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Abstract

This dissertation consists of three essays on theoretical and empirical issues related to

modeling choice-based samples. The research objectives include investigating the joint effect

of endogenous and exogenous stratification in modeling recreational preferences, estimating

recreational demand functions by relaxing the basic and naive assumption of randomness

for a choice-based clustered sample, and modeling heterogeneous recreational preferences in

a latent-class model. In this dissertation, it is shown that welfare estimates of willingness

to pay are extremely sensitive to model specification when controlling for sampling related

problems.

In the first essay, it is shown that estimating regional demand models by pooling dif-

ferent samples without correcting for such differences causes model misspecification when

each sample belongs to a different population. Estimating a weighted regression using pseu-

dolikelihood improves the efficiency of estimates after correcting for heteroskedasticity. The

estimates still remain biased as the weights interact with covariates to explain part of model

misspecification. The comparisons between weighted and unweighted models go unnoticed

because results from both models are rarely reported. By reporting results from both models

it is shown that it is best to use unweighted regression when the coefficient on interactions



with the weight variable are jointly insignificant. However, the model needs to be respec-

ified if these interactions are jointly significant but the estimation still proceeds using an

unweighted regression.

In the second essay, the dependence between individuals surveyed at a particular site

in a choice-based sample is modeled. This dependence is due to some observed or unobserved

site-specific effects. Individuals surveyed at a given site are most likely correlated rather than

independent. The above argument is used to develop a mixture model where site specific

random effects follow a standard normal distribution. When evaluating policy changes such

as opening a new site, developing an existing site, or closing an old site, significant site effects

show that the expected mean calculations which are used in deriving welfare estimates are

sensitive to assumptions about the sampling procedure.

In the third essay, heterogeneous recreational preferences in a latent-class model are

considered. This class is based on frequency of visits to a National Forest and is treated

as latent due to arbitrariness in defining how many visits constitute high or low frequency.

The results show different marginal effects for the two populations; high frequency visitors,

who take frequent short duration visits mostly to general forest areas; and low frequency

visitors who take less frequent, long duration trips mostly to developed sites. This information

on market segregation between high and low frequency visitors can be of importance to

the USDA Forest Service because differences in consumer surpluses across classes provide

potential scope for differential pricing policies.

Index words: Choice Based Samples, Recreational Demand Models, On-Site Samples,
Stratification, Weighting, Finite Mixture Models, Infinite Mixture
Models, Latent class Models, Dissertations, Theses (academic)
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encouragement.

iv



Table of Contents

Page

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Organization of the Study . . . . . . . . . . . . . . . . . . . 4

2 Accounting for Stratification and Differences in Sampling

Rates in a Regional Model of Demand for National Forests in

the Southeastern U.S. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Empirical Model . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Conclusions and Implications . . . . . . . . . . . . . . . . . . 19

3 Modeling Site Specific Heterogeneity in an On-Site Stratified

Random Sample of Recreational Demand . . . . . . . . . . . . . . . 21

v



vi

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Empirical Model . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Conclusions and Implications . . . . . . . . . . . . . . . . . . 32

4 Estimating Recreational Demand for an On-Site-Sample: A

Latent Class Poisson Model . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Empirical Model . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Conclusion and Implications . . . . . . . . . . . . . . . . . . 48

5 Conclusions and Implications . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . 49

5.2 Policy Implications . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Limitations of the Study . . . . . . . . . . . . . . . . . . . . . 51

5.4 Recommendations for Future Research . . . . . . . . . . . 51

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Appendix

A Appendix to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 58

B Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B.1 Input File: Supply Variable Creation . . . . . . . . . . . . 62

B.2 Input File : Chapter3 data creation . . . . . . . . . . . . . 65

B.3 Data for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . 65



vii

C Estimation Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

C.1 Input files: Estimation Programs . . . . . . . . . . . . . . . 67



List of Tables

2.1 Estimation Results of Outdoor Recreation for GFA Settings in the South-

eastern U.S. (2000-2003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Estimation Results for Day Use Settings in the Southeastern U.S. (2000-2003) 15

2.3 Estimation Results of Outdoor Recreation for Overnight Use Developed in

the Southeastern U.S. (2000-2003) . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Estimation Results of Outdoor Recreation for Wilderness Settings in the

Southeastern U.S. (2000-2003) . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Estimation Results for Weights Interaction Terms for all Four Settings . . . 19

3.1 Summary Statistics for George Washington/Jefferson National Forest NVUM

Data, 2000-2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Design Effects for TNB1 and TNB3 model . . . . . . . . . . . . . . . . . . . 32

3.3 Estimation Results of Outdoor Recreation Demand for GeorgeWahington/Jefferson

National Forest: NVUM DATA: 2000-2003 . . . . . . . . . . . . . . . . . . . 34

3.4 Estimation Results of Expected Mean and Overdispersion Parameter . . . . 35

4.1 Summary Statistics for George Washington/Jefferson National Forest NVUM

Data, 2000-2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Estimation Results of Two Class Latent Poisson Model of Outdoor Recreation

for George Washington/Jefferson National Forest : NVUM Data, 2000-2003 . 43

4.3 Estimation Results of Three Class Latent Poisson Model of Outdoor Recre-

ation for GeorgeWashington/Jefferson National Forest : NVUMData, 2000-2003 44

4.4 Estimation Results of Goodness of Fit for Latent Class Poisson Model . . . . 46

4.5 Estimation Results of Consumer Surplus . . . . . . . . . . . . . . . . . . . . 47

A.1 Summary Statistics for General Forest Area Settings, NVUM Data, 2000-2003 59

viii



ix

A.2 Summary Statistics for Day Used Developed Settings, NVUM Data, 2000-2003 59

A.3 Summary Statistics for Overnight Used Developed Settings, NVUM Data,

2000-2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.4 Summary Statistics for Wilderness Settings, NVUM Data, 2000-2003 . . . . 60

A.5 Weighted Means of all Four Settings, NVUM Data, 2000-2003 . . . . . . . . 61



List of Figures

4.1 Empirical Density for George Washington/ Jefferson National Forest: NVUM

Data, 2000-2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

x



Chapter 1

Introduction

1.1 Background

Choice-based samples are nonrandom samples based on some kind of stratification.

A subsample of the population consisting of subjects with one outcome is collected. For

example, the outcome would be participation by the user population when modeling an

on-site sample. Data is then collected within the subsample with different attributes of the

user population varying the outcome. The primary reason for using choice-based samples is

that the outcome variable is a rare event and using household survey data would require

an immense amount of data collection effort, which is in most cases is implausible and

expensive. Choice-based samples provide economies of scale, which are not available with

household surveys. Choice based samples have been used often when modeling demand for

mode of transport in the analysis of transportation behavior. For more examples and benefits

of choice-based sampling refer to the introduction by Manski and Lerman (1977).

Some of the predominant problems with on-site samples that are choice-based are trun-

cation, endogenous stratification, and non-negativity. These problems are briefly explained.

Choice-based sampling has its drawbacks in that nonusers are not included in the sample

which causes a truncated population. At this point it is important to clarify the distinction

between censoring and truncation. An on-site sample is truncated but not censored. Cen-

soring is when data is unobservable for a certain size of the population, whereas truncation

is when the probability mass is cut off at a specific value. An example of censoring would be

1
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data on wage income for the population not included in the labor force, which is by definition

unavailable.

Econometric modeling therefore needs to account for truncation related problems

within the distributional assumptions. Another problem with choice-based samples is strati-

fication. However, when stratification is on the exogenous variable, the econometric modeling

would proceed in a normal fashion. It is only when stratification is on the dependent variable

that the econometric modeling needs to correct for such stratification to derive consistent

estimates. The dependent variable in most cases in these samples is a non-negative integer.

In this case, the outcome variable is modeled as a discrete and not a continuous process.

The most frequently used distribution is the poisson which is derived from the binomial dis-

tribution. As the number of draws in a binomial distribution approach infinity, the binomial

distribution approaches poisson. Therefore, poisson is an asymptotic outcome. As Hellerstein

(1991) points out,

“Count data distribution such as poisson is an asymptotic outcome i.e if the

probability of taking a trip on any given day is small, constant and independent

of earlier decisions”,

1.2 Literature Review

Before discussing how the above problems with choice-based samples are resolved in

the literature, frontier models used in modeling recreational preferences are briefly discussed.

Two-part models include any kind of Tobit models and/or hurdle models. Any kind of two-

part models which involve modeling the first stage as the participation equation cannot be

applied to an on-site sample for the precise reason that on-site samples are truncated and not

censored. Another class of prominently used models of recreational demand includes extreme

corner solution models or continuous/discrete models and generalized corner solution models.
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Extreme corner solution models (Hanemann, 1984) are derived by imposing mutual exclu-

sivity on the consumption of commodities in the consumption basket. Therefore only one

commodity is consumed, as the name extreme corner solution suggests. In the case of recre-

ational demand models, this would mean that only one recreational site is visited. These

models can be applied to on-site samples. The only problem is that the consumption quan-

tity is modeled as a continuous process. Therefore, they are also called Discrete/Continuous

models, where the first stage is modeled as a discrete process in a RUM setting and the

second stage models consumption of the quantity as a continuous process. Two-stage bud-

geting models (Hausman et al., 1995) are similar to extreme corner solution models with

the difference that the consumption quantity is modeled as a discrete process. Generalized

corner solution models first applied by Phaneuf et al. (2000) to modeling recreational prefer-

ences can model zero consumption along with positive consumption across the consumption

basket. These models can be used if information is available for different sites visited by

the same individuals. Other advanced models can be used if recreational preferences of the

same individuals are observed across different time periods, including multinomial poisson

log normal models (Egan and Herriges, 2006), and seemingly unrelated negative binomial

models (Winkelmann, 2000), in a panel settings by modeling correlation among individuals

across different periods.

Now it will be shown how the problems related to choice-based samples have been

resolved in the literature. The problem of non-negative integers is easily resolved by using

count models. Modeling the number of visits to a National Forest results in endogenous

stratification because more avid visitors staying close to the forest have a higher proba-

bility of being in the sample. Shaw (1988) derived the distribution correcting for the joint

effects of truncation and endogenous stratification for the poisson distribution. Englin and

Shonkwiler (1995) derived the distribution correcting for the joint effects of truncation and

endogenous stratification for negative binomial distribution. The later is used predominantly

in the literature in estimating demand for on-site recreational demand.
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1.3 Objectives

This dissertation will go beyond the problems of non-negativity, truncation, and

endogenous stratification in modeling choice-based samples. The specific objectives of this

dissertation are to:

1. Investigate the joint effects of endogenous and exogenous stratification on the inference

about visitors’ recreational preferences by jointly estimating both weighted and unweighted

regional demand models of recreation. In estimating these models, we assume that in an

unweighted model, the population of interest is the region and is known. However, in a

weighted regional model, we assume that the population of interest is unknown and can be

approximated closely by using sample weights;

2. Model dependence among individuals sampled at the same site within a given stratum

for a stratified choice-based sample using a finite mixture model.

3. Model heterogeneous recreational preferences by assuming different distributions for two

latent classes of visitors using a latent class model and showing that the welfare measures

differ for the two classes, suggesting a potential for differential pricing policies.

1.4 Organization of the Study

This dissertation consists of five chapters. The introductory chapter (Chapter 1), three

essays on modeling choice-based samples (Chapters 2, 3, and 4), and a concluding chapter

(Chapter 5) summarizing the results of this dissertation. The first appendix at the end of

this dissertation include weighted and unweighted summary statistics for the data used in

the first essay and the second appendix include detailed data documentation.



Chapter 2

Accounting for Stratification and Differences in Sampling Rates in a

Regional Model of Demand for National Forests in the Southeastern U.S.

Abstract

We estimate regional demand for National Forest settings in the southeastern U.S using

weighted and unweighted regression. In estimating these models, we assume that in an

unweighted model, the population of interest is the region and is known. However, in a

weighted regional model, we assume that the population of interest is unknown and can be

approximated closely by using sample weights. Using estimation of demand for National

Forests as a case study, we resolve problems relating to inference about the data gener-

ating process when different samples are pooled together. In estimating a regional demand

model, we show that though efficiency of weighted estimates improves after correcting for

heteroskedasticity, they still remain biased because the weights interact with covariates which

explain part of model misspecification due to pooling of different populations. In this paper,

we show that it is best to use unweighted regression when the coefficient on interactions with

the weight variable are jointly insignificant. However, the model needs to be respecified if

these interactions are jointly significant but the estimation still proceeds using an unweighted

regression.

2.1 Introduction

Many if not all on-site samples are choice-based samples. In a choice-based sample, stratifica-

tion is on the endogenous variable, directly affecting the kernel of the likelihood. Therefore

econometric procedures used in estimation need to account for endogenous stratification

5
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in order to obtain consistent parameter estimates (Manski and McFadden, 1981). This is

achieved by deriving appropriate weights for the relevant distribution in a weighted regres-

sion. For a count outcome, Shaw (1988) derives weights to correct for the joint effect of trun-

cation and endogenous stratification for poisson distributions, and Englin and Shonkwiler

(1995) derive weights for the same correction for negative binomial distributions. However,

estimation proceeds in a regular fashion when stratification is on the exogenous variable. In

this case, the econometric correction amounts to adding a constant of proportionality which

does not affect the kernel of the likelihood. Manski and McFadden(1981) point out that it

is important for practitioners to understand that in exogenous stratification, distribution of

strata is defined by the domain of exogenous variables. In that case, knowledge about the

distribution of exogenous covariates alone is sufficient to know the distribution of strata,

even when the distribution of strata affects the choice probability only trivially. Wooldridge

(2001) shows that under the assumption of homoskedasticity, econometric procedures do not

need to account for exogenous stratification. He further shows that weighted estimates that

correct for exogenous stratification are consistent but less efficient than unweighted estimates

in a linear specification.

For the purpose of inference about the relevant population, weighted regression is often

used in empirical estimation to correct for the differences in sampling rates due to exogenous

variables, such as race, age, gender, etc. For example, suppose there are 50 % females in the

relevant population and the sample includes only 30 % females. In this case, weights usually

derived from the U.S. Census are used to equate the sampling distribution to the population

distribution. Even in that case, differences in the weighted and the unweighted results point

to some form of model misspecification. Korn and Graubard (1995) give at least two reasons

for the weighted estimates to be different from the unweighted estimates when stratification

is on the exogenous variable: The model must be very misspecified, or an omitted variable

must have a strong interaction with the independent variable and that omitted variable must

be highly correlated with the weights. Winship and Radbil (1994) attribute the differences
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in the weighted and unweighted results to the pooling of two different samples together. This

is particularly relevant when insufficient data leads to the pooling of observations in regional

models. Another possible reason for the difference results is that weights interacting with

covariates account for the omitted variables in the regression. DuMouchel and Duncan(1983)

apply a simple F-test to the latter reason.

The objective of this paper is to provide some insight on the reasons for differences in

parameter estimates of weighted and unweighted regression, especially in estimating models

where different samples are pooled together. It is shown how to obtain consistent and effi-

cient parameter estimates if that is the case. This information is of relevance to federal

agencies such as the USDA Forest Service. The USDA Forest Service conducts on-site sam-

ples of recreational visitor use on a regular basis for the purposes of projections and budget

allocations. In order to keep survey costs low, regional estimates are of more interest than

individual forest estimates. This paper empirically estimates demand for National Forest

settings in the southeastern U.S. We also show how inference can be completely erroneous

if incorrect specifications of standard errors are used.

This paper is organized as follows. The first section briefly discusses the theory of

weighted and unweighted regression. The second section specifies the empirical models of

demand for four settings: Day-Use Developed Sites (DUDS), Overnight-Use Developed Sites

(OUDS), General Forest Area (GFA) and Wilderness(WILD). The third section explains the

results and draws conclusions. The appendix contains four tables of summary statistics for

each setting and the last table in the appendix contains weighted means for all settings.

2.2 Data Description

Data for estimating the empirical model specified above were obtained from the National

Visitor Use Monitoring Program (NVUM). NVUM began collecting visitor use information

for a stratified on-site sample in the year 2000. In its first four-year cycle (2000-2003), NVUM
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collected information on the annual number of visits to National Forest for the primary

purpose of outdoor recreation, primary activity for an individual, and other socio-economic

variables. The ZIP code was used to pull income information from IRS data (which is avail-

able according to ZIP code)as a proxy for the income variable. The ZIP code was also used

in the calculation of the implicit price variable, Travel Cost. The original master dataset

has information on 10 RPA regions and 120 National Forests across the U.S. For further

information on adjustments made in the original dataset, refer to Bowker et al (2009).

NVUM is based on a stratified sample technique suggested by English (2002). Every National

Forest within the sample is divided into 12 strata according to site type and site usage. Site

types or settings include Day Used Developed Sites (DUDS), Overnight Used Developed

Sites (OUDS), General Forest Area (GFA) and Wilderness (WILD). Site usage includes Low

(L), Medium (M) and, High (H). Random samples are drawn from each stratum.

Data for the Southeastern U.S., or U.S. Forest Service Region 8, is used for analysis. The

data is collected for 14 National Forests including the Chattahoochee-Oconee National

Forest, George Washington-Jefferson National Forest, Croatan National Forest, Daniel

Boone National Forest, Cherokee National Forest, Francis Marion National Forest, Conecuh

National Forest, Ozark National Forest, Apalachicola National Forest, DeSoto National

Forest, Ouachita National Forest, Bienville National Forest, Kisatchie National Forest, Davy

Crockett National Forest, and Land Between The Lakes National Forest. The NVUM survey

sampled 25% of total National Forests in its 2000 cycle and 20% in its 2004 cycle. The

dataset for the southeastern region included 7473 sample observations.

2.3 Theoretical Model

When different samples are pooled together, estimation can proceed using pseudolikelihood,

first used by Besag (1975; 1977). A pseudolikelihood estimation is based on the assumption

that each random process is independent. In the case of regional demand models, demand

for various samples across the region are indeed independent of each other.
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We briefly explain the methodology below from Wang et al. (2004).

let,

X = (X1, X2, ...., Xn) (2.1)

be random variables with probability density functions

f1, f2, ..., fn (2.2)

The density of interest is

f(., θ), θ ∈ Θ (2.3)

of a study variable X. At least in some qualitative sense, the

f1, f2, ..., fn

is thought to be like

f(., θ)

We assume that each independent distribution is related to the distribution of interest

through relevant weights. Pseudolikelihood or what is popularly known as Power likelihood

is therefore given by,

m∏
j=1

nj∏
i=1

fλj(xij , θ) (2.4)

where, j = 1, 2, ...m are the number of independent random samples, and i = 1, 2, ...nj

are the number of individuals in each sample. Therefore the concept of pseudolikelihood is

used to estimate the parameter of interest. It is important to understand that the weights,

though constructed based on exogenous variables, do not enter the likelihood as a constant

of proportionality. Therefore weights in this case affect the kernel of the likelihood.

In our model, it is assumed that the data generating process follows a negative binomial

distribution to correct for endogenous stratification and truncation.The log-likelihood for a
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negative binomial distribution, accounting for truncation and endogenous stratification, is

given by,

log(y)+logΓ(y+α−1)+ylog(α)+(y−1)(xβ)−(y+α−1)log(1+αexp(xβ))−logΓ(α−1) (2.5)

and the expected mean is given by,

E(y | x) = EXP (Xβ) + 1 + αEXP (Xβ) (2.6)

The score function is given by,

dlogL

dβ
=

∑
i

(yi − 1)Xi − (yi + α−1)
αXiEXP (Xiβ)

1 + αXiEXP (Xiβ)
(2.7)

The information matrix is given by the inverse of the second derivative,

dlogL

dβ ′β
=

∑
i

−(yi + α−1)αX
′

iXiEXP (Xiβ)

(1 + αXiEXP (Xiβ))′(1 + αXiEXP (Xiβ))
(2.8)

The score function for weighted regression is given by,

dlogL

dβ
=

∑
j

λj

∑
i

(yij − 1)Xij − (yij + α−1)
αXijEXP (Xijβ)

1 + αXijEXP (Xijβ)
(2.9)

If we make an assumption of a pseudolikelihood.

The information matrix is given by the inverse of the second derivative,

dlogL

dβ ′β
=

∑
j

λj

∑
i

−(yij + α−1)αX
′

ijXijEXP (Xijβ)

(1 + αXijEXP (Xijβ))
′(1 + αXijEXP (Xijβ))

(2.10)

2.4 Empirical Model

In a stratified sample, sampling weights are used to expand each individual to be represen-

tative of the proper population. It is given by,

Nj

nj
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where, Nj are the number of individuals in stratum j in the population and nj are the

number of individuals sampled in stratum j. In many cases the numerator is known. But in

cases where it is not known, the numerator must be estimated. In the case of NVUM,Nj is

not observed directly and is estimated by,

NV EXPANDjk =ExitingTrafficjk ∗ PropLastExitjk (2.11)

where ExitingTrafficjk is the average exiting traffic count per day for the stratum, and

PropLastExitjk is the ratio of last exiting recreation vehicles to total count of vehicles.

The NVUM survey sample collects sufficient data to allow computation of weights. Its com-

putation is based on the proportion last exited visitors in a given stratum j in a forest k.

These weights are used in weighted regression. For further information on NVUM survey

samples refer to Appendix B in Bowker et al(2009).

Empirical Model Specification

Visits to a National Forest are modeled as a truncated negative binomial model correcting

for endogenous stratification. Both weighted and unweighted regional demand models for

settings are estimated using the following empirical specification:

NFV 12MOi
j = f(PEOP i

j , INCEi
j , GENDi

j , AGEi
j, TC

i
jk, HF i

j

= OSITEi
j, OV ERNT i

j , ECOk, SUPPLY V ARjk) (2.12)

where,

i = 1, 2, ....N

are the number of individuals

j = 1, 2, ....4

are the strata in the sample

k = 1, 2, ....13

are the number of forests in southeastern U.S.

The dependent variable is the number of annual recreation visits to a National Forest per
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vehicle group. Demand for visits is a function of seven variables: own price (TC) 1 number

of people in the vehicle (PEOPVEH), annual income (INCOME), gender (GENDER1), age

(AGE), an indicator for staying overnight (ONITE), an indicator if an individual visited

any other site (OSITES), a dummy variable if a forest belongs to a subtropical ecoregion

(SUBTROP), a dummy variable if a forest belongs to a hot continental ecoregion (HOT-

CONT) and a dummy variable if a forest belongs to a mountain ecoregion (MOUNTAIN).

In the model we drop the dummy variable for a subtropical ecoregion. An additional term,

HF, has been incorporated to capture the differences between high and low frequency users,

where HF=1 if the number of annual visits was greater than 15, else HF = 0. The supply

variables for the General Forest Area setting include the percentage of forest area within a

radius of 100 miles of a visitor’s origin (FORESTP), and miles of trails in a National Forest

as a proxy for access to general forest areas (TRAILS). Supply variables for the Overnight

Use Developed settings include the total number of tent camping sites in a National Forest

(TENTC), and the total number of establishments in recreation and vacation camps within

100 miles of origin (SUMCAMPS). Supply variables in Day Use Developed setting include

total number of recreation areas in a National Forest with picnic tables as a proxy for total

number of day use sites (PICNICTAB), total number of recreation areas in a National Forest

with swimming areas as a proxy for high-attraction day use sites (SWIMMING) and total

number of establishments in nature parks and similar institutions within 50 miles of a vis-

itor’s origin as a proxy for private day use sites (SUMNATPARK). Supply variables for the

Wilderness setting include acres of designated wilderness area in a given National Forest

(DESIG).

1Bowker et al. (2009),

TC = 2 ∗ (0.12 ∗ PRACDIS) + 2 ∗ (0.33 ∗
INCE

2000
∗ PRACTIME)

where PRACDIS is the one way distance to the site. A per mile cost of 0.12 dollar was used. Income
forgone is calculated as one third of the wage rate, where wage rate is calculated as the proxy of
annual income divided by 2000 work hours. PRACTIME is the time spent at the site.
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2.5 Results

Tables 1 through 4 include results for the settings of GFA, DUDS, OUDS and WILD.

The first row gives the coefficient for unweighted2 and weighted3 models referred to as Model

1 and Model 2, respectively. The second row gives the standard errors computed using the

Newton-Raphson algorithm assuming homoskedasticity, and the third row includes White’s

standard errors corrected for heteroskedasticity. The purpose of including heteroskedasticity

corrected standard errors is to show that though in the unweighted regression, the assumption

of homoskedasticity can be maintained,in the case of weighted regression, however the same

cannot be assumed as claimed by Winship and Radbill(1994). This is because covariates in

the weighted regression become correlated with the error term. It is therefore important to

correct weighted standard errors for heteroskedasticity. We will explain this later when we

discuss our results in Table 5 .

Results in Table 2.1 show that in explaining demand for trips to General Forest Area

settings, the standard errors in Model 1 with heteroskedasticity correction are bigger but

do not change inference in terms of significance of the coefficients. Such is not the case

with unweighted regression. The reason for a change in significance of coefficients is twofold.

Not only are the heteroskedasticity corrected standard errors significantly different but the

coefficient estimates become inconsistent due to significant interactions of some important

variables with the weights. This can be seen from Table 5. These interacting variables include

dummies for hot continental and mountain ecoregions, the income variable, a dummy for

overnight stay, and the trails supply variable. Differences in signs of weighted and unweighted

models can be attributed to inconsistencies in the weighted model.

2Negative binomial correcting for truncation and endogenous stratification
3Negative binomial correcting for truncation and endogenous stratification and weighted to

account for differences in sampling rates using NVEXPAND as the weight



14

Table 2.1: Estimation Results of Outdoor Recreation for GFA Settings in the Southeastern
U.S. (2000-2003)

Model 1a Model 2b

Intercept 1.282 0.968
(0.130)* (0.001)*
(.160)* (.258)*

HOTCON 0.197 -0.077
(.0006)* (.006)*
(.058)* (.093)

MOUNTN 0.113 0.131
(.0006)*** (.0006)*
(.057)** (.082)

FOREST 0.003 0.007
(.002) (0.00002)*
(.002) (.004)***

TRAIL -0.0004 0.0001
(.0001)* (0.000001)*
(.0001)* (.0001)

INCE -0.000009 -0.000004
(0.00002) (0.00000003)*
(.000003)* (.000004)

AGE 0.002 0.003
(0.001) (0.00001)*
(.001) (.0021)***

GENDER -0.164 -0.113
(0.046)* (.0005)*
(.053)* (.101)

PEOPVEH -0.027 -0.042
(0.013)** (.0001)*
(.013)** (.021)**

OSITE -0.067 -0.026
(0.040)*** (0.0005)*
(.042)*** (.071)

OVERNTE 0.039 0.193
(0.041) (0.0005)*
(.042) (.063)*

TC -0.003 -0.003
(0.0003)* (0.000003)*
(.0004)* (.0007)*

HF 1.816 1.707
(0.034)* (0.0003)*
(.031)* (.050)*

ALPHA 0.561 0.425
(0.047)* (0.0003)*
(.046)* (.054)*

NOBS 1979
LOGL 54920.7 480453000
BIC -54867.5 -480453000

aUnweighted model with coefficient, standard errors without heteroskedasticity correction, and
heteroskedasticity robust standard errors reported in the first, second, and third rows respectively,
where *, **, and *** represent statistical significance at 1%, 5% and 10% level respectively.

bWeighted Model
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Table 2.2: Estimation Results for Day Use Settings in the Southeastern U.S. (2000-2003)
Model 1a Model 2b

Intercept 0.673 -0.585
(0.176)* (0.007)*
(.237)* (.846)

HOTCONT 0.095 0.353
(.073) (0.002)*
(.069) (.125)*

MOUNTAIN -0.257 0.178
(.105)** (.003)*
(.103)** (.201)

PICNICTAB 0.001 -.0004
(.00008) (0.00002)*
(.00008) (.0002)**

NATPARK .004 0.0001
(.003) (0.000005)*
(.004) (.007)

SWIMMING -0.019 -.066
(.014) (.0003)*
(.014) (.025)*

INCE -0.0001 -0.000009
(0.00002)* (0.00000007)*
(.000004)* (.0000056)***

AGE -0.003 0.005
(0.001)** (0.00003)*
(.002)*** (.003)***

GENDER -0.012 -0.039
(0.047) (.001)*
(.050) (.096)

PEOPVEH -0.053 -0.039
(0.014)* (.0003)*
(.0144)* (.0308)

OSITE -0.259 -0.017
(0.0409)* (0.001)*
(.055)* (.111)

OVERNTE -0.193 -0.439
(0.073)* (0.002)*
(.078)* (.154)*

TC -0.003 -0.003
(0.0003)* (0.000005)*
(.001)* (.001)*

HF 2.217 2.248
(0.050)* (0.001)*

(.037213 )* (.072)*
ALPHA 2.592 6.466

(0.476)* (0.047)*
(.652)* (5.557)

NOBS 2394
LOGL 36023.8 87280200

aUnweighted model with coefficient, standard errors without heteroskedasticity correction, and
heteroskedasticity robust standard errors reported in the first, second, and third rows respectively

bWeighted Model
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Results in Table 2.2 show that for the weighted regression for Day Use Developed sites,

the intercept and the dispersion parameters both become insignificant. An insignificant dis-

persion parameter points to the failure of an important theoretical assumption of the model,

i.e. the difference in mean and variance of the population. This points to inconsistencies of

parameter estimates of weighted regression.

Results in Table 2.3 show that in explaining demand for trips to Overnight Use Devel-

oped sites, six of the variables become insignificant in the weighted model: age, gender,

number of people in the vehicle, dummy for hotcontinental and mountain ecoregion, and

number of camping sites.

Table 2.4 gives the coefficient and standard errors for the wilderness model. In Table 5

only the intercept and income variables have significant interactions with the weight variable,

and the interactions with the other covariates of the model are insignificant. In these results,

unlike the previous models the signs for weighted and unweighted models stay the same.

In Table 2.5, we have only included the covariates interacted with weights since the

remaining coefficient remains the same in the unweighted regression. Table 2.5 shows that

weights that are constructed to provide correction for the differences in sample rates have

strong interactions with covariates included in the model. We have also conducted the likeli-

hood ratio test for all four settings. In the constrained model for all settings, coefficients on

interactions terms with the weight are zero. For general forest area and day use developed

sites model, the chi-square statistic is given by 38.2 and 39.6 respectively with 13 degrees

of freedom. The p values from the chi-square table are given by 34.53, 27.69 and 22.36 for

1%, 5%, and 10% significance levels respectively. So we reject the null hypothesis that the

coefficients of interactions with the weight variable are zero. Therefore, weights interact with

covariates to partially or fully explain the variables omitted from the model and the model

needs to be respecified. On the other hand, for the wilderness and overnight use developed
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Table 2.3: Estimation Results of Outdoor Recreation for Overnight Use Developed in the
Southeastern U.S. (2000-2003)

Model 1a Model 2b

Intercept 0.630 1.503
(0.165)* (0.003)*
(.194)* (.330)*

HOTCONT -0.370 0.271
(.118)* (0.002)*
(.116)* (.209)

MOUNTAIN -0.234 -0.162
(.081)* (.002)*
(.083)* (.200)

TENTC 0.0003 0.0001
(.0001)** (0.00002)*
(.0001)** (.0002)

SUMCAMPS .001 0.0005
(.001) (0.00002)*
(.001) (.002)

INCE -0.0001 -0.00003
(0.000003)* (0.00000008)*
(.000003)* (.00001)*

AGE 0.005 0.004
(0.002)* (0.00004)*
(.002)* (.003)

GENDER -0.106 -0.115
(0.052)** (.001)*
(.0589)** (.119)

PEOPVEH -0.043 -0.010
(0.017)* (.0004)*
(.0167)* (.036)

OSITE -0.196 -0.245
(0.050)* (0.001)*
(.0520)* (.101)*

OVERNTE 0.009 -0.305
(0.049) (0.001)*
(.050) (.097)*

TC -0.003 -0.002
(0.0004)* (0.00001)*
(.001)* (.001)*

HF 2.188 1.885
(0.059)* (0.001)*
(.0412)* (.127)*

ALPHA 1.461 .407
(0.215)* (0.001)*
(.240)* (.096)*

NOBS 1707
LOGL 18949.7 31155200
BIC -18897.6 -31155200

aUnweighted model with coefficient, standard errors without heteroskedasticity correction, and
heteroskedasticity robust standard errors reported in the first, second, and third rows respectively,
where *, **, and *** represent statistical significance at 1%, 5% and 10% level respectively.

bWeighted Model
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Table 2.4: Estimation Results of Outdoor Recreation for Wilderness Settings in the South-
eastern U.S. (2000-2003)

Model 1a Model 2b

Intercept 0.481 2.113
(0.446) (0.009)*
(.526) (.430)*

HOTCONT 0.521 0.374
(.102)* (0.004)*
(.103)* (.200)***

MOUNTAIN 0.110 -0.258
(.200) (.006)*
(.190) (.335)

DESIGW 0.000005 0.000007
(.000003) (0.0000001)*
(.000003) (.000005)

SUMWILDERN .007 0.007
(.004) (0.00007)*
(.002)* (.002)*

INCE -0.00002 -0.00003
(0.000004)* (0.0000002)*
(.000007)** (.00001)*

AGE -0.004 -0.002
(0.004) (0.0001)*
(.004) (.006)

GENDER -0.077 -0.362
(0.101) (.003)*
(.100) (.172)**

PEOPVEH -0.068 -0.075
(0.038)*** (.001)*
(.035)** (.060)

OSITE -0.325 -0.161
(0.105)*** (0.004)*
(.099)* (.166)

OVERNTE -0.192 -0.545
(0.112)*** (0.004)*
(.114)*** (.173)*

TC -0.003 -0.004
(0.0004)* (0.00002)*
(.001)* (.001)*

HF 2.092 2.337
(0.145)* (0.004)*
(.001)* (.225)*

ALPHA 3.711 0.873
(1.735)** (0.006)*
( 1.869)** (.381)**

NOBS 618
LOGL 4059.37 7875890
BIC -4014.39 -7875890

aUnweighted model with coefficient, standard errors without heteroskedasticity correction, and
heteroskedasticity robust standard errors reported in the first, second, and third rows respectively,
where *, **, and *** represent statistical significance at 1%, 5% and 10% levels respectively.

bWeighted Model
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Table 2.5: Estimation Results for Weights Interaction Terms for all Four Settings

GFA DUDS OUDS WILD

INTERCEPT -.146E-04* -.952E-04** .315E-04 .572490E-03*
HOTCONT -.901E-05* .281E-04 .743E-04* .228631E-04

MONUNTAIN .779E-05*** .766E-04** .794E-05 -.257495E-04
INCE .715E-09 * .414E-09 -.217E-08* -.156295E-07*
AGE .104E-06 .143E-05* .370E-06 .224673E-05

GENDER .200E-06 -.821E-05 -.213E-04*** .224673E-05
PEOPVEH -.161E-05 .275E-05 .482E-06 -.341661E-04
OSITE .670E-05 .218E-04*** -.127E-04 .220476E-04

OVERNTE .127E-04** -.687E-04 -.353E-04* -.938949E-04
TC -.404E-07 .893E-07 .108E-06 .177425E-07
HF -.571E-05** .535E-05 -.197E-04 .416311E-04

FORESTP -.490619E-07 - - -
TRAILS .203004E-07*** - - -

PICNICTAB - .203004E-07 - -
SUMNATPARK - .159524E-05 - -
SWIMMIMG - -.734884E-05*** - -

TENTC - - -.228780E-07 -
SUMCAMPS - - -.323342E-06 -
SUMWILD - - - .235090E-05
DESIGW - - - -.390465E-08

sites models, the chi-square statistic are given by 14.64 and 21.4 respectively with 13 degrees

of freedom. The p values from the chi-square table are given by 34.53, 27.69 and 22.36 for

1%, 5%, and 10% significance level respectively. So we fail to reject the null hypothesis that

the coefficients of interactions with the weight variable are zero. Therefore, the model is

correctly specified.

2.6 Conclusions and Implications

Insufficient data from each National Forest in the NVUM sample necessitate the pooling of

observations for forests in the same region. This encourages analysts to use weighted regres-

sion to equate the sampling distribution with the population distribution for the purpose of
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inference about the relevant population which in this case is National Forest recreation visi-

tors. However, differences in the coefficient estimates of weighted and unweighted regressions

point to model misspecification resulting from the pooling of different samples. This can be

seen from the significant interactions of weights with the covariates included in the model.

Correcting standard errors for heteroskedasticity increases the efficiency of the estimates but

they are still biased. Therefore, the model needs to be respecified by identifying missing

variables and interactions in an unweighted regression if the coefficients on interaction terms

are large and jointly significant. The reasons for this (Winship and Radbill, 1994) could be

that the weight variable is a function of covariates omitted from the model or interactions of

covariates with the weight variable act as a proxy for interactions with the covariates omitted

from the model. However, if the coefficients on interaction terms are jointly insignificant, the

model does not need to be respecified.



Chapter 3

Modeling Site Specific Heterogeneity in an On-Site Stratified Random

Sample of Recreational Demand

Abstract

Using estimation of demand for the George Washington/Jefferson National Forest as a

case study, it is shown that in a stratified/clustered on-site sample, latent heterogeneity needs

to be accounted for twice: first to account for dispersion in the data caused by unobservability

of the process that results in low and high frequency visitors in the population, and second

to capture unobservable heterogeneity among individuals surveyed at different sites according

to a stratified random sample (site specific effects). It is shown that both of the parameters

capturing latent heterogeneity are statistically significant. It is therefore claimed in this paper,

that the model accounting for site-specific effects is superior to the model without such effects.

Goodness of fit statistics show that our empirical model is superior to models that do not

account for latent heterogeneity for the second time. Though the price coefficient for the

travel cost variable remains the same, the expected mean changes across different models.

This information is of importance to the USDA Forest Service for the purpose of projections

for budget allocation and resource utilization.

3.1 Introduction

In order to reduce survey costs, on-site survey samples are either clustered or stratified.

Random samples are drawn within these clusters to make inferences about the relevant

populations. According to Cameron and Trivedi (1986), survey data are usually dependent.

This may be due to the use of cluster samples to reduce survey costs. In such cases the data

21
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may be correlated within a cluster owing to a presence of a common unobserved cluster-

specific term. According to Pepper (2002), whenever a group of sample observations share a

common factor, any theoretical and empirical analysis not accounting for clustering effects

would give inconsistent parameter estimates. This points to the need to account for cluster-

specific effects in the modeling data generated from on-site samples, where individuals are

surveyed at various sites in a given stratum across the National Forest.

In NVUM surveys, individuals are sampled at various sites within a National Forest which

are stratified according to site type and site use. A group of individuals surveyed at a

particular site share common factors, the observed and unobserved site specific attributes.

For example, individuals surveyed at a fishing site have a common recreational use-value for

fishing. Statistically, there is a strong reason to believe that individuals intercepted at the

same site are somehow correlated rather than independent. According to Galwey (2006), the

relationship of the outcome variable, which is visits to a recreation site, may be perfectly

replicated for each site, but most likely there will be some differences in this relationship.

These differences, or between-site variations, could be ascribed to chance or to some observed

or unobserved characteristics or attributes. Therefore to capture the within-site correlation,

it is important to introduce site-specific heterogeneity.

Count outcomes are modeled as discrete outcomes and not continuous quantities using

a poisson or a negative binomial distribution. The latter is a more flexible and reasonable

assumption for empirical data because it drops the assumption of equidispersion. A negative

binomial distribution is derived by introducing heterogeneity resulting from unobserved indi-

vidual taste and preference. Greene (2005) points out that heterogeneity can be introduced

the second time if a negative binomial is the base model. We exploit this idea to introduce

heterogeneity for the second time. But unlike Greene, we introduce site-specific heterogeneity

instead of individual-specific heterogeneity, to explain correlation among individuals sampled

at the same site.
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Introducing heterogeneity in a poisson model to derive a negative binomial distribution

causes heteroskedasticity in estimation of standard errors. Espiñeira and Tuffour(2008) use a

more flexible specification for the overdispersion parameter to correct for heteroskedasticity

in modeling demand for Gros Morne National Park. They make the overdispersion parameter

a function of individual characteristics and show that doing so improves the goodness of fit.

Greene (2005) also recommends this specification to correct for heteroskedasticity.

In this paper it has been hypothesized that in a stratified on-site sample, there is a strong

reason to believe that individuals sampled at the same site are correlated rather than inde-

pendent. The hypothesis is tested by modeling demand for outdoor recreation at the George

Washington/Jefferson National Forest, where individuals are sampled at 88 sites clustered

under four settings types. It is shown that the site-specific effects are significant and there is

a strong theoretical and empirical reason to introduce such site-specific effects. By estimating

design effects, it is shown that the asymptotic standard errors for the travel cost variable

are significantly different under the assumption of clustered sampling rather than random

sampling. It is also shown that the expected mean estimates, which are often used for the

purpose of projections, is significantly different in each model and so is the estimate of the

overdispersion parameter.

This paper is organized as follows. In the second section we give details about the data

used for our analysis. In the third section we explain our theoretical model. In the fourth

section we specify our empirical model and summary statistics. In the fifth section we esti-

mate six models: a poisson model accounting for stratification and truncation(TSP); a neg-

ative binomial model accounting for stratification and truncation(TNB); A poisson model

accounting for truncation, stratification and site-specific effects(TSP2); a negative binomial

model accounting for stratification, truncation, and an overdispersion parameter to vary

by individual characteristics(TNB1); a negative binomial accounting for stratification, trun-

cation, and site-specific effects(TNB2); and finally a negative binomial model accounting



24

for stratification, truncation, and accounting for site-specific effects and an overdispersion

parameter to vary by individual characteristics(TNB3). Conclusions are presented at the end

of the chapter.

3.2 Data

The empirical model will be estimated using NVUM data collected for the George Wash-

ington/Jefferson National Forest in the southeastern region of the U.S. The NVUM was

conducted at 88 sites stratified by settings within the National Forest. The settings include

Wilderness (WILD), Day Use Developed Sites (DUDS), Overnight Use Developed Sites

(OUDS) and General Forest Area (GFA). There are 781 sample observations. The data

was collected for four sample years, 2000-2003. More detail was provided on NVUM in the

previous chapter. For our analysis, we have only included observations for which recreational

trips to the National Forest are less than 52. Following Bowker et al. (2009) we also deleted

observations with travel cost greater than 720 and people in the vehicle greater than 10.

3.3 Theoretical Model

According to Haab and McConell (1996),

“estimation of single site demand models begins with an assessment of the data

generating process which is governed by the assumed stochastic structure of the

demand functions and the sampling procedure.”

In this chapter we discuss modeling the stochastic structure of the demand functions. The

stochastic structure of demand depends on whether the dependent variable, which is an

individual’s trips to a site, is assumed to be distributed continuously or as a count variable.

For the travel cost model the dependent variable is a count variable. Count data for number

of visits to a recreational site is not available in continuous quantities.Under this scenario

poisson distribution results in an asymptotic outcome, according to Hellerstein (1996). This
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is because a binomial distribution approaches a poisson distribution as the number of draws

approaches infinity. However, when the dependent variable is a count outcome, equidisper-

sion of data is rarely a realistic empirical assumption. A negative binomial distribution is

statistically derived by introducing an unobserved individual specific effect in the poisson

distribution. The effect is random and each effect is independent of each other and follows a

gamma distribution with a dispersion parameter.

Unobserved individual effects are consistent with utility theory. These unobserved effects

are attributed to an individual’s taste and preferences which are known by the individual

but are unobserved by the analyst. One common phenomenon with any travel cost study

is that the high frequency visitors who live close to the site make numerous low cost visits,

whereas the low frequency visitors who live far away from the site make a few high cost visits.

Combining high frequency and low frequency visitors does not account for differences in these

individuals, leading to observed over-dispersion in the data. Therefore, we have reasons to

believe that the base model for travel cost is a negative binomial with the introduction

of unobserved individual-specific effects in the poisson model. We use a negative binomial

with a quadratic variance function (NB2) as our base model which is a good approximation

in many empirical situations. Also, maximum likelihood estimation of NB2 is robust to

misspecification of the conditional mean (Cameron and Trivedi, 1986).

In this chapter, it has been hypothesized that there are reasons to believe that the

stochastic process includes unobserved site-specific effects which account for the differences

across various sites where the on-site sampling is conducted. Therefore, according to our

hypothesis, unobserved effects are introduced in the model. But these are not individual spe-

cific unobserved effects but site-specific effects. In the previous chapter issues of weighting to

control for choice-based survey design were discussed. In this chapter limitations of the inde-

pendence assumption in survey data is discussed and econometric techniques are suggested

to correct for such limitations.
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In microeconometrics, an individual’s choice between various sites is treated as a separate

estimation equation, logit or nested logit. Because it is conditional on choice, the dependent

variable is estimated as a count process. Various applications include site-specific effects in

the choice equation. However, the sampled site data for all the sites is extremely costly and

in most cases is not available. In this case it becomes even more important to introduce site-

specific effects in the count equation. This model can be used to estimate demand for a given

National Forest where a random sample is selected at various sites within a setting. When

non-negativity, stratification and truncation are included this model would also account for

correlation in the variance parameter among various individuals going to the same settings.

The random negative binomial model (RNBM) used by Greene (2005) in a panel data

setting is generalized to a cluster of sites in the George Washington/Jefferson National

Forest to capture intra-cluster correlation in the variance-covariance matrix. Greene (2005)

shows that heterogeneity can be introduced twice if a negative binomial is the base model.

A random model is chosen over a fixed effect model to capture the intra-cluster correlation

which implies from relaxing the independence assumption within a given cluster.

The log-likelihood of poisson correcting for truncation and stratification is given by (TSP),

logl = (yij − 1)(X ′
ijβ)− Exp(Xij′β)− log(Γ(yij)) (3.1)

and expected mean is given by,

E(y | x) = EXP (xβ) + 1 (3.2)

Site-specific effects are added in the mean statement, to derive the poisson distribution model

correcting for truncation and stratification with site-specific effects(TSP2). In recreational

demand models these site-specific effects could be attributes about a particular site which

are unobserved. According to Murdock (2006),

“one obvious way to address unobserved heterogeneity is to simply include a full

set of alternative specific constants. The proposed approach will be useful when
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there are important characteristics that only vary across recreation locations and

not also across time or individuals.”

He mentions such site characteristics for fishing such as regulations, water quality, fish con-

sumption advisories, physical characteristics, adjacent land use, and the presence of facilities.

Xij′β + σbj (3.3)

where,

bj ∼ N(0, 1) (3.4)

The negative binomial correcting for truncation and endogenous stratification can be derived

by introducing individual-specific heterogeneity which follows a one parameter gamma dis-

tribution (TNB),

log(yij)+logΓ(yij+α−1)+yijlog(α)+(yij−1)(x′ijβ)−(yij+α−1)log(1+αexp(x′
ijβ))−logΓ(α−1)

(3.5)

and the expected mean is given by,

E(y | x) = EXP (xβ) + 1 + αEXP (xβ) (3.6)

Subject-specific effects in 3.6 are similar to 3.3 and 3.4.

The overdispersion parameter in the TNB1 and TNB3 models is specified as,

α =
1

exp(Z ′
iγ)

(3.7)

The nlmixed procedure in SAS is used to maximize the unconditional likelihood given by,

Prob[Y = yij|xij] =

∫
bj

Prob[Y = yij|xij, bj ]f(bj)dbj (3.8)

where,

Prob[Y = yij|xij , bj]
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is given by 3.5, and f(bj) is given by 3.4,

3.4 Empirical Model

The empirical model is specified as,

NFV 12MOi
j = f(INCEi, AGEi, PEOPVEH i, GENDERi, TC i, HF i, OV ERNTEi)

(3.9)

where,

i = 1, 2, ...N

are the number of individuals

j = 1, 2, ...88

are the number of sites in the sample The dependent variable in the empirical model is

the number of annual recreation visits to the George Washington/Jefferson National Forest

per group. Demand for visits is a function of six variables: own price or cost of the trip

(TC), number of people in the vehicle (PEOPVEH), annual income (INCOME), gender

(GENDER1), age (AGE), and an indicator for staying overnight (ONITE). An additional

term has been incorporated to capture the differences between high and low frequency users

(HF), where HF=1 if number of annual visits was greater than 15, and otherwise HF = 0.

Site-specific effects are included in the mean statement additively.

The following example illustrates the motivation of the introduction of site-specific effects

to capture the correlation between individuals sampled at the same site. In the Chatta-

hoochee National Forest, Brasstown Bald is a popular visitor attraction. Rising 4,784 feet

above sea level, Georgia’s highest mountain allows clear views of four southern states,

Georgia, Tennessee, North Carolina and South Carolina. This site has four hiking trails:



29

Table 3.1: Summary Statistics for George Washington/Jefferson National Forest NVUM
Data, 2000-2003

Mean1 Min Max

INCEa 23964.61 11618.19 111898.27
AGEb 41.541 18 75

GENDERc 0.216 0 1
PEOPVEHd 2.549 1 9
OVERNTEe 0.235 0 1

TCf 49.481 0.469 1103.84
HFg 0.243 0 1

NFV12MO1h 11.282 1 51
STYPE1i 0.146 1 0
STYPE2j 0.200 1 0
STYPE3k 0.366 1 0
STYPE4l 0.288 1 0
NOBS 781

aIRS reported average after tax income for an individual’s ZIP Code
bAge
cA dummy for Gender equals 1 if female
dNo.of people in the vehicle
eIndicator for overnight stay
fAs a function of one way travel distance and income foregone (Refer to footnote 1, Chapter2)
gHF=1 if no. of annual visits greater than 15, else HF = 0
hNumber of annual recreation visits per group
iAn indicator for Wilderness visits
jAn indicator for Day Used Developed Site visits
kAn indicator for Overnight Used Developed Site visits
lAn indicator for General Forest Area visits
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Brasstown Bald Trail, the Arkaquah Foot Trail, Jack Knob Foot Trail, and Wagon Train

Foot Trail. The observatory also provides facilities for picnicking and nature viewing. The

view from the 4,784 feet peak is a popular attraction and most visits to the site are of short

duration and usually involve nature viewing and relaxing as the primary activities.

The 5.5 mile long Arkaquah Foot Trail near the observatory is a wilderness trail that

attracts a wide variety of hikers and nature viewers. The duration of visits to this trail is

usually longer than the duration of visits to the observatory and the site draws both locals

and non-locals. The trailhead connects to Track Rock Gap, one of the best known of the

petroglyph, or marked stone sites, in Georgia. The Jack Knob Foot Trail is about 4.5 miles

and leads to the famous Appalachian Trail. The Wagon Train Foot Trail is 5.8 miles and leads

to the Wagon Train Road which ends at Young Harris College. The trail is traditionally hiked

by graduating students and their families, the evening before graduation. Thus, it mostly

draws locals for a short duration of time.

The above example suggests dependence between individuals surveyed at a particular

site due to some observed or unobserved site-specific effects. In a survey sample of this

nature, random sampling might not be the most reasonable assumption about the data.

Dependence between individuals visiting the same site to estimate the demand for a single

National Forest is modeled. It is most likely that individuals surveyed at a given site are

correlated rather than independent. The above argument is used to motivate a mixture model

where site-specific random effects follow a standard normal distribution. In this model, the

overdispersion parameter is modeled as,

α = f(INCOME,AGE,OV ERNT, STY PE) (3.10)

where,

Site types (STYPE) or settings is a dummy variable for each settings type. Settings include

Day Used Developed Sites (DUDS), Overnight Used Developed Sites (OUDS), General Forest
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Area (GFA) and Wilderness (WILD). For estimation, the dummy for Overnight Used Devel-

oped Sites is dropped. Thus, the OUDS setting serves as base.

3.5 Results

Similar to Pepper (2002), design effects for the variables are constructed in the mean state-

ment for two models, TNB1 and TNB3. Design effects are defined as the ratio of asymp-

totic variance under the assumption of random sampling to asymptotic variance under the

assumption of clustered sampling. The sampling scheme has negligible effects on the asymp-

totic variance for most of the variables. However, for the indicator variable for an overnight

stay, the design effect is 1.104, implying almost a 5 % difference. For the travel cost vari-

able,the design effect is huge, around 1.667, implying that the estimated standard error in

the clustered sample exceeds that of random sample by 29%. Also, the sample size of our

data is fairly small and number of clusters are fairly large(88 sites) where the survey was

conducted. The design effects tend to grow as more observations are made within a cluster.

Also, in the TSP2, TNB2, and TNB3 models, significant site-specific effects are found. This

can be seen from the significance of the variance parameter, given by sigma in the results.

The parameter estimates are 0.475, 0.373, and 0.317 for the TSP2, TNB2, and TNB3 models

respectively, each significant at the 1% significance.

Model comparison shows that the TSP2 model which accounts for site-specific effects

performs better than the TSP model without site-specific effects. The log-likelihood and BIC

model fitness criterion for TSP model are -2327.53 and 2353.68 respectively and for the TSP2

model, they are -2263.5 and 2283.8 respectively. The log-likelihood for the TSP2 model is

higher than the TSP model. In terms of the BIC criterion, smaller values of BIC suggest a

better model. Therefore, clearly the TSP2 model accounting for site-specific effects performs

better.
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Table 3.2: Design Effects for TNB1 and TNB3 model

TNB11 TNB32

Intercept 1.022
Income 0.1
Age 1

Overnight 1.104
TC 1.667
HF 0.922

In comparing four negative binomial models, the simple negative binomial model

accounting for stratification and truncation (TNB) and the negative binomial model (TNB2)

additionally accounting for site-specific effects give more or less the same results, with log-

likelihoods of 13765.7 and 13768.5 respectively. Parameters and standard errors are slightly

different but not enough to change the statistical significance or therefore the inference.

Now we compare the two negative binomial models including overdispersion as a function of

individual characteristics: TNB1 does not account for site-specific effects, while TNB3 does.

The log-likelihood for TNB3 is slightly higher than TNB1 (13781.5 and 13780.5 respectively).

TNB3 also does better than TNB1 in terms of the BIC criterion. The BIC criterions are -

13734.8 and -13748 respectively for TNB1 and TNB3. In modeling mean and overdispersion,

the parameter estimates for the intercept are very different in the two models. We can see this

in Table 3. The expected mean for TNB1 and TNB3 are 4.66 and 4.90 respectively. Estimates

of overdispersion parameters are 0.527 and 0.491 for TNB1 and TNB3 respectively.

3.6 Conclusions and Implications

It is shown that there is a theoretical and empirical reason to account two times for

heterogeneity in modeling recreational demand for National Forests, where individuals are
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sampled at various sites which are stratified or clustered according to their use. The first time,

heterogeneity accounts for dispersion in the data due to unobservability of the process which

results in existence of two different types of visitors in the population, high-frequency and

low-frequency. The second time heterogeneity is accounted for in order to capture dependence

between individuals sampled at similar sites according to a stratified random sample. Positive

results for our hypothesis are found. Both in the poisson and the negative binomial model, the

model accounting for site-specific effects performs better than the one not accounting for site-

specific effects, with statistically significant results. The results are not of particular interest

in deriving consumer surplus per person trip, since the coefficient for the price variable is

the same across each model. However, model differences would be important for the purpose

of deriving future projections of demand. This is because the expected mean changes across

different models. This can be clearly seen from the TNB1 and TNB3 models. The TNB3

model that accounts for site-specific effects has a statistically different intercept in modeling

mean and dispersion than the TNB1 model as we allow the intercept to vary randomly across

the sample according to a standard normal distribution. Therefore, in this paper a case for

treating individuals within a given stratum as dependent rather than independent is made.
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Table 3.3: Estimation Results of Outdoor Recreation Demand for George
Wahington/Jefferson National Forest: NVUM DATA: 2000-2003

TSPa TNBb TSP2c TNB1d TNB2e TNB3f

Covariatesg

Intercept 1.781 1.320 1.778 1.782 1.314 1.795
(.142)* (.184)* (0.084)* (0.232)* (0.152)* (0.227)*

INCE -0.000004 -0.000003 -.00001 -0.00002 -0.00003 -0.00002
(0.000004) (0.000006) (.000003)** (.000009)** (0.00004) (0.00009)**

AGE 0.003 0.003 0.005 0.003 0.004 0.004
(0.002)*** (0.002)*** (.001)* (0.002)*** (0.002)** (0.002)*

GENDER -0.050 -0.113 -0.042 -.105 -0.107 -0.105
(0.071) (.079) (0.040) (0.077) (0.076) (0.075)

PEOPVEH -0.041 -0.048 -0.034 -.034 -0.040 -0.031
(0.020)** (.0215)** (0.010)* (.021) (0.022)*** (0.021)

OVERNTE -0.263 -0.225 -0.189 -0.478 -0.196 -0.465
(0.071)* (0.085)*** (0.053)* (0.212)** (0.082)** (0.192)**

TC -0.004 -0.004 -0.004 -0.004 -0.004 -0.004
(0.001)* (0.001)* (0.0004)* (0.001)* (0.0006)* (0.0006)*

HF 1.715 1.722 1.647 1.740 1.695 1.714
(0.055)* (0.055)* (0.032)* (0.059)* (0.065)* (0.064)*

ALPHA - .548 - 0.499 -
- (0.092)* - (0.076)* -

sigma - - 0.475 0.373 0.317
- - (0.032)* (0.055)* (0.071)*

log(a)
Intercept 1.695 1.768

(0.340)* (0.345)*
Income -.00004 -0.00004

(0.00001)** (0.00001)*
OVERNIGHT -0.963 -0.968

(0.390)** (0.382)*
WILD -.109 -0.059

(.188) (0.246)
DUDS 0.653 0.644

(0.253)*** (0.273)**
GFA -0.040 -0.048

0.190 (0.201)
NOBS 781
LOGL -2325.67 -2263.5 1376 13780.5
BIC 2355.07 -13733.4 2283.8 -13734.8 -13748.5

*1% significance
**5% significance
***10% significance

aTruncated Stratified Poisson
bTruncated Stratified Negative Binomial
cTruncated Stratified Poisson Accounting For Site-Specific Effects
dTruncated Stratified Negative Binomial; Modeling Overdispersion Parameter
eTruncated Stratified Negative Binomial Accounting For Site Specific Effect
fTruncated Stratified Negative Binomial; Modeling Overdispersion Parameter and Accounting

For Site Specific Effects
gCoefficient estimates reported in the first row and standard error reported in parentheses
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Table 3.4: Estimation Results of Expected Mean and Overdispersion Parameter

TSPa TNBb TSP2 TNB1 TNB2 TNB3

E(Y) 7.086 4.437 6.155 4.664 4.693 4.909
alpha 0 0.548 0 0.527 0.500 0.491

aFor all TSP models,
E(y | x) = EXP (X ′β) + 1

bFor all TNB models,

E(y | x) = EXP (X ′β) + 1 + αEXP (X ′β)



Chapter 4

Estimating Recreational Demand for an On-Site-Sample: A Latent Class

Poisson Model

Abstract

In this paper, a recreational demand model for George Washington/Jefferson National

Forest using a Latent Class Poisson Model (LCPM) is estimated. We show that the visitor

population can be segregated into different classes, each having a different distribution. This

class membership for each individual is treated as latent, due to arbitrariness in defining how

many visits constitute high or low frequency, and is generated by a multinomial distribution.

Conditioned on class membership, visits to a National Forest are modeled as a poisson pro-

cess. It is shown that there are two classes of visitors, low and high frequency, each visitors

with different price estimates. The results are important in deriving consumer surplus mea-

surements. This is because the price coefficient of frequent visits inflates the overall consumer

surplus when the two populations are treated as coming from the same distribution.

4.1 Introduction

In previous studies, researchers have dropped high frequency visitors because they

constitute a small percentage of the data. Englin and Shonkwiler (1995) dropped the high

frequency visitors because of the complexity of modeling high count outcomes. Bowker et al.

(2009) controls for high frequency visitors by introducing a dummy variable, which takes a

value of 1, when the number of visits exceed 15 visits per year. This approach incorporates

heterogeneity in the intercept as a fixed effect. Another approach is to allow the intercept

to vary randomly across the sample according to some distribution, in a random effect

36
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approach. Examples include a poisson log normal model and a poisson log gamma model

popularly known as the negative binomial model. All these models incorporate heterogeneity

based on some definition of a high frequency visitor. There are at least two problems with

this approach. First, the dummy variable for high frequency visitors is defined on some

assumption about how many visits constitute high frequency - every other day, once in a

weekend, or once in two weeks. There is too much arbitrariness in defining high versus low

frequency visits. This definition is not the same as having an indicator variable take a value

of 1 for participation in recreation and 0 otherwise. Second, high frequency visitors and low

frequency visitors come from different populations with different marginal effects. The fixed

effect or the random effect treatment does not account for the differences in marginal effects

across different populations.

In this paper, class membership is treated as unobserved data. In estimating recreational

demand models, two classes are hypothesized. One is a low frequency visitors who make less

frequent and longer duration trips with higher travel costs and stronger marginal effects. The

other is high frequency visitors who make short duration trips with lower travel costs and

weaker marginal effects. The class membership to a particular population is treated as latent

and is estimated through posterior probabilities using multinomial distribution. A latent

class poisson model is estimated using EM algorithm to estimate demand for the National

Forest for the two different populations, low and high frequency visitors.

In the literature,Wedel, M. et al. (1993) use latent class models for count outcomes to identify

potential customer market potential customer market segments with different reactivity to

direct mail variables. Greene (2005), and Deb and Trivedi (1997), have used latent class

models for analyzing health data with the latent classes specifying the unobserved or latent

health status. In recreational demand, latent class models are used in a RUM setting for

recreational site choice. Examples include mixed site choice models (Train, 2008; Boxall and

Adamowicz, 2002). We are not aware of any analysis of on-site recreational samples using

latent class models.
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4.2 Data

The empirical model will be estimated using NVUM data collected for the George

Washington/Jefferson National Forest in the southeastern region of the U.S. The NVUM

survey was conducted at 88 sites stratified on the basis of settings within the National Forest.

The settings include Wilderness (WILD), Day Use Developed Sites (DUDS), Overnight Use

Developed Sites (OUDS), and General Forest Area (GFA). There are 750 sample observa-

tions. The data was collected for four sample years, 2000-2003. More detail was provided

on NVUM in the previous chapter. For the analysis in this paper, observations for which

recreational trips to the National Forest that are less than 160 per year are included. The

reason for modeling visits less than 160 is to avoid numerical errors in estimating posterior

probabilities. Following Bowker et al. (2009) we also deleted observations with travel costs

greater than 720 and observations with people in the vehicle greater than 10.

Table 4.1: Summary Statistics for George Washington/Jefferson National Forest NVUM
Data, 2000-2003

Mean1 Min Max

INCEa 23499.58 11618.19 111898.27
AGEb 41.572 18 75

GENDERc 0.181 0 1
PEOPVEHd 2.459 1 9
OVERNTEe 0.223 0 1

TCf 46.632 0.469 1103.84
HFg 0.316 0 1

NFV12MO1h 17.880 1 145
NOBS 750

aIRS reported average after tax income for an individual’s ZIP Code
bAge
cA dummy for Gender equals 1 if female
dNo.of people in the vehicle
eIndicator for overnight stay
fAs a function of one way travel distance and income foregone
gHF=1 if no. of annual visits greater than 15, else HF = 0
hNumber of annual recreation visits per individual or group
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4.3 Theoretical Model

The theoretical Model used in this paper is based on Wedel, M. et al. (1993),

In explaining the theoretical model we ignore the time variable as an offset used by Wedel,

M. et al. (1993). The estimation is based on the EM algorithm,

s = 1...S denotes class

l = 1...L denotes number of parameters in the model

i = 1...N denotes number of individuals in the sample.

Class membership is unobserved data. Class membership can be estimated via the expecta-

tion step,

where,

uis ∼ MN (4.1)

The expectation step is given by,

E(uis | yi, as, βs) =
asPi | s(yi | βs)∑S

s=1
asPi | s(yi | βs)

(4.2)

which calculates the posterior probabilities as,

θis =
âsP̂i | s(yi | βs)∑S

s=1
âsP̂i | s(yi | βs)

(4.3)

Once the expectation is calculated, the likelihood is maximized, keeping the posterior prob-

abilities constant. Maximization step is given by,

N∑
i=1

S∑
s=1

θ∗islnPi | s(yi | βs) +

N∑
i=1

S∑
s=1

θ∗islnαs (4.4)

The estimate of a∗s is given by,

a∗s =

N∑
i=1

θ∗is/N (4.5)
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where ’a’ is the proportion of individuals belonging to a particular class, s.

The probability distribution for the dependent variable in our model is the poisson distri-

bution which corrects for endogenous stratification and truncation (Shaw, 1988),

lnPi | s(yi | βs) = −exp(xilβs) + (yi − 1)xilβs − log(Γ(yi)) (4.6)

Estimates of βls are given by,

N∑
i=1

θ∗is((yi − 1)− λi|s)xil = 0 (4.7)

Expectation and the maximization step is iterated until convergence.

An alternative to maximum likelihood estimation using the EM algorithm is iteratively

reweighted least Squares. The dependent variable and weights are updated at each iteration

until convergence. For estimation using iteratively reweighted least Squares (Wedel et al.,

1993),

The standard errors are computed as,

Fll′ = −E(
∂2ls

∂βls∂βl′s

) =

N∑
i=1

θisλi|sxilxil
′ (4.8)

The consistent akaike Information Criterion (Bozdogan, 1987) used in Wedel et al. (1993) is

used to determine the appropriate number of classes.

CAIC = −2
S∑

s=1

ls + [(L+ 1)S − 1](ln(N) + 1) (4.9)

4.4 Empirical Model

The empirical model is specified as,

NFV 12MOi = f(INCEi, AGEi, GENDERi, TC i, OV ERNTEi, PEOPVEH i) (4.10)
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The dependent variable in the empirical model is the number of annual recreation visits per

group to the George Washington/Jefferson National Forest. Demand for visits is a function

of six variables: IRS reported average after tax income for an individual’s ZIP Code (INCE),

own price or cost of the trip (TC)1 , number of people in the vehicle (PEOPVEH), gender

(GENDER1), age (AGE), and an indicator for staying overnight (OVERNTE).

4.5 Results

4.5.1 Model Selection

Initially, a mix of two negative binomial distributions accounting for stratification and

truncation was tried. The model becomes highly unstable as the probability of each individual

being a low frequency visitor approaches one and the probability of each individual being

a high frequency visitor approaches zero. Therefore, the results must be based on poisson

probabilities.

Figure 4.1 compares the empirical data with two negative binomial distributions each with

different means and overdispersion parameters. It can be easily seen that high frequency

visitors are not represented using a negative binomial model even with varying overdispersion.

The empirical density in Figure 4.1 suggests three latent classes: low frequency visitors with

an average of 10 visits in a year, medium frequency visitors with an average of 50 visits, and

high frequency visitors with an average of about 100 visits. Respectively these three classes

can be identified as: visitors who make few long duration visits perhaps once a month; visitors

who make frequent short duration visits, perhaps once in a weekend; and visitors who visit

a national forest as a part of their exercise schedule, perhaps every other day. However, the

1Bowker et al. (2009),

TC = 2 ∗ (0.12 ∗ PRACDIS) + 2 ∗ (0.33 ∗
INCE

2000
∗ PRACTIME)

where PRACDIS is the one way distance to the site. A per mile cost of 0.12 dollar was used. Income
forgone is calculated as one third of the wage rate, where wage rate is calculated as the proxy of
annual income divided by 2000 work hours. PRACTIME is the time spent at the site.
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model fitness criterion suggests that the two-class model performs better than the three-class

model, implying the existence of only two classes, i.e. high and low frequency visitors. The

purpose of using a latent class model is to show heterogeneity, not just in the intercept,

but also in the travel cost (price) variable for different classes. The travel cost variable is

expected to be of less importance for the high frequency visitor. In the second section, it is

also shown how the consumer surplus measures vary across different classes and also across

models.

In estimating the two class latent poisson model in Table 4.2, the EM algorithm converges

in about 32 iterations. Parameter estimates of ’a’ suggest that 72% of visitors come from a

low frequency population and 28% come from a high frequency population. The travel cost

variable is significant for both classes. However, the magnitude differs in the two classes.

The travel cost variable for low frequency visitors is -0.014, and for high frequency visitors

it dampens to -0.006. The heterogeneity in the intercept is clearly shown with 2.935 for low

frequency visitors and 5.251 for high frequency visitors. Also, the coefficient for overnight

stay has a different sign for two classes. For low frequency visitors, who take few long duration

trips, the sign of overnight visits is negative. An overnight stay at a national forest correlates

with a reduced number of visits per year for the precise reason that they make few such trips

in a year. For high frequency visitors, the opposite is true: Visitors who take frequent short

duration visits have more visits per year.

In estimating the three class latent poisson model, the EM algorithm converges in about

50 iterations. The estimates of ’a’ in Table 4.3 suggest that 57% of visitors come from a

low frequency population, 33% from a medium frequency population, and 10% from a high

frequency population. The travel cost variable is significant for all three classes. However,

the magnitude differs in three classes. These results are consistent with the two-class model.

Also, the magnitude of the travel cost variable is consistent with the two-class model. As

with the two-class model, heterogeneity in the intercept is clearly shown with 1.919 for low

frequency visitors, 3.650 for medium frequency visitors, and 4.473 for high frequency visitors.
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Table 4.2: Estimation Results of Two Class Latent Poisson Model of Outdoor Recreation for
George Washington/Jefferson National Forest : NVUM Data, 2000-2003

TSP TSNB Class1 Class2
Explanatory Variablesa

Intercept 2.477 1.395 2.935 5.251
(0.195)* (.199)* (0.093)* (0.064)*

INCE -.00002 -.000005 -0.00001 -0.00003
(0.000007)* (.000006) (0.000003)* (0.000002)*

AGE -.0018 .00120 0.001 -0.006
(.002) (.0021) (0.001) (0.0008)*

GENDER -.189 -.159 -0.760 -0.622
(.0778)** (.083)** (0.056)* (0.043)*

TC -.004 -.004 -0.014 -0.006
(.0010)* (.001)* (0.0007)* (0.0004)*

PEOPVEH -.081 -.068 -0.129 -0.096
(.0281)* (.023)* (0.014)* (0.009)*

OVERNTE -.254 -.219 -0.186 0.851
(.131)*** (.092)** (0.044)* (0.102)*

a - - 0.72 0.28
HF 2.027 2.075 - -

(.066)* (.065)* - -
alpha - .790 - -

- (.103)* - -
NOBS 750
LOGL -3906 3217 -4.8800e+003 -2.6188e+004
CAIC - - 6.2235e+004
BIC 3932.95 -32145.2 - -

*1% significance
**5% significance
***10% significance

aCoefficient estimates reported in the first row and standard error reported in parentheses
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Table 4.3: Estimation Results of Three Class Latent Poisson Model of Outdoor Recreation
for George Washington/Jefferson National Forest : NVUM Data, 2000-2003

Class1 Class2 Class3
Explanatory Variablesa

Intercept 1.919 3.650 4.473
(0.142)* (0.009)* (0.087)*

INCE -0.000001 -0.00001 -0.000008
(0.000005) (0.000003)* (0.000003)**

AGE 0.005 0.005 0.0026
(0.002)* (0.001)* (0.001)**

GENDER -0.515 -0.608 -0.604
(0.076)* (0.053)* (0.059)*

TC -0.014 -0.009 -0.006
(0.001)* (0.0006)* (0.0005)*

PEOPVEH -0.061 -0.019 0.058
(0.021)* (0.010)* (0.017)***

OVERNTE -0.566 -0.702 0.396
(0.079)* (0.049)* (0.102)*

a 0.5715 0.3351 0.0934
NOBS 750
LOGL -881.7038 -1.2730e+004 -1.8551e+004
CAIC 6.4478e+004

*1% significance
**5% significance
***10% significance

aCoefficient estimates reported in the first row and standard error reported in parentheses
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Figure 4.1: Empirical Density for George Washington/ Jefferson National Forest: NVUM
Data, 2000-2003

Consistent with the results of the two-class model, the three-class model has different signs for

the coefficient for the overnight stay across the three classes. For low and medium frequency

visitors, the sign is negative, again showing that an overnight stay at a national forest reduces
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Table 4.4: Estimation Results of Goodness of Fit for Latent Class Poisson Model

Class2 Class3

CAIC 6.2235e+004 6.4478e+004

their number of visits per year. For high frequency visitors, the opposite is true:Visitors who

take frequent short duration trips visits have more visits per year.

Table 4.4 gives the goodness of fit criteria for the two and three-class latent poisson

model. The CAIC goodness of fit criterion is calculated using the formula described in the

theoretical section of this paper. Based on the CAIC criterion, the two-class model performs

better than the three-class model. Therefore, the existence of only two classes: high and

low frequency visitors to a national forest is claimed in this paper. There is no need for the

additional class of medium frequency visitors.

The own price elasticity of demand2 are also computed for class 1 and class 2 in the Latent

Class Poisson Model. This formula is derived from Wedel et al.(1993). The absolute own

price elasticity of demand for the two classes are 0.653 and and 0.280, respectively. Demand

for outdoor recreation is insensitive to price changes in both classes.

4.5.2 Welfare Calculations

In this section, the consumer surplus that users derive from recreating at a National Forest are

derived. These consumer surplus measures apply to the recreation user population because

the population density for our analysis is truncated at zero. This is different from Englin

2

εTC = βTC ∗
∑
i

TCi/N

where N are the total number of individuals in the sample and TC is the price variable.
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and Shonkwiler (1995) where they derive their estimates from the entire general population

instead of the recreation user population. where,

Table 4.5: Estimation Results of Consumer Surplus

TSP TSNB Class 1(Low Frequency) Class 2(High Frequency)

CS/persontrip/year 250.00 250.00 71.43 166.67
E(y | x) 3.10 1.45 2.55 4.85

CS/average person/year 772.51 363.00 182.22 809.33

E(y | x) = exp(xβ) + 1 (4.11)

for TSP and Latent Class TSP Model, and

E(y | x) = exp(xβ) + 1 + αexp(xβ) (4.12)

for TSNB model, based on Englin and Shonkwiler(1995)

CS/persontrip = −1/βTC (4.13)

CS/averageindividual = −1/βTCE(y | x) (4.14)

Model estimates for the price variable stay the same for the TSP and TSNB models.

Therefore, in terms of the welfare measures, the consumer surplus per person trip remains

the same for the two models. Accounting for heterogeneity with an introduction of the

overdispersion parameter in the negative binomial model does not change the coefficient for

the price variable. This is not true for the latent poisson model suggested in this paper. Not

only is the coefficient different across two classes but it is different from the TSP model and

TSNB models. Accounting for individual heterogeneity by introducing an overdispersion

parameter in the negative binomial model fails to account for heterogeneity in the price

variable due to the different trip frequencies of the visitors. However, the latent class poisson

model does account for the individual heterogeneity.
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Consumer surplus per average person per year gives the willingness to pay for the use of

National Forest for the purpose of outdoor recreation. The willingness to pay for the high

frequency visitor is much greater than the low frequency visitor.

4.6 Conclusion and Implications

Results from this study have several important implications. First, this study uses a

superior model for recreational demand by treating class membership of a heterogeneous

population as latent, thereby avoiding any ambiguity in defining classes based on frequency

of visits. Also, treating class membership as observed by including a dummy for high and low

frequency visitors will not account for the differences in coefficients across different classes.

The technique used in this paper accounts for heterogeneity not only in the intercept but

also in the coefficients. Second, in this paper it is shown that it is important to account for

heterogeneity in price estimates when deriving welfare measures such as consumer surplus.

It is shown that the high frequency visitors, who take frequent short duration visits, derive

greater benefits from recreation at the national forest and therefore have a higher consumer

surplus as compared to low frequency visitors who take less frequent long duration trips.

This information on market segregation between high and low frequency visitors can be

of importance to the USDA Forest Service because differences in consumer surplus across

classes provide potential scope for differential pricing policies.

Future research can mix two negative binomial distributions to estimate an on site

recreational demand model. Since the EM algorithm is slow to converge, maximum like-

lihood estimation can be performed by imposing restrictions on the probabilities of class

membership.



Chapter 5

Conclusions and Implications

5.1 Summary and Conclusions

An overall goal of this dissertation is to address the modeling and estimation issues

associated with choice-based samples that go beyond the problems of non-negativity, trun-

cation, and endogenous stratification which have been resolved in the literature. Another

overall goal is to show the sensitivity of welfare measurements when the basic and naive

assumptions about the data generating process are dropped. This information is of relevance

to government agencies such as the USDA Forest Service, which uses these estimates for

evaluating policies such as developing a site, closing an old site, or opening a new site.

In the first essay (Chapter 2) empirical tests for comparing weighted and unweighted esti-

mates of regional demand models of recreation are suggested. In the literature, weighting is

used when regional demand models are misspecified by pooling different populations together

when observations on a given population are not enough to correct misspecification. It is

shown that in doing so the weights interact with the covariates in a weighted regression,

resulting in heteroskedasticity. By estimating both weighted and unweighted models, we

show that it is best to use unweighted regression when the coefficient on interactions with

the weight variable are insignificant. However, the model needs to be respecified if these

interactions are jointly significant but the estimation still proceeds using an unweighted

regression.

Choice-based samples are nonrandom samples, especially if they are stratified. It is

shown that it is important to account for dependence caused by sampling at different sites.
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This dependence is caused by a common factor: the site where they are sampled. In the

second essay (Chapter 3), statistically significant site-specific effects are obtained. In terms

of the model criterion, the model with site-specific effects performs better. Because of the

differences in the intercept estimates and other marginal coefficients, the expected mean

changes across the models. This illustrates how willingness to pay measurements are sensitive

to the assumptions that the sampling procedures are random or clustered.

High order integer values are dropped from the analysis of recreational preferences

because they are difficult to model, or because these observations constitute a small per-

centage of the population. In the third essay (Chapter 4), heterogeneous preferences are

modeled by assuming that there are two classes originating from different distributions of

visitors based on frequency of visits. Due to the arbitrariness in defining what constitutes

high and low frequency, these classes are treated as latent. The results from the latent class

poisson models show the existence of two classes: low and high frequency visitors, each with

different marginal effects. The price coefficient is of particular interest. For low frequency

visitors, who have a less elastic demand, the sign remains the same but the magnitude is

much stronger than for high frequency visitors. The consumer surplus measurements are

different in these two classes.

5.2 Policy Implications

In this dissertation it is shown that welfare estimates are sensitive to assumptions

about the stochastic process or the sampling procedure of the data generating process. These

results can provide important information to policy makers such as the USDA Forest Service,

who need these estimates for policy analysis. The first two essays points to differences in

welfare estimates due to different assumption about the sampling procedure. The third essay

points to the difference in welfare estimates resulting from different assumptions about the

stochastic process of the data generating process. The welfare estimates derived in the third
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essay give important information for potential differential pricing policies. The low frequency

visitors with a relatively elastic demand who mostly visit developed sites would not be willing

to pay a higher price because of the smaller consumer surplus per person trip and fewer trips

per year. However, the high frequency visitors with a relatively inelastic demand would be

willing to pay a higher price because of the larger consumer surplus and more visits per year.

Estimated recreation demand models are often used by natural resource management

agencies to project current and future recreation visitation and estimate the per unit eco-

nomic value of recreation (e.g., consumer surplus per person trip, per trip, or per day).

Visitation projections and economic value estimates provide input into benefit-cost analysis

and resource management decisions. The results of this research suggest that both recreation

visitation estimates (e.g., expected trips) and per unit economic values (e.g., consumers sur-

plus per trip) may be sensitive to specific econometric techniques used to estimate recreation

demand functions from choice-based samples. Thus, resource managers should interpret and

apply recreation demand functions estimated from choice-based samples with care and cau-

tion.

5.3 Limitations of the Study

The results in the second and third essay of this dissertation are subject to a common

limitation. Because of a relatively small data set, different activities are aggregated together

when estimating models of outdoor recreation. In doing so, the restrictive assumption of equal

marginal effects across various outdoor recreational activities is imposed. A more realistic

assumption would be to expect the marginal effects to vary across activities.

5.4 Recommendations for Future Research

Future research can focus on the missing variable problem in Chapter 2 in case the

interaction terms are jointly significant.
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In Chapter 4, future research can also focus on mixing two negative binomial distributions to

model heterogeneous preferences in a latent class model. This would allow dispersion among

individuals within a given latent class; an assumption that is relaxed in our study.
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Table A.1: Summary Statistics for General Forest Area Settings, NVUM Data, 2000-2003

Mean1 Min Max

HOTCONT 0.457 0 1
MOUNTAIN 0.190 0 1
SUBTROP 0.352 0 1
FORESTP 44.22 0.085 85.468
TRAILS 386.078 20 704.700
INCE 21619.06 9910.434 90831.38
AGE 43.430 17.5 75

GENDER 0.160 0 1
PEOPVEH 2.254 1 10
OSITE 0.235 0 1

OVERNTE 0.225 0 1
TC 45.108 0 1221.672
HF 0.328 0 1

NFV12MO1 13.793 1 53
NOBS 1979

Table A.2: Summary Statistics for Day Used Developed Settings, NVUM Data, 2000-2003

Mean1 Min Max

HOTCONT 0.373 0 1
MOUNTAIN 0.281 0 1
SUBTROP 0.346 0 1
PICNICTAB 163.485 1 1258

SUMNATPARK 10.927 0 204
SWMMING 5.619 0 9

INCE 22808.02 8006.103 105597.6
AGE 44.063 17.5 75

GENDER 0.328 0 1
PEOPVEH 2.835 1 10
OSITE 0.325 0 1

OVERNTE 0.111 0 1
TC 64.339 0.024 1150.758
HF 0.328 0 1

NFV12MO1 8.533 1 53
NOBS 2394
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Table A.3: Summary Statistics for Overnight Used Developed Settings, NVUM Data, 2000-
2003

Mean1 Min Max

HOTCONT 0.374 0 1
MOUNTAIN 0.307 0 1
SUBTROP 0.319 0 1
SUMCAMPS 34.934 1 247

TENTC 452.149 22 1254
INCE 22570.38 9033.333 106902
AGE 42.693 17.5 75

GENDER 0.273 0 1
PEOPVEH 2.656 1 10
OSITE 0.331 0 1

OVERNTE 0.574 0 1
TC 42.405 0.296 728.2
HF 0.139 0 1

NFV12MO1 7.461 1 53
NOBS 1707

Table A.4: Summary Statistics for Wilderness Settings, NVUM Data, 2000-2003

Mean1 Min Max

HOTCONT 0.412 0 1
MOUNTAIN 0.071 0 1
SUBTROP 0.517 0 1

SUMWILDERN 1.008 0 245
DESIGW 35187.1 13812 118337
INCE 26142.53 13052.6 111898.3
AGE 38.355 17.5 75

GENDER 0.276 0 1
PEOPVEH 2.754 1 9
OSITE 0.294 0 1

OVERNTE 0.297 0 1
TC 62.588 1.466 634.357
HF 0.075 0 1

NFV12MO1 5.442 1 53
NOBS 622
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Table A.5: Weighted Means of all Four Settings, NVUM Data, 2000-2003

GFA DUDS OUDS WILD

HOTCONT 0.334 0.300 0.506 0.252
MOUNTAIN 0.124 0.255 0.207 0.076
SUBTROP 0.542 0.444 0.287 0.671
FORESTP 44.425 - - -
TRAILS 301.166 - - -

PICNICTAB - 152.148 - -
SUMNATPARK - 11.571 - -
SWIMMING - 5.082 - -
SUMCAMPS - - 39.090 -

TENTC - - 565.453 -
SUMWILDERN - - - 6.391

DESIGW - - - 36006.0446
INCE 20893.5 22514.06 22213.99 26564.59
AGE 45.364 46.913 46.598 41.318

GENDER 0.135 0.272 0.260 .205
PEOPVEH 2.112 2.733 2.427 2.629
OSITE 0.139 0.215 0.202 0.269

OVERNTE 0.162 0.047 0.437 0.237
TC 40.059 69.535 47.9986 99.323
HF 0.372 0.165 0.170 0.143

NFV12MO1 14.638 8.483 8.008 8.537



Appendix B

Data Documentation

B.1 Input File: Supply Variable Creation

Generates a file that contains supply variables for all settings and merges it with the NVUM

data for the Southeastern U.S. This .XLS file named trimmeddata can be found at the

following directory on the external hard drive; G:/Chapter2 Data. This data is used for

estimation in Chapter 2. This supply variable creation file is in SAS format and can be

found at the following directory on the external hard drive; G:/CHAPTER 2/Supply Variable

Creation.

B.1.1 Zonal Database

Source: RPA Recreation Supply Database, RWU 4953 - Greatest Good for the 21st Century

: A Program for Pioneering Research on Changing Forest Values in the South and Nation,

Southern Research Station, U.S.D.A Forest Service.

These are four SAS data files: Zone 30, Zone 50, Zone 100, and Zone 200. For our analysis, we

used Zone 50 and Zone 100 SAS data files. These files contain information on counties within

a 50 and 100 mile radius for the Southeastern U.S. These data files are in .XLS format and can

be found at the following directory on the external hard drive; G:/Chapter2 Data/zone100.

B.1.2 Land-use Database

Source: RPA Recreation Supply Database, RWU 4953 - Greatest Good for the 21st Century:

A Program for Pioneering Research on Changing Forest Values in the South and Nation,

Southern Research Station, U.S.D.A Forest Service.
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This is a .XLS file named “landarea” with 15 Worksheets and can be found at the following

directory on the external hard drive; G:/Chapter2 Data/landarea. For our analysis, we have

used three Worksheets: CBP07, RECGOV and LANDUSE. The variables SUMCAMPS,

SUMWILDERN, and NATPARK in our analysis are created from the following variables.

(1.) Camps under the CBP07 worksheet:

(2.) Natpark under the CBP07 worksheet

(3.) Wildern under the RECGOV worksheet

B.1.3 Southern National Forest Recreation Site Characteristic Database

Source: John C. Bergstrom and Angela Boothe, Department of Agriculture and Applied Eco-

nomics, The University of Georgia, Athens.

This is a .XLS file named site characteristics and can be found at the following directory on

the external hard drive; G:/Chapter2 Data/Site characteristics. The variables used from the

database include:

(1.) TentC

(2.) PicnicTab

(3.) Swimming

(4.) DesigW

(5.) Trails

B.1.4 Zipfips Database

Source : sashelp.zipcode

This is a .XLS datafile and can be found at the following directory on the external hard

drive; G:/Chapter2 Data/zipfips. It includes the following variables:

(1.) Zipcode

(2.) Fips
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for the U.S.

We converted this sas file in to a .XLS file and is named zipfips for our analysis.

B.1.5 NVUM 4 Database

Source : Donald B. K. English, 2000-2003 NVUM Raw Database, National Visitor Use Mon-

itoring Program, Washington D.C.

This is a .XLS file and can be found at the following directory on the external hard drive;

G:/Chapter2 Data/nvum4.

B.1.6 IRS Database

Source: J. M. Bowker et al., “Estimating the Net Economic Value of National Forest Recre-

ation: An Application of the National Visitor Use Monitoring Database”, Appendix A, Fac-

ulty Series Working Paper, FS 09-02, September 2009, The University of Georgia, Depart-

ment of Agricultural and Applied Economics, Athens, GA.

We have used the SAS data file named irsdata under the Income Data folder. This is

a .XLS datafile and can be found at the following directory on the external hard drive;

G:/Chapter2 Data/irsdata.

B.1.7 SUBDIST. Database

Source: J. M. Bowker et al., “Estimating the Net Economic Value of National Forest Recre-

ation: An Application of the National Visitor Use Monitoring Database”, Appendix A, Fac-

ulty Series Working Paper, FS 09-02, September 2009, Department of Agricultural and

Applied Economics, The University of Georgia, Athens.

We have used the SAS data file named subdist under the NAC4 GENERATION folder. This

is a .XLS datafile and can be found at the following directory on the external hard drive;

G:/Chapter2 Data/subdist.
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B.1.8 Ecoregion Database

Source: J.M. Bowker and J. C. Bergstrom, Department of Agricultural and Applied Eco-

nomics, The University of Georgia, Athens.

This is a .XLS file containing data on the ecoregion of National Forest in the South-

eastern U.S. and can be found at the following directory on the external hard drive;

G:/Chapter2 Data/ecoregion.

B.2 Input File : Chapter3 data creation

Generates a file that contains observations from George Washington/Jefferson National

Forest from NVUM Data: 2000-2003. This is a SAS input file and can be found at the

following directory on the external hard drive; G:/Chapter3 data creation prog. This input

file creates a .XLS data file named georgeSimul that can be found at the following directory

on the external hard drive; G:/Chapter3 Data. This data is used for estimation in Chapter

3.

B.2.1 NVUM 4 Database

Source: English, D.B.K., 2000-2003 NVUM Raw Database, National Visitor Use Monitoring

Program, Washington D.C.

This is a .XLS file and can be found at the following directory on the external hard drive;

G:/Chapter2 Data/nvum4.

B.3 Data for Chapter 4

The data file, data chapter4 contains observations from George Washington/Jefferson

National Forest with visits less than 160 from NVUM Data: 2000-2003 and can be found at

the following directory on the external hard drive; G:/Chapter4 data. This data is used for

estimation in Chapter 4.
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B.3.1 NVUM 4 Database

Source: English, D.B.K., 2000-2003 NVUM Raw Database, National Visitor Use Monitoring

Program, Washington D.C.

This is a .XLS file and can be found at the following directory on the external hard drive;

G:/Chapter2 Data/nvum4.



Appendix C

Estimation Programs

C.1 Input files: Estimation Programs

This section contains information on the statistical software used in the estimation and the

names of input files.

(1.) Chapter 2 is estimated using the ml procedure in TSP software. The input files include

stype1 WILD Table2.4, stype2 OUDS Table2.3, stype3 DUDS Table2.2, and stype4 GFA Table2.1

under the folder Chapter2 estimation prog and can be found at the following directory on

the external hard drive; G:/Chapter2 estimation prog

(2.) Chapter 3 is estimated using the proc nlmixed procedure in SAS software. The name

of the input file is chapter3 estimation prog and can be found at the following directory on

the external hard drive; G:/Chapter3 estimation prog

(3.) Chapter 4 is estimated using the fminsearch optimization routine in Matlab. The input

files include chapter4 em 2class, chapter4 em 3class, and em under the folder Estimation prog cha4

and can be found at the following directory on the external hard drive; G:/Estimation prog cha4.
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