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ABSTRACT 

The forest industry has a major economic impact on the Southeastern United 
States and loblolly pine (Pinus taeda L.) is the primary commercial species.  
Consequently, many management tools have been developed to aid in the management of 
loblolly pine.  These tools include growth and yield models that predict stand growth and 
corresponding wood yield.  Hence, growth and yield systems, which generally include 
survival, basal area, height, and volume models, have garnered considerable research 
attention in recent years.  Prediction of surviving stems per unit area, which is critical in 
forecasting wood yield, is an important component of these growth and yield systems.  
The importance of survival prediction can be demonstrated using whole stand and 
individual tree or dbh class survival predictions for projecting stand tables, which are 
used for generating stock tables.  Our study, which uses permanent plot loblolly pine 
data, builds upon the existing foundation of forestry survival models: both whole stand 
and individual tree, and assesses the impact of mortality allocation in stand table 
projection algorithms.  We develop a generalized methodology for deriving flexible 
whole stand survival models for the continuum of a stand’s development by merging 
traditional survival analysis and existing whole stand survival methods.  In addition, we 
demonstrate a methodology for modeling interval-censored individual tree survival data 
and show that the model derivation naturally leads to the complementary log-log survival 
function.  Our individual tree survival model accounts for heterogeneity that occurs 
within and among plots by using multilevel modeling techniques.  Moreover, since 
logistic regression is the most common technique used for modeling individual tree 
survival, we document the utility of using a multilevel individual tree logit model.  
Lastly, the multilevel logit individual tree survival model is used in projecting stand 
tables and assessed with a commonly used stand table projection algorithm.   
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CHAPTER 1 

INTRODUCTION 

The forest industry has a major economic impact on the southeastern United States and 

loblolly pine (Pinus taeda L.) is the primary commercial species.  Loblolly pine is found 

naturally on habitats from the poorly drained floodplains of the lower coastal plains to 

well drained hilly slopes, e.g., Piedmont region.  Its range extends from southern New 

Jersey to central Florida and west to eastern Texas and southeastern Oklahoma (Little 

1996).  Loblolly pine is highly adaptable and is one of the fastest growing southern pines; 

hence, its attraction as a commercial species.     

Since the 1960’s, the primary source of loblolly pine fiber has shifted from natural 

stands to plantations (Cost 1989).  In Georgia, there are more than 24 million acres of 

forestland out of a land base of approximately 37 million acres.  Currently, the Georgia 

forest product industry accounts for more than 177,000 jobs and 19.5 billion in income.  

Therefore, many management tools have been developed to effectively manage the forest 

resource.  These tools include growth and yield models that predict the expected fiber 

flow, within some degree of certainty, from managed plantations and natural stands.   

Growth and yield systems, which generally include survival, basal area, height, 

and volume models, have garnered considerable research attention in recent years.  This 

increased research attention is due, in part, because it has become increasingly common 

to manage loblolly pine plantations using intensive management, e.g., fertilization, 

herbicide, and mechanical site preparation.  Consequently, there has been considerable 
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focus on developing growth and yield models that account for intensive management 

practices.  An important component of a growth and yield system is the prediction of 

surviving stems per unit area, which is critical in forecasting fiber flow.   

Forestry survival modeling is generally done at two resolutions, whole stand and 

individual tree.  Whole stand survival models predict the future stems per unit area given 

an initial number of stems and corresponding age, and have proven reliable within the 

data range.  There has however, been difficulty predicting survival for a stand’s early 

development phase.  In addition, whole stand survival models developed for early stand 

survival have typically been modeled separately from the rest of the stand’s continuum of 

survival (e.g., Hitch et al. 1996, Matney and Farrar 1992).  Moreover, most whole stand 

survival models developed for plantation forestry in the southern United States have been 

developed using age 5-25 (yr) data.  Therefore, it has become common to use a system of 

equations, tables, or combination thereof to predict survival for a stand’s continuum (e.g., 

Amateis et al. 1997).  In addition, use of multiple equations and/or tables to model whole 

stand pine plantations is often due to the difficulty in adequately modeling whole stand 

survival for the continuum of a stand’s development.  Here we propose and develop the 

methodology for modeling the lifespan of whole stand plantation survival using a single 

equation.     

Most forestry survival modeling has focused on the individual tree level, probably 

because of the prolific use of individual tree simulators.  It is common knowledge that 

forest survival tends to be highly variable from stand to stand and within a stand, i.e., two 

identical stands growing under identical conditions at age1 can have vastly different 

survival rates at age2.  This heterogeneity may be accounted for by using a multilevel 
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modeling approach for individual tree survival.  A multilevel approach, which accounts 

for the groupings of trees within a plot, should improve our understanding of processes 

that affect survival.  For example, modeling heterogeneity at different levels will allow 

for quantification of survival variability when using different silvicultural treatments.  In 

addition, methods developed for multilevel individual tree survival models can be easily 

used in other circumstances where the attribute of interest is a binary or proportional 

response.  For example, it has been suggested that the gain in leaf biomass when using 

some intensive management techniques (e.g., nitrogen fertilization) can result in a 

decrease in the fine root mass (Landsberg and Gower 1997).  Some current studies 

involve photographing fine roots and death of the root during an interval is recorded.  

Hence, developing and demonstrating methods for developing multilevel survival models 

is directly applicable to current and future binary and proportional response studies in 

forestry.  Additionally, survival models that account for the heterogeneity at different 

levels can further our understanding of the underlying biological processes.  Survival 

estimation for individual trees can be viewed as a two-step process: developing a model 

for predicting each tree’s mortality probability and mortality allocation based upon the 

predicted probabilities.  In individual tree simulators, mortality allocation is usually 

thought of as a classification problem, i.e., trees are classified using a threshold as dead 

or alive based upon their respective predicted mortality probability.  Here, for individual 

tree survival, we focus on developing the foundation and demonstrating the viability of a 

multilevel individual tree survival modeling approach.  Therefore, our purpose is not to 

develop the best classification threshold, however we will demonstrate threshold 

sensitivity using several alternative thresholds for classifying trees as dead or alive.   
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Regardless of forestry survival resolution, i.e., whole stand or individual tree, lack 

of survival research, relative to other growth and yield models, is probably due to 

insufficient and inadequate long-term survival data.  It’s common for permanent plot 

forestry survival data to have more trees recorded at the second measurement occasion 

relative to the first measurement occasion, assuming no ingrowth.  This recorded 

measurement discrepancy impacts survival estimation more profoundly than other growth 

and yield models because the survival curve would be increasing from t1 (time 1) to t2 

(time 2), where t2 > t1.  Conversely, a measurement discrepancy impact on an attribute 

such as basal area per unit area is to over estimate the amount of basal area, which is still 

logical.  In fact, growth and yield attributes affected by an illogical increase in trees per 

unit area due to a measurement discrepancy can logically increase or decrease from t1 to 

t2.  For example, volume per unit area can increase or decrease, although without 

excessive mortality or large trees succumbing it is unlikely.  Hence, modeling forestry 

survival is usually hindered by insufficient long-term and deficient data.  In the 

southeastern United States, with respect to plantation forestry, survival is the major 

plantation growth and yield component where there is a lack of adequate models (Dr. 

Bruce Borders FORS8480 notes), which is probably due to a lack of adequate data for 

predicting survival under a wide range of stand conditions.   

Prediction of whole stand and individual tree or dbh class survival is important for 

projecting stand tables.  Usually whole stand survival models are used to predict stems 

per unit area and the implied mortality is then allocated to the dbh classes based upon 

some method.  Obviously, our whole stand survival model can be used to predict stems 

per unit area, however our interest is in using the individual tree survival model, by dbh 
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class and individual tree, to predict mortality probabilities for use in projecting stand 

tables.  This study proposes to build upon the existing foundation of forestry survival 

models: both whole stand and individual tree, and to assess the impact of mortality 

allocation in stand table projection algorithms.  Our study objectives, presented in the 

order of development, are: 

•  Develop a generalized methodology for deriving flexible whole stand survival 

models for the continuum of a stand’s development.  Model flexibility is defined 

as the ability to model more than one inflection point for a survival curve, if the 

data warrants.  It has been noted in previous studies (e.g., Siler 1979) that for 

many biological populations it is reasonable to assume the “true” survival curve 

has more than one inflection point.  Our model development will merge 

traditional survival analysis with existing whole stand survival methods.       

•  Demonstrate methodology for modeling interval-censored forestry survival data.  

The developed methodology will show that model derivation naturally leads to 

the complementary log-log survival function.  Moreover, we account for 

heterogeneity that occurs within and among plots by using multilevel modeling 

techniques.  The random effect prediction procedure is demonstrated and 

mortality probability predictions are compared, with and without, the inclusion of 

random effects. 

•  Logistic regression is the most common technique used for modeling individual 

tree survival, therefore we document the utility of using a multilevel individual 

tree logit survival model.  Our purpose is twofold: demonstrate and develop a 
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multilevel logit model and use the model as a component in the proceeding 

Chapter for projecting stand tables.   

•  Stand table projection: compare and assess the liability of two alternative 

methods with Pienaar and Harrison’s (1988) method and with each other.  Both 

alternatives use the multilevel individual tree logit survival model as a 

component.  One alternative will use predicted mortality probabilities by dbh 

class and the other by individual tree.   

Our whole stand and individual tree survival models will provide a basis for developing 

future models.  In addition, modeling heterogeneity in the individual tree model is 

directly applicable to future development of whole stand survival models.   
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CHAPTER 2 

SYNOPSIS OF SURVIVAL ANALYSIS AND FORESTRY SURVIVAL 

METHODS 

Survival Analysis Synopsis  

Survival analysis focuses on a defined event for a group(s) of individuals and there are 

three basic requirements for analyzing survival data.  Time of origin must be precisely 

specified, a scale determined for time, and the exact meaning of failure specified 

(Lawless 1982).  Generally, we are interested in how the hazard and/or survival functions 

change over time for groups and strata. Standard statistical techniques are generally not 

applicable to survival data because survival data are typically positively skewed.  

Therefore, it is unreasonable to assume that survival data are normally distributed but 

data non-normality is sometimes remedied using a transformation (Collet 1994).  In 

addition, all subjects are not generally followed through time until the event of interest 

has occurred.  

Since not all subjects are followed through time until failure and/or the exact time 

of failure is unknown, censoring often occurs in survival analysis (Cox and Oakes 1984).  

There are three general censoring classifications: left, right, and interval censoring.  Right 

censoring occurs when not all failures are observed, e.g., suppose that trees enter a study 

at t0 and some die at t0 + t, where t is the last observation, then those trees that are still 

alive at time t are right censored.  A consequence of not accounting for right censoring is 

that average time until failure is usually underestimated (Collet 1994).  Left and
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interval censoring occur when the actual origin time is unknown and when it is only 

known that a failure occurred within two adjacent time intervals, respectively.  Interval 

censoring occurs frequently in forestry, because the time of death is not generally 

observed for an individual tree, often it is only known that the tree died within an interval 

(t0, t0 + δ), where δ generally ranges from one to five-years.  Irrespective of the censoring 

classification, survival analysis usually focuses on the survival and hazard functions. 

Survival can be defined as the proportion of the population still alive at time t, 

hence, survival functions are defined as the probability that an individual survives longer 

than t units of time, i.e., ( ) ( )tTtS >= Pr .  Here T represents a random variable for the 

distribution of survival time from the initialization to the event of interest.  The hazard 

function is defined as the instantaneous mortality rate assuming the individual has 

survived to time t (Allison 1995).  Hazards are typically thought of as the instantaneous 

probability of failure at time t, but technically, it is not a probability (Lawless 1982) since 

it is bounded below by zero but has an unbounded upper asymptote.  According to Cox 

and Oakes (1984), there are several reasons why the hazard function is important.  First, 

the immediate risk can be determined for an individual known to be alive at age t.  

Second, comparing groups of individuals may be more effectively conducted using the 

hazard function.  Lastly, hazard function models can be convenient when there is 

censoring or there are several types of failure.   

Generally for survival analysis, the interest lies in the hazard of failure at anytime 

after the origin of the study, therefore the hazard function is usually modeled directly 

(Lawless 1982).    Cumulative hazard functions (H(t)) are obtained for a time interval by 

integrating over the hazard function from t0 to t1, which can be thought of as the 
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cumulative risk, i.e., the sum of all risks faced by an individual going from t0 to t1.  

Survival analysis modeling usually begins by assuming a hazard function form arising 

from the three general families of survival models: the proportional hazards, accelerated 

failure time, and proportional odds models (Collet 1994).   

Proportional Hazards Model 

Cox (1972) developed the proportional hazards model, which assumes no probability 

density function for survival time.  It is a semi-parametric method and has the property 

that different groups have proportional hazards and the ratio of the hazards for different 

groups don’t depend on time.  For example, suppose the hazard function for the ith 

individual is hi(t) and the baseline hazard function is h0(t).  Let x be a vector of 

covariates.  If they are proportional, we can write the hazard function as 

( ) ( ) ( )ii xgthth 0= .  Where both h0(t) and g(xi) may involve parameters, and g(xi) is a 

function of the predictor variables for the ith individual (Collet 1994).  The function g(xi) 

is interpreted as the hazard at time t for the ith individual relative to the hazard for an 

individual for whom xi equals zero.  Since the relative hazard g(xi) cannot be negative, it 

is typical to express it as exp(ηi).   Where ηi is a linear combination of p covariates, 

which is known as the risk score or prognostic index for the ith individual in medicine 

(Collet 1994).  There is no assumption about the baseline hazard function form and 

hence, the coefficients in the proportional hazards model can be estimated without 

making any assumptions about h0(t) (Cox and Oakes 1984). Proportional hazard models 

commonly arise for heterogeneous populations and a common model is the two-

parameter Weibull cdf that has a common rate parameter but a group specific scale 

parameter.   



 10

Accelerated Failure Time Model 

Accelerated failure time models assume the predictor variables measured for an 

individual act multiplicatively on the time scale.  Given a baseline survival function S0(t), 

the survival for the ith individual is ( ) ( )tStSi  0 φ= .  Hence, the effects of the covariates are 

modeled by the acceleration parameter φ (Collet 1994), which means that the model can 

be interpreted in terms of the progression speed.  Assuming the endpoint is mortality, if φ 

< 1 then there is acceleration in the time to death, conversely if φ > 1 there is a 

deceleration in the time to death.  The hazard function for the ith individual can be 

expressed as ( ) ( )thth ii xx
i φφ 0= .  Since φ has to be non-negative, it is convenient to set φ 

to exp(β ) and express the hazard function as ( ) ( )teheth ii xx
i

ββ
0= .  The popularity of the 

Weibull distribution for survival analysis is, in part, because it possesses the properties of 

both the proportional hazard and accelerated failure time models.  It is the only 

distribution possessing the properties of both of these models, which are the two most 

common models for survival analysis (Lawless 1982).    

Proportional Odds Model 

Proportional odds models assume that the covariates act multiplicatively on the odds of 

survival beyond t (Collet 1994) and the log of the cumulative odds ratio is proportional to 

the distance between the values of the explanatory variables (Agresti 1990).  The hazard 

function for the ith individual to the baseline hazard for the proportional odds model 

converges from exp(-ηi) at time zero to one as time approaches infinity.  For most 

disciplines, the proportional odds model is not extensively utilized because the Cox 

proportional hazards model can incorporate time dependent covariates and/or interactions 

to produce non-proportional hazards, which will likely give similar results to the 
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proportional odds model (Collet 1994).  However, in individual tree forestry survival 

models it is widely used since this is a property of the logistic distribution. 

Forestry Survival Synopsis  

Forest survival models were generally an overlooked component in the early days of 

forest growth and yield models, largely due to the difficulty in estimating mortality given 

insufficient long-term data.  Therefore, mortality was rarely modeled in the early days of 

professional forestry; instead, it was implied by yield and stand tables.  Miscellaneous 

Publication 50 (USDA 1929) presented implied mortality using stand tables for normal 

stands of southern pines.  Given average dbh of a normal stand, the cumulative 

percentage of trees in each diameter class was predicted.  Therefore, if the same stand 

was measured in the future and average dbh was computed, a new stand table could be 

calculated that contained the implied mortality.  Other early examples are mortality by 

dbh class (e.g., Thomson 1932, Krauch 1930) and life tables (Deen 1933).   

Reineke (1933) put forth the idea of a limiting stand density by developing a stand 

density index (SDI) for pure even-aged stands.  Stand density index, which is species 

dependent but independent of site and age, implies self-thinning for fully stocked even-

aged stands.  Interestingly, SDI can be thought of as a survival function, i.e., 

( ) 605.1RRSi =  where R is the ratio of the quadratic mean diameters at t1 to t2.  This 

survival function implies a constant rate of survival for a given ratio that is independent 

of age, species, and site.  The 3/2 power law developed by Yoda et al. (1963) has the 

same implied survival functional form as Reineke (1933) except the exponent is 1.5.  

These forestry mortality estimation methods were common until the 1960’s and 70’s 
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when a period of rapid development began for whole stand and individual tree mortality 

models.   

Whole Stand Mortality Models 

Early whole stand survival models depended on functions that could be easily estimated 

using existing analytical tools.  These models include linear (Lee 1971), logarithmic 

transformations (Schumacher and Coile 1960, Smalley and Bailey 1974), and probit 

(Lenhart and Clutter 1971, Lenhart 1972).  Early whole stand survival models laid the 

foundation for a period of rapid development of whole stand survival models based on 

sound mathematical reasoning and empirical evidence.   

Modeling of whole stand survival should consider the empirical and theoretical 

behavior for the species and conditions, which includes reasonable survival extrapolation 

properties.  Although recognized in earlier studies, Clutter et al. (1983) formalized 

desirable properties for whole stand survival projection models, which includes: 

1) if A2 = A1 then N2 = N1, 

2) for even-aged stands: if A2 > A1 then N1 ≥ N2, 

3) for even-aged stands: A2 → ∞ then N2 → 0, and 

4) path invariance, i.e., if we use N1 to predict N2 which is then used to predict N3 it     

    should be the same as if we used N1 to predict N3. 

Here Ni represents the number of trees per unit area at age i (Ai).  Property 3) has 

been sometimes argued as unreasonable since for a given species there is likely to be a 

limiting capacity higher than zero for a site.  However, it can be argued that for a given 

stand, as age increases the cumulative mortality for the trees in the initial stand 

approaches one.  Both arguments have merit and oftentimes the choice of whether to 
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include a carrying capacity limit is dependent on the empirical evidence for a particular 

species and locale. Most whole stand survival models developed since the late 1970’s 

have these desirable properties and these latter whole stand models have usually been 

developed using a cumulative distribution function (cdf) or the differential equation 

approach, which are not necessarily distinctly different. 

Cumulative Distribution Function Approach 

Cumulative distribution functions most commonly used for modeling whole stand 

survival are derivatives of the generalized Gamma distribution (GGD), which has a 

probability density function (pdf) of 

( ) ( ) ( ) ( )[ ] 0exp1 >−
Γ

= − t    ,tttf βκβ λλ
κ
λβ .                                                            (2.1)                        

Where the β, λ, and κ parameters are positive.  The GGD was introduced by Stacy (1962) 

and has the following properties.  If κ = 1 or κ = 1 and t = t – a then we have the two and 

three-parameter Weibull pdf models, respectively.  Defining β = κ = 1 results in the 

exponential pdf and defining β = 1 results in the Gamma pdf.  Lastly, letting κ → ∞, the 

limiting distribution is the log-normal.  Thus, the GGD is a flexible function for modeling 

forestry survival.   

An early example of using the GGD is the use of the Weibull cdf to model 

survival (Pinder et al. 1978), in which he modeled wildlife survival.  In the context of 

forestry, the Weibull cdf has been effectively used to model whole stand survival (e.g., 

Pienaar and Shiver 1981, Somers et al. 1980, Amateis et al. 1997, Belli and Ek 1988).  In 

addition, a study by Buford and Hafley (1985) compared the Weibull, Gamma, and 

Negative Binomial distributions, and the Chapman-Richards function for fitting mortality 

data.  The Chapman-Richards function enables the underlying hazard function to have an 
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inflection point.  It therefore has added flexibility when compared to the Weibull 

distribution hazard function, which has no inflection point.  Some other examples of 

studies that have successfully used the GGD to model whole stand survival are the 

exponential (e.g., Matney and Farrar 1992) and Gamma (Kobe and Coates 1997).  Other 

types of distributions for modeling whole stand survival include the inverse logistic 

Rennolls and Peace (1986) and logistic Hitch et al. (1996).   

Difference Equation Approach 

The Schumacher and Coile (1960) whole stand survival model is an early example of 

using the forestry modeling techniques that have become known as algebraic difference 

and difference equation approaches.  It is interesting to note that, although not referred to 

as such by the authors, this is probably the earliest whole stand survival model developed 

using a site-specific parameter.  This is illustrated by noting that their original prediction 

equation, for some species, is given by 

( ) ( ) ( )BH
A

N 21
0

00 loglog ββββ +++= .                                                           (2.2) 

Here N is trees per unit area, A is age, H equals dominant height, B is the basal area per 

unit area, and β 00, β0, β1, and β2 are parameters.  Let β00 be site-specific.  Then using the 

algebraic difference approach, their resulting whole stand survival projection mode1 is      
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which has the desirable whole stand survival model properties, assuming β0 < 0.  Model 

(2.3) is flexible and has subsequently been used in several other studies (e.g., Dell et al.  

1979, Feduccia et al.  1979).  Furthermore, an interesting note with the Schumacher and 
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Coile (1960) model (2.3) is that their whole stand survival model can be derived from the 

following differential equation.  

0
211 βββ

+
∂
∂+

∂
∂=

∂
∂

A
B

BA
H

HA
N

N
                                                                          (2.4) 

This illustrates that the difference equation and algebraic difference approaches were in 

use many years before the ideas were formalized.  Since the late 1970’s, many of the 

whole stand survival models have been derived using the difference equation approach.  

The simplest model assumes that the instantaneous relative rate of mortality is constant, 

i.e.,  

β=
dA
dN

N
1 .                                                                                                         (2.5)                        

Using the initial conditions that when A1 = A2 then N1 = N2, and after integration yields 

( )12

1

2 AAe
N
N −−= β .                                                                                                  (2.6)               

This exponential difference equation implies that the proportional mortality rate is 

constant for all ages, densities, and site indices (Clutter et al. 1983), but has been 

successfully used in some studies (e.g., Martin et al. 1999, Devine and Clutter 1985).  

Hence, this model form implies both underlying proportional hazard and accelerated 

failure time models, i.e., since the exponential is a special case of the Weibull, which 

possesses these properties.  A flexible whole stand survival model was developed by 

Clutter and Jones (1980) that has subsequently been used in several other studies (e.g., 

Clutter et al. 1983, Pienaar and Rheney 1993).  Brister (see Varner 1981) modified the 

lower asymptote of the Clutter and Jones (1980) model, and Martin and Brister (1999) 

used this same function but added a modifier to incorporate the effect of hardwood 
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competition.  There are numerous additional examples where the differential equation 

approach has been used to model whole stand survival (e.g., Bailey et al. 1985, McTague 

and Stansfield 1994).  The generalized Gamma distribution and difference equation 

approaches are the most widely used methods for modeling whole stand survival.    

Individual Tree Survival Models 

Modern individual tree survival modeling likely began with a study by Hamilton (1974) 

in which he used the logistic equation for modeling survival data.  Since his pioneering 

study, the logistic equation has become the individual tree survival model of choice (e.g., 

Lowell and Mitchell 1987, Vanclay 1991, Krumland et al. 1977, Wykoff et al. 1982, 

Teck and Hilt 1990, Hitch et al. 1996).  This is likely because of the ease of parameter 

interpretation and function flexibility.  It has become common since the studies by 

Monserud (1976) and Hamilton and Edwards (1976) to annualize mortality, so that the 

response is yearly-predicted mortality.  As discussed, the logistic possesses the properties 

of both the accelerated failure time and proportional odds models, which is expected 

since the logistic is a special case of the log-logistic distribution, which has these 

properties.  Monserud (1976) developed an annualized generalized logistic model that 

uses data from any measured time interval in the parameter estimation.   

 The logistic equation is the most widely used model for individual tree mortality, 

likely being used in greater than 90 percent of all individual tree survival models.  Some 

other functional forms used for modeling individual tree survival are exponential type 

models (e.g., Burkhart et al. 1987, Amateis et al. 1989).  In addition, several studies have 

modified the predicted individual tree survival to achieve compatibility with predicted 

whole stand survival (e.g., McTague and Stansfield 1994).  Several recent novel 
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approaches to modeling individual tree survival have been developed.  Guan and Gertner 

(1991) modeled individual tree survival using an artificial neural network and a binary 

classification tree was used by Dobbertin and Biging (1998).  However, these and other 

recent methods have not proven to be more effective in modeling individual tree survival 

than traditional statistical models.  Hence, the logistic has remained the common 

approach to modeling individual tree survival as evident by its use in recent studies (e.g., 

Monserud and Sterba 1999, Huebschmann et al. 2000, Yao et al. 2001, Shen et al. 2001).  

Therefore, the flexibility, ease, and interpretability will likely continue to fuel the use of 

the logistic for modeling individual tree survival.   

Individual tree or dbh class and whole stand survival models are typically used in 

stand table projection methods.  Whole stand survival models are used to predict the total 

plot mortality and predicted mortality is usually allocated using an individual tree or dbh 

class survival model.  Hence, stand table projection methods delve into the question of 

mortality allocation once the total mortality for a plot is predicted for a desired projection 

period.  Our study interest is in developing whole stand and individual tree survival 

models, and to use an individual tree survival model to predict the mortality probabilities 

in projecting stand tables.  The study proceeds in the following manner: Chapter 3 

focuses on modeling whole stand survival, Chapters 4 and 5 concentrate on modeling 

individual tree survival, and Chapter 6 uses the individual tree survival model developed 

in Chapter 5 in projecting stand tables.  All ensuing Chapters expand on the survival and 

forestry background where pertinent.  
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CHAPTER 3 

A GENERALIZED METHODOLOGY FOR DEVELOPING FLEXIBLE WHOLE 

STAND SURVIVAL MODELS 

Introduction 

Whole stand survival models are critical in accurately reflecting growth and yield for 

plantations because of the sensitivity of the basal area growth model to the underlying 

mortality.  However, development of whole stand survival models has received relatively 

little attention compared to individual tree survival models.  Forest mortality has been 

usually classified as either natural or irregular (Staebler 1953) and our focus is on natural 

mortality, which generally occurs because of competition for light, nutrients, and water.  

Hence, our study focuses on plantation whole stand natural forest survival.     

Forest survival, or complementary, mortality, can be analyzed using traditional 

survival analysis.  The distribution of the random variable T from initialization to the 

event of interest can be represented by the survival and hazard functions.  Let the 

distribution of T be ( ) [ ]tTtF ≤= Pr , then ( )tf  is the corresponding density function and 

the survival function is defined as ( ) ( ) ( )tFtTtS −=>= 1Pr .  The hazard function, which 

is the instantaneous rate of mortality assuming the individual has survived to time t 

(Collet 1994), is defined as ( ) ( ) ( )[ ]tFtfth −= 1 .  Analogous to the continuous time 

hazard function, the discrete time hazard function is defined as 

( ) ( ) ( )[ ] ( )tFtFtFtq −−+= 11  (Wilson 1972).  A nonparametric estimation of the
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survival function is the Kaplan-Meier product limit estimator (KM) (Kaplan and Meier 

1958), which is defined as 

( ) ∏
≤









−=

tti i

i

i
n
dtS

:

1ˆ                                                                                                

 
for t1 ≤ t ≤ tj.  Where ni and di are the subjects at risk (ni) and that die (di) at time ti.  An 

empirical estimate of the hazard function is simply the number of trees that died in the 

interval divided by the total length of time all the trees were observed.  Survival curves 

are non-increasing over time, whereas the hazard function can increase, decrease, remain 

constant, or assume a combination of these shapes.   

 A common cumulative distribution function (cdf) used in survival analysis is the 

Weibull because it is capable of describing the three most common types of hazard 

curves, which are monotonically increasing or decreasing, and constant.  However, the 

Weibull distribution imposes strong restrictions on the data and is unable to model 

complex hazard shapes such as a bathtub shape (Hjorth 1980).  Increasing monotonic 

hazard functions are the most common because many studies focus on a snapshot of the 

subject’s lifespan in which gradual aging takes place (Lawless 1984).  Because of the 

snapshot focus, there is usually no empirical motivation to find distributions that are 

capable of producing bathtub shaped hazard functions.  However, a bathtub shaped 

hazard function is a reasonable assumption when viewing the entire lifespan of many, if 

not most, biological organisms.  Consider the human lifespan.  There are typically three 

distinct phases: Infant (mortality decreases), juvenile to adulthood (mortality generally 

stable), and mature adults (mortality increases).  Taking a snapshot from any of these 

phases will likely result in a specific type of survival and hazard curve, but when viewed 

as an entity it is reasonable to assume a bathtub shaped curve.  In forestry, a study by 
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Lorimer and Frelich (1984) illustrated that the diameter-specific mortality rates for a 

given stand could be bathtub shaped.  Moreover, mortality has been modeled as bathtub 

shaped with respect to diameter in individual tree models (e.g., Buchman et al. 1983, 

Monserud and Sterba 1999), but mortality has not been explicitly modeled as bathtub 

shaped for whole stand models. 

Whole stand survival models have commonly been developed using a derivative 

of the generalized Gamma cdf (e.g., Weibull and exponential cdf’s are special cases) or 

the difference equation approach.  Both of these approaches, either implied or explicitly 

stated, use presuppositions about the relative rate of instantaneous mortality that is based 

upon empirical evidence.  The Weibull cdf is a flexible distribution that has been widely 

used for whole stand survival models (e.g., Pinder et al. 1978, Glover and Hool 1979, 

Somers et al. 1980, Pienaar and Shiver 1981, Belli and Ek 1988, Amateis et al. 1997).  As 

discussed, the Weibull cdf hazard function is capable of describing the three most 

common hazard shapes, hence, its popularity.  Oftentimes the hazard function shapes that 

are capable when using the Weibull distribution are applicable since the study data, in 

which plots are often established after the initial seedling mortality, only contain a 

snapshot of a stand’s lifespan.  The hazard function for the two-parameter Weibull cdf 

survival model is ( )
c

b
t

b
cth 







= , where t is time and b, c are parameters.  Cumulative 

distribution based whole stand survival models use suppositions with respect to the 

distribution’s ability to model the empirical survival trends.  Conversely, difference 

equation models use suppositions about the relative rate of instantaneous mortality 

change.  Although it appears these two approaches are distinct, oftentimes the difference 

equation supposition leads, after integration, to a cdf based whole stand survival model.  
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This is illustrated by using a simple difference equation for the relative rate of mortality, 

which assumes that the instantaneous mortality rate is constant, i.e.,  

β=
dA
dN

N
1 .                                                                                                                                       

Where N is the number of trees per unit area, A is age, and β is a parameter.  After 

integration and using the initial conditions that when A2 = A1 then N2 = N1, the result is 

( ) ( )12
2

1

2 AAeAS
N
N −== β .                                                                                       

Thus, this difference equation results in the exponential distribution and implies that the 

instantaneous mortality rate is constant for all ages, densities, and site indices (Clutter et 

al. 1983).  Exponential cdf’s have been used in several whole stand survival studies (e.g., 

Martin’s et al. 1999, Devine and Clutter 1985), however it imposes a strong assumption 

of a constant hazard rate.  Nonetheless, a constant hazard rate is oftentimes reasonable 

because of the age range for the study data.  For example, Devine and Clutter (1985) used 

survival data from 161 plots, of which only two had measurement data less than five-

years of age.  Hence, we wouldn’t expect to detect early stand survival trends.  Clutter 

and Jones (1980) presented a more flexible difference equation in which they assumed 

that the relative rate of instantaneous mortality is proportional to age and initial trees per 

acre, which are raised to a power, i.e., 

φδα NA
dA
dN

N
=1 .                                                                                                 

Integrating over the initial conditions of when A2 = A1, then N2 = N1 yields 

( )[ ] βφφβ η
1

1212 AANN −+= .  This flexible whole stand survival model has subsequently 

been used with slight modifications in several other studies (e.g., Martin and Brister 1999 
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Pienaar and Rheney 1993).  A study by Tait (1988) related the relative rate of 

instantaneous mortality to the rate of stand development.  This differential equation for 

whole stand mortality was unique because it related the differential equation to density 

dependent and independent components.  This whole stand survival model has been 

applied successfully in several subsequent studies (e.g., Tait et al. 1988, Tait and Jahraus 

1988).    

It has become common to model whole stand mortality for a stand’s lifespan 

using a system of equations (e.g., Matney and Farrar 1992, Amateis et al. 1997).  These 

systems disaggregate the lifespan of a stand’s survival into distinct phases, typically some 

combination of the seedling, juvenile, adult, and mature phases. Disaggregating whole 

stand survival into phases is primarily conducted because of the difficulty in developing a 

flexible biologically reasonable function that can model survival throughout stand 

development and data limitations.      

 We demonstrate a method for deriving flexible biologically reasonable whole 

stand survival models, which are capable of modeling complex underlying hazard 

functions.  Furthermore, it is hypothesized, for our data, that the continuum of whole 

stand forestry survival has an underlying bathtub shaped hazard function.     

 

Data 

Data were obtained from the Consortium for Accelerated Pine Production Studies 

(CAPPS), which is overseen by the Warnell School of Forestry at the University of 

Georgia.  CAPPS purpose is to investigate the effects of intensive forest management on 

the productivity of loblolly pine plantations in the Southeastern United States and plots 
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were established throughout Georgia.  Study protocol called for two complete blocks to 

be established at each location with each block containing four 0.15 ha treatment plots.  

A 0.15 ha treatment plot was established at each location using bare-root seedlings on a 

2.44 m by 2.44 m spacing.  A 0.05 ha measurement plot was centered within each of the 

treatment plots.  Each of the following four cultural treatments were randomly assigned 

to the blocks at each location.   

1) Herbicide: plot sprayed with non-soil active herbicide as needed to maintain complete   

    control of woody and herbaceous vegetation, 

2) Fertilization: apply recommended rates of fertilizer annually, if necessary, to ensure     

    that nutrients are not the limiting factor,  

3) Herbicide – Fertilization: apply both herbicide and fertilization treatments, and 

4) Control treatment: no cultural treatment other than mechanical site preparation. 

The original study protocol called for replicating all treatment plots every two 

years for the first ten years of the study, and each location has two treatments with two 

levels (herbicide versus no herbicide, fertilization versus no fertilization).  The actual 

study varies from the protocol because of funding limitations and the replications have 

been repeated at different intervals for different locations.  Plots have been measured 

annually with available survival data beginning at age two and data are summarized by 

plot age and treatment (Table 3.1).     

 

Model Development 

To develop whole stand survival models, which are capable of reflecting complex 

underlying hazard functions, we first computed the KM survival estimates and the 
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corresponding discrete empirical hazard function (Table 3.2).  The KM survival estimates 

for the spectrum of plots illustrates that the underlying discrete hazard decreases from age 

2-5 and then increases from ages 5-14.  Kaplan-Meier survival and mortality estimates, 

and the corresponding discrete hazard function were computed by treatment (Figure 3.1).  

Survival curves by treatment illustrate that the herbicide and fertilizer treatments result in 

the most favorable and unfavorable survival, respectively.  In addition, the 

herbicide/fertilizer treatment has favorable early survival but mortality increases rapidly 

after about age eight.  The hazard function trend for the spectrum of plots appears to be 

bathtub shaped, but the oldest plots are 14 years and it is difficult to infer the future trend 

of the hazard function.  Nevertheless, it is reasonable to assume that the hazard function 

will continue to increase with time, which is consistent with most biological organisms 

(Pinder 1978).  We assumed that whole stand plantation survival could be modeled using 

a generalized differential equation to describe the relative rate of mortality, i.e., 

( )tf
dt
dN

N
=1  X                                                                                                   

Where N is the number of trees per unit area, f(t) is a function of time, and X can be a 

function of any whole stand attribute.  We narrowed the scope for viable survival models 

by assuming X equals one or Nd.  Our search for a viable f(t) function began, from 

empirical evidence (Figure 3.1), assuming that the function should be flexible enough to 

model a bathtub shaped hazard function.  This criterion led us to the functional form of 

( ) tc
t

b
ta

tf  
1 1

1 +
+

+
+

= .                                                                                    

Where t is time, and a, b, c are parameters.  This function has the flexibility to model 

both monotonically increasing or decreasing hazards as well as a bathtub shape hazard 
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function (Figure 3.2).  Substituting f(t) into the differential equation, and integrating for 

both values of X using the initial condition that when N2 = N1 then t2 = t1 results in model 

(3.1a) 
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and after re-parameterization, model (3.2a) 
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Here b′ = -db and c′ = -dc/2.  Both models possess the desirable properties of path 

invariance and when t2 → t1 then N2 → N1.  In addition, their respective lower asymptotes 

are zero, if c for (3.1a) and d for (3.2a) are negative.  Model (3.2a) also has the ability to 

distinguish among the density classes for survival if the data exhibit this trend. 

Our motive for choosing f(t) is its ability to model bathtub shapes.  We can 

establish if the resulting survival function is capable of modeling an underlying bathtub 

shaped hazard function by noting the concavity and number of inflection points in the 

survival curve.  To obtain a bathtub shaped hazard curve, it is obvious that the hazard 

curve must first decrease over time, level off, and then increase.  A bathtub shaped hazard 

curve corresponds to a survival curve with at least two inflection points.  Furthermore, 

the concavity of the survival curve between the two inflection points must be concave up 

to the first inflection point, then concave down from the first inflection to the second 

inflection point, and then concave up after the second inflection point.  Models (3.1a) and 

(3.2a) have the flexibility to model multiple inflection points. 
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Models (3.1a) and (3.2a) were fitted to the CAPPS study data and evaluated by 

examining the residuals, fit index (defined as one minus the error sum of squares divided 

by corrected total sum of squares), mean square error (MSE), root mean square error 

(RMSE), and error sum of squares (SSE).  In addition, the behavior of the fitted functions 

was examined, both within the range of the data and extrapolating to a reasonable age.     

 

Results 

Models (3.1a) and (3.2a) asymptotes were modified to allow for a biologically reasonable 

lower asymptote.  This has been demonstrated to be a reasonable assumption for 

plantation loblolly pine of the Southeastern United States (Harrison and Borders 1996, 

Martin and Brister 1999).  In addition, models (3.1a) and (3.2a) were initially fit 

separately by treatment.  Then the estimated parameters by treatment for models (3.1a) 

and (3.2a) were plotted and linear trends were detected for each parameter.  However, 

some treatment parameters were not substantially different.  Therefore, we refitted 

models (3.1a) and (3.2a), now referred to as models (3.1b) and (3.2b), and allowed the 

fertilizer, herbicide, and herbicide/fertilizer cultural treatments to vary systematically 

from the baseline parameters.  The cultural treatment effects were coded as fert = 1 if 

fertilized and zero otherwise, similarly for the herbicide (herb) and herbicide/fertilizer 

(hf) treatments.  This resulted in a re-parameterization of the a, b, c, and d parameters, 

here for model (3.2b) we re-define b=b′ and c = c′, where applicable for models (3.1b) 

and (3.2b) as 
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Cultural treatment parameters were removed from models (3.1b) and (3.2b) using 

a stepwise procedure (α = 0.05).  Models (3.1b) and (3.2b) achieved convergence easily 

during the cultural treatment parameter elimination process.  Residual plots for the 

models were examined and since there was no evidence of heteroscedasticity, no 

weighting or transformations were necessary.  The fitted models (3.1b) and (3.2b) that 

allow for systematic cultural treatment effects and a modified lower asymptote are 
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Where the parameters that allow for cultural treatment are defined as 
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Here Ni = TPH/100 (TPH = trees per hectare), Nmin equals 2.5, which is the lower 

asymptote for TPH/100, ti is plot age at time i, and a, b, c are parameters.  The Nmin of 2.5 

corresponds to approximately 100 trees per acre, which has been deemed a reasonable 

lower limit for loblolly pine of this region (Harrison and Borders 1996).  Model (3.2b) is 
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Where the final parameters that allow for systematic cultural treatment effects are 
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Models (3.1b) and (3.2b) and their respective parameter estimates, stand errors, 

and p-values are presented in Table 3.3.  Summary fit statistics reveal that model (3.2b) 

explains more of the variation in survival.  Models (3.1b) and (3.2b) RMSE are 0.4590 

and 0.4570, respectively.  This means that for the average TPH (approximately 1600), 

there is less than a three-percent error.  The fit index for models (3.1b) and (3.2b) are 

0.9507 and 0.9511, respectively.  There is no substantial difference between models 

(3.1b) and (3.2b) for these criteria.  Hence, to further assess model performance, the 

mean survival and corresponding hazard functions were computed for the spectrum of 

plots and stratified by treatment. 

Models (3.1b) and (3.2b) predicted mean survival and corresponding discrete 

hazard functions for the spectrum of plots illustrate that both models adequately mirror 

the empirical survival and hazard functions trends (Figure 3.3).  Note that small 

differences in the survival curves can have a profound impact on the shape of the hazard 

function.  Model (3.1b) more closely mirrors the empirical hazard function for the early 

ages but model (3.2b) exhibits more overall flexibility.  Mean survival and their 

corresponding hazard function were computed and stratified by treatment for both models 

(Figures 3.4 and 3.5).  Both models adequately reflect the underlying hazard function 

associated with the survival curves.   

Further assessment was conducted by examining the behavior of the fitted models 

to predict survival by treatment for ages 1-30 (Figure 3.6).  Both models behave similarly 
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within the data range (age 2-14).  However, model extrapolation properties are 

substantially different for these models when fitted to our data.  Model (3.1b) provides 

reasonable survival curves by treatment and has a lower asymptote of 250 TPH.  In 

contrast, model (3.2b) has reasonable extrapolation properties only for the herbicide 

treatment and the herbicide/fertilizer treatment declines rapidly beyond the data range.  

Additionally, the control and fertilizer treatments are only able to predict to age 17 using 

the estimated parameters because the term in the bracket for model (3.2b) when 

predicting survival for these treatments is negative after age 16, which is raised to a 

negative fractional power.  Model (3.1b) provides more reasonable extrapolation 

predictions when fitted to our data.  However, both models behave adequately and 

provide flexible solutions within our data range. 

 

Discussion   

Flexible whole stand survival models were developed and demonstrated to provide 

biologically reasonable solutions for complex underlying hazard functions.  In addition, 

our empirical hazard curves illustrated that non-proportionality exists among the 

treatments, which was easily modeled by including, where necessary, treatment 

parameters.  It is easily demonstrated that functional forms such as ( ) battf = , that are 

simple linear or nonlinear functions of time are incapable of modeling complex hazard 

functions.  These types of functions can be expanded to include other covariates, such as 

site index, that impact survival.  However, the additional covariates are not necessarily 

enough in and of themselves to produce bathtub shaped hazard functions.  In contrast, the 

addition of two (or more) linear/nonlinear functions can be developed that will model 
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bathtub shaped hazard curves.  Furthermore, the functional form does not need to have 

numerous parameters in order to model complex hazard functions, e.g., model (3.1a) has 

only three baseline parameters.  Model (3.2b) demonstrated that different assumptions 

placed on the generalized differential equation form using the same f(t) function as model 

(3.1b) can produce more flexible hazard curves.  Nevertheless, model (3.2b) provided 

only slightly more additional flexible solutions.  Moreover, this increased flexibility has 

an extrapolation cost when model (3.2b) is fitted to our data.  Additional covariates in the 

general difference equation form may provide more flexibility in the solutions.  However, 

the flexibility from using additional covariates is unlikely to approach the flexible whole 

stand survival solutions gained from a flexible f(t) function. 

Our demonstrated method is relatively straightforward for developing a whole 

stand survival model that is capable of modeling a complex underlying hazard function.  

The Weibull distribution and the Clutter and Jones (1980), hereafter referred to as C&J, 

models are probably the most widely used whole stand survival models; therefore, these 

models were fitted to our data for comparison purposes.  Neither model was able to 

achieve convergence for our data, probably because of the large decrease in early stand 

survival (Figure 3.1).  Since we could not achieve convergence and because it is common 

to have whole stand plantation survival data that begins at age four or five, we fitted these 

models and our model (3.1a) after eliminating all data prior to age four, i.e., our first 

measurements for survival began at age five.  All three models easily achieved 

convergence using the age 5-14 survival data.  The results revealed that all three models 

fit well, but the C&J model has a more favorable fit index of 0.9842 than the Weibull 

(0.9834) and model (3.1a) (0.9834).  Our motive for fitting these models to the age 5-14 
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data was not to determine which model fit the data better, but to establish which model 

would more accurately predict the empirical hazards for ages 2-4.  The predicted survival 

curves and corresponding hazard curves for these models, using N1 = TPH = 1600 

(approximately the average) for the ages 2-14 reveal that model (3.1a) is able to 

extrapolate extremely well for these data (Figure 3.7).  All three models adequately 

mirror the empirical hazard for the range of the data (5-14 years).  However, the Weibull 

and C&J models extrapolate poorly when predicting the age two and three hazards.  

Model (3.1a) performs excellent when its predicted hazards are compared to the ages 2, 

3, and 4 empirical hazards.  This demonstrates that although the C&J model fits 

marginally better than model (3.1a) when fitted to the age 5-14 data, the extrapolation 

predictions for the age 2-4 hazards are substantially improved using model (3.1a).  

Furthermore, the age one hazard for the C&J and model (3.1a) are 0.0005 and 0.1387, 

respectively.  Hence, model (3.1a) is behaving more biologically reasonable with respect 

to early whole stand loblolly pine survival of this region.  This demonstrates that a model 

may provide adequate future extrapolation predictions, but may not behave reasonable for 

early survival extrapolation predictions because its hazard function is more restrictive.  

Hence, extrapolating both forward and backwards (if the data set warrants) are equally 

important in establishing if a model has biologically reasonable behavior.  Oftentimes the 

model developer is only interested in predicting survival within the range of the data.  

Regardless of the data time frame for a given study, plotting the empirical hazard 

function can aid in establishing the complexity of the function that may be necessary to 

adequately model whole stand survival.   
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Conclusion 

Forestry survival is a complex and difficult process to model; but the difficulty can be 

reduced by using the empirical hazard function behavior to aid in selecting an appropriate 

survival function.   Use of the hazard function to aid in forestry survival model selection 

is not novel.  Preisler and Slaughter (1997) demonstrated that they could limit their 

individual tree survival model selection to a model that was capable of reflecting the 

empirical hazard function behavior.  However, their study did not consider any survival 

functions capable of having bathtub shaped behavior.  Our study established that 

improved whole stand survival models could result by considering the underlying hazard 

function.  We demonstrated this by using the empirical hazard function to limit our 

selection to an appropriate function that could model the bathtub shape.  Note that 

although our fitted models (3.1b) and (3.2b) consist of 10 and 11 parameters, 

respectively, it is not the number of parameters that allows our model to reflect an 

underlying bathtub shaped hazard function behavior.  Our models when fitted to the data 

set without cultural treatment parameters still exhibit the underlying bathtub hazard 

function behavior.  The cultural treatment parameters allow additional model flexibility, 

but it is the f(t) function that allows our model to exhibit bathtub shaped trends if the data 

warrants.  Whole stand lifespan survival is commonly modeled using a system of 

equations, which oftentimes creates a cumbersome and difficult system to implement.  It 

was demonstrated that one equation might provide the desired flexibility when derived 

from knowledge about the underlying hazard function.  Furthermore, we demonstrated 

the ability of a simple yet flexible function to be integrated to obtain an initial condition 

equation.  Survival is generally the least understood and hardest to model within a whole 
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stand forestry growth and yield system, however our method is relatively easy to 

implement and can model a whole stand survival curve that exhibits a complex 

underlying hazard function behavior.   
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Table 3.1.  The CAPPS study plot distribution by year planted for the spectrum of plots 

and by treatment. 

Year 
Planted 

Plot 
Age 

Plots Plots by Treatment 

   Control Fertilized Herbicide   HF* 
1986 14 26 8 4 8 6 
1987 13 28 8 6 8 6 
1988 12 36 10 8 10 8 
1989 11 24 8 4 8 4 
1992 8 20 6 4 6 4 
1994 6 12 4 2 4 2 
       
Total  146 44 28 44 30 
 
* HF is the fertilizer and herbicide treatment. 
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Table 3.2.  The Kaplan-Meier product limit estimator for the interval survival, cumulative 

survival and the hazard for the CAPPS study data.   

Age    N Alive Dead Censored Survival Hazard 
2 11956 11425 532 0 0.9556 0.0444 
3 11424 11269 156 4 0.9426 0.0136 
4 11264 11193 72 1 0.9367 0.0063 
5 11191 11134 62 3 0.9319 0.0051 
6 11126 11061 70 950 0.9265 0.0058 
7 10106 10034 76 15 0.9199 0.0071 
8 10015 9940 79 1594 0.9130 0.0075 
9 8342 8274 72 73 0.9055 0.0082 
10 8197 8115 86 868 0.8965 0.0100 
11 7243 7171 76 1341 0.8876 0.0099 
12 5826 5745 81 1899 0.8752 0.0139 
13 3846 3772 74 1943 0.8584 0.0192 
14 1829 1788 41  0.8391 0.0224 
 
Note: N = total number of trees.  
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Table 3.3.  The estimated parameters and their associated standard errors and p-values for 

models (3.1b) and (3.2b) when fitted to the CAPPS study data. 

 
                      Model 3.1b                      Model 3.2b 
Parameter Estimate Standard 

Error 
Pr > | t | Estimate Standard 

Error 
Pr > | t | 

a  0.6843 0.0258 <0.0001 -0.03438 0.0045 <0.0001 
aF -0.1200 0.0433   0.0056    
aH  0.0920 0.0386   0.0173 0.2054 0.0737   0.0054 
aHF -0.0500 0.0117 <0.0001 0.1194 0.0540   0.0273 
       
b -1.3539 0.0281 <0.0001 -2.8565 0.3884 <0.0001 
bF -0.1759 0.0533   0.0010 -0.3898 0.1308   0.0029 
bH  0.1548 0.0414   0.0002    
       
c -0.00118 0.000271 <0.0001 -0.05453 0.00328 <0.0001 
cF -0.00172 0.000666   0.0098    
cH     0.04294 0.00640 <0.0001 
cHF -0.00219 0.000449 <0.0001  0.03039 0.00942   0.0013 
       
d    0.8316 0.0619 <0.0001 
dH    0.2170 0.0519 <0.0001 
dHF    0.1104 0.0350   0.0016 
 

Cultural treatments are F = fertilizer, H = herbicide, and HF = herbicide and fertilizer. 
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Figure 3.1.  The CAPPS study empirical survival, mortality, and hazard functions by 

treatment (C = control, F = fertilized, H = herbicide, and HF = herbicide and 

fertilized) and for the spectrum of plots (pooled).  
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Figure 3.2.  Examples of viable shapes for the chosen function f(t) used in the differential 

equation for the whole stand survival model. 
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Figure 3.3.  Models 1 (equation 3.1b) and 2 (equation 3.2b) fitted, and the empirical 

hazard and survival functions using the CAPPS study data. 
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Figure 3.4.  Model (3.1b) fitted and the empirical survival and hazard functions by 

treatment and age. 
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Figure 3.5.  The CAPPS study model (3.2b) fitted and the empirical survival and hazard 

functions by treatment and age. 
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Figure 3.6.  Predicted survival for ages 1-30 by treatment using models 3.1b and 3.2b. 
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Figure 3.7.  Predicted survival and their respective hazard curve for empirical, and the 

Weibull, Clutter and Jones (1980), and Model 1 (equation 3.1a) models.  The 

models were fitted excluding the data from ages 2-4. 
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CHAPTER 4 

ANALYSIS OF PERMANENT PLOT SURVIVAL DATA: A 

MULTILEVEL APPROACH 

Introduction 

Forest growth and yield systems rely on mortality or alternatively survival prediction, yet 

mortality is generally the least understood and has the most variability of all other 

components of forest growth and yield models (Hamilton 1986).  It would usually be 

expected that two plots having identical site indices and density, and growing under the 

same conditions, that the basal area and volume per unit area would be similar at say age 

15.  However, the mortality experienced by these plots during the next 5-years can vary 

immensely, hence there can be high among plots survival variability. The mortality 

model is critical in accurately predicting growth and yield because of the sensitivity of 

most basal area growth models to the underlying mortality (Monserud and Sterba 1999, 

Lorimer and Frelich 1984).  This sensitivity means that the contribution to total 

variability due to the mortality component increases as the projection period increases.   

Mortality can be classified as either natural or irregular (Staebler 1953).  Natural 

mortality occurs because of competition for light, nutrients, and water and irregular 

mortality is caused by insects, diseases, and other catastrophic events.  Individual tree 

mortality varies both among and within plots, i.e., these are sources of heterogeneity.  

Here we focus on natural mortality in developing an individual tree mortality model that 

accounts for different sources of heterogeneity. 
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Sources of heterogeneity occur naturally for permanent plot forestry studies 

because they typically have a multilevel data structure, i.e., measurement occasions are 

nested within trees, i.e., repeated measurements, and trees are nested within plots.  In 

addition, the data are usually interval censored, i.e., data is collected for groups of trees at 

regular measurement occasions and it is only known that a tree died between adjacent 

measurement occasions.  Fang and Bailey (2001) noted that the concept of multilevel 

forestry models likely began with Dr. J.L. Clutter’s Duke University Ph.D. dissertation 

(1961) in which he recognized that forestry studies typically use repeated measurements, 

which require unique parameter estimation techniques.  Additionally, since the 

pioneering study by Bailey and Clutter (1974), it has become widely recognized that 

incorporating site-specific parameters and using prior measurement data generally results 

in more precise predictions.  Lappi and Bailey (1988) presented an innovative nonlinear 

mixed-effects height growth model that is acknowledged as an early example of a 

multilevel model in forestry.  In recent years forestry multilevel models have become 

more common, both linear and nonlinear (e.g., Gregoire et al. 1995, Tasissa and Burkhart 

1998, Hall and Bailey 2001, Fang and Bailey 2001).  However, these multilevel models 

have a continuous response and the lowest level variation is assumed normally 

distributed.  This assumption is not valid when modeling binary or proportion data, since 

the data are discrete or limited in range.  We focus on modeling the multiple levels for 

individual tree survival in which the data are interval censored and responses are assumed 

binomially distributed. 

Use of binary response multilevel models has gained popularity in recent years 

(e.g., Barbosa and Goldstein 2001, Biggeri et al. 2001, Yang et al. 2001).  Multilevel 
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binary response models assume the responses are from a binomial distribution and the 

link function chosen is usually the probit, logit, or complementary log-log function (e.g., 

Biggeri et al. 2001, Hedeker et al. 2000).  Recent efforts have focused on the parameter 

estimation techniques that are unique to binary or proportional response models (e.g., 

Rodriguez and Goldman 2001).  These studies have demonstrated the importance of 

considering heterogeneity sources for a binary response model.  In addition, multilevel or 

subject specific (SS) models have distinguished themselves from population averaged 

(PA) models.  

Zeger et al. (1988) developed the framework for distinguishing between PA and 

SS models.  Population-averaged models focus on the marginal expectation by modeling 

the mean response as a function of fixed covariates.  Conversely, SS models focus on 

effects of covariates at a subject-specific level by relating the conditional mean response 

given latent subject-specific variables to covariates.  Population averaged models do not 

specify a unique SS model but the SS model does specify a unique PA model, which can 

be inferred by integrating over the random effects.  Subject-specific and PA models with 

identical linear predictors are usually incompatible for nonlinear models.  In addition, 

unlike linear models that have the same parameter interpretation for SS and PA models, 

SS and PA parameters for a nonlinear model do not usually have the same interpretation.  

For PA models, the parameters describe how the average response changes across 

clusters given the covariates and only the link function needs to be specified correctly to 

make consistent inferences about the PA coefficients (Neuhaus et al. 1991).  Subject-

specific models pertain to expected changes for an individual or group of similar 

individuals (Vonesh and Chinchilli 1997).  If fixed effects hypothesis testing is the study 
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focus, then either modeling approach will usually result in similar inferences.  However, 

the PA approach will not provide any information about the heterogeneity that may exist 

at the different levels (Ten Have and Uttal 1991).  If prediction is our primary purpose, 

then the SS approach is usually preferred (Ten Have and Uttal 1991).  Individual tree 

forestry survival models naturally focus on prediction; therefore, the SS approach is the 

more appropriate choice.  Our purpose is to demonstrate the methodology for developing 

an individual tree survival model that uses interval-censored data and accounts for the 

different sources of heterogeneity.   

 
Survival Analysis Synopsis 

Survival analysis concentrates on a group or groups of individuals that have a defined 

event.  There are three basic requirements for analyzing survival data: time of origin must 

be precisely specified, a scale determined for time, and the exact meaning of failure 

specified (Lawless 1984).  The main interest in survival analysis is usually on how failure 

times change across groups and strata.  Usually, this is explored through estimation 

and/or modeling of the survival function or of the hazard function.   

A survival function can be defined by letting the random variable T represent the 

time until the event of interest.  Let the distribution of T be ( ) [ ]tTtF ≤= Pr , where ( )tf  is 

the corresponding density function.  Then the survival function is defined as 

( ) ( ) ( )tFtTtS −=>= 1Pr , which is the proportion of the population still alive at time t.  

The hazard function is the instantaneous rate of mortality assuming the individual has 

survived to time t, and is often referred to as a conditional density (Collet 1994).  To 

define the hazard function, we first define the probability of death in the interval tj to tj+1 

given the individual survives to tj, which is 
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This defines the age-specific mortality rate for the interval tj to tj+1.  If we divide this 

function by (tj+1 – tj) and take the limit as (tj+1 – tj) → 0, it yields the instantaneous 

mortality rate, i.e.,   

( ) ( )
( )

( )
( )tS
tf

tF
tfth =

−
=

1
.                                                                                                        

Here, h(t) is known as the hazard function and its shape over time is generally 

monotonically increasing, decreasing, or constant.  However, the hazard function can 

have an inflection point and can change directions over time.  According to Cox and 

Oates (1984), there are several reasons why the hazard function is important.  First, the 

immediate risk can be determined for an individual known to be alive at age t.  Second, 

comparing groups of individuals may be more effectively conducted using the hazard 

function.  Lastly, hazard function models can be convenient when there is censoring or 

there are several types of failure.    

The cumulative hazard function, which is thought of as the cumulative risk, i.e., 

the sum of all risks faced by an individual going from zero to t, is defined as 

( ) ( )∫=
t

dxxhtH
0

.                                                                                                                 

Using the fact that  

( ) ( )[ ]tS
t

th log
∂
∂−= , 

the survivor function is related to the cumulative hazard function as 
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which implies that the probability of surviving to t is a function of the hazard at all 

durations up to t.  The expected lifespan is obtained by integrating the survival function 

from zero to infinity.  In addition, S(∞) = 0 and the limit as t approaches infinity for the 

cumulative hazard function is infinity.  This implies that the event will occur with 

certainty only if the cumulative risk over the long duration is substantially high.  These 

expressions illustrate that the survival and hazard functions provide alternative 

expressions for the distribution of T.   

Modeling in survival analysis usually assumes a hazard function that arises from 

one of three general families of survival models: the proportional hazards, accelerated life 

failure, and proportional odds models (Collet 1994).  The proportional hazards model, 

developed by Cox (1972), is a semi-parametric method that assumes only the functional 

form or mean and variance but not the entire distribution.  Accelerated failure time 

models assume that the predictor variables measured for an individual act 

multiplicatively on the time scale.  Proportional odds models assume that the covariates 

act multiplicatively on the odds of survival beyond t and the log of the cumulative odds 

ratio is proportional to the distance between the values of the explanatory variables 

(Agresti 1990).  Here we adopt the Cox proportional hazard model, which is defined as 

( ) ( ) ( )thth jj 0 exp η= , where ηj is a function of explanatory variables for the jth subject 

and h0(t) is the baseline hazard function.  The corresponding survival function for the jth 

subject is given by ( ) ( )[ ]φtStS j 0= , where jeηφ = and ( )tS0  is the baseline survivor 

function.   
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Individual Tree Survival Synopsis 

Modeling individual tree mortality or alternatively survival, hereafter the modeling of 

survival or mortality is used interchangeably, began in earnest in the 1970’s with a study 

by Hamilton (1974) in which he used the logistic equation.  The logistic equation has 

become the individual tree survival model of choice (e.g., Hamilton 1974, Krumland et 

al. 1977, Wykoff et al. 1982), which is likely because of the ease of parameter 

interpretation and function flexibility.  Moreover, beginning with Hamilton and Edwards 

(1976), it has become common to annualize mortality.  Monserud (1976) modified 

Hamilton and Edwards (1976) method by developing an annualized generalized logistic 

equation that uses data from any measured time interval in the parameter estimation.  The 

logistic equation has been used to model individual tree mortality for a variety of species 

and stand conditions (e.g., Hamilton 1986, Teck and Hilt 1990, Avila and Burkhart 

1992).  Recent individual tree mortality models have continued the trend of using the 

logistic equation (e.g., Monserud and Sterba 1999, Huebschmann et al. 2000, Yao et al. 

2001, Shen et al. 2001).  Although the logistic cumulative distribution is the most widely 

used for modeling individual tree survival, some other cumulative distributions used are 

the Richard’s function (Buford and Hafley 1985) and gamma (Kobe and Coates 1997).  

In addition, non-traditional individual tree survival methods have been developed such as 

the binary classification tree (CART) (Dobbertin and Biging 1998) and an artificial 

neural network (Guan and Gertner 1991).  Regardless of the chosen model or 

methodology, analysis of individual tree survival makes assumption about the survival 

and hazard functions.     
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Individual tree mortality models often assume one or a combination of 

proportional hazards, proportional odds, and accelerated failure time models.  For 

example, the logistic equation has the accelerated failure time and proportional odds 

properties.  Other individual tree survival analysis studies have used the Cox proportional 

hazards model (Volney 1998) and the log normal distribution (Preisler and Slaugther 

1997) to allow for more flexibility in the hazard function.  We adopt a Cox proportional 

hazards model for the modeling of interval censored individual tree survival data. 

 

Individual Tree Survival Model Development   

Our survival model formulation assumes the data are from a permanent plot plantation 

study in which measurement occasions are nested within a tree and trees are nested 

within a plot.  We begin by defining the probability of a tree dying during the ith time 

interval (ti-1, ti), i = 1, 2, …, njk.  A tree’s mortality noted at time ti, had an actual death 

time of t, where ti-1 ≤ t < ti.  All trees enter the study at t0 = 0, however the calendar time 

corresponding to t0 may vary by plot.  All trees are followed to time tl, where l = njk and 

njk is the number of measurement occasions for the jth tree on the kth plot.  In addition, tl+1 

= ∞ for trees that are still alive at the last measurement occasion.  Let pijk be the 

probability of mortality occurring for the jth tree on plot k during the ith time interval, i.e., 

( )ijkiijk tTtp <≤= −1 Pr .  Here Tjk is a random variable associated with the survival time 

for the jth tree on plot k.  The conditional probability of mortality during the ith time 

interval given that the death occurs at or after ti-1 is given by 

( )11 | Pr −− ≥<≤= ijkijkiijk tTtTtπ , where i = 1, 2, ……, l+1.  This means 

that ( )( ) ( ) ijkjkijkjkijkp ππππ  1 ................ 1 1 ,121 −−−−= , where i = 2, 3, ……, l+1 and p1jk = 
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π1jk.  Complementary probabilities are associated with a tree not dying during an interval 

and p1jk is the probability it died during the first interval.   

The likelihood function is developed using the conditional probabilities.  Let δijk = 

1 if the jth tree on the kth plot succumbs in the interval from ti-1 to ti and zero if it is alive.  

Let sijk = 1 if the jth tree on the kth plot succumbs after ti and zero otherwise.  Defining sijk 

= δi+1,,jk + δi+2,,jk + ……. + δl+1,jk, the likelihood function for the total number of 

observations (sijk) for all j trees on all k plots, is 

ijk
k
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l
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n
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k
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.  Substituting for pijk, the sample likelihood function becomes 
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Our interest is tree mortality and this implies that the probability of death, conditional on 

the tree being alive at time tl+1, in the tl+1,∞ interval is one.  This means that πl+1,jk equals 

one and therefore, jkl
jkl
,1

,1
+
+
δπ equals one.  Thus, the likelihood function can be reduced to 

( ) ijkijk
jkk s

ijkijk
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,  

which be expressed in terms of δijk by noting that sijk = 1-δijk , hence we have 
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This is the likelihood function for a binomial distribution with parameters 1 and 

πijk that corresponds to the total measurement occasions of all trees on k plots, which is a 

series of N Bernoulli trials.  Here N equals the total measurement occasions (njk) for all nk 

trees on all n plots.  For example, suppose that there is data on two trees recorded for four 

measurement periods.  Furthermore, suppose the first tree’s mortality was detected at the 

second measurement period and the second tree’s mortality was undetected for the four 

intervals.  Using the likelihood function, for these two trees we have (1-π11) π21 and (1-

π12) (1-π22) (1-π32) (1-π42), respectively.  This means that for the first tree, the probability 

of the mortality occurring during the second interval is simply the probability that it 

survives the first interval and dies during the second interval.  For the second tree, the 

probability that it succumbs in the l+1 interval is the product of the probabilities that it 

doesn’t succumb during the first l intervals. 

 Model formulation proceeds using the conditional survivorship relationship.  

Given that the jth tree on the kth plot succumbs after time i is the survival function, then 

we can define the conditional survivor function for the jth tree on the kth plot as 

( ) ( )
( )1

1|Pr1
−

− =≥≥=−
ijk

ijk
ijkijkijk tS

tS
tTtTπ  .                                                                           

Adopting a Cox proportional hazards model, the hazard rate at time ti for the jth tree on 

plot k is ( ) ( ) ( )ijkijk thth 0 exp η= .  Where pjkpjkjkjk xxx βββη +++= ..2211  and h0(ti) is 

the baseline hazard function.  This model assumes the hazards are proportional only at 

the specified times, which is a relaxation of usual proportional hazards model that always 

assumes proportionality (Collet 1994).  Expressing the Cox proportional hazard model in 

terms of the survivor function yields  
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After taking logs, we have the grouped time version of the continuous time proportional 

hazards model (McCullagh 1980), i.e.,  

[ ]{ } ( )
( ) ijk
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jkijk tS
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
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
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
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−10
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Hence, this is a linear model for the complementary log-log transformation of πijk in 

which the parameters κi are associated with the ith time interval.  The parameters κi yield 

an estimate of the baseline log-log survival function.  These parameters can be 

incorporated into the model by fitting terms corresponding to the ith time interval using 

indicator variables.  The estimated coefficients can be interpreted just as in a proportional 

hazards model (Allison 1995).  Hence, the model expresses the covariate effects on the 

log of the integrated hazard function, defined as ( ) ( ) ( )ijkijktH κηπ +=−−= exp1log .  

Thus for a covariate x, it expresses the ( )1100 −xe β  percent of increase or decrease in the 

hazard of death for a one unit increase in x.  Failure probability for a given interval is 

( )[ ]ijkijk κηπ +−−= expexp1 , which assumes the hazards are proportional at the cut 

points κi.   

Assuming proportional hazards at the cut points can be relaxed by incorporating 

time dependent covariates, which is referred to as the Cox regression model (Hedeker et 

al. 2000), and is expressed as ( ) ( )( ) ( )iijkijk th tth 0exp η= .  The baseline hazard function, 

h0(ti), can be interpreted as the hazard function for a subject for whom all the covariates 

are zero at the time origin and remains this value through time.  This means that the 

relative hazard is time dependent and implies that the hazard of death at time t is no 
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longer proportional to the baseline hazard model.  In addition, the survivor function for 

the jth tree on the kth plot depends on h0(ti) and the time varying covariates.  Therefore, 

( ) ( )ϕiijk tStS 0≠ , which means the survivor function for the jth tree on the kth plot is 

difficult to obtain, however, we are usually only interested in obtaining the hazard of 

mortality for a given tree during a specified interval.  The complementary log-log link 

function that includes time varying covariates would likely be sufficient for modeling 

forest mortality if the data structure was not hierarchical.  However, it is typical for data 

from permanent plot forestry studies to have a multilevel structure.   

 

Multilevel Individual Tree Survival Model  

Multilevel models assume multiple sources of heterogeneity and recognize units at one 

level as grouped (nested) in the next higher level.  Pinheiro and Bates (1999) number the 

levels by excluding the error term; here we adopt the nomenclature used by Goldstein 

(1995) in which the error term is recognized as the lowest level.  Hence, we have 

measurement occasions nested within a tree (level 1), trees nested within a plot (level 2), 

and plots (level 3).  According to Goldstein (1995), there are advantages in explicitly 

modeling the manner in which subjects are grouped.  It allows the analyst to obtain 

statistically efficient estimates of the regression coefficients.  The use of grouping 

information provides the correct standard errors, confidence intervals, and tests of 

significance.  Lastly, it allows measuring covariates at any grouping level and then 

obtaining the corresponding predictions.  In addition, if the relationship between the 

response and the covariates is nonlinear, e.g., logistic regression, then ignoring groups 

can result in large biases in the parameter estimates (Rodriguez and Goldman 2001).   
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Our multilevel model formulation accounts for the nesting of trees within a plot 

and plots by defining yijk as one if the jth tree on the kth plot dies during the ith interval, 

zero otherwise.  We assume given the random effects bjk and bk, that the yijk’s are 

independent Bernoulli random variables with conditional expectation πijk.  Define πijk as 

the conditional probability that the jth tree on the kth plot succumbs during the ith interval 

given that it has survived the previous intervals and given tree and plot specific random 

effects.  Our multilevel individual tree survival model that uses the complementary log-

log function, which accounts for interval censoring, is 
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Where xijk is the p x nijk covariate matrix associated with the fixed effects β, z(m)ijk (m = 1, 

2) are the qm x nijk covariate matrices associated with the random effects b, and κi are the 

baseline hazards associated with the ith interval.  The random effects at the different 

levels are assumed independent of each other and are assumed to have a symmetric 

positive definite covariance matrix Σm.  If the subject (tree) is the only source of 

heterogeneity, i.e., there is no need to incorporate multiple levels, then the above model 

reduces to the complementary log-log model of McCullagh (1980).     
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Our previous likelihood function is still valid for the multilevel model but the 

response is now conditional on the random effects.  Let δijk = yijk, now defineδ as the 

binary response vector pattern for the n plots having nk trees observed at njk measurement 

occasions.  Assuming independence of the response vector conditional on the random 

effects, the likelihood function can be expressed as (Gibbons and Hedeker 1997) 

( ) ( ) ( )∏∏∏
= = =

−−=
n

k

n

j

n

i
ijkijkjkk

k jk
ijkijkL

1 1 1

11β,,| δδ ππδ bb  

The unconditional distribution for the level 2 and level 3 random effects are assumed 

MN(0, σ2Σ), where Σ is a block diagonal matrix with blocks 2Σ and 3Σ , respectively.  

The marginal distribution of δ for the jth tree on the kth plot can be obtained from the 

likelihood by integrating over the distribution of the random effects (f(θθθθ)), i.e., 

( ) ( ) ( ) ( )∏ ∫ ∏∏
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This is a difficult integral to evaluate because there is not a closed form solution when 

assuming a multivariate normal distribution for the random effects.  Conceptually, the 

proposed multilevel survival model is straightforward.  However, because of the 

difficulty in parameter estimation for multilevel binary response models, the use of 

multilevel models to analyze binary response variables is relatively recent (e.g., Goldstein 

1991, Hedeker et al. 2001, Biggeri et al. 2001, Rodriguez and Goldman 2001).   

Parameter estimation challenges are mainly related to the response having a 

binomial distribution rather than the more tractable normal distribution assumed in 

classical linear and nonlinear models.  In our study, it was necessary to restrict attention 

to methods of estimation that were computationally feasible, i.e., methods that converged 
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for the models considered.  A common multilevel parameter estimation technique for a 

binary response variable, and the one we adopt, is the marginal quasilikelihood (MQL-1) 

method.  This method is motivated by using a linearization of the multilevel model.  

MQL-1 approximates L(δ) by using a 1st order Taylor series expansion of the function 

around fixed effects β = β0 and random effects b = 0, 

i.e., ( ) ( ) ( ) ( )0001001
ˆˆ HfXHfHf ′−+= ββ .  Here f(• ) is some nonlinear function, e.g., 

Chapman-Richards function.  Where β0 and β01 are the current and updated estimates for 

the fixed effects from the iterative generalized least squares (IGLS) or restricted iterative 

generalized least squares (RIGLS) algorithm, respectively, and 00 β̂XH = .  The MLwiN ( 

Rasbash et al. 2000) software was used to estimate our multilevel survival model 

parameters.    

 

Data 

Permanent plot loblolly pine data was obtained from the Consortium for Accelerated Pine 

Production Studies (CAPPS), which is overseen by the Warnell School of Forestry at the 

University of Georgia.  Loblolly pine plantations were established throughout Georgia at 

Athens, Dawsonville, Eatonton, Thompson, Tifton, and Waycross.  The study called for 

two complete blocks to be established at each location with each block containing four 

0.15 ha treatment plots, which was established at each location using bare-root seedlings 

planted using a 2.44 m by 2.44 m spacing.  A 0.05 ha measurement plot was centered 

within each of the treatment plots.  Each of the four cultural treatments was randomly 

assigned to the blocks at each location.  These cultural treatments are   

1) Herbicide (H): spray plot with non-soil active herbicide as needed to maintain  
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    complete control of woody and herbaceous vegetation, 

2) Fertilization (F): apply recommended rates of fertilizer to achieve and maintain  

    accelerated growth rates, 

3) Herbicide – Fertilization (HF): apply both herbicide and fertilization treatments, and 

4) Control (C): no cultural treatment. 

The original study called for a replication of all treatment plots every two years for the 

first ten years of the study.  This protocol would have resulted in five complete sets of 

experimental plots at all installations, where the plots have a staggered initiation time.  

Each location has two treatments with two levels: herbicide versus no herbicide and 

fertilization versus no fertilization.  The actual study varies from the protocol because of 

limitations and the replications have been repeated at different intervals for different 

locations.  The plots have been measured annually beginning at age one.  The CAPPS 

data structure is: 112,365 total observations for measurement occasion within a tree, 

11956 trees within a plot, and 146 plots.  Study survival data are summarized by plot 

distribution (see Table 3.1, page 36) and by plot and tree attributes (Table 4.1).     

 

Preliminary Analysis 

Preliminary analyses were used for detecting survival and hazards trends and to 

investigate the trends of time varying covariates for the linear component of the CLL 

function.  Survival and hazards by age were estimated using the nonparametric Kaplan-

Meier product limit survival estimator (Kaplan and Meier 1958), which is defined as 
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for t1 ≤ t ≤ tj, where ni and di are the subjects at risk (ni) and that die (di) at time ti.  A 

Kaplan-Meier type hazard function estimator is given by ( )
ii

i

n
d

th
τ

= , for 1+≤≤ ii ttt and 

for our case 11 =−= + iii ttτ since all plots were measured annually.   

Kaplan-Meier survival estimates for the plots reveal that its underlying estimated 

hazard function is bathtub shaped (Figure 4.1).  In addition, the KM survival and hazard 

function estimates by treatment (Figure 4.2) reveal that, using the C treatment as the 

baseline, there is an acceleration in mortality for the F treatment in the early years and 

again at about age 12.  The HF treatment hazards appear constant relative to the C 

treatment until about age 8, after which there is acceleration in mortality.  The H 

treatment has a deceleration in mortality relative to the C treatment.  Hazards variability 

is highest and lowest for the HF and H treatments, respectively.  An age by treatment 

interaction is evident for the hazards, which suggests non-proportional hazards at the cut 

points.  However, our Cox proportional hazard model is still valid, since we can allow for 

time varying covariates and/or a treatment by interval interaction, which relaxes the 

assumption of proportional hazards at the cut points.   

It is important to determine if the dependence of the hazard function on the time 

varying covariates can be adequately modeled using linear terms (Collet 1994).  If there 

is a priori information about the effect of a time varying covariate on the hazard function 

then this information can be used to develop the linear predictor.  Lacking a priori 

information, covariates can be examined to determine if linearity is a reasonable 

assumption.  Time dependent covariates considered are trees per hectare (TPH), basal 

area per hectare (BA/ha), quadratic mean diameter (Dq), individual-tee height (Ht), 
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diameter at breast height (dbh), and relative spacing (RS).  All considered time dependent 

covariates were standardized.  Plot level variables, which includes the plot mean Ht and 

dbh, are centered and standardized using the grand mean of the plots.  Tree level 

covariates Ht and dbh are centered and standardized by plot.  Let A be a factor that is 

formed from a time varying covariate, then linearity in the original values will correspond 

to linearity in the factor A (Collet 1994).  We formed levels of factor A for each 

considered covariate by computing the 25th, 50th, and 75th quartiles.  These quartiles were 

used to create four levels of A by grouping the 0-25, 20-50, 50-75, and 75-100 quantiles.  

This results in each level of A having roughly the same number of observations.  The 

empirical complementary-log-log was computed for each level of A for all time varying 

covariates using the given level empirical proportion of mortality (Figure 4.3).  The 

BA/ha, Dq, and RS attributes exhibit quadratic trends, therefore, these attributes will be 

considered as both linear and quadratic terms in the model.  The empirical CLL plots for 

TPH, Ht, and dbh illustrate linear trends and hence, these covariates are only considered 

as linear terms in the model.   

 

Model Fitting Procedure 

As Fang and Bailey (2001) noted, the determination of which parameters are purely fixed 

and which are both fixed and random is frequently data dependent.  Exploratory analysis 

of potential random effects oftentimes fits the model by group, however this requires 

sufficient data for each group in order to obtain valid parameter estimates (Pinheiro and 

Bates 1999).  These group parameter estimates and their respective confidence interval 

are plotted to determine if a specific covariate should be considered random, i.e., are the 
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confidence intervals by group disjoint?  Level 1 data are typically assumed normally 

distributed and this method, given sufficient group observations, is often adequate.  

Conversely, the level 1 data for a binary response individual tree survival model are 

assumed binomially distributed.  Therefore, sufficient observations by group may not be 

enough to obtain valid parameter estimates because some plots may experience little or 

no mortality.        

There are numerous recommendations for determining random effects in a 

multilevel model.  Pinheiro and Bates (1999) recommend, in the absence of prior 

information about the random effects variance-covariance matrix, to allow all effects to 

be fixed and random if convergence can be achieved.  Oftentimes modelers who allow all 

parameters to be both random and fixed are using a specific functional form (e.g., 

Chapman-Richards function was used by Fang and Bailey 2001).  Models such as the 

Chapman-Richards function have few parameters and it may be feasible to allow these 

parameters to vary at all levels.  Conversely, a linear model without a specific form is 

often built from scratch and a baseline model is usually chosen somewhat arbitrary.  Fang 

and Bailey (1999) fitted a multilevel linear model for plot basal area, however a specific 

model form was chosen.  Oftentimes a variance component model is selected as the 

baseline model for a linear model.   

Variance component models assume that the variation among the responses can 

be partitioned (Lindsey 1999), which for our data are among and within plot variations.  

Goldstein (1995) espouses fitting a variance component model and then adding 

covariates as fixed effects when developing a multilevel linear model.  Hox (1995) 

suggests a more pragmatic view by recommending a model selection procedure that 
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begins with a random intercept model and then adding and removing fixed and random 

parameters until a suitable model is determined.  Both the variance component and 

random intercept models are often referred to as hierarchical linear (HLM) and multilevel 

linear models (Goldstein 1995, Bryk and Raudenbush 1992).  The basic structure for a 

HLM is an extension of the ANCOVA model in which some or all regression coefficients 

are assumed to arise from a random sample belonging to the population.  Assuming a 

random cut point model, we can define a three level HLM model by letting log(-log(1-

πijk)) denote the CLL for the ith interval of the jth tree on the kth plot, i.e.,  

( )( ) kjki bb ++=κπijk-1log-log .  Where κi is the cut point for the ith interval, bjk and bk 

are random parameters for the trees within a plot and plots, i = 1, 2, ……, njk, j = 1, 2, 

….., nk, k = 1, 2, ….., n, and the distributions of the random effects are 

( )2,0~
jkbjk Nb σ  and ( )2,0~

k
 σNbk . 

This random cut point model would oftentimes be an adequate baseline model.  However, 

there is no evidence to suggest that the variability, both among and within plots, can be 

adequately modeled using one variance component for all cultural treatments.  Moreover, 

it is of interest to analyze the variance by treatment.  In addition, preliminary analysis 

suggests a treatment by age interaction with respect to the hazards (Figure 4.2) and the 

necessity of time varying covariates (Figure 4.3).  A baseline model was developed by 

first defining πijk as the probability that the jth tree on the kth plot succumbs during the ith 

interval.  Our baseline three-level mixed effects survival model that uses the CLL link 

function and includes fixed effects for the: intervals, treatment by interval interaction, and 

time varying covariates, and allows the random parameters to vary by treatment is    
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Where yijk is a binary response that equals one if the jth tree on the kth plot dies during the 

ith interval and zero otherwise, x and z are indicator variables that equal one if the 

response belongs to the cultural treatment and zero otherwise (C = control, F = fertilizer, 

H = herbicide, and HF herbicide and fertilizer).  Interval, fixed and random effects 

parameters are denoted by κ, β, and b, respectively.  Intervals are defined as 1, 2, 3, …, 

13, which correspond to the ages 1-2, 2-3, 3-4, ….., 13-14.  Random effects are normally 

distributed with mean zero and level 2 (trees within a plot) and 3 (plots) covariance 

matrices of Σ(2) and Σ(3), respectively.  Off-diagonal elements of the random effects 

covariance matrices are assumed to equal zero, i.e., it is assumed that the plot-specific 

treatment effects are independent.  Standardized time varying covariates are BA/ha, TPH, 
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RS, Dq, HPlot, dbhPlot, dbh, and H.  Our baseline model (equation 1) includes 13 intervals, 

39 treatment by interval interactions (C, H, and HF), 8 time varying covariates, and 8 

variance and covariance components; a total of 68 parameters.   

A likelihood ratio test is typically used to determine the necessity of fixed and 

random effects for a mixed effects model that assumes the lowest level variance is 

normally distributed (Pinheiro and Bates 1999).  However, for multilevel binary response 

models that use quasi-likelihood to estimate the parameters, the likelihood ratio test is a 

crude approximation and the preference for testing the fixed and random effects is the 

Wald chi-square test (Goldstein 1995).  Therefore, the Wald chi-square test was used to 

test for parameter significance using α = 0.05.  Our first hypothesis tested the necessity of 

the age by treatment interaction.  This was accomplished using a joint Wald χ2 test and 

the joint treatment by age interaction test statistic is 231.08 with 39 degrees of freedom 

(p-value<0.0001).  Since our joint test for the interactions is significant, we did not 

remove insignificant individual interaction terms.  However, time varying covariates 

were removed from the model using a stepwise procedure, which included adding the 

quadratic terms for BA/ha, Dq, and RS.  The time varying quadratic covariates (BA/ha2, 

Dq
2, and RS2) and the linear Dq covariate were not significant; therefore, they were 

removed from the model.  Interval, treatment by age interactions for intervals 1 and 2 (for 

the sake of brevity), time varying covariates, and random parameters are presented in 

Table 4.2.  Random effects, i.e., residuals for the trees within a plot and plots, are not 

presented because there are 146 plot and 11956 tree level random effects.   
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Model Diagnostics, Fit, and Parameter Interpretation 

Several model diagnostic tools were used to assess model adequacy.  Residual and Q-Q 

plots were inspected for levels 2 and 3 and there is no evidence of any serious 

heterogeneity or outliers.  For example, plot level rank residuals and Q-Q plots by 

treatment illustrate no serious outliers or departures from the assumption of normality 

(Figure 4.4).  Q-Q plots are useful for checking normality of the residuals and for our 

assumed normal distribution; it should be approximately a straight line.  Hence, there is 

no evidence of non-normality for any of the treatments.  Graphs of the plots by treatment 

and rank, where plots for each treatment are ranked from smallest to largest residuals, 

illustrate that H and C have the least and most variability, respectively.  Standardized 

residual for the plot level residuals are presented for the mean predicted values and BA/ha 

(Figure 4.5), the other attributes behave similarly with no evidence of heterogeneity.  

Standardized residuals for five of the 146 plots are greater than 2.0 in absolute value.  

However, this is within our expectation and there are no abnormally large standardized 

residuals.  The BA/ha plot illustrates that most plots for the HF treatment are above 

average, whereas the C and F plots tend to be below average for this attribute.   

Additional model fit was assessed by estimating the marginal proportions by age 

for our multilevel model, often referred to as a subject specific (SS) model.  We also 

compared several fit statistics with a population averaged (PA) model.  The PA model 

was obtained by re-fitting equation (4.2) and excluding the random effects.  Integration 

over the random effects was necessary to compare our SS model with the marginal 

mortality probabilities.  This is a difficult integral to evaluate and computer intensive; 

therefore, we used Monte Carlo integration to estimate the marginal means (Figure 4.6).  
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The comparison of the marginal means to the actual raw proportions by treatment and for 

the plots is virtually identical.  To compare the PA and SS models we computed the 

Pearson chi-square statistic for survival by plot.  Plot survival predictions were grouped 

by age and the degrees of freedom is the number of measurement occasions for the given 

plot minus one.  The SS and PA models have 6 and 10 plots, respectively, which are 

significantly different from the actual stand tables for the 146 plots (α = 0.05).  Here 

stand table refers to the number of stems by age for a given plot.  In addition, the SS 

model fits the stand tables better relative to the PA model for 115 of the 146 plots.  

Hence, it provides a substantial improvement in fit for over ¾ of the plots.  For example, 

two stand tables were chosen at random to represent “normal” (plot 40) and “extreme” 

(plot 59) cases with respect to plot survival (Table 4.3).  Plot 40 results illustrate that the 

SS model offer a substantial improvement for predicting the actual surviving trees at the 

last plot measurement than the PA model.  In addition, the SS model for plot 59 predicts 

closer to the actual remaining trees at age 12 relative to the PA model.  However, it is 

substantially over predicting the mortality for this plot.  In general, our SS model 

substantially improves the model fit.  Moreover, it provides information about the plot to 

plot and within plot variability. 

Parameters are interpreted as for a proportional hazards model.  A covariate effect 

on the hazard can be expressed as ( ) ijkijk x
ijk ee βηπ =−− 1log , where the LHS is the 

cumulative hazard function for a given interval and the effect of the covariate on the 

hazard as a percentage is expressed as ( )1100 −ijkxe β .  For example, the estimated 

parameter for the F and interval 1 interaction is 0.2921.  This means, holding all other 

covariates constant, that there is a ( ) 92.331100 ≅−0.2921e  percent increase in the hazard 
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of mortality for a fertilized tree during interval 1 relative to the C treatment.  Conversely, 

for H there is a ( ) 47.751100 ≅−-1.4053e percent reduction in the hazard for a herbicide tree 

during the first interval relative to the C treatment.  The HF treatment decreases the 

hazard for an individual tree during the first interval by 69.75 percent relative to the C 

treatment.  Time varying covariates are interpreted similarly.  For example, if a plot is 

one standard deviation below the mean for BA/ha, then there is a ( ) 21.931100 ≅−-2.6893e  

percent decrease in the hazard, holding all other covariates constant.  Conversely, if a plot 

is one standard deviation above the mean for BA/ha it means there is an approximate 

increase in the hazard of 1372.1 percent.  Parameter estimates reveal that BA/ha and dbh 

have the largest and RS has the smallest impact on survival, respectively.  For dbh, if a 

tree is one standard deviation below and above the mean, it results in an approximate 

increase and decrease of the tree’s hazard of 92.50 and 1233.38 percent, respectively.  

Individual tree dbh has a greater impact on survival than the average plot dbh.  Note that 

if a plot is one standard deviation above the mean for the average plot dbh then there is an 

increase in an individual tree’s hazard of 283.74 percent.  These dbh results imply that 

plots that are above the mean have a larger hazard and trees within a plot that are below 

the mean for dbh have an increase in their hazards.  This means that smaller trees on 

older plots are more likely to die.  In addition, note that the signs for the plot average and 

individual tree parameter estimates for Ht are negative.  This means that as a tree or plot 

increases in size relative to the mean, its hazard decreases.  However, the plot average 

height has a greater effect on the hazard than the individual tree height.  The estimated 

parameter for TPH is negative, which means that as TPH increases the probability of 

mortality decreases.  This seems counterintuitive, however, our study plots were all 
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planted at the same density and plots that have more TPH as time increases are those 

plots with a lower rate of mortality.  Therefore, for our data it is logical for the TPH 

estimated parameter to be negative.   

 

Random Parameter Interpretation and Contrasts 

Random parameter variance component estimates are indicative of the survival variability 

for the trees within a plot and among plots for a given treatment.  Note that the C 

treatment is the only treatment where the estimated variance is larger at the plot level 

than for trees within a plot.  Hence, there is more plot-to-plot survival variability for the 

C treatment.  Herbicide has the least variability at the plot level and F has the least 

variability for trees within a plot.  Note that the H treatment has the largest level 2 to 

level 3 ratio of the variability, i.e., there is 15.4 times more variability at the tree level 

relative to the plot level.  However, the results for a Wald type test reveal that the H plot 

level variability is not significantly difference from zero and its tree level variability is 

borderline significant.  Control and HF treatments have the highest variability for the plot 

and trees within plot levels, respectively.  In addition, the Wald type test for the C, F, and 

HF treatments are significant at both levels.  A Wald type test can used to construct 

contrasts among the treatment random parameters, i.e., to test for differences in the 

variability among the treatments.   

We demonstrate the procedure for testing orthogonal contrasts of the random 

parameters using the plot random parameters.  Define a r x q contrast matrix C, where r 

is the number of contrasts being tested and q is the number of random parameters.  Then 

we can form q-1 linearly independent functions of the q random parameters.  For our 
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model, we can test a set of three linear independent plot level random parameter 

functions by defining   
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Now define g to be the vector of plot level random parameters, i.e., 

[ ]THFHFCg 2222 σσσσ=  

Then define a general hypothesis as kfH =:0 , where f = Cg and k is a q x 1 vector that 

is usually assumed to be zero.  The Wald type test statistic for this general hypothesis is 

( ) ( )[ ] ( )kfCZVZCkf TTT −−=Τ
−−−

111  

If the null hypothesis is true then this is distributed approximately χ2 with r degrees of 

freedom (Goldstein 1995).  Note ( ) 11 −− ZVZ T  is the covariance matrix of the random 

parameters and since this is unknown, the estimated covariance matrix of the random 

parameters is substituted.  Our set of plot level orthogonal contrasts will test the mean of 

the F, H, and HF treatments versus the C, the mean of the H and HF treatments versus the 

F treatment, and the H versus HF.  The C matrix corresponding to this set of orthogonal 

contrasts is  
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



−
−−
−−−
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1100
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and g, defined as the vector of plot level random parameters, is  

[ ]Tg 4063.00321.03903.05872.0=  

Our null hypothesis is 
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The Wald type test statistic is 
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After pre and post multiplying the random effects covariance matrix by C and estimating 

this inverse we have  
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Where T is approximately χ2 with 3 degrees of freedom and the p-value is 0.0002519.  

Therefore, we would reject the null hypothesis for any reasonable α.  Individual Wald 

type χ2 test statistics (1 degree of freedom) for these three contrasts are 3.241 (p-value = 

0.07182), 1.241 (p-value = 0.26528), and 5.658 (p-value = 0.01738).  Hence, there is 

some evidence of a significant difference between the C and the mean of the F, H, and 

HF treatments.  There is no significant difference between the F and mean of the H and 

HF treatments.  However, there is a significant difference between the H and HF 
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treatments.  Since this set of orthogonal contrasts informs us that there are some 

significant differences among the plot level random parameters, we can construct 

hypothesis tests to determine which random parameters are significantly different.  We 

have already determined that 22
HFH σσ ≠ .  In addition, the 22

FH σσ =  contrast results in a 

χ2 test statistic of 6.415 (p-value = 0.011316), which is indicative of a significant 

difference between these treatments for the random parameters at the plot level.  

Furthermore, contrasts of the HF treatment versus the C and F treatments results in χ2 test 

statistics of 0.691 and 0.007, and their respective p-values are 0.40582 and 0.93332.  

Hence, there is no evidence that the plot level variability is different for the C, F, and HF 

treatments, but there is evidence that the H treatment is significantly different from the 

other treatments.    

 Contrasts for level 2 reveal that the HF treatment is significantly different from 

the C and F treatments, and has borderline significance (p-value = 0.05477) with the H 

treatment.  The C, F, and H treatments are not significantly different.  Therefore, it is 

reasonable to assume that the variability among trees within a plot for the C, F, and H 

treatments can be modeled adequately using one variance parameter.     

 

Individual Tree Mortality Predictions 

Individual tree mortality predictions can be obtained at all levels and we can obtain 

predictions for new plots assuming different resolutions of information are available.  

Here we demonstrate predicting individual tree mortality for our study plots and then 

illustrate mortality predictions for a new plot. 
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Our first scenario assumes we would like a prediction of the typical mortality, 

setting the random effects to zero, for the C and H treatments at interval 1, which 

corresponds to ages 1-2, given the following plot and tree information.  Plot and tree 

standardized covariate values are BA/ha (-1.0), TPH (0.0), RS (2.0), HPlot (-1.5), dbhPlot (-

1.5), dbh (tree 1 = -1.5 and tree 2 = -1.0), and Ht (tree 1 = -1.5 and tree 2 = -1.0).  Using 

equation (4.2) for tree 1, the predicted mortality for the C and H treatments are 

( )[ ] Hj x4053.10038.11loglog 1 −−=−− π , which results in tree 1 predictions of 0.3068 

and 0.08597, respectively.  Similarly for the second tree, the C and H mortality 

predictions are 0.0669 and 0.01685, respectively.  Hence, as expected the H treatment 

reduces the probability of mortality substantially for interval 1 relative to the C treatment.   

Our next scenario demonstrates how predictions are obtained at the different 

levels for a tree on the HF treatment during interval 8, which corresponds to ages 8-9.  

The first tree is from plot 1 (HF) and has the following attributes for this interval.  

Standardized values of the covariates are BA/ha (1.430172), TPH (0.1378), RS (-

.5683655), HPlot (0.229449), dbhPlot (0.3832622), dbh (0.7104519), and Ht (0.702079).  

Hence, this plot is above the mean for BA/ha, TPH, HPlot, and dbhPlot, which would 

generally be expected since the HF treatment accelerates tree growth.  In addition, this 

particular tree is above the plot average for dbh and Ht.  A typical response for a tree with 

these attributes and treatment is ( )[ ] 164107.51loglog 1 −=−− jπ , which results in a 

0.005702 mortality probability.  However, by including the random effects we can obtain 

a more precise estimate for this tree’s mortality.  The plot level random effect is –

0.08526806.  Hence, using the plot level random effect the CLL prediction is 

( )[ ] 24937506.508526806.0164107.5164107.51loglog 1 −=−−=+−=−− kj bπ and after 
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transforming, the tree’s mortality prediction is 0.005237.  Including this tree’s random 

effect of –0.1000968 in the CLL function gives a mortality prediction of 0.004739.  This 

tree is still alive at the last measurement period and hence; the probability is more precise 

as expected by including the random effects.  The plot level random effect reduces the 

hazard by ( ) 17.81100 ≅−6-0.0852680e  percent.  Whereas, the tree level random effect 

reduces the hazard by ( ) 53.91100 ≅−-0.1000968e  percent.   Moreover, inclusion of the plot 

and tree level random effects results in a ( ) 92.161100 ≅−0.1000968--0.0852688e percent 

decrease in the hazard.  However, for this tree, the tree level random effect has a more 

profound impact upon survival than the plot random effect.  Conversely, another tree was 

chosen from this plot that died during this interval.  The fixed, plot, and tree specific 

effects are –2.023651, -0.08526806, and 0.6395384, respectively, which following the 

previous procedure correspond to mortality predictions of 0.1238, 0.1143, and 0.2055.  

Improvement in this tree’s mortality prediction is evident and also by noting that the tree 

level random parameter increases the hazard by ( ) 56.891100 ≅−0..6395384e  percent relative 

to the fixed effects.  Mortality predictions at all levels for a given tree are easily 

obtainable using the MLwiN software.  It is typical in forestry to desire predictions for a 

plot that is not included in the original study, we present several scenarios for mortality 

predictions given a new plot.   

Case I: Mortality Predictions for trees with no prior records and the plot is not 

associated with the study treatments 

Suppose mortality predictions are desired for trees on a new plot that has no previous 

records and is different from our study cultural treatments.  Hence, the plot or tree level 

random effects can’t be estimated; however we can estimate the typical response.  Let the 
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age 3 standard deviations for BA/ha, TPH, RS, HPlot, and dbhPlot be –0.25, -0.50, -2.0, -

0.25, and –0.25, respectively.  For simplicity, we will consider four trees on the plot that 

have standardized dbh’s and Ht’s of –1.0, -0.5, 0.5, and 1.0.  The estimated mortality 

probabilities for the age interval 3-4 are obtained using model (4.2) and setting the 

random effects to zero, i.e.,  

( )( ) ijkijk
Plot
k

Plot
ikikikik HdbhdbhHRSTPHhaBA 76543213,00ijk /-1log-log βββββββκπ +++++++=

 

Here all terms of the complementary-log-log model are as defined previously.  The 

substitution of the plot attributes and their respective parameter estimates yields 

( )( ) ijkijk Hdbh  5418.0 3448.12296.5ˆ-1log-log ijk −+−=π  

Mortality predictions are obtained by substituting the standardized dbh’s and Ht’s for the 

four trees.  The matrix of dbh’s and Ht’s for these four trees is given by  

T










−−
−−

0.15.05.00.1
0.15.05.00.1

, 

where the first row represents dbh and the second row represents Ht.   

The resulting mortality predictions for the four trees are 0.115527, 0.025315, 0.001118, 

and 0.000234.  Hence, as expected, the probability of mortality decreases as the 

standardized variables increases.  These mortality predictions are typical responses for a 

new plot that has a different treatment from the study plots.  However, the plot random 

effect could be estimated if this new plot was associated with one of the study cultural 

treatments. 
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Case II: Prediction for a new Plot Associated with the HF Treatment but with no Prior 

Measurements 

Suppose the Case I plot is associated with the HF cultural treatment but has no prior 

measurements, hence we can estimate the plot level random effect.  However, because 

model (4.2) is nonlinear, there is some background given to motivate the method used to 

estimate the random effects.  Goldstein’s (1991) MQL-1 parameter estimation method is 

used to estimate the random effects, which is motivated by a generalized linear mixed 

model.  A linear mixed effects model can be expressed as 

εεεεββββ ++= zbxy , 

where Z and X are the design matrices corresponding to the random and fixed effects, b 

and ββββ are the respective parameters, and εεεε is usually assumed to be normally distributed 

with mean zero.  Random effects can be estimated using the best linear unbiased 

predictor (BLUP) (Vonesh and Chinchilli 1997), which is often referred to as an 

empirical Bayes (EB) or shrinkage type estimator (Goldstein 1995), and is defined as 

( ) ( )ββββ̂ˆ 1 XyRZDZDZb TT −+= − , 

where D and R are the variance-covariance matrices of the random effects and errors, 

respectively.  Using Goldstein’s (1991) method, we can write our multilevel binary 

response model as (Rodriguez and Goldman, 1995)  

( ) εεεεββββ +++= 3322 bZbZXgy , 

where εεεε has a mean of zero and a variance which depends upon the mean g.  The inverse 

link g(• ) is approximated using a first order Taylor series expansion, around ββββ = ββββ0 and b2 

= b3 = 0, as 
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( ) ( ) εεεε
ηηηηηηηη

ββββββββ
ηηηη

ηηηη +
∂
∂+

∂
∂+−

∂
∂+≈ 33

0
22

0
0

0
0 bZgbZgXggy , 

where 0η∂∂g is a diagonal matrix of derivatives of the mean with respect to the 

conditional linear predictor evaluated at 0ηηηηηηηη = .  For our CLL model, the derivative is   

ηη

η
eeeg −=

∂
∂  

Furthermore, call this derivative ΛΛΛΛ, our model which approximates the nonlinear model 

can be expressed as 

εεεεββββ +++≈ 3
*
32

*
2

** bZbZXy ,  

which has the same form as a multilevel linear model.  The dependent variable is 

0
*

0
* ββββXgyy +−= , XX ΛΛΛΛ=* , and ZZ ΛΛΛΛ=* .  Notice that ( ) ββββ** XyE =  and ΛΛΛΛ is an 

estimate of the variance.  The BLUP of the random effects for a given level is 

( ) ( )ββββ**1*
33

*
3

*
22

*
2

* ˆˆˆ XyZDZZDZZDb TTT
iii −++= −ΛΛΛΛ ,  

where i= 2 (tree level) or 3 (plot level) for our model.  Using the fact that at convergence 

0ηηηηηηηη = , we can write the BLUP of the plot level random effects as 

( ) ( )gyZDZZDZZDb TT ˆˆ 1*
33

*
3

*
22

*
2

*
333 −++= −ΛΛΛΛ  

Continuing with our example, using the CLL’s from Case I, our matrix of evaluated 

differentials is 



















=

000234.0000
0001117.000
00024991.00
000108571.0

ΛΛΛΛ  
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To simplify the computations for our example and since the covariances of our plot level 

random parameters are zero we can let D = 0.4063, which is the estimated variance 

component parameter for the HF treatment at the plot level.  In addition, Z is a vector of 

ones corresponding to the four trees and let ΛΛΛΛ++= TT ZDZZDZV *
33

*
3

*
22

*
2 .  The level 2 

and 3 design matrices are identical for our study, hence 
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
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001117.0
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1
1
1
1
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3
*
3

*
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Then estimate V using 
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
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−−
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and 
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
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*
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Hence, 


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
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Suppose that tree 2 had recently died, our corresponding vector of residuals is then 

defined as  
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Thus, the random effect for this plot is estimated as 

[ ] 2881946.0
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Using the predicted random effect for this plot and adding it to the previous obtained 

CLL’s for Case I, the estimated age 3-4 mortality probabilities for the three living trees 

can be estimated using   

( )( ) 2881946.0 5418.0 3348.12296.5-1log-log ijk +−+−= ijkijk Hdbhπ  

Thus, the predicted mortality probabilities for the three living trees are 0.151061, 

0.001491, and 0.000312.  Inclusion of the plot level random effect increases the predicted 

probability of mortality, which is expected since in our example we are using only four 

trees and assuming one tree died.  It may be of interest to assess the plot effect in terms of 

the proportional hazards.  This plot has about a ( ) 40.331 100 2881946.0 =−e  percent increase 

in the hazard of mortality relative to the typical HF treatment plot in which the random 

effect is zero.  Our purpose is to illustrate the random effect prediction process and it is 

obvious that given prior information and a larger sample of trees we can get a better 

estimate of the plot random effect.   
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Case III: Mortality Predictions for a new Plot with Prior Measurements and 

Associated with the HF Treatment 

Suppose that for Case II we have prior tree measurements, for simplicity we will ignore 

the prior measurements for the estimation of the plot random effects, i.e., we should use 

all information to re-estimate the plot random effect.  Assume that in addition to the 

present measurements that there is also plot information for the ages 1 and 2.  We will 

illustrate the tree random effect estimation process assuming the predicted age 1-2, 2-3, 

and 3-4 probabilities are 0.22, 0.19, and 0.11 for a given tree.  Our tree level BLUP is 

given by 

( ) ( )gyZDZZDZZDb TT ˆˆ 1*
33

*
3

*
22

*
2

*
222 −++= −ΛΛΛΛ  

The diagonal matrix of derivative evaluated at g-1 is 
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The level 2 and 3 design matrices are identical, therefore 
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and the vector of residuals for this tree is 
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The V2 estimated matrix is 
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Hence, our BLUP for this tree’s random effect is  
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0.19-
0.22-

  
0.103713
0.170687
0.193795

 14541.1ˆ 1
2 −=

































= −Vb

T

 

This predicted random effect results in about a ( ) 18.291 100 34498.0 =− −e percent decrease 

in the hazard of mortality relative to a typical tree on this HF plot that has a random effect 

of zero, holding all other variables constant.  Our purpose here was to demonstrate the 

prediction of the random effects.  However, note that if for a new plot the information is 

contained in a stand table, the plot level and dbh class random effects could be predicted.   

 

Discussion 

Survival analysis concentrates on the hazard and survival functions and how these 

functions change over time and across strata.  Individual tree mortality models oftentimes 

assume one or a combination of proportional hazards, proportional odds, and accelerated 

failure time models.  For example, the logistic equation has the accelerated failure time 

and proportional odds properties.  Other forestry survival analysis methods include 

adopting a Cox proportional hazards model (Volney 1998) and the log normal 

distribution was used by Preisler and Slaugther (1997) to allow for more flexibility in the 

hazard function.  However, the logistic equation has become the most widely used 

individual tree survival model because of its flexibility, ease of parameter estimation, and 

interpretability.   
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Although the logistic equation is flexible, it does impose restrictions on the data, 

i.e., its estimated parameters are not invariant to the interval length.  This means that 

switching from an interval of five years to one year changes the model and hence, the 

coefficients are not directly comparable when using these different interval lengths 

(Allison 1991).  Conversely, the CLL function is invariant to the length of the 

measurement interval and hence the CLL the parameter estimates are comparable using 

the same data that is fitted for different interval lengths.  One reason for the logistic 

equation popularity is the ease of parameter interpretation.  Parameters in the logit model 

act multiplicatively on the odds of survival.  As demonstrated, the CLL coefficients have 

a relative risk interpretation just as in the Cox proportional hazards model.  Thus for a 

covariate x, it expresses the ( )1100 −xe β  percent of increase or decrease in the hazard of 

death for a one unit increase in x.   

Adopting a Cox proportional hazards model using the likelihood function for 

interval censored data leads to the grouped time version of the continuous time 

proportional hazards model (McCullagh 1980) of 

[ ]{ } ( )
( ) ijk

i

i
jkijk tS

tS κηηπ +=















−+=−−

−10

0loglog1loglog  

As discussed, this is a linear model for the CLL transformation of πijk in which the 

parameters κi are associated with the ith time interval.  Therefore, for interval censored 

permanent plot forestry data the CLL model is a more natural model choice.  We 

demonstrated that the assumption of proportional hazards at the cut points can be relaxed 

by incorporating time dependent covariates and/or interaction terms.  In addition, sources 
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of heterogeneity that are inherent in permanent plot repeated measurement studies are 

easily included in the model.     

Permanent plot forest inventory data naturally have a hierarchical structure, i.e., 

measurement occasions (repeated measurements) are nested within trees, trees are nested 

within plots, and plots.  Consideration of the multilevel structure allows the analyst to 

obtain statistically efficient estimates of the regression coefficients.  In addition, 

incorporating the heterogeneity from the groups provides the correct standard errors, 

confidence intervals, and tests of significance.  Lastly, it allows measuring covariates at 

any grouping level and then obtaining the corresponding predictions.  Moreover, if the 

relationship between the response and the covariates is nonlinear, e.g., logistic, then 

ignoring groups can result in large biases in the parameter estimates (Rodriguez and 

Goldman 2001).   

Conceptually, our multilevel survival model is straightforward.  However, 

multilevel binary response models have presented some difficulties in parameter 

estimation.  This is mainly due to the response having a binomial distribution rather than 

the more tractable normal distribution assumed in classical linear and nonlinear models.  

There have been several methods proposed for multilevel binary response model 

parameter estimation.  These parameter estimation methods include maximum marginal 

likelihood (MML), 1st and 2nd order marginal quasi-likelihood (MQL-1 and MQL-2, 

respectively), 1st and 2nd order penalized quasi-likelihood (PQL-1 and PQL-2, 

respectively), and Markov Chain Monte Carlo (MCMC). However, there is no current 

consensus on which parameter estimation method is preferable under a given set of 

conditions.   
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There is a consensus that some of these methods are deficient in certain respects 

and that some methods are better than others, however the best methods are not feasible 

computationally.  Moreover, in some instances the choice of parameter estimation 

method may be limited to those methods that converge.  For our example, only the MQL-

1 method converged.  It has been suggested by Goldstein and Rasbash (1996) that a rule 

of thumb is to compare the MQL-1 and PQL-1 estimates and accept them if they are 

similar.  However, a simulation study by Rodriguez and Goldman (2001) demonstrated 

that even if the MQL-1 and PQL-1 estimates are similar, there can be substantial bias in 

the estimates, i.e., similarity does not guarantee the estimates are close to the true values.  

They suggest using all four of the approximation methods (MQL-1, MQL-2, PQL-1, and 

PQL-2) to estimate the parameters and to accept the results if there is similarity among 

the methods, since this will likely indicate small biases.  In addition, they recommend 

computing five iterations of the bootstrap for the PQL-1 and if the trajectories of the 

estimates remain flat then the results are likely to be adequate.  If there is disagreement 

among the approximation methods or the bootstrap estimates exhibit variability, then the 

Bayesian modeling methods should be considered.   

Our model considered and estimated the random parameters by treatment at the 

plot and trees within a plot levels.  We did not consider time varying covariates as 

random effects because our interest was on assessing the variability among the 

treatments.  There may be some questions about our failure to consider or model the 

correlation over time within a tree.  It is well known that ignoring the correlation among 

repeated measurements may result in biased estimates of the estimated parameter 

standard errors and test statistics can be inflated.  However, we modeled a binary 
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response in which the event is non-repeated, hence, there is no theoretical reason to 

consider the correlation over time for our repeated measurements.  For our model, the use 

of repeated measurements is not a result necessarily of the data but of factoring the 

likelihood function.  Our previously discussed likelihood function is 

( ) ijk
jkk n

i

n

j

n

k
L δδ ππ −

+

===
ΠΠΠ= 1

ijkijk

1

111
-1ijk                                                                                         

This likelihood function was developed using the conditional probabilities, i.e., the 

probability of mortality in the ith interval is conditional on mortality not occurring during 

the previous intervals.  For example, if the jth tree on the kth plot succumbs during the 

second interval we can factor the likelihood function for this tree as (1-π1jk) π2jk.  This 

means that the probability of the mortality occurring during the second interval is simply 

the probability that it survives the first interval and dies during the second interval.  

Therefore, each of these terms for this tree may be treated as though it came from a 

distinct independent observation (Allison 1995).   

Our example demonstrated the importance of considering the heterogeneity that 

may occur at different levels.  Most treatments have significant survival variability at the 

plot and trees within plot levels.  In addition, including the sources of heterogeneity in the 

model generally increases the precision of the mortality prediction.  The differences 

among the random parameters by treatment can be used to assess the impact of the 

treatment on survival.  For example, it is known that fertilization and herbicide usually 

accelerate the development of the stand and the impact of these treatments on stand 

development and survival can be obtained using our model.  For example, we can 

determine at what age the treatments obtain the mean BA/ha, which are: C = age 8-9, F = 

age 6-7, H = age 6-7, and HF = age 5-6 (Figure 4.7).  Hence, the HF treatment obtains the 
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mean BA/ha first and it occurs at about 5 years 7 months.  Comparing the other 

treatments to the HF at this age, we can determine roughly how many standard deviations 

from the mean the other treatments are at this time.  Calculating the standard deviations 

for these treatments and then obtaining the corresponding relative risks, we find that the 

C, F, and H treatments result in a 52.95, 41.96, and 22.46 percent decrease in the hazard 

relative to the HF treatment, holding all other variables constant.  Corresponding mean 

BA/ha for the C, F, and H treatments are 71.4, 51.7, and 24.4 percent less than the BA/ha 

of the HF treatment (13.1 m2) (Figure 4.7).  In addition, the HF gain in Ht, dbh, and Dq 

are reflected when it achieves the mean BA/ha.  For Dq, the C, F, and H treatments are 

48.9, 33.5, and 13.4 percent less than the HF treatment, which is 10.1 cm.  For dbh, the C, 

F, and H treatments are 103.4, 71.6, and 28.6 percent less than the average dbh of 10.0 

cm for the HF treatment.  For Ht, the C, F, and H treatments are 39.9, 26.5, and 9.7 

percent less than the HF treatment, which is 6.7 m.  It is important to note that when the 

HF treatment achieved the mean BA/ha, its survival was substantially greater than the C 

and F treatments.  Hence, looking at one attribute in isolation is difficult for making 

inferences about the overall effect on a treatment since survival is dependent upon many 

factors.  However, our random parameters results suggest that the F, H, and HF 

treatments will reduce the plot level survival variability relative to the C treatment.  

Moreover, the estimated random parameters at the tree level reveal that the survival 

variability for the C, F, and H treatments are not significantly different.  Estimated 

random parameters for the HF treatment reveal that it has substantially more survival 

variability at the tree level.  Estimated random parameters are larger for the F, H, and HF 

treatments at the tree level, and the converse is true for the C treatment.  This higher 
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survival variability at the tree level for the F, H, and HF treatments is likely due to the 

inherent variability when applying the treatment.    

 

Conclusion 

Our model development demonstrates that the CLL link function is the natural choice for 

permanent plot binary response data because it is derived directly from the likelihood 

function that accounts for interval censoring.  Moreover, the parameters can be 

interpreted as for a Cox proportional hazards model.  In addition, it was demonstrated 

that our model easily relaxes the assumption of proportional hazards at the cut points and 

can include random effects at the different levels.     

Multilevel models have become increasingly common in forestry, which is likely 

to continue as better software becomes available for estimation of large complex data 

sets.  It is common for multilevel binary response models to use first and second order 

MQL and PQL to estimate the parameters.  It has been suggested that MQL-1 tends to 

under estimate the variance components and that PQL-2 is the preferred method.  

However, in many instances, especially for large complex data sets such as our, the only 

method that may converge is MQL-1.  Moreover, it is usually better allow for a 

multilevel structure and use MQL-1 than to ignore the multilevel structure.  Additional 

studies are necessary to assess the effect of the different parameter estimation techniques 

on the fixed and random effects.     

It was demonstrated that using the plot and tree level random effects generally 

results in more precise predictions.  However, if our goal is to obtain the marginal 

probabilities, then these can be easily computed using Monte Carlo integration.  Hence, 



 90

the multilevel model is empirically and theoretically correct for obtaining the marginal 

probabilities, but the converse is not true for the PA model.  If fixed effects hypothesis 

testing is the study focus, then the SS and PA approaches will result in similar inferences.  

However, the PA approach will not provide any information about the heterogeneity that 

may exist at the different levels.  If predictions are our primary purpose, then the SS 

approach is usually preferred (Ten Have and Uttal 1991).  Individual tree forestry 

survival models naturally focus on prediction; therefore, the SS approach is the more 

natural method. 
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Table 4.1.  The CAPPS study summary statistics (N = 112365) for dbh, tree height (Ht), 

trees per hectare (TPH), basal area per hectare (BA/ha), quadratic mean diameter 

(Dq), and relative spacing (RS) across the age range (1-13). 

Attribute Mean Minimum  Maximum  Std. Error 
     
dbh (cm) 8.45 0.00 33.78 6.49 
Ht (m) 6.95 0.03 22.86 4.93 
TPH 14.98 5.53 18.78 1.75 
BA/ha (m2) 13.06 0.00 46.41 12.35 
Dq (cm) 8.64 0.00 24.08 6.29 
RS 0.92 0.12 6.24 1.23 
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Table 4.2.  Estimated fixed parameters and variance components for the multilevel 

complementary log-log individual tree survival model.  Only the first two of the 

thirteen estimated parameters for treatment by interval interaction are presented.  

Parameter Estimate Standard Error p-value 
    
Interval 1 -3.6298 0.3195 <0.0001 
Interval 2 -4.9038 0.2692 <0.0001 
Interval 3 -5.4412 0.2653 <0.0001 
Interval 4 -5.3547 0.2880 <0.0001 
Interval 5 -5.2564 0.3082 <0.0001 
Interval 6 -4.6412 0.2527 <0.0001 
Interval 7 -4.8289 0.2570 <0.0001 
Interval 8 -5.0276 0.2763 <0.0001 
Interval 9 -5.4391 0.3091 <0.0001 
Interval 10 -5.3685 0.3062 <0.0001 
Interval 11 -5.2006 0.3419 <0.0001 
Interval 12 -5.9219 0.4515 <0.0001 
Interval 13 -5.6449 0.4779 <0.0001 
    
Fertilizer*I1  0.2921 0.2084   0.1610 
Fertilizer*I2  0.1813 0.2416   0.4530 
    
Herbicide*I1 -1.4053 0.2198 <0.0001 
Herbicide*I2 -2.3563 0.3981 <0.0001 
    
H&F*I1 -1.1958 0.2712 <0.0001 
H&F*I2 -3.2856 0.6465 <0.0001 
    

BA/ha  2.6893 0.1601 <0.0001 
TPH -1.0020 0.0558 <0.0001 
dbh -2.5903 0.1514 <0.0001 
H(plot) -1.7569 0.5005   0.0004 
RS -0.1505 0.0768   0.0500 
dbh (plot)  1.3448 0.5954   0.0239 
Height -0.5418 0.1736 <0.0001 
   
Variance Components   
Level 2    
Control  0.5219 0.1294 <0.0001 
Fertilizer  0.4588 0.0985 <0.0001 
Herbicide  0.4930 0.2686   0.0664 
H&F  1.1454 0.2083 <0.0001 
    
Level 3    
Control  0.5872 0.1586   0.0002 
Fertilizer  0.3903 0.1317   0.0030 
Herbicide  0.0321 0.0513   0.5315 
H&F  0.4063 0.1487   0.0063 
 
Note:  Intervals 1, 2, 3, … , 13 correspond to ages 1-2, 2-3, 3-4, … , 13-14. 
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Table 4.3.  The predicted stand progression for plots 40 and 59 using the multilevel 

complementary log-log survival model with random treatment effects for the trees 

within a plot and plots (Random).  The fixed effect model (Fixed) uses the same 

covariates as the random effect model but with no random effects. 

 
 Plot 40 Plot 59 
Age Actual Fixed Random Actual Fixed Random 
2 73 74.4 70.4 76 79.0 69.5 
3 72 71.5 66.8 73 78.3 64.9 
4 70 70.8 65.7 70 77.7 61.3 
5 69 70.4 65.0 68 77.2 58.8 
6 69 70.2 64.5 64 76.4 55.9 
7 68 69.7 63.8 64 75.4 52.9 
8 67 69.3 63.2 60 74.0 49.5 
9 66 68.9 62.6 54 71.5 44.3 
10 65 68.6 62.2 52 69.6 40.8 
11 65 68.4 61.9 50 67.3 37.2 
12 63 68.1 61.5 45 65.5 33.8 
13 61 67.2 60.8    
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Figure 4.1.  The Kaplan-Meier product limit survival (S(t)) and hazard functions (h(t)) 

estimates for the CAPPS study. 
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Figure 4.2.  CAPPS study Kaplan-Meier (1958) product limit estimates for the survival 

(S(t)) and hazard functions (h(t)) by treatment. 
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Figure 4.3.  The computed complementary log-log for the considered covariates.  The 

empirical CLL were computed by computing the 25th, 50th, and 75th quartiles, and 

then grouping these quartiles into the 0-25 (1), 25-50 (2), 50-75 (3), and 75-100 

(4) quantiles. 
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Figure 4.4.  Standardized residuals by plot rank and quantiles of the standardized normal 

distribution for the plot level random effects. 
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Figure 4.5.  Plot level standardized residuals for the mean plot level predictions and 

average BA/ha.   
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Figure 4.6.  Predicted and empirical hazards by age for the CAPPS study data. 
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Figure 4.7.  The average standardized BA/ha by treatment (C = 1 = control, F = 2 = 

fertilizer, H = 3 = herbicide, and HF = 4 = herbicide and fertilizer) and age.  Mean 

BA/ha, Ht, dbh, and Dq at the age when the HF treatment achieves the mean 

BA/ha (approximately 5 years 7 months).
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CHAPTER 5 

A MULTILEVEL INDIVIDUAL TREE MORTALITY MODEL DEVELOPED 

FROM PERMANENT PLOTS IN LOBLOLLY PINE PLANTATIONS 

Introduction 

Our focus here is to develop a parsimonious multilevel individual tree logit mortality 

model for use in projecting stand tables.  Since this Chapter is an extension of the 

previous Chapter, see Chapter 4 for further details on survival analysis and forestry 

survival background, and model development.  However, inevitably there will be some 

overlap in the details of this Chapter with Chapter 4.   

Modeling individual tree mortality or alternatively survival, hereafter the 

modeling of survival or mortality is used interchangeably, began in earnest in the 1970’s 

with a study by Hamilton (1974) in which he used the logistic.  Alternatives to the 

logistic for modeling individual tree survival have been developed but have not been 

demonstrated to be more effective.  Therefore, the flexibility, ease, and interpretability of 

the logistic will likely enable its popularity to be maintained for modeling individual tree 

survival.  Individual tree survival models typically focus on natural mortality, which 

occurs due to factors such as competition for light, nutrients, and water.  Here we use 

permanent plot plantation data to model natural individual tree survival.  

 Plantation forestry studies frequently use repeated measurement data from 

permanent plots in which the data structure generally form three levels or groupings.  

Measurement occasions are nested within a tree (level 1), trees are nested within a plot 
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(level 2), and plots (level 3).  Here we adopt the nomenclature used by Goldstein (1995) 

in which the error term is recognized as the lowest level.  Forestry individual tree 

mortality models have typically been fitted assuming the trees within a plot are 

independent and it was acknowledged by Hamilton (1974) that because there is 

clustering, i.e., trees are sampled by plots, that the independence assumption is violated.  

Recent forestry studies have demonstrated the importance of accounting for the multiple 

levels of heterogeneity using a subject specific (SS) model and have distinguished 

themselves from population averaged (PA) models.  Here, we develop a multilevel 

individual tree logit mortality model that accounts for the variation among and within 

plots.   

 

Survival Model Formulation    

Our survival model assumes the data are from a permanent plot plantation study in which 

measurement occasions are nested within a tree (level 1) and trees are nested within a 

plot (level 2).  We began the modeling process by defining the probability of a tree dying 

during the ith time interval (ti-1, ti), i = 1, 2, … , l.  A tree’s mortality noted at time ti, had 

an actual death time of t, where ti-1 ≤ t < ti.  All trees enter the study at t0 = 0, however the 

calendar time corresponding to t0 may vary by plot.  All trees are followed to time tl, the 

last measurement occasion or the time when the tree succumbs.  Let pijk be the probability 

of mortality occurring for the jth tree on plot k during the ith time interval, i.e., 

( )ijkiijk tTtp <≤= −1 Pr .  Then Tjk is a random variable associated with the jth tree in plot 

k.  Conditional probability of mortality in the ith time interval given that the death occurs 

after ti-1 is given by ( )11 | Pr −− ≥<≤= ijkijkiijk tTtTtπ , where i = 1, 2, …, l+1.  This 
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means that ( )( ) ( ) ijkjkijkjkijkp ππππ  1 ... 1 1 ,121 −−−−= , where i = 2, 3, … , l+1 and p1jk = 

π1jk.  The complementary probabilities are associated with a tree not dying during an 

interval and p1jk is the probability it was planted and died during the first interval.  In 

addition, δi = 1if the jth tree on plot k dies during the ith interval, otherwise δi = 0.  The 

likelihood function for the jth tree on plot k can be expressed as 

( ) i
ijkijk

l

i
L δδ ππ −

=
−=Π 1

1
1 .                                                                                                   

It is common to analyze discrete time survival data by modeling the hazard 

function as a linear function of covariates using a transformation g(• ) (e.g., Hedeker et al. 

2000, Biggeri et al. 2001).  The linear function typically includes an intercept, time (t) 

and a suite of explanatory variables x, i.e.,  
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Where α and β are parameters.  Commonly, the link function chosen is either the logit 

(Cox 1972) or complementary log-log (Prentice and Gloeckler 1978).  However, since 

the logistic regression model is the most common individual tree survival model, only the 

logit link is considered for our example.  We can express the logit link function for the ith 

interval of the jth tree on the kth plot as    
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Here t is time, x is a suite of tree and/or plot level covariates, and α, β are parameters.  

Conceptually, this model can be easily extended to include random effects for the 

different levels.  In summary, defining πijk as the probability that the jth tree on the kth plot 
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succumbs during the ith interval, the three-level mixed effects mortality model that uses 

the logit link function and allows for time varying covariates is 
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                         (5.1) 

Where xijk is the p x nijk covariate matrix associated with the fixed effects ββββ, z(m)ijk are the 

qm x nijk covariate matrices associated with the random effects, and ts is the s x nijk time 

covariate matrix associated with the fixed effects αααα.  The random effects at the different 

levels are assumed independent and the level 3 (plot) and level 2 (trees within a plot) 

random effects bk and bjk are distributed as N(0, ,Σ(3)) and N(0,Σ(2)), respectively.  There 

are nk trees within each plot and Nk total observations within plot k (the sum of all the 

measurement occasions for all trees within a plot).  The random effects design matrix 

generally is a subset of the fixed effects design matrix and hence, the random effects 

represent deviations from the means. 

Our previous likelihood function is valid for the multilevel model but the response 

is now conditional on the random effects.  Define g-1
k(πijk) as the inverse link function 

binary response vector pattern for plot k having  nk trees observed at njk measurement 

occasions.  Assuming independence of the response vector conditional on the random 

effects, the likelihood for the kth plot can be expressed as (Gibbons and Hedeker 1997) 
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The marginal distribution of δk can be obtained from the likelihood by integrating over 

the distribution of the random effects (f(θθθθ)), i.e., 

( ) ( ) ( )∫= θ
δδ θθβbb dfLL jkkkk ,,|  

Conceptually, the multilevel survival model is straightforward.  However, because of 

parameter estimation challenges for binary response multilevel models, use of multilevel 

models to analyze binary response variables is relatively recent, e.g., Goldstein 1991, 

Hedeker et al. 2001, Biggeri et al. 2001, Rodriguez and Goldman 2001.  Most of the 

parameter estimation challenges are related to the response having a binomial distribution 

rather than the more tractable normal distribution assumed in classical linear and 

nonlinear models.    

A common multilevel parameter estimation technique for a binary response 

variable, and the one we adopt, is the marginal quasilikelihood (MQL-1) method.  This 

method is motivated by using the linear form of the multilevel model.  MQL-1 

approximates π by using a 1st order Taylor series expansion of the function around fixed 

effects β = β0 and random effects b = 0, 

i.e., ( ) ( ) ( ) ( )0,
1

0010,
1

01,
1 ˆˆ

ijkijkijk gXgg πββππ ′−+= −−− .  Where β0 and β01 are the current 

and updated estimates for the fixed effects from the iterative generalized least squares 

(IGLS) or restricted iterative generalized least squares (RIGLS) algorithm, respectively.  

The MLwiN ( Rasbash et al. 2000) software was used to implement this multilevel binary 

response parameter estimation method.  
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Example 

We used permanent plot data from plantation loblolly pine that were established 

throughout Georgia.  The study called for two complete blocks to be established at each 

location with each block containing four 0.15 ha treatment plots, which were established 

at each location using bare-root seedlings planted on a 2.44 m by 2.44 m spacing.  A 0.05 

ha measurement plot was centered within each of the treatment plots.  Four cultural 

treatments, herbicide, fertilization, herbicide and fertilization, and control were randomly 

assigned to the blocks at each location.  See Chapter 4 (pages 60-61) for further study 

protocol and data details.  Plots have been measured annually beginning at age one and 

the data structure is: 112,365 total observations for measurement occasions within a tree, 

11957 trees within a plot, and 146 plots.  Plot survival data are summarized by plot 

distribution (see Table 3.1, page 36) and by plot and tree attributes (Table 5.1).     

 

Preliminary Analysis  

The Kaplan-Meier (1958) product limit estimator for survival and the discrete hazard 

function were computed to detect trends among and within the cultural treatments (see 

Figures 4.1 and 4.2 on pages 96 and 97).  Results illustrate that the H treatment has the 

most favorable survival and that the HF treatment crosses and declines relative to the C 

treatment for survival at about age 11.  The discrete hazard functions by treatment reveal 

a bathtub shaped trend over time (Figure 4.2, page 97) and that the variability is highest 

for the HF treatment and lowest for the H treatment.   

 Empirical logits can aid in selecting an appropriate form of the systematic 

component (Agresti 1990).  Empirical logits for trees within a plot can be computed, 
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however this is uninformative because the trees have a 0-1 binary response.  Therefore, 

we computed the empirical logits by plot.  The empirical logit is defined as 





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



+−
+

=
5.0

5.0
logitlog

ikik

ik
E yn

y
 

Where yik is the number of trees that succumbed on plot k and nik is the total trees for plot 

k at time i.  The empirical logits were grouped and plotted by treatment (Figure 5.1).  

There is no substantial evidence of heterogeneity over time but there is moderate 

evidence that the variability of the intercepts differs by treatment.   

To assess the intercept and slope variability by treatments, the logit model of 

ii t βαη +=  was fitted by treatment (Figure 5.2).  There is evidence that the intercepts 

can be stratified by F and C, and H and HF treatments.  The HF treatment has a positive 

slope, whereas the other treatments have negative slopes.  This suggests there is an 

acceleration of mortality over time for the HF treatment relative to the other treatments.  

Hence, the HF treatment is further along in stand development.  The H logit eventually 

crosses both the fertilizer and control treatments, which suggests an acceleration of 

mortality over time versus these treatments.  The estimated parameters and their 

respective 95 percent confidence intervals reveal disjoint intercepts and slopes (Figure 

5.2), which suggests a need, at a minimum, for an adjustment in the fixed effects.  The F 

and C have similar estimated slopes and intercepts.  In addition, H and HF treatments 

have similar slopes.  The variability among plots by treatment is visually negligible, but 

this does not imply equality of variability or that a random effect for all treatments rather 

than by treatment is adequate.    
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Model Fitting Procedure 

Preliminary evidence does not strongly suggest equality of variability among plots for 

survival by treatment but does suggest that the intercepts and slopes are not equal for all 

treatments.  It is reasonable to assume the H, F, and HF treatments will accelerate the 

growth rates relative to the C treatment, hereafter equivalently referred to as the baseline.  

This growth acceleration impacts survival, which may be explained using treatment 

effects or growth related covariates such as dbh and BA/ha.  There is a tradeoff in the 

multilevel modeling process (Jones 1990), i.e., inclusion of growth related covariates 

could negate the necessity of some random effects.   

Numerous recommendations for developing multilevel models abound, e.g., 

Pinheiro and Bates (2000) recommend, in the absence of prior information about the 

random effects variance-covariance matrix, to allow all effects to be fixed and random if 

convergence can be achieved.  Other authors espouse fitting a variance component model 

and then adding covariates as fixed effects (Goldstein 1995).  A variance component 

model would usually be an adequate starting point when fitting a multilevel forestry 

survival model.  However, there is no overwhelming empirical evidence to suggest that 

the variability, both among and within plots, is equal for the cultural treatments.  

Moreover, there is evidence that the intercepts and slopes differ by treatment.  Depending 

upon assumptions, there are numerous possible baseline models.  For example, a variance 

component model could be assumed as our baseline model.  This assumes that the slopes 

and intercept are adequately modeled, for the trees within a plot and the plots, using a 

typical response.  Then the slopes and intercepts for the trees within a plot and plots are 

allowed to deviate from the typical response through the random effects, which assumes 
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the intercept and slope variations for the treatments can be adequately modeled using 

single parameters and a covariance.  There is not an overwhelming motive from our 

preliminary analysis for choosing one baseline model.  Therefore, to be somewhat 

pragmatic, we chose an intercept variance component model as suggested by Hox (1995) 

with age as a fixed covariate by treatment.  The logit model intercepts were treated as 

random and fixed, for trees within a plot and plots, by treatment.  In addition, the slopes 

(age) were treated as fixed effects by treatment.  The baseline model is 

( ) ( ) ( )
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2
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Where zl’s are indicator variables for the l treatment, A is age, and α, b are parameters, all 

other terms are as previously defined.  The off-diagonal elements are assumed to equal 

zero, i.e., it is assumed the plot-specific treatment effects are independent.   

A likelihood ratio test is typically used to determine the necessity of fixed and 

random effects for a mixed effects model that assumes the lowest level variance is 

normally distributed (Pinheiro and Bates 2000).  However, for multilevel binary response 

models that use quasi-likelihood to estimate the parameters, the likelihood ratio test is a 

crude approximation and the preference for testing the fixed and random effects is the 
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Wald chi-square test (Goldstein 1995).  Therefore, the Wald chi-square test was used to 

test for fixed and random parameter significance using α = 0.05.  For example, the H 

treatment plot level variance component was dropped because it is not significantly 

different from zero.  Inclusion of time dependent covariates negated the necessity of 

some baseline covariates.  All considered covariates were included and removed from the 

model using a stepwise procedure.  In addition, it was desirable to determine if the 

variance components could be combined for different treatments.  A Wald type test was 

used to construct contrasts among the variance components, i.e., to test for differences in 

the variability among the treatments (see pages 71-74 for contrast details).  Variance 

component contrasts revealed that the C, F, and HF treatment variance components could 

be pooled for the tree level, and C and F variance components could be pooled at the plot 

level.  Hence, our final fitted model is 
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Where πijk is the estimated probability of mortality for the jth tree on plot k at time i, zH = 

1 if H, otherwise zH = 0, similarly for the other treatment indicator variables, A is age, BA 

is basal are per hectare (m), TPH = trees per hectare divided by 100, Dq is the quadratic 
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mean diameter (cm), dbh is the individual tree diameter at breast height (cm), and α, β 

are parameters.  This model allows the intercepts to vary systematically by cultural 

treatment.  In addition, the intercepts vary randomly for trees within a plot for the H 

treatment and pooled C/F/HF treatments, and by plot for the pooled C/F and HF 

treatments.  Estimated parameters and their respective standard errors and p-values are 

presented in Table 5.2.  This model has a large number of random effects (bjk and bk).  

For plots (bk), there are 146 random effects, and trees within a plot (bjk) have 11,956 

estimated random effects, which are not presented here for brevity.  However, these 

estimates are easily obtainable and can be used for mortality probability predictions.   

 Level 2 random parameters reveal that the variability for the pooled C/F/HF 

treatments is over 1.7 times larger than the H treatment for trees within a plot.  In 

addition, the variability for the H treatment at level 3 was not significantly different from 

zero.  The pooled C/F treatment variability is over 2.35 times larger than the HF 

treatment for level 3.  These random parameters indicate that the H treatment in addition 

to having higher survival also has the lowest variability for both among and within plots.  

The fixed parameters are all behaving logically with respect to their signs for our data.  

Note that the parameters for Dq and BA/ha are positive, this means that as these attributes 

increase, the probability of mortality increases.  This is consistent with trends in the 

limiting density relationships.  The TPH parameter is negative, which implies that as 

TPH increases mortality will decrease.  This seems counterintuitive, but the plots were all 

planted at the same density and the plots with higher TPH as time increases are those 

plots with higher survival, i.e., plots experiencing lower mortality.  Therefore, for these 

data, it is reasonable that the sign for TPH parameter is negative.    
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Model Evaluation and Predictions 

Model adequacy was determined using the residuals and predictions.  Furthermore, 

model (5.1b) was compared with the same model fitted without the inclusion of random 

effects.  Level 3 residuals versus ranks and their respective Q-Q plots are presented in 

Figure 5.3.  The ideal Q-Q plot would be a straight line.  The level 3 Q-Q plots reveal no 

evidence of non-normality, similarity for the level 2 residuals.  Level 3 standardized 

residuals were plotted by predictions and attributes.  Only the predictions and dbh plots 

are presented (Figure 5.4).  There is no evidence of heteroscedasticity or any abnormally 

large standardized residuals.  To compare the SS model to the marginal proportions, raw 

estimated mortality by age, we should integrate over the random effects.  A more 

pragmatic approach is to obtain the SS averages by age and compare these estimates to 

the marginal probabilities (Figures 5.5 and 5.6).  If the marginal probabilities were 

computed, i.e., integrate over the random effects; the predicted probabilities would be 

expected to more closely reflect the raw proportions.  These model evaluation results 

reveal that the model fits adequately and there is no evidence of systematic bias.  To 

further assess the model performance, the final model was fitted without the inclusion of 

random effects.   

We compared the model performance with the same model fitted without any 

random effects, hereafter referred to as the subject-specific (SS) and population-averaged 

(PA) models.  The SS and PA models were compared using several common individual 

tree evaluation criteria.  One method is to determine a threshold for classifying trees as 

alive or dead based upon the predicted probabilities.  According to Monserud and Sterba 

(1999), it is more important if a tree is correctly classified as dead or alive rather than if a 
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dead tree is predicted to be close to one and zero.  In addition, it was inferred that the 

most logical classification threshold is to use the raw probabilities, i.e., for our case it 

would be the population proportion predicted to die by age class, which was used for the 

PA model.  However, this was deemed an unacceptable threshold for the SS model 

because we are modeling the subjects and not the marginal average.  Therefore, since our 

goal was to use an appropriate threshold, we used the predicted typical response by age 

for each plot.  We conducted a sensitivity analysis for the thresholds by multiplying the 

thresholds by 1.25-2.00 (0.25 increments) to determine the effect of the chosen threshold 

(Table 5.3).  An alternative to the discrete classification of trees is to treat the mortality as 

a continuous event and to sum over the probabilities to estimate the total predicted 

mortality (Stage 1973).  Hence, we computed the total trees predicted to die for the SS 

and PA models and compared these with the actual number that died.  The third criterion 

was to compare the ratio of the predicted probabilities for the dead and live trees of the 

SS model to the PA model.  We expect the SS model to generally predict closer to zero 

for live trees and closer to one for dead trees relative to the PA model.  Lastly, the mean 

predicted probabilities for the live and dead trees were compared for the SS and PA 

models.     

 The results for the continuous time mortality removal reveal that the SS model 

predicts 1667 and the PA model predicts 1741 dead trees, whereas the actual number that 

died is 1477 trees.  The SS model reduces the number predicted to die by more than four 

percent relative to the PA model.  The mean predicted probability for the live trees is 

0.0122 and 0.0177 for the SS and PA models, respectively.  For the dead trees, the mean 

predicted probabilities are 0.2141 and 0.1180 for the SS and PA models, respectively.  
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For the live trees, the SS model predicts almost 63 percent of them closer to 0 relative to 

the PA model.  For the dead trees, the SS model predicts almost 98 percent of them closer 

to one relative to the PA model.  Results for the percent correctly classified reveal that 

the SS model is substantially superior for classifying the dead trees.  However, the PA 

performs more adequately for the live trees until the multiplier is 1.75, then the SS model 

performs more favorably for both classification categories.  This is only meant as a guide 

to illustrate the live and dead tree classification tradeoff and further research is needed to 

determine a good classification threshold for the SS model.  However, these classification 

results reveal the importance of predicting accurate probabilities for the trees that actually 

lived and died.  This is clear because the larger the separation of the predicted 

probabilities for the dead and live trees, the greater the allowance in selecting a good 

threshold.  The overall performance of SS model is a substantial improvement over the 

PA model and in addition, individual tree mortality probabilities can be predicted at all 

levels for these plots.    

Individual tree mortality predictions can be obtained at all levels when using the 

multilevel mortality model (5.1b) for these data.  Moreover, individual tree mortality can 

be predicted for a new plot at various levels, depending upon the information available, 

using (5.1b).  Obviously if future individual tree mortality predictions are desired for a 

study plot, then the plot and tree random effects should be included in the prediction 

process.  However, a typical forestry situation is prediction of mortality probabilities for 

trees within a plot that are not included in the original study.  Hence, given a new plot, 

mortality probability predictions for individual trees can be obtained using the typical 

response, inclusion of tree and/or plot level random effects dependent upon available 
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information.  Details for estimating plot and tree level random effects for a new plot are 

given in Chapter 4 (see pages 76-83).  

 

Discussion and Conclusion 

A multilevel forestry survival model is attractive because it allows us to increase the 

precision of the predicted probabilities by modeling the different levels of variation.  

Often in forestry, we want to predict a future attribute but the prior plot information is 

ignored, i.e., we make predictions based upon the current measurements.  However, as 

demonstrated in this and other multilevel forestry modeling studies (e.g., Fang and Bailey 

2001, Hall and Bailey 2001), there is generally an increase in the precision of the 

predictions when using prior information.  Our SS individual tree mortality model 

demonstrated a clear gain in precision for the predicted probabilities relative to the PA 

model.     

It has become common to use the mean probability as a threshold in PA models 

for classifying trees as dead or alive, which has been shown to be a reliable threshold.  

Conversely, for a SS model there are no previous studies to determine an adequate 

threshold.  It has been inferred by Monserud and Sterba (1999) that it is not relevant for 

an individual tree survival model, which is to be used deterministically in an individual 

tree simulator how close the probabilities are to zero and one.  For instance, if the trees 

that live and died are predicted to have probabilities of 0.49 and 0.51, respectively, we 

could simply use the threshold of 0.50 to correctly classify the trees.  However, this is an 

unrealistic situation and the actual predicted probabilities will overlap, i.e., some trees 

that died will be in the larger diameter classes, which should realistically have a lower 
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probability of death than the smaller diameter classes.  A higher degree of separation for 

the dead and alive trees should allow the modeler more flexibility in selecting a threshold 

that will increase the precision of the classifications.   

  Estimated parameters for PA and SS models can vary considerably, which is 

demonstrated by the parameter estimates for model (5.1b) fitted without random effects, 

which are quite different from model (5.1b) when fitted including the random effects.  

Although as noted by Ten Have and Uttal (1991), inferences about parameter estimates 

are usually similar, i.e., p-values are similar; the estimated parameters for our SS and PA 

models are dissimilar.  This means that we could be over or under estimating the effect of 

a parameter when using the PA model (Rodriguez and Goldman 2001).   

Subject-specific models have several advantages over PA models; one is that the 

population average predictions can be obtained by integrating over the random effects 

using numerical integration or Monte Carlo integration techniques.  Conversely, the PA 

model is incapable of providing us with any information about the SS model.  In addition, 

there are advantages in explicitly modeling the manner in which subjects are grouped 

(Goldstein 1995) and this shortcoming of PA models ignoring correlated individual tree 

groups was acknowledged by Hamilton (1974).  Modeling the clusters allows for 

statistically efficient estimates of the regression coefficients.  The use of grouping 

information provides the correct standard errors, confidence intervals, and tests of 

significance.  Lastly, it allows measuring covariates at any grouping level and then 

obtaining the corresponding predictions.  Furthermore, as revealed by our parameter 

estimates for the SS and PA models, if the relationship between the response and the 
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covariates is nonlinear, e.g., logistic regression, then ignoring the groups can result in 

large biases in the parameter estimates (Rodriguez and Goldman 2001).   

Questions may arise about our failure to consider or model the correlation over 

time within a tree.  Ignoring the correlation among repeated measurements can result in 

biased estimates of the estimated parameter standard errors and test statistics can be 

inflated.  However, our use of repeated measurements is not a result necessarily of the 

data but of factoring the likelihood function, i.e., the probability of mortality during the ith 

interval is conditional on mortality not occurring during the previous intervals.  

Therefore, each conditional probability for a tree may be treated as though it came from a 

distinct independent observation (Allison 1995).  This study demonstrates the viability of 

using a multilevel model for modeling individual tree mortality.  A study shortcoming is 

the lack of long-term data and further research is needed for multilevel individual tree 

survival models that are based on more encompassing data sets.   

 

Literature Cited 

Agresti, A. 1990. Categorical data analysis. John Wiley & Sons, Inc. New York. 558 p. 

Allison, P.D. 1995. Survival analysis using the SAS  system: A practical guide. SAS 

Institute Inc. Cary, NC. 292 p. 

Biggeri, L., M. Bini, and L. Grilli. 2001. The transition from university to work: a 

multilevel approach to the analysis of the time to obtain the first job. J. R. Statist. 

Soc. A 293-305. 

Cox, D.R. 1972. The analysis of multivariate binary data. Appl. Statist. 21:113-120. 

 



 123

Fang, Z., and R.L. Bailey. 2001. Nonlinear mixed effects modeling for slash pine 

dominant height growth following intensive silvicultural treatments. For. Sci. 

47(3):287-300. 

Gibbons, R.D., and D. Hedeker. 1997. Random effects probit and logistic regression 

models for three-level data. Biometrics. 53:1527-1537. 

Goldstein, H. 1995. Multilevel statistical models. Ed. 2. Halstead Press, New York. 178 

p. 

Hall, D.B., and R.L. Bailey. 2001. Modeling and prediction of forest growth variables 

based on multilevel nonlinear mixed models. For. Sci. 47(3):311-321. 

Hamilton, D.A. 1974. Event probabilities estimated by regression. USDA For. Serv. 

Intermt. Res. Stn. Res. Pap. INT-152. 18 pp. 

Hedeker, D., O. Siddiqui, and F.B. Hu. 2000. Random-effects regression analysis of 

correlated grouped-time survival data. Statistical Methods in Medical Research. 

9:161-179. 

Hox, J.J. 1995. Applied multilevel analysis. TT-Publikaties, Amsterdam. 114 p. 

Jones, R.H. 1990. Serial correlation or random subject effects? Comm. Statist. Simulation 

Comput. 19: 1105-1123. 

Kaplan, E.L., and P. Meier. 1958. Nonparametric estimation from incomplete 

observations. JASA. 53:457-481. 

Monserud, R.A., and H. Sterba. 1999. Modeling individual tree mortality for Austrian 

forest species. For. Ecol. Manage. 113:109-123. 

Pinheiro, J.C., and D.M. Bates. 2000. Mixed-effects models in S and S-PLUS. Springer, 

New York. 528 p. 



 124

Prentice, R.L., and L.A. Gloeckler. 1978. Regression analysis of grouped survival data 

with application to breast cancer data. Biometrics. 34:57-67. 

Rasbash, J., W. Browne, H. Goldstein, M. Yang, I. Plewis, M. Healy, G. Woodhouse, and 

D. Draper. 1999. A user’s guide to MLwiN. 2nd ed. London: Institute of Education 

Rodriguez, G., and N. Goldman. 2001. Improved estimation procedures for multilevel 

models with binary response: a case study. J. R. Statist. Soc. A 339-355. 

Stage, A.R. 1973. PROGNOSIS model for stand development. USDA For. Ser. Res. Pap. 

INT-137. 

Ten Have, T.R., and D.H. Uttal. 1994. Subject-specific and population-averaged 

continuation ratio logit models for multiple discrete time survival profiles. Appl. 

Statist. 43(2):371-384. 

 

 

 

 

 

 

 

 

 

 



 125

Table 5.1.  The CAPPS study summary statistics (N = 112365) for dbh, trees per hectare 

(TPH), basal area per hectare (BA/ha), and quadratic mean diameter (Dq) across 

the age range (1-13). 

Attribute Mean Minimum  Maximum  Std. Error 
     
dbh 8.45 0.00 33.78 6.49 
TPH 14.98 5.53 18.78 1.75 
BA/ha 13.06 0.00 46.41 12.35 
Dq 8.64 0.00 24.08 6.29 
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Table 5.2.  The multilevel individual tree survival model estimated fixed parameters and 

variance components.  

Parameter Estimate Standard Error Chi-square p-value 
     
Constant  9.03777 0.43343 434.80 <0.0001 
Herb -0.38090 0.09956 14.64   0.00013 
Age -1.63021 0.12107 181.30 <0.0001 
Age2  0.13748 0.02003 47.13 <0.0001 
Age3 -0.00476 0.00090 28.04 <0.0001 
Dbh -0.51324 0.01481 1200.82 <0.0001 
Dq  0.31824 0.02595 150.40 <0.0001 
TPH -0.62487 0.02347 708.56 <0.0001 
BA/ha  0.16509 0.00960 295.54 <0.0001 
     
Variance Components    
Level 2     
Herb 0.66794 0.30345 4.85   0.0276 
C/F/HF 1.15271 0.10904 111.76 <0.0001 
     
Level 3     
C/F 0.33316 0.08148 16.72 <0.0001 
HF 0.14087 0.07204 3.82   0.0506 
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Table 5.3.  The proportion of trees classified correctly using the population-averaged 

(PA) and subject-specific (SS) models.  The PA model uses the mean raw 

proportions by age class as its threshold and the SS model uses the average typical 

response predicted by plot and age class as its threshold.  The multiplier is a factor 

for adjusting the threshold, i.e., the 1.25 multiplier will adjust the threshold by 

multiplying by 1.25.   

 
Multiplier PA Model SS Model 
 Alive Dead Overall Alive Dead Overall 
1.00 0.8234 0.7495 0.8225 0.7709 0.9370 0.7731 
1.25 0.8662 0.6682 0.8636 0.8508 0.9188 0.8517 
1.50 0.8941 0.6121 0.8904 0.8886 0.8395 0.8879 
1.75 0.9098 0.5856 0.9055 0.9138 0.7204 0.9112 
2.00 0.9220 0.5559 0.9171 0.9319 0.6053 0.9276 
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Figure 5.1.  The empirical logit for each plot by treatment and age. 
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Figure 5.2.  The fitted logit model by treatment and 95% confidence intervals for the 

intercept and slopes by treatment. 
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Figure 5.3. Level 3 residuals by rank and standardized residuals by quantiles of the 

standardized normal. 
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Figure 5.4.  Level 3 standardized residuals by average level 3 predicted values and 

average dbh.  The random effects correspond to the control and fertilizer (C, F), 

and herbicide/fertilizer (H/F) treatments. 
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Figure 5.5.  The CAPPS study empirical and multilevel logit model predicted 

probabilities for mortality by age. 
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Figure 5.6.  The CAPPS study empirical and multilevel logit model predicted 

probabilities by age and treatment.
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CHAPTER 6 

COMPARISON OF THREE STAND TABLE PROJECTION METHODS USING 

DATA FROM PERMANENT PLOT LOBLOLLY PINE PLANTATIONS 

Introduction 

Stand table projection methods predict the future number of stems by diameter class and 

the corresponding stock tables can be derived.  Accurate and precise stand and stock 

tables are required for making sound forest management decisions (Matney and Sullivan 

1982).  Stand tables usually consist of trees per unit area and the corresponding average 

height by dbh class for a given species.  Stock tables contain the information from the 

stand table and in addition, give the volume and/or weight on a tree and unit area by dbh 

class.  Stand table projection methods require the availability of an initial stand table or 

tree list.  If only stand level information is available, it is common to estimate initial stand 

tables using stand level attributes and the Weibull distribution.  Parameters for the 

Weibull distribution can be estimated using a technique such as the parameter recovery 

method (Bailey et al. 1981), which relates stand level attributes to the Weibull 

distribution parameters.  Here we focus on projecting stand tables for even-aged loblolly 

pine plantations given an initial stand table or individual tree list.   

Clutter and Allison (1974) put forth the methodology that is commonly used in 

stand table projection.  Their methodology is not the classic stand table projection method 
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based on increment cores as described by Meyer  (1952) and discussed in Mensuration 

books (e.g., Avery and Burkhart 1994), but is a generalized stand table projection 

compatible with whole stand estimates of basal area and trees per unit area.  Their stand 

table projection algorithm, assuming the availability of an initial stand table or tree list 

and future estimates of per unit area of basal area and trees, consists of three main 

components.  These components are mortality allocation, growth prediction, and a 

constraint to ensure the basal area per unit implied by the stand table is consistent with 

observed or predicted basal area per unit area.  They assume, as many subsequent studies 

have (e.g., Pienaar and Rheney 1993, Knowe et al. 1997), that the unconditional 

probability of a tree of a dbh class dying is inversely proportional to it relative size.  

Relative size is usually defined as the basal area per tree of dbh class i divided by the plot 

mean basal area per tree.  The conditional probabilities of a tree belonging to dbh class i 

given a tree dies are obtained using Bayes’ formula by assuming that the number of 

surviving trees is inversely proportional to relative size and directly proportional to the 

number of trees in diameter class i.  Once they allocate mortality, the trees are grown 

such that the projected stand table is constrained to equal the predicted basal area per unit 

area.  Clutter and Allison’s (1974) methodology was subsequently modified by Clutter 

and Jones (1980), and Pienaar and Harrison (1988).  Pienaar and Harrison simplified the 

algorithm by developing a parameter free method for estimating the dbh class mortality 

probabilities.   

Pienaar and Harrison’s (1988) stand table projection method, which is versatile 

and easy to implement, has subsequently been used in numerous studies (e.g., Pienaar 

and Rheney 1993, McTague and Stansfield 1994).  In addition, some studies have 
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modified the Pienaar and Harrison (1988) method by defining relative size as the ratio of 

individual tree diameter to quadratic mean diameter (e.g., Knowe 1994, Knowe and Stein 

1995, Knowe and Hibbs 1996, and Knowe et al. 1997).  Nepal and Somers (1992) 

proposed a stand table projection algorithm that simultaneously adjusted for stand 

mortality and growth.  With their method, rather than develop separate algorithms for 

mortality and growth, these attributes are adjusted simultaneously. However, unlike 

previous methods, they grow all initial trees, not just the survivors.  Cao and Baldwin 

(1999) subsequently revised the Nepal and Somers (1992) method, primarily by 

projecting only the surviving trees.     

Our purpose is to compare two alternative methods to the Pienaar and Harrison 

(1988) method for projecting stand tables.  The first alternative assumes that the initial 

and all intermediate stand tables are available for the projection period; hence, the stand 

table projection algorithm is iterated annually until reaching the projection period.  This 

alternative modifies their method by using a logit model to predict the dbh class mortality 

probabilities.  Our second alternative assumes that the initial and intermediate individual 

tree lists are available.  Thus, as for our first alternative, the stand table projection 

algorithm is an annual process.  This method removes trees from the tree list annually 

using the logit model individual tree predicted mortality probabilities until the number of 

trees equals the observed number of trees.  Then each surviving tree is grown and the 

number of trees per dbh class is computed.   
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Data 

Permanent plot loblolly pine plantation data were obtained from the Consortium for 

Accelerated Pine Production Studies (CAPPS).  Four cultural treatments were randomly 

assigned to blocks at each location: herbicide, fertilization, herbicide and fertilization, 

and control.  Plots have been measured annually beginning at age one and only plots at 

least 11 years of age were considered for this study, which results in 101 plots that range 

in age from 11-14 years (Table 6.1).  Further study protocol and data details were 

discussed in Chapter 4 (pages 60-61).  

 

Methods 

Our stand table projection methods require the current stand table or individual tree list, 

an individual tree dbh growth model, future survival and basal area per unit area.  For 

analysis purposes, we use observed survival and basal area per hectare.  For all plots, the 

projection period initiates at age 6, which was chosen because there was adequate 

separation of the diameter classes.  Depending upon plot age the projection period ranges 

from 5-8 years (Table 6.1).  We compare two alternative stand table projection methods 

with Pienaar and Harrison’s (1988) method, hereafter referred to as P&H.  All considered 

stand table projection methods assume that mortality occurs at the beginning of the 

projection period.   

The P&H method assumes that the probability of a tree dying for a given dbh 

class is inversely proportional to its relative size.  Relative size is defined as the ratio of 

per tree diameter class basal area to the average per tree plot basal area.  After identifying 

the mortality by dbh class, the dbh class midpoints are grown for the projection period 
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subject to the BA/ha constraint that ensures compatibility with the observed basal area per 

hectare.  Once the adjusted dbh class midpoints are obtained, they are placed back into 

2.5 cm classes by assuming trees are uniformly distributed within a dbh class and the 

class limits extend halfway between adjacent class midpoints.  In addition, for the first 

and last occupied dbh classes, their respective lower and upper class limits extend the 

same distance as their class limit for the adjacent dbh class.   

Our first alternative modifies the P&H method (MP&H).  Rather than assuming 

that the probability of a tree dying for a given dbh class is inversely proportional to its 

relative size, we compute the dbh class mortality probabilities using an individual tree 

mortality model that was fitted to the data.  These dbh class mortality probabilities are 

annual predictions; therefore, we iterate the stand table projection algorithm annually 

until reaching the projection period.  Observed stand tables are used for all intermediate 

computations.  Predicted dbh class midpoints are not placed into 2.5 cm classes for the 

intermediate projection periods; only the final projection period dbh class midpoint, are 

placed back into the 2.5 cm dbh classes.   

Our second alternative (IND) assumes that we have the individual tree lists; i.e., 

the initial and ending tree lists, and at all intermediate times for the projection period.  

Mortality probabilities are predicted annually for surviving trees.  Then, annual plot 

mortality is allocated by removing the trees with the highest predicted mortality 

probabilities until the number of surviving trees equals the observed number of trees.  

Surviving individual trees are grown subject to the constraint that the sum of the basal 

area for all trees within a plot (multiplied by an expansion factor) equals the observed 

plot basal area per hectare.  The stand table projection algorithm is iterated until reaching 
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the projection period, and then trees are placed into 2.5 cm diameter classes.  All stand 

table methods considered consist of two main components: allocation of mortality and 

growing the basal area dbh class midpoints or individual trees subject to the BA/ha 

constraint.  

Survival   

Predicted P&H dbh class mortality probabilities assume that a dbh class that has a basal 

area less than the plot average basal area will have a higher probability of mortality.  This 

general approach was used by Clutter and Allison (1974), and Clutter and Jones (1980).  

The P&H method assumes that the probability of mortality (pi) for the ith dbh class 

relative basal area is inversely proportional to its size, i.e.,  
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Where b  is the average per tree basal area for plot k, and ib is the dbh class i basal area.  

It is interesting to note that these predicted mortality probabilities (pi’s) only depend upon 

the number of dbh classes for a given plot.   

The MP&H and IND methods predict annual mortality probabilities by dbh class 

and individual trees, respectively.  These mortality probabilities are predicted using a 

previously developed multilevel logit mortality model for these data (Chapter 5).  This 

multilevel model has three levels, measurement occasions are nested within a tree (level 

1), trees are nested within a plot (level 2), and plots (level 3).  The multilevel logit 

mortality model is:  
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Where pijk is the estimated annual probability of mortality for the jth tree or dbh class on 

plot k at time i, zH = 1 if treatment is herbicide, otherwise zH = 0, similarly for the other 

treatment indicator variables, A is age, BA is basal are per hectare (m), TPH = trees per 

hectare divided by 100, Dq is the quadratic mean diameter (cm), dbh is the individual tree 

diameter at breast height (cm), α, β are parameters, and bjk and bk are the random effects.  

Intercepts vary systematically by cultural treatment and vary for trees within a plot for the 

H treatment and pooled C/F/HF treatments, and by plot for the pooled C/F and HF 

treatments.  Estimated parameters and their respective standard errors and p-values were 

presented previously (see Table 5.2, page 126).  MP&H dbh class mortality probabilities 

were computed using the dbh class midpoint, plot level attributes, and the plot random 

effect.  The IND method also includes the tree level random effect in the prediction of the 

individual tree mortality probabilities.  

For the P&H and MP&H methods, the pi’s are used in Bayes’ formula to predict 

each dbh class conditional mortality probability given a tree dies.  The pi’s are associated 

with the probability of a tree belonging to a dbh class succumbing.  Whereas the total 
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mortality observed on a plot is allocated to the dbh classes using the conditional 

probabilities.  The conditional probability of a dead tree belonging to a particular dbh 

class can be calculated using Bayes’ formula (e.g., Clutter and Allison 1974, Clutter and 

Jones 1980, Pienaar and Harrison 1988), i.e.,   
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Where dbhi is the midpoint diameter for class i, and D is a tree that has died.  Using 

Baye’s formula, the dbh class conditional probabilities (πi) are given by:  

     

1

1
1i

1i

1
1i

1i

























=

∑
∑

∑

=

=

=
j

i
ij

i

ij

i
i

p
n

n

p
n

n

π .                                                                                          (6.3) 

Surviving trees per dbh class are obtained by multiplying the conditional probabilities by 

the mortality for plot k during the projection period, and subtracting the predicted number 

of dead trees from the number of trees in the initial stand table for the dbh class.  Hence, 

the surviving number of trees for the ith dbh class can be expressed as 
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Where n2i and n1i are the surviving and initial TPH for dbh class i, and M is the TPH 

mortality.  P&H and MP&H methods compute the conditional mortality probabilities 

(equation 4) using the pi’s from equations (6.1) and (6.2), respectively.   
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The IND method allocates the mortality to individual trees based on the pi’s.  

Annual mortality using the IND method was allocated by removing the trees with the 

highest predicted mortality probabilities until the number of trees remaining equaled the 

observed number of trees.  For example, suppose that during a one-year period three trees 

on a plot died, then the three trees with highest predicted mortality probabilities were 

removed from the tree list.  Note that the P&H method allocates mortality for the 5-8 year 

projection period in one step.  By comparison, the MP&H and IND methods allocate 

mortality annually at the beginning of each algorithm iteration until reaching the 5-8 year 

projection period.  Once mortality is allocated, surviving trees are grown under the 

compatibility constraint that the BA/ha implied by the stand table (P&H and MP&H) or 

individual trees (IND) is consistent with the observed BA/ha. 

Basal Area Growth 

A basal area growth equation of the form developed by Clutter and Allison (1974) 

and subsequently used by P&H was fitted to the CAPPS age 3-14 data.  Years 1 and 2 

data were excluded because BA/ha was generally zero.  We fitted the model to minimize 

the errors in predicted basal area rather than minimizing the errors with respect relative 

size.  In addition, the basal area growth equation was modified to allow for systematic 

cultural treatment effects.  Namely,   
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Where b2i and b1i are the basal area at Age2 and Age1 for dbh class i, 2b  and 1b  denote the 

mean tree basal area for plot k at ages 2 and 1, respectively, A is the ratio of Age2 to Age1, 



 143

and zj’s are indicator variables for the jth treatment.  The model used 73779 individual 

tree observations (Table 6.2) and estimated parameters are β0 = -0.48639, βF = 0.048693, 

βH = 0.191459, and βHF = 0.36506.  The RMSE and pseudo-R2 are 0.000970 and 0.9907, 

respectively, and there was no evidence of heteroscedasticity.  Since β0 is negative and all 

treatment effect adjustments still result in a negative value, the relative contribution to 

basal area of trees smaller (larger) than average relative size will increase (decrease) over 

time.  However, this will occur more quickly in the C plots than the H&F plots.   

Using the observed future survival and BA/ha, the following equation ensures 

compatibility between the observed BA/ha and the BA/ha implied by the stand table or 

individual trees. 
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For the P&H and MP&H methods n2i is the number of trees in a given diameter class.  

Whereas for the IND method n2i equals one, i.e., each tree is treated as a unique diameter 

class.  At the end of the projection period, the P&H and MP&H trees were allocated to 

the 2.5 cm diameter classes using the projected class midpoints and assuming that the 

class midpoints extend halfway between adjacent class midpoints and that the trees are 

uniformly distributed within these diameter classes.  The IND method trees were placed 

into 2.5 cm classes based upon the predicted dbh for each tree.   

Two criteria are used to compare the predicted stand tables using the three 

methods with the observed stand tables.  The two-sample Kolmogorov-Smirnov (KS) and 

sum of the absolute deviations (SAD) statistics, which are measures of goodness of fit, 
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were used to compare the predicted and observed stand tables.  The KS statistic measures 

the maximum departure of the cumulative proportion of predicted versus observed trees 

in each dbh class.  The SAD statistic is similar to the error index proposed by Reynolds et 

al. (1988) and is computed by plot as the absolute difference between the observed and 

predicted proportion of trees in each diameter class.  If the predicted stand table 

approximates the observed stand tables closely then the KS and SAD statistics values will 

be small.   

 

Results 

Total plots rejected using the KS statistic for the three methods were computed for α 

levels 0.01, 0.05, and 0.10.  Using α = 0.01, the IND, P&H, and MP&H methods rejected 

23, 1, and 4 plot(s), respectively.  For α = 0.05, the IND, P&H, and MP&H rejected 21, 

1, and 2 plot(s), respectively.  Lastly, for α = 0.10, the IND, P&H, and MP&H methods 

rejected 19, 0, and 1 plot(s), respectively.  Thus, for α = 0.05, the IND, P&H, and MP&H 

methods reject approximately 20.79, 0.99, and 1.98 percent of the plots.   

Mean KS statistic values for the IND, P&H, and MP&H methods are 0.09465, 

0.04179, and 0.05892, respectively.  The P&H KS statistic is smaller than the IND for 84 

of the 101 plots and the mean difference is 0.06850.  Conversely, when the IND method 

KS statistic is smaller than the P&H method the mean difference is 0.02437.  Moreover, 

the P&H method KS statistic is smaller than the MP&H method for 72 of the 101 plots 

and has a mean difference for these 72 plots of 0.02694.  The MP&H method has a 

smaller KS statistic than the P&H method for 27 plots and the mean difference is 

0.007773 (two of the plots had a mean difference of zero for the P&H and MP&H 
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methods).  The MP&H method KS statistic is smaller for 61 of the 101 plots versus the 

IND method and the mean difference for these plots is 0.08208.  Conversely, when the 

IND KS statistic is smaller than the MP&H method the mean difference is 0.03493.   

 Mean SAD statistics for the IND, P&H, and MP&H methods are 0.4697, 0.2990, 

and 0.3779, respectively.  The P&H SAD statistic is smaller than the IND and MP&H for 

70 and 77 of the 101 plots, respectively and the mean difference versus the IND method 

is 0.30274.  When the IND SAD statistic is smaller relative to the P&H method the mean 

difference is 0.1218.  In addition, if the P&H SAD statistic is smaller than the MP&H 

SAD statistic the mean difference is 0.1242.  Conversely, when the MP&H SAD statistic 

is smaller the mean difference is 0.06767.  The MP&H method SAD statistic is smaller 

than the IND method for 54 of the 101 plots.  When the MP&H SAD statistic is smaller 

relative to the IND method the mean difference is 0.3466.  When the IND SAD statistic is 

smaller, the mean difference is 0.2003.  

 The poorest predicted stand tables using the three methods are presented in Figure 

6.1.  Plot 23 (Figure 6.1a) is the poorest predicted stand table using the P&H and MP&H 

methods, the KS statistics are 0.11454 and 0.14627, respectively.  Their respective KS 

statistic p-values are 0.003300 and 0.03710.  The p-value for plot 23 using the IND 

method is 0.8002.  Plot 87 is the poorest predicted stand table for the IND method and the 

KS statistic is 0.4900 with a p-value <0.0001.  Plot 87 KS statistic for the P&H and 

MP&H methods is 0.065403, which has a p-value of 0.7959.   

 In addition to these assessment criteria, the results were evaluated by treatment to 

determine if one method was projecting better than the other methods for a given cultural 

treatment.  Results revealed no systematic trends in the ability of the methods to predict 
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the stand tables by treatment.  The P&H method performs substantially and slightly better 

relative to the IND and MP&H methods for all cultural treatments.   

 

Discussion 

Results reveal that the P&H and MP&H stand table projection methods substantially 

outperform the IND method for these plots and projection periods.  In addition, the P&H 

stand table projection method performs better than the MP&H method.  At the α = 0.05 

level, P&H increases the proportion of plots not rejected versus the IND method by 25 

percent.  The KS and SAD statistics revealed the plots where the P&H performs better 

relative to the MP&H and IND methods there was a much greater mean difference than 

when the MP&H and IND methods performed better than the P&H method.  In addition, 

when the KS and SAD statistics were smaller for the MP&H and IND versus the P&H 

method, the difference is negligible.  Moreover, the P&H method has an advantage over 

the IND and MP&H methods in the ease of use, i.e., it allocates mortality and projects 

dbh growth for the entire projection period, whereas the MP&H and IND methods invoke 

the algorithm annually until reaching the end of the projection period.   

 Using the KS statistic (α = 0.05), the P&H and MP&H methods rejected 1 and 2 

of the 101 plots, respectively.  Plot 23, which has the control treatment and is 11 years 

old, was rejected using the P&H and MP&H methods.  The initial (age 6) stand table for 

plot 23 has dbh classes of 2.5, 5.0, and 7.5 cm with 869.8, 632.6, and 19.8 TPH.  So there 

is minor differentiation in the dbh classes.  The plot 23 ending stand table (age 11) has 

dbh classes of 5.0, 7.5, 10.0, 12.5, 15.0, and 17.5 cm with 59.3, 79.1, 711.6, 533.7, 118.6, 

and 19.8 TPH, respectively.  No mortality occurred for plot 23 during the 5-year 



 147

projection period; therefore, any differences in the ending stand table can be attributed to 

the basal area growth equation and assumption that trees are uniformly distributed within 

a dbh class.  Since plot 23 received the control treatment, a population average (PA) 

estimate of the basal area growth equation parameter β0 is –0.48639.  To determine the 

effect of the basal area growth equation (6.5) on the ending plot 23 stand table when 

using the P&H method, we fitted the basal are growth equation (6.5) to plot 23 

separately.  The Plot 23 subject-specific (SS) estimated parameter β0 is –0.85641, which 

implies that less separation of the dbh classes will occur using the SS parameter than 

when using the PA parameter.  The P&H method was used to predict the plot 23 ending 

stand table using the SS estimated parameter for equation (6.5), then the stand table using 

the SS parameter was compared to the stand table using the PA parameter (Table 6.3).   

The PA parameter results in a greater separation of the trees among the dbh classes.  A 

KS test was conducted for plot 23, as given previously, the P&H PA results are KS = 

0.114536 and p-value = 0.03710, whereas the P&H SS results are KS = 0.082907 and p-

value = 0.2504.  Hence, using the subject specific estimated parameter for the basal area 

growth equation results in an improvement of the plot 23 predicted stand table.  This 

result is not surprising since fitting the basal area growth equation parameter β0 by plot 

revealed a high amount of variability among the plots (Figure 6.2).  This would indicate 

that the precision of basal area growth predictions would likely improve by including a 

plot level random effect for this parameter, thereby increasing the precision in general of 

the stand table projections.   

Diameter class and individual tree mortality probabilities for the IND and MP&H 

methods are estimated using a multilevel individual tree mortality model that was 
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developed from these data.  Whereas the P&H method predicts mortality using a 

parameter free method that is species independent.  Moreover, the P&H pi’s are only 

dependent upon a given site in the sense that the probability of mortality for a dbh class 

depends upon the number of diameter classes.  However, two stands with the exact same 

dbh classes that have a different number of trees in the diameter classes, growing under 

different conditions and for different species will have the same mortality probabilities by 

dbh class.  This is an interesting development because the individual tree mortality 

prediction equation (6.2) developed for these data is site specific, i.e., it incorporates 

random effects for the trees within a plot and plots.  It is reasonable to assume that the 

individual tree mortality model is predicting the dbh class mortality probabilities more 

precisely than the P&H method, which assumes that the mortality probabilities are 

inversely proportional to basal area.  If the pi’s are more precise for the MP&H method 

versus the P&H method, then the question is why is the P&H method performing better 

for these data.  The only differences between the P&H and MP&H methods are the 

prediction of the pi’s and the MP&H method is iterative annually for the projection 

period.  To provide insight, we fitted equation (6.2) such that the mortality probabilities 

for plot 125 are based on the 8-year projection period by dbh class rather than the annual 

mortality probabilities.  These pi probabilities and the conditional probabilities πi are 

compared to the P&H probabilities (Table 6.4).  There is a substantial difference in the pi 

probabilities by dbh class using the P&H and MP&H methods.  However, there is no 

substantial difference for the P&H and MP&H conditional probabilities.  For plot 125, 

approximately 296.5 TPH were observed to die between age 6 and 14.  A KS test was 

conducted for the mortality allocation of plot 125 using the P&H and MP&H methods 
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and there is no significant difference.  This would indicate that the conditional 

probabilities are robust if the pi’s are substantially different but the overall pi trends for 

dbh classes are similar.  In addition, the predicted plot 125 stand table using the MP&H 

method iterated annually versus the MP&H method when projected in one step are 

virtually identical.   

 

Conclusion 

Stand table projection can be an important part of the management decision process and 

there have been several recent methods proposed to increase the accuracy and precision 

of the predicted stand tables (Somers and Nepal 1992, Cao and Baldwin 1999).  Our 

results illustrate that the P&H method is a simple yet effective method for projecting 

stand tables.  The fact that the P&H and MP&H methods substantially outperformed the 

IND method may indicate that the IND method needs a growth equation that is more plot 

and tree specific to accurately project stand tables.  In addition, the P&H method appears 

to be robust against departures from the unconditional probabilities (pi’s) by dbh class, 

given the overall mortality probabilities by dbh class are similar.  In general, mortality 

allocation is unlikely to be as important as the basal area growth equation for accurate 

and precise stand table projections, which is not surprising since mortality is usually a 

rare event.  Furthermore, our results for plot 23, which had no mortality, suggest that 

stand table projections may be improved by using a site-specific basal area growth 

equation.  It is interesting to note that stand table projection method developed by Nepal 

and Somers (1992), which they inferred to be more precise versus the P&H method for 
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their data, uses plot specific parameters in the equation that adjusts the dbh class 

mortality and growth estimates.   

 The IND and MP&H methods require a higher degree of information, i.e., they 

require the development of a mortality model and a tree list for the IND method.  In 

addition, these methods invoke the stand table projection algorithm annually until 

reaching the projection period.  Hence, the IND and MP&H have a higher degree of 

complexity compared to the P&H method, but the P&H method outperformed these 

methods for these specific data and projection periods.  Moreover, the P&H method is 

easy to implement and appears robust against departures of the dbh class mortality 

predictions (pi’s).   
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Table 6.1.  The CAPPS study plot distribution by age for the spectrum of plots and by 

treatment (C = control, F = fertilizer, H = herbicide, and H&F = herbicide and 

fertilization). 

Plot Age Plots Plots by Treatment 
  C F H   H&F 
14 26 8 4 8 6 
13 28 8 6 8 6 
12 29 10 6 8 5 
11 18 8 2 6 2 
      
Total 101 34 18 30 19 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 154

Table 6.2.  The CAPPS study summary statistics for dbh, trees per hectare (TPH), basal 

area per hectare (BA/ha), and quadratic mean diameter (Dq) for the data age range 

3-14. 

Attribute N Mean Minimum  Maximum  Std. Error 
      
dbh (cm) 73779 12.05 0.254 35.05 0.01966 
BA (m) 73779 0.01364 5.067E-6 .09649 0.00003826 
TPH 1028 1418.7 533.7 1858.2 7.1610 

BA/ha (m2) 1028 19.35 0.03937 49.96 0.3825 
Dq (cm) 1028 12.37 0.7770 24.59 0.1555 
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Table 6.3.  The observed age 11 stand table for Plot 23 contrasted with the P&H stand 

table estimation method.  The P&H (PA) and (SS) methods use the population 

average (PA) and subject (SS) estimated parameters for the basal area growth 

equation. 

dbh class (cm) Observed P&H (PA) P&H (SS) 
5.0 59.3 107.0  
7.5 79.1 383.7 386.5 
10.0 711.6 382.5 483.3 
12.5 533.7 297.8 383.5 
15.0 118.6 297.8 253.8 
17.5 19.8 50.9 13.1 
20.0  2.0 2.0 
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Table 6.4.  The P&H and MP&H mortality probabilities and respective conditional 

probabilities given a tree dies for plot 125.   

 P&H Method MP&H Method 
Dbh       pi Conditional (πi)       pi Conditional (πi) 
2 0.539245 0.193168 0.706043 0.153445 
3 0.239664 0.357718 0.436103 0.394912 
4 0.134811 0.346092 0.235141 0.366242 
5 0.086279 0.103023 0.117884 0.085400 
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Figure 6.1.  Examples of the worst predicted stand table projections using the P&H and 

Logit models (Plot 23), and the individual tree model (Plot 87) contrasted with the 

observed trees per hectare. 
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(b) Plot 87
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Figure 6.2.  The estimated basal area growth equation (3) β0 parameter when fitted by 

plot (N = 101 plots).   
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CHAPTER 7 

CONCLUSION 

 
Our study provides a foundation for developing biologically reasonable whole stand and 

multilevel individual tree survival models.  Although forestry survival is difficult to 

model, the difficulty can be reduced by using the empirical hazard function to aid in the 

modeling process.   We demonstrate the importance of the hazard function in modeling 

forestry survival data.  Use of the hazard function to aid in forestry survival model 

selection is not novel.  Preisler and Slaughter (1997) limited their individual tree survival 

model selection to those that were capable of reflecting the empirical hazard function 

behavior, but this is the first known time that the empirical hazard function has been used 

to aid in the development of a whole stand survival model.  As mentioned, survival 

prediction can be important in the management decision process, e.g., prediction of whole 

stand survival can be critical in the volume predicted per unit area.  However, our stand 

table projection study (Chapter 6) suggests that mortality allocation in the stand table 

projection method is unlikely to be the primary critical component.   

Our whole stand survival model methodology demonstrates that using the 

empirical hazard function can aid in the development of biologically reasonable whole 

stand survival models that adequately reflect the continuum of a plantation’s survival.  

Using the empirical hazard function, we limited our function selection in the differential 

equation to those functions that are capable of reflecting a “bathtub” shape.  Moreover, 

ignoring cultural treatment effects, our whole stand survival models mirrored
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a “bathtub” shaped hazard function using as few as three parameters.  Cultural treatment 

parameters allowed additional model flexibility, but as shown, it is the f(t) function that 

allowed our whole stand survival model to exhibit an underlying bathtub shaped hazard 

function.  In addition, our methodology produced models that have excellent 

extrapolative properties, which was demonstrated by fitting model (1) to the age 5-14 

data.  Whole stand lifespan survival is commonly modeled using a system of equations, 

tables, or combination thereof, which increases the complexity.  We demonstrated that 

one equation could model the continuum of a stand’s survival when derived from 

knowledge about the underlying hazard function.     

Multilevel individual tree survival models are attractive for two main reasons.  

First, these models allow for site-specific predictions and secondly, they can account for 

sources of heterogeneity.  Frequently in forestry survival predictions for a new plot are 

made by ignoring prior information, i.e., predictions are based upon current 

measurements.  Using prior information generally increased the mortality prediction 

precision of our individual tree survival models, which has been demonstrated in other 

multilevel forestry models (e.g., Fang and Bailey 2001, Hall and Bailey 2001).  Here, we 

developed two individual tree survival models: the logit and complementary log-log 

(CLL).  Model development demonstrates the CLL function is the natural choice for 

interval-censored permanent plot binary response data.  The logistic is the most 

commonly used model for individual tree survival therefore, a logit model was developed 

to illustrate the procedure and for use in the stand table projection.  In addition, it is often 

difficult to distinguish between the fit of the CLL and logit models if the data are 
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somewhat symmetrical (Agresti 1990).  Both individual tree survival models illustrate the 

advantages of using a subject (SS) versus population averaged (PA) modeling approach.       

Subject-specific models have several advantages over PA models; one is that the 

marginal predictions can be obtained by integrating over the random effects using 

numerical integration or Monte Carlo integration techniques.  Conversely, the PA 

modeling approach does not uniquely specify a SS model.  As discussed, modeling the 

grouping structure allows for statistically efficient estimates of the regression coefficients 

and provides the correct standard errors, confidence intervals, and tests of significance.  

Ten Have and Uttal (1991) noted that if predictions are the primary modeling purpose, 

then a SS approach is preferable.  Individual tree forestry survival models usually focus 

on prediction; therefore, the SS approach is the more natural method.  If hypothesis 

testing about factors that influence tree survival is the main study purpose, (e.g., our CLL 

model) then it is imperative to account for the variability within and among plots.  Failing 

to account for the sources of heterogeneity when modeling individual tree survival could 

result in an over or under estimation of a given parameter effect (Rodriguez and Goldman 

2001).   

A study limitation with respect to the multilevel individual tree survival models 

was the non-convergence of most parameter estimation techniques.  For our individual 

tree survival models, the MQL-1 parameter estimation technique was the only method 

that converged.  Recently Rodriguez and Goldman (2001) assessed the impact of the 

different parameter estimation methods when fitting a multilevel binary response model.  

Their study suggests that MQL-1 tends to under estimate the variance components and 

that PQL-2 is the usually the preferred method.  However, they inferred that Bayesian 
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methods will probably result in the best parameter estimates but can be computationally 

intensive.  Although our parameter estimation method was limited, as noted by several 

authors (e.g., Goldstein and Rasbash 1996), it is likely better to allow for a multilevel 

structure and use MQL-1 than to ignore the multilevel structure.  Although beyond the 

scope of our study, an assessment of using the different parameter estimation methods 

should be conducted in a forestry context.   

Individual tree survival models often employ a threshold to classify trees as dead 

or alive, based upon the predicted mortality probabilities, and the mean predicted 

mortality probability has been suggested as the most logical threshold for a PA model 

(Monserud and Sterba 1999).  Our sensitivity analysis revealed that the mean mortality 

prediction by plot might not be the best threshold for a SS individual tree survival model.  

An adequate threshold for classifying trees as dead or alive needs to be addressed in 

future research of multilevel individual tree survival models.       

  Stand table projection is an important part of the management decision process 

and our results reveal, for our data, that the Pienaar and Harrison (1988) (P&H) method is 

a simple, yet effective, method for projecting stand tables.  It substantially and slightly 

outperformed the IND and MP&H methods, respectively.  The fact that the P&H and 

MP&H methods substantially outperformed the IND method may suggest that the 

individual tree basal area growth equation is the critical component for projecting stand 

tables.  We demonstrated the impact of the basal area growth equation by comparing the 

projected stand tables using the P&H, MP&H, and IND methods for a plot that had no 

mortality during the projection period.  Thus, our results suggest that mortality allocation 

is unlikely to be as important as the basal area growth equation for accurate and precise 
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stand table projections.  This is not surprising since mortality is a relatively rare event.  

Furthermore, our results suggest that stand table projections may be improved using a 

mixed modeling approach for the basal area growth equation, which should be addressed 

in future research.  Interestingly, the conditional probabilities used in the P&H method 

appear to be robust against departures from the unconditional probabilities (pi’s) by dbh 

class.  The IND and MP&H methods require a higher degree of information, i.e., they 

require the development of a mortality prediction model and a tree list for the IND 

method.  In addition, these methods invoke the stand table projection algorithm annually 

until reaching the projection age.  Although, the IND and MP&H methods increased 

complexity, there was no gain in the precision of the projected stand tables relative to the 

P&H method.     

In conclusion, we demonstrate a relatively easy methodology for developing 

flexible whole stand survival models based on the behavior of the underlying hazard 

function.  Furthermore, our study emphasizes the advantages of using the multilevel 

modeling approach for modeling individual tree survival, for both hypothesis testing and 

prediction. Lastly, while mortality prediction and allocation is an important component of 

stand table projection, our study demonstrates that the basal area growth equation is a 

critical component in projecting stand tables. 
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