an optimal set of weights that connect the nodes between adjacent layers.  The testing 

dataset is used to stop the training when the testing dataset error reaches a minimum.  The 

selection dataset is used as a dataset to judge the error of that network after training has 

been stopped and a comparison of selection dataset errors is used for selection of 

parameters during model development.  All model development was conducted using 

data from the development dataset, which consisted of approximately 1,560,000 
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observations.  Preliminary tests indicated that a testing dataset was not necessary if the 

training dataset was sufficiently large.  The error of the training and testing datasets, 

though slightly different, always tracked each other with as few as 20,000 independent 

observations in each dataset.  For example, as the training dataset error continued to 

decrease, the testing dataset error did as well.  Overtraining, where the ANN is able to 

make accurate predictions on the training dataset, but not on the testing and selection 

datasets, can be a problem for ANNs.  These preliminary tests indicated overtraining was 

not a concern as the error continued to decrease on both training and testing datasets even 

after 5,000,000 learning events when the training and testing datasets consisted of at least 

100,000 observations.  Based on this it was decided that a testing dataset would not be 

used and a fixed number of learning events would be used to stop training.  An epoch is 

one pass through all the patterns in the training dataset.  With 100,000 observations in the 

training dataset the decrease in the error from epoch nine to ten was typically less than 

0.01˚C and always less than 0.06˚C, so the stopping criteria for training was arbitrarily 

fixed at ten epochs of 100,000 patterns each, i.e., 1,000,000 learning events.  For model 

development, the selection dataset errors were compared in order to select values of ANN 

parameters for determining the most accurate model. 

Because the development data spanned less than three years, it was not partitioned 

into separate years for the training and selection datasets.  To obtain the best 

representative sample the training and selection datasets consisted of 100,000 patterns 

randomly selected without replacement from the development dataset for each network.  

The training and selection datasets were non-overlapping in patterns, and each 

represented 20 cities for three years of data from 2002 to 2004. 

 16



 In the first experiment, the preferred set of weather related inputs was determined 

using a six-hour prediction period.  Dew point temperature, air temperature, relative 

humidity, vapor pressure, vapor pressure deficit, wind speed, solar radiation, and rainfall 

were the inputs considered in this search.  Using an iterative approach, dew point 

temperature was the only weather related input considered, followed by the input that 

resulted in the minimum error when only one additional weather related input was 

considered.  This model was then taken as the current preferred model, and the approach 

was continued to select the input that produced the minimum error when three weather 

related inputs were considered.  This process was continued until all the possible inputs 

were included or models with additional inputs did not produce a smaller error than the 

previous preferred model.  The initial ANN parameters were arbitrarily chosen to be 20 

hidden nodes per slab for a total of 60 nodes in the hidden layer, a learning rate of 0.1, 

and an initial weight of ±0.2.  An 18-hour duration of prior data was also used in this 

experiment. 

 In the second experiment, the preferred values were determined using a six-hour 

prediction period for the following ANN parameters: number of hidden nodes per slab, 

initial weight range, and learning rate.  As each parameter was varied, the current 

preferred model was determined by the model with the minimum error.  In the third 

experiment the preferred duration of prior data was determined for each prediction period 

ranging from one to twelve hours.  Preliminary tests indicated that the duration of prior 

data was correlated to the prediction period and a search for the preferred model for all 

prediction periods should range from 6 to 30 hours.  To help ensure the reliability of the 
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preferred model for each prediction period, two models with longer durations of prior 

data and two models with shorter durations of prior data were developed.  

 The training for the final evaluation was conducted by training 30 networks for 

each of the twelve prediction periods using half of the development dataset, i.e. 

approximately 780,000 patterns, for a training dataset instead of the 100,000 patterns 

used during model development.  The other half was used as a selection dataset to choose 

the preferred network for each prediction period model.  The twelve preferred networks, 

which represented the twelve final models, were used in feed-forward mode for model 

evaluation on the evaluation dataset. 

The mean absolute error (MAE) between predicted and observed dew point 

temperature for a particular dataset was selected as the measure of accuracy.  For model 

development this was the selection dataset, and for model evaluation this was the 

evaluation dataset.  Because each network was instantiated with random weights and the 

training and selection datasets were selected and ordered randomly, networks 

representing the same model produced different MAEs.  30 observations were considered 

as an adequate population sample to closely approximate statistical measurements such as 

the mean for the population (Freund and Wilson, 1993).  Therefore, it was arbitrarily 

decided that 30 networks, referred to as a network set, would be used to determine the 

accuracy of a model during model development.  The population then would be all 

instances of a model, and each network would be one sampling.  As with any distribution, 

the more samples the higher the statistical validity, but computational time was also a 

consideration.  One network trained for 1,000,000 learning events required one to six 

hours of computational time depending on the parameters, making 30 networks require 
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30 to 180 hours of computational time.  Once trained, a network evaluated in feed-

forward mode on 100,000 observations required only several minutes.  All tests were 

conducted on 36 computers, i.e. 32 Pentium 4 and 4 Pentium 3, in the computer 

laboratories of the Department of Biological and Agricultural Engineering at the 

University of Georgia. 

 Because of the non-normal distribution for a network set, a number of different 

statistical measurements were considered to approximate the error of a model based on a 

network set.  A preliminary test considered seven statistical measurements.  Four 

statistical measurements of central tendency were considered:  the mean, the mean 

truncated 20%, the mean truncated 40%, and the median.  A truncated or trimmed mean 

is the mean of the remaining values after a percentage is removed, half from the 

minimums and half from the maximums.  The truncated mean is useful as a robust 

measure of central tendency, especially for asymmetric distributions (Marazzi and 

Ruffieux, 1999).  Three minimums were considered: the minimum, the average of the 

minimum five, and the average of the minimum ten.  Of all seven statistical measures, the 

average of the minimum five provided the smallest range and standard deviation for the 

preliminary test.  Therefore, the average of the minimum five MAEs for a network set 

was used to approximate the error of a model and was referred to as the MAE for that 

model during model development.    

 

 19



RESULTS AND DISCUSSION 

Model Development 

  During the search for the important weather related inputs, several values were 

held constant including 20 hidden nodes per slab, an 18 hour duration of prior data, a 0.1 

learning rate, a 0.2 initial weight range and a prediction period of six hours.  The fuzzy 

membership function inputs for time of day and day of year (Figure 2.2) were also 

included in each model that was developed.  When only dew point temperature was 

considered as a weather related input, the MAE was 1.620˚C (Table 2.1).  The dew point 

temperature only model was then coupled with each possible remaining weather related 

input to determine the best two-weather-variable ANN.  The model with dew point 

temperature and relative humidity produced the lowest MAE of 1.521˚C.  Continuing 

with this approach, the weather related inputs in order of importance with respect to 

weather variables three through six were solar radiation, air temperature, wind speed, and 

vapor pressure.  The ANN with six weather related inputs resulted in the lowest MAE, 

1.463˚C (Table 2.1).  Vapor pressure deficit and rain did not improve model accuracy 

when they were included.  Vapor pressure deficit was calculated from vapor pressure so 

there was a covariance in predicting dew point temperature. 

 The number of hidden nodes per slab was varied from 10 to 70 in increments of 

10.  The MAE decreased from 1.471˚C to 1.463˚C when the number of hidden nodes was 

increased from 10 to 20 nodes per slab, but thereafter increasing the number of nodes per 

slab had a negligible effect on accuracy.  Therefore, the number of hidden nodes per slab 

selected was 20. 
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 The range of initial weights was varied from ±0.05 to ±0.40 in increments of 0.05.  

An initial weight range of ±0.15 resulted in the lowest MAE of 1.463˚C and was 

therefore selected for further model development.  The learning rate was varied from 0.05 

to 0.60 in increments of 0.05.  A model with a learning rate of 0.35 had the lowest MAE, 

1.445˚C, and was selected for further model development. 

 The duration of prior data was varied from six to 30 hours in increments of six 

hours for the twelve prediction periods, and in some cases the range of the duration was 

extended (Table 2.2).  The model with the lowest MAE and, in the case of a tie, the 

lowest coefficient of variation (CV) for the MAE, for each prediction period was selected 

as the best model for model development.  The best models for the one- and two-hour 

prediction periods were the models that included six hours of prior data; the best models 

for the five-, six-, seven-, nine- and twelve-hour prediction periods included 18 hours of 

prior data; the best models for the three-, four-, ten-, and eleven-hour prediction periods 

included 24 hours of prior data; and the best model for the eight-hour prediction period 

included 30 hours of prior data. 

Model Evaluation 

 The final results for model evaluation are depicted in Figure 2.4.  The MAEs for 

the one-, four-, eight-, and twelve-hour prediction models were 0.550˚C, 1.234˚C, 

1.799˚C, and 2.281˚C, respectively, with a coefficient of determination (r2) of 0.993, 

0.964, 0.924, and 0.889, respectively.  As expected the MAE values increased and the r2 

values decreased as the prediction period increased.  There was also a tendency to 

overpredict at low dew point temperatures.  
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 Sample periods were selected that included the extremes of low and high air 

temperature conditions to demonstrate the prediction of dew point temperature for these 

conditions.  A sample period from March 18 to 20, 2005, for Dahlonega, Georgia, was 

selected as an example of two early morning freezes in late winter.  This scenario would 

represent a situation in which a fruit crop could experience catastrophic damage from 

frost during the blooming phase of the crop.  The predictions of dew point temperature 

for the one-, four-, eight-, and twelve-hour models indicate more accurate predictions for 

the shorter than the longer prediction periods during these winter freezes (Figure 2.5).  

The one- and four-hour predictions showed a drop in dew point temperature during the 

freeze event, but the four-hour model placed it later than it actually occurred.  In contrast, 

the eight- and twelve-hour models did not predict the drop in dew point temperature, but 

instead predicted that it would remain steady around 1˚C to 3˚C.  Similarly, the low dew 

point temperature between 1200 and 1800 on March 19 was predicted well by the one-

hour prediction, fairly accurately with the four-hour model predicting an even lower dew 

point temperature, and less accurately by the eight- and twelve-hour models that 

predicted higher values for the dew point temperature than actually occurred. 

For the prediction of a high dew point temperature associated with an extreme of 

high air temperature, a sample period from August 22 to 23, 2005, for Statesboro, GA, 

was selected.  The highest observed dew point temperature in Statesboro during 2005 

occurred on the August 22.  The predictions of dew point temperature for the one-, four-, 

eight-, and twelve-hour models again indicate more accurate predictions for shorter 

prediction periods compared to longer prediction periods for this extreme event during 

summertime (Figure 2.6).  The one-, four-, and eight-hour models predicted the dew 
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point temperature accurately from 1200 to 1800, the highest air temperature portion of 

August 22, where the twelve-hour model prediction did not vary during that time as the 

observed dew point temperature changed.  All models were less accurate for the high dew 

point temperature that occurred between 1800 and 2100 on August 22.  Only the one-

hour model predicted the climbing dew point temperature during this period, yet it did 

not accurately predict the maximum value.  The four-, eight-, and twelve-hour models 

predicted a relatively stable dew point temperature for this period. 

The twelve ANN models can be sequenced in order to provide a twelve-hour 

prediction track for dew point temperature.  This is illustrated in Figure 2.7 using an early 

morning freeze example from March 14 to 15, 2005, for Tiger, GA.  The 2100 prediction 

track shows a slight decrease in the dew point temperature, but it overpredicted the dew 

point temperature during the freeze by 4˚C to 5˚C.  Yet predicting only three hours later 

at midnight, the prediction track more closely followed the actual freeze that occurred.  It 

also indicated that the dew point temperature would remain slightly above 0˚C until 0400 

to 0500, while the observed dew point temperature fell below 0˚C around 0200.  Even 

with that inaccuracy, the midnight prediction track compared to the 2100 prediction track 

is extremely accurate and correctly shows that the dew point temperature would decrease 

to below 0˚C, that the minimum dew point temperature would occur between 0600 and 

0700, and that the dew point temperature would increase from 0700 to 1200. 

The models developed in this research show how dew point temperature can be 

predicted with an ANN, instead of being calculated or estimated by other weather 

variables.  Although the results varied, the ANN models were able to adequately predict 

in many difficult conditions, including during extreme heat and freezing conditions.  
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These types of predictions are useful in decision making for ecologists, meteorologists, 

and agricultural producers and researchers. 

 

APPLICATION AND FUTURE WORK 

 As shown, the twelve ANN models can be used in sequence to represent a 

continuous dew point temperature prediction from the prediction time to twelve hours 

ahead.  These types of prediction tracks will be implemented as part of a decision support 

system on the AEMN website (www.georgiaweather.net), a weather-based information 

system.  In future work, possible experiments could include examining different criteria 

for stopping training and examining the use of momentum in combination with various 

learning rates to produce the optimal results.  Because dew point temperature varies 

dramatically with season, another approach would be to train four ANNs, one for each 

season.  The four seasonal ANNs could be used individually or they could be combined 

with an ensemble ANN approach. 

 

ACKNOWLEDGEMENTS 

This work was funded in part by a partnership between the USDA-Federal Crop 

Insurance Corporation through the Risk Management Agency and the University of 

Georgia and by state and federal funds allocated to Georgia Agricultural Experiment 

Stations Hatch projects GEO00877 and GEO01654. 

 

 

 24



References 

Agam, N. and Berliner, P.R., 2006. Dew formation and water vapor absorption in semi-
arid environments – A review. Journal of Arid Environments(65): 572-590. 

 
Bodri, L. and Cermak, V., 2000. Prediction of extreme precipitation using a neural 

network:  application to summer flood occurrence in Moravia. Advances in 
Engineering Software 31: 311-321. 

 
Bose, N.K. and Liang, P., 1996. Neural Network Fundamentals with Graphs, Algorithms, 

and Applications. McGraw-Hill Series in Electrical and Computer Engineering. 
McGraw-Hill, New York. 

 
Diab, H.B. and Saade, J.J., 1999. Weather prediction using fuzzy sets and inference 

methodology. Journal of Intelligent & Fuzzy Systems 7(3): 283-305. 
 
Freund, R.J. and Wilson, W.J., 1993. Statistical Methods. Academic Press, San Diego. 
 
Gardner, M.W. and Dorling, S.R., 1998. Artificial neural networks (the multilayer 

perceptron) – A review of applications in the atmospheric sciences. Atmospheric 
Environment 32(14-15): 2627-2636. 

 
Haykin, S., 1999. Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper 

Saddle River, NJ. 
 
Hoogenboom, G., 2000. The Georgia automated environmental monitoring network. 

Preprints of the 24th Conference On Agricultural and Forest Meteorology: 24-25. 
 
Hubbard, K.G., Mahmood, R. and Carlson, C., 2003. Estimating daily dew point 

temperature for the northern Great Plains using maximum and minimum 
temperature. Agronomy Journal 95(2): 323-328. 

 
Jain, A., McClendon, R.W., Hoogenboom, G. and Ramyaa, R., 2003. Prediction of frost 

for fruit protection using artificial neural networks. American Society of 
Agricultural Engineers, St Joseph, MI, ASAE Paper 03-3075. 

 
Kimball, J.S., Running, S.W. and Nemani, R., 1997. An improved method for estimating 

surface humidity from daily minimum temperature. Agricultural and Forest 
Meteorology 85(1-2): 87-98. 

 
Luk, K.C., Ball, J.E. and Sharma, A., 2000. A study of optimal model lag and spatial 

inputs for artificial neural network for rainfall forecasting. Journal of Hydrology 
227: 56-65. 

 

 25



Mahmood, R. and Hubbard, K.G., 2005. Assessing bias in evapotranspiration and soil 
moisture estimates due to the use of modeled solar radiation and dew point 
temperature data. Agricultural and Forest Meteorology 130(1-2): 71-84. 

 
Maqsood, I., Khan, M.R. and Abraham, A., 2004. An ensemble of neural networks for 

weather forecasting. Neural Computing & Applications 13: 112-122. 
 
Marazzi, A. and Ruffieux, C., 1999. A truncated mean as an asymmetric distibution. 

Computational Statistics & Data Analysis 32(1): 79-100. 
 
Merva, G.E., 1975. Physioengineering Principles. AVI, Westport, Connecticut. 
 
Mittal, G.S. and Zhang, J., 2003. Artificial neural network-based psychrometric predictor. 

Biosystems Engineering 85(3): 283-289. 
 
Parlange, M.B. and Katz, R.W., 2000. An extended version of the Richardson model for 

simulating daily weather variables. Journal of Applied Meteorology 39(5): 610-
622. 

 
Robinson, P.J., 1998. Monthly variations of dew point temperature in the coterminous 

United States. International Journal of Climatology 18: 1539-1556. 
 
Robinson, P.J., 2000. Temporal trends in United States dew point temperatures. 

International Journal of Climatology 20(9): 985-1002. 
 
Sandstrom, M.A., Lauritsen, R.G. and Changnon, D., 2004. A central-U.S. summer 

extreme dew-point climatology (1949-2000). Physical Geography 25(3): 191-
207. 

 
Smith, B.A., McClendon, R.W. and Hoogenboom, G., 2006. Improving air temperature 

prediction with artificial neural networks. International Journal of Computational 
Intelligence 3(3): 179-186. 

 
Snyder, R.L. and Melo-Abreu, J.P.d., 2005. Frost protection: fundamentals, practice and 

economics, Volume 1, Food and Agricultural Organization of the United Nations, 
Rome. 

 
Steidley, C., Sadovski, A., Tissot, P. and Bachnak, R., 2005. Using an artificial neural 

network to improve predictions of water level where tide charts fail. In: M. Ali 
and F. Esposito (Editors), Innovations in Applied Artificial Intelligence. Springer, 
Bari, Italy. 

 
Ward System Group, 1993. Manual of NeuroShell 2, Frederick, MD. 
 
Wedge, D., Ingram, D., McLean, D., Mingham, C. and Bandar, Z., 2005. A global-local 

artificial neural network with application to wave overtopping prediction. In: W. 

 26



Duch, J. Kacprzyk, E. Oja and S. Zadrozny (Editors), Artificial Neural Networks: 
Formal Models and Their Applications - ICANN 2005. Springer, Warsaw, Poland. 

 
 
 
 
 
 

 27



Table 2.1 
The effect of selected weather related variable input combinations on dew point 

temperature prediction using for the development dataset using artificial neural networks 
Dew point 

temperature 
 

(°C) 

Relative 
humidity 

 
(%) 

Solar 
radiation 

 
(W/m2) 

Air 
temperature 

 
(°C) 

Wind 
speed 

 
(m/s) 

Vapor 
pressure 

 
(kPa) 

Vapor 
pressure 

deficit 
(kPa) 

Rain 
 
 

(mm) 

MAE* 
 
 

(°C) 
Dew point temperature only 

X        1.620 
Two variables 

X X       1.521† 
X  X      1.579 
X   X     1.535 
X    X    1.585 
X     X   1.602 
X      X  1.524 
X       X 1.614 

Three variables 
X X X      1.498† 
X X  X     1.509 
X X   X    1.503 
X X    X   1.509 
X X     X  1.516 
X X      X 1.508 

Four variables 
X X X X     1.480† 
X X X  X    1.487 
X X X   X   1.497 
X X X    X  1.488 
X X X     X 1.492 

Five variables 
X X X X X    1.477† 
X X X X  X   1.485 
X X X X   X  1.481 
X X X X    X 1.499 

Six variables 
X X X X X X   1.463† 
X X X X X  X  1.474 
X X X X X   X 1.483 

Seven variables 
X X X X X X X  1.470 
X X X X X X  X 1.470 

*Average of the minimum five mean absolute errors (MAEs) of the selection dataset out 
of 30 networks 

†The best variables selected based on the minimum MAE
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Table 2.2 
The effect of the duration of prior data and prediction period on dew point temperature prediction based on the MAE* and its 

coefficient of variation (CV) 
Mean absolute error (MAE)* (°C) 

(Coefficient of variation) (%) 
                  Prediction period 
                           (hours) 
Duration          
of prior data        
(hours) 

 
 
1 
 
 

2           3 4 5 6 7 8 9 10 11 12

2 0.503 
(0.13) 

0.778 
(0.95) – – – – – – – – – – 

4 0.502 
(0.63) 

0.776 
(0.31) – – – – – – – – – – 

6 0.500†
(0.35) 

0.772†
(0.43) 

0.996 
(0.38) 

1.178 
(0.19) 

1.338 
(0.46) 

1.476 
(0.54) 

1.599 
(0.13) 

1.728 
(0.50) 

1.831 
(0.39) 

1.944 
(0.96) 

2.028 
(0.30) 

2.118 
(0.11) 

12 0.502 
(0.45) 

0.785 
(0.30) 

0.991 
(0.79) 

1.181 
(0.82) 

1.323 
(0.44) 

1.458 
(0.58) 

1.585 
(0.57) 

1.711 
(0.56) 

1.813 
(0.50) 

1.907 
(0.36) 

2.010 
(0.21) 

2.084 
(0.60) 

18 0.507 
(0.68) 

0.775 
(0.75) 

0.993 
(0.79) 

1.158 
(0.72) 

1.318†
(0.16) 

1.445† 
(0.69) 

1.581†
(0.58) 

1.697 
(0.79) 

1.801†
(0.61) 

1.895 
(0.21) 

2.007 
(0.80) 

2.076†
(0.36) 

24 0.508 
(0.27) 

0.776 
(0.52) 

0.981†
(0.45) 

1.158†
(0.30) 

1.318 
(0.79) 

1.446 
(0.48) 

1.591 
(0.57) 

1.694 
(0.28) 

1.807 
(0.42) 

1.876†
(0.70) 

1.987†
(0.49) 

2.081 
(0.25) 

30 0.507 
(0.53) 

0.778 
(0.48) 

0.990 
(0.37) 

1.174 
(0.96) 

1.320 
(0.26) 

1.461 
(1.00) 

1.587 
(0.44) 

1.693†
(0.36) 

1.821 
(0.63) 

1.912 
(0.79) 

1.996 
(0.63) 

2.083 
(0.79) 

36 – – 0.992 
(0.66) – – – – 1.714 

(1.16) – 1.905 
(0.50) 

1.999 
(0.86) – 

42 – – – – – – – 1.720 
(0.33) – – – – 

*Average of the minimum five MAEs of the selection dataset for 30 networks 
†Duration of prior data selected for each prediction period
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Figure 2.1: Automated Environmental Monitoring Network (AEMN) weather stations, 20 
sites selected for model development and 20 sites selected for model evaluation 
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Figure 2.2:  The degree of membership for four cyclic input variables for time of day as 
determined by the fuzzy membership functions 
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Figure 2.3:  Ward error backpropagation (EBP) artificial neural network (ANN) 
architecture with a single hidden layer consisting of three slabs of hidden nodes with 
different activation functions: Gaussian, Gaussian complement, and hyperbolic tangent 
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Figure 2.4:  Performance of predicted dew point temperature for the evaluation dataset 
for the (a) one-hour, (b) four-hour, (c) eight-hour, and (d) twelve-hour prediction models  
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Figure 2.5: Predicted dew point temperature for Dahlonega, GA with (a) one-hour, (b) four-hour, (c) eight-hour and (d) twelve-hour 
prediction models.  Observed dew point temperature and air temperature are also shown. 
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Figure 2.6: Predicted dew point temperature for Statesboro, GA with (a) one-hour, (b) four-hour, (c) eight-hour and (d) twelve-hour 
prediction models.  Observed dew point temperature and air temperature are also shown. 
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Figure 2.7: Predicted dew point temperature at 2100 and 2400 on March 14 to 15, 2005, 
based on a sequence of twelve models for Tiger, GA.  Observed dew point temperature 
and air temperature are also shown. 
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CHAPTER 3 

ENSEMBLE ARTIFICIAL NEURAL NETWORKS FOR DEW POINT 

TEMPERATURE PREDICTION2

                                                 
2 Shank, D.B., R. W. McClendon, G. Hoogenboom, and J. O. Paz.  To be submitted to Applied Artificial 
Intelligence. 

 37



ABSTRACT 

Dew point temperature is the temperature at which water vapor condenses into water 

droplets, dew or frost.  Dew point temperature is needed as an input to estimate or 

calculate several meteorological variables, and it contributes to human and animal 

comfort levels.  In conjunction with air temperature, dew point temperature determines 

the severity of freezes, which can cause damage to crops, and heat waves, which can 

injure people.  The goal of this study was to develop artificial neural network (ANN) 

models to improve on previous ANN dew point temperature prediction research.  These 

improvements include optimizing ANN stopping criteria, comparing seasonal models to 

year-round models, and developing ensemble ANNs to blend the output of seasonal 

models.  For an ANN trained with 100,000 patterns per epoch, the error was reduced by 

using a 2000-pattern testing set at an interval of 20 learning events to decide when to stop 

training.  Seasonal ANN models were blended together in an ensemble ANN with the 

weight of member networks determined using a fuzzy-membership function based on the 

day of year.  These ensemble models were shown to produce lower errors than year-

round, non-ensemble models.  The mean absolute errors (MAEs) of the final models 

evaluated with an independent dataset included 0.795˚C for a two-hour prediction, 

1.485˚C for a six-hour prediction, and 2.146˚C for a twelve-hour prediction.  The final 

model MAEs when compared to the previous research were reduced by 0.008˚C, 0.081˚C 

and 0.135˚C, respectively.  It can be concluded that the methods used in this research 

were affective in more accurately predicting year-round dew point temperature, yet a 

more complete exploration of each of the methods is left to future research.  The ANN 

models for different prediction periods were sequenced to provide a twelve-hour dew 
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point temperature prediction system which will be implemented on the Automated 

Environmental Monitoring Network website (www.georgiaweather.net). 
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INTRODUCTION  

 As air temperature decreases, dew point temperature is the temperature at which 

water vapor will condense into liquid water or dew, assuming that air pressure remains 

constant.  The dew point temperature below 0˚C, referred to as the frost point, is the 

temperature the air must cool to for frost.  Applications for dew point temperature include 

estimating near surface humidity, calculating vapor pressure (Mahmood and Hubbard, 

2005), and estimating evapotranspiration (Hubbard et al., 2003).  Dew point temperature 

is particularly important during the hottest and coldest seasons because of the potential 

effect of the extreme dew point temperatures.  Low dew point temperatures, along with 

wet-bulb temperature, can be used to calculate critical damage air temperature in crop 

specific conditions, helping agricultural producers prepare for damaging frosts (Snyder 

and Melo-Abreu, 2005).  Although some plants have developed resistance and tolerance 

to frost, it still causes damage to most of the agricultural, especially horticultural, crops 

(Agrawal et al., 2004; Snyder and Melo-Abreu, 2005).  Over 1000 people died in a 1995 

summer heat wave in the Midwestern United States, and the deaths were attributed to 

both the high air temperatures and the high dew point temperatures (Sandstrom et al., 

2004).  Extremely high dew point temperatures can also affect air conditioning use and 

can decrease the efficiency of air conditioning units that use evaporative cooling (Sparks 

et al., 2002). 

 Sandstrom et al. (2004) analyzed extreme summer dew point temperatures using 

52 years of data for 68 locations throughout the central United States.  They define daily 

average dew point temperatures greater than or equal to 22˚C to constitute an extreme 

day.  A region bordering the Gulf of Mexico, including approximately half of Georgia, 

 40



produced an appreciably higher average yearly number of extreme days due to the 

moisture produced by the Gulf of Mexico.  Of the two locations in Georgia, Macon was 

in this region with an average of 27 extreme days per year, while Atlanta was not in the 

region with an average of only 7 extreme days per year.  Likewise, Chattanooga, TN, 

near the northern border of Georgia had an average of 11 extreme days per year, while 

Tallahassee, FL, near the Gulf and southern border of Georgia had an average of 54 

extreme days per year.  Robinson (1998) used national historical data from 1961 to 1990 

from 222 weather stations to show a climatology of monthly dew point temperature 

averages for the contiguous United States.  The average monthly dew point temperature 

for Georgia ranged from 0˚C to 10˚C for January through March, 10˚C to 20˚C for April 

through June, 15˚C to 25˚C for July through September, and 0˚C to 15˚C for October 

through December.  These analyses illustrate the diverse seasonal dew point temperature 

conditions seen throughout Georgia. 

 Hubbard et al. (2003) developed a regression model for estimating daily average 

dew point temperature using air temperature parameters as inputs.  Based on 14 years of 

data and six locations in the Great Plains of the United States, the regression equation had 

an MAE of 2.2˚C.  Although estimations of this type are useful for determining values for 

missing historical weather data, they do not allow the prediction of values in the future.  

Diab and Saade (1999) used a fuzzy logic inference system to predict dew point 

temperature one day ahead.  The inference rules used fuzzy membership functions with 

inputs of barometric pressure, wind speed, and air temperature and outputs of three 

membership functions, which were combined to make one dew point temperature 
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prediction.  The evaluation for 40 uniformly distributed days from 1994 resulted in an 

absolute error that ranged to a maximum of 8˚C. 

 An artificial neural network (ANN) is a robust computational technique, primarily 

used for pattern recognition, classification, and prediction (Bose and Liang, 1996; 

Haykin, 1999).  ANNs have been used for meteorological applications including 

prediction of ozone concentration, sulfur dioxide concentration, tornadoes, storms, solar 

radiation, carbon dioxide, pollutants, and monsoon rainfall (Gardner and Dorling, 1998), 

monthly and year precipitation levels (Bodri and Cermak, 2000), tide charts (Steidley et 

al., 2005), ocean waves overtopping sea walls (Wedge et al., 2005), flash floods (Luk et 

al., 2000), and air temperature (Jain et al., 2003; Smith et al., 2006).  Mittal and Zhang 

(2003) developed an ANN model for estimation of wet-bulb temperature, enthalpy, 

humidity ratio, specific volume, and dew point temperature using dry-bulb temperature 

and relative humidity as inputs.  Estimations of this type are used to fill in missing 

historical dew point temperature data (Kimball et al., 1997), but do not allow for dew 

point temperature prediction.  Mittal and Zhang (2003) developed ANNs as alternatives 

to the estimations traditionally done with mathematical models and psychrometric charts 

using data from the psychrometric charts instead of actual historical data, and the MAE 

for the estimated dew point temperature was 0.305˚C. 

 An ensemble ANN combines the outputs of multiple ANNs to provide one unified 

prediction or classification.  Yang and Browne (2004) discussed two properties of 

ensemble ANNs: accuracy, which is the measure of a network error, and diversity, which 

is the difference between networks in terms of the results produced for the same inputs.  

One theory behind using ensemble networks is that several less accurate networks that 
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are diverse can be combined into a more-accurate ensemble network (Naftaly et al., 1997; 

Yang and Browne, 2004).   

 Maqsood et al. (2004) used single ANNs and ensemble ANNs for prediction of air 

temperature, wind speed, and relative humidity at Regina Airport, Canada.  Each of these 

models was trained and evaluated individually, as well as being incorporated into two 

ensemble network types: a winner-take-all and a weighted average, both based on 

classification certainty of the member networks.  The air temperature, wind speed, and 

relative humidity data for 2001 were partitioned into four seasons, and each network was 

trained on bootstrapped resamplings for each individual season.  The evaluation for each 

season was for only one day selected from the training dataset.  Cannon and Lord (2000) 

applied ensemble networks for the prediction of maximum hourly ozone concentration 

for ten sites in British Columbia, and they focused on extreme hourly ozone 

concentration from May to September that exceeded 82 parts per billion (ppb), which is 

the level at which a public advisory is issued for the region.  They developed multiple 

resilient error backpropagation ANNs to form an ensemble network using bootstrap 

aggregation, i.e. bagging, and a cross validation of dataset years for 1991 to 1996, which 

resulted in  MAEs that ranged from 4.6 ppb to 6.6 ppb. 

 Shank et al. (2006) developed three-layer, error backpropagation ANNs to predict 

dew point temperature for up to twelve hours in advance for Georgia, USA.  Their dataset 

consisted of statewide weather data from 2002 to 2004 for model development and 2005 

for model evaluation.  Twenty sites were selected for model development, and 20 

additional sites were selected for model evaluation, each dataset representing the 

geographical diversity of the state of Georgia.  Their training dataset consisted of 100,000 
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patterns randomly selected from the development dataset and the stopping criteria was 

ten epochs, i.e. 1,000,000 learning events. 

 During model development, Shank et al. (2006) performed iterative searches to 

determine important weather related inputs, the preferred values for the duration of prior 

input data, and ANN parameters including the number of nodes in the hidden layer, initial 

weight range, and learning rate.  The preferred weather related inputs included dew point 

temperature, air temperature, relative humidity, vapor pressure, wind speed, and solar 

radiation.  In addition to the current values of these variables, prior values representing a 

history of each variable were included as inputs and were referred to as prior data.  The 

preferred durations of prior data were as follows: six hours for the two-hour prediction 

period, 18 hours for the six- and twelve-hour predictions periods, 24 hours for the four- 

and ten-hour prediction periods, and 30 hours for the eight-hour prediction period.  For 

each of the prior weather related inputs an hourly rate of change was used as an 

additional input.  They included as inputs the day of year and the time of day, each 

encoded as cyclic variables with fuzzy logic membership functions.  They found 

preferred values for the ANN parameters to be 60 nodes in the hidden layer, an initial 

weight range of ±0.15, and a learning rate of 0.35.  Their final models for the two-, six-, 

and twelve-hour prediction periods produced MAEs of 0.803˚C, 1.566˚C, and 2.281˚C, 

respectively, for the evaluation dataset. 

The goal of this research project was to develop enhanced ANN models for 

predicting dew point temperature for up to twelve hours ahead.  Specific objectives were 

to determine the best criteria for stopping the ANN during training, to compare the 
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accuracy of seasonal ANN models with year-round models, and to evaluate application of 

ensemble ANN models which blend the output of seasonal ANN models. 

 

MATERIALS AND METHODS 

Model Development 

 The Automated Environmental Monitoring Network (AEMN) of the University of 

Georgia provides web-based applications (www.georgiaweather.net) for agricultural 

decision-making and natural resource management (Hoogenboom, 2000).  Over 70 

weather stations located throughout Georgia collect weather data every second and 

aggregate it every 15 minutes into totals or averages, depending on the variable.  The 

weather variables collected include air temperature, relative humidity, vapor pressure, 

wind speed and direction, and solar radiation.  Dew point temperature is calculated from 

the collected variables.  Figure 3.1 shows the sites and years chosen for model 

development and model evaluation.  These are the same as those used in Shank et al. 

(2006) to allow for a direct comparison with their work.  Other choices about the ANN 

models were based on this previous research, including the number of nodes in the 

hidden layer, initial weight range, learning rate, weather related inputs, duration of prior 

data, and the cyclic input variables for time of day and day of year. 

 A fully-connected, error backpropagation (EBP) architecture ANN with an input 

layer, a single hidden layer, and an output layer was used in this study.  All inputs were 

scaled to a range from 0.1 to 0.9 based on the extreme values for each input type in the 

development dataset.  The single fully-connected hidden layer consisted of 60 nodes 

divided into three equal-sized slabs with different activation functions used for each slab: 
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Gaussian, Gaussian complement, and hyperbolic tangent (Ward System Group, 1993).  

This architecture is known as a Ward network and a 60 node Ward network has been 

shown to be effective in dew point temperature prediction (Shank et al., 2006).  The 

output layer contained a single node with a logistic activation function that corresponded 

to the scaled value of the predicted dew point temperature.   

 An EBP ANN model operates in two phases.  The first is a feed forward phase 

where a set of scaled inputs, xi, where i ranges from 1 to I, are mapped to a single output 

z, by the following equations: 
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A second phase of the ANN is backpropagating the error to adjust the weights.  The 

adjustment ( )jβ∆  for each weight from the hidden layer to the output node is defined as 
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η is the learning rate, t is the target output value, jiα  are the weights from the input layer 

to the hidden layer, and jβ  are the weights from the hidden layer to the output node.  The 

nodes y0 and x0 are bias nodes for the output and hidden layers, respectively, and are 

always set to one.  The adjustments for each weight were added to the weights after each 

training pattern.  During model development an ANN with a specific set of parameters 

and inputs was referred to as a model.  Separate models were developed for each 

prediction period.  

 An EBP ANN would traditionally have a training dataset used to iteratively 

search for an optimal set of network weights.  A testing dataset would be used in feed-

forward mode during this iterative search to determine when to stop training by testing 

the ability of the ANN to predict patterns not used for training.  The training should be 

stopped at the point where the testing dataset error is minimized.  A separate selection 

dataset would then be used in feed-forward mode to select among alternative model 

configurations.  For this reason, a training, testing, and selection dataset should not 

overlap in patterns.     
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Preliminary experiments indicated that when a testing dataset was evaluated at 

intervals within an epoch, the testing dataset error showed considerable variability.  A 

typical example of this variability is shown in Figure 3.2, in which a testing dataset of 

2000 patterns was evaluated every 20 learning events during the tenth epoch of training a 

network.  The 5000 calculations of MAE for the testing dataset ranged from 1.432˚C to 

3.318˚C, with a mean of 1.561˚C, and a standard deviation of 0.113˚C.  Shank et al. 

(2006) used a stopping criteria in which the error was only evaluated at the end of the 

epoch.  The MAE for the testing dataset, therefore, would be one sample drawn from this 

left-skewed distribution.  Additional preliminary experiments showed that the rate of 

change of the minimum MAE for all intervals from the ninth to the tenth epoch for the 

testing dataset was always less than 0.01˚C.  Therefore the tenth epoch, i.e. 900,000 to 

1,000,000 learning events, was arbitrarily selected the epoch during which training was 

stopped.  Because of this preliminary work, the stopping criteria was set to the interval 

that produced the minimum testing dataset MAE during training of the tenth epoch.  The 

patterns from the training, testing, and selection datasets were chosen without 

replacement from the entire development dataset.  Both the training and selection datasets 

contained 100,000 patterns each. 

 Although there are many ways to combine the outputs of member networks into 

an ensemble network output, an effective method is using a weighted average of the 

outputs according to the individual performance or diversity of the network (Granitto et 

al., 2005; Yang and Browne, 2004).  It was decided that for the ensemble networks 

developed herein, the output of the ensemble network, zEN, would be a weighted average 

of member networks, zn where n ranged from 1 to N, according to the formula: 
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wn, where n ranges from 1 to N, are the weights corresponding to the member networks 

where the sum of all wn is always equal to one. 

Using the same approach as Shank et al. (2006), the mean absolute error (MAE) 

of the predicted dew point temperature was selected as the error measurement.  They 

used the average of the minimum five MAEs from a set of 30 network instantiations of 

the same ANN model for determining the best model parameters during model 

development.  This method was also used for model development in this research.  For 

model evaluation, ten network instantiations for each of the final seasonal and year-round 

models were developed, and the one with the minimum MAE for the selection dataset 

was chosen to represent the model.  One instantiation required six to twelve hours of 

computational time to train and select a stopping interval.  Evaluating this model in feed-

forward mode required approximately one hour of computational time.  All experiments 

were conducted on 34 Pentium 3 and 4 computers in the computer laboratories of the 

Department of Biological and Agricultural Engineering at the University of Georgia.  

Experiments 

In the first experiment, the optimal number of patterns in the testing dataset was 

determined using a six-hour prediction period.  Identical network instantiations with 

identical training and selection datasets were trained and stopped using testing datasets of 

varying sizes.  The testing intervals were held constant at 500 learning events.  In the 

second experiment, the optimal testing interval was determined using a six-hour 

prediction period.  Identical network instantiations with identical training and selection 

datasets were trained again and stopped according to the minimum MAE for the testing 
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dataset based on different interval sizes.  Using the value determined by the previous 

experiment, the size of the testing dataset was held constant. 

 In the third experiment, seasonal models were developed and compared to 

similarly-trained year-round models.  The development and evaluation datasets for each 

season were the subset of the year-round, respective datasets which included patterns for 

that season.  The seasons herein are defined as January 1 to March 31 as winter, April 1 

to July 1 as spring, July 2 to September 30 as summer, and October 1 to December 31 as 

fall.  Although these are up to twelve days off from the northern hemisphere seasons as 

defined by the equinoxes and solstices, this allowed for the winter season not to be split 

between years.  Ten networks were trained for each of the six prediction periods, e.g. 

two-, four-, six-, eight-, ten-, and twelve-hour, for each of the four seasonal models and 

for the year-round model.  In each case, the chosen network was the one with the 

minimum MAE for its selection dataset.  

 In the fourth experiment, seasonal models were developed for amalgamation into 

ensemble ANNs.  The approach was the same as the one used for the third experiment, 

except the seasonal development datasets were extended to include patterns from the 

midpoint of each adjacent season.  This allowed for overlap of adjacent seasonal 

membership functions.  For example, the spring ANN model would be trained with a 

development dataset consisting of patterns from the last half of winter, all of spring, and 

the first half of summer.  For each feed-forward pattern, the day of year for that pattern 

determined the weights for each member network of the ensemble ANN.  This was done 

with fuzzy-membership functions that determine the degree of membership for each 

network, i.e. the weight of the member network, as shown in Figure 3.3.  For example, as 
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the day of year changes from the midpoint of winter to the midpoint of spring, the weight 

for the winter network decreases linearly from one to zero, while the weight for the 

spring network increases linearly from zero to one.  During this time of year the weights 

for the summer and fall networks are set to zero. 

 

RESULTS AND DISCUSSION 

 In the first experiment, the testing dataset size was varied from 100 to 100,000 

patterns in order to determine the preferred size of the testing dataset.  A size of 1000 

patterns or greater produced nearly identical errors of 1.430˚C to 1.431˚C for the 

selection dataset, whereas a testing dataset size that was less than 1000 patterns produced 

higher errors.  A testing dataset size of 2000 patterns was arbitrarily selected for further 

model development.  In the second experiment, the testing interval was varied from 10 to 

10,000 learning events.  A testing interval of 20 learning events resulted in a minimum 

error of 1.420˚C for the selection dataset.  This testing interval for epochs of 100,000 

patterns required that the network was checked 5000 times to determine the optimal point 

to stop training.   

 In the third experiment, models were developed for two-, four-, six-, eight-, ten-, 

and twelve-hour prediction periods for each of the four seasons and for the entire year for 

comparison.  For each of these 30 models, ten network instantiations were trained and the 

network with the minimum MAE for the selection dataset was chosen to represent that 

model.  The selected seasonal networks were evaluated for the corresponding seasonal 

evaluation datasets.  Although each seasonal model showed differences in the pattern 

distribution for the six-hour prediction period, the r2 values ranged from 0.807 to 0.910 
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(Figure 3.4).  The winter (Figure 3.4a) encompassed the largest range of observations, 

from -20˚C to 20˚C, and had the maximum MAE for the six-hour prediction seasonal 

models, 1.892˚C, with an r2 of 0.889.  The spring (Figure 3.4b) had a range of 

observations from -5˚C to 25˚C with an r2 of 0.910 and an MAE of 1.394˚C.  The 

summer (Figure 3.4c) had both the smallest range of observed dew point temperatures, 

10˚C to 25˚C, and the minimum MAE of the seasonal models with a six-hour prediction 

period, 0.923˚C.  Although the MAE for summer model was the lowest, the range was 

smaller, thus the r2 was less than for other seasons, e.g. 0.807.  The fall (Figure 3.4d) 

observed dew point temperatures ranged from -15˚C to 25˚C with an r2 of 0.907 and an 

MAE of 1.777˚C.   

 The year-round models were also evaluated on the seasonal evaluation datasets 

and compared to the seasonal models evaluation on the corresponding dataset for each 

prediction period (Table 3.1).  For the spring and summer evaluations, the respective 

seasonal networks produced lower MAEs than the year-round network for all prediction 

periods.  The fall seasonal network produced equal to or lower MAEs than the year-round 

for all prediction periods except for the twelve-hour prediction.  The results for winter 

were different in that the year-round network produced lower MAEs than the seasonal 

network for all prediction periods except for the two-hour prediction.  One possible 

explanation was that winter experienced conditions representative of the entire year due 

to the large range of observed dew point temperatures.  In this case, training for the entire 

year would have exposed the network to a greater variety of weather patterns, which 

could have improved the accuracy of the network.  Another possibility was that certain 

times of the year, specifically winter and fall, contained more unexpected dew point 
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temperature variation which made it more difficult for any model to predict.  This idea 

was consistent with greater variance in dew point temperature and the higher MAEs for 

the winter and fall when compared to the spring and summer.  The seasonal networks as a 

whole tended to predict dew point temperature better than the year-round network. 

 For the fourth experiment, models were developed for two-, four-, six-, eight-, 

ten-, and twelve-hour prediction periods for all four seasons using the extended seasonal 

data.  For each of these 24 models, ten network instantiations were trained and the 

network with the minimum MAE for the selection dataset was selected to represent that 

model.  The four selected networks, one for each season, were combined into a single 

ensemble network for each prediction period which was evaluated on the entire 

evaluation dataset.  A combined seasonal network is when seasonal networks were 

combined sequentially with each network predicting for its specific season.  The fuzzy 

ensemble models were compared to the models from previous research (Shank et al., 

2006), the year-round models, and the combined seasonal models for the evaluation 

dataset (Table 3.2).  The year-round models showed improvement when compared to the 

models of Shank et al. (2006) for all prediction periods except for two-hour, which had a 

slightly higher MAE.  This improvement showed that the testing dataset stopping criteria 

used for ANN training was beneficial.  The fuzzy ensemble models produced the 

minimum MAE for all prediction periods except for the two-hour prediction, for which it 

was only 0.001˚C higher than the combined seasonal network.  The total improvements 

in the MAE for this study compared to the previous research by Shank et al. (2006) for 

the two-, six-, and twelve-hour prediction periods were 0.008˚C, 0.081˚C, and 0.135˚C, 

respectively. 
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 For year-round weather data, the predicted versus observed dew point 

temperatures for the fuzzy ensemble networks for the two-, six-, and twelve-hour 

prediction periods are shown in Figure 3.5.  The r2 values were 0.984, 0.947, 0.890, 

respectively, which indicated that the longer prediction period models were less accurate.  

For the six- and twelve-hour prediction periods there was a tendency to overpredict for 

low dew point temperatures.  In general the low dew point temperature predictions were 

less accurate than the high dew point temperature predictions, which corresponded to the 

larger prediction MAEs for the colder seasons. 

 The predicted and observed dew point temperature as a function of time for the 

fuzzy ensemble network of the six-hour prediction period is shown in Figure 3.6.  Four 

example periods from evaluation locations were chosen in order to illustrate conditions of 

extreme dew point temperature.  Ellijay, GA, (Figure 3.6a) had an early morning freeze 

beginning on March 11, 2005, at 0430 and the observed dew point temperature followed 

the air temperature during the freeze.  The predicted dew point temperature 

underpredicted by 1°C to 2°C directly preceding the freeze as well as during the freeze.  

The prediction indicated that the dew point temperature was increasing as the freeze 

ended, but continued to underpredict.  Tiger, GA, (Figure 3.6b) had a lengthy nighttime 

freeze from 2300 to 0800 on March 17 to 18, 2005, of the type that could damage the 

vineyards found in this region.  As the observed dew point temperature decreased with 

the air temperature, the predicted dew point temperature followed it closely.  The 

minimum predicted dew point temperature was also similar to the minimum observed 

dew point temperature which is an important factor in crop damage caused by freezes. 
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 Dixie, GA, (Figure 3.6c) showed observed dew point temperatures in excess of 

25°C while the air temperature increased during the morning of August 21, 2005.  The 

predicted dew point temperature tracked the observed dew point temperature until 0700 

when the observed dew point temperature increased more rapidly than the predicted dew 

point temperature.  As the observed dew point temperature decreased to below 24°C at 

1300 the predicted dew point temperature continued to track the observed without 

adjusting to small variances, but predicting the average trend throughout the late 

afternoon.  Nahunta, GA, (Figure 3.6d) illustrated two rapid increases in the observed 

dew point temperature on July 1, 2005: one around 0730 and the other from 1700 to 

1900.  The first, accompanied by a rapid increase in air temperature, was missed by the 

prediction.  The second, which brought the observed dew point temperature to over 26°C, 

was also missed by the prediction with a difference of about 2°C from 1800 to 2100.  

Rapid increases in dew point temperature were uncommon in summer, and this example 

illustrated the difficulty of the model to make accurate predictions when such rapid 

increases occurred. 

 Models developed with new stopping criteria showed improvement when 

compared to the previous research models of Shank at el. (2006).  Then seasonal models 

were developed and compared for each season to a year-round model.  In all seasons 

except winter, the seasonal models did better than the year-round.  Using similar seasonal 

models, ensemble ANN models were developed with fuzzy membership functions for 

weighting of member networks, and the ensemble models generally did better than the 

previous best models.  The six-hour ensemble model adequately predicted for extreme 

conditions, both freezes and high dew point temperatures. 
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APPLICATION AND CONCLUSION 

 The outputs of all six prediction period models were sequenced to generate a 

prediction track from the time of prediction to twelve hours in advance.  This dew point 

temperature prediction system could be implemented as part of a decision support system 

to help identify future dew point temperature conditions.  Figure 3.7 shows four examples 

of extreme dew point temperature conditions and two selected prediction tracks for each 

that focus on predicting extreme conditions. Tiger, GA, (Figure 3.7a) experienced a 

freeze from 2300 until just after 0800 on February 25 to 26, 2005, and the observed dew 

point temperature closely followed the air temperature during this freeze.  The prediction 

at 2000 hours indicated the decreasing of the dew point temperature to below 0°C and 

predicted that this would occur two hours later than was observed.  The prediction at 

2400, after the freeze event had begun, was slightly overpredicted, but showed the dew 

point temperature increasing to 0°C at 1030, the same time the observed dew point 

temperature increased to 0°C.  In Dahlonega, GA, (Figure 3.7b) a freeze occurred from 

0400 to 0930 on March 1, 2005.  The observed dew point temperature decreased to 

approximately -5°C prior to midnight and decreased to approximately -7°C during the 

freeze event in the early morning hours.  The 2200 prediction track from February 28, 

2005, showed that dew point temperature prediction was 2°C to 7°C higher than observed 

values.  However, the 2400 prediction track was not only close to the level of the 

observed dew point temperature, but also the 2400 prediction track indicated the dip in 

observed dew point temperature during the freeze. 

 56



 Plains, GA, (Figure 3.7c) sustained a three-hour high dew point temperature of 

approximately 25°C from 1900 to 2200 on July 27, 2005.  The 1400 prediction indicated 

dew point temperatures exceeding 24°C, and then a decrease in dew point temperature 

starting at 2000.  The observed decrease in the dew point temperature actually occurred at 

2200, which the track at 1800 predicted more accurately.  Although it slightly 

underpredicted the maximum dew point temperature value, the 1800 prediction track 

showed the duration of the extreme dew point temperatures and was accurate in showing 

the nighttime decreasing values from 2300 to 0600.  In Camilla, GA, (Figure 3.7d) the 

observed dew point temperature tracked air temperature from 0000 to 0900 on June 9, 

2005.  The dew point temperature 0200 prediction was close to the observed until the 

observed dew point temperature increased at 0800, and it was underpredicted by 

approximately 1°C.  The 0600 prediction, however, missed the quick rise in observed 

dew point temperature from 0800 to 0900, but then only slightly underpredicted the 

observed dew point temperature from 1000 to 1800. 

 A sequence of dew point temperature networks can be used to make prediction 

tracks and can be useful for predicting extreme conditions.  Although these predictions 

are not perfectly accurate, when used as one component of a decision support system, 

producers, meteorologists, and the general public can all benefit from the predictions 

these systems provide.  Dew point temperature prediction tracks are in the process of 

being implemented on the AEMN website (www.georgiaweather.net).  Prediction tracks 

for air temperature are already available, and the dew point temperature prediction can be 

used in conjunction with them to predict conditions such as dew, frost, and heat stress. 
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RECOMMENDATIONS FOR FUTURE WORK 

The optimization of stopping criteria and the development of ensemble networks 

has been shown to be helpful in dew point temperature prediction, but many details of 

their implementations have not been tested.  Future work could include optimizing the 

ANN parameters and inputs for dew point temperature prediction for each of the seasonal 

models.  In addition, partitioning the seasons based on observed dew point temperatures 

may help the diversity of the member components of the ensemble ANN.  It may be 

possible to find alternate fuzzy membership functions that blend the ANN model outputs 

to generate more accurate dew point temperature predictions.  Because the fuzzy 

membership functions were ways to determine the weights of each network in the 

ensemble, more complex functions could be generated, even using a genetic algorithm, a 

Bayesian classification system, or output from each member network to decide on the 

optimal weights for the ensemble ANN. 
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Table 3.1 
Comparison of the performance of year-round and individual season models for all four seasons for different prediction periods for the 

evaluation dataset 
Mean absolute error (MAE) (°C) 

Winter Spring Summer Fall Prediction 
Period 
(hours) 

Year-
Round 

Winter 
only 

Year-
Round 

Spring 
only 

Year-
Round 

Summer 
only 

Year-
Round 

Fall only 
 

2 0.915 0.913* 0.810 0.794* 0.609 0.597* 0.885  0.875*
4 1.453* 1.456 1.174 1.160* 0.801 0.784* 1.384  1.360*
6 1.862* 1.892 1.426 1.394* 0.945 0.923* 1.806  1.777*
8 2.275* 2.309 1.658 1.645* 1.030 0.995* 2.150*  2.150*
10 2.587* 2.617 1.812 1.762* 1.077 1.059* 2.508  2.436*
12 2.842* 2.893 1.946 1.896* 1.117 1.082* 2.720*  2.739

*Best model for each season and prediction period 
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Table 3.2 
Comparison of the performance of different models for all prediction periods for the evaluation dataset 

Mean absolute error (MAE) (°C) 
Prediction Period 

(hours) 
Previous research 

model† 
Year-round model 

 
Combined 

seasonal model 
Fuzzy ensemble 

model 
2     0.803 0.805 0.795* 0.796
4     1.234 1.202 1.189 1.184*
6     1.566 1.508 1.495 1.485*
8     1.799 1.777 1.773 1.740*

10     2.011 1.994 1.966 1.941*
12     2.281 2.154 2.150 2.146*

*Best model for each prediction period 
†Shank et al. (2006) 
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Figure 3.1:  AEMN weather stations, twenty sites selected for model development and 
twenty sites selected for model evaluation 
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 Figure 3.2:  Histogram of 5000 MAEs taken at increments of 20 learning events during 

the tenth epoch of a network training for a testing dataset of 2000 patterns 
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Figure 3.3:  Cyclic fuzzy membership function for determining the ensemble weights for 
each member network based on day of year 
 
 
 
 
 

 66



 Figure 3.4:  Performance of predicted dew point temperature for each seasonal model for a six-
hour prediction period for the evaluation dataset for each corresponding season (a) winter, (b) 
spring, (c) summer, and (d) fall 
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Figure 3.5:  Performance of predicted dew point temperature for the evaluation dataset 
for the (a) two-hour, (b) six-hour, and (c) twelve-hour prediction models 
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Figure 3.6:  Predicted dew point temperature for a six-hour prediction model for (a) Ellijay, GA, (b) Tiger, GA, (c) Dixie, GA, and (d) 
Nahunta, GA.  Observed dew point temperature and air temperature are also shown. 

 69



 
Figure 3.7:  Predicted dew point temperature at two prediction times based on a sequence of twelve models for (a) Tiger, GA, (b) 
Dahlonega, GA, (c) Plains, GA, and (d) Camilla, GA.  Observed dew point temperature and air temperature are also shown. 
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CHAPTER 4 

SUMMARY AND CONCLUSION 

 

 The goal of this thesis was to develop ANN models that could predict dew point 

temperature for up to twelve hours using a Georgia statewide data.  In Chapter 2, this was 

accomplished by determining the preferred weather related inputs for the model, by 

optimizing ANN parameters for the number of nodes per slab in the hidden layer, the 

initial weight, and the learning rate, and by searching for the preferred duration of data 

for each of the twelve prediction periods.  These models were shown to be more accurate 

for the shorter prediction periods and able to predict dew point temperature for a wide 

variety of meteorological conditions.  The resulting models were shown to be useful as 

part of a decision support system. 

 In Chapter 3, the ANN models were improved by determining new stopping 

criteria based on a testing set, by showing the value of seasonal models compared with 

year-round models in dew point temperature prediction, and by developing an ensemble 

network of seasonal models with fuzzy logic membership functions.  These enhanced 

models were shown to be more accurate than the models presented in Chapter 2.  These 

models were evaluated under the most difficult cases, conditions of extreme dew point 

temperature.  Although the accuracy of the predictions was variable, most of them were 

able to show the general tendency of the observed dew point temperature.  In Chapter 3, 
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more cases of this type of prediction applied to extreme meteorological conditions were 

presented than in Chapter 2. 

 Final ANN models will be implemented on University of Georgia Automated 

Environmental Monitoring Network website (www.georgiaweather.net).  Future research 

for dew point temperature prediction can build on the work in this thesis.  One area 

would be to examine some of the parameters and methods not fully explored in this thesis 

including the ensemble network parameters and the stopping criteria.  Other areas of 

interest would be to study dew point temperature for longer prediction periods or develop 

a model for location-specific dew point temperature predictions.  Finally, because of the 

interaction between weather variables, it may be useful to have an ANN ensemble with 

each member network predicting different, yet related weather variables such as air 

temperature, relative humidity, vapor pressure, and dew point temperature. 
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