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ABSTRACT 

The central Georgia population (CGP) of black bears is considered to inhabit mostly 

forested land in and around 186 km2, and potentially an area of 1,200 km2, associated with the 

Ocmulgee River drainage system, and likely a core area of contiguous forest in the Oaky Woods 

and Ocmulgee Wildlife Management Areas (WMAs). We document the density, survival and 

reproduction, as well as genetic structure, of the CGP under the sampling protocol, over the 

duration of the study from 2003 to 2008.  We describe a joint model of population abundance 

with three data structures (DNA hair snares, camera traps, and radiotelemetry) that incorporates 

genetic error from replicate genetic samples and a calibration sample of known individuals.  The 

hierarchical joint Bayesian model incorporates Markov-Chain Monte Carlo (MCMC) methods 

with Gibbs, Metropolis-Hastings, and reversible jump Metropolis-Hastings sampling algorithms 

of posterior distributions. Median posterior abundance estimates within the WMA land over five 

seasons from 2004 to 2006 were: 2004 summer 213 (95% BCI: 144-354), 2004 fall 106 (95% 

BCI: 72-179), 2005 summer 184 (95% BCI: 137-266), 2005 fall 131 (95% BCI: 91-207), 2006 

summer 192 (95% BCI: 143-280).  Adult annual survival estimates were 0.861 (95% CI: 0.746-

0.976) for females and 0.845 (95% CI: 0.754-0.937) for males.  Reproduction rates were 



 

 

simulated from bootstrap simulations using mean birth interval and average number of cubs per 

female litter. Reproduction rates from the CGP only and the CGP combined with eastern black 

bear populations were 0.845 (95% CI; 0.843-0.847) and 1.139 (95% CI: 1.137-1.141), 

respectively.  Population viability analyses using demographic parameters from the CGP and 

eastern black bear populations suggest that population growth is decreasing. The joint Bayesian 

hierarchical model also suggests that population growth is decreasing, since the Bayesian 

credible intervals of λ, the finite rate of population increase, included values above and below 

one.  The λ from abundance models overlapped confidence intervals with  λ from the population 

viability analyses, which suggest that conclusions based on increased harvest and population 

status are consistent with different data sources.  Additional effort for the CGP should be focused 

on estimates of cub and sub-adult survival and reproduction. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

Introduction 

Less than 10% of the original range of the American black bear (Ursus americanus) in 

the eastern United States is believed to support bear populations (Pelton 1982, Maehr 1984), with 

most bears surviving on scattered publicly-owned lands (Pelton 1985). Pelton (1990) describes at 

least 30 distinct populations in thirteen southeastern states.  There are three populations of black 

bears consisting of two subspecies, with an unknown amount of connectivity, in Georgia.  The 

northern population (U. a. americanus) is associated with the Appalachian Mountains of the 

northeast and north central area of Georgia. The central population (U. a. americanus) (CGP) is 

associated with the Ocmulgee River drainage system, south of Macon, while the southeastern 

population of black bears (U. a. floridanus) is associated with the Okefenokee Swamp (Figure 

1.1).  The central Georgia population (CGP) of black bears is considered to inhabit mostly 

forested land in and around 186 km2  (and potentially upwards of 1,200 km2) associated with the 

Ocmulgee River drainage system, and likely a core area of contiguous forest in the Oaky Woods 

and Ocmulgee Wildlife Management Areas (WMAs). 

There are few studies that examine the demographics of a bear population before the 

potential of development and infrastructure.  We document the density, survival and 

reproduction, as well as genetic structure, of a bear population under our sampling protocol.  In 

the course of the study, the majority of the land (~145 km2) of the wildlife management areas 
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was sold to private individuals, timber companies, and real estate agencies.  The state owns a 

small portion of the land within the CGP, therefore much of the area has an unpredictable 

landuse future.   

Population viability models can be constructed from the combination of abundance and 

demographic parameters (i.e., survival and reproduction).  A sampling protocol for abundance, 

survival, and reproduction estimation relies on knowledge of several biological characteristics 

(e.g., habitat use, dispersal and movement patterns).  Influences on capture probability and the 

genetic structure of a population are also integral to an optimal sampling design.  Here I review 

the population biology, population genetics, conservation issues, and sampling and estimation 

techniques for black bear populations in the southeastern United States. I also review Bayesian 

hierarchical models, capture mark-recapture (CMR) models, and genetic markers. 

 

Literature review 

Bear abundance  

Knowledge of abundance or density of black bear populations is important for the 

management of populations.  Abundance, survival, reproduction, and movement estimates, are 

typical components of population viability models. Estimated densities for Eastern black bear 

populations, specifically southeastern populations, vary by location, habitat, and statistical 

procedures utilized (Table 1.1).  Each density estimate also has associated errors with the 

estimate, as well as known biases in the study, discussed below. 
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Sampling methods for bear abundance 

Field methods for estimating bear density or abundance include:  physical captures 

(Smith 1985, McLean and Pelton 1994, Hellgren and Vaughn 1989b), camera detections 

(Grogan and Lindzey 1999, Martorello 1998, Beausoleil 1999, Mace et al. 1994), tetracycline 

markers and resighting with harvested bears (Garshelis and Visser 1997), DNA hair snares 

(Woods et al. 1999, Mowat and Strobeck 2000, Kendall et al. 2008, Kendall et al. 2009), aerial 

radiotelemetry and mark-resights (Miller et al. 1997), mark-recapture with dogs (Akenson et al. 

2001), density based on bear-sign (Garshelis et al. 1999), and occupancy studies (Boulanger et 

al. 2008b).  Some field methods are associated with more rigorous statistical estimation models 

than others. Methods also vary in the degree of handling of the animal from invasive to 

noninvasive.   

Capture-mark-recapture models (CMR), for both open (Jolly-Seber) and closed 

populations, are used with physical captures, DNA hair snares, and mark-recapture with dogs.  

These methods require substantial sample sizes and physical effort to cover the population area 

where bears occur. Therefore, these methods are rare in large-scale and long-term bear studies.  

Less expensive and more practical methods include camera detections and mark-resighting from 

telemetry and tetracycline markers, where physical recaptures of animals are not necessary. 

Lastly, methods focused on bear presence or occupancy (MacKenzie et al. 2006), such as bear-

sign (e.g., scats, bear tracks, scratching posts, or presence of bear hair), not necessarily 

abundance, are least expensive, but provide less information about abundance. 
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Detection probability considerations for bears 

Capture variability can be classified into three main types: 1) heterogeneity, where each 

individual animal has a different probability of capture, or measurable individual attributes (e.g, 

group or individual covariates) that predict capture probability 2) behavior, where animals 

captured have different probabilities of capture than animals not captured, either trap-happy or 

trap-shy, and 3) time, where capture probability can vary over trapping sessions (White et al. 

1982).  The probability that a given black bear will be detected is influenced by several 

behavioral traits.  Male black bears have a greater chance of encountering bait stations or being 

sited due to increased travel distances and large home ranges; and as a result, a greater chance of 

being captured than female black bears (Hellgren and Vaughan 1989b). Depending on the 

capture method used, detection also may depend on age, with juveniles and cubs being less likely 

to be captured than adults.  Family groups, consisting of parent-offspring and siblings traveling 

together, are also a large source of nonindependent movement in bear populations (Kendall et al. 

2009).  However, simulation studies indicate that this movement will cause minimal bias in 

population estimates (Miller et al. 1997, Boulanger et al. 2004).  Individual heterogeneity is 

considered a problem with animals sampled with mark-recapture techniques and other encounter 

techniques.  

Black bears have large home ranges and are highly mobile, with males more mobile than 

females. Therefore, temporary emigration, or when an animal is temporarily unavailable for 

capture due to movement off of the sample area, is a concern in the sampling procedure.  

Individuals that temporarily emigrate are not available for detection and unique identification 

during a given period  (Kendall and Nichols 1995, Kendall et al. 1995).  The Robust Design 

(Pollock 1982) is a possible solution to temporary emigration.  This design assumes primary 
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periods are open to births, deaths and movement, and secondary periods, or short intervals within 

a primary period, are assumed closed (Pollock 1982, Kendall and Nichols 1995, Kendall et al. 

1995, Kendall et al. 1997).   

The most common trap configuration for bears is a grid system. For example, the 

systematic grid design described in Mowat and Strobeck (2000) is based on female grizzly bear 

home range size in similar ecosystems of British Columbia.  In a grid system, traps are evenly or 

randomly spaced on boxed grids over a study area.  Density is calculated in a grid system by 

estimating the population size and dividing that value by the area of the trapping grid.  

Geographic closure under this design is difficult to meet because animals at the edge of the 

trapping grid may have only part of their home range in the study, thus the effective trapping 

area is actually larger than what is used in the density equation (White and Shenk 2001).  Edge 

animals may move in and out of the sampling area during a sampling period, and may bias 

estimates of density and abundance.  Alternate approaches include estimating density from 

explicit trapping arrays (Anderson et al. 1983) or trapping arrays of arbitrary geometry (Gardner 

et al. 2009, Efford 2004, Royle and Young 2008). 

 

Noninvasive sampling techniques 

Animals that occur at low densities or have elusive behavior are difficult to sample for 

population inference, and this often leads to low sample sizes with physical captures.  

Noninvasive sampling techniques, or techniques that do not require physical capture of animals, 

allow many populations of animal species to be monitored with greater detail. Noninvasive 

methods for sampling bear density include DNA hair snares and the use of remote cameras. 

Camera trapping is a technique that uses capture-resight data, much like radio telemetry. 
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Animals only need to be handled once at initial capture to mark, while resighting of those 

individuals are obtained through photography. At this point, focus will be on the biases 

associated with camera resighting, and genetic hair snare traps, since these two methods were 

utilized in the CGP study. 

There are problems that may occur with camera detections.  Marked bears may be less 

attracted to baits or flashes that occur in low-light situations.  Those bears would be less likely to 

be photographed, and thus detected, than unmarked bears because of capture experience. This 

may lead to bears avoiding baits or reducing their movement patterns so not to encounter baits 

and not be captured or resighted (Grogan and Lindzey 1999).  This is commonly referred to as a 

behavioral response.  Under this scenario, selection of the closed capture model, Mb, can reduce 

bias in population estimates.  Another problem with camera trapping is that unmarked bears may 

revisit a camera site within the same sampling period, which does not allow for individual 

identification. Capture-resight methods rely on the ability to distinguish individuals.  Occupancy 

models (MacKenzie et al. 2006) would be better suited for these scenarios.  Camera data is also 

less expensive than physical capture-recapture data.  

Advances within the fields of molecular and genetic biology have increased the ability to 

use genetic analyses in wildlife studies.  Genetic samples (e.g., shed hairs, feathers, feces, shed 

skin), collected noninvasively in the field, are often small and contain degraded DNA.  The 

ability to create multiple copies of DNA from these samples with PCR (polymerase chain 

reaction) has advanced noninvasive genetic sampling techniques (Waits 1999). There are three 

types of genetic markers that can be used in DNA analysis: mitochondrial DNA (mtDNA) 

markers, Y chromosome markers, and nuclear DNA markers.  Mitochondrial DNA, located in 

the mitochondria of mammalian cells, is maternally inherited and is used to study female 
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evolutionary history, gene flow, and genetic diversity.  Nuclear DNA, located in the nucleus of 

mammalian cells, is inherited by both parents and can be used to study maternal and paternal 

evolutionary history, gene flow, genetic diversity and relatedness. The Y chromosome (i.e., sex 

chromosome) is inherited from father to son and can be used to study paternal evolutionary 

history, gene flow, and genetic diversity (Waits 1999).  In most capture-recapture studies, 

nuclear DNA from microsatellite loci are used to determine individuals for bear identification 

(Waits 1999).   Microsatellite loci are short tandem repeats of 1-5 bases.  Noninvasive genetic 

samples are currently utilized with bear species globally for problems of demographics (Taberlet 

et al. 1997, Mowat and Strobeck 2000, Boulanger et al. 2002, Bellemain et al. 2005, Triant et al. 

2004, Kendall et al. 2008), habitat relationships (Apps et al. 2004), and dispersal and/or 

effectiveness of corridors (Dixon et al. 2006, Schwartz et al. 2006, Dixon et al. 2007, Proctor et 

al. 2004).  

Possible benefits of noninvasive genetic sampling are: 1) field methods that may be less 

expensive, and less harmful to the animal than physical captures, and 2) the mark, or genetic 

identity, is visible, read clearly, and permanent (Foran et al. 1997, Woods et al.  1999). These 

assumptions are adopted in many noninvasive studies, although they warrant further 

investigation. There remains doubt in the clarity of genetic identity (Taberlet et al. 1999, Bonin 

et al. 2004) and cost-effectiveness of noninvasive techniques.  The presence of genetic error 

(allelic dropout or false alleles) is a key factor with accuracy measures for genetic noninvasive 

techniques.  Allelic dropout is caused by PCR inhibitors, and sampling stochasticity in the 

laboratory from amplification and pipetting of small amounts of low quality DNA (Goossens et 

al. 1998, Taberlet et al 1999, Woods et al.  1999). False alleles can be a result of amplification 

artifacts from PCR (Goossens et al. 1998, Taberlet et al 1999, Woods et al. 1999). 
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Genetic errors can occur at various steps in a genetic study (e.g., sampling, DNA 

extraction, molecular analysis, scoring, data analysis) and be caused by human or technical error, 

or biological processes (Bonin et al. 2004).  Technical error can include amplification artifacts 

(Rodriguez et al. 2001), biochemical anomalies (Smith et al. 1995), electrophoresis (Fernando et 

al. 2001), temperature variation in the laboratory (Davison and Chiba 2003), method of 

electrophoresis (Delmotte et al. 2001), and quality and type of DNA used (Goosens et al. 1998). 

With improvements in laboratory and field sampling techniques, population monitoring 

with noninvasive samples has increased substantially since the methods were first available.  

However, there are limited analytical and statistical methods that incorporate multiple 

noninvasive sampling field methods (such as hair snags and bear rub trees: Boulanger et al. 

2008a), particularly with the incorporation of genetic error into abundance estimates (but see 

Wright et al. 2009). If genetic error is ignored, population sizes estimates can be sensitive to 

genetic error and biased (Creel et al. 2003, Waits and Leberg 2000).  Current methods of 

incorporating genetic error in noninvasive sampling mark-recapture models use maximum-

likelihood methods (Lukacs and Burnham 2005, Kalinowski et al. 2006), Bayesian methods 

(Wright et al. 2009, Petit and Valière 2006), and ad hoc approaches (Paetkau 2003, McKelvey 

and Schwartz 2004). Many approaches also require multiple PCR attempts to assess error (i.e., 

multiple-tubes approach Taberlet et al. 1996), which increases the cost per sample.   

 

Hierarchical modeling and Bayesian estimation 

Hierarchical state-space models, provide a way of linking observations from data, such as 

capture-mark-recapture (CMR) or occupancy samples, to the underlying ecological or state 

processes (Royle and Dorazio 2008).  Often, it is not possible to observe ecological processes 
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directly, and samples from a population or groups of populations are used to make inference on 

the processes.  Hierarchical models can incorporate all components of variance (statistical from 

sampling and inherent biological), incorporate different scales of observation, and provide a way 

of combining multiple sources of data with common parameters.  One of the main goals of this 

study is to estimate abundance of black bears in central Georgia using a combination of several 

sources of data.  The common parameter of inference between the data sources is abundance, 

which cannot be directly observed.  Species abundance is influenced by many biological 

processes, including habitat relationships, within population processes (e.g., density-

dependence), and species interactions (e.g., Lotka-Volterra models of predator-prey 

relationships, species competition, mutualisms, and co-evolution). 

Hierarchical models are often complex and difficult to make inferences on population 

parameters with classical methods of statistics, like maximum likelihood methods (MLE).  

Bayesian approaches do not rely on asymptotic properties of estimators, which are often difficult 

to achieve with biological sampling methods, or repeated samples.  In the Bayesian paradigm, 

model parameters are treated as random variables with associated probability distributions.  The 

Bayesian approach incorporates prior information along with observations of data, to achieve 

posterior inference on a parameter or parameters of interest.  The fundamental basis of a 

Bayesian approach is with a rule of probability, proposed by the Reverend Thomas Bayes 

(1763), commonly referred to as Bayes’ Rule.  To make probability statements on the parameter 

θ, given the data y, the joint probability distribution for θ and y, is a combination of the prior 

distribution p(θ) and the sampling distribution, or likelihood function, p(y|θ), or: 

p(θ,y)= p(θ)p(y|θ) 
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Further, by conditioning on the known data, since this is observed, the posterior density of the 

parameter given data is as follows: 

! 

p(" | y) =
p(",y)

p(y)
=
p(")p(y |")

p(y)
 

The unnormalized posterior density omits the fixed data y, which is as a constant with respect to 

the parameter. Therefore an equivalent form of Bayes’ Rule, is: 

! 

p(" | y)# p(")p(y |")  

 

 

Black bear biology 

The black bear, an omnivore and generalist, is a highly adaptable large mammal that 

inhabits many diverse forested areas in North America (Pelton 1985).  Black bears live in varied 

habitats, such as the arid desert forests in the Southwest, the Northern Boreal forests, Florida 

subtropical forests, and temperate rain forests in the Appalachian Mountains (Powell et al. 1997).  

The basic needs of bears can be classified into categories of food, cover, and protection and, 

specifically, thick understory with plentiful hard and soft mast and limited road access with large 

home range areas (Pelton 1985). However, with increased urban sprawl, logging, and human 

population growth, forest habitat for the black bear is decreasing, but this does not always lead to 

decreased population growth for black bears.  Some black bear populations are large and can 

sustain harvest, while other black bear populations are small and fragmented and hence, cannot 

sustain harvesting.  Black bears usually exist in low densities, and often in dense vegetation due 

to their cryptic behavior.  Bears also move large distances and inhabit wide-ranging areas, further 

increasing the difficulty in estimating demographic parameters.   
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Bear habitat use and home range size 

Home range can be defined as the geographic area where an animal forages, mates, and 

reproduces (Burt 1943).  Home range size can differ temporally, as well as by sex and age.  

Home range size of black bears also varies with population location in North America.  Habitat 

models for the central Georgia population (CGP) indicate bear presence with annual home 

ranges in areas with low road density and possible effects from habitat diversity (Cook 2007).  In 

the CGP, the mean 95% fixed kernel annual home range for adult female bears was 14.7 km2 

(95% CI: 9.8-19.6 km2) and 195.3 km2 (95% CI: 49.51-352.02 km2) for adult male bears 

between May 2003 and August 2004 (Cook 2007).  Male home range sizes for all seasons were 

larger than females for the CGP.  These home range sizes are consistent with other populations 

in the southeastern US (Table 1.2).  Smith and Pelton (1990) found summer ranges of adult black 

bear males to be significantly larger than spring home ranges, and solitary adult females had 

larger ranges in summer than spring or fall-winter.  They also observed that female black bears 

with newborn cubs had smaller spring ranges than solitary adults or females with yearlings. The 

degree of overlap between individual animal home ranges will affect the density of a population.  

Smith and Pelton (1990) discovered adult male home ranges overlapped the most in the summer, 

rather than spring, fall, or winter seasons.  On a larger scale, female black bears are known to 

defend and not overlap territories when food resources are less abundant and are more tolerant of 

other females when resources are abundant, as is the case in most Southeastern populations 

(Rogers 1987a). 

Black bear habitat suitability models in Mississippi predict that soft mast basal area, hard 

mast canopy cover, and hard mast basal acre of mature trees are the best indicators of presence 

(Bowman 1999).  Other important habitat indicators of presence in the Southeast include canopy 
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closure, horizontal cover, and den availability (Landers et al. 1979, Hamilton and Marchinton 

1980, Smith 1986, Hellgren and Vaughan 1989a, Oli et al. 1997, Dobey et al. 2002). 

 

Bear dispersal and movement 

The dispersal and movement patterns of a species will contribute to either additions or 

deletions of individuals from a population. Dispersal and other types of movement maintain 

genetic diversity and supplement populations that may be experiencing low population numbers. 

Therefore it is important to understand why and how bears make movements and are distributed 

in space. Black bear movement is often dependent on food availability and distribution (Amstrup 

and Beecham 1976).  Garshelis et al. (1981) determined that diurnal rates of travel of black bears 

in the Southern Appalachians were higher than nocturnal rates during spring and summer, but 

fall travel rates were slightly higher among females than males in their study.  Males also 

traveled further per hour than females diurnally and nocturnally.  Male black bears move more 

often and further, on average, than females.  Black bears can disperse far distances from their 

natal home ranges (Rogers 1987b, Lee and Vaughan 2003). 

 

Bear survival 

Survival, the probability that an animal survives from time t to time t+1, in black bears 

can vary by space, time, sex, and age.  The highest reported free-ranging female black bear 

longevity values are between 27 and 30+ years, and bears are self-sufficient at 1.5 years of age 

(range 0.5-2.5 years) (Bunnell and Tait 1985).  Subadult bears are more prone to dispersal from a 

population, and may encounter lower survival rates than adults. Reported mortality rates vary 

between 15 to 35% annually (Bunnell and Tait 1985). Several studies have attributed causes of 
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adult mortality to legal harvest, illegal kills, vehicle collisions, nuisance mortalities, cannibalism, 

natural causes, and research handling. Cub survival at one year of age has been documented as 

59%, and 39% by 2.5 years (Elowe and Dodge 1989). Causes of mortality attributed to bear cubs 

include: abandonment in dens, natural accidents, disease, mother died, vehicle collisions, 

hunting, research handling of cubs (Elowe and Dodge 1989), and unique to the Southeast, 

drowning in tree dens and complications from flooding habitats (Smith 1985).  

 

Bear reproduction 

Reproduction rate, or the number of young produced per female adult, determines the 

number of new individuals entering the population via in situ recruitment.  Individuals also may 

be recruited into the population via immigration of juvenile or adult individuals, and it is 

important to distinguish these two types of recruitment in demographic analysis.  Reproduction 

rate in bears is a difficult parameter to estimate due to their elusive behavior. Age of first 

reproduction, litter size, and breeding interval appear to be driven by nutritional condition within 

the genus Ursus in a density-independent way (Bunnell and Tait 1985).  It is also hypothesized 

that body weight and age influence reproductive parameters (Rogers 1987a, Alt 1989, Elowe and 

Dodge 1989, Stringham 1990).  Studies have shown that litter order is an important variable in 

determining litter size, with first litters being smaller (McDonald and Fuller 2001). The mating 

system is considered promiscuous and females have induced ovulation and delayed implantation 

(Bunnell and Tait 1985).  These characteristics enhance the probability of successful matings and 

maximize reproductive success.   

 

 



 14 

Bear conservation issues in the southeastern United States 

Larger mammalian carnivores are known to be sensitive to habitat loss and fragmentation 

(Crooks 2002).  With increased fragmentation in the southeastern US, habitat conservation and 

reduction of barriers to movement are of special concern. Fragmentation can lead to smaller 

populations with genetic consequences.  Loss of genetic variability in small populations due to 

inbreeding and genetic drift increases the population probability of extinction (Gilpin and Soule 

1986). Fragmentation essentially limits the amount of gene flow between populations.  

Roads are often barriers to movement and genetic exchange for bears or other large 

mammals with wide home ranges (Thompson et al. 2005, Dixon et al. 2006). In the Southeast, 

secondary and primary roads are considered major fragmenting sources for black bear habitat 

(Hellgren and Maehr 1992, Brandenburg 1996, Brody and Pelton 1989, Beringer et al. 1990).  

Primary roads increase the chances of vehicular mortality and fragment contiguous forest types, 

displacing bears from quality habitat, while secondary roads provide increased access to habitats 

and lead to exposure to anthropogenic forms of mortality, such as poaching (McLellan 1990). 

Vander Heyden (1997) determined that female bears were negatively associated with roads and 

avoided crossing them.  However, Brandenburg (1996) found that secondary roads did not 

appear to inhibit bear movement in coastal North Carolina, and some bears even used secondary 

roads as nocturnal travel corridors.   Bears from the CGP were documented to cross high-traffic 

highways mainly during activity center shifts that occur during the fall (Cook 2007). 
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Georgia black bears 

Georgia bear distribution 

Research projects from the 1970s report densities in northern Georgia ranging from 1 

bear per 1013 hectares to 1 bear per 202 hectares, and an increasing population estimate between 

900 and 1100 animals (Carlock et al. 1999).  Black bears in the northern Georgia population are 

associated with large areas of forested land and minimal human disturbance, found in 12 

counties (Dawson, Fannin, Gilmer, Habersham, Lumpkin, Murray, Pickens, Rabun, Stephens, 

Towns, Union, and White) of about 657,132 hectares total (Carlock et al. 1999).  Bear densities 

tend to be highest in areas with limited road access.  Carlock et al. (1999) also reports densities 

of approximately 1 bear per 405-809 hectares on the Dixon Memorial State Forest, the 

Okefenokee Refuge, and privately-owned tracts on the swamp perimeter in Southeast Georgia.  

This is approximately equal to a range of 610-763 bears.  It is speculated that the population 

declines as increasing distance from the swamp perimeter, based on scent post indices from 

Abler (1985).  Black bears in Southeast Georgia are also associated with forested land and 

minimal human disturbance, found in Brantley, Charlton, Clinch, Echols, and Ware counties of 

about 614,133 hectares total (Carlock et al. 1999).  Dobey et al. (2005) conducted an additional 

project in the Okefenokee Swamp using a combination of physical captures and DNA from hair 

snares.  Their estimate was 0.12 bears per km2 over an area of 593 km2.  Grahl (1985) reported a 

population estimate of 64 (sd=18) bears using the Lincoln Index method for the CGP, which 

corresponded to a density of 0.323 bears per km2.   

Comparisons from black bear studies across the southeastern United States, including the 

Georgia populations, may be limited due to a variety of methodologies from sampling and 

population estimate model assumptions.  Specifically, the area and spatial extent inhabited by the 
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estimated population varies considerably.  Interpretation and methods for calculating the area 

inhabited by the populations varies, and large differences in sample sizes from studies also make 

comparisons difficult. 

 

Genetic structure of central Georgia population  

Bears tend to have low levels of genetic variation because of low population densities and 

low effective population sizes (Paetkau and Strobeck 1994).  These conditions may increase the 

difficulty of identifying individuals in capture-recapture studies. The southeastern black bear 

populations tend to be more fragmented than other populations in the United States.  Miller 

(1995) conducted a multilocus DNA fingerprinting study of eight individual populations of U. a. 

americanus (sampled populations from Virginia, Tennessee, South Carolina, Arkansas, 

Minnesota) and additional populations of U. a. floridanus and U.a.luteolus.  Miller (1995) 

reported the Ocmulgee River, central GA population (n=9 bears from physical captures), had the 

highest median genetic similarity of 0.82 within the eight sampled populations (Table 1.3).  The 

median band-sharing similarity value between the CGP and Sumter National Forest in South 

Carolina was 0.45, with Okefenokee National Wildlife Refuge in Georgia was 0.485, and with 

Apalachicola National Forest in Florida was 0.29 (Table 1.4).  This indicates the CGP is more 

related to itself than other nearby black bear populations.  The Georgia population from the 

Okefenokee National Wildlife Refuge had the lowest within-population genetic similarity, which 

means it had the greatest genetic diversity within U. a. floridanus (Miller 1995). 

The genetic status of the CGP is also of conservation interest.  Miller (1995) suggested 

the CGP warranted further genetic investigation, since it lies on the interface between U.a. 

americanus and U.a. floridanus.  Miller (1995) also suggests that the CGP ‘may warrant 
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protection as a distinct population due to low population size and a high degree of within-

population similarity’.  Similar protections have been documented for populations of the Florida 

black bear subspecies, and Louisiana black bear subspecies (Warrilow et al. 2001).  

 

Objectives 

The main research objective for the study was to estimate bear abundance in an efficient 

and accurate manner.  An additional objective was to estimate demographic parameters, 

specifically survival and reproduction, and use these estimates in demographic models to 

forecast the impact of harvest and project population viability for CGP black bears in Chapter 3 

(Figure 1.2).  To obtain efficient estimates of abundance within our first objective, we developed 

hierarchical Bayesian statistical models incorporating three data structures (DNA hair snares, 

camera traps, and radiotelemetry).  The use of DNA hair snares introduces an additional source 

of error from genetic laboratory error, thus a model incorporating the three data structures and 

genetic error was developed in Chapter 2. 
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Table 1.1. Density estimates for American black bear populations in the Southeastern US.  Habitat types include: FW (forested 

wetland), TRF (temperate rainforest), BHW (bottomland hardwood), UHW (upland hardwood), P (pine), M (mixed), S 

(swamp), W (open water), F (flatwoods).  Data types include: PC (physical captures), C (camera), and DNA (hair snares).  

Estimation methods include: LP (Lincoln-Petersen), JS (Jolly-Seber), BB (Bailey’s binomial), MM (Minta-Mangel), BE 

(Bowden’s estimator), and C (Closed models with program CAPTURE). 

 

Location (Source) State Habitat 

Study 

area size 

(km2) 

Data 

type 

Sampling 

method (s) 

Estimation 

method (s) 
N 

Density estimate 

bears/km2 

White River NWR (Smith 

1985) 
AK BHW 212 PC  LP, BB 51 0.29 (0.17-0.42) 

White Rock (Clark 1991) AK 
UHW, P, 

BHW 
413.7   LP, JS 43 0.08 

Dry Creek (Clark 1991) AK P, M 517.7   LP, JS 65 0.09 

Osceola National Forest 

(Dobey et al. 2005) 
FL FW, S, F, 309 

PC, 

DNA 

1 trap/3.3 

km2 
C, JS 

78 PC, 

37 DNA 
0.14 
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Table 1.1 (continued) 

Location (Source) State(s) Habitat 

Study area 

size 

(km2) 

Data type 
Sampling 

method (s) 

Estimation 

method (s) 
N 

Density 

estimate 

bears/km2 

Ocmulgee River (Grahl 1985) GA P, FW 205 PC  LP 22 0.323 

Tensas River Tract (Boersen 2001) LA 
FW, 

BHW 
329 PC, DNA 

sampling 

grid (1 

trap/2.70 

km2) 

LP, C, JS 

42 PC, 

58 

DNA 

0.35 

Deltic, Tesas River Basin 

(Beausoleil 1999) 
LA FW  PC, C 

>0.8 km 

apart with 

cameras 

JS, BB, 

MM BE 

24 PC, 

193 C 
1.43 

Bladen County, Southeastern NC 

(Hamilton 1978) 
NC       0.115 
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Table 1.1 (continued) 

Location (Source) State(s) Habitat 

Study 

area size 

(km2) 

Data 

type 

Sampling 

method (s) 

Estimation 

method (s) 
N 

Density 

estimate 

bears/km2 

Bladen County, Southeastern 

NC (Hamilton 1978) 
NC       0.115 

Dare County, Northeastern NC 

(Hardy 1974) 
NC       0.063 

Pisgah National Forest 

(McLean and Pelton 1994) 
NC TRF 114 PC  JS 60 0.211 

Alligator River NWR (Allen 

1999) 
NC       0.86 

Gum Swamp (Martorello 

1998) 
NC 

P, HW, 

M, S 
119 PC, C 

systematic 

placement 

JS, LP, BB, 

MM 
136 PC, 

35 C 1.35 

Big Pocosin (Martorello 1998) NC 
P, HW, 

M, S 
149 PC, C 

systematic 

placement 
JS LP, BB, MM 77 PC, 

29 C 0.53 
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Table 1.1 (continued) 

Location (Source) State(s) Habitat 

Study 

area size 

(km2) 

Data 

type 

Sampling 

method 

(s) 

Estimation 

method (s) 
N 

Density 

estimate 

bears/km2 

Camp Lejeune MCB 

(Brandenburg 1996) 
NC 

P, HW, beach, 

wetland, 

pocosin 

250 PC  LP 16 (0.005-0.033) 

Great Smoky Mountains National 

Park (McLean and Pelton 1994) 
TN TRF 506 PC  JS 605 0.292 

Cherokee National Forest 

(McLean and Pelton 1994) 
TN TRF 760 PC  JS 81 0.35 

Great Dismal Swamp (Hellgren 

and Vaughn 1989b) 

VA, 

NC 
FW 555 PC  

LP, 

Schnabel, 

JS, C 

101 (0.47-0.68) 
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Table 1.2. Home range estimates for American black bear populations in the Southeastern United States. Home range estimation 

methods include: MCP (mimimum convex polygon), MA (maximum area method), HM (harmonic mean), K (95% fixed 

kernel), AK (adaptive kernel) 

Study (citation) 
Estimation 

method 
Nf Nm 

Mean annual home 

range (M) (km2) 

Mean annual home 

range (F) (km2) 

White River NWR, AR (Smith 1985) MCP, MA 9 9 128 (39-266) 11 (7-22) 

Deltic, Tesas River Basin (Beausoleil 1999) MCP,AK,HM 12 5 7,7.1,4.8 4.2, 12.6, 8.1 

SC Pickens County (Butfiloski 1996) MCP 15 7 44.1 (29.7) 16.1 (4.2),16.6 (2.2) 

Northern Coastal Plain (Harter 2001) MCP 10 8   

Central GA (Cook 2007) K 9 15 195.3 (49.51-352.02) 14.7 (9.8-19.6) 

Smoky Mountain National Park (Garshelis & Pelton 1981) MCP 8 21 21 (13-28) 8 (2-23) 

Pisgah Bear Sanctuary, NC (Powell et al. 1997) K 38 43 44.1 (27.6) 16.9 (11.7) 

North GA mountains (Carlock et al. 1983) MCP 38 20 75 12 

White River NWR, AR (Smith & Pelton 1989) MCP 6 6 116 (39-266) 12 (7-22) 

Okefenokee NWR (GA) (Dobey et al. 2005) K 69 7 336.7 (95.6) 55.9 (6.96) 

Osceola NF (FL) (Dobey et al. 2005) K 53   30.3 (4.0) 
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Table 1.3.  Median band-sharing values for genetic similarities within American black bear 

populations in the southeastern United States from Miller (1995). 

 

Population Bear subspecies n Median band-sharing 

Ocmulgee River, GA U. a. americanus 9 0.82 

Shenandoah National Park, VA U. a. americanus 16 0.74 

Great Smoky Mountains National Park, TN U. a. americanus 7 0.7 

Myrtle Beach, SC U. a. americanus 6 0.69 

Sumter National Forest, SC U. a. americanus 6 0.67 

Ouachita National Forest, AR U. a. americanus 8 0.635 

Ozark National Forest, AR U. a. americanus 8 0.63 

Cook County, MN U. a. americanus 31 0.57 

Mobile River, AL and MS U. a. floridanus 13 0.86 

Big Cypress National Park, FL U. a. floridanus 13 0.74 

Apalachicola National Forest, FL U. a. floridanus 39 0.73 

Ocala National Forest, FL U. a. floridanus 21 0.7 

Okefenokee National Wildlife Refuge, GA U. a. floridanus 20 0.69 

White River National Wildlife Refuge, AR U. a. luteolus 17 0.81 

Tensas River National Wildlife Refuge, LA U. a. luteolus 16 0.78 

Lower Atchafalaya River Basin, LA U. a. luteolus 12 0.78 

Upper Atchafalaya River Basin, LA U. a. luteolus 11 0.67 
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Table 1.4.  Median band-sharing values for genetic similarities between American black bear populations in the southeastern United 

States from Miller (1995). 

Population 1 Population 2 Bear subspecies n Median 

Shenandoah National Park, VA Great Smoky Mountains National Park, TN U. a. americanus 14 0.540 

Sumter National Forest, SC Ocmulgee River, GA U. a. americanus 12 0.450 

Cook County, MN Ozark National Forest, AR U. a. americanus 18 0.300 

Ozark National Forest, AR Ouachita National Forest, AR U. a. americanus 16 0.430 

Cook County, MN Ouachita National Forest, AR U. a. americanus 18 0.230 

Apalachicola National Forest, FL Ocala National Forest, FL U. a. floridanus 15 0.600 

Apalachicola National Forest, FL Mobile River, AL and MS U. a. floridanus 14 0.430 

Ocala National Forest, FL Big Cypress National Park, FL U. a. floridanus 14 0.640 

Ocala National Forest, FL Okefenokee National Wildlife Refuge, GA U. a. floridanus 14 0.490 

Apalachicola National Forest, FL Big Cypress National Park, FL U. a. floridanus 13 0.605 

White River National Wildlife Refuge, AR Tensas River National Wildlife Refuge, LA U. a. luteolus 13 0.700 

Tensas River National Wildlife Refuge, LA Upper Atchafalaya River Basin, LA U. a. luteolus 13 0.560 

Upper Atchafalaya River Basin, LA Lower Atchafalaya River Basin, LA U. a. luteolus 18 0.500 
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Figure 1.1.  Present distribution of the black bear, based on survey responses from provinces and 

states (left, from Pelton 1994) and research projects in Mexico (D. Doan, Texas A & I 

University, personal communication) and reported occupied habitat of black bears in Georgia  

(right, from Carlock et al. 1999). 

 
 

 

 

(Pelton 1994) (Carlock et al. 1999) 
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Figure 1.2. Main research objectives with the central Georgia population (CGP) of 

American black bears.  This study focuses on estimating abundance, reproduction, and 

survival and combining these to make inference on population viability.  This diagram 

also depicts a population flow chart. 
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DENSITY ESTIMATION USING JOINT DATA STRUCTURES FROM CAMERAS, DNA 
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1 Sanderlin, J. S., M. J. Conroy, et al. To be submitted to Ecology.
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Introduction 

Estimating demographic parameters of cryptic species, like the black bear, is difficult 

because of their elusive nature and low densities.  Non-invasive sampling methods may be 

valuable for wildlife studies with consideration of incomplete detection. Often, it is not possible 

to observe ecological processes directly, and samples from a population or groups of populations 

are used to make inference on the processes.  Hierarchical state-space models provide a way of 

linking observations from data, such as capture-mark-recapture (CMR) or occupancy samples, to 

the underlying ecological or state processes (Royle and Dorazio 2008). Hierarchical models can 

incorporate all components of variance (sampling and biological), incorporate different scales of 

observation, and provide a way of combining multiple sources of data with common parameters.  

One of the main goals of this study is to estimate abundance of American black bears (Ursus 

americanus) in central Georgia, USA, using several sources of data.  The common parameter of 

inference between the data sources is abundance in the central Georgia population (CGP) of 

black bears, which cannot be directly observed.  Species abundance is influenced by many 

biological processes, including habitat relationships, within population processes (e.g., density-

dependence), and species interactions (e.g., Lotka-Volterra models of predator-prey 

relationships, species competition, mutualisms, and co-evolution). 

Field methods for estimating bear density or abundance include:  physical captures 

(Smith 1985, McLean and Pelton 1994, Hellgren and Vaughn 1989), camera detections (Grogan 

and Lindzey 1999, Martorello 1998, Beausoleil 1999, Mace et al. 1994), tetracycline markers 

and resighting with harvested bears (Garshelis and Visser 1997), DNA hair snares (Woods et al. 

1999, Mowat and Strobeck 2000, Kendall et al. 2008, Kendall et al. 2009), aerial radiotelemetry 

and mark-resights (Miller et al. 1997), mark-recapture with dogs (Akenson et al. 2001), density 
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based on bear-sign (Garshelis et al. 1999), and occupancy studies (Boulanger et al. 2008b).  Field 

methods vary in the degree of handling of the animal from invasive to noninvasive and some 

methods have more rigorous statistical estimation models than others. 

Noninvasive methods for sampling bear density include DNA hair snares and the use of 

remote cameras. Camera trapping is a technique that uses passive encounter data, much like 

radio telemetry. Animals only need to be handled once at initial capture to mark, while 

reencounters of those individuals are obtained through photography.  With this method, several 

unmarked bears may revisit a camera site within the same sampling period, which does not allow 

for individual identification. Because abundance estimation generally requires the ability to 

individually distinguish individuals, occupancy models (MacKenzie et al. 2006) may be more 

appropriate when individual encounter histories cannot be distinguished.  

Advances within the fields of molecular and genetic biology have increased the ability to 

use genetic analyses in wildlife studies (Waits 1999).  However, the genetic identity obtained 

with noninvasive genetic techniques may not be as clear (Taberlet et al. 1999, Bonin et al. 2004) 

and cost-effective as expected.  The presence of genetic error (allelic dropout or false alleles) 

reduces the accuracy of genetic noninvasive techniques. Genetic errors can occur at various steps 

in a genetic study, e.g., sampling, DNA extraction, molecular analysis, scoring, data analysis, 

and caused by human or technical error, or biological processes (Bonin et al. 2004).  Sampling 

stochasticity with small amounts of low quality DNA in the laboratory leads to allelic dropout 

(Goossens et al. 1998, Taberlet et al 1999, Woods et al.  1999). False alleles can occur with 

amplification artifacts from PCR (Goossens et al. 1998, Taberlet et al 1999, Woods et al.  1999).  

With improvements in laboratory and field sampling techniques, the use of noninvasive 

genetic sampling for population monitoring has increased substantially since the methods were 
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first available.  However, there are limited analytical and statistical methods that incorporate 

multiple noninvasive sampling field methods (such as hair snags and bear rub trees: Boulanger et 

al. 2008a).  Additionally, few statistical methods incorporate genetic error into abundance 

estimates (but see Wright et al. 2009). If genetic error is ignored, population sizes estimates can 

be sensitive to genetic error and biased (Creel et al. 2003, Waits and Leberg 2000).  Current 

methods of incorporating genetic error in noninvasive sampling mark-recapture models use 

maximum-likelihood methods (Lukacs and Burnham 2005, Kalinowski et al. 2006), Bayesian 

methods (Wright et al. 2009, Petit and Valière 2006), and ad hoc approaches (Paetkau 2003, 

McKelvey and Schwartz 2004). Some approaches also require multiple PCR attempts to assess 

error (i.e., multiple-tubes approach Taberlet et al. 1996), which increases the cost per sample.   

In general, black bears are associated with large areas of forested land in Georgia with 

densities highest in areas with limited road access (Carlock et al. 1999).  There are three 

populations of black bears in Georgia; one in the northern Georgia mountains, the CGP along the 

Ocmulgee River, and one in southeastern Georgia.  In a preliminary study of the CGP, Grahl 

(1985) reported a population estimate of 64 (sd=18) bears using the Lincoln Index, which 

corresponds to a density of 0.323 bears per km2.  Thus, a current abundance estimate does not 

exist for the CGP. 

We formulate hierarchical Bayesian statistical models incorporating multiple data 

structures (e.g., DNA hair snares, camera detections, telemetry), which also account for genetic 

laboratory error.  Estimates from the abundance model will assist with evaluating population 

viability and harvest impact of the black bear CGP. Therefore, our objective was to estimate bear 

abundance in an efficient and accurate manner.  
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Methods 

Study Area 

The approximate CGP range, estimated by bear sightings and captures, encompasses an 

area southeast of Macon, Georgia along the Ocmulgee River (~1,200 km2) falling between the 

Piedmont and the Upper Coastal Plain physiographic regions. The study area encompassed 

Ocmulgee and Oaky Woods Wildlife Management Areas (WMAs) in Bleckley, Bibb, Houston, 

Pulaski, and Twigg Counties, located in central Georgia.  The average total annual precipitation 

is 119.1 cm (estimated from 1966-2003), and the average minimum and maximum temperature 

is 11.4 °C and 24.8 °C for this region (Georgia Automated Environmental Network 2006). The 

WMAs consist of a variety of habitat types (pine stands, bottomland hardwood, mixed forest, 

upland hardwood, black-belt prairie, clearcuts, thinned pine stands, and cypress-gum swamps).  

Hair snares were placed within the boundaries of Ocmulgee and Oaky Woods WMAs between 

2003 and 2006 (Figure 2.1, Figure 2.2, Figure 2.3, Figure 2.4, Figure 2.5, Figure 2.6, Figure 2.7).  

Descriptive statistics, such as vegetation associations, slope, and elevation, can be used as 

habitat covariates with future spatial models of bear density. Therefore, we present a descriptive 

summary of the sampled web areas. Descriptive statistics were summarized for each web by 

creating boundaries with a radius distance from the center point of each web to the maximum 

distance of a hair snare in the outermost ring of each web using BUFFER and MERGE 

procedures in ArcView® . 

Vegetation associations were based on a digital map layer (30- x 30-m resolution; 

Georgia Gap Project) in ArcView®: vegetation associations were open water, transportation, 

utility swaths, clearcut/sparse vegetation, deciduous forest, evergreen forest, mixed forest, 

pasture/hay, row crop, and forested wetland.  The webs were summarized by the number of 
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30x30 m cells classified in each vegetation association out of the total number of cells for each 

web, to obtain a percent vegetation type for each web (Table 2.1).  Webs A, B, C, E, F, H, and I 

have evergreen forest as the dominant vegetation type.  Web D has forested wetland as the 

dominant vegetation type and web G has mixed forest as the dominant vegetation type.  Webs A, 

B, C, and I have evergreen forest as the dominant vegetation type and forested wetland as second 

dominant vegetation type.  Similarly, webs E, F, and H can be grouped together for the two 

dominant vegetation types.  In summary, webs on Oaky Woods WMA (A, B, I) are very similar 

in vegetation classification, while webs on Ocmulgee WMA (C, D, E, F, G, H) are more diverse.  

Web D is less like the other webs according to vegetation classification. 

The slope, or maximum rate of change in elevation, from each cell to its neighbors in 

each web was calculated from the topographic map data. The output slope grid theme in 

ArcView® represents the degree of slope (e.g., 3 degree slope) for each cell location.  Summary 

statistics for the slope of the webs were calculated (Table 2.2).  The Digital elevation model 

(DEM) measured in meters above sea level was also used to describe the webs. Summary 

statistics for the DEM of webs were calculated (Table 2.3).  The following arbitrary groupings 

can be made based on mean slope: group 1 (A and I), group 2 (B, C, E), group 3 (D, F, H).  

Webs A and D had the highest range in slope (indicating more variation in topography), while E 

and H had the lowest range in slope.  The following arbitrary categorical groupings can be made 

based on mean elevation above sea level (meters): group 1 (A, E, I), group 2 (B, G, H), group 3 

(C, F), and group 4 (D).  Webs A, G, and I had the highest range in elevation (indicating more 

variation in meters above sea level), while H had the lowest range in elevation.   
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Field methods 

Bears were captured and immobilized with a 2:1 mixture of ketamine hydrochloride 

(Ketaset) and xylazine hydrochloride (Rompun) at a dosage of 4.4 mg/kg of Ketaset and 2.2 

mg/kg of Rompun, for estimated body weights by Georgia Department of Natural Resources 

personnel.  Bears were captured in the study area using Fremont foot trap snares (Fremont 1986) 

in each of four trapping seasons, which extend from May through August each year.  Culvert 

traps were used to trap nuisance bears and release the bears on Oaky Woods WMA.  An upper 

pre-molar tooth for age estimation by cementum annuli analysis (Willey 1974), blood samples, 

and hair follicles were collected from each captured bear.   Sectioning, staining, and aging of 

teeth were conducted by Matson Laboratories (Milltown, Montana). All bears were uniquely 

marked using a combination of collars, lip tattoos, and ear tags/streamers.  Pertinent 

physiological data were recorded for each captured bear.  Most bears were fitted with Advanced 

Telemetry Systems (Isanti, MN) radio transmitter collars (VHF, very high frequency) equipped 

with mortality signal sensors and motion sensors and four male bears received radio collars that 

contained Global Positioning technology and a mortality switch. All collars fitted to bears during 

the project were equipped with either a mechanical timer release (GPS) or a degradable release 

tab (VHF). 

Barbed wire enclosures designed to obtain hair samples from individual bears entering 

the devices (Woods et al. 1999) were placed on Oaky Woods and Ocmulgee WMAs using 

trapping web arrays.  A trapping web consists of lines with regularly spaced traps, which radiate 

from a central point, and has higher densities of traps or hair snares in the center (Anderson et al. 

1983) (Figure 2.8).  Nine trapping webs were placed in randomly selected locations covering 

most of the WMAs.  Each trapping web consisted of 27 hair snares with three snares at the 
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center, and eight spokes, three rings, covering an area of  ~ 7 or 16 km2, depending on the 

location in the WMAs (Table 2.4). Web size was based on average female home range size in the 

CGP and average daily movement of bears (Cook 2007). Some webs had fewer snares if the web 

extended to private residences, or if the area was actively logged, burned, or flooded (so that the 

realized numbers of snares per web ranged from 22 to 35). In some cases, hair snares were 

placed outside but near web perimeters to monitor movement of individuals into the trapping 

web. Actual snare locations were recorded with Universal Transverse Mercator (UTM) 

coordinates (North American Datum 1987, Zone 17) using global positioning system (GPS) 

receivers using Garmin GPS units (Garmin International, Inc., Olathe, KS). 

Hair snares in the trapping webs were monitored at least one primary period, and maximum 

of two primary periods from May to December, which consisted of three secondary sessions at 6-

9 day intervals, with two to three simultaneously active webs considered to be independent from 

the other active webs.  Some webs were monitored for two primary periods each year (2004, 

2005, 2006).  Within a primary period, the population is closed to births, deaths, immigration and 

emigration. The population from 1 April to 1 September (Summer), or from 1 September to 10 

December (Fall) for each year is closed from births, deaths, immigration, and emigration. This 

summer primary period corresponds to the main trapping period the DNR used to capture and fit 

radiocollars to bears.  The Robust Design (Pollock 1982) was used to allow for future analysis of 

combined estimated of abundance from closed periods and survival between open periods for the 

population. The Robust Design assumes the time period between primary periods is open to 

births, deaths and movement, and secondary periods, or short intervals within a primary period 

are assumed closed (Pollock 1982).  Secondary periods from 6-9 days are replicated samples 

within the closed primary periods of each season.  The Robust Design has the advantage of 
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sampling at two different temporal scales, which lead to more robust estimation of parameters, 

especially capture probability (Pollock 1982).  

Barbed wire (4 point, 15.5 gauge) strands were placed 25 cm and 50 cm from the ground 

around 3-5 trees (10-30 m2) and baited with corn in a perforated plastic bottle sprayed with anise 

oil (Figure 2.9).  Irregularities in terrain, leading to high or low wire, were adjusted with debris 

on the ground.  Each tree was flagged with brightly colored tape for public safety.  Hair samples 

were removed from barbed wire with tweezers and placed into manila coin envelopes.  Date, 

location, sample number, and strand (top or bottom) were recorded on each envelope. For the 

season of Summer 2005 and thereafter, area (defined as a group of hair samples in an area big 

enough for one bear to pass through) was also recorded as additional stratification of hair 

samples.  The barbed wire and tweezers were sterilized between samples using a lighter for one 

to two seconds or until visible hairs were removed.  A hair sample consisted of a sample on one 

barb on either the top or bottom strand, or two adjacent barbs on a strand.  In cases of three 

adjacent barbs with hair, two samples were collected in arbitrary order (one barb in one sample, 

two adjacent barbs in the other).  If there were no samples with more than 10 hairs, hair samples 

(one to nine hairs) with visible roots were collected.  Hair samples from other species were also 

noted during each session. 

Digital cameras utilizing a passive infra-red trigger system were used to monitor bait 

stations for marked or unmarked bears.  Fifteen cameras were randomly placed among active 

webs at snare locations with a higher density of cameras at the center of a web, or near web 

perimeters.  Cameras were secured to trees that are 3-5 m from the hair snare and aimed at the 

hair snare or 100 m from the web perimeter.  Pictures from each camera were stored on digital 

memory cards and downloaded for analysis. Memory cards also stored the date and time of each 
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picture.  Cameras in or near the trapping webs were monitored for three sessions at six to nine-

day intervals, with charged batteries and memory cards replaced every session.  The number of 

bear pictures and other species' pictures were recorded for each session.  Pictures of unmarked 

bears taken two minutes between each picture were considered to be the same individual if 

physical characteristics are similar.  Marked bears were individually identified if marks could be 

read. 

Any time at least one hair snare within a web was baited the web was considered an 

active web.  Active webs were monitored at least once a day, weather permitting, for bears with 

radiocollars.  Pre-determined road routes that encircle and bisect the web were used to scan for 

all signals with a receiver and a whip antenna (Advanced Telemetry Systems, Isanti, MN) from 

vehicles during daylight and some night hours.  The routes were selected to ensure that an 

observer would be able to detect a bear if the bear was in or near the web at least once during the 

route.  A three-element yagi antenna (Advanced Telemetry Systems, Isanti, MN) was used to 

determine the direction of the collar in the field.  If there was uncertainty whether the bear was in 

or out of the web, telemetry locations were estimated by the line that bisects the angle between 

two directions where the signal can just be heard (Kenward 1987).  The azimuths were between 

60º and 120º apart and collected within 20 minutes to increase accuracy of azimuth 

measurements. The azimuth range is best for triangulation purposes (White and Garrott 1990) 

and the short time period reduces the chance of large bear movements. If an observer was on the 

edge or outside of the web, and the direction of the bear was opposite the web, only one azimuth 

was obtained.  If a bear were in the web, an observer would often be able to detect its frequency 

more than once during the web scan route.  Locations of observers were recorded in Universal  
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Transverse Mercator (UTM) coordinates using global positioning system (GPS) receivers from 

Garmin GPS units (Garmin International, Inc., Olathe, KS). 

Telemetry error was estimated using test collars placed throughout the webs in the study 

area.  Webs were chosen to represent common topographic and vegetation conditions from the 

entire study area (see Tables 2.1, 2.2, 2.3 for vegetation data, elevation, and slope representation 

of each web).  In all cases, locations of test collars were unknown to the observer.  Web 

telemetry error was calculated for 10 observers (three from fall 2004, three from summer 2005, 

one from fall 2005, three from summer 2006).  A separate telemetry data set was analyzed using 

two observers from summer 2004 from Cook (2007).  One collar was placed in two to six webs 

in Oaky Woods and Ocmulgee WMAs during 2004-2006 (Table 2.5). Azimuths were obtained at 

five pre-selected stations at varied distances from the collars (0.2-2 km).  Azimuth stations were 

repeated three times on separate days with summer and fall 2005, 2006 observers.  Telemetry 

error was calculated as difference in the observed from the true azimuth based on observer 

location at a station and the known location of the test collar.  Telemetry error, with telemetry 

observations of bears, will be used to determine if a bear is present in a web during the time 

periods when hair snares are baited. 

 

Laboratory Methods 

At least one hair sample per hair snare, web, session, season, and year occasion was 

selected for analysis, based on visual inspection of quality (i.e., visible roots with skin cells) and 

quantity (10 hairs).  Additional samples were randomly selected, with more weight given to hair 

snares with more hair samples, to increase the chances of identifying additional unique bears. If 

possible, other areas or sections of the hair snare were selected than the original sample for the 
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additional samples.  This follows the assumptions that: 1) more hair samples at a hair snare 

might lead to more individual bears, and 2) individual bears may leave hair samples in different 

locations at a hair snare. The sub-sampling technique aims to capture more unique individuals in 

the population.  If only high-quality samples were selected, some hair snare, web, session, 

season, and year occasions would not be selected, which may bias population estimates (i.e., 

some bears may consistently leave lower quality samples than others).  Budget and time 

constraints also precluded analyzing all hair samples. 

After field collection, hair samples were stored in silica desiccant then transferred to        

a -20° C freezer.  Prior to extraction and after field collection, blood and tissue samples were also 

stored in a -20° C freezer. Extraction of DNA from Georgia tissue samples was done with the 

DNeasy Kit (QIAGEN) and with one captured bear blood sample using the GenomicPrep DNA 

isolation kit (GE Healthcare). DNA from hair samples were extracted with Chelex100 (10% 

solution) (Promega), along with proteinase K (Phenix Research Products, QIAGEN) used for 

protein digestion that may inhibit PCR reactions (modified from Boersen 2001). The root portion 

(1 cm) from a maximum of 10 hairs per sample were cut and placed into 150 µl of Chelex 100 

(10% solution) (Promega).  The number of hairs and quality of sample were recorded.  If the 

number of hairs was less than 10, the entire strand of hair was used in the sample.  Low quality 

samples had little or no visible roots, and usually consisted of under-fur (thin) hairs.  Medium 

quality samples were classified as samples with half of the hairs with roots visible and some 

guard hairs.  High quality samples were classified by a majority of the hairs as guard hairs with 

most or all of the roots visible, and including visible skin cells.  After roots were placed in the 

10% solution Chelex 100 (Promega), 10 µl proteinase-K was added to digest excess protein.  The 

hair samples were incubated at 65° C overnight (~8 hours). Samples were vortexed, and then 
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boiled at 100° C for 10 minutes.  After removal, the samples were centrifuged at 10,000-12,000 

rpm for 3 minutes.  The supernatant was pulled off and placed into a clean tube, and stored at  

-20° C until PCR analysis.   

PCR amplifications were performed in 10 µL volumes using Bio-Rad MyCycler thermal 

cyclers for both tissue and hair samples with 8 tetranucletide loci (UA-BM3-P1F04, UA-BM4-

P1H06, UA-BM4-P2B06, UA-BM4-P2C10, UA-BM3-P1D05, UA-BM4-P2A06, UA-BM4-

P2B08, and BM4-P2C02, hereafter named Bear 10Y, Bear 12Y, Bear 17G, Bear 19Y, Bear 30B, 

Bear 33B, Bear 35G, and Bear 36, respectively) previously described in Sanderlin et al. (2009). 

Loci Bear 10Y, Bear 12Y, Bear 17G, Bear19Y, Bear 30B, Bear 33B, and Bear 35G were directly 

labeled primers with the dyes NED (Y), HEX (G), and FAM (B).  For comparison with known 

individuals from the CGP, eight microsatellite markers developed by Paetkau and Strobeck 

(1994) and Paetkau et al. (1995) were initially used for individual identification: G1A, G1D, 

G10B, G10C, G10L, G10M, G10P, and G10X.  Final concentrations for optimizing reactions 

with unlabelled primers were 10 mM Tris pH 8.4, 50 mM KCl, 0.5 µM “pigtailed” primer 

(Brownstein 1996), 0.05 µM CAG or M13-reverse tagged primer (CAG or M13-reverse + 

primer), 0.45 µM dye labeled tag (HEX or FAM + CAG or M13-reverse), 1.5 mM MgCl2, 0.5 

mM dNTPs, 0.5 U AmpliTaq Gold DNA Polymerase (Applied Biosystems), and 50 ng DNA. 

Final concentrations for optimizing reactions with directly labeled primers were 10 mM Tris pH 

8.4, 50 mM KCl, 0.5 µM upper directly labeled primer, 0.5 µM lower directly labeled primer, 

1.5 mM MgCl2, 0.5 mM dNTPs, 0.5 U AmpliTaq Gold DNA Polymerase (Applied Biosystems), 

and 50 ng DNA.  We ran reactions using one touchdown thermal cycling program (Don et al. 

1991), encompassing a 10.5 oC span of annealing temperatures (range: 60-49.5 oC).   
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For tissue samples, cycling parameters were: 21 cycles of 96o C for 20 s; highest 

annealing temperature for 30 s minus 0.5o C per annealing cycle; and 72o C for 1 min 30 s 

followed by 14 cycles of 96o C for 20 s; 50o C, for 30 s; 72o C for 1 min 30 s; and a final 

extension period of 10 min. at 72o C. For hair samples, cycling parameters were: 20 cycles of  

96o C for 20 s; highest annealing temperature for 30 s minus 0.5o C per annealing cycle; and  

72o C for 1 min 30 s followed by 30 cycles of 96o C for 20 s; 50o C, for 30 s; 72o C for  

1 min 30 s; and a final extension period of 10 min. at 72o C.  We checked PCR products for 

amplification and sized fragments using a 3730xl DNA sequencer (Applied Biosystems) with 

GENESCAN Rox500 fluorescent size standard (PE Applied Biosystems). Results were analyzed 

using GENEMAPPER software (Applied Biosystems) using the local Southern size-calling 

method.   

 

Statistical methods 

Observed and expected heterozygosity were calculated for each locus from the observed 

unique individual genotypes collected from hair snares using Cervus 2.0 (Marshall et al. 1998).  

GENEPOP 3.4 (Raymond and Rousset 1995) was used to test for genotypic linkage 

disequilibrium with a posteriori sequential Bonferroni correction to correct for multiple 

comparisons of markers (Rice 1989).  The α level of significance is divided by the number of 

comparisons between markers to reduce pseudoreplication. The probability of identity (PID), or 

the probability that 2 randomly chosen individuals in a population will have identical genotypes 

(Paetkau and Strobeck 1994) was calculated over all loci with the observed unique individual 

genotypes collected from hair snares using the following formula: 
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where pi and pj are the frequencies of the ith and jth alleles.  The more conservative estimate with 

PIDsib , or the probability of identity among siblings (Evett and Weir 1998), was also calculated 

using the following formula: 
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(Equation 2.2) 

where pi is the frequency of the ith allele.  The inbreeding coefficient, or within population 

heterozygote deficit (Fis ), for the Paetkau and Strobeck (1994) and Paetkau et al. (1995) markers 

and Sanderlin et al. (2009) markers of known individuals was calculated using program FSTAT 

(Version 2.9.3) (Goudet 1995). 

A minimum number of bears for each year (2003-2007) was calculated from known bears 

with radiocollars, and other captures of bears that were not marked.  The unmarked bears from 

dead recoveries were also included.  This information can be combined with the number of bears 

with radiocollars to obtain a minimum known number of bears per year (alive+dead).  

We use a condensed version of telemetry data for model simplification in the full 

Bayesian model, described in the next section.  Raw telemetry data consist of observations from 

radiocollared bears detected during vehicular travel with radio-equipped vehicles. Pre-

determined routes encompassed, bisected, and were near the webs during sampling sessions.  

When a bear was detected during the vehicular scan, ground telemetry observations, including 

azimuths (angle from observer to bear), elevation above sea level, and level of gain, were 

conducted.  Observer sampling error with telemetry may influence and bias conclusions of 

presence or absence of bears within a web with raw telemetry data, therefore this error should be 

included within the modeling procedure.  The probability of presence in a web for each bear 
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observation was simulated from the combination of: 1) observer location points, and 2) estimates 

of azimuth error from spatial distributions of telemetry sampling error.  The number of simulated 

locations in the web out of total number of simulated locations (n=10,000) was used as an 

estimate of the probability of the bear in the web for each bear and day observation in a 

secondary period. If this probability exceeded 0.50, the bear was classified as present (‘1’, and 

‘0’ otherwise) for that observation. Data were collapsed to a period of three weeks, with the 

assumption that the population was closed during the three-week sampling period for each web.  

Therefore, if a bear was detected at least once in a web over the three-week period, it was 

classified as a detection on that web.   

The predicted true azimuth direction was simulated as the sum of the observed angle plus 

one draw from the von Mises distribution to simulate error in observer azimuth direction. The 

von Mises distribution is often used with circular data, like azimuth directions with possible 

values encompassing 360° (for example, see Figure 2.10). The probability density function of the 

von Mises distribution takes the following form: 
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 where the angles θ and µ0 are between -π and π, and standard deviation κ is greater than zero, 

and I0(κ) is the modified Bessel function of the first kind and order. The predicted azimuth 

direction is: 

           (Equation 2.4) 
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The predicted distance from the observer to the bear was modeled from known distances to 

collars and recorded gain levels.  
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           (Equation 2.5) 

The full Bayesian Markov-Chain Monte Carlo (MCMC) models of the joint data 

structures were implemented using a combination of Gibbs and Metropolis sampling algorithms. 

Monte Carlo refers to estimation by simulation.  Markov chains are a special type of stochastic 

process, where the future depends on the current state, but not past states.  This is known as the 

‘Metropolis algorithm’ first described by Metropolis and Ulam (1949) and Metropolis et al. 

(1953).  Markov chains have the following properties of homogeneity, irreducibility, recurrence, 

stationarity, and ergodicity.  Homogeneity is when the transition probabilities are independent of 

time.  Irreducibility refers to a non-zero probability of reaching a state from any other state in the 

chain.  States can be repeatedly selected with the property of recurrence.  The marginal 

distribution is produced when multiplied by the transition kernel with stationarity.  Ergodicity 

means that after many steps the marginal distribution of a Markov chain is the same at one step 

as all other steps.  

The Metropolis algorithm was later generalized by Hastings (1970), and labeled as the 

Metropolis-Hastings algorithm. This special case of the Metropolis algorithm generates 

candidate state transitions from an alternative distribution, and uses an acceptance/rejection rule 

to converge to the specified distribution.   The Metropolis algorithm uses a symmetric jumping 

distribution, while the Metropolis-Hastings algorithm is not limited to symmetry with the 

jumping distribution.  The algorithm steps are listed below, following notation and summary of 

algorithm steps from Gelman et al. (2004). 
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1. First, select a starting point for parameter, θ0, from either a starting distribution or 

reasonable initial values. 

2. For t=1,… : 

a) Sample a proposed value of the parameter, θ*, from a jumping distribution at time t. 

b) Calculate the ratio of densities or likelihoods of the parameter given y data as follows, 

! 

r =
p("* | y)

p(" t#1
| y)      (Equation 2.6)

 

c) Generate a uniform random variable, and accept the proposed value, θ*, with probability 

min(r,1), and the previous value, θ t-1, otherwise 

Convergence to the target distribution with the Metropolis algorithm occurs because the 

sequence is a Markov chain with a unique stationary distribution and the stationary distribution 

equals the target distribution (Gelman et al. 2004).  The Metropolis algorithm is useful for 

models that are not conditionally conjugate, i.e., the full conditional distribution kernels are not 

known distributions.  However, the Metropolis algorithm can be slow. The Gibbs sampling 

algorithm offers a relatively fast alternative and is only appropriate for full conditionals that are 

kernels of known distributions.   

Gibbs sampling, first named by Geman and Geman (1984), utilizes conditional 

distributions, where each parameter is conditioned on current values of the other k-1 parameters.  

By cycling through each parameter, conditioned on the current values of the other parameters, 

samples from the posterior distribution are generated. 

To illustrate the scenarios in which Gibbs sampling would be useful, versus Metropolis-

Hastings, here are two examples. First, consider a scenario where the likelihood the data given  
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the parameter is a binomial distribution, and the prior on p, the probability of success, is a beta 

distribution. The full conditional distribution of p is below: 

! 

[p |•]"
n

#

$ 

% 
& 
' 

( 
) p

#
(1* p)n*# p+*1(1* p), *1

" p
# ++*1

(1* p)n*# +, *1
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This is the kernel of a Beta distribution with parameters θ+α and n-θ+β.  This is an example of 

when Gibbs sampling would make sense, since the posterior can be directly sampled. However, 

consider the same binomial likelihood, but that p is constrained to the following form: 
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So, the full conditional distribution of p is now: 
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This does not have a known distributional form, thus Metropolis sampling from the posterior is 

the only option. 

Reversible jump MCMC (RJMCMC) was also used for posterior simulation of 

parameters in the joint data structure model.  Reversible jump MCMC was first introduced by 

Green (1995), and is useful when the dimension of the parameter space has a possibility of 

changing from one iteration to the next.  The Markov chain samplers can jump between 

parameter subspaces of differing dimensionality in RJMCMC (Green 1995).  

For each model, two chains of 50,000 iterations each and a burn-in period of 25,000 

iterations were run with Python, version 2.5.2 (Python Software Foundation, http://python.org).  

No thinning interval was used.  Each chain was selected from different combinations of initial 

parameter values to evaluate parameter convergence.  The posterior iterations after the burn-in 

period from each chain were combined for output statistics and figures. The output for each  
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model included the median, 95% Bayesian credible interval (BCI), and histograms and traces of 

the posterior distributions.  A full simulation study was conducted to assess model performance 

(Appendix A). 

 

Statistical model 

State-space models include both measurement and process error (Royle and Dorazio 

2008). This is useful when multiple data sets are collected for inference on abundance, such as 

the following model incorporating three data structures of camera, telemetry and DNA hair snare 

data (refer to Table 2.6 for complete description of model notation, Figure 2.11).  The biological 

motivation, assumptions for statistical distributions, and updating of parameters for the 

individual data components are described below, followed by the full Bayesian statistical model. 

 

Spatial parameters of local abundance, Ni 

We assume the true abundance distribution in the superpopulation follows a Poisson-

Gamma process, where λ, the Poisson parameter, is the local density of bears and α and β, the 

Gamma parameters, control the amount of variability in abundance across the landscape.  Due to 

low local abundance, and perhaps low sample size, the Poisson model may be more relevant to 

the study, thus efforts were focused on this less complex, null, model.  However, we present the 

more complex model first, followed by the model used for this analysis. The Poisson distribution 

is often used to model count data, such as abundance, and allows for extra-Poisson variation in 

abundance, or overdispersion.  The Poisson-Gamma process is used to control for local 

heterogeneity in abundance. Heterogeneity in local abundance can be a function of habitat 

covariates, environmental factors, or other unknown sources.  The Poisson-Gamma process,  
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reparameterized as a negative binomial, has been used in ecological studies (Royle and Nichols 

2003, Conroy et al. 2008). 

The mixture of Poisson distributions that follow the gamma distribution results in a 

marginal distribution for Ni following a negative binomial distribution with parameters α and β 

(Gelman et al. 2004).  Consider the vector of abundance {Ni}, i=1,…m, and the local density, 

{λi,} i=1,…m. The spatial joint distribution of the data {Ni}, and the parameters λi, α, β is: 

[{Ni},λi, α, β]= [[{Ni}|λi ][ λi |α, β][α][ β]   (Equation 2.10) 

These are, respectively, Poisson, Gamma, and Gamma hyperprior distributions for α and β. Also, 

ν and ω are the parameters of the Gamma hyperprior distribution for α and δ and η are the 

parameters for the Gamma hyperprior distribution for β. Putting this together we get: 
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         (Equation 2.11) 

To sample directly from the posterior distribution using Gibbs sampling, we must first derive the 

full conditional distributions. The full conditional distributions for the spatial parameters are: 
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This is the kernel of the known Gamma distribution with parameters Ni+α and β+1, so the  
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posterior distribution can be sampled directly using Gibbs sampling.  For the parameter α, the 

full conditional is: 
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  (Equation 2.13) 

This is not a known distribution, and requires the Metropolis-Hastings algorithm to sample from 

the posterior distribution. For the parameter β, the full conditional is: 
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This is a kernel of the known Gamma distribution with parameters (mα+mδ-m+1) and 

(mη+

! 

"
i

i=1

m

# ), so the posterior distribution can be sampled directly using Gibbs sampling. 

If we assume local abundance is determined by only one density parameter, λ, the 

process is reduced to a Poisson process.  The conjugate prior density for a Poisson process is the 

Gamma distribution (Gelman et al. 2004).  Following Gelman et al. (2004), the posterior 

distribution for density, λ, is a Gamma distribution, which can be directly sampled from using 

Gibbs sampling: 
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[" |•] ~ Gamma(# + N
i

i=1

m

$ ,% + m)  ,  (Equation 2.15) 

where α and β are the parameters from the Gamma prior distribution, and m is the number of 

total possible webs.  We chose a diffuse prior, a Gamma(0.001, 0.001), for the distribution. 
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Telemetry parameter 

Telemetry data provides inference on the presence of a bear in a web, commonly referred 

to as occupancy, ψ, or the probability that a patch or sampling unit is occupied (MacKenzie et al. 

2006).   We are not directly estimating the probability of a patch occupied, but rather the number 

of bears in a patch.  This can be used to indirectly estimate occupancy, where Ni>0 means the 

probability that a patch is occupied is one.   The telemetry component consists of: 
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[{Vik} | pw
i
,V ][{Ni} | pwi

][pwi
],   (Equation 2.16) 

where V is the telemetry data consisting of the number of total bears collared during the year and 

season over all three sessions or occasions, and the individual bears detected on each web i 

(described below).  The likelihood of the number of true bears on a web, Ni, given the total bears 

in a population, Ntot, and the probability of a bear on a web, pwi, can be classified as a binomial 

distribution, or a series of independent Bernoulli trials where each trial is a bear with probability 

pwi of being on the web. Similarly, the number of bears with collars on a web, ncollared,i , given the 

total number of bears with collars on during the sampling period, Ncollared, can also be classified 

as a binomial distribution, with each bear with a collar having probability pwi of being present on 

a web.  This assumes that bears with and without collars have the same probability of being on a 

web.  The conjugate prior for binomial distributions is a beta prior on the probability of a bear on 

a web.  The full conditional distribution of the probability of a bear on a web, pwi, includes the 

product of two binomial distributions and a Beta(1,1) prior on the probability of a bear on a web: 
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where ncollared,i  is the number of bears with collars on web i, Ncollared is the total number of bears 

with collars on during the sampling period, Ni is the number of true bears on web i, Ntot is the 

total bears the population, and α and β  are the parameters for the beta prior on pw,i.  This is a 

kernel of a Beta distribution with parameters: ncollared,i+Ni+α and Ncollared-ncollared,i+Ntot-Ni+β.  

Posterior prediction of pw on webs not sampled is conducted by using a Beta (Nj+α, Ntot-Nj+β). 

 

Camera parameters 

We used a model that links abundance and heterogeneous detection probabilities, known 

as the Royle-Nichols model (Royle and Nichols 2003) with the camera data.  The probability of 

detecting occupancy di with the camera samples is a transformation of the individual probability 

of camera detection, r, and Ni, the abundance of bears on web i: 

! 

[d
i
] =1" (1" r)
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i      (Equation 2.18) 

The probability of individual detection from cameras is assumed constant among bears and 

among webs.  The conditional distribution of camera detections, Yi, on web i, given the 

probability of detection, di, follows a binomial sampling model, where each camera is an 

independent Bernoulli trial of bear detection: 
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where j is the total number of cameras or sites on web i.  Additionally, we assume that detection 

does not vary by occasion k, so j is condensed data consisting of the number of camera by 

occasion replicates in web i, and yi is the number of bear detections over all cameras*occasions 

in web i in one season.  
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The conditional probability of occupancy, di, is a deterministic function of the stochastic r and Ni 

parameters.  The full conditional distribution of r is: 
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This does not factor into a known distribution, and requires the Metropolis-Hastings algorithm 

for updating r from the posterior distribution (See Appendix B for details of algorithm).  

 

Genetic data parameters 

This component of the joint data structure model is based on the genetic error model with 

allelic dropout originally in Wright et al. (2009), with the exception of the calibration sample 

component.  The calibration sample data consists of genotypes of tissue and/or blood, and hair 

samples from known individuals from the bear CGP, as originally described in Sanderlin (2009).  

The tissue samples are of higher quality with a lower probability of error than the hair samples, 

and can be used in conjunction with replicated hair samples from unknown individuals. 

 

Dropout error probability, p 

For true heterozygotes (
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A
il1
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il2
), where A is the allele at locus l for individual i, the 

probability of observing a true heterozygote is 1-p, while the probability of observing a 

homozygote is 0.5*p, since there are 2 ways that an allele can drop out.  Following Wright et al. 

(2009), therefore, the probability of an observed genotype given the true genotype is as follows: 
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    (Equation 2.21) 

Since we are only considering allelic dropout, the probability of observing a homozygous 

individual at locus l, replicate r, given that the true individual at locus l is homozygous, is 1. 
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We assume that the calibration sample (t=1,…T, for tissue and blood samples and 

h=1,…H, for hair samples) is independent of the replicated hair samples from unknown 

individuals and that the allelic dropout probability is the same within the calibration samples and  

the replicated hair samples.  Using the conjugate beta prior for allelic dropout of a binomial 

distribution, the error likelihood is the product of the two binomial likelihoods and beta prior.  

Following notation from Wright et al. (2009): 
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This reduces to a Beta(α +w+wc, β+W+Wc) distribution, where w and wc are the number of times 

the heterozygous loci originally seen in tissue/blood samples of the calibration sample or the 

samples, were genotyped as homozygous in any of R replicates. W and Wc are the total number 

of heterozygous loci across all n individuals that appeared in one of the S samples.  Since this is a 

kernel of a known distribution, the posterior distribution of allelic dropout can be sampled using 

Gibbs updates. 

 

True genotype matrix, G, and true sample histories, X 

The true genotype matrix and true capture histories are updated using direct sampling, 

following Wright et al. (2009) (See Appendix C for a full description of how these matrices are 

updated).  The true genotypes are updated by a combination of the error likelihood described 

above, and the probability of observing the specific genotype, given the true genotype 

frequencies in the population.  The true sample histories are updated with the capture-history 

likelihood of proposed capture histories of compatible individual genotypes and the probability 
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of observing the observed genotype given the true genotype and error probability.  Both 

sequences of updating require inserting proposed values of either the genotype at a specific locus 

and individual (genotype matrix), or proposed values of capture histories (capture history matrix) 

and evaluating the likelihood of the proposed values compared to other possible values. 

 

Genotype frequencies, γ 

Following Wright et al. (2009), the genotype frequencies are the kernel of the joint 

distribution of L independent Dirichlet random variables with parameters {ykj+αkj} of dimension 

lj.  Using uninformative priors, αkj, of 1, the full conditional distribution of vector γ is: 
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For a complete description of how these parameters are updated and derived, see Appendix C. 

 

Capture probability from DNA hair snares, θ 

Capture variation in closed mark-recapture models can be classified into three main 

categories: 1) heterogeneity (Mh), where each individual animal has a different probability of 

capture, or measurable individual attributes (e.g, group or individual covariates) 2) behavior 

(Mb), where animals captured have different probabilities of capture than animals not captured, 

either trap-happy or trap-shy, and 3) time (Mt), where capture probability can vary over trapping 

sessions (Pollock 1974, Otis et al. 1978, White et al. 1982).  For the models presented in this 

chapter, the constant capture probability (M0) over time, behavior and heterogeneity, and web 

was selected to reduce model complexity.  However, there is evidence of behavior and time in 
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capture heterogeneity from closed capture models that assume no genetic error (see Appendix D 

for this analysis). Therefore, future models will include more complexity.   

To update the constant capture probability after the genotype and capture history matrices 

are updated, the sufficient statistics of u., or the unique number of individuals captured with 

DNA hair snares, and n., the total number of times these individuals were captured over the three 

trapping occasions with DNA hair snares, are used.  Capture mark-recapture (CMR) data 

consists of a series of independent Bernoulli trials, or animals, with probability of capture, θ. The 

full conditional likelihood of constant capture probability, using the conjugate Beta(1,1) prior for 

a binomial distribution is: 
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where 
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w

" , or the total number of captures over the webs sampled for all three 

occasions, Nw is the true abundance of bears with webs sampled, k is the number of trapping 

occasions, and κ and υ  are the capture probability priors. This is the kernel of a Beta distribution 

with parameters n.+ κ and kNw- n.+υ, thus the posterior distribution of θ can be sampled directly 

using Gibbs sampling. 

 

Abundance of sampled areas (Ni) 

The full conditional distribution of abundance on sampled areas (Ni) is the joint 

distribution of the three data structures and the spatial model of N. The full conditional likelihood 

is a combination of one Poisson from the spatial component, and two binomials from the camera 

and telemetry components, respectively, and a negative binomial from the genetic CMR data.  
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We also use a discrete uniform prior on Ni, with a lower limit of max(u.i, ncollared,i, ‘1’ if Yi>0), 

and upper limit is the total number of genotype combinations of individuals over all loci.  The 

full conditional likelihood is: 
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(Equation 2.25) 

where π0 is the probability of not being captured at least once over the three occasions (i.e., 

! 

"
0

= (1#$)3).  A sequential update of Ni was used, where Ntot of the current accepted Ni s were 

used in Ntot from the telemetry portion, or probability of a bear on a web. The Poisson 

distribution with the current value of λ was used for posterior prediction of abundance for webs 

not sampled with the less complex spatial model.  However, a negative binomial with updated 

spatial parameters of α and β (described in equations 2.9 and 2.10), would be used for posterior 

prediction of abundance on webs not sampled with the Poisson-gamma spatial model. 

Based on the dimension of a proposed value of N*, the genotype matrix G and the 

capture-history matrix are augmented (Tanner and Wong 1987) by N*- N rows.  Following 

Wright et al. (2009), the genotype matrix is augmented by sampling genotypes directly from 

multinomial distributions [G|γ], with the constraint that the sampled genotype is not present in the 

population currently. The capture-history matrix is augmented with rows of zeros.  If N*<N, 

values must be deleted from the genotype and capture-history matrix.  These individuals cannot 

appear in any of the observed samples. This joint full conditional for N is not a known 



 69 

distribution and could potentially change matrix dimensions.  Therefore, a reversible jump 

Metropolis-Hastings step is needed to update N (see Appendix B for details of the Metropolis-

Hastings algorithm).  

 

Unconditional population estimate of abundance 

We want the unconditional estimate of abundance of bears in the target population of 

inference in central Georgia. The target population of inference encompasses the total area in 

which webs were sampled (see Figure 2.7).  The minimal inference population is the WMA land 

(186 km2), which includes both Ocmulgee and Oaky Woods, while the maximal inference 

population is the estimated range of black bears in central Georgia (~1200 km2, Cook 2007). For 

this chapter, we will focus on the minimal inference population of the WMA land.  This can be 

labeled the ‘superpopulation’.  

We have sample observations related to Ni under our sampling protocol, not Ntot, where i 

is the individual web and tot is the superpopulation. Therefore, we must obtain posterior 

predictions of abundance from unsampled areas within the inference population from the 

heterogeneity parameters of abundance on sampled areas. One may assume random selection of 

webs, however, this is not entirely correct due to limitations of land ownership and other 

attributes of the WMA boundaries (rivers, roads, highways) that do not permit placement of web 

arrays. Our sample is part of the total set of possible web-sized areas in the inference population, 

or more formally: 
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N
i=1,...w UN

i=w+1,...m
, 

where w is the total number of webs sampled and m is the total number of possible webs in the 

population area.  The unconditional abundance of the superpopulation over all possible webs, 
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Ntot, is the sum of abundance over all sampled webs plus the predicted abundance from posterior 

simulation for unsampled webs using the Poisson-Gamma spatial model (described above) in the 

population range.  
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w

" + N j
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m

" ,                                   (Equation 2.26) 

where w is the total number of webs sampled, m is the total number of possible webs in the 

population area, and tot refers to the superpopulation. 

 

Full Bayesian model of joint camera, telemetry, and DNA hair snare data structures 

The joint distribution of camera detection data {Yijk}, capture histories at hair snares 

{Xik}, telemetry data {Vik}, observed genotypes from DNA hair snares 
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where i is the individual web, k is the number of sessions or occasions, and m is the total number 

of web areas.  Bayes theorem allows us to obtain the probability of abundance on web i, given 

the bear is on web i, from the probability that the bear is on web i, given the true number of bears 

on web i: 

! 

[pwi
|{Ni}] =

[{Ni} | pwi
][pwi

]

[{Ni}]
"[{Ni} | pwi

][pwi
]

  (Equation 2.28)
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This leads to the joint distribution, where the only difference between Equation 2.28 and 

Equation 2.29 is the double underlined portion from the Equation 2.28 reverse conditioning: 
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The Python code for the full model can be found in Appendix E. 

 

Results 

Data summary 

Over 6 seasons from years 2003 to 2006, a total of 32 ‘webs’ (note: webs were sampled 

more than once, since there were 9 actual webs), or 830 hair snares were actively checked.  A 

total of 4,180 hair samples over 2516 snare sessions (dates which a snare was ‘active’) were 

collected (Table 2.7).  The number of snares with at least one hair sample was 1113. Some of 

these samples could contain feral hog hair, but not all samples were analyzed in the genetics 

laboratory. Some snares were not sampled for all three sessions due to river flooding or 

controlled burns, therefore the number of snares multiplied by three does not always equal the 

number of snare sessions 

The total number of hair samples selected for genetic analysis was 1,487. These hair 

samples were collected at hair snares from 2003-2006, over six sample seasons. Of the 1487 hair 

samples selected, 1041 samples (70.0 %) had positive amplification for at least one locus. Of the 

1041 samples with positive amplification for at least one locus, 42.7 % amplified at all 8 loci 
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selected for genetic identification (n=445). The samples that amplified at 7 loci (n=57) and 6 loci 

(n=66) could plausibly be used in further capture-recapture models.  Models presented in this 

chapter only include samples with amplification at 8 loci. The samples with 6 and 7 loci with 

positive amplification have different probabilities of identity, and may match multiple samples 

that have information at all 8 loci.  

Hair samples (n=203, or 19.5% of the total 1041 samples) were randomly selected from 

the hair samples that positively amplified for at least one locus to assess the genetic error in the 

DNA extraction, PCR, genotyping, scoring/binning of alleles, and database storage process.  

This process involved the selection of different hairs (but from the same physical sample as the 

initial sample) for DNA extraction, and may assess any mixed-sample errors.  Samples were 

given a new genetic tag and treated as new hair samples in the whole process from extraction to 

scoring and database storage.  Of the 203 hair samples selected for this assessment of genetic 

error, 180 samples (88.7 %) positively amplified for at least one locus. Additional samples 

(n=23, or 5.2% of the total 445 samples) were randomly selected to assess the PCR and re-

genotyping error (not DNA extraction) from the samples that amplified at all 8 loci. This also 

involves scoring/binning of alleles and database storage of Genemapper data.  There were six 

allelic dropout (ADO) events detected over all eight loci with the calibration data set, originally 

described in Sanderlin (2009) from known individuals (n=84)  (Table 2.8).  For the heterozygous 

samples from the first replicates with hair snare samples, the number of samples classified as 

homozygous with the second replicates varied over the following years and seasons: 2004 

summer (n=16 samples), 2004 fall (n=9 samples), 2005 summer (n=29), 2005 fall (n=5), 2006 

summer (n=5) (Table 2.8). 
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During 2003-2006, the number of camera samples of bear detections was 181 (note: 

individual cameras were used multiple times since there were only 15 physical cameras, and not 

all webs were monitored at the same time) with 530 camera sessions, or number of weeks in 

which the cameras were active and able to take photographs.  There were 180 cameras with at 

least one picture of a bear (Table 2.9).  Some cameras were not operational for all 3 sessions due 

to equipment failure, camera availability, or bear damage; therefore, the number of cameras 

multiplied by three does not always equal the number of camera sessions. 

A total of 84 bears (53 M: 31F) were physically captured from 2003 to 2006.  There were 

16 recaptures (10 M: 6 F) from 2003 to 2006.  There were a total of 14 recoveries of captured 

bears (12 M: 2 F).  This summary includes the Sandersville male and North Carolina female 

bears, three untagged male bears (2003, 2004), one untagged female bear (2006), and two 

capture mortalities (one initial in 2004, one recapture in 2004) (2.10). Capture coordinates for 

initial and recaptured bears for 2003, 2004, 2005, and 2006 were spread out over the WMAs and 

surrounding land (Figures 2.12, 2.13, 2.14, 2.15, 2.16).  

 

Telemetry error  

The mean absolute value of telemetry error over all webs, observers, and years was 18.9 

degrees, based on 360 stations from 10 observers (Figure 2.17).  An analysis of variance 

(ANOVA) indicated no difference among azimuth error between years (df=1, p=0.929), 

observers (df=8, p=0.101), and webs (df=5, p=0.443) with an α significance level of 0.05. 
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Genetics  

Tissue and blood samples from 83 bears (81 captured bears from 2003-2006, one capture 

mortality and one unmarked bear from a vehicle collision) were analyzed to determine if markers 

were adequate.  The summaries reported here do not include the translocated female from North 

Carolina, known to be a non-resident of the central Georgia population. Seven of the eight loci 

amplified in at least one individual with the Paetkau markers.  One locus, G10C, did not amplify 

well with any sample, so it was excluded from further genetic analyses.  The observed number of 

alleles, number of heterozygotes and homozygotes are summarized, along with allele frequency 

distribution (Table 2.11) and the mean number of alleles observed per locus for the individuals 

that amplified was 2.25.   

The North Carolina bear had unique alleles at the following Paetkau loci: G1A, G1D, 

G10L, G10P, G10X.  Loci G1D and G10P were fixed in the central Georgia population with a 

sample of 82 and 78 known bears, respectively. Linkage disequilibrium tests with the Paetkau 

markers indicated that in central Georgia one loci pair (G1A vs. G10X, p=0.0004) had 

probability values smaller than the sequential significance level of 0.000476.  Only one locus 

(G10M) had evidence of nonrandom mating (α=0.05) for the bears in central Georgia with the 

Hardy-Weinberg equilibrium test (refer to the p-values in Table 2.12).  The overall probability of 

identity for all loci that amplified at 83 known bears from the central Georgia population was 

0.00157, or 1 chance in 600 of randomly sampling 2 bears possessing identical genotypes.  The 

probability of identity among siblings, or the more conservative estimate, was 0.051, or 1 in 20 

chance of encountering matching genotypes in central Georgia among siblings. 

There were 38 bears with unique genotypes, and 45 bears with overlapping genotypes, or 

matching genotypes with the loci that amplified with the 7 Paetkau loci. This does not 
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necessarily mean those 45 bears have matching genotypes, since not all loci amplified.  There 

were no bears that had identical genotypes with the new Sanderlin et al. (2009) markers with the 

sample of 84 known bears from this analysis, which is a substantial proportion of the population 

for any specific year. 

The overall inbreeding coefficient (Fis) was 0.165 for the CGP known individuals (n=83) 

using all of the Paekau markers, indicating an excess of heterozygotes with these markers.      

The overall Fis value for the CGP with all of the new markers and known individuals (n=84) was 

-0.019, compared to an overall Fis value of 0.010 with the CGP hair samples from hair snares 

(n=184 unique individuals), which show a small deficit and excess of heterozygotes, 

respectively. 

For known individuals (n=84) with the new Sanderlin et al. (2009) markers, the observed 

number of alleles, number of heterozygotes and homozygotes are summarized, along with allele 

frequency distribution (Table 2.13) and the mean number of alleles observed per locus for the 

individuals that amplified was 3.75. Linkage disequilibrium tests with the Sanderlin et al. (2009) 

markers with known individuals indicated that in central Georgia no loci pairs had probability 

values smaller than the sequential significance level of 0.000435.  No loci had evidence of 

nonrandom mating (α=0.05) for the bears in central Georgia with the Hardy-Weinberg 

equilibrium test (refer to the p-values in Table 2.14).  The overall probability of identity for all 

loci that amplified at 84 known bears from the central Georgia population was 1.38x10-5, or 1 

chance in 72,500 of randomly sampling 2 bears possessing identical genotypes.  The probability 

of identity among siblings, or the more conservative estimate, was 0.00547, or 1 in 200 chance of 

encountering matching genotypes in central Georgia among siblings. 
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Over all years from 2003 to 2006, a total of 184 unique individuals were identified from 

the observed genetic data from hair snares from the samples with data for all 8 loci (Table 2.15, 

Table 2.16).  The observed number of alleles, number of heterozygotes and homozygotes are 

summarized, along with allele frequency distribution (Table 2.18) and the mean number of 

alleles observed per locus for the individuals that amplified was 5.38. Three loci (Bear17G, 

Bear36, Bear30B) had evidence of nonrandom mating (α=0.05) for the bears in central Georgia 

with the Hardy-Weinberg equilibrium test after Bonferroni correction (refer to the p-values in 

Table 2.19).  The overall probability of identity for all loci that amplified with hair samples from 

central Georgia population was 1.31x10-5, or 1 chance in 76,500 of randomly sampling 2 bears 

possessing identical genotypes.  The probability of identity among siblings, or the more 

conservative estimate, was 0.00555, or 1 in 200 chance of encountering matching genotypes in 

central Georgia among siblings with these hair samples. 

 

Error rates from joint model 

The allelic dropout rates varied from season and year.  In general, the allelic dropout rate 

decreased with newer samples and was greater in the summer than fall seasons.  Summer 2004 

had a median posterior estimate of allelic dropout rate over all loci of 0.052 (95% BCI: 0.034-

0.076). Fall 2004 had a median posterior estimate of allelic dropout rate over all loci of 0.039 

(95% BCI: 0.023-0.062). Summer 2005 samples had a median posterior estimate of allelic 

dropout rate over all loci of 0.076 (95% BCI: 0.054-0.102). Fall 2005 samples had a median 

posterior estimate of allelic dropout rate over all loci of 0.030 (95% BCI: 0.016-0.050).  Summer 

2006 had a median posterior estimate of allelic dropout rate over all loci of 0.027 (95% BCI: 

0.014-0.045).  
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Population Size 

The minimum number of bears known to be alive was calculated from bears with 

telemetry collars (Table 2.17).  Using data from unmarked, but known-fate bears and live-

captures of unmarked bears, the total known number of bears in the population per year, alive or 

dead, was also summarized (Table 2.17). 

The median posterior abundance estimates of black bears from the WMAs for the CGP 

were higher in the summer compared to the fall seasons between 2004 and 2006 (Table 2.20, 

2.21, 2.22, 2.23, 2.24).  Summer 2004 had the highest median posterior abundance estimate of 

black bears out of all the seasons sampled with an estimate of 213 (95% BCI: 144-354) (Figure 

2.18); however, all seasons had Bayesian credible intervals that covered all other Bayesian 

credible intervals.  The lowest median posterior estimate of abundance of black bears out of all 

the seasons was in the Fall 2004 with an estimate of 106 (95% BCI: 72-179) (Figure 2.19).  The 

other seasons had median posterior estimates of abundance of 184 (95% BCI: 137-266) (Figure 

2.20), 131 (95% BCI: 91-207) (Figure 2.21), and 192 (95% BCI: 143-280) (Figure 2.22) for 

Summer 2005, Fall 2005 and Summer 2006, respectively.  

In general, the constant CMR capture probabilities from DNA hair snares were low over 

all seasons (Tables 2.20, 2.21, 2.22, 2.23, 2.24), although the last two seasons had higher capture 

probabilities than the other seasons.  The individual animal detection probabilities from camera 

data were consistently high over all seasons and years (Tables 2.20, 2.21, 2.22, 2.23, 2.24). 

 

Discussion 

Suitability of genetic markers 

In general, bears tend to have low levels of genetic variation because of low population 

densities and effective population sizes (Paetkau and Strobeck 1994).  These conditions may 
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increase the difficulty of uniquely identifying individuals in genetic capture-recapture studies.  

The Paetkau bear markers used in many other bear research studies were evaluated for the 

central Georgia population.  These markers are known to be polymorphic in many bear 

populations, ranging from the southeastern U.S. to the northeastern and western United States, 

and even in other species, such as Brown bears (Ursus arctos) and polar bears (Ursus 

maritimus).  Seven of the eight loci amplified, with only five of seven polymorphic.  Thus the 

genotype at those two loci was identical for all bears sampled and varied at the remaining five 

loci. However, not all bears could be evaluated at all seven loci, due to low amounts of DNA in 

the samples or other laboratory inconsistencies.  The number of bears, 84 from central Georgia, 

is a substantial sample of the population, thus similar genotypes are likely not due to a low 

sample size.  Sampled bears from successive years, however, may be related, which could 

decrease the diversity seen in these samples.   

The North Carolina bear had unique alleles at five out of the seven loci with the Paetkau 

markers and three of the eight loci with the Sanderlin et al. (2009) markers, which indicates there 

is a difference between residents and non-residents of the central Georgia population. This may 

also mean that the central Georgia bear population has low genetic diversity with these loci.  The 

mean number of alleles observed, 2.25, is much lower than other bears in the southeastern U.S. 

using the same bear markers (Okefenokee Swamp ranged from 5-8 alleles per locus, Dobey et al. 

2005, Tensas River National Wildlife Refuge, LA from Warrillow et al. 2001, mean=3.75). This 

supports the possibility of a population bottleneck in central Georgia.  However, the new 

tetranucleotide markers had a higher average number of alleles per locus of 5.38 compared with 

the Paetkau markers.  This number is comparable to other bear populations in the southeastern 

U.S. 
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There is evidence of linkage disequilibrium, even after sequential Bonferonni correction 

for one locus pair with the Paetkau markers but none with known individuals using the Sanderlin 

et al. (2009) tetranucleotide markers. The p-value (0.0004) is close to the predetermined 

significance level of 0.000476, so this should not be a big concern.  There also was no evidence 

of non-random mating for this population with the tetranucleotide loci used in the current 

analysis.  Of particular concern were the calculations of the overall probability of identity and 

probability of identity among siblings.  That is, 1 chance in 500 of randomly sampling two bears 

possessing identical genotypes, and 1 in 18 chance of encountering matching genotypes in 

central Georgia among siblings with the five polymorphic loci with the Paetkau markers.  These 

estimates of PID were inadequate for sampling a population with noninvasive techniques, since 

the ability of distinguishing individuals was so poor.  Estimates of PID are theoretical in nature, 

thus, are not always accurate estimates of true PID(Waits et al. 2001).  Waits et al. (2001) found 

that observed values of PID were much higher than the calculated theoretical values of PID.  This 

happens if there is population substructure, non-random mating, many related individuals in the 

sample, or past events that disrupt Hardy-Weinberg equilibrium.  Often, if these scenarios are 

present with a population, one is unable to detect it until a large number of samples are collected.  

These results provided impetus behind developing new markers for the bear population.  The 

new tetranucleotide markers had 1 chance in 76,500 of randomly sampling two bears possessing 

identical genotypes, and 1 in 200 chance of encountering matching genotypes in central Georgia 

among siblings with the eight polymorphic loci used for the hair snare analysis. 

None of the known individuals had identical genotypes with the new tetranucleotide 

markers, compared to only 38 bears with unique genotypes using the Paetkau markers.  Since 84 

known bears is a large sample, and likely a high percentage of the total number of individuals in 
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the population at any one time, the higher PID,sib for the new tetranucleotide markers may not be a 

problem for the CGP.  This provides evidence that noninvasive genetic methods were a valid 

sampling method for the CGP using the new tetranucleotide markers, despite lower genetic 

variability and allele counts. 

 

Genetic error 

There was an increase in genetic error from allelic dropout with older samples. Older 

samples tend to have more error and/or less DNA amplification success. Therefore, minimizing 

delays (<six months) between collection and DNA extraction maximizes amplification efforts 

(Roon et al. 2003).  The DNA extraction of older samples occurred at the same time as newer 

samples, which increased the time between collection and extraction of older samples (>six 

months of between collection and extraction).  DNA tends to degrade with time, and in particular 

with exposure to moisture or UV light (Lindahl 1993, Piggot 2004). Genetic error was also 

greater in summer than fall. Central Georgia experience hot and humid conditions in the summer, 

much more than the fall.  Some noninvasive genetic studies document that warmer seasons have 

increased genetic error or reliability (Lucchini et al. 2002, Piggot and Taylor 2003).  For 

example, wolf samples that were collected in the winter had higher-quality DNA than samples 

collected in the summer, or older samples (Lucchini et al. 2002). 

 

Capture probability with DNA hair snares 

The probability of detection for a black bear is influenced by several behavioral traits.  

Male black bears have a greater chance of encountering bait stations or being sited due to 

increased travel distances and large home ranges; and as a result, a greater chance of being 
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captured than female black bears (Hellgren and Vaughan 1989). However, we cannot distinguish 

between male and female bears in our sampling scheme. Noninvasive methods aim to reduce 

bias in capture rates with female and young age classes of bears.  Depending on the capture 

method used, detection also may depend on age, with juveniles and cubs being less likely to be 

captured than adults. But, Kendall et al. (2009) document a substantial proportion of cubs and 

yearlings known to be present near DNA hair snares for Brown bears.  Family groups, consisting 

of parent-offspring and siblings traveling together, are also a large source of nonindependent 

movement in bear populations (Kendall et al. 2009). Although, simulation studies indicate that 

this will cause minimal bias in population estimates (Miller et al. 1997, Boulanger et al. 2004).  

The current model also does not explicitly account for time, behavioral, or heterogeneity effects 

that may be present.  There may indeed be time and behavioral capture effects with this 

population (Appendix D), which warrant further models. 

 

Population estimates 

Fall abundance estimates were lower than summer abundance estimates. This pattern is 

consistent with the cub mortality period, post-reproduction.  The abundance estimates 

incorporate all age classes, although specific age classes cannot be determined through DNA hair 

traps. Telemetry data only captures presence of adult bears on webs.  We can approximate the 

proportion of cubs in samples with hair and camera traps at the same location with camera 

occupancy data, which may warrant future development.  The minimum estimates of abundance 

are well below the estimates of abundance from the joint data structure model, which should be 

expected.  The abundance estimates presented in this chapter are for the WMA land only, and not 

for the entire region of central Georgia.  Future models should include more information on the 
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spatial relationship to habitat (i.e., CAR models) and bear abundance, for posterior prediction of 

abundance on unsampled areas.  These preliminary estimates should be used as initial estimates 

of abundance in population viability models and harvest decisions and additional management 

decisions.   

 

Future models 

The trapping web sampling design used in this study of the CGP is an extension of point 

transects and allows density to be directly estimated using Distance sampling methods (Anderson 

et al. 1983).  Future models can incorporate Distance sampling methods in the joint full Bayesian 

model incorporating three data structures.  The trapping web design also allows us to obtain 

estimates of capture-mark-recapture (CMR) data, as well as density estimates, which may 

improve estimates.   The current model does not allow for bear movement among webs, which 

may occur within sampling periods.  Thus, a movement model for individual bears from one 

sampling occasion to the next (i.e. random walk, average movement rates for females/males) 

could improve the probability of being on a web and telemetry portion of the model.  Camera 

data do have additional information that could provide inference on abundance, rather than 

occupancy, such as the identity of individuals with collars, sex and/or age of unmarked 

individuals, and the minimum and maximum number of marked and unmarked bears.   

Models that exclude areas that are predicted as unlikely to be occupied based on habitat 

models (Cook 2007) would improve estimates as well. The current model only includes WMA 

land.  The current spatial Poisson model can be classified as a ‘null’ model for the CGP, where 

there is simply random variation of abundance, from one Poisson distribution, across the 

landscape.  The next step would be to include the Poisson-Gamma process, which allows for 
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extra variation, or overdispersion, in abundance where each web would have a separate density 

parameter.  This model does not explicitly include habitat covariates (i.e., distance to roads, 

vegetation characteristics, percent diversity in habitat, distance to rivers) that may influence 

species abundance.  Conditionally autoregressive models (CAR) (e.g., Carlin and Banerjee 2003) 

provide a method of linking abundance to habitat covariates that likely exist with any animal 

population.  CAR models, originally described by Besag (1974) are the fundamental regional 

cluster models. The proportional hazards portion of the CAR model assumes observed counts, Y, 

in a region i follow a spatial Poisson regression of the following form: 
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region-level spatial covariates with the vector of parameter coefficients, !  (as seen in Carlin and 

Banerjee 2003).  The univariate spatially random variable, Φi , from equation 2.31, like survival 

of one animal species in region i, has a full conditional distribution of the following form: 
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where !  is the average of the neighboring values and n is the number of neighbors at region i 

A gamma prior, with parameters α and β, is typically assumed for !  (Carlin and Louis 2000). 

Regional heterogeneity, θi , from equation 2.30, would be modeled as a random effect with an 

exchangeable normal prior (as seen in Carlin and Banerjee 2003): 
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Table 2.1.  Percent of vegetation type for each web for the American black bear central Georgia population from 2004 to 2006 based 

on 30m x 30m resolution.  

 

* indicates dominant vegetation type, ** indicates second dominant vegetation type, # indicates third dominant vegetation type

Web A B C D E F G H I 

Open water 0.0008 0.000109 0.009818 0.00248 0.004416 0.002243 0.004386 0.013868 0.000117 

Transportation 0.0844 0.068481 0.061705 0.047919 0.026865 0.067476 0.066199 0.066842 0.058934 

Utility swaths 0.0023 0 0 0.018007 0 0.017347 0.012147 0.028983 0.013915 

Clearcut #0.1530 #0.127398 0.061979 #0.113349 0.035083 0.105204 0.112153 0.065178 #0.080917 

Deciduous  0.1216 0.081926 0.02545 0.053723 0.056428 0.066882 0.082327 0.057412 0.040926 

Evergreen  *0.4025  *0.45543 *0.427326 **0.287465 *0.499387 *0.430051 **0.28315 *0.387602 *0.657858 

Mixed forest 0.0537 0.122588 #0.083041 0.021082 **0.171001 **0.239958 *0.312639 **0.259603 0.041394 

Pasture/hay 0 0 0 0 0.004416 0.006992 0.005398 0.001387 0 

Row crop 0.0005 0.000492 0.069493 0.006945 0.096663 0.063848 0.121601 #0.119124 0.00152 

Forested 

Wetland **0.1809 **0.14292 **0.261079 *0.44903 #0.105741 #0.158565 #0.256967 0.06601 **0.10442 
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Table 2.2. Slope summary statistics (range, mean, standard deviation) for each web for the 

American black bear central Georgia population from 2004 to 2006. 

 

Web A B C D E F G H I 

Range 13.5613 10.5547 10.9184 14.4636 8.2430 12.3128 11.6261 7.3924 10.0887 

Mean 3.8165 2.4685 2.3323 1.7850 2.1287 2.8475 3.1347 1.7651 3.3189 

sd 2.0783 1.5919 1.4755 2.2143 1.7253 1.8387 2.2211 1.1838 1.8901 
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Table 2.3. DEM (digital elevation model) in meters above sea level for each web for the 

American black bear central Georgia population from 2004 to 2006 summary statistics (range, 

mean, standard deviation). 

 

Web A B C D E F G H I 

Range 70.9454 56.4680 52.6306 52.6458 55.8992 54.6838 66.7063 42.0025 67.2368 

Mean 119.2861 96.6152 91.6718 77.7615 119.9789 93.0943 99.7679 100.7098 113.5859 

sd 16.6140 10.9320 13.0387 12.7276 12.0218 11.4467 16.1277 8.0271 17.5940 
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Table 2.4.  Summary of web area, rings, spacing between rings, average number of snares per 

web for years 2004 to 2006 for the American black bear central Georgia population, and average 

approximate density of snares per web.  

Web 

Area 

(km2) Rings 

Spacing between 

rings (m) 

Average number of 

snares/web 

Average density of snares 

(snares/km2 

A 12.6 4 500 35 2.778 

 

B 15.9 3 750 26.4 1.66 

 

C 15.9 3 750 23.3 1.46 

D 15.9 3 750 25.3 1.59 

E 7.1 3 500 24 3.38 

F 15.9 3 750 22.5 1.42 

G 15.9 3 750 25.5 1.6 

H 7.1 3 500 22 3.1 

I 7.1 3 500 26 3.66 
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Table 2.5. Summary of webs for the American black bear central Georgia population from 2004 

to 2006 used for telemetry error calculations.  Each cell represents the number of observers for 

each web and year combination. Cells marked with ‘*’ indicated web and year combinations in 

which telemetry error calculations for observers were not conducted. 

  

Web 2004 2005 2006 

A * 4 3 

B 3 4 3 

C * 3 3 

D * 3 3 

E 3 * * 

F 3 3 3 

G * * * 

H * * * 

I * 4 3 
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Table 2.6. Notation and definitions for terms in the multiple data structure (camera, hair snares, 

telemetry) Bayesian density model for the American black bear central Georgia population from 

2004 to 2006. This model is only for one closed period, which consists of one season. 

 
Term Definition 

i Web, for i=1…9 

j Site (location of hair snare, or hair snare and camera), for j=1….J(i) 

k Occasion or session number, for k=1…3 

di Camera detection probability parameter for web i 

r Individual capture probability with cameras 

Yijk Camera occupancy data for web i, site j, occasion k (‘1’ if at least 1 bear is detected, 

‘0’ otherwise) 

Ni True number of bears present on web i 

α, β Magnitude of spatial variation in the true number of bears 

λi Local heterogeneity in spatial distribution of true number of bears present on web i 

Vikm Telemetry data which consists of the probability of marked bear m is present on web 

i, at occasion k 

m Identity of marked bear 
γ Allele frequency at locus L 

G An Ntot x L matrix of true genotypes 

X An N x S indicator matrix for which Xij=1 if individual i appeared in sample j 

θik Hair snare capture parameters for web i and occasion k 

G An S x L matrix of true genotypes of individuals appearing in S sample 

Cobs, Ctrue Observed and true genotypes in the calibration sample (an array of L x R) 

Gobs,ijk An S x L x R array of observed genotypes  

perror Genetic error probability 

S Number of genetic samples 

L Number of microsatellite loci 

R Number of times genotyping was replicated 

Ntot Number of individuals in the population 



 99 

 

Table 2.7. Hair snare data summary for the American black bear central Georgia population from 

2003 to 2006. 

 

 
Year Seasons Webs Snares Hair 

Samples1 

No.of snare 

sessions2 

Snares w/ hair 

detected 

2003 1 (F/W) 1 27 134 121 48 

2004 2 (S, F) 11 282 927 837 246 

2005 2 (S, F) 14 362 1929 1081 561 

2006 1 (S) 6 159 1190 477 258 

TOTAL 6 32 830 4180 2516 1113 

 
1  Some samples may contain feral hog hair, thus bear hair samples may be fewer. Not all 

samples were analyzed within the laboratory. 

2  Some snares were not able to be sampled for all 3 sessions due to river flooding or 

controlled burns, therefore the number of snares x 3 does not always equal the number of 

snare sessions 
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Table 2.8.  American black bear central Georgia population genetic data for assessment of genetic error from allelic dropout.  Samples 

were collected from 2003 to 2006.  Tissue and hair samples from known individuals (n=85) from the calibration sample data set were 

used to supplement replicate hair snare samples for each year by season combination, originally in described in Sanderlin (2009). 

Heterozygous samples with the first replicate and numbers of homozygous samples with the second replicate were used as a sample of 

allelic dropout from unknown hair samples. 

  Number of heterozygous samples Number of homozygous samples 

Locus 
Bear 

10Y 

Bear 

12Y 

Bear 

17G 

Bear 

19Y 

Bear 

30B 

Bear 

33B 

Bear 

35G 

Bear 

36 

Bear 

10Y 

Bear 

12Y 

Bear 

17G 

Bear 

19Y 

Bear 

30B 

Bear 

33B 

Bear 

35G 

Bear 

36 

Calibration 

samples 35 36 51 42 46 46 42 37 1 0 1 0 1 2 1 0 

2004 Summer 3 7 12 14 8 10 13 9 1 2 1 0 2 2 4 4 

2004 Fall 4 4 6 6 6 7 10 3 1 2 1 2 0 1 1 1 

2005 Summer 12 10 17 11 9 12 16 13 2 3 2 6 1 4 2 9 

2005 Fall 2 4 8 6 4 7 7 7 0 0 1 0 0 1 0 3 

2006 Summer 9 7 13 12 13 11 12 9 0 0 0 0 0 2 0 3 

Total 65 68 107 91 86 93 100 78 5 7 6 8 4 12 8 20 
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Table 2.9. Camera data summary for the American black bear central Georgia population from 

2003 to 2006. 

 
 

Year Cameras on webs No. of Camera Sessions1 Cameras w/detections 

2003 14 42 6 

2004 59 176 23 

2005 78 224 115 

2006 30 88 36 

TOTAL 181 530 180 

  
1  Some cameras were not operational for all 3 sessions due to equipment failure, camera 

availability, or bear damage; therefore, the number of cameras x 3 does not always equal the 

number of camera sessions 
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Table 2.10.  Live captures, recaptures and recoveries of American black bears with the central Georgia population from 2003 to 2008.  

Note: this summary includes the Sandersville male (2005) and North Carolina female (2003), 3 untagged male bears (2003, 2004), 1 

untagged female bear (2006), and 2 capture mortalities (1 initial capture in 2004, 1 recapture in 2004).  

 

Year Number of Live Captures 

 

Number of Recaptures Number of Recoveries 

          2003 initial capture 2004 initial capture 2005 initial capture 2006 initial capture      

  Total Male Female Total Male Female Male Female Male Female Male Female Total Male Female 

2003 30 18 12 2 1 1 0 0 0 0 0 0 1 1 0 

2004 19 13 6 7 3 2 1 1 0 0 0 0 2 2 0 

2005 15 7 8 5 1 2 2 0 0 0 0 0 6 5 1 

2006 20 15 5 2 0 0 1 0 1 0 0 0 2 2 0 

2007 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 

2008 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

TOTAL 84 53 31 16 5 5 4 1 1 0 0 0 14 12 2 
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Table 2.11.  Number of alleles (A), individuals analyzed at each locus (N), number of 

heterozygotes (Nhet) and homozygotes (Nhom), observed heterozygosity (HO), expected 

heterozygosity (HE), and p-value for Hardy-Weinberg Equilibrium (HWE) test for the American 

black bear central Georgia population with known individuals (n=83) collected from samples 

from 2003 to 2006 with the Paetkau markers.  Locus G10C did not amplify with any individuals, 

so data from this locus are not included in the table.  A p-value for HWE cannot be calculated 

with monomorphic loci (G1D and G10P), marked with ‘NA’. 

 

Locus A N Nhet Nhom HO HE 

 

HWE p-value 

G1A 4 82 57 25 0.695 0.676 0.623 

G1D 1 82 0 82 0 0 NA 

G10B 3 81 38 43 0.469 0.393 0.188 

G10L 3 82 41 41 0.500 0.570 0.423 

G10M 3 24 4 20 0.167 0.542 0.0001* 

G10P 1 78 0 78 0 0 NA 

G10X 3 68 29 39 0.426 0.514 0.023 

 

* indicates significance after Bonferroni correction 
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Table 2.12.  Observed alleles for each locus with more than one allele for known individuals, 

number of alleles observed (n), and frequency of alleles from the American black bear central 

Georgia population from samples collected from 2003 to 2006 with the Paetkau markers. 

Locus Allele n Frequency 

G1A 183 21 0.128 

 188 25 0.152 

 190 79 0.482 

 196 39 0.238 

    

G10B 157 2 0.012 

 161 120 0.741 

 165 40 0.247 

    

G10L 134 32 0.195 

 136 97 0.592 

 155 35 0.213 

    

G10M 208 3 0.063 

 210 28 0.583 

 212 17 0.354 

G10X 137 27 0.199 

 139 89 0.654 

 145 20 0.147 
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Table 2.13.  Number of alleles (A), number of individuals analyzed (N), number of heterozygotes 

(Nhet) and homozygotes (Nhom) for the American black bear central Georgia population with 

individuals (n=84) from known tissue samples from 2003 to 2006 with the Sanderlin et al. 

(2009) tetranucleotide markers. 

 

Locus A N Nhet Nhom HO HE 

 

HWE p-value 

Bear10Y 5 84 41 43 0.488 0.454 0.871 

Bear12Y 3 84 48 36 0571 0.603 0.221 

Bear17G 4 81 58 23 0.716 0.672 0.748 

Bear19Y 4 80 48 32 0.600 0.658 0.225 

Bear30B 4 84 53 31 0.631 0.612 0.924 

Bear33B 4 82 52 30 0.634 0.631 0.795 

Bear35G 4 83 47 36 0.566 0.532 0.462 

Bear36 2 84 46 38 0.548 0.503 0.513 
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Table 2.14.  Observed alleles for each locus and allele frequencies from the American black bear 

central Georgia population with known individuals (n=84) from tissue and blood samples 

collected from 2003-2006 with the Sanderlin et al. (2009) tetranucleotide markers. 

Locus Allele n Frequency 

Bear10Y 238 3 0.018 

  262 35 0.208 

  290 1 0.006 

 294 119 0.708 

 298 10 0.060 

    

Bear12Y 248 21 0.125 

 256 79 0.470 

 260 68 0.405 

    

Bear17G 185 56 0.346 

 193 47 0.290 

 197 58 0.358 

 201 1 0.006 
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Table 2.14 (continued) 

Locus Allele n Frequency 

Bear19Y 356 34 0.213 

  359 2 0.013 

  371 65 0.406 

 375 58 0.369 

    

Bear 30B 439 47 0.280 

 443 27 0.161 

 447 90 0.536 

 451 4 0.024 

Bear 33B 272 83 0.506 

 286 51 0.311 

 292 22 0.134 

 302 8 0.049 

    

Bear 35G 216 1 0.006 

 220 30 0.181 

 224 106 0.639 

 228 29 0.175 

    

Bear 36 198 82 0.488 

 207 86 0.512 
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Table 2.15. Number of hair snare genetic samples with data at all 8 loci for the America black 

bear central Georgia population from 2003 to 2006. 

 

        Web1             

Year/Season A B C D E F G H I Total 

2003 Fall 17 - - - - - - - - 17 

2004 Summer 33 5 - - 7 - 19 - 6 70 

2004 Fall - 7 1 7 0 20 - 3 - 38 

2005 Summer 28 10 3 4 - 16 9 11 20 101 

2005 Fall 16 9 1 14 - 13 - - 21 74 

2006 Summer 42 35 1 7 - 32 - - 28 145 

Total 136 66 6 32 7 81 28 14 75 445 

 

1 Webs that were not sampled during the year and season combination are marked with a ‘-‘. 
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Table 2.16. Number of unique individuals detected with genetic hair samples at all 8 loci for the 

American black bear central Georgia population from 2003 to 2006.  

 

        Web1             

Year/Season A B C D E F G H I Total 

2003 Fall 14 - - - - - - - - 14 

2004 Summer 21 5 - - 6 - 8 - 5 45 

2004 Fall - 5 1 5 0 11 - 2 - 24 

2005 Summer 14 8 3 4 - 14 8 5 10 66 

2005 Fall 11 6 1 4 - 9 - - 9 40 

2006 Summer 18 12 1 5 - 20 - - 9 65 

Total 78 36 6 18 6 54 16 7 33 254 

 
 
1 Webs that were not sampled during the year and season combination are marked with a ‘-‘. 
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Table 2.17.  Minimum Known Alive in the American black bear central Georgia population from 

2003 to 2007.  

 
 

Year (date) Number 

radiocollared

1 

Number 

censored1,2 

Mortalities1,2 Total Other3 Total 

Known 

(alive+dead) 

Minimum 

Known 

Alive 

2003 (9/1) 25 3 0 5 30 26 

2004 (9/1) 31 10 3 1 35 32 

2005 (9/1) 26 17 5 9 40 26 

2006 (9/1) 29 16 1 4 34 29 

2007 (5/15) 21 5 2 2 25 21 

 
1 This summary includes the Sandersville male nuisance mortality, Altanta female and 2 capture 

mortalities (1 initial capture, 1 recapture)  

2 Number of censored and mortalities of bears with radiocollars indicates the number of bears 

censored from collar drops or lost collar and/or any mortality since the previous date and year (or 

the start of the study for the first record) 

3 Unmarked, but known-fate bears from capture mortalities, vehicle collisions, illegal harvest, 

and legal harvest. There are 2 captures of bears that were unmarked, but alive included in this 

column: a male bear in 2003 (9/1) (B-00) and a male bear in 2004 (9/1) (B-30). 
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Table 2.18.  Number of alleles (A), number of individuals analyzed (N), number of heterozygotes 

(Nhet) and homozygotes (Nhom) for the American black bear central Georgia population with 

individuals (n=184 unique individuals) from observed hair samples collected at hair snares from 

2003 to 2006 with the Sanderlin et al. (2009) tetranucleotide markers. 

 

Locus A N Nhet Nhom HO HE 

 

HWE p-value 

Bear10Y 8 184 85 99 0.462 0.434 0.092 

Bear12Y 4 184 113 71 0.614 0.607 0.104 

Bear17G 8 184 122 62 0.663 0.684 0.004* 

Bear19Y 4 184 113 71 0.614 0.659 0.059 

Bear30B 4 184 104 80 0.565 0.594 0.522 

Bear33B 7 184 100 84 0.543 0.616 <0.001* 

Bear35G 4 184 112 72 0.609 0.532 0.084 

Bear36 4 184 93 91 0.505 0.496 <0.001* 

 

• indicates significance after Bonferroni correction 
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Table 2.19.  Observed alleles for each locus and allele frequencies from the American black bear 

central Georgia population with unique individuals (n=184) from observed hair samples 

collected at hair snares from 2003-2006 with the Sanderlin et al. (2009) tetranucleotide markers. 

 

Locus Allele n Frequency 

Bear10Y 217 2 0.0054 

  238 11 0.0299 

  262 64 0.1739 

  270 2 0.0054 

  286 1  0.0027 

 290 5 0.0136 

 294 269 0.7310 

 298 14 0.0380 

Bear12Y 248 48 0.1304 

 252 4 0.0109 

 256 133 0.3614 

 260 183 0.4973 

Bear17G 181 2 0.0054 

 185 122 0.3315 

 189 1 0.0027 

 193 121 0.3288 

 197 116 0.3152 

 201 3 0.0082 
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Table 2.19.  (continued) 

Locus Allele n Frequency 

Bear 17G 205 1 0.0027 

 213 2 0.0054 

Bear19Y 356 91 0.2473 

 359 2 0.0054 

 371 149 0.4049 

 375 126 0.3424 

Bear30B 439 112 0.3043 

 443 55 0.1495 

 447 199 0.5408 

 451 2 0.0054 

Bear33B 268 4 0.0109 

 270 7 0.0190 

 272 201 0.5462 

 274 3 0.0082 

 286 97 0.2636 

 292 47 0.1277 

 302 9 0.0245 
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Table 2.19 (continued) 

 

Locus Allele n Frequency 

Bear35G 216 2 0.0054 

 220 82 0.2228 

 224 233 0.6332 

  228 51 0.1386 

     

Bear 36  191 8 0.0054 

  198 215 0.5842 

 202 2 0.0054 

 207 149 0.4049 
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Table 2.20. Parameter median, lower and upper 95% BCI for summer 2004 of the American 

black bear central Georgia population. 

Parameter Median 95% Lower BCI 95% Upper BCI 

p 0.052 0.034 0.076 

Ntot 213 144 354 

r 0.009 0.004 0.019 

θ 0.224 0.128 0.337 

λ 15.255 9.895 25.382 

N1 27 21 39 

N2 9 5 19 

N3 15 7 29 

N4 15 7 29 

N5 10 4 21 

N6 15 7 29 

N7 17 12 30 

N8 15 7 29 

N9 12 6 24 

N10 15 7 29 

N11 15 7 29 

N12 15 7 29 

N13 15 7 29 

N14 15 7 29 
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Table 2.20. (continued) Parameter median, lower and upper 95% BCI for summer 2004 of the 

American black bear central Georgia population. 

 

Parameter Median 95% Lower BCI 95% Upper BCI 

d0 0.228 0.118 0.379 

d1 0.084 0.038 0.162 

d4 0.089 0.038 0.175 

d6 0.156 0.078 0.269 

d8 0.107 0.047 0.207 

pw,1 0.132 0.085 0.197 

pw,2 0.046 0.020 0.085 

pw,3 0.073 0.032 0.129 

pw,4 0.073 0.031 0.129 

pw,5 0.049 0.020 0.090 

pw,6 0.073 0.031 0.129 

pw,7 0.126 0.081 0.190 

pw,8 0.073 0.032 0.130 

pw,9 0.065 0.032 0.112 

pw,10 0.073 0.032 0.130 

pw,11 0.073 0.032 0.130 

pw,12 0.073 0.031 0.130 

pw,13 0.073 0.032 0.129 

pw,14 0.073 0.032 0.129 
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Table 2.21. Parameter median, lower and upper 95% BCI for fall 2004 of the American black 

bear central Georgia population. 

 

Parameter Median 95% Lower BCI 95% Upper BCI 

p 0.039 0.023 0.062 

Ntot 106 72 179 

r 0.015 0.007 0.029 

θ 0.213 0.119 0.324 

λ 7.590 4.823 13.064 

N1 8 2 16 

N2 10 7 17 

N3 4 2 10 

N4 9 7 16 

N5 2 0 8 

N6 13 10 20 

N7 7 2 16 

N8 6 4 12 

N9 8 2 16 

N10 8 2 16 

N11 8 2 16 

N12 8 2 16 

N13 7 2 16 

N14 8 2 16 
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Table 2.21. (continued) Parameter median, lower and upper 95% BCI for fall 2004 of the 

American black bear central Georgia population. 

Parameter Median 95% Lower BCI 95% Upper BCI 

d2 0.141 0.069 0.255 

d3 0.063 0.024 0.136 

d4 0.136 0.067 0.243 

d5 0.030 0.000 0.101 

d6 0.175 0.089 0.302 

d8 0.090 0.041 0.180 

pw,1 0.075 0.021 0.158 

pw,2 0.130 0.075 0.209 

pw,3 0.045 0.014 0.098 

pw,4 0.127 0.072 0.206 

pw,5 0.021 0.002 0.068 

pw,6 0.128 0.073 0.205 

pw,7 0.075 0.021 0.159 

pw,8 0.081 0.039 0.146 

pw,9 0.075 0.021 0.158 

pw,10 0.075 0.021 0.159 

pw,11 0.075 0.020 0.157 

pw,12 0.075 0.021 0.158 

pw,13 0.075 0.021 0.157 

pw,14 0.075 0.021 0.158 
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Table 2.22. Parameter median, lower and upper 95% BCI for summer 2005 of the American 

black bear central Georgia population. 

Parameter Median 95% Lower BCI 95% Upper BCI 

p 0.076 0.054 0.102 

Ntot 184 137 266 

r 0.037 0.023 0.055 

θ 0.227 0.151 0.317 

λ 13.165 9.331 19.376 

N1 18 13 26 

N2 14 9 21 

N3 5 3 11 

N4 10 6 18 

N5 13 6 23 

N6 19 13 28 

N7 16 10 25 

N8 10 5 17 

N9 13 10 21 

N10 13 6 23 

N11 13 6 23 

N12 13 6 23 

N13 13 6 23 

N14 13 6 23 
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Table 2.22. (continued) Parameter median, lower and upper 95% BCI for summer 2005 of the 

American black bear central Georgia population. 

 

Parameter Median 95% Lower BCI 95% Upper BCI 

d0 0.492 0.373 0.617 

d1 0.396 0.277 0.532 

d2 0.186 0.106 0.309 

d3 0.307 0.201 0.449 

d5 0.508 0.368 0.657 

d6 0.443 0.312 0.592 

d7 0.297 0.171 0.454 

d8 0.395 0.274 0.545 

pw,1 0.141 0.093 0.204 

pw,2 0.101 0.060 0.154 

pw,3 0.030 0.010 0.065 

pw,4 0.079 0.044 0.128 

pw,5 0.073 0.030 0.134 

pw,6 0.122 0.076 0.182 

pw,7 0.116 0.071 0.174 

pw,8 0.058 0.027 0.104 

pw,9 0.115 0.071 0.174 

pw,10 0.074 0.029 0.134 

pw,11 0.074 0.029 0.134 
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Table 2.22. (continued) Parameter median, lower and upper 95% BCI for summer 2005 of the 

American black bear central Georgia population. 

 

Parameter Median 95% Lower BCI 95% Upper BCI 

pw,12 0.074 0.029 0.134 

pw,13 0.074 0.029 0.134 

pw,14 0.073 0.030 0.134 
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Table 2.23. Parameter median, lower and upper 95% BCI for fall 2005 of the American black 

bear central Georgia population. 

 

Parameter Median 95% Lower BCI 95% Upper BCI 

p 0.030 0.016 0.050 

Ntot 131 91 207 

r 0.111 0.067 0.164 

θ 0.275 0.167 0.397 

λ 9.376 6.143 15.028 

N1 15 11 22 

N2 10 6 17 

N3 2 1 6 

N4 8 5 14 

N5 9 3 18 

N6 13 10 21 

N7 9 3 18 

N8 9 3 18 

N9 9 6 15 

N10 9 3 18 

N11 9 3 18 

N12 9 3 18 

N13 9 3 18 

N14 9 3 18 



 123 

Table 2.23. (continued) Parameter median, lower and upper 95% BCI for fall 2005 of the 

American black bear central Georgia population. 

Parameter Median 95% Lower BCI 95% Upper BCI 

d0 0.821 0.694 0.914 

d1 0.684 0.526 0.822 

d2 0.231 0.101 0.425 

d3 0.588 0.417 0.754 

d5 0.786 0.638 0.901 

d8 0.637 0.496 0.773 

pw,1 0.163 0.103 0.246 

pw,2 0.094 0.051 0.157 

pw,3 0.026 0.007 0.063 

pw,4 0.073 0.035 0.130 

pw,5 0.075 0.024 0.147 

pw,6 0.122 0.071 0.193 

pw,7 0.074 0.024 0.147 

pw,8 0.074 0.024 0.148 

pw,9 0.080 0.040 0.139 

pw,10 0.075 0.024 0.148 

pw,11 0.074 0.024 0.148 

pw,12 0.074 0.024 0.148 

pw,13 0.075 0.025 0.148 

pw,14 0.074 0.024 0.148 
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Table 2.24. Parameter median, lower and upper 95% BCI for summer 2006 of the American 

black bear central Georgia population. 

 

Parameter Median 95% Lower BCI 95% Upper BCI 

p 0.027 0.014 0.045 

Ntot 192 143 280 

r 0.040 0.024 0.060 

θ 0.308 0.206 0.413 

λ 13.729 9.782 20.413 

N1 21 17 30 

N2 15 11 23 

N3 3 1 8 

N4 9 6 16 

N5 14 6 24 

N6 20 16 28 

N7 14 6 24 

N8 14 6 24 

N9 13 8 22 

N10 14 6 24 

N11 14 6 24 

N12 14 6 24 

N13 14 6 24 

N14 14 6 24 
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Table 2.24. (continued) Parameter median, lower and upper 95% BCI for summer 2006 of the 

American black bear central Georgia population. 

Parameter Median 95% Lower BCI 95% Upper BCI 

d0 0.583 0.434 0.727 

d1 0.470 0.336 0.611 

d2 0.111 0.038 0.246 

d3 0.302 0.194 0.440 

d5 0.563 0.415 0.706 

d8 0.410 0.259 0.585 

pw,1 0.175 0.119 0.247 

pw,2 0.097 0.059 0.151 

pw,3 0.017 0.003 0.047 

pw,4 0.067 0.035 0.112 

pw,5 0.074 0.030 0.133 

pw,6 0.137 0.088 0.202 

pw,7 0.073 0.031 0.133 

pw,8 0.074 0.030 0.132 

pw,9 0.095 0.055 0.149 

pw,10 0.074 0.030 0.133 

pw,11 0.073 0.030 0.133 

pw,12 0.074 0.030 0.133 

pw,13 0.074 0.030 0.132 

pw,14 0.073 0.030 0.133 
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Figure 2.1.  Hair snare locations for the American black bear central Georgia population during year 2003. 
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Figure 2.2.  Hair snare locations for the American black bear central Georgia population during year 2004. 
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Figure 2.3.  Hair snare locations for the American black bear central Georgia population during year 2005. 



 129 

 

Figure 2.4.  Hair snare locations for the American black bear central Georgia population during year 2006. 
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 Figure 2.5.  Web locations with 2004 boundaries for the American black bear central Georgia population with Gap data. 
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Figure 2.6. Web locations for the American black bear central Georgia population with DEM data (meters above sea level), 2004 

boundaries.
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Figure 2.7. Web locations with 2003 boundaries from the American black bear central Georgia 

population. 
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Figure 2.8. Trapping web with of 27 hair snares (located at the intersection of a circle and line) 

with 3 snares at the center covering an area of 7 or 15 km2, depending on the location in the 

WMAs for the American black bear central Georgia population during the years 2003 to 2006. 
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Figure 2.9.  Barbed wire strands were placed 25 cm and 50 cm from the ground and baited with 

corn in a plastic bottle and anise oil to collect hair snare samples from the American 

black bear central Georgia population during the years 2003 to 2006. 
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Figure 2.10.  Histogram of the von Mises distribution with parameters θ=0, and κ=30.5 

(n=10,000 samples). The distribution was simulated using Python, version 2.5.2 (Python 

Software Foundation, http://python.org) and an algorithm for the von Mises distribution (Best 

and Fisher 1979). 
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Figure 2.11. Diagram of the hierarchical model incorporating the three data structures: camera, 

telemetry, and hair snare. This model is for population abundance of American black bears in the 

central Georgia population for the years 2004 to 2006.
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Figure 2.12.  Initial and recapture coordinates for American central Georgia population black 

bears from 2003.



 138 

 

 

Figure 2.13. Initial and recapture coordinates for American central Georgia population black 

bears in 2004.
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Figure 2.14. Initial and recapture coordinates for central Georgia population American black 

bears in 2005
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Figure 2.15. Initial and recapture coordinates for central Georgia population American black 

bears in 2006.
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Figure 2.16.  Capture coordinates for years 2003-2006 of initial and recaptured American central 
Georgia population black bears. 
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Figure 2.17.  Telemetry error for 10 observers for the central Georgia population American black 

bear study from years 2003-2006 (n=360 stations).  Angle error (x-axis) indicates the absolute 

value of the difference between the true angle and the observed angle at a specific station in a 

web. 
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Figure 2.18. Posterior distribution of total abundance (a) and trace (b) in year 2004, summer 

season for the American black bear central Georgia population from 2 chains of 50,000 MCMC 

iterations (25,000 burn-in period for each chain). 

a) 

b) 
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Figure 2.19. Posterior distribution of total abundance (a) and trace (b) in year 2004, fall season, 

for the American black bear central Georgia population from 2 chains of 50,000 MCMC 

iterations (25,000 burn-in period for each chain). 

a) 

b) 
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Figure 2.20. Posterior distribution of total abundance (a) and trace (b) in year 2005, summer 

season for the American black bear central Georgia population from 2 chains of 50,000 MCMC 

iterations (25,000 burn-in period for each chain). 

a) 

b) 
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Figure 2.21. Posterior distribution of total abundance (a) and trace (b) in year 2005, fall season, 

for the American black bear central Georgia population from 2 chains of 50,000 MCMC 

iterations (25,000 burn-in period for each chain). 

 

a) 

b) 
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Figure 2.22. Posterior distribution of total abundance (a) and trace (b) in year 2006, summer 

season, for the American black bear central Georgia population from 2 chains of 50,000 MCMC 

iterations (25,000 burn-in period for each chain). 

a) 

b) 
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Introduction 

Population viability models require information on survival and reproduction in a 

population.  These components provide information on the numbers of individuals that are added 

or deleted from a population.  The age and sex ratio of a population are also integral parts of a 

population viability model. The current age distribution at the current time t, along with survival 

and reproduction, predicts the future population size at time t+1.  For example, consider two 

populations of equal total population size and with the same survival and reproductive rates in all 

age classes.  One population has a higher proportion of young age classes than the other 

population. The first population will have a future population size that is larger, and a larger rate 

of population growth than the second population with a higher proportion of older age classes.   

Age stability and stationarity analyses can be conducted, but several assumptions are necessary 

(e.g., sampling probabilities are constant over time, sex, and age classes), and the data to 

construct these models are often difficult to collect (Williams et al. 2002).  Unbalanced sex ratios 

in populations may have genetic implications based on effective population size (Caballero 1994, 

Woodworth et al. 1994) and population growth (Brook et al. 2000), or be indicators of 

competition for resources (Hamilton 1967, Clark 1978). 

 

Survival 

Survival estimates reported from black bear populations in the eastern United States, 

specifically southeastern populations, tend to be high, with higher survival estimates in females 

than males (Table 3.1).  Reported causes of adult mortality include: legal harvest, illegal harvest, 

vehicle collisions, nuisance mortalities, cannibalism, natural causes, research handling, and 

unknown sources.  Eastern black bear populations have cub survival estimates ranging between 
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62 and 75% (Wathen 1983, Smith 1985, McLean 1991).  Causes of mortality for bear cubs 

include: abandonment in dens, natural accidents, disease, death of the mother, vehicle collisions, 

hunting, research handling of cubs (Elowe and Dodge 1989), and unique to the southeast, 

drowning in tree dens and other complications from flooded habitats (Smith 1985).  Of the 

possible causes of cub mortality listed previously, most cases are commonly attributed to food 

abundance and the nutrition of parturient females (Wathen 1983), which could cause cub 

abandonment in dens, disease, and mortality of the mother.  Subadult bears are more likely to 

disperse from a population, and may have lower survival rates than adults. Reported mortality 

rates for subadults vary between 15 to 35% annually (Bunnell and Tait 1985).  In conclusion, 

there are three main age classes for bears: cub, subadult, and adult.  As a result of the reported 

differences in mortality, for predictive population modeling, it is important to consider these 

three stages of survival. 

 

Reproduction 

In the eastern part of North America, black bears often live in habitats consisting of 

deciduous or mixed forests, which provide energy and nutrient-rich foods, such as berries and 

mast (Bunnell and Tait 1985). The average litter sizes per study, not necessarily per year, range 

from 2.15 to 2.74 from several studies, with an average of 2.42 among all the summarized 

studies (reported in Bunnell and Tait 1985). In the eastern United States, specifically 

southeastern populations, mean litter sizes per study range from 1.4 to 2.98 (Table 3.2).  Growth 

rates in the eastern United States are generally faster than western populations, ages of first 

reproduction are younger, and breeding interval is about 2 years (Bunnell and Tait 1985).  
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Reported ages of first reproduction in the eastern United States, specifically southeastern 

populations, range from 3 to 5.2, with mean birth intervals ranging from 2 to 2.4 (Table 3.2). 

Most female bears in North Georgia do not produce litters until age 4, and average about 

2.59 cubs per female every other year (Carlock et al. 1983).  The female bears in the other two 

populations from Georgia tend to reach an earlier age of maturity than the northern Georgia 

bears.  Female bears in Southeast Georgia, based on examination of reproductive tracts, have the 

capability to breed at 2.5 years (Abler 1985), and litter sizes range from 1-4 cubs per sow 

(

! 

x =2.1) (Dobey et al. 2005). 

A population viability model can be constructed from survival and reproduction estimates 

with both deterministic and stochastic population models.  Deterministic models require 

assumptions of constant survival and reproduction over time, no environmental or demographic 

stochasticity, and equal sampling probabilities over time, sex, and age classes. Demographic and 

environmental stochasticity are often important components of population viability models, 

because populations rarely meet all the assumptions of deterministic models.  Previous chapters 

have focused on abundance estimation for the central Georgia population.  The population 

abundance is an important component in a population viability model. However, these quantities 

alone do not necessarily provide information on the viability of a population.  The finite rate of 

population growth per-capita λ over one year indicates if a population is increasing (λ>1), 

decreasing (λ<1), or is constant (λ=1).  Without additional information on other vital rates, the 

reasons for the population increasing, decreasing, or remaining constant are unknown.  For 

example, a population may have a high abundance, but decreasing survival and low 

reproduction, which may lead to an unsustainable population.  Conversely, populations of 

smaller population size may have high rates of survival and high reproductive output, leading to 
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a sustainable population.  To properly manage populations with conservation applications or 

harvest management, all vital rates should be assessed in a population viability model.  The goal 

of this chapter is to assess the demographic rates of survival and reproduction in the central 

Georgia population, and include them in a population viability model.  Given the demographic 

rates and population viability analysis, an additional goal is assess the feasibility of an increase in 

harvest for the black bear CGP. 

 

Field Methods  

Physical Capture  

Bears were captured in the study area using Fremont foot trap snares (Fremont 1986) for 

four trapping seasons (May-August).  Bears were immobilized with a 2:1 mixture of ketamine 

hydrochloride (Ketaset) and xylazine hydrochloride (Rompun) at a dosage for estimated body 

weights by Georgia Department of Natural Resources personnel.  Culvert traps were used to trap 

and release nuisance bears to Oaky Woods WMA.  An upper pre-molar tooth for age estimation 

by cementum annuli analysis (Willey 1974), blood samples, hair follicles, and physiological data 

were collected from each captured bear.   Sectioning, staining, and aging of teeth were conducted 

by Matson Laboratories (Milltown, Montana). All bears were uniquely marked using a 

combination of collars, lip tattoos, and ear tags/streamers.  Most bears were fitted with Advanced 

Telemetry Systems (Isanti, MN) radio transmitter collars (VHF, very high frequency) equipped 

with mortality signal sensors and motion sensors and four male bears received radio collars that 

contained Global Positioning technology and a mortality switch. All collars fitted to bears during 

the project were equipped with either a mechanical timer release (GPS) or a degradable release 

tab (VHF). 



 

 

153 

Telemetry observations 

Telemetry bear signals were obtained by scanning all signals with the receiver and a whip 

antenna (Advanced Telemetry Systems, Isanti, MN) from vehicles.  Department of Natural 

Resources personnel monitored radiocollared bears at least once per week to determine the status 

of bears (alive, dead, or dropped collar) from the motion and mortality sensors equipped with the 

radio transmitter collars.  Any radio collar with a mortality signal was located within 1-2 days 

using first a whip antenna (Advanced Telemetry Systems, Isanti, MN) from vehicles to locate the 

general area of the collar, and then a 3-element yagi antenna (Advance Telemetry Systems, 

Isanti, MN) to determine the specific location of the collar in the field.  Once the collar was 

located, and a death had occurred, the cause of death was determined from visual inspection or 

via necropsy.  If the cause of death could not be determined, the cause was classified as 

‘unknown’.  The location of either the dropped collar or bear mortality was recorded with a 

Garmin GPS unit (Garmin International, Inc., Olathe, KS) using Universal Transverse Mercator 

(UTM) coordinates. 

 

Dead recoveries of unmarked bears 

Physiological data (e.g., age, weight, sex), when possible, were collected within 1 day 

(usually immediately) of reporting for dead recovery bears from legal kills and vehicle collisions 

by Georgia Department of Natural Resources personnel.  Dead recoveries also included illegal 

kills detected by Georgia DNR.  If the fate of a bear could not be classified, the cause of death 

was considered as  ‘unknown’.  
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Reproduction and den observations 

One method of obtaining estimates of reproduction is with female den observations.  

Other methods include field counts of cubs, examining the corpora lutea or taking note of 

placental scars.  Georgia DNR personnel monitored female bears during the winter months for 

den activity with radiotelemetry by first scanning telemetry from all radioed bears with a receiver 

and whip antenna (Advanced Telemetry Systems, Isanti, MN) from vehicles, and then taking 

locations with a 3-element yagi antenna (Advanced Telemetry Systems, Isanti, MN). From 

February to March, visual inspection of dens was conducted by first locating the den with a whip 

antenna (Advanced Telemetry Systems, Isanti, MN) from vehicles, and then a three-element yagi 

antenna (Advance Telemetry Systems, Isanti, MN) was used to locate the specific location of the 

den.  To minimize the risk of den abandonment, personnel approached dens as quietly as 

possible. Reproductive status was determined by visual observation or listening for young at den 

sites. 

Additional estimates of reproduction were based on data from cementum layers in the 

teeth extracted from physical capture, or known-fate at encounter bears. A thinner layer, or 

reduced deposition, in the tooth section is an indicator of a year during which a female black bear 

successfully reared a cub(s).  This has been documented for female black bears in northern 

Minnesota (Rogers 1975) and central Arizona (Carrel 1980).  Cementum characteristics vary 

greatly among black bear populations and individuals, therefore, not all teeth can be 

reconstructed for reproductive history (Matson Laboratories, Milltown, MT). 
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Statistical Analysis and Modeling 

Age and Sex Ratios 

Two separate medians and 95% CI and distributions of ages for females and males were 

calculated from: 1) physically captured bears (including capture mortalities), and 2) known-fate 

at encounter bears (i.e. illegal kills, legal kill, vehicle collisions).  To determine whether the sex 

ratio differed from 1:1, the z-test for comparing binomial proportions was used.  Differences in 

age by sex and age by weight for both sexes were tested with the nonparametric Kruskal-Wallis 

test (Gottfried 1971) using the program R (R Development Core Team 2008). The median 

weight and 95% CI for females and males was also calculated. The median and 95% CI and 

distribution of ages for both sexes for all years (2003-2006) of physical captures were also 

calculated to show any changes in age distribution within the study period.  All graphics were 

produced in program R (R Development Core Team 2008). 

 

Reproduction 

The median and 95% CI of the breeding interval and age of first reproduction were 

calculated from cementum layers in the teeth extracted from physical captured or unmarked dead 

recovery bears.  The natality rate or reproduction rate (b), or the number of cubs per adult female 

per year, was calculated by dividing the average litter size by the mean interval between 

reproduction events, or the interbirth interval (Stringham 1980, Bunnell and Tait 1985).   Since 

this quantity is composed of two independent means with respective variances, the variance of 

the reproduction rate with mean values can be approximated. An empirical variance was 

obtained through bootstrap simulation using 500,000 iterations in a Python program, version 
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2.5.2 (Python Software Foundation, http://python.org) of litter size from a Poisson distribution 

with the mean from central Georgia bears and a weighted mean from other eastern black bear 

studies.  A Poisson distribution is commonly used to simulate reproduction events or other forms 

of count data. Next, an interval between reproduction events was simulated from a log-normal 

distribution with mean and coefficient of variation (CV) from the central Georgia bears and the 

weighted mean from other eastern black bear studies. A log-normal distribution ensures the 

interval values will be positive, since negative intervals are impossible.  We also assume a 

normal distribution of intervals between reproduction events.  Finally, the litter size was divided 

by the interval between reproduction events. The variance of the distribution of values over the 

500,000 iterations was the approximate variance used in further modeling. The weighted means 

were weighted with normalized weights of sample size of the specific studies, wi, (i.e., 

! 
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Survival estimation from radiotelemetry data 

Annual survival for both sexes was estimated using the Kaplan-Meier product-limit 

model, allowing staggered entry and censoring (Pollock et al. 1989) with weekly time intervals.  

The estimated survival function was calculated as: 
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Ŝ is the probability of survival, dj is the number of deaths at time aj, rj is the number of animals 

at risk at time aj, aj is a particular time of death, and t is the week after the initiation of the study 

period each year (Pollock et al. 1989).  Estimates of variance were calculated as: 
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Then, 95% confidence intervals were calculated from the estimated probability of survival and 

its respective variance.  The Kaplan-Meier estimator is based on the following assumptions: 1) 

all animals were sampled randomly, 2) survival times were independent for individual animals, 

3) capturing or radiocollaring animals did not influence future survival, 4) censoring mechanisms 

were random, and 5) survival functions for newly marked animals were the same as for 

previously marked animals (Pollock et al. 1989).  The log-rank test (Pollock et al. 1989) was 

used to compare overall survival rates by sex. The overall annual survival rates were calculated 

using the geometric mean over all years, where   

! 

) 
S (t)  is the weekly survival estimate for all weeks 

in the study, and years is the total number of years for the study:  

  

! 

) 
S year =

) 
S (t)

1/ years 

 

Survival estimation from age-structure data 

Survival can also be estimated from age distribution data, either from age-specific 

(horizontal life tables) or from time-specific (vertical life tables).  If the population is at a stable 

age distribution and stationary (or λ is known for each year of observation), vertical life tables 

can be used to calculate age-specific survival rates.   Additionally, sampling probability is 
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assumed constant over time and among age classes.  The age structure data from initial physical 

captures and stochastic estimates of λ (see next section for calculation) were used to calculate a 

combined survival estimate for both sexes of sub-adults (age two) and adults (age three and 

over).  A sub-adult survival rate was not calculated for age one individuals because sampling 

bias may occur with this age group (i.e., leg snares are more likely to catch larger, and thus older 

bears).  The approach of Udevitz and Ballachey (1998) was used to calculate maximum 

likelihood estimates (MLE) of age-specific survival from age-structure data.  They show that the 

MLE of survival at age i is: 

  

! 
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x
i+1(t)"

x
i
(t)

, 

where x is the number of individuals in the specific age class i, and λ is the known population 

growth rate. Udevitz and Ballachey (1998) show that the variance of survival estimate can be 

derived from the delta method, with the additional variance of λ, if λ is independently estimated: 
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where n(t) is the sum of all individuals in each age class, and c(t) is the estimate of age class 

proportion. 

 

 Population viability analysis 

The survival and reproduction estimates, age ratio, and sex ratio from the central Georgia 

population were the main components of the population viability model.  When necessary, 

values from other bear populations in the Eastern United States, specifically cub and subadult 

survival and reproduction estimates, were pooled together to use in the overall population 

viability model.  Projections of population growth, or the finite range of population growth (λ), 

were calculated using matrix models and stochastic simulations. 
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A population projection matrix is a matrix consisting of age-specific survival (Si) for age 

class i, and reproduction (Fi), where F represents the fecundity or number of young produced by 

survivors that were in cohort i at time t. This matrix can be used, along with current abundances 

at each age class to project the future population size of each age class.  The population 

projection matrix we use has the standard form for the three age classes of cubs (age 0), 

subadults (ages 1 and 2), and adults (ages 3 and over).  Under this scenario, the fecundity and 

survival of the one and two year sub-adult age classes are equal (i.e., F1=F2 and S1=S2 ).  The 

standard form of the post-breeding model for the CGP bear population is: 
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where i indicates the age-specific class in years, Si represents age-specific survival, Ni represents 

the number of individuals in an age class, and Fi represents the number of young produced by 

survivors in the specific age class at time t. Fecundity (Fi ) is calculated by multiplying the 

reproduction rate (bi) described above by the age-specific survival (Si) and the proportion of 

females in the age class (sex ratio).   

The stable age distribution and λ were calculated for the CGP bear population using the 

population projection matrix.  The dominant eigenvalue represents λ and the eigenvector 

associated with the dominant eigenvalue represents the stable age distribution (Caswell 2001). 

The stable age distribution is when individuals in all age-classes expand exponentially at the 

same per capita rate of growth (Caswell 2001). Values of λ greater than one indicate population 

growth; while λ values less than one indicate population decline. Values of λ equal to one after  
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the stable age distribution is attained indicate the population size is not changing.  A population 

would require λ values greater than one to sustain harvest. 

Stochastic simulations of population growth for the bear CGP included as many 

parameter estimates from data collected in the CGP as possible.  Random survival rates were 

generated from a beta distribution, with parameters  α and β (described below), to constrain the 

random variables on the interval between zero and one and to allow modeling of heterogeneity. 

The survival rates were generated using the first two moments with survival mean and 

coefficient of variation (CV) estimates. The survival mean (

! 

x ) and sample variance (v), where 

v=(CV

! 

x )2, can be used to approximate a prior Beta distribution with the first two method-of-

moments estimates. The two parameters (α, β) for the Beta distribution are approximated by the 

following: 1) 

! 

" = x 
x (1# x )

v
#1

$ 

% 
& 

' 

( 
) , and 2) 
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" = (1# x )
x (1# x )

v
#1

$ 

% 
& 

' 

( 
) .  Sex-specific survival rates and 

sex-ratios were used for each age class.  Random recruitment was generated using a log-normal 

distribution, given mean estimates of reproduction rate and CV. The log-normal distribution 

restricts random values to be positive and still maintain a normal distribution. Two scenarios 

were used, one including reproductive values from bootstrap simulations and survival estimates 

from the CGP only and one with reproductive values from bootstrap simulations of derived 

parameters and survival estimates from multiple eastern black bear population studies.  Initial 

population size of both sexes was generated from the sample of radio-tagged bears from the CGP 

pooled across all years, as a representative sample of the population age and sex ratio.  

Population growth was monitored for 50 years, using 10,000 replications of the stochastic 

simulation process.  The number of times that the population went extinct for 50 years out of the 

total 10,000 replications was calculated as percent extinction probability. 
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Harvest analysis 

We assume a constant additive mortality hypothesis of harvest for models (Anderson and 

Burnham 1976).  The additive mortality hypothesis assumes as harvest mortality increases, the 

total annual mortality increases proportionately.  Annual survival probability (S(t)) would be 

modified by the harvest rate (h(t)) in the following manner:  

S(t)=S0[1-h(t)] 

A few scenarios of increased harvest (1%, 2%, 3%) were selected for analysis.  These absolute 

percentage increases in harvest are equivalent to harvest of 1-2 additional bears per harvest 

percentage.  The current harvest of bears in the CGP is about one bear every year to two years.  

We also assume harvest would be targeted towards adults, so only adult survival probabilities 

were modified.  Stochastic simulations, described above, of population growth with the extra 

parameter of harvest rate were used to determine if the harvest rate is sustainable (i.e., average λ 

over all replications is equal to or greater than one after a reduction in survival from harvest 

occurs).  The extinction probability over 50 years was also calculated for the increased harvest 

scenarios. 

 

Comparison with abundance data 

To assess the validity of demographic parameters used in the population viability 

analyses, the values of λ from the PVA were compared to apparent rates of change based on the 

yearly estimates of abundance of the WMA properties from the DNA hair snare, camera, and 

telemetry model of abundance.  Two λ values were calculated from one summer (mid-May-

August) to the next summer (mid-May-August) in 2004 to 2005 and 2005 to 2006.  This 

corresponds to the post-reproduction period for each year.  The values of λ were calculated from 
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the MCMC posterior distributions from chapter 2 of total abundance for years 2004, 2005, and 

2006.  Distributions, median values, and 95% Bayesian Credible Intervals (BCI) of λ were 

calculated using Python, version 2.5.2 (http://www.python.org). 

 

Results 

Data summary of physical captures 

From 2003 to 2006, 84 bears (53M: 31F) were captured (Table 3.3).  There were 16 

recaptures (10M: 6 F) from 2003 to 2006.  There were a total of 14 recoveries, or known-fate 

from the captured bears (12 M: 2 F) from 2003 to 2008.  This summary includes the Sandersville 

male (2005) and North Carolina female (2003), 3 untagged male bears (2003, 2004), 1 untagged 

female bear (2006), and 2 capture mortalities (1 initial capture in 2004, 1 recapture in 2004). 

There were a total of 31 bears in the dead recovery data set for age and weight distribution 

analyses (Table 3.4).  Successful den observations for 3 female bears in 2004, 3 females in 2005, 

3 females in 2006, and 3 females in 2007 were made (Table 3.5). 

 

Age and sex ratio   

The North Carolina female and Sandersville male were removed from this analysis.  The 

initial capture data set included all live-capture bears with radiocollars (50 M: 30 F), live-

captures without collars (1 M: 2 F), cub captures with live-capture bears (1 M: 2 F), and capture 

mortalities (2 M: 1 F). Age and/or weight measurements were not available for all individuals 

from this data set; hence the discrepancies between total sample sizes reported below.  The bear 

sex ratio from initial captures was 1.56 M: 1 F (n=89) and differed from 1:1 (z=2.014, p=0.044).  

The age distribution of females (n=34) differed from males (n=54) (

! 

"
05

2
= 7.168 , df=1, 
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p=0.007).  The median age of females (n=34) from initial captures was 6.0 years (95% CI: 4.4- 

6.7), ranging from 0.5 to 14 years, and the median age of males (n=54) from initial captures was 

3.0 (95% CI: 0.6- 6.7) years, ranging from 0.5 to 11 years (Figure 3.1, Figure 3.2). The median 

initial capture body mass of females (n=33) was 55.6 kg (95% CI: 50.8-59.8) and for males 

(n=51) was 81.6 kg (95% CI: 80.4-106.5) (Figure 3.3, Figure 3.4).  The distribution for female 

age by weight for initial captures had less variation as age increased than males (Figure 3.3, 

Figure 3.4). 

The median age for both sexes (n=31) from 2003 initial captures was 5.0 years (95% CI: 

4.5- 6.6), ranging from 1 to 14 years (Figure 3.5). The median age for both sexes (n=19) from 

2004 initial captures was 2.0 years (95% CI: 2.6- 5.1), ranging from 1 to 10 years (Figure 3.6). 

The median age for both sexes (n=15) from 2005 initial captures was 5.0 years (95% CI: 3.5- 

6.1), ranging from 1 to 11 years (Figure 3.7). The median age for both sexes (n=23) from 2006 

initial captures was 2.0 years (95% CI: 2.0- 4.0), ranging from 0.5 to 10.5 years (Figure 3.8).  

The age distribution from 2003 to 2006 did not differ much from year to year (Figure 3.9). 

The data set for dead recovery bears included illegal kills (0 M: 2 F), legal harvest (0 M: 

1 F), and bears from vehicle collisions (13 M: 7 F).  Again, age and/or weight measurements 

were not conducted on some individuals in the data set; hence the discrepancy below in total 

sample sizes.  The median age of females (n=8) from known-fates was 4.5 years (95% CI: 1.6- 

11.4), ranging from 0.5 to 18 years, and the median age of males (n=12) from known-fates was 

4.0 years (95% CI: 0.6- 8.6), ranging from 0.5 to 12 years (Figure 3.10, Figure 3.11). The median 

known-fate at encounter body mass of females (n=3) was 68.5 kg (95% CI: 49.2-96.2) and for 

males (n=5) was 117.9 kg (95% CI: 47.7- 142.2). 
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Reproduction  

The total number of female bears age 3 or older is 30, however, only 15 bears age 3 or 

older had reproduction data (50 %).  The mean age of first reproduction based on data from 

cementum annuli was 4.3 years (n=15, 95% CI: 4.0-4.7).  The mean breeding interval per 

female, based on data from cementum annuli, was 2.1 (n=8, 95% CI: 1.9-2.4).  There were 12 

successful observations of dens out of 20 total observations in central Georgia for years 2004-

2007.  The average number of cubs per female litter observed was 1.8 (n=12, 95% CI: 1.1-2.4) 

(Figure 3.12).  This was used to calculate reproduction rate pooled over all years of den 

observations and age classes. Due to small sample size and inconsistent effort, alternative 

approaches were also used to estimate reproduction rate.  

Two values of natality rate or reproduction rate (b), or number of cubs per adult female 

per year, were calculated. The first estimate of reproduction rate was calculated from the mean 

estimate of litter size from den observations and the mean interbirth interval from the cementum 

annuli from bears in central Georgia from this study.  Reproduction rate was determined directly 

through simulation using these two means, but we also report the means and distributions of litter 

size and interbirth interval for comparison to other eastern black bear populations. 

  The first estimate of reproduction rate from this study is 0.845 cubs per adult female per 

year (95% CI: 0.843-0.847) (Figure 3.13). The second estimate of reproduction rate was 

calculated from an analysis of 22 studies (including the CGP) of weighted mean litter size 

(

! 

x wt=2.45, CV=0.003), weighted by the normalized weights of study litter sample size, and 7 

studies (including the CGP) of weighted mean interbirth interval (

! 

x wt =2.15, CV=0.003),  
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weighted by the normalized weights of study sample sizes (Table 3.6, Table 3.7, Figure 3.14).  

The second estimate of reproduction rate is 1.139 cubs per adult female per year (95% CI: 1.137-

1.141). 

 

Survival estimation from telemetry data 

Survival was estimated using the non-parametric Kaplan-Meier approach with a 

staggered entry design on marked bears (n=81, M=51, F= 30) starting 31 March 2003 and ending 

23 June 2008 (273 weeks) for females and ending 5 November 2007 (240 weeks) for males, in 

weekly time intervals. The ending weeks for males and females differed because there were no 

more male bears with collars after 5 November 2007 due to censoring or mortalities, but a few 

female bears still had collars.  The North Carolina bear (female) and Sandersville bear (male), 

and 1 unmarked male bear were not included in the survival analysis.  The North Carolina and 

Sandersville bears were not considered residents of the central Georgia population.  The overall 

annual survival estimate was 0.845 (95% CI: 0.754-0.937) for males and 0.861 (95% CI: 0.746-

0.976) for females (Figure 3.15, Figure 3.16).  Annual survival rates varied from 0.754 to 1.000 

for males between the years of 2003 to 2007, and from 0.237 to 1.000 for females between the 

years of 2003 to 2008 (Table 3.8).  The difference between female and male survival functions 

was statistically significant using the log-rank test of significance (χ2 
1df =5.70, p=0.017).  The 

main source of mortality for bears with radiocollars was vehicle collision (Table 3.9).   

 

Survival estimation from age-structure data 

Under the assumption of age stability during the period of 2003 to 2006, an adult (ages 3 

and older) and sub-adult (age 2) survival estimate was calculated from the vertical table of initial 
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physical capture age structure data (n=88).  The mean sub-adult survival estimate was 0.622 

(95% CI: 0.568-0.676) and the adult survival estimate was 0.610 (95% CI: 0.565- 0.654), under 

the assumption of λs from mainly CGP data equal to 0.788 (see next section for calculation of 

λs).  The mean juvenile sub-adult estimate was 0.879 (95% CI: 0.830 -0.929) and the adult 

survival estimate was 0.862 (95% CI: 0.837- 0.887), under the assumption of λs from eastern 

black bear populations equal to 1.114 (see next section for calculation of λs).  

 

Population viability analysis 

Estimates of cub survival rate were calculated from an analysis of three eastern bear 

population studies (

! 

x =0.632, CV=0.034) (Table 3.10). Both sexes were pooled in this age class 

due to low sample size.  Estimates of sub-adult survival rate were calculated from an analysis of 

four eastern bear population studies, specifically, a study conducted on a population in Florida 

and Georgia (Dobey et al. 2005) (

! 

x females=0.863, CVfemales=0.019,

! 

x 
males

=0.543, CVmales=0.124) 

(Table 3.11).  Additional estimates of adult survival rate, weighted by normalized weights of 

study sample sizes, were calculated from an analysis of five eastern bear population studies, 

including the CGP (

! 

x wt, females =0.909, CVfemales=0.002,

! 

x 
wt,males

=0.767, CVmales=0.009) (Table 

3.12). Demographic parameter estimates for the population viability analysis included estimates 

mainly from the CGP (Table 3.13) and estimates pooled from eastern black bear populations 

(Table 3.14). 

Projections of population growth, or λ, were calculated using matrix models and 

stochastic simulations.  The stable age distribution and the deterministic population growth (λd) 

were calculated for the CGP bear population using the population projection matrix.  Both sexes 
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were pooled for all age classes, so average estimates of survival were used in the projection 

matrix.  Two projection matrices were used:  

1) with reproduction values from the CGP only,  

A1=

! 

0 0 0 0.845

0.632 0 0 0

0 0.700 0 0

0 0 0.700 0.853

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

2) with reproduction values from the analysis from eastern black bear populations, 

A2=

! 

0 0 0 1.139

0.632 0 0 0

0 0.700 0 0

0 0 0.700 0.838

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

The first projection matrix had a λd of 1.047, with a stable age distribution of 0.289 cubs, 0.174 

sub-adults (age class 1), 0.117 sub-adults (age class 2), and 0.420 adults. The second projection 

matrix had a λd of 1.076, with a stable age distribution of 0.323 cubs, 0.190 sub-adults (age class 

1), 0.123 sub-adults (age class 2), and 0.364 adults.  

Stochastic simulations of population growth (λs) for the bear CGP included as many 

parameter estimates from the CGP as possible. Two scenarios were used, one including 

reproductive values from bootstrap simulations and adult survival estimates of the CGP only 

(Table 3.13) and one with reproductive values from bootstrap simulations of derived parameters 

and adult survival estimates from eastern black bear populations (Table 3.14).  The λs for the 

first scenario was 0.788 (95% CI: 0.783-0.793) over 10,000 replications of 50 years each (Figure 

3.17). The mean final population size was 71 (95% CI: 0- 448) with 54.1 % of the replications 

resulting in extinction after 50 years (Figure 3.18).  The λs for the second scenario was 1.114 

(95% CI: 1.114- 1.115) over 10,000 replications of 50 years each (Figure 3.19).  The mean final 
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population size was 6,006 (95% CI: 1,059-15,092) with 0.0001 % of the replications resulting in 

extinction after 50 years (Figure 3.20).  

 

Harvest analysis 

Stochastic simulations of population growth for the bear CGP included as many 

parameter estimates from the CGP as possible. A few scenarios of increased harvest (0%, 1%, 

2%, 3%) were selected as possible scenarios.  Two sets of parameter estimates were used, one 

including reproductive values and adult survival estimates from the CGP only and one with 

reproductive values and adult survival estimates from eastern black bear populations.  The λs for 

the CGP only had values between 0.544 and 0.788 (Table 3.15).  Harvest cannot be sustained 

with the CGP mean lambda of 0.788 (95% CI: 0.783-0.793) over 10,000 replications of 50 years 

each (Figure 3.17).  All values of increased harvest had λs less than one, which indicates 

increased harvest is unsustainable under this scenario.  

 The λs for the analysis derived from estimates from eastern black bear populations had 

values between 1.090 and 1.114 (Table 3.15). The parameters that differed from this set and the 

CGP only data set were adult survival and reproductive values, which may indicate key 

parameters for population viability analyses since harvest sustainability was very different under 

the two parameter sets.  All scenarios of increased harvest rate had confidence intervals with a 

lower limit above one, which indicates increased harvest is sustainable up to 3% with these 

parameter values.  However, with a 7 % increase in harvest, under these parameter values, the 

mean λs was 0.999 (95% CI: 0.996-1.002) with 14.1 % of the replications resulting in extinction 

after 50 years. This indicates that a 7 % percentage of increase in harvest would be 

unsustainable. 
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Comparison with abundance data 

 Two values of λ from apparent rates of change were calculated, one from summer 2004 

to summer 2005, and the other from summer 2005 to summer 2006. From summer 2004 to 

summer 2005, the median value of λ was 0.861 (95% BCI: 0.484-1.478) (Figure 3.21). From 

summer 2005 to summer 2006, the median value of λ was 1.043 (95% BCI: 0.641-1.677) (Figure 

3.22).  The BCI coverage overlapped the values calculated in the population viability analysis.  

 

Discussion  

Age and Sex Ratio 

The sex ratio of captured bears and unmarked, but known-fate bears differed from 1:1, 

with more males than females captured or detected.  This is common in bear studies, and has 

been documented in other eastern U.S. black bear populations (Table 3.16).  Male black bears 

have a greater chance of encountering bait stations or being sighted due to increased travel 

distances and large home ranges; and as a result, a greater chance of being captured than female 

black bears (Hellgren and Vaughan 1989).  Male bears typically have larger home ranges 

(Garshelis and Pelton 1981, Rogers 1987), and disperse further than females for a variety of 

reasons, such as aggression (Pelton 1982), food shortage (Rogers 1987), and avoidance of 

inbreeding (Rogers 1987).  Therefore, an apparent sex ratio difference from this study does not 

necessarily indicate a true sex ratio difference, only that a sex ratio difference exists in the 

sample of bears, which primarily consist of captured bears.  Biases may exist in the dead 

recovery bears as well.  Sampling efforts and study design should attempt to mitigate these 

differences if one of the main goals is to estimate the true sex ratio.  Techniques, such as sex-

identification (Taberlet et al. 1993) with DNA from hair snares placed within the size of a bear 
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female home range, increase the capture probability of female bears and provide a more reliable 

view of the population sex ratio.  Sex-identification with genetic data does have associated errors 

(Bradley et al. 2001). 

Male bear behavior also leads to lower survival probabilities, thus leading to an age 

structure in males that is younger than females.  The bears in central Georgia had a significant 

difference between the female age distribution and the male age distribution, with females 

having a larger mean age at first capture.  The variation in female age was much larger than 

males, with the oldest female detected at 18 years of age.  The distribution of age frequencies did 

not vary much from year to year (mean age range over all years: 3.0-5.6), suggesting that the 

population may be at a stable age structure.  Hellgren (1988) suggests that exploited bear 

populations have mean ages of less than 4 years of age and are less than 55% adults, and 

unexploited bear populations have mean ages greater than 6 years and greater than 60% adults.  

With a limited hunting season (1 day per year) in central Georgia, one might a priori classify the 

population as unexploited.   The Georgia DNR documented four cases of illegal kills during the 

course of the study (one marked male bear, two unmarked female bears, one unmarked and 

unknown sex bear) of the central Georgia bear population.  This number is likely an 

underestimate for the total number of illegal kills, due to low detection rates.  The overall mean 

age of bears initially captured was 4.4, which means the bear CGP can neither be classified as an 

exploited or unexploited bear population using Hellgren’s rule (1988) described above.  The 

overall mean age for both sexes of the bears initially captured is similar to other populations in 

the southeastern U.S. (Table 3.17).  
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Reproduction  

Reproduction estimates (i.e. age of first reproduction, breeding interval, and ages at 

which female reared cubs) were based on data from female teeth.  These estimates were based on 

the assumption that information reported from Mattson’s Laboratory was accurate.  However, 

eight of the fifteen individual female bears with ages at which cubs were recorded as 

successfully reared were classified as "layer thinning for this year cannot be determined with 

certainty". Also, 7 out of 15 individual female bears had layer thinning for years in which years 

could not be judged because "criteria were absent, indistinct, or ambiguous".  This means that 

possible breeding intervals for these ages were not evaluated.  Carrel (1992) reported a few cases 

in which no light staining cementum was visible for very old females, leading to a source of error 

in aging old females.  However, unlike den observations, reconstruction of reproduction data 

from females indicates successful cub rearing and accounts for cub mortality (a female’s 

resources would not be allocated to cub rearing if the cub dies, thus the ring for that year would 

not be thin or indicate a ‘cub year’), so it is an approximation of reproduction (Carrel 1992).  

The mean age of first reproduction and mean breeding interval for central Georgia, based 

on the bears sampled, were similar to other estimates of these parameters in the southeastern 

region of the U. S. (Table 3.2).  The mean number of cubs per litter observed during den visits 

was low compared to other populations in the southeastern U.S. (Table 3.2).  It is important to 

note that most of the sample sizes for the other research studies in the table were much higher, so 

this difference may be due to a higher degree of variation in small sample sizes.  However, if this 

estimate is representative of the population, it is evidence of a low reproduction rate, an 

important parameter for predicting population viability models. 
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Survival 

Behavioral traits of male bears, such as increased rates of dispersal and large home 

ranges, may be responsible for observed lower rates of survival, as outlined in the discussion 

section on age and sex ratio. Similarly, the female annual survival rate was significantly higher 

than the male annual survival rate with the radiocollared bears in central Georgia.  The combined 

sex annual survival rate is similar to other populations in the southeastern U. S. (Table 3.1).  All 

causes of mortality observed in other studies, were also observed in central Georgia, including a 

possible case of cannibalism.  The highest sources of mortality with known bears from this 

population were anthropogenic in nature (vehicle collisions and illegal kills). 

The adult survival rate from age-structure data with the λs from eastern black bear 

populations was similar to the adult survival rate of both sexes calculated from radiotelemetry 

data.  If the assumption of a stable age structure is true for this analysis, this suggests that the 

population may have a λ closer to the eastern black bear population estimate, than the one with 

mainly CGP data.  The age-structure data analysis of survival also suggests little difference 

between adult and sub-adult estimates, however, only age class two individuals were included in 

this analysis due to inconsistent sampling effort of the younger age class. It is likely that the 

estimate is lower since sub-adults tend to have lower survival rates. 

 

Population viability and harvest analysis 

We did not have data for two main components (cub and sub-adult survival estimates) of 

the population viability analysis. Therefore, these estimates were based on studies of other 

populations of black bears in the eastern United States.  These reproduction data have limited 

value, due to low sample sizes and the associated biases of the types of data.  The sensitivity to 
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population growth and harvest analysis was evaluated with demographic estimates primarily 

from the CGP, as well as estimates from bear populations in the eastern United States. The CGP 

demographic estimates of reproductive rate were lower than estimates from other populations, 

which may just be a reflection of small sample size from reproduction data or, alternatively, it 

could be evidence of an area of concern for this population.  Also, the CGP sample size from 

radiotelemetry data of adult female survival was not too low (n=30), and was about 5% lower 

than the weighted female survival mean from black bear populations in the eastern United States.  

This could also indicate an area of concern for this population compared to other populations in 

the eastern United States.  Both scenarios of demographic parameters led to deterministic 

population growth estimates that were increasing, but just by a small amount.  This indicates that 

reproduction and adult female survival estimates are an integral component of the health of the 

population, and future sampling efforts should focus on obtaining a better estimate of the 

reproduction demographic rate. 

All values of increased harvest for the CGP produced λs < 1.0, which indicated increased 

harvest at any level with reproduction and adult survival estimates based on the CGP data would 

be unsustainable.  The λs for the analysis derived from estimates from eastern black bear 

populations had values greater than one.  All scenarios of increased harvest rate (below an 

increased harvest of 7%) had confidence intervals with a lower limit above one, which indicates 

increased harvest is sustainable with these parameter values.  The conclusions from the two data 

sets are very different, which may indicate that the CGP is sensitive to the parameters that differ 

between the two data sets.  The parameter values that differed from the two data sets were adult 

survival, particularly adult female survival, and reproductive values.  Future sampling efforts in 

the CGP should focus on estimating reproduction and cub and sub-adult survival rates to reduce 
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uncertainty in the population viability analysis.  Additional monitoring of female adult survival 

would also be ideal.  Since there is uncertainty in these key parameter values, the most 

conservative and recommended course of action is not to increase harvest in the CGP. 

The BCI coverage from apparent rates of change, calculated from the posterior 

distributions of total abundance from chapter 2, overlapped the values calculated in the 

population viability analysis.  This indicates that the values used in the population viability 

analysis are reasonable and are consistent with the apparent rates of change in abundance. 

Therefore, the conclusions based on increased harvest rates will also be consistent with the 

values of apparent rate of change from abundance models.  In conclusion, future sampling efforts 

in the CGP should focus on estimating reproduction and cub and sub-adult survival rates and 

abundance to reduce uncertainty in the population viability analysis and apparent rate of change 

from abundance models (see Chapter 2 discussion regarding abundance of age class models). 
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Table 3.1. Survival estimates reported from American black bear populations in the eastern US. 

 

a physical capture and telemetry , b physical capture, c apparent annual mortality rate, d roadkill 

and illegal kill 

* indicates subadult mortality rate 

LK= legal harvest, IK= illegal harvest, C= cannibalism, NAT= natural causes, N= nuisance, V= 

vehicle collision, R= research handling, U= unknown 

 

 

 

Location and Source 

Sample 

size 

Adult (>1 yr) 

annual survival 

rate Sources of mortality 

Great Dismal Swamp, E. Virginia and 

N.E.. North Carolina (Hellgren and 

Vaughn 1989) a 46  0.59 M, 0.87  

LK,C, V, IK 

(suspected),N, R 

White River NWR, Arkansas (Smith 

1985) a 26 0.95 LK, U 

Gum Swamp (Martorello 1998) a 29  0.83 (0.70-0.96) LK, U 

Big Pocosin (Martorello 1998) a 23 1.00 (0.88-1.00) none 

Camp Lejeune MCB, NC (Brandenburg 

1996) a 16   0.71 (0.56-0.87) V, LK, IK, NAT 

White Rock, Dry Creek (Clark 1991) a 31  0.977 NAT, V, IK, LK, N 
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Table 3.1 (continued) 

Location and Source Sample size 

Adult (>1 yr) annual 

survival rate 

Sources of 

mortality 

GSMNP (McLean 1991) b  0.78 

LK, IK, C, V, 

R,NAT,U 

Cherokee and Pisgah National 

Forest (Mclean 1991) b  0.7 LK, IK, V, R 

Southeastern GA (Abler 1985) c 43 0.82 M, 0.68 F  

 Southeastern NC (Hamilton 1978) c 66 0.72 M, 0.84 F  

Okefenokee Swamp, GA (Dobey et 

al. 2005) a 

 

68,10F*, 

6M * 0.89 (0.83-0.95 

LK, IK, NAT, V, 

N 

 

Ocmulgee River, central GA (Grahl 

1985) d 39 0.95 V, IK 

Osceola National Forest, FL (Dobey 

et al. 2005) a 21 , 9 * 0.97 (0.92-1.00) 

LK, IK, NAT, V, 

N 

 

a physical capture and telemetry , b physical capture, c apparent annual mortality rate, d roadkill 

and illegal kill 

* indicates subadult mortality rate 

LK= legal harvest, IK= illegal harvest, C= cannibalism, NAT= natural causes, N= nuisance, V= 

vehicle collision, R= research handling, U= unknown 
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Table 3.2. Reproduction estimates of eastern American black bear populations. Litter size 

methods are: D (den observations), FC (field count), CL (corpora lutea), and P (placental scars) 

Location and Source State Litter size 

method 

N litters Mean 

Litter 

size 

Age of first 

breeding 

Mean 

interbirth 

interval 

White River NWR 

(Smith 1985) 

AK D 10 2.3 4 2.4 

Dry Creek (Clark 

1991) 

AK D 20 2.25 

(0.22) 

  

White River (Clark 

1991) 

AK D 17 1.41 

(0.12) 

  

Florida (Harlow 1961) FL FC 10 2.2   

Osceola National 

Forest, FL (Dobey et 

al. 2005) 

FL D  22 (32 

bears) 

2.08 

(0.14) 

  

Southeastern GA 

(Abler 1985) 

GA CL 5 2   

Okefenokee Swamp, 

GA (Dobey et al. 

2005) 

GA D 34 (72 

bears 

2.1 

(0.11) 

  

Ocmulgee River, 

central GA (Grahl 

1985) 

GA FC 5 

females 

2   
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Table 3.2 (continued) 

Southeastern NC (Hamilton 

1978) NC CL, P 11 2.4   

North Carolina (Collins 1973) NC CL 30 1.8 4.2 2 

Camp Lejeune MCB 

(Brandenburg 1996) NC D 4 2.5   

Northeast Pennsylvania (Alt 

1989) PA  211 2.98   

GSMNP, CNF_Cherokee 

National Forest  (Wathen 1983) TN, NC D 19 2.58 5.2 (n=6) 2.15 

GSMNP (McLean 1991) TN, NC D 

81 *, 

23** 

1.96 *, 

1.96 ** 

4.82 

(n=11) 2.39 (n=18) 

Cherokee and Pisgah National 

Forest (Mclean 1991) TN, NC D 

32 *, 

11** 

2.25 *, 

1.91 ** 

3.6 

(n=10) 2.2 (n=5) 

Virginia (Stickley 1961) VA D 19 2.63   

Shenandoah NP (Carney 1985) VA  21 2  2.3 

Shenandoah NP (Kasbohm 

1994) VA  26 2.31   

Great Dismal Swamp (Hellgren 

and Vaughn 1989) 

VA, 

NC D,CL 12 2.1 3 2 

West Virginia (Alt 1989) WV   41 2.73     

* cubs, ** yearlings 
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Table 3.3. Live captures, recaptures and recoveries from American black bears in central 

Georgia.  Note: this summary includes the Sandersville male (2005) and North Carolina female 

(2003), 3 untagged male bears (2003, 2004), 1 untagged female bear (2006), and 2 capture 

mortalities (1 initial capture in 2004, 1 recapture in 2004). 

 

Number of Recaptures   

Year 

Number of  

Live Captures 2003 2004 2005 2006 

Number of  

Recoveries 

  Total M F Total M F M F M F M F Total M F 

2003 30 18 12 2 1 1 0 0 0 0 0 0 1 1 0 

2004 19 13 6 7 3 2 1 1 0 0 0 0 2 2 0 

2005 15 7 8 5 1 2 2 0 0 0 0 0 6 5 1 

2006 20 15 5 2 0 0 1 0 1 0 0 0 2 2 0 

2007 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 

2008 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

TOTAL 84 53 31 16 5 5 4 1 1 0 0 0 14 12 2 
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Table 3.4. Dead recovery bears from the American black bear central Georgia population (15 

M: 11 F) included in the age distribution analysis.  Additional unmarked bears were also 

included (2 M: 3F). The bears are summarized below by mortality cause or unmarked/no 

mortality and year of tooth extraction or estimated age. 

 

Year 2001 2002 2003 2004 2005 2006 2007 

Mortality Cause or 

Unmarked live capture M F M F M F M F M F M F M F 

  

TOTAL 

Capture mortality     2     1     3 

Vehicle collision 1  1  2 2  1 3 4 4  2  20 

Illegal kill        1  1     2 

Legal harvest          1     1 

Unmarked live capture     1 1     1 2   5 

TOTAL  1 0 1 0 5 3 0 2 3 7 5 2 2 0 31 
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Table 3.5. central Georgia population den observation data of American black bears from 2004 

to 2007.  An ‘*’ indicates the bear ran away before the resting location could be determined, and 

a ‘+’  indicates the estimate was based on the number of cubs heard making noise. 

Year Location Bear Observed Cubs cub age Cub weight (kg.) 

2004  20 1 4 6 weeks  

2004  25 1 2 6 weeks  

2004  26 1 2 6 weeks  

2005  27 1 0   

2005  37 1 2   

2005  43 1 2   

2005  44 * 0    

2005  48 * 0    

2006 OW 13 1 3 (1M, 2F) 6 weeks 1.36-1.7 

2006 Perry 18 1 0   

2006 Twiggs 62  1 1-2 +   

2007  25 * 0    

2007  75 * 0    

2007 OC 16 1 1 yearling  

2007 N. of 96 65 1 2 6 weeks  

2007  78 * 0    

2007  84 * 0    

2007 OW 76 1 2 (2F) 4 weeks 0.91-1.13 

2007  58 0    

2007  61 0    
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Table 3.6. Reproduction estimates of American black bear populations in the eastern United 

States used in analysis from multiple studies of mean litter size. The litter size methods include: 

D (den observations), FC (field count), CL (corpora lutea), P (placental scars). 

 

Study State 

Litter size 

method 

N (Litters unless 

marked F) 

Mean litter 

size 

Central GA (this study) GA D 12 1.8 

White River NWR (Smith 1985) AK D 10 2.3 

Dry Creek (Clark 1991) AK D 13 2.38 

White River (Clark 1991) AK D 14 1.36 

Florida (Harlow 1961) FL FC 10 2.2 

Osceola National Forest, FL (Dobey et al. 

2005) FL D  22 L, 104 F 2.1 

Southeastern GA (Abler 1985) GA CL 5 2 

Okefenokee Swamp, GA (Dobey et al. 2005) GA D 34 L, 72 F 2.1 

Ocmulgee River, central GA (Grahl 1985) GA FC 5 F 2 

Southeastern NC (Hamilton 1978) NC CL, P 11 2.4 

North Carolina (Collins 1973) NC CL 30 1.8 

Camp Lejeune MCB (Brandenburg 1996) NC D 4 2.5 

Northeast Pennsylvania (Alt 1989) PA  211 2.98 

GSMNP, CNF_Cherokee National Forest  

(Wathen 1983) TN, NC D 19 2.58 
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Study State 

Litter size 

method 

N (Litters unless 

marked F) 

Mean litter 

size 

GSMNP (McLean 1991) TN,NC D 83 1.99 

Cherokee and Pisgah National Forest (Mclean 

1991) TN,NC D 34 2.24 

Virginia (Stickley 1961) VA D 19 2.63 

Shenandoah NP (Carney 1985) VA  21 2 

Shenandoah NP (Kasbohm 1994) VA  26 2.31 

Great Dismal Swamp (Hellgren and Vaughn 

1989) VA, NC D,CL 12 2.1 

West Virginia (Alt 1989) WV  41 2.73 

GSMNP (Eiler et al. 1989) TN, NC D 22 2.59 
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Table 3.7. Reproduction estimates of American black bear populations in the Eastern United 

States used in analysis from multiple studies of mean interbirth interval. The litter size 

methods include: D (den observations), FC (field count), CL (corpora lutea), P (placental 

scars). 

 

Study State 

Litter 

size 

method N (Litters) 

Mean 

interbirth 

interval 

Central GA (this study) GA D 12 2.1 

White River NWR (Smith 1985) AK D 10 2.4 

North Carolina (Collins 1973) NC CL 30 2 

GSMNP, CNF_Cherokee National Forest  

(Wathen 1983) TN, NC D 19 2.15 

GSMNP (McLean 1991) TN,NC D 83 2.39 

Shenandoah NP (Carney 1985) VA  21 2.3 

Great Dismal Swamp (Hellgren and Vaughn 

1989) 

VA, 

NC D,CL 12 2 
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Table 3.8. Annual survival estimates, variance, standard error (SE), and 95% confidence 

intervals for male and female American black bears from the central Georgia population using 

the Kaplan-Meier approach with the staggered entry design for  years 2003 to 2008. 

 
  Males Females 

Year 

Survival 

estimate 

Survival 

variance 

Survival 

SE 

Survival 95% 

CI 

Survival 

estimate 

Survival 

variance 

Survival 

SE 

Survival 95% 

CI 

2003 0.908 0.004 0.067 (0.777-1.000) 1.000 0.000 0.000 (1.000-1.000) 

2004 1.000 0.000 0.000 (1.000-1.000) 1.000 0.000 0.000 (1.000-1.000) 

2005 0.851 0.005 0.072 (0.711-0.992) 0.909 0.004 0.060 (0.792-1.000) 

2006 0.875 0.004 0.065 (0.749-1.000) 1.000 0.000 0.000 (1.000-1.000) 

2007 0.754 0.010 0.100 (0.558-0.950) 1.000 0.000 0.000 (1.000-1.000) 

2008 N/A N/A N/A N/A 0.237 0.011 0.103 (0.034-0.439) 

         

Overall 0.845 0.002 0.047 (0.754-0.937) 0.861 0.003 0.059 (0.746-0.976) 
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Table 3.9. Sources of mortality for radiocollared bears in the central Georgia American black 

bear study. Other sources of mortality include: 2 capture mortalities (censored from analysis 

at capture mortality), 1 nuisance bear (removed from analysis entirely), 1 illegal kill, 1 

possible case of cannibalism and 2 unknown causes of death. 

 

Year 

Number of 

mortalities 

Number of 

vehicle collisions 

Number of male 

mortalities 

Number of female 

mortalities 

2003 1 0 1 0 

2004 2 0 2 0 

2005 6 5 5 1 

2006 2 1 2 0 

2007 2 1 2 0 

2008 1 0 0 1 

TOTAL 14 7 12 2 
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Table 3.10.  Studies with estimates of American black bear cub survival used in the central 

Georgia population population viability analyses. 

 

Location and Source Data type N Survival rate 

MA (Elowe & Dodge 1989) Direct observation 41 (21M, 20F) 0.38 M, 0.8 F 

Bunnell and Tait (1985) Literature review  0.70-0.75 

GSMNP (Eiler et al. 1989) Direct observation 29 0.621 
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Table 3.11.  Studies with estimates of sub-adult American black bear survival used in the 

population viability analyses for the central Georgia population. Data types include: PC (physical 

capture) and T (telemetry) 

 

Location and Source Data type N Survival rate 

Osceola National Forest, FL 

(Dobey et al. 2005) PC, T 9 F 0.95 

Okefenokee Swamp, GA (Dobey et 

al. 2005) PC, T 10 F, 6 M 0.94 F, 0.63 M 

MA (Elowe & Dodge 1989) Direct observations 8 M, 16 F 0.25 M, 0.8125 F 

Bunnell and Tait (1981) Literature review  0.65-0.85 
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Table 3.12.  Studies with estimates of adult American black bear survival used in the population 

viability analyses for the central Georgia population. All study data types were from physical 

captures and telemetry. Dashed lines indicate survival estimates for males were not available for 

that particular study. 

 

Location and Source Nf 

Female  survival 

rate (95%CI) Nm 

Male annual survival 

rate (95%CI) 

Great Dismal Swamp, VA, 

NC (Hellgren and Vaughn 

1989) 24 0.87 22 0.59 

White Rock, Dry Creek, AK 

(Clark 1991) 31 0.977 - - 

Okefenokee Swamp, GA 

(Dobey et al. 2005) 41 0.88 (0.81-0.95) 11 0.76 (0.57-0.96) 

Osceola National Forest, FL 

(Dobey et al. 2005) 21 0.98 (0.94-1.00) - - 

CGP (this study) 30 

0.861 (0.746-

0.976) 51 0.845 (0.754-0.937) 
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Table 3.13. Demographic parameter estimates primarily from the central Georgia population of American black bears used in 

population viability analyses.  The initial population sizes were pooled over all years of physical captures of the central Georgia 

population.  An equal sex-ratio was used in all analyses. 

 

Age class 
Age 

Class 
N Nm Nf 

Male survival2,3,4, 

Sm (CV) 

Female survival2,3,4, 

Sf (CV) 

Reproduction 

Rate1, b 

Mean 

litter 

size1 

Mean 

breeding 

interval1 (CV) 

Cubs 0 3 1 2 0.632 (0.034) 0.632 (0.034) 0 0 0 

Sub-adults 1 7 6 1 0.543 (0.124) 0.863 (0.019) 0 0 0 

Sub-adults 2 19 13 6 0.543 (0.124) 0.863 (0.019) 0 0 0 

Adults 3 59 34 25 0.845 (0.055) 0.861 (0.068) 0.845 1.79 2.1 (0.06) 

 

1 Estimates were calculated from central Georgia population data (n=12 observations of litters, n=8 females’ breeding intervals) 

2 Cub estimate was calculated from eastern black bear studies (n=3 studies) 

3 Sub-adult estimates were calculated from eastern black bear studies (n=4 studies) 

4 Adult survival was calculated from central Georgia population Kaplan-Meier estimates from telemetry data (n=81 bears) 
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Table 3.14. Demographic parameter estimates primarily from eastern American black bear studies, including the central Georgia 

population, used in population viability analyses.  The initial population sizes were pooled over all years of physical captures of the 

central Georgia population.  An equal sex-ratio was used in all analyses. 

 

Age class 
Age 

Class 
N Nm Nf 

Male survival2,3,4, 

Sm (CV) 

Female survival2,3,4, 

Sf (CV) 

Reproduction 

Rate1, b 

Mean 

litter 

size1 

Mean 

breeding 

interval1 (CV) 

Cubs 0 3 1 2 0.632 (0.034) 0.632 (0.034) 0 0 0 

Sub-adults 1 7 6 1 0.543 (0.124) 0.863 (0.019) 0 0 0 

Sub-adults 2 19 13 6 0.543 (0.124) 0.863 (0.019) 0 0 0 

Adults 3 59 34 25 0.767 (0.009) 0.909 (0.002) 1.137 2.45 2.15 (0.003) 

 

1 Estimates were calculated from a collection of eastern black bear populations (n=22 studies of mean litter size, n=7 studies of 

breeding intervals) 

2 Cub estimate was calculated from eastern black bear studies (n=3 studies) 

3 Sub-adult estimates were calculated from eastern black bear studies (n=4 studies) 

4 Adult estimates were calculated from eastern black bear studies (n=5 studies) 
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Table 3.15.  Increased harvest rate scenarios with stochastic simulations (n=10,000 replications) 

of λs using reproduction data from the American black bear central Georgia population only and 

from eastern American black bear populations. 

 

Increase in 

harvest rate 

λs (95 % CI) for 

CGP only 

% extinct for 

CGP only 

λs (95% CI) from 

eastern black bear 

populations 

% extinct from 

eastern black bear 

populations 

0% 0.788 (0.783-0.793) 0.542 1.114 (1.114-1.115) 0.0001 

1% 0.704 (0.699-0.710) 0.683 1.107 (0.107-1.108) 0.0003 

2% 0.615 (0.610-0.620) 0.814 1.100 (1.099-1.100) 0.0011 

3% 0.544 (0.540-0.549) 0.892 1.090 (1.089-1.090) 0.0034 
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Table 3.16.  Sex ratio of American black bears in research projects from the eastern United 

States.  The data types include: physical captures (PC) and harvest data (H). 

 

Location and Source State(s) 

Data 

type 

Sample 

size 

Sex ratio 

(M:100 F) 

Great Dismal Swamp (Hellgren and Vaughn 

1989) VA, NC PC 101 237 

White River NWR (Smith 1985) AR PC 64 156 

White Rock, Dry Creek (Clark 1991) AR PC 113 88 

Osceola National Forest (Dobey et al. 2005) FL PC 78 160 

Southeastern GA (Abler 1985) GA PC, H 43 72 

Okefenokee Swamp (Dobey et al. 2005) GA PC 127 149 

Ocmulgee River (Grahl 1985) GA PC 22 340 

Southeastern NC (Hamilton 1978) NC PC, H 66 194 

Gum Swamp (Martorello 1998) NC PC 136 116 

Big Pocosin (Martorello 1998) NC PC 77 88 

GSMNP (McLean 1991) TN, NC PC 312 92 

Pisgah National Forest (Mclean 1991) TN, NC PC 26 133 

Cherokee National Forest (McLean 1991) TN, NC PC 43 96 
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Table 3.17. Age structure of eastern United States American black bear populations.  All data 

types are from physical captures, unless specifically noted. 

Location and Source State Sample size 

! 

x 
total

 (sd) 

! 

x f  

(sd) 

! 

x 
m

 (sd) 

Great Dismal Swamp (Hellgren 

and Vaughn 1989) 

VA, 

NC 100 (30F:70M) 4.2 (0.3) 4 4.2 

Big & Montgomery Islands 

(White 1996) AR 12 (4F:8M)  8.5 4.5 

White Rock, Dry Creek (Clark 

1991) AR 113 (53M:60F)  

4.68 

(0.44) 

 4.58 

(0.57) 

Osceola National Forest (Dobey 

et al. 2005) FL 78 (30F:48M) 3.3 (0.28) 3.4 (0.45) 3.2 (0.36) 

Ocala NF (McCown et al. 2004) FL 126 (40F:86M)  4.8 4.4 

Okefenokee Swamp (Dobey et al. 

2005) GA 127 (51F:76M) 3.8 (0.21) 4.5 (0.33) 3.3 (0.25) 

Ocmulgee River (Grahl 1985) 1  GA 39 (6F:33M)  6.1 4.8 

Camp Lejeune MCB 

(Brandenburg 1996) NC 15 (12F:3M) 5.7 (1.45) 

 5.9 

(1.17) 

9.875 

(10) 

Gum Swamp, Big Pocosin 

(Martorello 1998) NC 123 4.2 (0.22)   

GSMNP (McLean 1991) 

TN, 

NC 

437 

(254M:183F) 

4.52 

(2.704) 

5.28 

(3.224) 3.92 (2.1) 
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Pisgah National Forest (Mclean 

1991) 

TN, 

NC 56 (30M:26F) 

3.86 

(2.631) 

4.46 

(3.256) 

3.33 

(1.84) 

Cherokee National Forest 

(McLean 1991) 

TN, 

NC 66 (39M:27F) 

3.74 

(2.037) 

3.28 

(1.761) 

4.06 

(2.171) 

      

 

1 Data from vehicle collisions and illegal kills were also included into these reported means
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Figure 3.1.  Age frequency of female American black bears at initial capture in Middle Georgia, 

2003-2006. 
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Figure 3.2. Age frequency of male American black bears at initial capture in Middle Georgia, 

2003-2006. 
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Figure 3.3.  Body mass (kg) of female American black bears at initial capture from Middle 

Georgia, 2003-2006. 
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Figure 3.4.  Body mass (kg) of male American black bears at initial capture from Middle 

Georgia, 2003-2006. 
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Figure 3.5.  Age frequency of American black bears at initial capture in Middle Georgia in 2003. 
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Figure 3.6.  Age frequency of American black bears at initial capture in Middle Georgia in 2004. 
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Figure 3.7.  Age frequency of American black bears at initial capture in Middle Georgia in 2005. 
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Figure 3.8.  Age frequency of American black bears at initial capture in Middle Georgia in 2006. 
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Figure 3.9.  Age frequency of all American black bears at initial capture in Middle Georgia from 

2003 to 2006 with a) all years combined, and b) separated by year. 

a) 

b) 
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Figure 3.10. Age frequency of dead recovery female American black bears in Middle Georgia, 

2003-2006. 
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Figure 3.11 Age frequency of dead recovery male American black bears in Middle Georgia, 

2001-2007.
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Figure 3.12. Number of cubs per litter from den observations of American black bears in Middle 

Georgia from 2003 to 2007 (n=12 bears). 
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Figure 3.13. Simulated distribution of reproduction rate for the central Georgia American black 

bear population using data from 2003 to 2007. 
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Figure 3.14. Simulated distribution of reproduction rate from eastern American black bear 

populations (n=22 studies). 
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Figure 3.15. Kaplan-Meier survival estimates for male American black bears by week for the 

central Georgia population from 2003 to 2008. Lower and upper confidence intervals are also 

displayed. 
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Figure 3.16. Kaplan-Meier survival estimates for female American black bears by week for the 

central Georgia population from 2003 to 2008. Lower and upper confidence intervals are also 

displayed. 
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Figure 3.17.  Stochastic simulations (n=10,000) of mean λs and 95 % CI lines over 50 years with 

reproduction and survival data from the central Georgia American black bear population and no 

harvest. 
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Figure 3.18.  Stochastic simulations (n=10,000) of American black bear abundance (N) and 95 % 

CI lines over 50 years with reproduction and survival data from the central Georgia population 

and no harvest. 

 



219 

 

Figure 3.19. Stochastic simulations (n=10,000) of mean λs and 95 % CI lines over 50 years with 

reproduction and survival data from eastern American black bear populations and no harvest. 
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Figure 3.20. Stochastic simulations (n=10,000) of black bear abundance (N) and 95 % CI lines 

over 50 years with reproduction and survival data eastern American black bear populations and 

no harvest.   
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Figure 3.21. American black bear distribution of λ from 2 chains of 50,000 MCMC iterations 

(25,000 burn-in period) from the three data structure joint model for total abundance, for the time 

period from summer 2004 to summer of 2005 in central Georgia. 
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Figure 3.22. American black bear distribution of λ from 2 chains of 50,000 MCMC iterations 

(25,000 burn-in period) from the three data structure joint model for total abundance, for the time 

period from summer 2005 to summer 2006 in central Georgia. 
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CHAPTER 4 

MANAGEMENT IMPLICATIONS AND CONCLUSIONS 

 

Management implications 

Bear management is often considered an exercise in ‘people management’.  Since bears 

are a wide-ranging species, they are more likely to have competing resources with humans. With 

the increase in human population growth in central Georgia and Georgia in general, the increase 

in human-bear conflicts is inevitable.  Efforts to minimize human-bear conflicts include: public 

education and setting aside protected areas for bears.  The highest source of mortality observed 

with marked bears from this study was from vehicle collisions.  To reduce vehicle kills, least 

costly methods include reducing traffic speeds in areas prone to vehicle mortality.  More costly 

strategies include building tunnels, building longer elevated road bridges over streams and rivers 

to allow continuity of a broad riparian vegetation, elevating highways in selected areas to create 

broad underpasses, and bridges over known locations where bears cross roads. 

Our results indicate that there may be evidence of a low reproduction rate with the CGP 

and low female survival rate, according to the population viability analyses.  These are important 

parameters in population viability models of the CGP.  Future efforts should focus on obtaining 

more observations of litter size per female, and other methods of assessing reproduction in the 

CGP.  Cub and sub-adult survival are also important aspects of a population viability model, and 

should be monitored for more accurate population viability analyses.  Since we did not have data 

for cub and sub-adult survival estimates, we are relying on the assumption that the CGP has 

similar survival estimates in the eastern United States. The age-structure data analysis of 
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sub-adults indicated that the sub-adult survival rate from eastern black bear populations was 

similar, so this assumption may be warranted.  Cub survival may not differ much from other 

populations in the Southeast.  Adult females are exposed to similar habitats in the southeastern 

United States, which leads to similar diets and nutrition, a key component of cub survival 

(Wathen 1983). 

Reproduction and survival estimates from mainly CGP data in the population viability 

analyses, indicated population growth estimates were decreasing.  Therefore, increases in harvest 

rate, with these estimates of survival and reproduction, would not be sustainable.  However, 

reproduction and survival estimates from eastern black bear populations in population viability 

analyses indicated the population was increasing, and could sustain an increase in harvest up to 

7%.  Since there is uncertainty in key values (e.g., cub and sub-adult survival, and reproduction), 

the most conservative and recommended course of action is not to increase harvest in the CGP. 

Preliminary estimates presented in Chapter 2 should be used as initial estimates of the 

WMA property in central Georgia for population viability models and harvest decisions.  Of 

particular interest is the population size for the central Georgia region, although our current 

efforts were focused on the WMA land.  The spatial relationship of density with respect to 

habitat may be quite different not on WMA land, which is why future models should incorporate 

a spatial-abundance relationship with explicit formulation of habitat covariates.  Currently, 

management decisions should only be focused on the WMA land, not the entire proposed 

expanse (~1200 km2) of the black bear range in central Georgia. 
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Future work 

The classification of the CGP regarding subspecies to either Ursus americanus 

americanus or Ursus americanus floridanus is not known.  Miller (1995) classifies the 

population as U. a. americanus, but there has not been a study since then to explore this 

assumption.  To investigate this assumption, multiple samples from other populations are needed 

to compare within and between population genetic variability.  We had tissue samples from only 

one of the three populations of black bears in Georgia.  The subspecies classification of the 

population may have management implications if the population is more closely related to the 

Florida black bear subspecies.  Future studies in Georgia should be focused on a larger scale 

encompassing the whole state of Georgia, with respective genetic samples from the other two 

populations.  Apparent rates of migration from the genetic studies would also be of interest.  One 

could infer the degree of genetic exchange among the populations, if there is any. Similarly, 

there does not exist a statewide study exploring the black bear distribution.  Occupancy samples 

on a county-by-county basis would be helpful for delineating populations or possible avenues of 

migration and genetic exchange. 

One avenue for populations with reduced genetic variability and/or population numbers is 

reintroduction. Bear reintroductions have been successful in the southeastern U.S. (Smith and 

Clark 1994, Eastridge and Clark 2001).  A preliminary study by Miller (1995) suggests that the 

Ocmulgee River population in central Georgia ‘may warrant protection as a distinct population 

due to low population size and a high degree of within-population similarity’.  We also found 

that the old Paetkau markers had low diversity, compared to other black bear populations in the 

Southeast.  However the tetranucleotide markers used in this study were not consistent with this 

pattern, since allelic diversity was similar to other southeastern black bear populations. 
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Optimal sampling designs under the joint data structure model would have applications to 

other bear and wildlife populations with similar sampling protocols.  An optimal sampling design 

for demographic parameter estimation, which we define as the design that maximizes the ratio of 

accuracy to cost, is important with limited resources.  The sampling design is influenced by the 

spatial and behavioral ecology of the study species, the amount of resources available, and the 

desired accuracy for the parameter of interest.  There is a trade-off between increasing effort to 

obtain increased sample observations, which likely increase accuracy of estimates, and costs 

(e.g., time and money) required to obtain the estimates.  An optimal sampling design with 

noninvasive sampling techniques, such as DNA hair traps, includes a laboratory component with 

the field component. Study objectives should guide where resources are allocated in a sample 

design, especially with future Georgia DNR resources for management of the CGP. 

One component of future abundance models of this population should explore ways of 

approximating the age class distribution from the abundance joint data structure model.  All age 

classes have the opportunity of being sampled with DNA hair snares, and camera trapping, 

however, it is not possible to distinguish age with DNA samples, unless the bear is a known 

captured bear.  The camera traps could be used as an approximation.  Another source of 

heterogeneity not accounted for is the difference between sexes in capture rate with the DNA 

hair snares or cameras.  The use of sex-ID markers in the genetic analysis should be considered 

in future efforts with this population to account for any sex biases, if they exist. 

The current joint data structure model assumes a constant capture probability with respect 

to time, behavior, and heterogeneity. Future models should incorporate this flexibility in a 

model-selection framework.  Also, a joint model of density and CMR samples with the trapping 

web design and Distance sampling methods would be of interest.  The current model also 
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includes limited information about the spatial relationship of bear density and habitat, thus future 

models could incorporate this relationship more explicitly (e.g., CAR models) described 

previously in chapter 2.   

 

Conclusions 

Estimating demographic parameters of cryptic species, like the black bear, is difficult 

because of their elusive nature.  Non-invasive sampling methods may be valuable for wildlife 

studies with consideration of incomplete detection, although there are biases associated with 

non-invasive methods that should be accounted for in statistical models. Bears tend to have low 

levels of genetic variation because of low population densities and low effective population sizes 

(Paetkau and Strobeck 1994).  These conditions may increase the difficulty of identifying 

individuals in capture-recapture studies. The southeastern black bear populations tend to be more 

fragmented than other populations in the United States. 

Grahl (1985) reported a population estimate of 64 (sd=18) bears using the Lincoln Index 

method for Ocmulgee River population in Georgia, which corresponded to a density of 0.323 

bears per km2.  Our results suggest a population size that is three times the preliminary estimate 

for the WMA land only, not all of Middle Georgia.  This could indicate population growth since 

1985.  However, comparisons between this preliminary estimate from 1985 and now may be 

weak, due to differences in population estimation techniques, scale of population inference, and 

the time that has elapsed since the first study in 1985. 

Hierarchical state-space models provide a way of linking observations from data, such as 

capture-mark-recapture (CMR) or occupancy samples, to the underlying ecological or state 

processes (Royle and Dorazio 2008).  Often, it is not possible to observe ecological processes 
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directly, and samples from a population or groups of populations are used to make inference on 

the processes.  One of the main goals of this study was to estimate abundance of black bears in 

central Georgia using a combination of several sources of data.  The common parameter of 

inference between the data sources was abundance, which could not be directly observed. This 

joint data structure model can be applied to other bear populations and other wildlife 

populations, especially those with noninvasive sampling techniques.   

The main objectives for this study were to estimate bear abundance in an efficient and 

accurate manner, in addition to other demographic parameters, specifically survival and 

reproduction of the CGP.  We used various sampling techniques for abundance, including 

noninvasive genetic sampling.  Since statistical models incorporating the three data structures 

(DNA hair snares, camera traps, and radiotelemetry) used to estimate abundance did not exist, 

we formulated hierarchical Bayesian statistical models incorporating the three data structures.  

The use of DNA hair snares introduces an additional source of error from genetic laboratory 

error, thus a model incorporating the three data structures and genetic error was developed.  This 

model has wide scale use for other bear populations and other wildlife species with multiple 

sampling techniques. 
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APPENDIX A. 

SIMULATION ANALYSIS OF JOINT DATA MODEL INCORPORATING THREE DATA 

STRUCTURES OF DNA HAIR SNARES, CAMERAS, AND TELEMETRY FOR 

AMERICAN BLACK BEAR CGP DATA 

 

A simulation analysis was conducted to evaluate model performance using the Python, 

version 2.5.2 (Python Software Foundation, http://python.org) programming language.  A few 

parameter levels (Table A.1) of simulated data from the three data structures were selected.  

Specifically, the percentage of webs sampled, the influence of different individual capture 

probabilities for camera data, and the presence of genetic error was evaluated.  A smaller sample 

size of total abundance was selected to increase the processing time of the simulations.  Since the 

simulated data was mainly from a small population size, a larger population size was selected for 

one simulation combination to evaluate an increase in sample size.  To evaluate if camera data 

assists with estimation of total abundance, one simulation combination included no camera data.  

 

Methods  

Data were simulated for each scenario using the parameter values from each simulation 

combination.  True abundance was simulated for 10 webs using the same Poisson distribution for 

each web.  The true genotypes were simulated using an even distribution of allelic frequencies 

for each locus for each individual.  True captures were simulated using a series of Bernoulli trials 
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for each individual in the population with the given capture probability for hair snares. Observed 

captures were modified from the true captures by permuting each individual and locus with the 

amount of genetic error given.  If the individual at a specific locus was a true homozygote, the 

true genotype was not modified. If the individual at a specific locus was a true heterozygote, one 

of the alleles was modified using the probability of genetic error from equation 2.21 in Chapter 2 

with equal probability of selection of another allele if it was chosen to have error.  The observed 

capture histories were then modified based on the number of times the observed unique 

individuals were captured.  All simulation combinations used 30% of the samples for genetic 

replication samples, also permuted through the genetic error process with equation 2.21 for true 

heterozygotes.  All simulation combinations used 25 samples as calibration samples, also 

permuted through the genetic error process with equation 2.21 for true heterozygotes.  Detection 

probability for cameras was calculated using the known r parameter and using equation 2.18 

from Chapter 2.  Camera detections were simulated on each sampled web using a binomial 

distribution with number of trials as the number of cameras and the detection probability 

calculated from equation 2.18.  All combinations included 50% of the true bears with collars. 

The true probability of being on a web (pw) was calculated as the true number of bears on the 

specific web divided by the total number of true bears in the population. The number of bears 

with collars on each sampled web was simulated from a binomial distribution with the number of 

trials as the total number of bears with collars in the population, and the probability of being on a 

web. The total number of bears with collars was modified with sampling without replacement for 

each successive web sampled.   

For each scenario, 100 replications of the simulation-MCMC estimation algorithm were 

processed in Python, version 2.5.2 (Python Software Foundation, http://python.org).  The 
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frequentist properties of Bayesian credible interval (BCI) percent coverage, BCI length, relative 

mean squared error (RMSE), and relative bias (RBIAS) were used to evaluate the following 

parameters: Ntot, r, θ, p, λ, and pw. Each replication of the simulation-MCMC process included 

10,000 iterations with a burn-in period of 5,000 iterations, a tuning period of 4,000 iterations and 

no thinning.     

The 95% Bayesian credible interval (BCI) coverage is the sum of the number of 

replications where the true parameters were contained in the BCI, divided by the total number of 

replications.  The BCI interval is the distance between the lower and upper 95% credible interval 

values. Relative root mean-squared error (RMSE) with r being the total number of replicates, i 

the individual replicate,   

! 
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i , the estimated parameter at replicate i, θi the true value of parameter 
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Results 

BCI coverage 

In general, an increase in the number of webs increased the BCI coverage for total 

abundance, individual capture probability for cameras and density (Table A.2).  The BCI 

coverage did not change with increased number of webs for CMR capture probability, genetic 

error, and the probability of being in the web parameters (Table A.2).  An increase in individual 

capture probability for cameras had an increase in coverage for individual capture probability for 

cameras and a slight increase in coverage with total abundance (Table A.2). The BCI coverage 

did not change with increased individual camera capture probability for CMR capture 

probability, genetic error, density, and the probability of being in the web parameters (Table 

A.2).  The only consistent pattern with an increase in the true genetic error for all parameters was 

an increase in coverage for the genetic error probability (Table A.2). 

The simulation combination with no cameras had lower BCI coverage for total 

abundance, CMR capture probability, and density (Table A.2).  The simulation combination with 

larger population size had lower BCI coverage for total abundance, CMR capture probability, 

and density, but higher BCI coverage for camera individual capture probability and genetic error 

(Table A.2). 

 

BCI length 

An increase in the number of webs increased the BCI length for total abundance, CMR 

capture probability, and density (Table A.3).  The BCI length did not change with increased 

number of webs for individual capture probability for cameras, genetic error, and the probability 

of being in the web parameters (Table A.3).  An increase in individual capture probability for 
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cameras had an increase in interval length for individual capture probability for cameras (Table 

A.3). The BCI length did not change with increased individual camera capture probability for 

CMR capture probability, genetic error, density, total abundance and the probability of being in 

the web parameters (Table A.3).  The only consistent pattern with an increase in the true genetic 

error for all parameters was an increase in BCI length for the genetic error probability (Table 

A.3). 

The simulation combination with no cameras had the same BCI length for all parameters 

(Table A.3).  The simulation combination with larger population size had lower BCI length for 

CMR capture probability, genetic error, density, and probability of being in a web, but higher 

BCI length for total abundance, camera and individual capture probability (Table A.3). 

 

Relative bias 

An increase in the number of webs decreased the positive relative bias for total 

abundance and density, and decreased the negative relative bias in capture probability (Table 

A.4).  The RBIAS did not change the negative values of individual capture probability for 

cameras, CMR capture probability, genetic error, and the probability of being in the web 

parameters (Table A.4).  An increase in individual capture probability for cameras had no 

consistent pattern for RBIAS over all parameters (Table A.4). The only consistent pattern with 

an increase in the true genetic error for all parameters was a decrease in RBIAS for the genetic 

error probability parameter (Table A.4). 

The simulation combination with no cameras had increased RBIAS for total abundance 

and density, but decreased RBIAS for CMR capture probability and probability of being in a web 

parameters (Table A.4).  The simulation combination with larger population size had lower 
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RBIAS for individual capture probability and genetic error probability, but higher RBIAS for 

total abundance and density (Table A.4). 

 

Relative root mean square error 

An increase in the number of webs increased accuracy (decreased RRMSE) for total 

abundance, CMR capture probability, individual capture probability for cameras, and density 

(Table A.5).  The RRMSE did not change with increased number of webs for individual capture 

probability for cameras, genetic error and the probability of being in the web parameters (Table 

A.5).  An increase in individual capture probability for cameras had an increase in accuracy 

(decrease in RRMSE) for individual capture probability for cameras (Table A.5). The RRMSE 

did not change with increased individual camera capture probability for CMR capture 

probability, genetic error, density, total abundance and the probability of being in the web 

parameters (Table A.5).  The only consistent pattern with an increase in the true genetic error for 

all parameters was an increase in accuracy (decrease RRMSE) for the genetic error probability 

(Table A.5). 

The simulation combination with no cameras had the same level of accuracy (RRMSE) 

for all parameters (Table A.5).  The simulation combination with larger population size had 

increased accuracy with total abundance, individual capture probability with cameras, CMR 

capture probability, genetic error, and density, but lower accuracy for probability of being in a 

web (Table A.5). 
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Discussion 

Number of webs sampled 

With an increase in sample size, or an increase in the number of webs sampled, BCI 

coverage and accuracy increased, and bias decreased for total abundance and density. This 

should be expected with samples size differences. There are implications for study design, where 

an increase in samples may increase coverage and decrease bias with an associated cost for each 

additional web sampled.  

 

Genetic error 

An increase in genetic error increased BCI coverage and BCI length, decreased relative 

bias, and increased accuracy of the genetic error parameter.  This could be a result of a low 

ability to detect genetic error with a small population size and small genetic error rate.  Changes 

in genetic error did not influence the rest of the model parameters with BCI coverage, interval 

length, RBIAS and RRMSE. 

 

Individual capture probability for cameras 

An increase in individual capture probability for cameras increased BCI coverage for 

individual capture probability for cameras and a slightly increased coverage with total 

abundance. There was also an increase in interval length and increase in accuracy for individual 

capture probability for cameras. There was no consistent pattern for bias over all parameters.  

These results may also reflect a sample size difference where increases in individual capture 

probability for cameras increases the amount of camera data available to estimate that capture 
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probably in a model.  Since there are a low number of replicates (12), this may have implications 

for estimating true individual capture probability for cameras. 

 

Joint data model with no camera data 

The simulation combination with no cameras compared to the simulation combination 

with camera data had lower BCI coverage for total abundance, CMR capture probability, and 

density.  The simulation combination with no cameras also had increased RBIAS for total 

abundance and density, but decreased RBIAS for CMR capture probability and probability of 

being in a web parameters.  These results provide evidence that the joint model with all three 

data structures leads to less bias and increased coverage for total abundance, the main parameter 

of interest in for the black bear CGP, compared to the joint model with just DNA hair snare data 

and telemetry. 

 

Large true population size 

The simulation combination with larger population size had lower BCI coverage for total 

abundance, CMR capture probability, and density, but higher BCI coverage for camera 

individual capture probability and genetic error.  Higher coverage and lower bias would be 

expected with individual capture probability and genetic error since the sample size for genetic 

samples is higher (more individuals lead to more errors) and there are more individuals that can 

be detected with cameras.  The reduced coverage in total abundance, and CMR capture 

probability may indicate some bias in the model (e.g., positive bias was also increased with 

higher population size). However, 0.87 and 0.90 coverage for abundance and CMR capture 

probability, respectively, is still relatively high.  The simulation combination with larger 
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population size had lower BCI length for CMR capture probability, genetic error, density, and 

probability of being in a web, which is probably due to the difference in sample size.  Finally, the 

simulation combination with larger population size had increased accuracy with total abundance, 

individual capture probability with cameras, CMR capture probability, genetic error, and density, 

but lower accuracy for probability of being in a web. This result for accuracy is expected with 

increases in sample size. 

In conclusion, these simulation results indicate that the joint model for three data 

structures used in the abundance models for the black bear CGP is valid for small and large 

population sizes, and robust to differences in individual capture probability for cameras and 

genetic error.  The inclusion of camera data with the joint model both increases parameter 

coverage and decreases bias with respect to total abundance, the most important parameter for 

black bear CGP abundance models.  Finally, the simulation results of varied effort in sampling (3 

versus 5 webs sampled) have implications for study design, where an increase in sampling effort 

increases coverage and decreases bias. However, there is an associated cost for each additional 

web sampled. This warrants future exploration for sampling effort with the different components 

(DNA hair snares, telemetry, camera replicates) versus cost for study designs under the joint data 

structure model for abundance. 
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Table A.1. Parameter values for simulation combinations of the joint data model incorporating 

DNA hair snares, cameras, and telemetry for American black bear CGP data.  

 

Parameter Simulation levels 

Webs sampled 3, 5 

Camera replicates 12 

Individual capture probability, r 0.01, 0.005 

Density, λ 5 

CMR capture probability, θ 0.40 

Collared bears (% of Ntot) 0.50 

Genetic error, p 0.01, 0.05 

Total combinations 8 
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Table A.2. 95% Bayesian credible interval (BCI) percent coverage for parameters Ntot, r, θ, p, λ, and pw, for all 10 webs for the joint 

data model incorporating DNA hair snares, cameras, and telemetry for American black bear CGP data.  Each simulation combination 

included 100 replications of the combination.  All combinations included 12 camera replicates, true λ of 5, CMR capture probability 

of 0.4, and 50% of the true bears with telemetry collars. ‘NC’ indicates no cameras and ‘LP’ indicates large population size. 

  ___True___ ______________________________BCI Coverage_______________________________  

Level Webs  r p Ntot r θ p λ pw1 pw2 pw3 pw4 pw5 pw6 pw7 pw8 pw9 pw10 

1 5 0.01 0.01 0.95 0.91 0.94 0.94 0.95 0.97 0.97 0.96 0.98 1.00 0.97 0.98 0.99 0.98 1.00 

2 3 0.01 0.01 0.92 0.84 0.93 0.96 0.93 0.99 0.99 1.00 0.99 0.99 0.98 0.96 0.97 0.96 0.98 

3 5 0.01 0.05 0.95 0.94 0.95 1.00 0.95 0.99 0.99 0.97 0.99 0.97 0.98 0.98 0.98 0.98 0.95 

4 3 0.01 0.05 0.94 0.82 0.95 0.97 0.93 1.00 0.99 0.98 0.96 0.99 0.95 0.94 0.98 0.98 0.99 

5 5 0.005 0.01 0.93 0.79 0.93 0.94 0.95 0.99 0.98 0.98 1.00 1.00 0.99 1.00 0.98 0.96 0.98 

6 3 0.005 0.01 0.93 0.61 0.96 0.94 0.91 0.97 0.99 1.00 0.97 0.97 0.95 0.97 0.94 0.97 0.98 

7 5 0.005 0.05 0.92 0.80 0.95 0.97 0.92 0.99 0.98 0.99 0.99 0.97 0.98 0.94 0.95 0.96 0.98 

8 3 0.005 0.05 0.90 0.61 0.94 0.95 0.96 0.99 0.98 0.99 0.98 0.98 0.95 0.97 0.98 0.97 0.99 

NC 5 0.01 0.01 0.92 - 0.92 0.96 0.92 0.99 0.98 0.98 1.00 0.99 0.98 0.97 0.95 0.99 0.98 

LP 10 0.01 0.01 0.87 0.99 0.9 0.96 0.85 0.98 0.98 0.98 0.98 0.94 0.97 0.95 0.98 0.98 0.96 
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Table A.3. Mean 95% Bayesian credible interval (BCI) length for parameters Ntot, r, θ, p, λ, and pw, for all 10 webs for the joint data 

model incorporating DNA hair snares, cameras, and telemetry for American black bear CGP data.  Each simulation combination 

included 100 replications of the combination.  All combinations included 12 camera replicates, true λ of 5, CMR capture probability 

of 0.4, and 50% of the true bears with telemetry collars. ‘NC’ indicates no cameras and ‘LP’ indicates large population size. 

  ___True___ _________________________________BCI length____________________________________ 

Level Webs r  p Ntot r θ p λ pw1 pw2 pw3 pw4 pw5 pw6 pw7 pw8 pw9 pw10 

1 5 0.01 0.01 48.53 0.04 0.27 0.04 5.73 0.15 0.14 0.15 0.14 0.13 0.22 0.22 0.22 0.21 0.22 

2 3 0.01 0.01 78.97 0.02 0.35 0.04 8.55 0.15 0.15 0.15 0.22 0.22 0.22 0.22 0.22 0.22 0.22 

3 5 0.01 0.05 48.82 0.02 0.28 0.07 5.74 0.14 0.14 0.14 0.15 0.14 0.22 0.22 0.22 0.22 0.22 

4 3 0.01 0.05 75.59 0.06 0.35 0.07 8.20 0.15 0.15 0.15 0.22 0.22 0.22 0.22 0.22 0.22 0.22 

5 5 0.005 0.01 48.94 0.01 0.27 0.04 5.76 0.14 0.14 0.14 0.14 0.14 0.21 0.21 0.21 0.21 0.21 

6 3 0.005 0.01 73.80 0.01 0.35 0.04 8.01 0.15 0.15 0.15 0.22 0.22 0.22 0.22 0.22 0.22 0.22 

7 5 0.005 0.05 47.09 0.01 0.28 0.07 5.60 0.14 0.15 0.14 0.14 0.14 0.22 0.22 0.22 0.22 0.22 

8 3 0.005 0.05 79.32 0.01 0.35 0.08 8.55 0.15 0.14 0.15 0.22 0.22 0.22 0.22 0.22 0.22 0.22 

NC 5 0.01 0.01 48.22 - 0.27 0.04 5.73 0.14 0.14 0.14 0.14 0.14 0.21 0.21 0.21 0.21 0.21 

LP 10 0.01 0.01 65.37 0.11 0.19 0.03 3.91 0.07 0.07 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 
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Table A.4. Relative bias (RBIAS) for parameters Ntot, r, θ, p, λ, and pw, for all 10 webs for the joint data model incorporating DNA 

hair snares, cameras, and telemetry for American black bear CGP data.  Each simulation combination included 100 replications of the 

combination.  All combinations included 12 camera replicates, true λ of 5, CMR capture probability of 0.4, and 50% of the true bears 

with telemetry collars. ‘NC’ indicates no cameras and ‘LP’ indicates large population size. 

  ___True___ __________________________________RBIAS_________________________________________ 

Level Webs  r  p Ntot r θ p λ pw1 pw2 pw3 pw4 pw5 pw6 pw7 pw8 pw9 pw10 

1 5 0.01 0.01 0.12 -0.21 -0.12 0.48 0.15 0.08 0.04 0.03 -0.04 -0.03 0.07 0.05 0.04 0.04 0.05 

2 3 0.01 0.01 0.18 -0.20 -0.13 0.37 0.19 0.03 0.04 -0.02 0.09 0.05 -0.05 0.10 0.22 0.03 0.11 

3 5 0.01 0.05 0.11 -0.11 -0.11 0.08 0.14 0.02 0.04 0.05 0.02 -0.05 0.05 0.01 0.05 0.12 0.05 

4 3 0.01 0.05 0.16 -0.22 -0.08 0.07 0.19 0.05 0.00 -0.01 0.09 0.06 0.12 0.06 0.05 0.00 0.13 

5 5 0.005 0.01 0.12 -0.10 -0.09 0.43 0.17 0.04 0.03 0.06 -0.02 -0.01 0.09 0.01 0.02 0.07 0.06 

6 3 0.005 0.01 0.25 -0.21 -0.09 0.50 0.28 0.03 0.03 0.03 0.10 0.10 0.03 0.08 0.12 0.00 0.04 

7 5 0.005 0.05 0.11 -0.17 -0.09 0.01 0.14 0.08 0.05 0.01 -0.03 -0.04 0.06 0.03 0.03 0.12 0.08 

8 3 0.005 0.05 0.18 -0.32 -0.12 0.12 0.21 0.06 0.02 0.02 0.04 0.12 0.09 0.08 0.00 0.08 0.07 

NC 5 0.01 0.01 0.15 - -0.10 0.48 0.19 0.05 0.00 0.00 -0.03 -0.06 0.09 0.08 0.05 0.09 0.11 

LP 10 0.01 0.01 0.15 0.03 -0.12 0.31 0.17 0.04 0.07 0.10 0.02 0.11 0.15 0.08 0.04 0.08 0.04 
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Table A.5. Relative root mean square error (RRMSE) for parameters Ntot, r, θ, p, λ, and pw, for all 10 webs for the joint data model 

incorporating DNA hair snares, cameras, and telemetry for American black bear CGP data.  Each simulation combination included 

100 replications of the combination.  All combinations included 12 camera replicates, true λ of 5, CMR capture probability of 0.4, and 

50% of the true bears with telemetry collars. ‘NC’ indicates no cameras and ‘LP’ indicates large population size. 

  ___True___ ____________________________________RRMSE___________________________________ 

Level Webs  r  p Ntot r θ p λ pw1 pw2 pw3 pw4 pw5 pw6 pw7 pw8 pw9 pw10 

1 5 0.01 0.01 0.25 0.57 0.21 0.92 0.29 0.26 0.29 0.29 0.27 0.27 0.38 0.44 0.38 0.43 0.37 

2 3 0.01 0.01 0.37 0.70 0.24 0.86 0.39 0.26 0.28 0.24 0.46 0.41 0.44 0.49 0.49 0.45 0.44 

3 5 0.01 0.05 0.21 0.58 0.20 0.27 0.26 0.24 0.23 0.35 0.22 0.27 0.43 0.42 0.44 0.51 0.42 

4 3 0.01 0.05 0.37 0.74 0.26 0.35 0.42 0.28 0.30 0.30 0.51 0.37 0.44 0.41 0.36 0.41 0.40 

5 5 0.005 0.01 0.25 0.82 0.21 0.86 0.30 0.27 0.26 0.24 0.26 0.26 0.37 0.39 0.41 0.43 0.42 

6 3 0.005 0.01 1.43 0.95 0.25 0.93 1.46 0.30 0.28 0.27 0.44 0.44 0.45 0.45 0.50 0.37 0.37 

7 5 0.005 0.05 0.24 0.77 0.20 0.31 0.28 0.28 0.28 0.26 0.26 0.28 0.42 0.45 0.46 0.47 0.43 

8 3 0.005 0.05 0.41 0.91 0.25 0.40 0.42 0.26 0.29 0.28 0.37 0.40 0.47 0.43 0.38 0.43 0.39 

NC 5 0.01 0.01 0.25 - 0.20 0.91 0.32 0.27 0.25 0.27 0.23 0.26 0.38 0.45 0.45 0.44 0.41 

LP 10 0.01 0.01 0.21 0.33 0.16 0.78 0.24 0.28 0.28 0.45 0.44 0.48 0.48 0.43 0.44 0.44 0.41 
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APPENDIX B 

METROPOLIS ALGRORITHM FOR UPDATING ABUNDANCE AND INDIVIDUAL 

CAPTURE PROBABILITY FROM CAMERA PARAMETERS FROM THE JOINT MODEL 

INCORPORATING THE THREE DATA STRUCTURES OF DNA HAIR SNARES, 

TELEMETRY, AND CAMERA TRAPS FOR CGP AMERICAN BLACK BEAR DATA 

 

Updating the camera parameter, r 

The probability of detecting occupancy di with the camera samples is a transformation of 

the individual probability of camera detection, r, and Ni, the abundance of bears on web i: 

! 

[d
i
] =1" (1" r)

N
i      (Equation B.1) 

The probability of individual detection from cameras is assumed constant among bears and 

among webs.  The conditional distribution of camera detections, Yi, on web i, given the 

probability of detection, di, follows a binomial sampling model, where each camera is an 

independent Bernoulli trial of bear detection: 

! 

[Yi | di] =
j

yi

" 

# 
$ 

% 

& 
' di

Yi (1( di)
j(Yi ,    (Equation B.2) 

where j is the total number of cameras or sites on web i.  Additionally, we assume that detection 

does not vary by occasion k, so j is condensed data consisting of the number of camera by 

occasion replicates in web i, and yi is the number of bear detections over all cameras*occasions 

in web i in one season.  
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A reasonable value of r was selected as the starting value with the Metropolis algorithm.  

The new proposed value of the parameter, r*, was generated from a normal distribution with 

mean log(r), to keep the value positive, and tuning parameter τr. The tuning parameter was 

adapted based on whether the previous proposed r was accepted or rejected.  Then, the ratio of 

binomial likelihoods (Equation B.1, B.2) of r given the camera data was calculated as follows, 

! 

rr =
p(r* | y)

p(r | y)
     (Equation B. 3) 

A uniform random variable was generated, and the proposed value, r*, was accepted with 

probability min(rr,1), and the previous value, r t-1, otherwise. 

 

Updating the abundance of sampled areas, Ni 

The full conditional distribution of abundance on sampled areas (Ni) is the joint 

distribution of the three data structures and the spatial model of N.  The full conditional 

likelihood is: 

  

! 

[{Ni} |•] = [{Yijk} | r,Ni][{Ni} | pwi
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(Equation B.4) 

where π0 is the probability of not being captured at least once over the three occasions (i.e., 

! 

"
0

= (1#$)3).  A sequential update of Ni was used, where Ntot of the current accepted Ni s were 

used in Ntot from the telemetry portion, or probability of a bear on a web. 
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For each Ni, a reasonable value of Ni was selected as the starting value with the 

Metropolis algorithm.  The new proposed value of the parameter, Ni
 *, was generated from a 

discrete uniform jumping distribution from the current value of Ni, and tuning parameter, τN , 

which controls how big the proposed jump will be. The tuning parameter was adapted based on 

whether the previous proposed N was accepted or rejected.  Then, the ratio abundance 

likelihoods (Equation B.4) of Ni given the DNA hair snare, telemetry, and camera data was 

calculated as follows, 

! 

rN=
p(Ni* | y)

p(Ni | y)
    (Equation B. 3) 

A uniform random variable was generated, and the proposed value, Ni
 *, was accepted with 

probability min(rN,1), and the previous value, Ni t-1, otherwise. 

Based on the dimension of a proposed value of N*, the genotype matrix G and the 

capture-history matrix are augmented (Tanner and Wong 1987) by N*- N rows.  Therefore, N 

could potentially change matrix dimensions if the proposed value, N*, is greater than N and is 

accepted, which utilizes this reversible jump Metropolis step, as in Wright et al. (2009).
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APPENDIX C. 

METHODS OF UPDATING TRUE GENOTYPES, TRUE CAPTURE HISTORIES, AND 

GENOTYPE FREQUENCIES FROM WRIGHT ET AL. (2009) FOR THE JOINT MODEL 

INCORPORATING THE THREE DATA STRUCTURES OF DNA HAIR SNARES, 

TELEMETRY, AND CAMERA TRAPS FOR CGP AMERICAN BLACK BEAR DATA 

 

 

The following description of updates of matrices and parameters follows directly from Wright et 

al. (2009), both with equations and notation. 

 

Updating true genotype matrix, G 

The true genotypes for each individual i and locus l are updated through direct sampling.  

The first step involves updating individuals that appeared in the observed samples.  For those 

individuals, we consider all values for G il  that are compatible with observed genotypes in all 

replicated samples where the individual appeared and do not result in an individual genotype,  G i 

, that is the same for any other individual in the population. Consider ki compatible genotypes 

with the kth one denoted as   

! 

G
il

(k ).  The contribution 

! 

"
il

(k ) made by individual i at locus l to the joint 

probability is: 

  

! 

"il
(k )

= Xij Pr(Gjlr

obs
| Gil

(k )
)

r=1

R

#
j=1

S

#
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xPr(Gil
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| +)



 249 

Where G (k) is the matrix G with element G il replaced by the proposed value of   

! 

G
il

(k ) and 

  

! 

Pr(Gjlr

obs
| Gil

(k )
) is given here and in Chapter 2.  For true heterozygotes ( 

! 

A
il1
" A

il2
), the probability 

of observing a true heterozygote is 1-p, while the probability of observing a homozygote is 

0.5*p, since there are 2 ways that an allele can drop out: 

  

! 

Pr(Gjlr

obs
| G jl ) =

1" pl Ail1r

obs # Ail2r

obs

0.5pl Ail1r

obs
= Ail2r

obs

$ 
% 
& 

 

Since we are only considering allelic dropout, the probability of observing a homozygous 

individual at locus l, replicate r, given that the true individual at locus l is homozygous is 1. 

Most 

! 

"
il

(k ) are zero, except when a sample is observed. Finally, considering all candidate values of 

G ij one is selected with probability for the kth one by: 

! 

"
il

(k )

"
il

(h )

h=1

K
i

#
 

For animals not in the samples, a value for G il is drawn directly from the multinomial 

distribution of genotype frequencies, so that the resulting genotype (across all loci) does not 

correspond to a genotype of any other animal in the population. 

 

Updating the true capture history matrix, X 

This step is also accomplished using direct sampling. It directly follows that a vector G 

(SxL) of true genotypes that appeared in the samples is the combination of X and G.  The capture 

history for one out of the three sessions for each sample i, is updated by swapping the capture 

history of all other individuals in the population that have compatible genotypes over all loci and 

then computing the contribution made by this switch, similar to the updating of true genotypes.  

Let X(j) denote the X-matrix associated with the jth switch and 
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! 

"ij = Pr(X
( j )
|N)Pr(Gi

obs
| Gi

( j )
, p)  

From the set of candidate G-matrices one is selected with probability

! 

"ij

"ij
h=1

N

#
  and the new value 

of X in the matrix X(j) associated with this choice and replaces the old value. 

 

Updating the genotype frequencies, γ 

Consider a parameter array γ comprised of L vectors γj, each of length lj=mj(mj+1)/2; 

these are the number of distinct genotypes gkj, at locus j.  A Dirichlet prior on vector γj (j=1,…,L) 

results in: 

! 

["
j
] =

#( $kj )
k=1

l j

%
#($kj )
j

&
" kj
$kj '1

k=1

l j

&  

and 
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l j
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#
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N
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L

#

 

where ykj is the number of the N individuals with genotype gkj at locus j. 

Therefore, we can obtain the full conditional distribution of the γ parameter: 

! 

[" |•] = " kj
ykj +#kj $1

k=1

l j

%
j=1

L

%  

This is the kernel of the joint distribution of L independent Dirichlet random variables, where the 

jth component has parameter vector {ykj+αkj} (k=1,….,lj) of dimension lj.  To simulate a draw 

from a Dirichlet distribution with parameters α1,…, αlj, we sample lj values from gamma 
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Ga(αk,1) distributions, where k=1,…,nj. Using the notation of yk for these gamma random 

variables, then a vector (x1,…,xlj) is a vector of Dirichlet random variables, where 

! 

xk =
yk

yh
h

"
. 
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APPENDIX D 

CENTRAL GEORGIA AMERICAN BLACK BEAR POPULATION CLOSED POPULATION 

MODEL RESULTS WITH PROGRAM MARK USING DNA HAIR SNARES FROM 2004 TO 

2006 

 

Closed population models from Program MARK (White and Burnham 1999) were used 

to assess capture heterogeneity with DNA hair snare data from the bear CGP.  The option ‘full 

closed captures with heterogeneity’ was selected in Program MARK (White and Burnham 1999).  

Each season was analyzed separately.  Behavior effects (Mb), time (Mt), individual heterogeneity 

(Mh) and web group effects (Mg), and combinations of the above were used to assess capture 

heterogeneity.   

Comparisons of competing models can be done in a model selection framework using the 

corrected version of Akaike’s Information Criterion (AICc) (Sugiura 1978), a modification of 

AIC (Akaike 1973) for small sample size, described below: 

    

! 

AICc = "2log(L(
) 
# )) + 2K

n

n "K "1

$ 

% 
& 

' 

( 
) , 

where     

! 

L(
) 
" )  is the likelihood of the estimated model parameters given the data, K is the number 

of parameters, and n is the effective sampling size.  The low AICc model is classified as the most 

likely model in a candidate model set.  
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All seasons had the Mbt model as the low AICc model, indicating that there is evidence of 

behavior and time heterogeneity in the DNA hair snare data, when genetic error is ignored 

(Tables D.1, D.2, D.3, D.4, D.5).  The group ‘web’ effect models, or the models where capture 

probability is different for each web, had no model weight for all seasons.  Therefore, this model 

was not selected as a potential model in Chapter 2.  The null model (M0) had some model weight, 

albeit a small amount, for most seasons.  This is the simplest model to implement in the joint 

model of DNA hair snares, cameras, and telemetry, and was selected for models in Chapter 2. 

Future work will incorporate behavior and time effects.  There also is some evidence of 

individual heterogeneity, according to the models presented here. 
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Table D. 1. Closed population MARK models from CMR hair snare data collected in Summer 

2004 for the American black bear CGP. The model, AICc, Δ AICc, AICc model weight, model 

likelihood, number of parameters (np), and model deviance are included. 

 

Model AICc Δ AICc AICc Weights Model Likelihood np Deviance 

Mbt 18.48 0.00 0.94 1.00 10 29.16 

Mbth 26.07 7.59 0.02 0.02 16 21.92 

M0 27.00 8.51 0.01 0.01 6 46.79 

Mb 28.96 10.48 0.01 0.01 7 46.53 

Mh 29.22 10.74 0.00 0.00 7 46.79 

Mg 29.29 10.81 0.00 0.00 10 39.97 

Mt 30.59 12.11 0.00 0.00 8 45.90 

Mbg 30.91 12.43 0.00 0.00 15 29.33 

Mbh 31.22 12.74 0.00 0.00 8 46.53 

Mgh 31.66 13.18 0.00 0.00 11 39.97 

Mbgh 33.49 15.01 0.00 0.00 16 29.34 

Mht 36.88 18.40 0.00 0.00 12 42.78 

Mgt 38.67 20.19 0.00 0.00 20 23.76 

Mbgt 51.72 33.24 0.00 0.00 30 6.29 

Mtgh 84.27 65.79 0.00 0.00 36 17.54 

Mtbgh 161.39 142.91 0.00 0.00 56 0.00 
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Table D. 2. Closed population MARK models from CMR hair snare data collected in Fall 2004 

for the American black bear CGP. The model, AICc, Δ AICc, AICc model weight, model 

likelihood, number of parameters (np), and model deviance are included. 

 

Model AICc Δ AICc 

AICc 

Weights 

Model 

Likelihood np Deviance 

Mbt  52.98 0.00 0.83 1.00 11 24.58 

Mth  57.68 4.70 0.08 0.10 13 23.50 

M0  59.34 6.35 0.03 0.04 7 41.45 

Mt  59.86 6.88 0.03 0.03 9 36.88 

Mb  61.62 8.64 0.01 0.01 8 41.22 

Mh  61.85 8.86 0.01 0.01 8 41.45 

Mbh 64.21 11.22 0.00 0.00 9 41.22 

Mbth 67.48 14.50 0.00 0.00 17 20.53 

Mg 70.02 17.03 0.00 0.00 12 38.77 

Mgh  72.95 19.97 0.00 0.00 13 38.77 

Mbg  83.80 30.82 0.00 0.00 18 33.37 

Mbgh  87.40 34.42 0.00 0.00 19 33.37 

Mgt  96.94 43.95 0.00 0.00 24 22.72 

Mbgt  151.42 98.43 0.00 0.00 36 7.10 

Mght  210.87 157.89 0.00 0.00 43 0.59 

Mbght 1437.93 1384.95 0.00 0.00 67 0.00 
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Table D. 3. Closed population MARK models from CMR hair snare data collected in Summer 

2005 for the American black bear CGP. The model, AICc, Δ AICc, AICc model weight, model 

likelihood, number of parameters (np), and model deviance are included. 

 

Model AICc Δ AICc AICc Weights Model Likelihood np Deviance 

Mbt 34.75 0.00 0.97 1.00 13 42.58 

Mbht 41.92 7.17 0.03 0.03 19 35.46 

Mt 55.45 20.70 0.00 0.00 11 67.84 

Mth 61.15 26.40 0.00 0.00 15 64.32 

M0 69.21 34.47 0.00 0.00 9 86.07 

Mb 69.53 34.78 0.00 0.00 10 84.16 

Mh 71.43 36.69 0.00 0.00 10 86.07 

Mbh 71.77 37.03 0.00 0.00 11 84.16 

Mgt 71.99 37.24 0.00 0.00 32 31.00 

Mg 77.28 42.53 0.00 0.00 16 78.08 

Mgh 79.68 44.93 0.00 0.00 17 78.09 

Mbg 89.16 54.41 0.00 0.00 24 70.03 

Mbgh 91.78 57.03 0.00 0.00 25 70.03 

Mbgt 97.87 63.12 0.00 0.00 48 6.10 

Mght 139.79 105.04 0.00 0.00 57 14.37 

Mbght 290.52 255.78 0.00 0.00 89 0.00 
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Table D. 4. Closed population MARK models from CMR hair snare data collected in Fall 2005 

for the American black bear CGP. The model, AICc, Δ AICc, AICc model weight, model 

likelihood, number of parameters (np), and model deviance are included. 

 

Model AICc Δ AICc AICc Weights Model Likelihood np Deviance 

Mbt 49.86 0.00 0.99 1.00 11 34.85 

M0 60.31 10.45 0.01 0.01 7 54.74 

Mt 62.30 12.44 0.00 0.00 9 52.10 

Mb 62.32 12.46 0.00 0.00 8 54.46 

Mh 62.61 12.75 0.00 0.00 8 54.74 

Mhbt 63.76 13.90 0.00 0.00 17 33.19 

Mbh 64.66 14.80 0.00 0.00 9 54.46 

Mht 67.38 17.51 0.00 0.00 13 47.38 

Mg 67.62 17.76 0.00 0.00 12 50.14 

Mhg 70.14 20.28 0.00 0.00 13 50.14 

Mbg 71.49 21.63 0.00 0.00 18 38.15 

Mhbg 74.32 24.46 0.00 0.00 19 38.15 

Mgt 82.85 32.99 0.00 0.00 24 31.65 

Mbgt 103.16 53.29 0.00 0.00 36 8.49 

Mhgt 142.21 92.35 0.00 0.00 43 15.85 

Mhbgt 299.80 249.93 0.00 0.00 67 0.00 
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Table D. 5. Closed population MARK models from CMR hair snare data collected in Summer 

2006 for the American black bear CGP. The model, AICc, Δ AICc, AICc model weight, model 

likelihood, number of parameters (np), and model deviance are included. 

 

Model AICc Δ AICc AICc Weights Model Likelihood np Deviance 

Mbt 19.97 0.00 0.94 1.00 11 28.05 

Mb 26.60 6.63 0.03 0.04 8 41.36 

Mbh 28.79 8.82 0.01 0.01 9 41.35 

M0 30.39 10.43 0.01 0.01 7 47.33 

Mhbt 30.79 10.82 0.00 0.00 17 24.82 

Mt 32.57 12.60 0.00 0.00 9 45.13 

Mh 32.57 12.60 0.00 0.00 8 47.33 

Mg 34.20 14.23 0.00 0.00 12 40.00 

Mbg 34.94 14.97 0.00 0.00 18 26.53 

Mhg 36.50 16.53 0.00 0.00 13 40.00 

Mhbg 37.41 17.44 0.00 0.00 19 26.53 

Mht 37.53 17.56 0.00 0.00 13 41.03 

Mgt 49.52 29.55 0.00 0.00 24 25.88 

Mbgt 66.79 46.82 0.00 0.00 36 9.15 

Mhgt 100.01 80.04 0.00 0.00 43 19.99 

Mhbgt 175.94 155.97 0.00 0.00 67 0.00 
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APPENDIX E 

PYTHON CODE FOR THE JOINT MODEL INCORPORATING THE THREE DATA 

STRUCTURES OF DNA HAIR SNARES, TELEMETRY, AND CAMERA TRAPS FOR CGP 

AMERICAN BLACK BEAR DATA 

 

The Python code is a collection of posterior parameter updates using Gibbs, Metropolis 

and reversible jump Metropolis-Hastings algorithms from the joint model for data from Fall 

2005 season. There are also with references to equations from Chapter 2 presented with the code.  

The Python modules are separated by the sections from the MCMC steps (Figure E.1). 

 

1) Input data, and 16) output parameter traces 

def 

run(nwebs=14,alleles=[8,4,8,4,4,7,4,4],occasions=3,collars=22.,rinit=0.04,Ninit=10,tune_r=0.5,t

une_N=30,iterations=50000,burn=25000,tuner=15000,reps=1,if_print=10,if_output=1000,estima

te=True,plotting=True): 

    #data 

    #total cameras 

    kcam=[18,16,15,12,'NA',12,'NA','NA',31,'NA','NA','NA','NA','NA'] 

    #notes: k is number of cameras at each site 

    #camera detections 

    camera=[15,12,1,7,'NA',10,'NA','NA',20,'NA','NA','NA','NA','NA'] 

    #telemetry detections 

    telem=[10,4,1,3,'NA',5,'NA','NA',3,'NA','NA','NA','NA','NA'] 
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    loci=len(alleles)        

    it=[x for x in range(iterations+1)] 

 

    #import observed genetic samples and create dictionary 

    data=csv.reader(open('gobs_5Fweb.csv','U'),dialect='excel') 

    obssamp={} 

    for line in data: 

        temp=string.join((line[1],line[2],line[3],line[4],line[5],line[6],line[7],line[8]),",") 

        obssamp[int(line[0])]=[eval(temp),int(line[9]),int(line[10])] 

         

    #obs capture ids and capture history 

    obsCap=sum_samples_webs(obssamp,occasions) 

     

    #import replicate samples and create dictionary 

    data2=csv.reader(open('rep_5F.csv','U'),dialect='excel') 

    repsamp2={} 

    for line in data2: 

        temp=string.join((line[1],line[2],line[3],line[4],line[5],line[6],line[7],line[8]),",") 

        repsamp2[int(line[0])]=[eval(temp)] 

         

    #obs summary stats 

    udot_obs,ndot_obs=sum_stats_web(obssamp,occasions,nwebs)                         

    print 'obs u,n dot',udot_obs,ndot_obs 

         

    if estimate: 

        

captrace,N_trace,errortrace,Ntottrace,denstrace,acceptancer,rtrace,dtrace,pwebtrace,acceptanceN

=MCMC_sampler(nwebs,udot_obs,ndot_obs,obsCap,obssamp,repsamp2,alleles,occasions,iterati

ons,tuner,if_print,if_output,Ninit,rinit,camera,kcam,collars,telem,tune_r,tune_N)     

           

        if plotting:         
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            varnames=['Ntot','p_error','r','density','pcapt'] 

            vartraces=[Ntottrace,errortrace,rtrace,denstrace,captrace]  

            plotnum=1    

            for i in range(len(varnames)):                 

                plotnum=plot_tracepost(varnames[i],vartraces[i],plotnum) 

 

            print 'r acceptance rate',acceptancer 

            print 'N acceptance rate',acceptanceN 

            print '' 

 

            for i in range(len(varnames)):             

                output_stats(varnames[i],vartraces[i]) 

 

if __name__ == '__main__': 

    run() 

 

2) Initialize parameters modules 

def initial_parms(nwebs,alleles,sampobsinit,oc,initialN,perrinit): 

    """generate initial matrices, parameters""" 

 

    #genetic error init             

    proberr_init=perrinit 

                   

    #prior alphas for gamma, genotype frequency, priors are all 1's 

    alpha_init=[] 

    for i in alleles: 

        cat=i*(i+1)/2 

        alpha_init.append([1]*cat) 

 

    #create initial genotype frequencies (all equal) 

    gam_init=geno_freq(alleles) 
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    gen_cat=gen_categories(alleles) 

     

    #permute initial true sample ids            

    sampletrue=copy.deepcopy(sampobsinit) 

    #expected samples with at least one error 

    experr=np.ceil(len(sampobsinit)*((1.-(1.-proberr_init)**len(alleles)))) 

    generr=random_sample(experr,len(sampobsinit)) 

     

    for samp in sampletrue: 

        if generr[samp]: 

            newgenid=[] 

            for j in range(len(alleles)): 

                compat=compat_gen(sampletrue[samp][0][j],gen_cat[j],proberr_init) 

                probcompat=[1./(len(compat)) for i in range(len(compat))] 

                newG=compat[mult(probcompat)] 

                newgenid.append(newG) 

            sampletrue[samp][0]=tuple(newgenid) 

   

    #generate initial true script G matrix of true IDs and capture history 

    Nmatrixinittemp,truewebdict=sum_samples_webs(sampletrue,oc) 

 

    webNinit=sum_web(truewebdict,nwebs) 

 

    #initial N is greater than the current value of N, add new rows 

    for i in range(nwebs): 

        if i==0: 

            if initialN>webNinit[i]: 

                webNinit[i]=initialN 

                

Nmatrixinit1,truewebdictinit1=gen_rows(initialN,webNinit[i],Nmatrixinittemp,gam_init,alleles,i

,truewebdict) 
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            else: 

                Nmatrixinit1=copy.copy(Nmatrixinittemp) 

                truewebdictinit1=copy.copy(truewebdict) 

                 

        else: 

            if initialN>webNinit[i]: 

                webNinit[i]=initialN 

                

Nmatrixinit,truewebdictinit=gen_rows(initialN,webNinit[i],Nmatrixinit1,gam_init,alleles,i,truew

ebdictinit1) 

                Nmatrixinit1=copy.copy(Nmatrixinit) 

                truewebdictinit1=copy.copy(truewebdictinit) 

     

    return alpha_init,gam_init,sampletrue,Nmatrixinit1,truewebdictinit1,webNinit                   

 

def random_sample(m,M): 

    """take a random sample m out of M possible items""" 

     

    #first element of each tuple is sample label 

    #second element is indicator for sampled (1) or not (0)  

    x=np.arange(M) 

    random.shuffle(x) 

    y=[(x[i],(i<m)*1) for i in range(M)] 

    y.sort() 

    z=[w[1] for w in y] 

 

    return z 

 

3), 14), 15) Main MCMC sampler 
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def 

MCMC_sampler(nwebs,udot_init,ndot_init,Gobsmatrix,obssamples,repsamples,alleles,occasions

,iterations,tuner,if_print,if_output,Ninit,rinit,xdetect,ncameras,totcollars,collars,tune_r,tuneN):   

    """main program for MCMC sampler of genetic CMR data, camera data, telemetry data, 

spatial process""" 

     

    #static observation matrix 

    G_obs=copy.copy(Gobsmatrix) 

    #static obs samples,reps,calibration true and calibration obs samples 

    sample_obs=obssamples.copy() 

    sample_rep=repsamples.copy() 

 

    samples=0 

    accept_r=0 

    accept_N=0 

 

    d_=[] 

    r_=[rinit] 

    pweb_=[] 

    dens_=[] 

     

    sd_r=tune_r 

    sd_N=tuneN 

     

    #priors and initial parameter values 

    #initial value of capture probability        

    cap_p=[0.3] 

    #initial value of genetic error probability 

    error_p=[0.05] 

    #prior alpha, initial gamma, initial true samples, initial Nmatrix, initial true web dictionary 
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prioralpha,gamma_init,sample_true_init,Nmatrix_init,true_webinit,webinit=initial_parms(nwebs

,alleles,sample_obs,occasions,Ninit,error_p[0]) 

    #initial values of abundance 

    N_=[webinit] 

    #Ntot 

    Ntot=[sum(N_[0])] 

     

    while samples<iterations: 

        #-------------------------------- 

        #update genetic error probability 

        #-------------------------------- 

        whet,whom=sum_dropout(sample_obs,sample_rep,alleles) 

        #whet_c,whom_c=sum_dropout(calsamp_true,calsamp_obs,alleles) 

        whet_c=[35,36,51,42,46,46,42,37] 

        whom_c=[1,0,1,0,1,2,1,0] 

        error_p.append(dropouterr_update(whet,whom,whet_c,whom_c)) 

 

        if samples==0: 

            #------------------------- 

            #update spatial parameter 

            #------------------------- 

             

            #density 

            currentdens=density_update(N_[0],current_alpha=0.001,current_beta=0.001) 

 

            #----------------------- 

            #update camera r parameter 

            #----------------------- 

            d_.append([1.-(1.-rinit)**N_[0][i] for i in range(len(N_[0]))]) 

            dnew,rnew,acceptmhr=camera_mh_update(rinit,N_[0],xdetect,ncameras,sd_r) 
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            accept_r=accept_r+acceptmhr 

            #----------------------------- 

            #update telemetry p_w parameter 

            #------------------------------ 

            pwnew=pw_update(collars,N_[0],totcollars) 

 

            #--------------------- 

            #update true genotypes 

            #--------------------- 

            

Nmatrix_new,samp_truenew,trueweb_new=truegen_update(nwebs,true_webinit,Nmatrix_init,ga

mma_init,alleles,error_p[0],sample_obs,sample_rep,sample_true_init,occasions) 

            #------------------------------------------------- 

            #update true capture histories,and Gtrue of size(S) 

            #------------------------------------------------- 

            

Nmatrix_new2,Gtrue_new,Gtrue_web=truehist_update(nwebs,trueweb_new,Nmatrix_new,gam

ma_init,alleles,error_p[0],cap_p[0],occasions,samp_truenew,sample_obs,ncameras) 

 

            #------------- 

            #update gamma 

            #------------- 

            gamma_new=genfreq_update(Nmatrix_new2,prioralpha,alleles) 

 

            #----------------------- 

            #update pcapture (theta) 

            #------------------------ 

            #obtain new udot and ndot 

            udot_new,ndot_new=sum_stats_web(Gtrue_new,occasions,nwebs) 

            

currentpcapture=pcapture_update(udot_new,ndot_new,N_[0],occasions,cap_p[0],ncameras) 
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            #----------------------------- 

            #update N 

            #----------------------------- 

            

currentN,acceptN=spatN_update(currentdens,N_[0],currentpcapture,udot_new,ndot_new,sd_N,x

detect,ncameras,occasions,pwnew,rnew,collars) 

            accept_N=accept_N+acceptN 

        else: 

            #------------------------- 

            #update spatial parameter 

            #------------------------- 

             

            #density 

            currentdens=density_update(Nold,current_alpha=0.001,current_beta=0.001)  

            #----------------------- 

            #update camera r parameter 

            #----------------------- 

            dnew,rnew,acceptmhr=camera_mh_update(rold,Nold,xdetect,ncameras,sd_r) 

            accept_r=accept_r+acceptmhr 

            #----------------------------- 

            #update telemetry p_w parameter 

            #------------------------------ 

            pwnew=pw_update(collars,Nold,totcollars) 

 

            #--------------------- 

            #update true genotypes 

            #--------------------- 

            

Nmatrix_new,samp_truenew,trueweb_new=truegen_update(nwebs,web_finalnew,Nmatrix_final

new,gamma_new,alleles,error_p[samples],sample_obs,sample_rep,Gtrue_new,occasions) 

            #------------------------------------------------- 
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            #update true capture histories,and Gtrue of size(S) 

            #------------------------------------------------- 

            

Nmatrix_new2,Gtrue_new,Gtrue_web=truehist_update(nwebs,trueweb_new,Nmatrix_new,gam

ma_new,alleles,error_p[samples],cap_p[samples],occasions,samp_truenew,sample_obs,ncamera

s) 

            #------------- 

            #update gamma 

            #------------- 

            gamma_new=genfreq_update(Nmatrix_new2,prioralpha,alleles) 

             

            #----------------------- 

            #update pcapture (theta) 

            #------------------------ 

            #obtain new udot and ndot 

            udot_new,ndot_new=sum_stats_web(Gtrue_new,occasions,nwebs) 

            

currentpcapture=pcapture_update(udot_new,ndot_new,Nold,occasions,pcaptureold,ncameras) 

 

            #----------------------------- 

            #update N 

            #----------------------------- 

            

currentN,acceptN=spatN_update(currentdens,Nold,currentpcapture,udot_new,ndot_new,sd_N,xd

etect,ncameras,occasions,pwnew,rnew,collars) 

            accept_N=accept_N+acceptN 

             

        #augment N (add or delete rows) Reversible-jump M-H 

        

Nmatrix_finalnew,web_finalnew=n_update(nwebs,Nmatrix_new2,currentN,gamma_new,alleles,

Gtrue_web,Gtrue_new) 
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        densold=copy.copy(currentdens) 

        dens_.append(currentdens) 

        rold=copy.copy(rnew) 

        r_.append(rnew) 

        d_.append(dnew) 

        Nold=copy.copy(currentN) 

        N_.append(currentN) 

        Ntot.append(sum(currentN)) 

        pcaptureold=copy.copy(currentpcapture) 

        cap_p.append(currentpcapture) 

        pweb_.append(pwnew) 

         

        samples+=1 

 

        acceptance_r=float(accept_r)/float(samples) 

        acceptance_N=float(accept_N)/float(samples*6) 

 

        if samples<tuner: 

            if acceptN==1: 

                sd_N=np.min(sd_N+1,5) 

            else: 

                sd_N=np.max(1,sd_N-1) 

            if acceptmhr==1: 

                sd_r=sd_r*0.999 

            else: 

                sd_r=sd_r*1.001 

                 

        if (np.mod(samples,if_print)==0): 

            print 'iter, N',samples,sum(currentN) 

            print 'N accept',acceptance_N 
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            print 'r accept',acceptance_r 

             

        if (np.mod(samples,if_output)==0): 

            

MCMC_output(samples,nwebs,ncameras,cap_p,error_p,Ntot,r_,N_,dens_,d_,pweb_,Nmatrix_fin

alnew,gamma_new,Gtrue_new,web_finalnew) 

 

    return cap_p,N_,error_p,Ntot,dens_,acceptance_r,r_,d_,pweb_,acceptance_N 

def 

MCMC_output(iteration,nwebs,kcam,captrace,errortrace,Ntottrace,rtrace,N_trace,denstrace,dtrac

e,pwebtrace,currentNmatrix,currentgamma,currentGtrue,currentwebdict): 

    coda_out=[] 

    coda_out.extend(errortrace) 

    coda_out.extend(Ntottrace) 

    coda_out.extend(rtrace) 

    coda_out.extend(captrace) 

    coda_out.extend(denstrace) 

 

    Nall_trace=[]                 

    for j in range(nwebs): 

        tempN=[] 

        for k in range((len(N_trace))): 

            tempN.append(N_trace[k][j]) 

        Nall_trace.append(tempN) 

        coda_out.extend(tempN) 

 

    dall_trace=[]                 

    for j in range(nwebs): 

        tempd=[] 

        if kcam[j]!='NA': 

            for k in range((len(dtrace))): 
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                tempd.append(dtrace[k][j]) 

            dall_trace.append(tempd) 

            coda_out.extend(tempd) 

 

    pweball_trace=[]                 

    for j in range(nwebs): 

        temppweb=[] 

        for k in range((len(pwebtrace))): 

            temppweb.append(pwebtrace[k][j]) 

        pweball_trace.append(temppweb) 

        coda_out.extend(temppweb) 

         

    sumfile=open('iter'+str(iteration)+'_fall5.txt','w') 

    for i in range(len(coda_out)): 

        alldat=[] 

        dat=str(coda_out[i]) 

        alldat.append(dat) 

        alldat.append("\n") 

        sumfile.writelines(alldat) 

    sumfile.close() 

 

    sumfile2=open('iter'+str(iteration)+'_nmatrix_fall5.txt','w') 

    for i in currentNmatrix: 

        alldat=[] 

        dat=str(i)+str(':')+str(currentNmatrix[i]) 

        alldat.append(dat) 

        alldat.append("\n") 

        sumfile2.writelines(alldat) 

    sumfile2.close() 

     

    sumfile3=open('iter'+str(iteration)+'_gamma_fall5.txt','w') 
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    for i in range(len(currentgamma)): 

        alldat=[] 

        dat=str(currentgamma[i]) 

        alldat.append(dat) 

        alldat.append("\n") 

        sumfile3.writelines(alldat) 

    sumfile3.close() 

 

    sumfile4=open('iter'+str(iteration)+'_Gtrue_fall5.txt','w') 

    for i in currentGtrue: 

        alldat=[] 

        dat=str(i)+str(":")+str(currentGtrue[i]) 

        alldat.append(dat) 

        alldat.append("\n") 

        sumfile4.writelines(alldat) 

    sumfile4.close() 

 

    sumfile5=open('iter'+str(iteration)+'_webdict_fall5.txt','w') 

    for i in currentwebdict: 

        alldat=[] 

        dat=str(i)+str(":")+str(currentwebdict[i]) 

        alldat.append(dat) 

        alldat.append("\n") 

        sumfile5.writelines(alldat) 

    sumfile5.close() 

     

    return 

 

4) Genetic error update modules 

Equation 2.22 

def dropouterr_update(whet,whom,whet_c,whom_c ): 
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    """update genetic error probability using Gibbs step""" 

 

    #for now assume ado is constant across all loci 

    tot_whet=sum(whet) 

    tot_whom=sum(whom) 

    tot_whetc=sum(whet_c) 

    tot_whomc=sum(whom_c) 

 

    #assume alpha=1 and beta=1 for priors 

    a=1. 

    b=1. 

    newerr=pm.rbeta(2*a+tot_whom+tot_whomc-1, 2*b+tot_whet+tot_whetc-1) 

 

    return newerr 

 

def sum_dropout(obssamp,repsamp,alleles): 

    """summarize dropout from observed and replicated genetic samples""" 

 

    loci=len(alleles) 

    w_het=[0]*loci 

    w_hom=[0]*loci 

    for obs in obssamp: 

        for rep in repsamp: 

            if obs==rep: 

                for j in range(loci): 

                    if isHom(obssamp[obs][0][j])==False: 

                        if repsamp[rep][0][j]!='nn': 

                            w_het[j]+=1 

                            if isHom(str(repsamp[rep][0][j]))==True: 

                                w_hom[j]+=1 
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    return w_het,w_hom 

 

5) Spatial parameter update module 

Equation 2.15 

def density_update(current_N,current_alpha,current_beta): 

    """update lambda using Gibbs sampling""" 

 

    

nextlambda=pm.rgamma(np.mean(current_N)*len(current_N)+current_alpha,len(current_N)+cu

rrent_beta) 

 

    return nextlambda 

6) Camera parameter update module 

Equations 2.18, 2.19, 2.20 

def camera_mh_update(current_r,current_N,x_detect,n_cam,tune_r): 

    """Metropolis-Hastings step of updating detection probability at camera under Royle-Nichols 

model""" 

    taur=tune_r 

    #single animal detection probability r  

    #detection probability 

    d_current=[1.-(1.-current_r)**current_N[i] for i in range(len(current_N))] 

 

    #proposal distribution     

    x_prop=pm.rnormal(logit(current_r),taur) 

    r_prop=expit(x_prop) 

    d_prop=[1.-(1.-r_prop)**current_N[i] for i in range(len(current_N))] 

 

    f=0. 

    f_prop=0. 

    for i in range(len(x_detect)): 

        if x_detect[i]!='NA': 
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            #likelihood of current value 

            f+=pm.binomial_like(x_detect[i],n_cam[i],d_current[i]) 

            #likelihood of proposed value 

            f_prop+=pm.binomial_like(x_detect[i],n_cam[i],d_prop[i]) 

 

    #acceptance ratio 

    r= np.exp(f_prop-f) 

   

    if random.rand()<r: 

        nextd=d_prop 

        nextr=r_prop 

        accept=1 

    else: 

        nextd=d_current 

        nextr=current_r 

        accept=0 

 

    return nextd,nextr,accept 

7) Telemetry parameter update module 

Equation 2.17 

def pw_update(ncollared,currentN,totcollars): 

    """update probability of bear on web detected with collar using Gibbs sampling""" 

    Ntot=sum(currentN) 

    pwnew=[]        

    for i in range(len(currentN)): 

        if ncollared[i]!='NA': 

            pwnew.append(pm.rbeta(ncollared[i]+currentN[i]+1.,totcollars-ncollared[i]+Ntot-

currentN[i]+1.)) 

             

        else: 

            #posterior prediction onto webs not sampled 
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            pwnew.append(pm.rbeta(currentN[i]+1,Ntot-currentN[i]+1)) 

 

    return pwnew 

8) Modules associated with genetic CMR parameters and matrices 

def n_update(nwebs,Nmatrix,Nstar_,gammanew,alleles,truewebdict,truesampgen): 

     

    Nmatrix_copy=Nmatrix.copy() 

    N_=sum_web(truewebdict,nwebs) 

     

    for i in range(len(N_)): 

        if i==0: 

            #proposed N is greater than the current value of N, add new rows 

            if Nstar_[i]>N_[i]: 

                

Nmatrixnew,truewebdictnew=gen_rows(Nstar_[i],N_[i],Nmatrix_copy,gammanew,alleles,i,true

webdict) 

            #proposed N is less than the current value of N, delete rows 

            else: 

                Nmatrixnew=Nmatrix_copy.copy() 

                truewebdictnew=truewebdict.copy() 

                     

                del_row=N_[i]-Nstar_[i] 

                k=0           

                for j in Nmatrix_copy: 

                    if tuple(j) not in truesampgen: 

                        if k<del_row: 

                            #can only delete individuals not observed 

                            if Nmatrix_copy[tuple(j)]=='000': 

                                if truewebdict[tuple(j)]==i: 

                                    del Nmatrixnew[tuple(j)] 

                                    del truewebdictnew[tuple(j)] 



 

 

279 

                                    k+=1      

        else: 

            #proposed N is greater than the current value of N, add new rows 

            if Nstar_[i]>N_[i]: 

                

Nmatrixnew1,truewebdictnew1=gen_rows(Nstar_[i],N_[i],Nmatrixnew,gammanew,alleles,i,true

webdictnew)     

 

            #proposed N is less than the current value of N, delete rows 

            else: 

                Nmatrixnew1=copy.copy(Nmatrixnew) 

                truewebdictnew1=copy.copy(truewebdictnew) 

                del_row=N_[i]-Nstar_[i] 

                k=0           

                for j in Nmatrix_copy: 

                    if tuple(j) not in truesampgen: 

                        if k<del_row: 

                            #can only delete individuals not observed 

                            if Nmatrix_copy[tuple(j)]=='000': 

                                if truewebdict[tuple(j)]==i: 

                                    del Nmatrixnew1[tuple(j)] 

                                    del truewebdictnew1[tuple(j)] 

                                    k+=1      

                 

    return Nmatrixnew1,truewebdictnew1 

def gen_rows(Nstar_,webmatrix,Nmatrix,gammanew,alleles,web,webdict): 

    """simulates the true genotypes given number of alleles 

    per locus and adds rows to genotypes. This does NOT require Hardy-Weinberg 

Equilibrium""" 

 

    Nmatrix_copy=Nmatrix.copy()    
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    nloc=len(alleles) 

    gamman=gammanew 

    webdictnew=webdict.copy() 

    webm=copy.copy(webmatrix) 

 

    while webm<Nstar_: 

         

        g=[mult(gamman[i]) for i in range(nloc)] 

        x=[gen_diction(y,z) for y,z in zip(g,alleles)] 

 

        #check for identical genoptypes, if proposed value identical, redraw for new individual         

        if tuple(x) not in Nmatrix_copy:         

            Nmatrix_copy[tuple(x)]='000' 

            webdictnew[tuple(x)]=web 

            webm+=1 

 

    return Nmatrix_copy,webdictnew 

def geno_freq(loc): 

    """returns the constant genotype frequency for each locus""" 

    freq=[] 

    for i in loc: 

        cat=i*(i+1)/2 

        freq.append([float(1./cat)]*cat) 

    return freq 

     

def mult(genprobs): 

    """returns index value for multinomial rv""" 

    gg=pm.rmultinomial(1,genprobs) 

    for i in range(len(gg)): 

        if gg[i]: 

            return i 
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def gen_diction(genIndex,nallele): 

    """creates genotype dictionary based on genotype index""" 

    

    categories=(nallele*(nallele+1))/2 

    allgen=list() 

    m=0 

    for i in range(nallele): 

        for j in range(m,nallele): 

            allgen.append(str(i)+str(j)) 

        m+=1 

 

    genId={}     

    for k in range(categories): 

        genId[k]=allgen[k] 

 

    gen=genId[genIndex] 

     

    return gen 

 

def prob_het(pgenerr): 

    """computes prob of observing a genotype given the true heterozygous genotype 

    with p the probability of one allele dropping out""" 

 

    prob=[0.0]*3 

    #obs het=true het 

    prob[0]=1.-pgenerr 

    #obs hom, dropout of first allele occured 

    prob[1]=0.5*pgenerr 

    #obs hom, dropout of second allele occured 

    prob[2]=1.-sum(prob[0:2]) 
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    return prob 

 

def obs_trueHet(trueGen,obsIndex): 

    """this function creates actual observed genotype, not index of observed genotype""" 

 

    if obsIndex==0: 

    #observed heterozygote (no ADO) 

        actual=trueGen 

     

    if obsIndex==1: 

    #observed homozygote (first allele drops out) 

        actual=string.replace(trueGen,trueGen[0],trueGen[1]) 

 

    if obsIndex==2: 

    #observed homozygote (second allele drops out) 

        actual=string.replace(trueGen,trueGen[1],trueGen[0]) 

 

    return actual 

 

def isHom(string): 

    """function returns true if genotype is homozygous, false otherwise""" 

    intString=[int(ch) for ch in string] 

    if intString[0]==intString[1]: 

        return True 

    else: 

        return False 

def gen_categories(alleles): 

    """returns all genotype categories, given the number of 

    alleles for each locus""" 
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    allgen=[]     

    for k in range(len(alleles)):  

        hold=[] 

        m=0 

        for i in range(alleles[k]): 

            for j in range(m,alleles[k]): 

                hold.append(str(i)+str(j)) 

            m+=1 

        allgen.append(hold) 

 

    return allgen 

 

def sum_web(webdict,nwebs): 

    """number of individuals in each web""" 

    webN=[0]*nwebs 

    for id in webdict: 

        for j in range(len(webN)): 

            if webdict[id]==j: 

                webN[j]+=1 

    return webN 

def init_gen(initialN,gammapriors,alleles): 

    """creates an initial true N matrix of genotypes given number of alleles 

    per locus. This does NOT require Hardy-Weinberg Equilibrium""" 

 

    initialNmatrix=[] 

    nloc=len(alleles) 

    gamman=copy.copy(gammapriors) 

     

    while len(initialNmatrix)<initialN: 

         

        g=[mult(gamman[i]) for i in range(nloc)] 
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        x=[gen_diction(y,z) for y,z in zip(g,alleles)] 

 

        #check for identical genoptypes, if proposed value identical, redraw for new individual         

        if tuple(x) not in initialNmatrix:         

            initialNmatrix.append(tuple(x)) 

    

    return initialNmatrix 

 

#factorial function 

def fact(x): return (1 if x==0 else x * fact(x-1)) 

 

def x_like(Ntot,udot_,ndot_,pcapt,occasions,webcameras): 

    """returns likelihood of X matrix, given N and p capture""" 

    like=0. 

    for i in range(len(Ntot)): 

        if webcameras[i]!='NA': 

            first=pm.gammaln(float(Ntot[i]+1.))-pm.gammaln(float(Ntot[i]-udot_[i]+1.)) 

            like+=(first+ndot_[i]*np.log(pcapt)+(occasions*Ntot[i]-ndot_[i])*np.log(1.-pcapt)) 

 

    return like 

 

def geno_like(genlist,gammaprob): 

    """returns likelihood of individual genotype at a locus, given allele freqencies at that given 

locus""" 

 

    cat=len(genlist) 

     

    liketemp=0. 

    for j in range(cat): 

        liketemp+=pm.gammaln(float(genlist[j])) 
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    liketemp2=pm.gammaln(float(sum(genlist)+1.))-liketemp 

     

    for i in range(cat):     

        liketemp2+=genlist[i]*np.log(gammaprob[i]) 

 

    like=np.exp(liketemp2) 

 

    return like     

 

def genloc_compat(nmatrixkeys,loc): 

    """compatible genotypes at locus""" 

    loc_compat=[] 

    for i in range(len(nmatrixkeys)): 

        if nmatrixkeys[i][loc] not in loc_compat: 

            loc_compat.append(nmatrixkeys[i][loc]) 

 

    return loc_compat 

 

def listloop(list1,list2): 

    """appends list in a loop""" 

    all=[] 

    for i in range(len(list2)): 

        newlist=copy.copy(list1) 

        newlist.append(list2[i]) 

        all.append(newlist) 

 

    return all 

 

def gen_diction_reverse(genIndex,allgen): 

    """creates genotype dictionary based on genotype identity and 

    returns genotype index""" 
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    categories=len(allgen) 

 

    genId={}     

    for k in range(categories): 

 

        genId[allgen[k]]=k 

 

    gen=genId[genIndex] 

     

    return gen 

def sum_genfreq(alleles,truepop): 

    """this function computes the genotype frequencies over all loci""" 

 

    gen_cat=gen_categories(alleles) 

 

    true_freq=[] 

     

    for k in range(len(alleles)):     

        allgen=gen_cat[k]   #genotypes in each category 

         

        sumid=[] 

        #sum up all individuals with genotypes in each category at locus 

        for cat in allgen: 

            count=0 

            for id in range(len(truepop)): 

                if truepop[id][k]==cat: 

                    count+=1 

            sumid.append(count) 

        hold=[float(sumid[i])/sum(sumid) for i in range(len(sumid))] 

        true_freq.append(hold) 
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    return true_freq 

 

def sum_genotypes(alleles,genlist): 

    """this funciton computes the number of genotypes over all loci""" 

 

    gen_cat=gen_categories(alleles) 

    genlist_keys=genlist.keys() 

    true_sums=[] 

     

    for k in range(len(alleles)):     

        allgen=gen_cat[k]       #genotypes in each category 

        sumid=[] 

        #sum up all individuals with genotypes in each category at locus 

        for cat in allgen: 

            count=0 

            for id in range(len(genlist_keys)): 

                if genlist_keys[id][k]==cat: 

                    count+=1 

            sumid.append(count) 

         

        true_sums.append(sumid) 

 

    return true_sums 

 

def sum_stats_true(captures,nwebs,capturewebs): 

    """calculates summary statistics for captured individuals and 

    outputs udot,ndot""" 

     

    captures_copy=captures.copy() 

    udot_=[0]*nwebs 
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    ndot_=[0]*nwebs                             

 

    for id in captures: 

        for idweb in capturewebs: 

            if id==idweb: 

        

                hist=list(captures[id]) 

                hist=[int(hist[x]) for x in range(len(hist))] 

                ndot_[capturewebs[idweb]]+=sum(hist) 

                if sum(hist)>0: 

                    udot_[capturewebs[idweb]]+=1 

 

    return udot_,ndot_ 

 

def sum_samples_webs(samplelist,occasions): 

    """this function summarizes the capture histories for each web, and outputs the web 

dictionary""" 

 

    samples=samplelist.copy() 

    captures={} 

    samplewebs={} 

        

    for samp in samples: 

        id=samples[samp][0] 

         

        if samples[samp][1]=='NA': 

            captures[tuple(id)]='0'*occasions 

            samplewebs[tuple(id)]=samples[samp][2] 

        else: 

            capt=int(samples[samp][1]) 

            if tuple(id) in captures: 
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                hold=list(captures[tuple(id)]) 

                hold[capt]='1' 

                captures[tuple(id)]=''.join(hold) 

            else: 

                hist=['0']*occasions 

                hist[capt]='1' 

                captures[tuple(id)]=''.join(hist) 

                samplewebs[tuple(id)]=samples[samp][2] 

                 

    return captures,samplewebs 

 

def sum_stats_web(samplelist,occasions,nwebs): 

    """calculates summary statistics for captured individuals and 

    outputs udot,ndot""" 

     

    captures,capturewebs=sum_samples_webs(samplelist,occasions) 

    udot_=[0]*nwebs 

    ndot_=[0]*nwebs                               

 

    for id in captures: 

        for idweb in capturewebs: 

            if id==idweb: 

        

                hist=list(captures[id]) 

                hist=[int(hist[x]) for x in range(len(hist))] 

                ndot_[capturewebs[idweb]]+=sum(hist) 

                if sum(hist)>0: 

                    udot_[capturewebs[idweb]]+=1 

 

    return udot_,ndot_ 
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def c_sum(samplelist,ident): 

    """computes number of times an individual was observed in the genetic CMR data set""" 

 

    samples=samplelist.copy() 

 

    c_=0 

    for samp in samplelist: 

        if samplelist[samp][0]==tuple(ident): 

            c_+=1 

 

    return c_ 

 

def compat_gen(obsgen,gencat,perr): 

    """creates a list of all compatible genotypes, given the observed genotype 

    and number of alleles at a given locus""" 

 

    compatible=[] 

    if perr==0.0: 

        compatible.append(obsgen) 

        return compatible 

    if isHom(str(obsgen))==False: 

        compatible.append(obsgen) 

        return compatible 

    else: 

        for id in gencat: 

            if string.find(str(id),str(obsgen[0]))>-1: 

                compatible.append(id) 

             

        return compatible 

     

def prob_obs(obsgen,truegen,perr): 
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    """returns the probability of an observed genotype, given the true genotype""" 

 

    if perr==0: 

        prob_=1.0 

    else: 

        if isHom(truegen)==True: 

            if truegen==obsgen: 

                prob_=1.0 

            else: 

                prob_=0.0 

        else: 

 

            prob=prob_het(perr)         

         

            if isHom(obsgen)==True: 

                prob_=prob[1] 

            else: 

                prob_=prob[0] 

 

    return prob_ 

 

9) True genotype matrix update module 

Appendix C 

def 

truegen_update(nwebs,true_webdict,Nmatrix,gamma_new,alleles,p_err,obssamples,repsamples,t

ruesamples,occasions): 

    """returns the updated true genotpes given the observed genotypes, 

    the number of times each genotype was observed (both in the samples S 

    and the replicates R), , and the current genotypes in the true N matrix""" 

     

    true_webcopy=true_webdict.copy() 
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    Nmatrix_copy=Nmatrix.copy() 

    Nmatrix_keys=Nmatrix_copy.keys() 

    gen_cat=gen_categories(alleles) 

    loci=len(alleles) 

    samples_obs=obssamples.copy() #initial samples 

    obs_keys=samples_obs.keys() 

    samples_rep=repsamples.copy() 

    rep_keys=samples_rep.keys() 

    samples_true=truesamples.copy() #true samples 

    samples_truenew=copy.copy(truesamples) 

     

    gtrue,gtruewebs=sum_samples_webs(samples_true,occasions) 

    #compatible genotypes for each locus 

    loc_compat=[] 

    for i in range(loci): 

        loc_compat.append(genloc_compat(Nmatrix_keys,i)) 

 

    Nmatrix_new={} 

    true_webnew={} 

 

    #true genotypes not in samples 

    addgen={} 

    for genid in Nmatrix_copy: 

        if genid not in gtrue: 

            addgen[genid]=Nmatrix_copy[genid] 

 

     

    for genid in Nmatrix_copy: 

 

        if genid in gtrue: 
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            #number of times that individual was in true samples 

            c=c_sum(samples_true,genid) 

 

            for samp in range(len(samples_true)):             

                newgenid=[] 

                if samples_true[samp][0]==genid: 

                     

                    for j in range(loci): 

                         

                        #generate compatible genotypes for each inidividual by locus and replicate 

                        compatible=[] 

 

                        if c==1: 

                            if samp in rep_keys: 

                                compattemp=compat_gen(samples_obs[samp][0][j],gen_cat[j],p_err) 

                                if samples_rep[samp][0][j]!='nn': 

                                    morecompat=compat_gen(samples_rep[samp][0][j],gen_cat[j],p_err) 

                                    for m in morecompat: 

                                        if m in compattemp: 

                                            compatible.append(m) 

                            else: 

                                compatible=compat_gen(samples_obs[samp][0][j],gen_cat[j],p_err) 

                     

                        else: 

                            #these are all the compatible genotypes from all c_i rep samples 

                            sampid=[] 

                             

                            for s in samples_true: 

                                if samples_true[s][0]==samples_true[samp][0]: 

                                    sampid.append(s) 
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                            compatible=[] 

                            compattemp=compat_gen(samples_obs[samp][0][j],gen_cat[j],p_err) 

 

                            for sid in sampid: 

                                if sid in rep_keys: 

                                    if samples_rep[sid][0][j]!='nn': 

                                        morecompat=compat_gen(samples_rep[sid][0][j],gen_cat[j],p_err) 

                                        for m in morecompat: 

                                            if m in compattemp: 

                                                compatible.append(m) 

                                else: 

                                    compatible=compattemp 

                                     

                        #check that the compatible genotype at il does not result in any individual 

                        #in population, if it does, eliminate it from compatible list 

                        Gtrue_compat=[] 

                        m=0 

                        for i in compatible: 

 

                            test=copy.copy(samples_true[samp][0]) 

                            test=list(test) 

                            test[j]=i 

                            if c==1: 

                                if tuple(test)==samples_true[samp][0]: 

                                    Gtrue_compat.append(i) 

                                else: 

                                    if tuple(test) not in Nmatrix_copy: 

                                        Gtrue_compat.append(i) 

                            else: 

                                for sid in sampid: 

                                    if tuple(test)==samples_true[sid][0]: 
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                                        if i not in Gtrue_compat: 

                                            Gtrue_compat.append(i) 

                                    else: 

                                        if tuple(test) not in Nmatrix_copy: 

                                            if i not in Gtrue_compat: 

                                                Gtrue_compat.append(i) 

                                     

                         

                        if len(Gtrue_compat)>0:             

 

                            prob=[] 

                            prob_gen=[] 

                            for i in Gtrue_compat: 

                                #prob(g_obs|G proposed)**(c_i**replicates) 

                                if c==1: 

                                    probtemp=prob_obs(samples_obs[samp][0][j],i,p_err) 

                                    if samp in rep_keys: 

                                        if samples_rep[samp][0][j]!='nn': 

                                            probtemp2=prob_obs(samples_rep[samp][0][j],i,p_err) 

                                        else: 

                                            probtemp2=1. 

                                    else: 

                                        probtemp2=1. 

                                         

                                    prob.append(probtemp*probtemp2) 

 

                                    #replace genotype matrix with proposed genotype at specific locus                                     

                                    genmatrix=copy.copy(samples_truenew) 

                                    temp=list(genmatrix[samp][0]) 

                                    temp[j]=i                    

                                    genmatrix[samp][0]=tuple(temp) 
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                                    totalgenmatrix,matrixwebs=sum_samples_webs(genmatrix,occasions) 

                                    totalgenmatrix.update(addgen) 

                                    genout=sum_genotypes(alleles,totalgenmatrix) 

                                    #calculate likelihood with this replacement 

                                    prob_gen.append(geno_like(genout[j],gamma_new[j])) 

                               

                                else: 

                                    probhold=1. 

                                    for s in sampid: 

                                        probhold*=prob_obs(samples_obs[s][0][j],i,p_err) 

                                        if s in rep_keys: 

                                            if samples_rep[s][0][j]!='nn': 

                                                probhold*=prob_obs(samples_rep[s][0][j],i,p_err) 

 

                                    prob.append(probhold) 

 

                                    #replace genotype matrix with proposed genotype at specific locus                                     

                                    genmatrix=copy.copy(samples_truenew) 

 

                                    for s in sampid:                                     

                                        temp=list(genmatrix[s][0]) 

                                        temp[j]=i                    

                                        genmatrix[s][0]=tuple(temp) 

                                         

                                    totalgenmatrix,matrixweb=sum_samples_webs(genmatrix,occasions) 

                                    totalgenmatrix.update(addgen) 

                                    genout=sum_genotypes(alleles,totalgenmatrix) 

                                    #calculate likelihood of replacement 

                                    prob_gen.append(geno_like(genout[j],gamma_new[j])) 

 

                            #calculate lambda contributions for all compatible genotypes        
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                            lambda_k=[prob[i]*prob_gen[i] for i in range(len(Gtrue_compat))] 

                            #calculate probability of lambda 

                            prob_lambda=[lambda_k[i]/sum(lambda_k) for i in range(len(lambda_k))] 

                            #selecte one of the lambdas (i.e. replaced genotypes) based on the probability 

                            newG=Gtrue_compat[mult(prob_lambda)] 

                            newgenid.append(newG) 

 

                        else: 

                            newgenid.append(samples_true[samp][0][j]) 

 

                    if c==1: 

                        samples_truenew[samp][0]=tuple(newgenid) 

                    else: 

                        for sid in sampid: 

                            samples_truenew[sid][0]=tuple(newgenid) 

                 

                    Nmatrix_new,true_webnew=sum_samples_webs(samples_truenew,occasions) 

 

    udot_temp,ndot_temp=sum_stats_web(samples_truenew,occasions,nwebs) 

 

    #for all individuals not sampled, select new genotypes conditioned on current gamma 

probabilities 

    for genid in Nmatrix_copy: 

        if genid not in gtrue:   

            g=[mult(gamma_new[i]) for i in range(loci)] 

            x=[gen_diction(y,z) for y,z in zip(g,alleles)] 

 

            #check for identical genoptypes, if proposed value identical, redraw for new individual         

            if tuple(x) not in Nmatrix_new:         

                Nmatrix_new[tuple(x)]='0'*occasions 

                true_webnew[tuple(x)]=true_webdict[genid] 
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    return Nmatrix_new,samples_truenew,true_webnew 

 

10) True capture history matrix update module 

Appendix C 

def 

truehist_update(nwebs,trueweb,Nmatrix,gamma_new,alleles,p_err,captureprob,occasions,samptr

ue,sampobs,wcams): 

    """update true capture history matrix of genetic CMR samples, given capture probability, and 

true genotypes""" 

     

    Nmatrix_copy=Nmatrix.copy() 

    currentNweb=sum_web(trueweb,nwebs) 

    gen_cat=gen_categories(alleles) 

    loci=len(alleles) 

    pcapt=copy.copy(captureprob) 

    true_samp=copy.copy(samptrue) 

    true_keys=samptrue.keys() 

    true_sampnew=copy.copy(samptrue) #true genotypes in samples 

    gobs_samp=sampobs.copy() 

    gobs_keys=sampobs.keys() 

    gtrue,gtruewebs=sum_samples_webs(true_samp,occasions) 

     

    addgen={} 

    addgenwebs={} 

    for genid in Nmatrix_copy: 

        if genid not in gtrue: 

            addgen[genid]=Nmatrix_copy[genid] 

            addgenwebs[genid]=trueweb[genid] 

 

    for ident in gobs_keys: 
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        #create list of all compatible individual genotypes with observed genotype             

        for j in range(loci): 

            compat=compat_gen(gobs_samp[ident][0][j],gen_cat[j],p_err) 

 

            if j>0: 

                new=[] 

                for i in range(len(compatible)): 

                    new.extend((listloop(compatible[i],compat))) 

                del compatible 

                compatible=copy.copy(new) 

                 

            else: 

                compatible=[] 

                for k in compat: 

                    compatible.append([k]) 

 

        #find all compatible genotypes in Gtrue matrix, and eliminate all not in matrix         

        Gtrue_compat=[] 

        compat_hist=[] 

        for i in compatible: 

            if tuple(i) in Nmatrix_copy: 

                if tuple(i) not in gtrue: 

                    Gtrue_compat.append(tuple(i)) 

                    compat_hist.append('NA') 

                     

                else: 

                    place=copy.copy(gobs_samp[ident][1]) 

                    compat_hist.append(place) 

                    Gtrue_compat.append(tuple(i)) 
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        if len(Gtrue_compat)>0:                  

            #update true sample histories 

                         

            probgobs=[] 

            for i in Gtrue_compat: 

                prob=1. 

                #prob(g_obs individual|G proposed individual) over all loci 

                for j in range(loci): 

                    prob*=(prob_obs(gobs_samp[ident][0][j],i,p_err)) 

 

                probgobs.append(prob) 

 

            #likelihood of X(j) matrix given N and p 

            probX=[] 

            for i in range(len(Gtrue_compat)): 

                xmatrix=copy.copy(true_sampnew) 

                xmatrix[ident][1]=compat_hist[i] 

                udottemp,ndottemp=sum_stats_web(xmatrix,occasions,nwebs) 

                probX.append(x_like(currentNweb,udottemp,ndottemp,pcapt,occasions,wcams)) 

 

            lambda_X=[probgobs[i]*probX[i] for i in range(len(probgobs))] 

            prob_lambdaX=[lambda_X[i]/sum(lambda_X) for i in range(len(lambda_X))] 

             

            #new X matrix associated with new G matrix 

            newX=copy.copy(compat_hist[mult(prob_lambdaX)]) 

 

            true_sampnew[ident][1]=newX 

     

    Gtrue_new,Gtruewebs=sum_samples_webs(true_sampnew,occasions) 

    obsu,obsn=sum_stats_web(true_sampnew,occasions,nwebs) 

    Gtrue_new.update(addgen) 



 

 

301 

    Gtruewebs.update(addgenwebs) 

     

    return Gtrue_new,true_sampnew,Gtruewebs 

 

11) True genotype frequency update module 

Equation 2.23 

def genfreq_update(genotypes,priorgenfreq,alleles): 

    """returns the new genotype frequencies, or gamma, given the number of 

    alleles at all loci, current number of individuals with each genotype and 

    priors for alphas with Gibbs sampling step""" 

     

    gen1=genotypes.copy() 

    gen=gen1.keys() 

 

    gen_cat=gen_categories(alleles) 

 

    gamma_new=[] 

 

    for k in range(len(alleles)): 

        allgen=gen_cat[k] #genotype categories 

        sumid=[] 

         

        #sum up all individuals with genotypes in each category at locus 

        for cat in allgen: 

            count=0 

            for id in gen: 

                if id[k]==cat: 

                    count+=1 

            sumid.append(count) 

  

        prior=priorgenfreq[k] 
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        #this simulates a draw from Dirichlet distribution 

        alphagammas=[pm.rgamma(i+j,1) for i,j in zip(sumid,prior)] 

gammanew=[float(alphagammas[i])/(sum(alphagammas)) for i in range(len(alphagammas))] 

        gamma_new.append(gammanew) 

 

    return  gamma_new 

12) Capture probability update module 

Equation 2.24 

def pcapture_update(udotnew,ndotnew,N_current,occasions,prevpcapt,numbcameras): 

    """update capture probability parameters for genetic CMR data using Gibbs""" 

     

    #constant time and web (but not estimate webs not sampled) 

    ncurrent=0 

    ndotnew_=0 

    for i in range(len(numbcameras)): 

        if numbcameras[i]!='NA': 

            ncurrent+=N_current[i] 

            ndotnew_+=ndotnew[i] 

             

    b=ncurrent*occasions-ndotnew_+1.  

    a=ndotnew_+1.  

    try: 

        temp=pm.rbeta(a,b) 

    except: 

        temp=prevpcapt 

         

    return temp 

 

13) True abundance update modules 

Equation 2.25 



 

 

303 

def 

N_like(currentdensity,allN,currentpcapt,currentudot,currentndot,occasions,x_detect,n_cam,curre

ntr,currentpw): 

    """joint 3 data and spatial likelihood of N using Metropolis step""" 

 

    like1=0. 

    like2=0. 

    like3=0. 

    like4=0. 

    like=0. 

    badvalue=False 

     

    for i in range(len(x_detect)): 

        if x_detect[i]!='NA': 

 

            like1+=pm.poisson_like(allN[i],currentdensity)                                      #spatial like 

            like2+=pm.binomial_like(x_detect[i],n_cam[i],(1.-(1.-currentr)**allN[i]))           #camera 

like 

            like3+=pm.binomial_like(allN[i],sum(allN),currentpw[i])                             #telemetry 

like 

            #calculate pi0, probability of capture at least once 

            pi0=1.-(1.-currentpcapt)**occasions 

            genalpha=currentudot[i]+1. 

            genmu=genalpha*(1.-pi0)/pi0 

            like4+=pm.negative_binomial_like(allN[i]-currentudot[i],genmu,genalpha)             

#genetic CMR like 

 

             

    like=like1+like2+like3+like4 

 

    return like 
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def 

spatN_update(currentdensity,curN,currentpcapt,currentudot,currentndot,tune_n,xdetect,ncameras

,occasions,currentpw,current_r,brcollars): 

    """update N using M-H with joint 3 data model""" 

     

    currentN_=copy.copy(curN) 

    tempN=copy.copy(curN) 

    nextN=copy.copy(curN) 

    taun=tune_n 

    accept=0 

     

    for i in range(len(curN)): 

        if xdetect[i]!='NA': 

            fpropbadvalue=True 

            while fpropbadvalue==True: 

 

                Njump=int(np.ceil(randu()*taun)) 

                u=bern(0.50) 

                Ni_prop=u*(currentN_[i]+Njump)+(1-u)*(currentN_[i]-Njump) 

 

                #constrain to nonnegative values     

                if Ni_prop<0: 

                    fpropbadvalue=True 

                else: 

                    #constraint based on genetic CMR data 

                    if Ni_prop<currentudot[i]: 

                        fpropbadvalue=True 

                    else: 

                        #constraint based on telemetry data 

                        if Ni_prop<brcollars[i]: 
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                            fpropbadvalue=True 

                        else: 

                            #constraint based on camera data 

                            if xdetect[i]>0: 

                                if Ni_prop==0: 

                                    fpropbadvalue=True 

                                else: 

                                    fpropbadvalue=False 

                            else: 

                                fpropbadvalue=False 

                                 

            nextN[i]=copy.copy(Ni_prop) 

            #likelihood of proposed value 

            

f_prop=N_like(currentdensity,nextN,currentpcapt,currentudot,currentndot,occasions,xdetect,nca

meras,current_r,currentpw) 

            #likelihood of current value 

            

f=N_like(currentdensity,currentN_,currentpcapt,currentudot,currentndot,occasions,xdetect,ncam

eras,current_r,currentpw) 

            #ratio of likelihoods 

            ratio_N= np.exp(f_prop-f) 

 

            #generate r.v. and accept or reject based on if less than r 

            if random.rand()<ratio_N: 

                nextN[i]=copy.copy(Ni_prop) 

                accept+=1 

            else: 

                nextN[i]=copy.copy(currentN_[i])      

 

        else: 
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            #posterior prediction onto webs not sampled using marginal negative binomial 

distribution 

            nextN[i]=pm.rpoisson(currentdensity) 

                 

    return nextN,accept 

Additional modules 

def bern(x): 

    u=randu() 

    if u<x: 

        out=0 

    else: 

        out=1 

    return out 

 

def plot_tracepost(var,vartrace,plotnum): 

    """plot the posterior traces and histograms""" 

     

    it=np.arange(0,len(vartrace)) 

    figure(plotnum) 

    plot(it,vartrace) 

    savefig(var+'trace') 

    close() 

 

    figure(plotnum+1) 

    hist(vartrace,bins=50) 

    savefig(var+'posterior') 

    close() 

 

    nextplotnum=plotnum+2 

     

    return nextplotnum 
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def output_stats(varname,vartrace): 

    """print to screen all output statistics""" 

    samples=len(vartrace) 

    vartrace.sort() 

    lower=int(samples*.025) 

    upper=int(samples*.975) 

    print varname 

    print 'lower',vartrace[lower] 

    print 'upper',vartrace[upper] 

    print 'median',np.median(vartrace) 

    print 'mean',np.mean(vartrace) 

    print '' 

 

    return 

 

def logit(p): 

    """compute logit of a value""" 

    x=np.log(p/(1.-p)) 

    return x 

 

def expit(x): 

    """compute expit of a value""" 

    p=1./(1.+np.exp(-x)) 

    return p 
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Figure E.1. Flowchart of the MCMC steps from the joint model incorporating the three data 

structures of DNA hair snares, telemetry, and camera traps for CGP black bear data. 

 




