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Abstract

Our purpose shall be to introduce revisions into the foundational systematic introduced

by Brouwer and Hilbert in the early part of the last century. We will apply these revisions

to develop a symbolic calculus for the study of extralogical intuition (in formalism, logic

at the metalevel), which we shall show to be not weaker than intuitionistic propositional

calculus, and rich enough to encode all of finitary set theory. Our calculus will be efficient

in its principles and based on a small, compact set of axioms, and its consistency will be

shown. In the main it will be based on two departures from traditional developments: (1) the

interpretation of logical conjunction as a mathematical operation of set formation, and (2) the

interpretation of logical implication as the exchange (in time) of actual or intuited objects.

Its rule structure, in addition, will possess two novel features: (1) generalized substitution,

or what we call herein deposition, and (2) a formal method of assumption.
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Chapter 1

Introduction

1.1 Some Remarks on Recent Developments in Foundations

By the time the flashing insights of Lakatos, the great student of Polya who nearly achieved

so much, were first beginning to take hold in the mathematical world, the bold critical

reexamination of many old ideas in the philosophy of science had already begun to suggest,

in broad, cloudy strokes later refined by Hersh, Tymoczko and others,1 for mathematics, a

new and very different kind of foundational program. From diverse quarters of the humanities

and the sciences, new arguments were advanced and old ones were revived, all casting doubt

on Hilbert’s claim that formalistic finitary methods were capable of providing the range

of concepts that would be required to ground mathematics scientifically, even countering

that the notion of a formal system is intrinsically limited to but a meager fraction of the

activities, both physical and mental, which we are happy to call mathematical in the highest

sense: infused with brilliance, insight, and technique. A more textured coding of the tools of

mathematics, as finds partial expression in the prescient and creative work of Wittgenstein,

and the solid and enduring contributions of the intuitionists, seemed now in earnest to

be standing up for consideration. A new synthesis of science, one which reincluded the

mathematics which had distanced itself, after Euler, Lagrange, and Gauss, by proclaiming

itself pure now seemed possible, perhaps even realistic; some even declared the arrival of a

new “humanist” school, which might restore mathematics to something more like that idyllic

realm to which Euler had made his luminous contribution so long ago.

1See Lakatos [26], [27], and Tymoczko’s anthology [32].
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However, the champions of this recent movement in foundations seem at times willing

to underemphasize or even to ignore the sobering lessons bestowed on mathematics by the

discoveries of Weierstrass, Cantor, Peano and the other analysts of the nineteenth-century

dawn of mathematical modernity, for in general their doctrines tend not to present a system

to the mind, a way to convert one clearly stated idea into another in the symbolic language

that precise reasoning and communication requires. Thus the mantras of Hilbert, and even far

older ones dating to classical times, today still command the loyalty of most mathematicians.

Though they might listen with interest when told about progressive new ideas coming from

anthropology, physics, philosophy, education, neuroscience,2 and the intrepid outliers among

them, they fail in general to see clearly what is to be gained by making drastic changes to

the principles and methods of mathematics. Though they may find something to like in the

cases made by constructivists and others, they find it doubtable nevertheless that anyone

will ever successfully disprove that certainty is an admixture in their work, and by and large

conclude that a caution route is the best way forward. Indeed, it remains unclear, in our

time, precisely to what a bold departure from formalism would lead, and even whether such

a venture could be safely carried out. From the relative quiet of recent decades, what the

collapse of the uneasy détente in foundations might lead to is, it seems, within no one’s

capacity to predict.

Could the murmur of “picture theories,” and “tacit knowledge,” and the loyal advocacy of

some for “quasi-empiricism,” “mathematical humanism,” “social constructivism,” etc., ever

be carried beyond the regular in- and outflow of debate about mathematics, and infiltrate

the tall, noble hierarchy of the actual mathematical community—or appear, without a trace

of code-switching, alongside the language of an actual proof? Some might wonder how the

spread of these movements and ideas might effect the working mathematician’s output. All

mathematicians value the fabulously innumerable accomplishments that have been achieved

during the century recently passed, and there is general agreement that mathematicians

2Anthropology: see [35], physics: see [9], education: see [6], neuroscience: see [8].
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of our era have succeeded in eliminating clouds that previously hung over their science and

impeded its progress. They worry that concessions to historicism, fallibilism, and speculative

philosophizing—in the style of Weyl’s papers on the logic of the infinite, for example, or

those of Poincaré, in which he attempted, in the 1890’s, to deductively derive the topological

characteristics of physical space—represent a labor-intensive step away from the clear path

championed by Hilbert, that great disdainer of history and the endless memorializing of

tradition. They patiently await the repair and rejuvenation of formalism, and are content

in the meantime to abide its sometimes imposing officialdom in the midst of daily life,

rather than opening the boundaries of mathematics to all manners of philosophy, when, they

feel, the result of this could very well be only that the theorems which might have been

the accolades of their own generation, might be lost amidst distraction, and fall ahead to

become the encumbrances to clear and direct thought which future generations alone are

able to exceed.

This “aphilosophical” attitude has flourished amidst the creation of formal logic and,

in recent times, the growing influx of concrete, results-oriented computer-related research,

while in the meantime the traditional areas of mathematics have themselves grown to many

times their size in 1900. During the past three-quarters-century since Hilbert’s passing, the

purity of mathematics has been maintained, and the formal foundation he envisioned for it

has by and large endured. Were he alive today, he would no doubt be pleased, none the less

upon seeing that the net effect of this state of affairs has been overwhelmingly positive upon

science as a whole. Yet this generally glad outcome has had rather the opposite effect upon

the growth and advance of foundations.

The long and strenuous training of modern mathematicians conditions them to be wary

and even hostile to anything they take to be the intrusion on the rules of play in their science

by rhetorically well-heeled, but inexperienced commentators. This fact has long presented

a forbidding obstacle to interdisciplinary investigation of the foundations of mathematics,

adding considerably to the already formidable philosophical challenges inherent in such an
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analysis. Foundationalists are well aware of the relative obscurity of even their most signifi-

cant achievements outside of their field, and the low regard that many mathematicians have

towards even their most insightful philosophical reports. Meanwhile comparable achieve-

ments of indeed great mathematical—but far less philosophical merit (such as the work of

Gödel and Cohen in set theory) are the recipients of universal praise among mathematicians,

and are held up as models of foundational work. The case of Brouwer is an outstanding ex-

ample of a foundationalist of first rank, whose work was misrepresented or misunderstood

by fellow mathematicians.3 Wittgenstein’s middle and late work is also controversial within

the hard sciences, yet there is general agreement in the humanities that Wittgenstein’s far-

reaching influence was beneficial and progressive.

Thus, high forbidding ramparts, which today encumber both exit and entry, encircle

those parts of mathematics grounded in set theory and formal systems, and leave it quar-

antined to the circles of debate which exist in other areas of science. Though intended to

bolster and protect, they at times present a stubborn obstacle to those who are working

to integrate fast-evolving new ideas from other areas of science into the matrix of leading

concepts in foundations, and maintaining the pace of progress in science as a whole. Today,

there is a lack of observers and participants in research in foundations who are qualified

in enough disciplines to accurately evaluate all of the work that has been done by serious-

minded philosophical and mathematical researchers, resulting in a deeply fragmented and

somewhat dishevelled depiction in the literature of a subject which is widely felt to possess

deep underlying unity. It may be wondered, then, even in spite of the immense and ever-

growing legacy of our own golden age, whether it is time yet to say that, decades after the

mathematician’s embrace of the diminished modern faith in creative instincts and the power

of abstract philosophical reflection, he has come upon an unexpected impasse.

It is noteworthy, too, that the effects of this estrangement within science are not limited

to the scientific domain. In spite of a growing tide of opinion, the gulf remains wide as ever

3Cf. Brouwer 1927a [3].
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between those willing to imagine mathematics to be the bare symbolic landscape generated

by a formalizing mind, and those who have reasons for opposing this view. This chasm,

which begins benignly inside the scientific community, extends from there well beyond it;

as the matters under debate become less well understood, the divide widens and sometimes

fosters treacherous misunderstandings. Whether this can ever be changed—and whether the

damage already wrought can be undone with the steady progress of time—future generations

may be able to tell. An individual of today, told he must choose, be he committed to co-

herent justification in mathematics, and to the clear symbolic ideal which is the very love of

mathematics itself—who follows the call for certainty and knowledge which was at its origin

the inspiration of philosophy—is bent toward those schools who offer to their adherents a

symbolic system, a mathematically connected family of ideas.

1.2 The Success of Formalism

There are historical facts which shall for all time shape the character of the twentieth century.

The indelible mark of Hilbert’s program through its influence on the ensuing development of

mathematical logic by Church and his students at Princeton, Gödel and Gentzen in Germany,

Herbrand in France, and many others, as well as its influence upon the creators of the

twentieth-century orthodoxy in mathematics (the synthesis of Bourbaki) impel us to reflect

upon what was nearest—of all things—at its apex to becoming the de facto end of the search

for a settled, rigorous mathematical source of truth.

It is impossible to separate the formalist school from the personality and figure of its

founder. Long before formalism was a school and a method, it was the tendency and character

of a certain David Hilbert. Among the many contributions Hilbert made to mathematics,

one finds numerous examplars of the work that would have such a profound impact on its

direction, always written in the original style that would become legendary. His Zahlbericht

of 1897 was a celebrated textbook which significantly impacted the field of algebraic number



6

theory. Hermann Weyl later wrote, of his own experience reading it (during his first summer

off at Göttingen),

It is as if you are on a swift walk through a sunny open landscape; you look freely

around, demarcation lines and connecting roads are pointed out to you before you must

brace yourself to climb the hill; then the path goes straight up, no ambling around, no

detours.4

The Grundlagen der Geometrie of 1899, a mathematical bestseller, was a compact, lucid,

and penetrating development of geometry from a newly clarified set of axioms. Though it

drew from work by Moritz Pasch and others who were at that time already working to

place geometry on a firm modern foundation, Hilbert’s book, written hardly more than a

year after he had entered the field from number theory, thrilled its readers and immediately

overshadowed all the previous work. If Hilbert’s ideas captured the loyalty of working math-

ematicians more successfully than any other philosophy since Platonism,5 this was surely in

part because Hilbert, when he entered the foundational debate in earnest in 1921, carried

with him a considerable reputation built over the course of a 40-year-long career. When the

Hilbert of 1910 or 1920 spoke, mathematicians were ready to listen. When Hilbert raised his

voice in criticism, as he famously did against Weyl and Brouwer (see [18]), it could ill be

ignored.

If it is impossible to separate formalism from the figure and personality of its creator,

it is extremely difficult to separate Hilbert from the school where he spent most of his

adult life, for the Georg August University of Göttingen was known at that time simply as

“the mecca of mathematics.” During those years, the prospect of education under the aegis

of Klein, Hilbert, Minkowski, Courant, Noether, van der Waerden, Weyl, and still other

luminaries attracted the generation of mathematicians and logicians—Curry, von Neumann,

4Quoted from Reid in [30], p. 94.
5According to Jacob Klein, “Aristotle never tires of stressing that Plato, in opposition to the

Pythagoreans, made [mathematical objects] ‘separable’ from objects of sense, so that they appeared
‘alongside perceptible things’...as a separate realm of being.” [23], p. 70.
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Gentzen and MacLane among them—who would carry the foundations of mathematics into

its future. Hilbert’s abiding influence there must surely also be considered among the reasons

for formalism’s lasting impression upon the approaches and attitudes of mathematicians

toward their work.

The success formalism enjoyed was also due to the long list of celebrated problems which

it emphasized (among these, the continuum hypothesis, the consistency of arithmetic, and

the Entscheidungsproblem—the first, second, and tenth problem on Hilbert’s famous list

of 1900—led the pack) and the novelty of the suggested method—metamathematics—for

approaching them, which immediately won its share of committed partisans. To its adherents,

the dispassionate technique—a radicalization of the axiomatic method—obeyed a simple,

direct, and universal pattern of thought. It seemed to offer a peaceful channel into which

all of one’s energy could safely be invested, one which gracefully sidestepped the restrictions

that were laid on mathematics by intuitionists. Through this peaceful channel, it was felt,

the infinite itself could be seen and even touched, without the slightest danger of outside

disturbance, or upheaval from within. Metamathematical philosophy has an unusual but (by

now) undeniably powerful impact upon the human mind. Although in the rapid evolution of

science effects are often difficult to separate from causes, its spirit was certainly in keeping

with the powerful movement at that time towards greater abstraction. Thus it was, to many,

a logical step forward.

There is, however, as I will argue, another, more weather-proof reason for the success of

formalism than these. This is the philosophical principle upon which Hilbert based his for-

malism, the philosophical principle he was drawn to prepare and publicize after studying the

work of Brouwer and Weyl. It is a principle rightly called, for it is but one and simple. Quite

unlike the philosophical dilations of a Brouwer, it is easy to state and difficult to misstate. It

is a common idea—yet we should not discredit Hilbert’s philosophical achievement in boldly

applying it with conviction. To the contrary—its commonness serves to remind us, and even

alert us, to a certain remarkable endurance through the vicissitudes of physical time and
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space. Its resonance in human feeling is rooted in distant ages, yet in communications of

the highest and lowest order, it is constantly being restated, revitalized, rediscovered, and

reclaimed. It says merely this: that mathematical truth ought to depend upon and flow,

with uttermost unity and directness, from the universal experience of seeing, holding, and

manipulating natural objects.

As a condition for the use of logical inferences and the performance of logical op-

erations, something must already be given to our faculty of representation, certain

extralogical concrete objects that are intuitively present as immediate experience prior

to all thought. If logical inference is to be reliable, it must be possible to survey these

objects completely in all their parts, and the fact that they occur, that they differ

from one another, and that they follow each other, or are concatenated, is immediately

given intuitively, together with the objects, as something that neither can be reduced to

anything else nor requires reduction. This is the basic philosophical position I consider

requisite for mathematics and, in general, for all scientific thinking, understanding, and

communication.6

In the heart of a man lies his philosophy, and from this follows the tone and tenor of all his

work. This in turn shapes his destiny, and the particular methods he selects. One is led to

suspect, therefore, that the success of formalism—as a working mathematician’s answer to

philosophy, as a logician’s methodology, in all the ornateness of its subsequent development—

is due in no small part to its unassuming, commonsensical point of departure.

Hilbert, in sum, sounded the call for the extralogical study of logic, to be used to supply

the centerpiece of his foundational project, a proof to validate all proofs and ensure their

existence. This was not to be achieved; there is an inner circularity in this self-referential

raison d’être of metamathematics famously revealed by Gödel, one on which future math-

ematicians and philosophers ought to be able to shed a clearer light. Herein we will not

6Hilbert, from a well-known address [19] delivered in Münster in 1925 (quoted from [14], p.
376), emphasis mine throughout. He directly continues: “And in mathematics ... what we consider
is the concrete signs themselves, whose shape, according to the conception we have adopted, is
immediately clear and recognizeable.”
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speculate about the cause of formalism’s deeply intertwined failure to be all that it promised

that it would be. This stage in the development of formalism does not concern us, since we

shall not adopt for our use the Hilbertian notions of metamathematics or ideal propositions.

We shall, however, adopt the basic principle of formalism, in just the form that it was clearly

announced by Hilbert.

1.3 Our Point of Departure

We stand now at the threshhold of our own investigation. We have adopted the basic principle

of formalism as our first grounds for mathematics. Before we go further, however, let the

distinction be drawn between mathematics and philosophy—for we do not make the same

concession for the latter. We are are not content, only because a thing is sufficiently manifest,

that nothing further can be learned or stated about it. We do not forbid ourselves from

tampering with our principle, for the philosophical pursuit of meaning must continue as ever.

We grant only that it is upon that inexorable kernel of certainty which persistently surrounds

us (which Hilbert laudably characterized in the quotation above) that a mathematical proof

may rest upon for its validity: not a classical channel for reception in the mind of a priori

truth, but rather, the extralogical intuition of direct, local experience. We shall now carefully

embark on an extended examination of the idea, the image, which this hypothesis throws up

before us, in order to understand what it allows, and what it strictly forbids.

We see before us, scattered, various fields of knowledge which it is upon us to find some

kind of ground for. As we stumble through the shallows, able to look with uncomprehending

awe at the vast ocean with which the waters touching us mingle, we find it is first our

task to account for logic, set theory, and arithmetic. Which of these ought to come before,

and which after? Should we begin, as the semi-intuitionists did, with arithmetic? Should we

begin with logic alone? If we try a combined attack on two of them, how exactly should

they be fitted on the plinth? We turn for guidance to the extralogical intuition. We find

that by it (through some deep, hidden channel) we may see, as given, the object as it stands
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before us, and that objects may by immediate reckoning have parts, giving rise to elementary

totalities. Less immediate, by contrast, are the elements of logic (properties, and groups of

these) and arithmetic (numbers, and groups of these); insofar as they are immediate, they

seem suspiciously so due to their status as objects (as the formalist would say, signs) of

the former kind. Therefore our principle directs us to begin with the primitive concepts of

finitary set theory, and try with care gradually to progress from there to the concepts that

are generally taken to ground the other two domains.

We grant that we may observe sets—do we also grant that we can record these ob-

servations? Can we write down properties of sets? I suppose, for example, that I may see

(extralogically, in the form of a direct experience) that one set falls in another. Have I then

experienced a primitive, manifest property or relation? Perhaps I may well do so—but the

difficulty does not seem to lie in their record, but rather in their transmission. The logical

notions of properties and relations take on meaning and acquire potency only by means of as-

sertion, proposal, or judgment. These notions add considerably to the purview of our project

at a fundamental and untimely stage, in the form of complicated considerations which it will

suffice to simply label biological.7 Were we to build upon these notions, we would soon find

ourselves in the midst of structures not required by the inner necessity of our problem, and

might well lose sight of the contentual locus to which we assign the greatest trust. History

teaches that we would run the danger, after preparing a foundational account of the inner

nature of human judgment, of seeing our labor reduced to casuistry by later refinements of

our common notions.

Thus, we are at a momentary impasse. It seems we must either labor with great difficulty

upon the subject of the judgment, in pursuit of clarification of what we broadly term the

biology of mathematics, before valid mathematical proofs may be written down (perhaps

by way of some formidably complex definition of one human being’s vocalized assertion to

7Nor can we leap so far ahead by admitting into our initial purview the notion of a mathemat-
ical problem as something well-defined or manifest. Kolmogorov’s calculus of problems (see [25]),
therefore, can be admired, but cannot be adopted by us.
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another), or we must simply fold up our hands and wait patiently for light to be thrown on

these topics by other disciplines. This perhaps grim state of affairs, however, should not be

admitted until we have confirmed that it is not circumvented by the simplest and most direct

route forward—an attempt to write down the laws of logic from regarding the proposition’s

status as the object surveyed, and not as the judgment asserted, denied, believed, trusted,

or cursed. Since we grant ourselves the power to observe objects (to create them for the

purpose of study, to manipulate them, doing all that we do freely with mathematical symbols

in formalism), we might, rather than attempting to plumb and measure the mysterious

confines of our minds, remain at that level where Hilbert insisted we remain, watching the

proposition just as the formalist does—observing its behavior as an object beneath our

awareness, manipulated extralogically by our will. We might then attempt to extract, as the

intuitionist does, the further principles of calculation.

So we thus resolve to forbid the use of all the usual language of judgements, beliefs, and

assertions. We shall attempt, for now in lack of these concepts, to develop what we can of

logic, straight out of the constructive-formalistic kernel of certainty named above. We shall,

that is, develop the system of logic as a substructure of the system of objects.



Chapter 2

Philosophical Beginnings

2.1 Implication and Time

In two brief articles of 1928 and 1929, Valerii Glivenko extended Brouwer’s investigation

showing that from intuitionistic principles, it follows from the triple-falsity of an expression

that the expression must be false. Glivenko showed, based on a set of axioms essentially the

same as those used by Kolmogorov in 1925 (though Kolmogorov did not, and Glivenko did,

have use of the principle ex falso sequitur quodlibet), that the double-falsity of the law of

excluded middle holds, that the validity of a proposition implies the validity of its double-

falsity, that the classical validity of a proposition p implies its double-falsity, and that every

classically valid negation is intuitionistically valid. In the passage quoted below, from the

latter paper of 1929, we find Glivenko in a praxical mode, actively engaged:1

Here it is a matter of verifying the schema

∼∼P

∼∼(P ⊃ Q)

∼∼Q.

To this end, we will prove the formulas

p ⊃ ((p ⊃ q) ⊃ q),

(p ⊃ (q ⊃ r)) ⊃ ((∼∼ p ⊃ (∼∼ q ⊃ ∼∼ r)).

His conclusion reads:

1I use the translation in [29].

12
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[...] This established, one has

p ⊃ ((p ⊃ q) ⊃ q)

(p ⊃ (q ⊃ r)) ⊃ (∼∼ p ⊃ (∼∼ q ⊃ ∼∼ r))

∼∼ p ⊃ (∼∼(p ⊃ q) ⊃ ∼∼ q).

from which the rule to be verified immediately follows.

On the surface, nothing out of the order has taken place. As Glivenko states explicitly, his

objective is to validate a schema, or pattern of inference, in which two propositional formulas

(∼∼P and ∼∼(P ⊃ Q)) combine in order to produce a third, ∼∼Q. He obtains this result

much as the student of logic would obtain it today: by applying axioms within a proof system

in which there are two formal rules, modus ponens and the rule of substitution.2

The question, the oddity, is this: for what reason did Glivenko write

∼∼P

∼∼(P ⊃ Q)

∼∼Q

and then prove—?

` ∼∼ p ⊃ (∼∼(p ⊃ q) ⊃ ∼∼ q)

relying upon a circumlocution through the inline domain and the rule of modus ponens?3

In a footnote to the same article, Glivenko notes

2According to the second edition of Hilbert and Ackermann [20] (see p. 29 of [21]), the use of
this rule system in logic can be traced to Frege’s Begriffsschrift of 1879.

3In posing this question, there are a few points I ought to make clear. First, there is a simple
answer it is not my intention to discredit. Glivenko has offered us, as it would go, an exercise in
inventing derived rules—“short-cuts,” Troelstra and van Dalen call them ([31], p. 45); Kleene also
uses the Latinized “subsidiary deduction rule” ([22], p. 51). Granted, the account could simply end
there. Secondly, I do not intend to claim to be a diviner of Glivenko’s true thoughts on the matter.
I am ultimately only interested in using this passage from Glivenko’s paper to illustrate my point,
which could be made without it or by referring to any number of other places in the literature. Let
us, though, keeping all this in mind, allow the question to be examined with an open mind.
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To save in writing, we will sometimes make use of the following rule:

P ⊃ Q

Q ⊃ R

P ⊃ R

which follows immediately from Axiom II.

Precisely what is taking place in these two quotations? All the evidence found in the brief

article suggests that Glivenko respects the strict division between the notions of axiom,

theorem, sentence, etc., and the carefully fenced-off notion of a rule which appears in Hilbert

and Ackermann’s Grundzuge der theoretischen Logik [20], which he cites. Why, then, does

he—“informally,” as we would say—break the boundary twice? The reader who has done

any logic for him or herself knows that there exists a natural psychological tendency to do

precisely what Glivenko has done. Is this nothing more than a human tendency to play

truant to the laborious accounting that science sometimes requires? Might there perhaps

be something deeper involved—some veiled mathematical principle beyond our human-born

idealization? The evidence, it can be argued, tends to the conclusion that the notions of

rule and axiom resist the traditional distinct and disjoint classification—that the boundary

between them is not the ironclad wall Hilbert and Frege envisioned. Perhaps we ought to

formalize this tendency, someone might say—we formally derive new formulae; these we call

“theorems.” What sort of “theorem” do we obtain when we formally derive a new rule?

Traditionally there exists, in the storehouse of logical knowledge, two distinct domains:

the horizontally-oriented home of “theorems” and the vertically-oriented home of “derived

rules.” It might be argued that by such a state of affairs, the unity of logical intuition is

corrupted. Note, especially, the discrepancy between the justification of the derived rule, and

the fundamental rule adopted as purely self-justified (in this case, modus ponens). When one

asks why Glivenko’s derived rule is permitted, the justification flows out of the horizontal,

inline level of the writable formulas and axioms (which are meant, as we take it, to “tell us”

something—something meaningful, something true). Modus ponens, however, has not been
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so fashioned. Yet shouldn’t the rule—if it is really a rule—also be said to “speak truth” to us,

in the form of a kind of possum? To hold to the usual account of the rule as a kind of metalevel

activity to which the terms truth and falsehood are not meant to be applied (being confined

in order to ensure the absence of paradox within the horizontal domain of statements and

axioms) seems somewhat legalistic, akin to the view that what quacks like a duck and walks

like one is not a duck by nothing more than its formal definition. In mathematics, where

general tendency has always led towards subsuming similar structures into new abstractions,

and where more than a few distinctions have eventually given way and been forgotten, this

policy appears ripe for a critique. Only the most resolute logical relativist could ignore the

odd bifurcation of the source of justification (truth) in the standard form of logic. Having

developed logic ostensibly for the sake of the first kind of truth (truth in the object language)

our curiosity tends always, like Glivenko’s, to leads us to ask questions posed to the second

kind of truth: what may I do...? In general, from Frege on, this discrepancy has been well-

hidden so as not to cause any disturbance, tucked away inside the only rule no one could

possibly reject.

Further evidence of this bifurcation can be found in the symbolism. What, for example,

distinguishes the semantic content of the vertical line, and the symbol ⊃? Glivenko writes

what he calls a schema, then proceeds, in a step whose banality belies its significance, to

commit himself to obtaining a proof of the schema rewritten—since, as the structure in

which he operates is designed to affirm, this will justify, in the manner of a guarantee from

somewhere or someone outside himself, the schema given earlier, which takes the form of

a personal action—a remote and innocuous, but nevertheless forcible act: the antecedent

formulae are brought out, and then they are “discharged”—they are used, sold, consumed.

Perhaps I go too far—but now the distinction between the semantic content of the two

symbols, and the murmuring disturbances on the philosophical level that they reflect, have

been underlined. There is, I think, a real problem here to be understood, perhaps even to

be solved.
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Let us cautiously advance further into the structure of this unsolved problem at the heart

of proof theory. We are first faced with the need for some sort of elementary vocabulary.

Recalling our point of departure in chapter 1, we shall limit the range of the search by

ruling out, as best we can, accounts that involve a human presence in mathematics; it is

not wise to introduce the anatomical features of complex living things into our justificatory

premisses, until we are confident that they are absolutely necessary. Next, having thereby

cleared away the field of most other possibilities, we take our choice—it seems we need

only to introduce one new element, or dimension, into the analysis, namely, time. We shall

reduce the rule-axiom distinction, that is, to the terms of the physicist. We say, then: we

face the problem of attempting to understand an enigmatic double-role performed by the

written mathematical statement, or, put slightly differently, the manner in which axioms

are lifted into the temporal axis of mathematical construction, and from there, how activity

is projected down into a spatial representation which rests before our eyes, the symbolic

diagram. A mathematical sentence is written: this may have either a spatial, or a temporal

sense. The sentence may be declared, or it may be performed. In the usual proceedings of

logic, this division which we take to divide the temporal and spatial dimensions separates

horizontally- and vertically-oriented computations.

The next step is a remarkable observation: the temporal dimension cannot be extricated

from logic. We cannot say that logic has a simple persistent presence, like an ideal hall or

museum one can enter and explore. We cannot entertain the idea that logic is a temporally

frozen realm, a realm purged of change, a realm of nothing but “facts” about existence and

the existent.4 Logic occurs, it does not merely exist—or else logic must be trivial.

Suppose that I perceive, in a frozen, timeless sense, a ⊃ b. Let us say: this is a fact.

Now I see that b ⊃ c—I see one, and I see the other. If logic only involves facts, then I

am powerless to conclude a thing. I must simply wait, hoping to find a ⊃ c somewhere

4In the mind’s eye, it is easy to confuse the intuition of historical and mathematical facts. We
want to say of historical facts that they are true, permanent, that they can’t be undone. Do we not
say the same things about mathematical facts? But historical facts are about things which have
happened—past tense. Mathematical facts are not this way, they did not happen—or did they?
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nearby, since I do not now see it, and cannot “deduce” without a timeless form ready upon

which to base a deduction. But perhaps I have found somewhere another artifact: I see that

(a ⊃ b) ∧ (b ⊃ c) → (a ⊃ c). I rejoice, but to my dismay, I soon find I am still plagued by

paralysis. What can I do? Let me grant that I may “form” a conjunction (a ⊃ b)∧ (b ⊃ c)—

perhaps this may be allowed (though in most formal system, even this demands a “rule”).

Now I have one, and the other—but how will I ever be rid of the antecedent? I must carry

it forever, it seems; at best, I can only try to cover it up or ignore it. If I were to continue

doing logic, making more inferences, my back would certainly break from carrying along

with me the least effect, the smallest trace of my work. Such a logical realm would either

be trivially fused into vast “theories” or pulverized into discrete atoms having no “logical”

interconnections. Even were I to grant myself the (quite amazing) power to survey, without

sifting and in a single timeless instant, the entire beautiful realm of truths, I would still have

no way of removing the intermediate steps of an inference chain; I would have no way of

cutting the baby free from its mother, of extracting from the proof the theorem which it is

its purpose to derive.

This is nonsense5; of course I may “draw a line” as Frege did, and conclude something. I

do not make sense of this act, however, unless I admit the notion that my logical calculation

advances, develops, progresses. Logic occurs ; to derive is to travel, to be in motion. Unless

the heat is added which melts the ice, there can be no new inference; in fact, the very notion

of inference utterly vanishes from view. The reduction of the list of rules to modus ponens

(which is usually associated with Hilbert’s name, but was also Frege’s approach, was the

convention used by Russell and Whitehead, and was employed without special comment by

the intuitionists as well (see [16], [13], [24])) goes no further: the number of rules must be

greater than or equal to one. The conclusion is something which—somehow, in some way—

takes place, assumes a location. Carroll’s paradox (as it is sometimes known) is nothing but

5Fitting, then, that the first to remark on this phenomenon was the famous logician and nonsense
poet Lewis Carroll, in a brief note [5] published in Mind in 1895.



18

the insight that logic cannot be complete until there is posited within its constitution a point

at which facts end, and activity begins.6

Thus our formalistic point of departure, the study of the object, has now become the study

of the object in time. By applying our strategy of the preceding chapter, we have stumbled

upon a principle (construction in time) which was central to the thinking of Brouwer and

the later constructivists.

After this dramatic change of direction, we may feel somewhat disoriented, but now we

must immediately turn to investigate whether our new ideas might contain within them the

possibility of a robust system of calculation. We have seen that the occurent inference cannot

be pushed out and made exterior to logic. We have identified the occurent inference—the

inference made in time—with the inference justified by a rule. The axiom is not a rule—it

occurs outside of time. It is a fact, something inert. In order to be used or employed, it

must be transformed (as in the quotation from [13] above) into a rule-like construction—

i.e., one which states that a form with a given property can be actively manipulated during

calculation. Note that there is nothing, until that stage has been reached, which the axiom

can be used for unless the objects we are interested in studying are themselves formulas. If

we have the desire to learn about formulas and not about objects, then obviously the axiom’s

role is of crucial importance; otherwise we must certainly view its role as rather ancillary to

that of the rule, which, after all, is the real source of operational power in the calculus.

There is no compulsion that we are aware of, in fact, such as we felt with respect to the

rule under the duress of Carroll’s paradox, to make use of the notion of an axiom at all.

Readability is the only consideration preventing us from replacing every instance of ⊃ in

Glivenko’s proof cited above with a vertical line. There are certainly practical considerations

in play, it is true, for the logician, who finds that difficulties tend to arise when working with

6Confirming evidence can be noted in many quarters. We do not simply “see” mathematical
proofs—rather, we read them. Nor do we read them by starting at the end, and moving backwards—
proofs, like books, poems, musical compositions, etc. have a beginning, middle, and end. Even in a
trivial proof these categories are not transcended, only equated. Every proof, if understood, contains
the ability to go on, with additional time, proving ever more.
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systems—Gentzen’s natural deduction systems for example—with a large number of rules.

However, for the mathematician, who is not so concerned with proofs at the metalevel of

consistency or completeness, these concerns are very miniscule, and perhaps even nonexistent.

It is also true that the semantic sense of the vertical line and the inline inference ⊃—

the possum—is hauntingly similar. By equating them we would obtain, in addition to the

structural elegance that shrinking the basket of fundamental concepts would be sure to grant,

a system that pulls more philosophical weight. If it were only possible, it would be absolutely

irresistible to fuse the two notions into one. We aim our investigation accordingly: we will

try to obtain precisely such a logic: one in which each inference is actively performed by the

mathematical subject. This will be done by removing the semantic estrangement caused by

maintaining two separate inferential constructions, eliminating the dichotomy of performance

and declaration.

Now it is unmistakable: a new vision of logic has begun to emerge. A logic without axioms,

a science of derivation in the pregnant sense, a science of motion, hence—kinematics. We no

longer consider a science of logic whose domain is the linguistic marrow of true statements—

rather, the matter of logic has now become a proof-theoretical pseudocode for praxis. The

metalevel (the level of the object in time) has been embraced and proclaimed the level

of mathematics itself.7 This, it may be worth noting, was not done through an appeal to

naturalness, intuitiveness, or the like, although these factors were weighed; rather, it was

through deliberate application of our principles, based upon observed constraints. Our goal

remains to find a way through the difficulties noted in chapter 1; our strategy has yielded us

a small glimmer of light to guide the investigation forward.

7Crucially, our assumption system (see section 3.3) allows us to avoid the Euclideanism that
this would seem to imply.
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2.2 Justification

We require some sort of notation to represent temporal processes. We shall write a→ b when

it is meant that we exchange, in time, the object a for the object b. To mathematical activity

(viewed from the disengaged state in which Wittgenstein encouraged us to observe ourselves)

we thereby attribute no more structure than is absolutely necessary to the mathematical

subject, or possessor : this, if nothing else, occurs during the moment of inference from a to

the conclusion b. a is given over for b; a and b change hands; in other (more dispassionate)

language, we might say that a transforms into b; thus we will call such a construction either

a process or a transformation.8 These shall be construed not as binary operations but as

chain-forming operations. The basic idea is simply that a→ b→ c, for example, is taken to

be a basic expression, a chain beginning with a and ending with c.9

We may infer from this interpretation that → gives rise to a universal poset (W ,→) of

objects: reflexivity, anti-symmetry, and transitivity10 are manifest properties of the temporal

development of objects as we recover it from the mathematical intuition. For the intuitionist,

they flow from the intuition of subjective time on which all mathematical construction is

8It is lore among mathematicians that the Indian genius Ramanujan had an unusual method:
instead of writing out a careful record of his progress on paper, he would write an expression out
in chalk upon a slate, erase it, and then rewrite it in a new form; he might repeat this several
times. When he was finished, he would write down the result, having no concern for its proof. If we
imagine this emission-acquisition event (write-erase-rewrite), we can conceive of it as an object (an
“act” or process), and diagram it: a → b. This idea is akin, though not identical, to the “first act
of intuitionism,” the generation in mental awareness of a two-ity. Brouwer calls two-ity “the falling
apart of a life moment into two distinct things, one of which gives way to the other, but is retained
by memory” ([4], pp. 140-141).

9If I travel from Athens to Washington, D.C., and then continue north to Baltimore, then I may
view two trips, or simply one—there is categorial heritability here. Perhaps the most important
reason for proceeding in this way is that it smooths the proof theory considerably in section 3.2.
Later we will prove that transitivity of the fundamental relation→ in fact holds, on the basis of its
mathematical nature as a chain-forming operation, among other things. We will, however, adopt a
transitivity axiom and a binary transformation relation once we begin working with models (see p.
62).

10A relation ≤ is reflexive if x ≤ x; anti-symmetric if x ≤ y and y ≤ x implies x = y; and
transitive if x ≤ y and y ≤ z implies x ≤ z.
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based. For the formalist, they are the properties that it would be impossible to withdraw

from linguistic symbols, because they are intrinsic in them.

Our next task is to obtain a theory of mathematical justification which respects the

boundaries sketched in the previous section. We shall secure our deductions through the

adoption of proof-theoretical rules, processes which we shall henceforth call axioms, rules,

or proof-theoretical axioms. (We refer back to the axiom concept abandoned in the last sec-

tion with the term logical axiom.) Collectively, we shall refer to this element of the calculus,

following Herbrand, as the theory, or the active theory.11 Since we are well aware that the

philosophical investigation of the rule concept inexorably leads to deep-seated challenges re-

lated to the aforementioned biology of mathematics,12 we make note of the difficulty without

attempting to resolve it in the space we have here. We simply grant that a certain represen-

tation, a certain object—a unity, a diagram in space of a schematic pattern of progression

through time—can be understood as a rule, and can also become one—can, in other words,

be adopted or assumed by a mathematical subject, and become a part of theory. In such a

representation variables (a, b, c, etc.) may be present; it is understood that the rule denotes

a permitted transformation regardless of the identity of the objects in the positions held by

variables.

In our view, then, theory (the justificatory basis of proof-theoretical theorems) exists in

a purely temporal state, as tacit knowledge of can and must. It is—what we are. It is the

whole invisible fund of processes delimiting our freedom of action as mathematical agents—

visualizable as channels or gateways that recur indefinitely. We will agree that there is this

overarching presence in all of our proofs, namely, the patterns of motion which are legally

ordained, i.e., possible in the mathematical sense.

11The active theory contains all that which governs us—the fundamental axioms, definitions, and
abbreviations. Putting aside the style in which they are introduced, it seems that the distinction
between these concepts is that in the case of a definition or abbreviation, consistency and inde-
pendence are intrinsic, though to verify this conjecture would demand that we define terms more
carefully.

12See the Philosophical Investigations; among others, Wittgenstein’s analysis was furthered by
Millikan and Kripke.
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As euphony suggests, we will sometimes refer to objects synonymously as expressions.

The distinction between an object which is a process a → b, i.e., one which is semantically

a transformation, and has the top-level form a→ b or a← b, and an object which does not

possess this property,13 will be important throughout our work, so we shall reserve the term

object in the strict sense (or strict expression14) for the latter, and usually process for the

former.

We agree to write a = b when we mean that a is reversibly exchanged for b. For this

we can write a → b ∧ b → a, or, alternatively, regard the note “this process which I now

do is reversible” as only a courtesy (the distinction will not matter after chapter 4). We

call such a process a reversible process, equality, or equation. The use of the symbol = and

the terms equality, etc. is quite deliberate. We make no distinction between arithmetical,

set-theoretical, and logical interchangeability (equivalence, equality), since there is no basis

for such a distinction given our point of departure in chapter 1.

Herodotus once wrote, “Egypt is the gift of the Nile.” A river flows through the still

valley. The lesson we draw from proof theory is that mathematics does not begin until time

breaks an abstract silence, until what becomes (tä m� în) calls on what is (tä în) to give

reply. In this sense, perhaps, the infinite, like the pea beneath the mattress, has been hiding

in the bedrock of formalism all along.

2.3 The Economic Myth

We conclude this section with a short intuitive discussion to help orient the reader, so that

he or she can more rapidly comprehend the whole created from the various elements of the

theory introduced below, which might perhaps appear strange and new at times. It also

serves to disclose somewhat the design principles which have motivated the author during

his work.

13This distinction is made using the principle of excluded middle; intuitionistically the two-sided
distinction between strict expression and process may “split” into three or more.

14For example, polynomials, integrals, etc. fall under the heading of objects in the strict sense.
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Let us imagine that all of mathematics is taking place within a vast concrete trading

economy. In this economy are owners, who go about their business, trading according to

laws which govern all just and fair exchange. Among these owners there are a unique kind,

who seek only to gain, to purchase, the knowledge of new laws. Such new laws, once found,

are added to the ones already known, and supply owners with an understanding of the inner

nature of the economy itself—the system, as a whole, governed by the laws.

How is it that a new law may be obtained? In this ideal economy, they are generated from

the principles of value. A law is known which says that a thing a, exchangeable for a thing b

which may itself be exchanged for c, may—by a Principle of Absolute Value holding among

owners—be exchanged also directly for c. Likewise, a may be exchanged for a symmetric copy

of itself, and two entities, each of which may be the price at which the other is obtained, are

said to be the same in value.

Another observation. A collection of things, when it is known that individually they may

be exchanged for others, may be exchanged en masse for the batch of items they may be

exchanged for in isolation, by a certain Principle of Independent Value, proclaiming that the

intrinsic value of any entity is independent of any transfer of ownership, and the locations

of other objects within the economy.

Finally, this. Whatever may be deemed fair from the presumption that a set of possessions

may be exchanged for a given product or commodity, becomes a law of second order, that

is, a law governing the exchange of law for law.

What does the mathematical owner have in his possession at the start of his economic life?

What does he need with which to purchase the first law? Since law is a public commodity—

freely shared by all within the realm—what he purchases comes at no price. He need only

share with other owners in the principles of value, and he is left free to pursue his aim. In

the mathematical economy, one begins in possession of nothing—an equal amount for all.

In the next section, we will implement and formalize the ideas which this brief illustration

motivates, in order to obtain a functional deductive system.
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In presuming the concept of a rational and fair economy, have we already implicitly

assumed the presence among agents of a judgement faculty, and the classical logic of asser-

tions? The question is meaningful, perhaps, and many others like it might be raised which

either reflect the spirit of the illustration, or are critical of it. The reader should be sure to

understand this. However the author implores the reader to consider not only the purpose

of the above discussion as a beginning point of the formalism which begins soon, but also as

one of its endpoints. This is related, for the author, to the important and tricky matter of

how philosophy and mathematics can have a successful exchange. For it is neither a stead-

fast law in philosophy, nor in mathematics, that with added scrutiny, comes added depth.

While (therefore) the aim of this illustration is to make clear in as few symbols as possible

in just what manner we have departed from the norm in logic (while striving to preserve

a great deal—as much as was felt possible—of its mechanics and other particulars), it also

carries a purpose of some centrality, which is to clarify the sense in which we say: to find the

inner, look outwardly. This, which we have once again returned to, is the hypothesis at the

seat our work, which we believe is the mathematician’s confident conviction, and the keen

psychological force which led Hilbert to formalism. In fact, it led Brouwer to a philosophy by

no means dissimilar in its faithful optimism amidst the ever-steepening decline of apriorism

in the West: the conviction was equal in both of these two great figures that the source of

the laws is not beyond our knowing, but beneath our very noses, among us in the midst.



Chapter 3

Fundamental Proof Theory

In this chapter we present the proof-theoretical tools we shall employ: deposition, condensa-

tion, and the method of assumption, discussing mathematical and philosophical motivation,

and familiarizing notation. Though the material here may seem basic, it forms the vital link

between the contents of the preceding chapters and those that follow.

3.1 Deposition

We see that not all expressions are isotone1 with respect to transformation. This fails imme-

diately: suppose that a implies b, for which (from the considerations above) we may write

a → b. We know that a transforms (at will) into c in time. If such a transformation occurs

within the form a → b, then surely c → b, a fallacy. Consider, too, expressions involving

the unary operator ¬. It is everywhere clear that isotonicity gives way to antitonicity when

the object to be transformed within a context is colored by a negation symbol. However,

intuitionistically and classically, ¬¬a gives ¬¬b when a→ b.

These considerations lead us to ask: when, in general, is an expression isotone—or, posing

the question slightly differently, in what spatiotemporal contexts does a→ b mean that a may

be transformed into b, and in what contexts is this not the case? One of the tasks ahead is to

prove (for we shall be careful not to assume it) that all strict expressions which we define are

isotone. We shall also be able to obtain a succinct set of laws characterizing the phenomenon

1Following Birkhoff (see [1]) a function ψ on a poset (W,→) shall be isotone if a→ b implies (is
or may be exchanged for) ψ(a)→ ψ(b), and antitone if the latter condition holds whenever b→ a.
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of antitonicity in the wider realm of processes, in part due to the definition we use for

negation ¬a, following the intuitionists in reading an abbreviation for a→ ⊥.2

These principles shall constitute a generalized system of substitution. In all past accounts

which the author is aware of, substitution—taken in the broadest, most universal sense—

has been only incompletely developed: when an object a and an object b are equivalent,

there is universal exchangeability, irrespective of context. Nothing else is said, even about

the possibility of a substitution which might be partial—a substitution, that is, might be

performed in which only the ith occurence of a in an expression ψ is exchanged for b—in

spite of the fact that such substitutions are not infrequently made in mathematics.3

These tools will be carefully prepared for general use in our calculus. This will greatly

distort the sense in which we normally refer to substitution, so in order to avoid confusion, we

will only use the term substitution as it is already commonly understood. For the generalized

notion, we shall introduce the term deposition. The process of deposition, in which we depose

the object a, the deposand,4 and in its place leave the deposit b, will be written by using

what we refer to as an axis, or deposition axis, thus:

ψ(a)

a→ b

→ ψ(b). (3.1)

The L-shaped line is a convenient way to specify the transformation which justifies the

conclusion without an obtrusion on the flow of the inference chain being followed in the top

row (which might have several steps preceding, and several more following after). It should

2Practical consideration of generalized substitution (see infra) impels one to consider negation
to be a process, in order to achieve simplicity, as much as one is impelled to say out loud that the
value −1 is a real, concrete integer, and not a construction out of two or more different elements.
Philosophically, too, we have observed that due to Carroll’s paradox, it is manifestly not possible
to extricate from calculation the notion of time. Therefore the “process-free” logic that might
be gained by transforming all logical processes into objects in the strict sense, say, by using the
form ¬(a ∧ ¬b) must be unobtainable. These various considerations make it highly likely that
negation is—and should in fact be—a process, regardless of whether logic is viewed Platonistically
or instrumentally.

3To give very simple but quite typical example, x2 might be revised to xy, when x = y.
4On analogy with the term subtrahend, “that which is subtracted,” this is “that which is

deposed.”



27

not be taken on analogy with the “branching” of a proof tree; the process in the lower row of

the axis is, sensu stricto, nothing but a courtesy which may be omitted at the discretion of

the writer. One should consider it an exchange of ψ(a), whose justification is politely noted

to the reader, for ψ(b), and not a combination of the two elements ψ(a) and a → b. Also

note—in any deposition, the subthesis, the process in the crook of the L, cannot be chosen

arbitrarily—it must be valid5—and in our work it is usually an axiom, or an assumption

recently made. We may also write, using Sub for substitution:

ψ(a)

a = b

=
Sub

ψ(b). (3.2)

In a substitution, every instance of a must replaced with the object b; thus in most substi-

tutions the deposand is a variable or constant.

We now make observation of what we do not deem an “axiom”; it is simply manifest

from the kinematic semantics we have already discussed:

Observation.

a

a→ b

→
Dep

b. (3.3)

From this tiny mustard seed, if you like, results which strengthen deposition will grow grad-

ually (beginning in this chapter and continuing in chapters 4 and 5) until we have obtained

a comprehensive and robust tool.

The reader has probably noticed that the arrow on the main row in process 3.3 has below

it the three letters Dep, standing for deposition. When we desire to be perfectly explicit

in our reliance upon the justification supplied by the performed transformation above, we

might write this symbol below the arrow. We call the markers we place below transformation

arrows referentials. They are never required, but are a very convenient and legible system for

5As we will see when we come to section 3.3, it is more correct to say that it is locally permissible,
or locally valid ; this distinction is illuminating, though it has no formal effect.
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annotating proofs.6 Most axioms and theorems will include referentials in their statements

from now on, so that they may be referred back to in later proofs. For those that do not

contain referentials, we may refer to them by the number under which they are listed, e.g.,

T. 11 for Theorem 11, etc.

3.2 Condensation

Recall that, since it symbolizes sudden or gradual change, we understand → to be a chain-

forming operation. One can conceptualize the transformation or process as graduating along

three possible levels. First, relative to its predecessor transformation it can proceed as though

walking forward: this we denote by a → b → c and call a chain; it is an object, a regular

expression. It can also proceed as though walking backwards, a ← b ← c, and we call this

a reverse chain, and do not allow any other kind of chain; processes that are reversible,

however, can always be written using the symbol =. Second, a transformation can proceed

“upward” to a higher order process: this we denote using parentheses: a → (b → c). Third,

it can proceed “downward” to transform a process to (possibly) a strict expression: this we

denote (a → b) → c. This forms what we informally call a stack of processes, a much more

stubborn construction than the other two—for example, ¬¬a is a stack.

For the reader’s convenience, we now extend this discussion, laying out the complete set

of order of operations and parenthesis conventions we will use throughout our work. Among

our basic operations or connectives, conjunction ∧ and intersection ∩, intersection binds most

strongly. Following these in strength are the transformation symbols→,←, and =. Following

the usual convention, ¬ for negation binds most strongly of all, and we allow the strength of

transformation symbols to be greater than that of disjunction ∨. The argument of the symbol

a is always explicit, so it needs no parenthesis convention. We shall write long transformation

arrows in place of parentheses in expressions in which there is a transformation of one or

6We would also like to comment, on the pedagogical side, that they are an excellent aid to the
learner. They are also convenient when one is examining the interdependencies of theorems upon
one another.
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more processes (a process in which processes are exchanged, or a process of second order).

For example, instead of ((a → b) → (c → d)), we may write a → b −→ c → d. We allow

disjunction to bind more strongly than long arrows. Therefore, the binding sequence in full

reads: ¬,∩,∧, {→,←,=},∨, {−→ , ←− , == }.

We shall now, temporarily, elaborate our notion of transformation slightly. Let us agree

that axioms, i.e., assumed processes, are atomic, one-step processes. For the sake of con-

creteness (though we will never bother with this) let us agree that should we desire to write

a one-step process explicitly, we can use the symbol ⇒, hence a⇒ b, etc. Now: we say that

the standard process a → b is in fact, in general, a condensed string of one-step processes,

or condensed chain. When we write it, that is, we are essentially running rapidly through all

the individual steps, without pausing to write any of them down.

We shall thus call a proof by serial condensation any proof of a process a→ b which has

the form a = c1 → c2 → . . .→ cn = b, or an analogous proof of a reverse chain. If desired, we

can write in the “condensation” step—though this is only a heuristic, which is often useful

for the sake of clarity. It is not a “formal” transformation; we thus write it using the symbol

 . We will announce this method of proof as a principle.

Principle 1 (Proof by Serial Condensation). From already known proofs

a1 → a2 a2 → a3 · · · an−1 → an, (3.4)

to conclude

 a1 → an, (3.5)

by Serial Condensation.

As an illustration, we can now strengthen Deposition somewhat with the following ob-

servation (antitonicity in the antecedent):

a→ b

a← c

−→
Dep

c→ b. (3.6)
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This follows immediately from transitivity:

c→ a→ b  c→ b. (3.7)

The important observation here is that it is often useful to treat the process as a deposition

(rather than a law about chains) since the expression in the antecedent behaves, with respect

to ←, precisely as normal expressions do with respect to →.

We now define: a ∧ b shall be the conjunction of a and b. The conjunction a ∧ b is an

object; it is the set of the object a and the object b. Because the conjunction is understood

by us to denote a finite set, we may adopt the following axiom as a constructive principle,

which shall imply the isotonicity of conjunctions.

Axiom 1 (Conjunction Formation and Decoupling). (1) From a pair of objects a and b, to

obtain their conjunction,

a

b
−→
Form

a ∧ b, (3.8)

and (2) from a conjunction of a pair of objects a and b, to obtain their abstract grouping,

a ∧ b −→
Dec

a

b.
(3.9)

The style of this axiom (the only proof-theoretical axiom we shall assume which strains

the use of the term “axiom”) may appear more familiar to the reader if processes 3.8 and

3.9 are written in the vertical format of the “and-introduction” rule commonly employed in

proof theory:

a b

a ∧ b.

a ∧ b

a b. (3.10)

Their justificatory basis is simultaneously constructive and practical. They offer the advan-

tage of removing a proof-theoretical burden left in place by Heyting’s axiom

a→ b −→ (a ∧ c)→ (b ∧ c) (3.11)
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given our stated goal of employing the Deposition construction as a basic tool.7 Axiom 1

provides a new way in which processes can be “condensed” together; we present it in the full

generality easily granted once associativity of conjunction is proven in the next chapter, on

the basis of the case when n = 2 (which immediately follows from axiom 1).

Principle 2 (Proof by Parallel Condensation). From already known proofs

a1 → b1

a2 → b2

...

an−1 → bn−1

an → bn,

to conclude

 (a1 ∧ a2 ∧ . . . ∧ an)→ (b1 ∧ b2 ∧ . . . ∧ bn), (3.13)

by Parallel Condensation.

Note that this principle may be written in the succinct form

∧
(ai → bi) (

∧
ai)→ (

∧
bi). (3.14)

We will now combine the principles of Serial and Parallel Condensation into a more

general reasoning pattern which conveniently replaces them both. The idea of such a demon-

stration is simple and quite intuitive: some organized mathematico-logical information is

displayed. Then it is “condensed” down in an ordinary way into a synoptic statement.

7The difficulty, briefly, is the following: our desire is to obtain

a ∧ c

a→ b

→
Dep

b ∧ c. (3.12)

whenever a→ b is valid. Consider what happens if we (globally) assume process 3.11. Then difficulty
would erupt since a∧ c→ b∧ c still needs to be (formally) proven based on the validity of 3.11 and
a → b—this requires additional principles and additional work. Even axiom 6 below stubbornly
refuses to yield the straightforward exchange of b ∧ c for a ∧ c !
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Principle 3 (Proof by Condensation). From a collection or display of demonstrations

a1,1 → a1,2 → . . .→ a1,n1

a2,1 → a2,2 → . . .→ a2,n2

...

am,1 → am,2 → . . .→ am,nm

(3.15)

to conclude

 
Cond

m∧
i=1

ai,1 −→
m∧

i=1

ai,ni
(3.16)

by Condensation.

In such a proof, we refer to the chains in the array (3.15) (somewhat improperly) as

a condensation matrix. The process 3.16 is called the condensate. The components of the

condensate have names. The objects ai,1 are the factors of the condensate, and the ai,ni

are the products. This language is occasionally useful to an involved mind. The method of

condensation provides very legible proofs, whose complexity is often markedly decreased

compared to other formal methods. Note that once a metalevel is admitted, it is easy to

verify principle 3. One simply verifies that whenever a → b, b → c, and c → d are justified,

the processes a→ c and a ∧ c→ b ∧ d are justified as well.

3.3 Simple Assumption

Our last method of proof involves the introduction of our most valuable tool: the simple

assumption system. This system—and it does make sense to call it by that name, for it is

like a wonderful machine for proving almost anything with the greatest of ease—involves the

inverse of the concept of assumption introduced above in section 2.2. It says by assuming

temporarily that a process is permitted, we may, having performed some derivation, return to

the previous order by unassuming the process, and thereby obtain a new law. So far, we have

obtained ways to confirm the validity of processes which involve only the strict observation

of axioms; these, then, are direct methods—the justification of repeated use of processes
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proven in this way is that the demonstration given in the proof may simply be repeated

(gone through “very fast, without writing anything down”). The method of assumption is

more subtle than this, and more intertwined with the philosophy matters discussed above.

However, since we characterized the axiom as a rule governing creative activity, the power of

assumption is not taken over arbitrarily—we have already introduced the notion of assuming

or adopting a rule, and now only with to augment the concept with the principle that it

provides sufficient justification for certain kinds of transformations, certain kinds of trades.

If we had proceeded in some other way, we might not, having reached this stage, be so ready

to introduce the notion that a hypothesis can be exchanged for processes taken from the

world of possible actions put into play by its validity. This, we think, bodes well for the

decisions made in coming thus far.

We write £ a → b, “let a → b,” when we wish to assume8 a given process. We call this

the assumption clause. Since initially we wish to assume only processes—we will see later on

how to assume conjunctions and other constructions—we define a simple process to be an

object writable in the form a→ b, for arbitrary a and b. For example, a← b is also a simple

process, but not a = b, that is, a → b ∧ b → a (see p. 22). We say that when a process is

extracted from active theory during the method assumption, it is unassumed, or abolished.

This we call the abolishment clause. We can now state our principle succinctly:

Principle 4 (Proof by Simple Assumption). From assuming a simple process a → b, and

thereby find a demonstration of a process c→ d, to conclude

 
Ab

a→ b −→ c→ d (3.17)

by Simple Assumption, provided that a→ b is the most recently adopted assumption that has

not yet been abolished.

8Applying the assumption system, subjectively, is rather like employing a local hypothesis,
rather than a global hypothesis (an axiom or definition). Of course, as the complexity of the
existing assumption structure increases, these categories naturally become less meaningful, but local
assumptions will generally be assumptions which are made for the express purpose of applying the
method of assumption.
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The adjective “simple” is meant to distinguish this principle from a more general assumption

system which we will define in section 4.3. The referential Ab stands for “abolish”: as the

proof comes to an end, we remove the transient freedom granted by the assumption by

abolishing it as a rule, attaching it to the conclusion and discharging it from the active

theory, producing what amounts to a report, in one environment, from another environment,

which has been converted into an exchange of objects.

“It must be admitted,” said Frege in his famous work of 1879, “that the way followed

here is not the only one in which the reduction can be done... There is perhaps another set

of judgments from which, when those contained in the [proof-theoretical] rules are added, all

laws of thought could likewise be deduced” ([10], in [14], p. 29). We find, from our own long

experience of the overwhelming variation in logical axiomatics, which is more multitudinous

than the ways in which, in chess, the opening can give way by line of play to a middle game,

that such intellectual honesty on Frege’s part would be unanimously expected, were it not

so extraordinary. In practice, however—when one is thinking broadly about how to condense

or uncondense, and whether something should be treated as an assumption or as a factor for

condensation—the objects under consideration behave in such a way that little else could be

more natural than the notions introduced in this chapter.

Finally, concerning consistency. Should the constructive-formalistic kernel of certainty be

accepted—i.e., should we countenance the notion that the extralogical foundation of proof

theory and finite, surveyable construction in time and space will not lead to a contradiction

Ø → ⊥ due to its own primordial compulsion upon the inner workings of our minds—then

neither will the same body of thought once the assumption system has been added to it, for

assumption proceeds only from hypothesis to conclusion. With an assumption open, there

is always an emergency cord to pull to save mathematics from the universal calamity of a

conditionless antilogy,9 therefore the use of assumption can never result in any inconsistency.

9That is, inconsistency, the total collapse of value, Value Equivalence, or Unity (Ø = ⊥). It is
worth noting the affinity here to the Plotinian concept of the One, as well as the obvious comparison
to be drawn with the primordial consciousness of two-ity so important in Brouwerian philosophy.
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If we proceed forward by building only on a sound basis by introducing axioms which are

verified together in surveyable, computable models, this consistency shall be maintained.

Since we already have all the supple power of assumption free at hand, we can now rapidly

develop the consequences of these axioms, frequently with only a small investment of effort.



Chapter 4

Conjunction

In this chapter, we introduce several axioms, and begin applying them to construct the lattice

which is fundamental to our system, staying throughout within what in logical literature is

sometimes called the and-implication fragment.

4.1 Selection, Generation, Order

Given a set whose elements are distinguishable and objectively surveyed, the act of discarding

whatever part of them one has no present desire for is observed, in intuition, to be among

the most essential constructive freedoms. The following axiom codifies and makes definite

this principle.1

Axiom 2 (Selection). a ∧ b→
Sel
a.

In order to prevent conjunctions from behaving as sums,2 we introduce the next axiom.

Axiom 3 (Generation). a →
Gen

a ∧ a.

Per stands for “Persistence.”

Theorem 1. a→
Per
a.

Proof. a →
Gen

(a ∧ a)→
Sel
a  

Cond
a→ a.

1This axiom was proven by Heyting (see [16]), but his proof is not valid for objects in general.
We will return to Heyting’s system in section 6.1.

2The reader is invited to use the following dictionary on all the work done so far: for ∧, →,
replace +, ≥.

36
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Theorem 2. a ∧ (b ∧ c) =
Soc

(a ∧ b) ∧ c.

Proof. a ∧ (b ∧ c)→
Sel
a

a ∧ (b ∧ c)→
Sel
b ∧ c→

Sel
b

 
Cond

(a ∧ (b ∧ c)) ∧ (a ∧ (b ∧ c))→ a ∧ b

(a ∧ (b ∧ c)) ∧ (a ∧ (b ∧ c)) ←
Gen

(a ∧ (b ∧ c))

−→
Dep

(a ∧ (b ∧ c))→ a ∧ b.

Beginning again, we have

a ∧ (b ∧ c)→
Sel
b ∧ c→

Sel
c

 
Cond

a ∧ (b ∧ c)→ c.

Which together give

 
Cond
→
Gen

a ∧ (b ∧ c)→ (a ∧ b) ∧ c.

The converse is derived similarly.

In this proof, in which some of the formal steps are only sketched, we observe (twice) a

Condensation step, followed by a step in which the doubled assumptions are fixed using Gen

and Dep. This step is common and will be suppressed from now on.

Theorem 3. a ∧ b =
Cmu

b ∧ a.

Proof. a ∧ b →
Gen

(a ∧ b) ∧ (a ∧ b)→
Soc
a ∧ (b ∧ (a ∧ b))→

Sel
b ∧ (a ∧ b)→

Soc
(b ∧ a) ∧ b→

Sel
b ∧ a.

Suppose that you hold or possess something—let’s say a book. Now imagine that you

give it away. (You can imagine giving it to someone else, or you can imagine discarding

it—it makes no difference.) Think of what you now hold in your hand. Consider the inner

conceptual unity of that which you now momentarily possess. We denote this possession,

commodity, object, with the symbol Ø.

Now pick an object—let’s say your desk. Now imagine an object which it forms a part

of—your room or office. Now consider that this object is a part of another object. And

another object, and another... Imagine reaching an object at the limit of this indefinitely
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continuing pattern of thought: one that encompasses or contains every object you encounter

or will ever encounter. We denote this indefinite object with the symbol ⊥.

Ø, then, we can think of as the familiar empty set, while ⊥ is a maximal element given to

the poset of objects (W ,→). To the Greeks these were known as ho kenon and ho plethos ;

Boole knew them as the classes 0 and 1. We pronounce them null and down, respectively,

and define them formally through the following axioms.

Axiom 4 (Order). ⊥ →
Ord

a. a →
Ord

Ø.

The referential Ord shall also refer to the next two theorems.

Theorem 4. a =
Ord

a ∧Ø.

Proof. As in Theorem 2, there are two processes to verify.

a ∧Ø→
Sel
a.

a→
Per
a

a →
Ord

Ø

 
Cond

a→ a ∧Ø.

Theorem 5. a ∧ ⊥ =
Ord
⊥.

Proof. a ∧ ⊥ →
Sel
⊥; ⊥ →

Ord
a ∧ ⊥.

4.2 Deposition Revisited

Next, we return to our development of Deposition, begun in chapter 3. The proof of the

following theorem (our first to employ the method of proof by assumption) is remarkably

intuitive. When an active assumption is employed, it will usually, as a courtesy, be noted,

thus:→
£

. This is to say, “by assumption...” A more precise referencing system is conceivable,

but we shall not provide one here.

Theorem 6. a→ b −→
Dep

a ∧ c→ b ∧ c.
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Proof. £ a→ b. (Let a→ b.)

a ∧ c→
Sel
a→

£
b

a ∧ c→
Sel
c

 
Cond

a ∧ c→ b ∧ c

 
Ab

a→ b −→ a ∧ c→ b ∧ c.

Corollary 1. a→ b −→
Dep

(c→ a ∧ d)→ (c→ b ∧ d).

Theorem 7. a← b −→
Dep

(a ∧ c→ d)→ (b ∧ c→ d).

Proof. This may be shown by repeating the argument given in chapter 3 (p. 30). After

assuming b→ a, use Theorem 6.

Thus antecedents are antitone, consequents are isotone. From now on we write

a ∧ c

a→ b

→
Dep

b ∧ c, c→ a ∧ d

a→ b

−→
Dep

c→ b ∧ d, a ∧ c→ d

a← b

−→
Dep

b ∧ c→ d,

to incorporate valid processes into a running inference chain. It can be shown using Theorem

9 below that the antecedent of an antecedent process is again isotone, etc. In Frege’s concept

calculus these principles require several pages to prove.

4.3 General Assumption

Where do adopted assumptions go? The answer, according to our proof-theoretical ori-

entation, is that they become the attributes of the calculator or mathematical subject—

intuitively, they don’t go anywhere, they simply slip into the context of the calculation

itself. Of course, with practice, it is quite natural to think otherwise, and to conceive of

active theory as an abstract group of laws, akin to the Constitution or the U.S. Code. In

fact, once the notion of an abstract group of assumptions has arisen and been associated

with theory itself, it is once again natural, for the sake of universality, to think of theory as

a conjunction of adopted processes. This is because, so to speak, this moves back the formal
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envelope, i.e., just as at the surveyable surface of our derivations we write a∧ b =
Cmu

b∧ a, we

can think of the active theory as a conjunction like any other, which is being actively ex-

changed in the most primitive assumptive environment, i.e., the environment in which there

are no assumptions at all. This would amount to the adoption of the following principle.

Principle 5 (General Principle of Assumption). The active theory takes the form of a con-

junction θ of all the processes which a mathematical subject has adopted at a given time.

Therefore (1) conjunctions of processes may be adopted and abolished, and (2) adopted pro-

cesses may be abolished in any order.

We do not adopt principle 5; for various reasons it is best to adopt an equivalent set of

axioms. However, because principle 5 is so readily believed—and it is—a question arises. If

the active theory takes the form of a conjunction of adopted processes, then what should be

done about the object null, the algebraic identity of the conjunction operation? Given that

θ = a ∧ b, can I freely adopt or abolish a and b? If we but admit as much, then it follows

that calculation

£ Ø.

p

 
Ab

Ø→ p.

(4.1)

is valid for every process p. In other words, Ø can not only be thought of as the “empty”

set—but also as a formal tautology. While it is not entirely implausible that calculation 4.1

is invalid—intuitively it seems to merely tell us that valid processes are “free” and may be

obtained at no cost—it is possible to argue that the calculation 4.1 is invalid, since Ø is not

a process—in that case, the tautology and the empty set must remain separate in standard

fashion. However, consider that the proof theorist will recognize the validity of the statement

Ø ` T (4.2)

where T symbolizes the tautology of propositional calculus, since in normal practice, to the

left side of the symbol ` is placed a set S of axioms and propositions, and on the right is
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placed some formula for which there exists a formal proof using only the elements of S. Thus

our vision of an axiom-free, proof-theoretical logical foundation encourages the former view.

Moreover, no inconsistency arises from the assumption that the calculation 4.1 is valid (see

section 6.2). Since by it a compelling structural simplification is gained (cf. to Theorem 11

below), and since its consequences have never yet to our knowledge been investigated, we

shall assume that it is indeed valid. A direct and simple way to do this is to simply write

Ø = Ø→ Ø, that is, to adopt the following as an axiom.

Axiom 5 (Null). Ø −→
Null

(Ø→ Ø).

As noted previously, we write ¬a, “not a” for a → ⊥. Similarly, from now on we shall

write a, “vis a”, in place of Ø→ a.

Lemma 1 (Tacit Null). a→ b −→ a→ b.

Proof. £ a→ b.

£ Ø→ Ø.

a→
£
b

 
Ab

Ø → Ø −→ a→ b

Ø→ Ø ←−
Null

Ø

−→
Dep

Ø→ (a→ b).

In the following proof, we shall readopt the assumption a → b assumed in the proof of

Lemma 1. Therefore within the environment of the proof, the exchange a→ b is permitted.

We shall denote this with a “knowledge clause”: we write K p or K
R
p to mean that within

the assumptive environment in which the clause appears, a proof of p can be given, where

an optional referential R refers to previous work. We think of these processes as “known,”

and may write a →
K
b when using them. We shall also make first use of the symbol >,

introduced for the sake of readability as proofs grow lengthier. It will be used as a kind

of local pronoun, either to assign or to denote the objective nearest at hand, and can be

thought of as representing “that which is sought.”



42

Theorem 8. ((a→ b) ∧ (c→ d))→ e −→ (a→ b)→ ((c→ d)→ e).

Proof. £(a→ b) ∧ (c→ d)→ e.

£ a→ b.

K
L. 1
a→ b.

c→ d =
Ord

Ø ∧ (c→ d)

Ø→
K

(a→ b)

→
Dep

(a→ b) ∧ (c→ d)→
£
e  

Ab
 
Ab

> .

Theorem 8 brings us close to the full principle of general assumption, only on the basis

of the Null axiom. If we assume that (a→ b)→ ((c→ d)→ e), we have

(a→ b) ∧ (c→ d)

(a→ b)→
£

((c→ d)→ e)

→
Dep

((c→ d)→ e) ∧ (c→ d).

Thus the only gap in the proof is the principle of Modus Ponens in the weak form

(a→ b) ∧ ((a→ b)→ c) −→ c. (4.3)

Obviously this would be provable if the principle that conjunctions of processes can be

assumed and abolished together were adopted. This we grant in the form of an axiom.

Axiom 6 (Weak Modus Ponens). (a→ b) ∧ ((a→ b)→ c) −→ c.

As for Modus Ponens in the strong form

a ∧ (a→ b) −→ b, (4.4)

one is better off avoiding this principle, since it is not intuitionistically valid. Because the

transformation relation → plays the role of containment among strict expressions, a weak

counterexample can be produced in intuitionistic set theory: if a is a strict expression and the

most that can ever be said of whether b is contained in a is ¬¬(a→ b) (that is, ¬¬(a ⊇ b)),

then process 4.4 does not hold—rather its status, too, is that of absurdity of absurdity (for

a simple model to illustrate this, see p. 65).

We therefore have the valuable “collective assumption” theorem.
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Theorem 9 (Collective Assumption). For all processes p, q, and objects a,

p→ (q → a) ==
CA

q → (p→ a) ==
CA

(p ∧ q)→ a. (4.5)

Proof. We have that p→ (q → a) == (p ∧ q)→ a == (q ∧ p)→ a == q → (p→ a), from

Theorem 8 and the considerations of the discussion following it.

Corollary 2 (Transitivity). (a→ b) ∧ (b→ c) −→ a→ c.

From this point on we shall use the general assumption system, as is justified based upon

Theorem 9. This is a great convenience—for example, we obtain a short proof of the following

theorem.

Theorem 10. a ∧ b = a ∧ b.

Proof. £ Ø→ a ∧ b.

> a, b.

Ø→
£
a ∧ b→

Sel
a, b.

£ a ∧ b.

Ø→ a

Ø→ b

 
Cond

Ø→ a ∧ b  
Ab

> .

Lemma 2 (Birthday). Ø→ a −→
Bir

a.

This lemma says that, in general, objects behave rather like half-processes, with respect

to null.

Proof. £ Ø→ a

Ø→ a −→
Ord

Ø −→
£

a

 
Cond

Ø→ a −→ a

 
Ab

(Ø→ a) −→ (Ø→ a)→ a.

==
CA

Ø→ a −→ a.
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Corollary 3. Ø→ ⊥ −→ ⊥.

Theorem 11 (Null-Process). a→ b == a→ b.

Proof. Lemmas 1 and 2.

Theorem 11 will play a significant role in section 5.5.

Thus, using axioms 5 and 6, we have obtained the full power, conceptual as well as mathe-

matical, of the principle of general assumption, by building upon a basis whose philosophical

context has been studied.



Chapter 5

Intersection and Disjunction

In this chapter we will introduce a new operation called intersection, a ∩ b, and derive its

basic properties. Then we will prove some basic theorems of intuitionistic logic.

5.1 Intersection

Recall that, following our commitment to the extralogical interpretation of assertions, we

have extended the notion that Ernst von Glasersfeld has called “unition” and David Finkel-

stein has called “bracing” into the realm of logic, by marrying the notions of conjunction and

union, together along with the set-theoretical pairing operation {a, b}. From the nineteenth

century to the present, the opposing marriage has played on the imaginations of thinkers

who were compelled by the relationship of disjunction ∨ and union ∪ in expressions using

the set-theoretical comprehension scheme,

{x | P (x)} ∪ {x | Q(x)} = {x | P (x) ∨Q(x)},

to the view that the two operations were to be viewed as correlates, each confined to a

distinct and disjoint domain. The nature of a condition governing the formation of a set,

however, does not have any meaningful direct connection to the product which collects the

set together from its constituent parts, and therefore the connection ought to rest upon

some foundational proof. Closer study in foundations, however, leads one to reconsider the

intuition that guides one to refer to both the conjunction a ∧ b and the two-member set

{a, b} with the words a and b. The bare intuition’s sense of a ∨ b is in fact quite different,

by comparison—there is no chance that anyone could mistakenly say a and b here. If one

45
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analyzes this distinction, one is led once again to that enigmatic role which time plays

in logic, and to the suspicion that the disjunction is a process. While the sense of a ∧ b

immediately appears to intuition as an expression coupling objects in space, independent

(at least, for the present) of the development of time in either a real or intuitive sense,

one strains to remove the presence of time (or mathematical correlates like conditions or

possibilities) from any analysis of a∨ b. The reality of the distinction is seconded if one notes

the remarkable skew in the logic of mathematics—there is uniformly common use of both the

logical conjunction and the forward implication, while the use of disjunction and the reverse

implication is far more restrained, and disjunctions (usually finite and small where they

appear) almost always entail special proving techniques. Any reduction of the fundamental

connectives to a Boolean algebraic system fails to explain why these skewed frequency levels

and discrepancies in technique should exist, since the classical logical connectives have a

close symmetry akin to the Boolean operations of set theory, which are used with close to

equal frequency in mathematics (although the union is probably slightly more common) and

with highly similar techniques.1

The study of proof theory reinforces this suspicion. In the parts of logic that mathemati-

cians and laypeople are most familiar with (predicate calculus, Aristotelian logic, Zermelo-

Frankel set theory, model theory) the boundary separating set theory and logic is firmly

drawn. In proof theory, however, the boundary which separates set theory and logic is blurred

under the relentless pressure of the highest standards of rigor. In considering many normally

overlooked issues (such as how many times an axiom is used, how different regions of a

proof combine to form an epistemic unity, etc.) one is quickly led down that path forged by

Hilbert, to consider the proposition as an object, to form and unform sets of these, and to

rely on these principles to secure one’s analysis. Maintaining the separation between logic

and set theory under these conditions becomes increasingly tenuous, and the argument for

1Moreover, such a foundational approach simply begs the question. Once it is transformed into a
subject of algebraic analysis, a system gives rise to a new level at which the same logical instruments
and devices as before are back in play, and the need for a foundational account for these remains,
in order for the calculator existing in time to understand what he is doing and why.
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their separation becomes increasingly threadbare. A fundamental metatheorem which holds

in most systems, known as the deduction theorem, states that

A ∪ {b} ` c iff A ` b→ c, (5.1)

which gives the cluttered, but still suggestive relation

{a} ∪ {b} ` c iff Ø ` a ∧ b→ c. (5.2)

In order to establish the link between tautology and the empty set suggested by general

assumption and equation 4.2, one must embrace the correlation of ∧ and ∪, and vice versa.

Instrumental necessity thus, as it happens, reinforces the more intuitive of the two schemes

weighed above.

Tradition has played a role in preventing, to the knowledge of the author, any previous

attempted unification of this kind. At play at least in part is a certain perfectly reasonable

expectation that truth (tautology) ought to be maximal and topmost in a propositional

lattice. Indeed, such language entirely fills the literature as well as the vernacular. This may

be due in part to the historical fact that the high seat of truth in our cognitive schemes has

a classical cognate in Plato and all later Platonic thinkers.

The two possibilities, truth up and truth down, have contrasting characters, and play

in different ways upon the imagination; the latter is the “gravitational” model, in which

implications tend downwards toward a central or innermost tautology, and the former is the

“hegemonic” model placing truth at the utmost peak, towards which implications “ascend.”

Attracted by the prospect of gaining an unknown measure of benefit from recasting

proof theory in a practicable new form, we have been forced to adjust the symbolism in

order to symbolically integrate two opposing orientations in our tradition. By using the two

symbols ∧ and ∩ as the fundamental symbols of meet and join, union and cross-cut, in our

lattice, we believe we have preserved what we could of the on-board intuition packed into

these characters, while not lending any obscurity to an important and difficult philosophical

matter, one which we have been carefully sidestepping until now. One might characterize this
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difficulty in the following way: the genuine thought, it seems, is not due to the logical intuition

alone, for it is always viewed. However, the genuine object is not due to the set-theoretical

(or arithmetical) intuition of visual and haptic experience, for it is always thought of —its

existence is always deemed, judged to be, or (in other words) asserted. Our project, then, is

not so much to replace logic with set theory, or to replace set theory with logic. Rather, it is

to view them both from a new philosophical vantage from which each (as it is traditionally

understood) repairs the incomplete character of the other. The two irreconcilable visions

of nature seem to circle one another without end, though under further investigation this

perspective might well have to be modified.

Axiom 7 (Intersection). (a→ c) ∧ (b→ c) ==
Int

a ∩ b→ c.

With respect to Selection, Deposition, and the other basic properties, intersections are

much like conjunctions.

Theorem 12. a→
Sel
a ∩ b. b→

Sel
a ∩ b.

Proof. Ø −→ a∩ b→ a∩ b −→
Int

(a→ a∩ b)∧ (b→ a∩ b) −→
Sel

a, b→ a∩ b  
Cond

> .

Theorem 12 proceeds by explicit exchange of Ø for the desired process. This is our first

use of Theorem 11: a demonstration of Ø → p is a demonstration of p. We make little

distinction, from now on, between a process p, and p, the same process making claim to

itself.

Theorem 13. a ∩ a = a.

Proof. First, let b = a in the statement of Theorem 12. Next, note that (a → a) ∧ (a →

a) ==
Int

a ∩ a → a. Because the relations a → a are valid by Theorem 1, we may replace

them with Ø, thus proving Ø −→ a ∩ a→ a, that is, a ∩ a→ a.

Theorem 14. a ∩ b = b ∩ a.

Proof. (a→
Sel
b ∩ a) ∧ (b→

Sel
b ∩ a) ==

Int
a ∩ b→ b ∩ a.
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Theorem 15. a ∩Ø = Ø. a ∩ ⊥ = ⊥.

Proof. Int, Sel.

Theorem 16. a→ b −→
Dep

a ∩ c→ b ∩ c.

Proof. £ a→ b.

> a ∩ c→ b ∩ c.

a→
£
b→

Sel
b ∩ c  

Cond
a→ b ∩ c.

a ∩ c→ b ∩ c

==
Int

(a→ b ∩ c) ∧ (b→ b ∩ c)

Ø = (b→
Sel
b ∩ c)

==
Dep

(a→ b ∩ c) ∧Ø

Ø = (a→ b ∩ c)

==
Dep

Ø ∧Ø == Ø.

In this proof, we have made use of the proving technique of “reducing by equivalence to a

tautology.” Each step must be reversible for the proof to go through (nothing is established

by showing that p→ Ø except what is already known). We have also used another standard

technique, namely, (as we would say in our usual manner) to obtain an assertion p, we

progress (by transforms from what is known) to the transform Ø → p. This having been

done, a serial condensation proof can always be written of the form Ø→ . . .→ p.

We may from now on, by Theorem 16, employ the deposition axis construction in the

form

a ∩ b

a→ c

→
Dep

c ∩ b.

Theorem 17. (a ∩ b) ∩ c =
Soc
a ∩ (b ∩ c).

Proof. (a ∩ b) ∩ c → a ∩ (b ∩ c) ==
Int

a ∩ b → a ∩ (b ∩ c) ∧ c → a ∩ (b ∩ c). This, however,

follows by selection:

a ∩ b

b→ b ∩ c

→ a ∩ (b ∩ c), and c→ b ∩ c −→ a ∩ (b ∩ c).

The converse is similar.
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Table 5.1: Logic in a set-theoretical lattice.

Signature Formula Common Name Set-Theoretical Interpretation
TTTT Ø TRUE empty set
FTTT ¬(a ∧ b) NAND {a, b} is a covering of ⊥
TFTT a→ b containment
TTFT b→ a containment
TTTF a ∩ b OR at least one set is empty
FFTT ¬a a is too large
FTFT ¬b b is too large
FTTF a ∩ b XOR disjointness
TFTF b b
TTFF a a
FFFT ¬a ∩ b NOR all sets are nonempty
FFTF b→ a ∧ ¬(a→ b) strict containment
FTFF a→ b ∧ ¬(b→ a) strict containment
TFFF a ∧ b AND union
FFFF ⊥ FALSE paradoxical (ultimate class)

5.2 Set-Theoretical Semantics in Object-Based Logic

Using the symbols we have so far introduced, we are now able to define the standard logical

connectives using formulas that perform as the standard family of binary logical connectives

when the lattice is reduced to only two values, true and false (Ø and ⊥, or T and F). Some

of these have interesting geometric interpretations, as shown in Table 5.1. For one of these,

disjunction, we introduce the standard notation a ∨ b = a ∩ b.

Some of the formulas in Table 5.1, especially those using the symbol ∩, may be difficult

to parse for someone used to standard set theory. Such a reader should note that according

to our development, an object a is treated as a set with one element (itself); the intersection

a ∩ b is thus taken between two singletons.

Theorem 18. p = p ∧ q = q −→ p ∩ q = p ∩ q.
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Proof. £ p, q = p, q.

For the reverse direction p ∩ q → p ∩ q, apply Lemma 2. Next,

p→ p→ p ∩ q.

q → q → p ∩ q.

−→
Int

p ∩ q → p ∩ q.

Theorem 18 says that intersections of processes behave like processes. We immediately

have

p ∨ q = p ∩ q = p ∩ q = p ∩ q. (5.3)

The intersection of processes thus expresses their disjunction. This, we believe, is an elegant

reduction of concepts which may well prove useful in the future.

The author’s experience has shown him that it is more natural to maintain the use of

the usual symbol ∨ for disjunction. This is perhaps because the symbol allows one to detect

at a glance that processes are intrinsically involved in an expression, but it may well also be

because of the convenient place of ∨ in the order of operations.2 However, below, we will use

the symbol for intersection whenever possible.

5.3 Propositions Defined

In chapter 1, we set out to recover the logical from the manifest and objective experience

of intuitive space and time. Now we have at last undergone enough preparation to take

an important culminating step towards achieving this goal. We now make the following

definition:

Definition. An object is propositional (is a proposition, assertion, judgment, relation, etc.)

if it is a conjunction or intersection of processes, or of objects which are themselves propo-

sitional.

2Perhaps it is true that logic and set theory evolved into separate domains because of nothing
but the persistent nuisance of managing parentheses!
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Hence propositions can be thought of as all those objects generated recursively out of

simple processes transforming strict expressions: all simple processes p are propositional, and

if φ and ψ are propositional, so are φ → ψ, φ ∧ ψ, and φ ∩ ψ. By Theorems 11, 10, and

18, propositions all satisfy the relation φ = φ. The character of propositional objects will

become more clear as we continue.

5.4 Proof by Case

In chapter 4 we established that the assumption system admits conjunctions of processes as

assumptions. Now we will show how, in a very natural way, intersections can be accepted

as assumptions as well, and therefore that all propositions may be assumed. Consider the

following argument scheme:

£ p.

. . . r

 p→ r.

£ q.

. . . r

 q → r.

==
Int

p ∩ q → r.

In words, I have proven that if p or q is true, then r holds of necessity; to the mathematical

reader, the style of the argument may have a familiar ring to it. Evidently, we have discovered

the method of proof which proceeds by considering a sequence of what are often called cases.

We shall now augment our assumption system in order to better accommodate the new

technique, since we will likely need it again. In place of an above-styled argument, we shall

instead write, using a new symbol C to represent the delving into a case:

£ p ∩ q.

C p.
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. . . r

C q.

. . . r

 
Ab

p ∩ q → r.

A proof by case, in the above format, is therefore sufficient justification for absolute validity

of x under the active theory, when it is known that p∩ q is valid (for example, if p says that

a certain positive integer is greater than 1, and q says that it is 1).

Henceforth, any proposition φ may go in an assumption clause £φ, and be abolished,

provided correct measures are taken. Note that this machinery is justified only by the small

number of principles and axioms we have assumed. Once again, we witness how the elements

of logic seem to be rising up from simple extralogical principles of intuition, upon close and

methodical analysis.

We close this section with an example to illustrate the method of confirming cases. Of

course, many other formulas can be proven by similar means.

Theorem 19. (¬a) ∨ b −→ a→ b.

Proof. We need to show that ¬a ∩ b −→ a→ b.

£¬a ∩ b.

C¬a.

a→ ⊥→ b. (Case confirmed)

C b.

a→ Ø→ b. (Second case confirmed)

 
Ab

> .
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5.5 Other Theorems

In this section we prove some additional formulas. Mainly at issue here is whether a relation

is satisfied by objects in general, only by propositions, or only by propositions obeying the

principle of excluded middle.

From now on, Greek characters shall always denote propositions.

Theorem 20. Ø and ⊥ are propositions.

Proof. Ø ==
Null, Ord

Ø→ Ø, and ⊥ ==
Ord, L. 2

Ø→ ⊥.

Theorem 21. With the exception of ⊥, propositions are exchangeable only for other propo-

sitions, since

φ→ a −→ φ→ a, (5.4)

for all propositions φ and objects a.

Proof. Write F (φ) for process 5.4. Letting a → b = p and c → d = Ø in Theorem 8 shows

that F (p) holds for simple processes p. If p and q are simple processes, then F (p ∧ q) and

F (p ∩ q) are immediate from Theorems 10 and 18.

The following is a sharper version of Theorem 9.

Theorem 22. For all objects a, b, and c,

a ∧ b→ c −→ a→ (b→ c), (5.5)

but this process is not in general reversible. The relation

a ∧ b→ c −→ a→ (b→ c) (5.6)

does not hold in general; nor does its converse.

Proof. Process 5.5 is trivial. In order to show

a→ (b→ c) 9 (a ∧ b)→ c, (5.7)
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let 1 be a strict expression, and let a = 1, b = Ø, c = ⊥. In order to show

a ∧ b→ c 9 a→ (b→ c), (5.8)

we use the model given by tables 6.9, letting a = 1, c = 2, b = 1. In order to show

a→ (b→ c) 9 a ∧ b→ c, (5.9)

use 6.9 again; let a = `, b = 1, c = 2.

Lemma 3. a→ ¬¬a.

Proof. > Ø→ a −→ (a→ ⊥ −→ ⊥).

==
CA

a ∧ (a→ ⊥) −→ ⊥.

This holds by transitivity.

If ¬a is substituted for a in the preceding Lemma, we obtain ¬a→ ¬¬¬a.

Lemma 4. ¬¬¬a→ ¬a.

Proof. We must show that (((a → ⊥) → ⊥) → ⊥) −→ (Ø → a) → ⊥. Use Collective

Assumption and (since double antecedents are isotone) deposition.

Theorem 23 (Brouwer 1923). ¬¬¬φ = ¬φ.

Proof. Lemmas 3 and 4.

Theorem 24. a ∩ ¬a −→ ¬¬a→ a.

Proof. > a ∩ ¬a −→ ¬¬a→ a.

£ a ∩ ¬a.

C a.

¬¬a = ¬¬Ø = Ø = a.

 a −→ ¬¬a→ a.

C¬a.
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¬¬a = ¬¬⊥ = ⊥ = a.

 ¬a −→ ¬¬a→ a.

 
Ab

> .

Theorem 25. ¬¬a ∧ ¬¬(a→ b) −→ ¬¬b.

Proof. By Collective Assumption, one must show that if a→ ⊥ −→ ⊥, if ((a→ b)→ ⊥)→

⊥, and if b→ ⊥, there arises a contradiction. This is easily shown by using deposition twice

and Corollary 3.

Theorem 26 (Modus Tollens). a→ b −→
Tol
¬b→ ¬a.

Proof. One needs only show that (a→ b) ∧ (b→ ⊥) gives a→ ⊥.

Theorem 27. ¬¬(a ∩ ¬a).

Proof. Note that

a→
Sel
a ∩ ¬a −→

Tol
¬(a ∩ ¬a)→ ¬a.

and that

¬a→
Sel
a ∩ ¬a −→

Tol
¬(a ∩ ¬a)→ ¬¬a.

Therefore ¬(a ∩ ¬a)→ ⊥.

Theorem 28. a ∩ ¬a→ ¬b −→ ¬b.

Proof. First, note that

a ∩ ¬a→ c −→
Tol
−→
Tol
¬¬(a ∩ ¬a)→ ¬¬c.

The desired expression follows by using Theorem 27, letting c = ¬b, and finally using Lemma

4.

Theorem 29 (Glivenko 1928). φ ∩ ¬φ→ ψ −→ ¬¬ψ, and φ ∩ ¬φ→ ¬ψ −→ ¬ψ.
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We now turn to the distributive laws.

Theorem 30 (First Distributive Law). (a ∧ c) ∩ (b ∧ c) == (a ∩ b) ∧ c.

Proof. Ø −→ (a ∧ c

a→ a ∩ b

→
Dep

(a ∩ b) ∧ c) ∧ (b ∧ c

b→ a ∩ b

→
Dep

(a ∩ b) ∧ c)

==
Int

(a ∧ c) ∩ (b ∧ c)→ (a ∩ b) ∧ c.

>(a ∩ b) ∧ c→ (a ∧ c) ∩ (b ∧ c).

a ∧ c→ (a ∩ b) ∧ c ∧ b ∧ c→ (a ∩ b) ∧ c

−→
Int

>  
Cond

−→
Dep

>.

Theorem 31 (Second Distributive Law). (a ∧ b) ∩ c −→ (a ∩ c) ∧ (b ∩ c), and conversely

when a, b, and c are propositions.

Proof. (a ∧ b) ∩ c

a ∧ b→ a

→
Dep

a ∩ c

(a ∧ b) ∩ c

a ∧ b→ b

→
Dep

b ∩ c

 
Cond

(a ∧ b) ∩ c→ (a ∩ c) ∧ (b ∩ c).

Now suppose that a = a, b = b, and c = c. Then the same holds of a ∩ c and b ∩ c, and hence

(a ∩ c) ∧ (b ∩ c) −→ (a ∧ b) ∩ c == a ∩ c −→ b ∩ c→ (a ∧ b) ∩ c.

£ a ∩ c.

b = a ∩ c ∧ b =
T. 30

(a ∧ b) ∩ (c ∧ b)

c ∧ b→ c

→
Dep

(a ∧ b) ∩ c, and

c →
Dep

(a ∧ b) ∩ c.

==
Int

b ∩ c→ (a ∧ b) ∩ c.

It is not likely that the second distributive law (as an equality) holds in general without

some added constraint (the law of excluded middle would certainly be sufficient).
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For further theorems the reader is referred to Heyting’s article [16], or Troelstra and van

Dalen [31].



Chapter 6

Logical Considerations

We pause to review our work thus far. We began by adopting a chain-forming connective

→, transformation, to which we added the binary operation ∧, conjunction. The simple

assumption system, a number of axioms reflecting the intuition of the set or totality, the

principle that null is a process, weak modus ponens, and finally, an axiom defining the

intersection ∩ of any two objects were then adopted. This permitted the derivation of a

number of logical theorems. In section 6.1 below, we show that in our system one is able to

prove anything provable in intuitionistic propositional calculus.

6.1 Comparison to Heyting’s IPC

Theorem 32. The class P—the system (P,→,∧,∩,Ø,⊥)—of propositional objects obeys

the axioms of IPC, Heyting’s intuitionistic propositional calculus.

Proof. The logical axioms Heyting employed in his 1930 paper [16] are the eleven given in

table 6.2, along with the following rules:1

1.2
a b

a ∧ b.
1.3

a a→ b

b.

Our proof-theoretical axioms, which simultaneously encode finitary set theory together with

the proof-theoretical rule system, are listed in table 6.1. First, note that rule [1.2] is provided

1There are four other rules concerning his notation for variable substitutions, definitions of
abbreviations and constants, and axiom introduction. We may disregard them.
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Table 6.1: Proof-theoretical axioms employed.

Formation.
a
b
−→ a ∧ b.

Decoupling. a ∧ b −→ a
b

Selection.
a ∧ b→ a.
a ∧ b→ b.

Generation. a→ a ∧ a.

Order.
⊥ → a.
a→ Ø.

Null. Ø −→ Ø→ Ø.

Weak Modus Ponens. (a→ b) ∧ ((a→ b)→ c) −→ c.

Intersection. (a→ c) ∧ (b→ c) == a ∩ b→ c.

Table 6.2: Logical axioms of IPC.

2.1. a→ a ∧ a.
2.11 a ∧ b→ b ∧ a.
2.12 a→ b −→ a ∧ c→ b ∧ c.
2.13 (a→ b) ∧ (b→ c) −→ a→ c.
2.14 b −→ a→ b.
2.15 a ∧ (a→ b) −→ b.
3.1 a→ a ∨ b.
3.11 a ∨ b→ b ∨ a.
3.12 (a→ c) ∧ (b→ c) −→ a ∨ b→ c.
4.1 ¬a −→ a→ b.
4.11 (a→ b) ∧ (a→ ¬b) −→ ¬a.
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in both systems, and by weak modus ponens,

a a→ b

a ∧ (a→ b)

b (6.1)

is valid for all propositions a and b. Thus we only need to show that for every conclusion

a α

b (6.2)

where α is a logical axiom and a and b are propositions, we may derive, in our system, a

proof of a→ b, given our own definitions of the symbols ∨ and ¬.

Axiom [2.1] is the axiom of Generation, which may be written in the vertical form

a

a ∧ a. (6.3)

Axioms [2.11] and [2.12] were explicitly proven in chapter 4 (to hold for all objects a, b, c).

Axioms [2.13], [3.11], and [4.1] are trivial by assumption. Axiom [2.14] (formula (1) of the

Begriffsschrift) does not hold for objects in general, but since

b −→ a→ b, (6.4)

the axiom does hold for propositions, as does axiom [2.15]. Axiom [4.11] is not valid for all

objects without strong modus ponens, but certainly holds when b is a proposition. The axioms

of disjunction [3.1] and [3.12], too, are invalid for objects in general, but for propositions a,

b, and c, they immediately reduce to Theorems 12 and 16.

It is very likely that our system of propositions is in fact equivalent to that of Heyting, if

one maps Ø to a → a, and ⊥ is mapped to ¬(a → a). Showing this would involve showing

that in Heyting’s calculus one is ensured the full power of the simple assumption system.
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6.2 Consistency of the Axioms and Independence of the Axiom Null

It is not at all clear, given the philosophical observations we have made, what it means for

our set of axioms to be “satisfied in a model.” It will take more mathematics, more science,

and more philosophy to understand these closed systems of objects better.

We say that an assumption gives rise (intuitively, in the space between the assumption

clause and the abolishment clause) to an assumptive environment, or environment. The

environment, then, is a kind of window into a domain in which the axioms under assumption

locally as well as globally are universally obeyed by any object encountered.

Suppose that there is a computable model for a given environment, i.e., a finite and sur-

veyable set of objects whose exchange (economic relationships) are fixed or algorithmically

computable, and for which all the constraints on objects imposed by all adopted assumptions

are satisfied. If an inconsistency (a conditionless antilogy) can be produced within the envi-

ronment, it will already be present and thus manifest in the computable model. A model in

which consistency can be verified—i.e., one in which there is more than one object—therefore

provides a proof that within the environment a conditionless antilogy could not possibly be

found.

In order to validate the axioms of Formation and Decoupling in a model in which the

transformation a→ b is assigned a determinate truth value for every a and b in the model,

we must verify the transitivity of →, and the validity of the constructions

a ∧ c→
a→ b

c→ d
→ b ∧ d, (6.5)

that is, we must verify the following:

Transitivity. ` (a→ b) and ` (b→ c) implies ` (a→ c).

Condensation. ` (a→ b) and ` (c→ d) implies ` (a ∧ c)→ (b ∧ d).

We can view our progressive accumulation of axioms through the preceding work as being

the work of the assumption system, thus:
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£ a ∧ b→ a.

£ a ∧ b→ b.

£ a→ a ∧ a.

£ a→ Ø.

£⊥ → a.

£ Ø −→ Ø→ Ø.

£(a→ b) ∧ ((a→ b)→ c) −→ c.

£(a→ c) ∧ (b→ c) −→ a ∩ b→ c.

£ a ∩ b→ c −→ (a→ c) ∧ (b→ c).

[the environment.]

We wish to show that “the environment contains disunity”, in other words, that the

axioms we have assumed are all mutually consistent. We can, for this purpose, lay aside the

assumption system, since all further use of it will only involve sojourns in other environments

which will never produce a conditionless antilogy, provided all involved assumptions are

valueless (true) or unattainable (false) conditions (see p. 34).

Any lattice of objects will do; it might contain five, ten, or more objects. The following

binary lattice will suffice.

→ Ø ⊥

Ø Ø ⊥

⊥ Ø Ø

∧ Ø ⊥

Ø Ø ⊥

⊥ ⊥ ⊥

∩ Ø ⊥

Ø Ø Ø

⊥ Ø ⊥

(6.6)

We can now confirm each axiom in turn, substituting Ø and⊥ for instances of an arbitrary

object a, b, c, etc. in them wherever they occur. It will thus be seen that they cohere together

in the structure of the model. For example, we may confirm the Intersection axiom by setting
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a to Ø, ⊥, b to Ø, ⊥, and c to Ø, ⊥, confirming that every possible use of Intersection will

produce Ø.2

Note that in the model 6.6 there are no objects which are not propositions. A consistent

model which contains strict expressions can be obtained from this one by adding a set S

of constants 1, 2, 3, . . ., taking the closure over ∧, and completing the tables for → (using

classical truth values) and ∩ in the natural way.

A standard independence proof involves demonstrating that in a surveyable, computable

system that contains disunity, all the axioms can be assumed but one which cannot be

assumed. This axiom is therefore independent of the other axioms since a proof of the axiom

from the other axioms could only result in the unity of the model, and therefore, such a proof

cannot be obtained. We will not provide an exhaustive list of independence proofs for our

axioms, but we will show that the nonstandard “Null” axiom, Ø→ (Ø→ Ø), is independent

of our other axioms. To prove this, consider a system of three distinct elements Ø,⊥, and T

and the following values:

→ Ø T ⊥

Ø T ⊥ ⊥

T T T ⊥

⊥ T T T

∧ Ø T ⊥

Ø Ø T ⊥

T T T ⊥

⊥ ⊥ ⊥ ⊥

∩ Ø T ⊥

Ø Ø Ø Ø

T Ø T T

⊥ Ø T ⊥

(6.7)

The remaining axioms of our system can all be verified. T here, as can be seen, is playing

the role of the source of justification, and the system of propositions takes the form of a

sublattice in the lattice of objects with a distinct minimal element.

2Note that to do this requires that a metalevel at which we perform these substitutions be
formed.
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6.3 Independence of the Principle of Excluded Middle and Strong Modus

Ponens

It can be shown that the law of excluded middle cannot be proven from our axioms. In the

following system, in which all nine of our axioms are verified, not all propositions obey the

law of excluded middle, since ` = `, while (` ∨ ¬`) = `, not Ø as required.3

→ Ø ` ⊥

Ø Ø ` ⊥

` Ø Ø ⊥

⊥ Ø Ø Ø

∧ Ø ` ⊥

Ø Ø ` ⊥

` ` ` ⊥

⊥ ⊥ ⊥ ⊥

∩ Ø ` ⊥

Ø Ø Ø Ø

` Ø ` `

⊥ Ø ` ⊥

(6.8)

Finally, the principle of Strong Modus Ponens, process 4.4, cannot be proven, since all of

our axioms are satisfied in the following model, but (1 ∧ (1 → 2)) → 2 == ⊥. (Intuitively,

all that may be known is that it is not impossible that 2 is strictly larger than 1.)

3This set of truth values is due to Heyting [16]. The existence of Kolmogorov’s negative trans-
lation which leads from intuitionistic logic to classical logic can be detected here: if one restricts
one’s attention to the values of the second and third rows and columns, one regains the classical set
of truth values given in table 6.6 above, if one replaces Ø, truth, with `, what Kolmogorov called
“pseudotruth,” in the table of →.
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→ Ø 1 2 ` ` ∧ 1 ` ∧ 2 ⊥

Ø Ø ⊥ ⊥ ` ⊥ ⊥ ⊥

1 Ø Ø ` ` ` ` ⊥

2 Ø Ø Ø ` ` ` ⊥

` Ø ` ` Ø ` ` ⊥

` ∧ 1 Ø Ø ` Ø Ø ` ⊥

` ∧ 2 Ø Ø Ø Ø Ø Ø ⊥

⊥ Ø Ø Ø Ø Ø Ø Ø

∧ Ø 1 2 ` ` ∧ 1 ` ∧ 2 ⊥

Ø Ø 1 2 ` ` ∧ 1 ` ∧ 2 ⊥

1 1 1 2 ` ∧ 1 ` ∧ 1 ` ∧ 2 ⊥

2 2 2 2 ` ∧ 2 ` ∧ 2 ` ∧ 2 ⊥

` ` ` ∧ 1 ` ∧ 2 ` ` ∧ 1 ` ∧ 2 ⊥

` ∧ 1 ` ∧ 1 ` ∧ 1 ` ∧ 2 ` ∧ 1 ` ∧ 1 ` ∧ 2 ⊥

` ∧ 2 ` ∧ 2 ` ∧ 2 ` ∧ 2 ` ∧ 2 ` ∧ 2 ` ∧ 2 ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

(6.9)

∩ Ø 1 2 ` ` ∧ 1 ` ∧ 2 ⊥

Ø Ø Ø Ø Ø Ø Ø Ø

1 Ø 1 1 Ø 1 1 1

2 Ø 1 2 Ø 1 2 2

` Ø Ø Ø ` ` ` `

` ∧ 1 Ø 1 1 ` ` ∧ 1 ` ∧ 1 ` ∧ 1

` ∧ 2 Ø 1 2 ` ` ∧ 1 ` ∧ 2 ` ∧ 2

⊥ Ø 1 2 ` ` ∧ 1 ` ∧ 2 ⊥
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6.4 Conclusion

The term proposition has been constrained to refer only to certain activities of the mathe-

matical subject under well-defined, self-imposed behavioral constraints, and not to charac-

terizations of the world, or statements without voice, determining that which is the case.

Among other things, we have seen, perhaps surprisingly, that these kinds of intuitional acts

behave rather as though they were normal sentences in a language. Indeed, a mind distracted

by some distant goal, at a far remove from what is immediately taking place, is unconsciously

attracted to the fixed, transcendental sense in which propositions are oftentimes regarded.

We would like to emphasize that this way of regarding propositions is not discouraged or for-

bidden by our considerations here. In our view, propositions are, in practice, what they have

always been—mathematical propositions—and mathematics can continue as it was, without

any strict dogma about the meaning of mathematical symbols being enforced. Nevertheless,

by careful study of our work above, we believe that mathematicians and philosophers might

be convinced that still more fruitful interaction is possible between them, if only the barriers

that separate them today are worn down and overcome. Philosophies, like mathematical

systems, are not all equally fecund. Like mathematical systems, too, their fecundity depends

upon the dimensions of the problem immediately faced. In all of life, however, there is a

persistent problem—the confrontation of a forgetful, lapsing mind with an equally forgetful,

equally lapsing world. The way to a solution seems obvious—seek out whatever is, and has

a way of remaining most constant and eternal. There are among us those at work on the

problem, to the exclusion of other pursuits. Hence the author—for himself—finds that what

distinguishes mathematics and philosophy by no means sets them at odds.
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[33] Weyl, Hermann. “Über die neue Grundlagenkrise der Mathematik.” Mathematische

Zeitschrift 10 (1921): 37-79. English translation: [29].



71

[34] ———. “Die heutige Erkenntnislage in der Mathematik.” Symposion 1 (1925-1927):

1-32. English translation: [29].

[35] White, Leslie A. “The Locus of Mathematical Reality.” Philosophy of Science 14 (1949):

pp. 289-303.


