CHARACTERIZATION OF THE *ASPERGILLUS NIDULANS* SEPTIN ASPB AND ITS INTERACTIONS

by

YAINITZA HERNÁNDEZ RODRÍGUEZ

(Under the Direction of Michelle Momany)

ABSTRACT

Septins are evolutionarily conserved GTP binding proteins that form heteroligomeric complexes, are considered novel cytoskeletal elements and control diverse cellular functions and processes. Septins are found in some protists, fungi and animals, and though present in some algae they are absent in higher plants. Septins have been shown to interact with and organize actin and tubulin and have been suggested to bridge interactions between both cytoskeleton systems. We explored these connections by characterizing the septin AspB and its interaction with actin and microtubules in the filamentous fungus *Aspergillus nidulans*. AspB is key for conidiophore morphology and sporulation as Δ*aspB* shows conidiophores with fused abnormal layers, very few attached conidia and poor conidiation. Δ*aspB* also shows early germination, multiple emergence of polarity axes during germ tube and branch formation and delayed septation. AspB localizes to sites of germ tube emergence, septation and branching and emerging layers of the conidiophore. AspB forms filaments and bars that are lost in the absence of septins AspA and AspC, suggesting that septin-septin interactions are necessary for filament formation. AspB filaments are extremely reduced in hyphae of Δ*aspE*, a septin exclusive to filamentous fungi. AspB seems to influence polarity by interacting with microtubules as they colocalize, Δ*aspB*
hyperemergence of growth can be reduced by depolymerization of microtubules, fewer microtubule bundles were observed in newly formed branches of ΔaspB and depolymerization of microtubules results in abnormal AspB filaments. AspB might also influence polarity by interacting with actin as they colocalize, polarity defects were observed in ΔaspB after depolymerization of actin, tropomyosin TpmA was lost from actin filaments and depolymerization of actin resulted in abnormal AspB cytoplasmic ring localization. AspB might play roles in endocytosis as AspB colocalized with endocytic vesicles and the endocytic zone is absent or of abnormal length and abnormally positioned in ΔaspB. We show that AspB is essential for normal growth, development and conidiation, it localizes throughout fungal growth and development, it may play roles in nuclear dynamics and might control polar growth by its interactions with the endocytic machinery, actin and microtubules and/or their associated proteins.

INDEX WORDS: Aspergillus nidulans, septins, AspB, polar growth, actin, microtubules, endocytosis, cytoskeleton, growth emergence, branching, germtube, septa, conidiophores, filaments, bars.
CHARACTERIZATION OF THE \textit{ASPERGILLUS NIDULANS} SEPTIN ASPB AND ITS INTERACTIONS

by

YAINITZA HERNÁNDEZ RODRÍGUEZ

B.S., University of Puerto Rico-Mayagüez Campus, Puerto Rico, 2004

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2011
CHARACTERIZATION OF THE \textit{ASPERGILLUS NIDULANS} SEPTIN ASPB AND ITS INTERACTIONS

by

YAINITZA HERNÁNDEZ RODRÍGUEZ

Major Professor: Michelle Momany

Committee: Sarah Covert
 Claiborne Glover
 Michael McEachern
 Mark Farmer

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
August 2011
DEDICATION

I want to dedicate this work to many important people in my life throughout these years. To my first advisor Dr. Carlos Betancourt, from the University of Puerto Rico-Mayagüez Campus, for introducing me to the wonderful world of mycology and for guiding me to obtain my PhD at the University of Georgia. To my current advisor Dr. Michelle Momany, who has provided unconditional support and has been an outstanding advisor and guide throughout these years. I want to dedicate this work to my mother Sophia, who taught me to persevere and made me promise, before passing, that one day she could call me “Dr”. To my father Fernando, who moved in with me to raise my baby and to help me finish my degree. I also want to dedicate this to my husband Jaime, for all his support throughout my illness and my career. To my daughter Eva Sophia, who came unexpectedly to my life and cured my disease, allowing me to finish my career. Finally, I want to dedicate this work to family, friends, professors and staff that by one way or another encouraged, helped and supported me throughout this journey to obtain my career. Thank you!
ACKNOWLEDGMENTS

This work was supported by the UGA Graduate Recruitment Opportunity Fellowship (GRO), Robert Watkins American Society of Microbiology Fellowship, Plant Biology Palfrey Grant, Howard Hughes Support and Dissertation Completion Grant to Yainitza Rodriguez; and by the NSF grant MCB 0211787 and NSF grant DevMech 1051730 to Dr. Michelle Momany. I want to thank my major advisor Michelle Momany, and my committee members: Sarah Covert, Claiborne Glover, Michael McEachern, and Mark Farmer for all their input and support. I also want to thank previous and current Momany lab and Fungal Molecular Biology Group members for their help, input and/or advice in my project.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>THE SEPTIN ASPB IN ASPERGILLUS NIDULANS FORMS BARS AND FILAMENTS AND PLAYS ROLES IN GROWTH EMERGENCE AND CONIDIATION</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Materials and Methods</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Results</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Discussion</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Tables and Figures</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>62</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1.</td>
<td>Strains used and plasmids</td>
<td>42</td>
</tr>
<tr>
<td>Table 2.2.</td>
<td>Primers for constructing $aspB$-gfp and $ΔaspB$</td>
<td>43</td>
</tr>
<tr>
<td>Table 3.1.</td>
<td>Strains used</td>
<td>90</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Aspergillus nidulans life cycle</td>
<td>12</td>
</tr>
<tr>
<td>1.2</td>
<td>Septin domains and filaments</td>
<td>13</td>
</tr>
<tr>
<td>2.1</td>
<td>aspB is required for normal growth and morphology</td>
<td>44</td>
</tr>
<tr>
<td>2.2</td>
<td>ΔaspB shows hyperemergence of growth and abnormal conidiophores</td>
<td>46</td>
</tr>
<tr>
<td>2.3</td>
<td>ΔaspB shows clumped nuclei</td>
<td>48</td>
</tr>
<tr>
<td>2.4</td>
<td>AspB forms bars and filaments</td>
<td>50</td>
</tr>
<tr>
<td>2.5</td>
<td>AspB forms bars, filaments, caps and rings during conidiophore formation</td>
<td>52</td>
</tr>
<tr>
<td>2.6</td>
<td>AspB bars and filaments move</td>
<td>54</td>
</tr>
<tr>
<td>2.7</td>
<td>AspB structures are lost in the absence of AspA and AspC and filaments and bars are lost in hyphae in the absence of AspE</td>
<td>56</td>
</tr>
<tr>
<td>2.8</td>
<td>AspB bars are lost in conidiophores in the absence of AspA and AspC</td>
<td>58</td>
</tr>
<tr>
<td>2.1</td>
<td>ΔaspA and ΔaspC show multinucleated conidia and nuclear abnormalities</td>
<td>60</td>
</tr>
<tr>
<td>3.1</td>
<td>AspB-GFP partially colocalizes with α-TubA labeled microtubules</td>
<td>91</td>
</tr>
<tr>
<td>3.2</td>
<td>Depolymerization of microtubules results in AspB-GFP star filaments</td>
<td>93</td>
</tr>
<tr>
<td>3.3</td>
<td>AspB-GFP partially colocalizes with α-Tyrosinolated TubA labeled microtubules</td>
<td>95</td>
</tr>
<tr>
<td>3.4</td>
<td>AspB-GFP partially colocalizes with mRFP-UncArigor</td>
<td>97</td>
</tr>
<tr>
<td>3.5</td>
<td>ΔaspB showed less microtubule filaments in branches</td>
<td>99</td>
</tr>
</tbody>
</table>
Figure 3.6. Depolymerization of actin results in many AspB-GFP free-floating cytoplasmic rings
...101

Figure 3.7. TpmA-GFP localization to actin filaments and tips are lost in ΔaspB103

Figure 3.8. Depolymerization of microtubules, but not actin, reduced hypergermtube and
hyperbranch emergence in ΔaspB ...105

Figure 3.9. Depolymerization of actin results in polarity defects during hyperbranch emergence
in ΔaspB ...107

Figure 3.10. AspB-GFP partially colocalizes with AbpA ..109

Figure 3.11. SlaB-GFP showed less exclusion distance from tips and smaller zone lengths in
ΔaspB. ...111

Figure 3.12. SlaB-GFP showed smaller zone lengths and localized at or very close to the tip apex
in ΔaspB ...113

Supplemental Figure 3.1. AspB-GFP filaments and bars localize near nuclei115

Supplemental Figure 3.2. Microtubule depolymerization results in AspB-GFP star filament
formation ..117

Supplemental Figure 3.3. Actin filaments are present in ΔaspB ...119

Supplemental Figure 3.4. TubA-GFP and TpmA-GFP localizations under Benomyl and
Cytochalasin A treatments respectively are reversible and not affected by DMSO121

Supplemental Figure 3.5. Wild type hardly shows swelling during branch emergence after
recovery from Cytochalsin A treatment ..123
CHAPTER 1
INTRODUCTION

The septin cytoskeleton is made of different septin proteins that interact to form non-polar heteroligomeric filaments. This novel cytoskeleton is found in some lower eukaryotes such as algae, as well as in fungi and animals, but not in higher plants (Estey et al. 2011). As cytoskeletal elements, septins play roles as diverse as those of actin and microtubules (Field 1999, Mitchison and Field 2002). Septins are part of the P-loop GTPase family that includes kinesins, myosins and ras proteins, and its GTP binding capacity seems to be important for structure stability and subunit interaction, but its ability to hydrolize GTP is not clearly understood. Electron microscopy studies have shown that septin basic rods are usually composed of two members of each septin which interact through the N-C interface (N-terminal and C-terminal) and their GTP binding domains, which leaves the coiled-coil extensions free from the structure and available to interact with other proteins (Bertin et al. 2008b; Estey et al. 2011; McMurray and Thorner 2009; Versele et al. 2004; Versele and Thorner 2004; Versele and Thorner 2005). Basic rods can interact, through septin-septin N-C or GTP binding domains, with other basic rods to form longer filaments and through coiled-coil extensions to form paired filaments (Bertin et al. 2008b; Estey et al. 2011). Fluorescent tagging has shown that in vivo septins form higher order structures such as bundled filaments, bars, dots, rings, caps that can form scaffolds, diffusion barriers, filamentous arrays and gausses. These structures recruit and interact with a huge array of proteins and the cell membrane. Their ability to form different structures and interact with such a large variety of proteins seems to be dependent to the
developmental stage, cell type and mode of growth of the organism and it might explain how septins are involved in so many different cell processes. For instance, septins are involved in cytokinesis, vesicle trafficking, nuclear division coordination, cytoskeleton organization and polarity maintenance, and compartmentalization of pre-existing cellular material and formation of diffusion barriers (Kinoshita 2006; Lindsey and Momany 2006; McMurray and Thorner 2008b; Russell and Hall 2005; Versele and Thorner 2005). In addition, septin defects have been associated with diseases such as leukemia and many other types of cancer, Parkinson’s, Alzheimer’s, Down’s syndrome, schizophrenia, bipolar disorder, mesial temporal lobe epilepsy, systematic lung erythematousus, Listeria infection, human herpes virus 8 and hepatitis C (Hall and Finger 2008). All these characteristics make septins a very important and exciting group of proteins to study.

Septins were first discovered by Lee Hartwell in the early 1970’s in a screen for temperature-sensitive cell cycle mutants in *Saccharomyces cerevisiae* and named “septins” for their roles in septum formation in yeast (Hartwell 1971b). The first septins discovered were named *cdc3, cdc10, cdc11* and *cdc12* for being cell cycle mutants defective in cytokinesis. Still today we don’t completely comprehend septins essential roles in cytokinesis in all cell types (Pringle 2008).

Septins have now been identified and described in other fungal and animal systems and quite recently in lower eukaryotes. The number of septin genes can vary among organisms. For instance the worm *C. elegans* has 2, fungi have 4-7 septins, the fly *D. melanogaster* has 5 septins, and humans have 14. In humans the number of septin proteins is even higher as splice variants can add up to 30 different septin proteins (Hall et al, 2005). Phylogenetic studies, from different model systems, have suitably grouped septins into: septins found only in fungi, only in
animals and in both fungi and animals (PAN et al. 2007). This study also revealed septin protein motifs which allow for further identification of additional septins in other model systems. In different model systems septins from similar representative groups polymerize into heteroligomeric filaments (VERSELE et al. 2004).

Septins display three basic patterns of localization within cells and localization seems to be correlated to septin function (Lindsey and Momany 2006). In general, fungal septins localize to bases or tips of newly forming growth areas such as buds or germ tubes. In general, animal septins localize to membranes as punctae or to the cytoplasm as cytoskeletal filaments. In both animals and fungi septins localize to partitions as cells divide; in fungi to septum or areas of cell division and in animals to the cleavage furrow. Here, I will review septins in some fungi and animals.

Septins in Fungi

Septins were first discovered in *S. cerevisiae* through a cell cycle temperature-sensitive mutation screen and named CDC as cell division cycle genes (HARTWELL 1971a; LONGTINE et al. 1996). At restrictive temperature Cdc3, 10, 11, and 12 mutants result in multibuded elongated cells that do not complete cytokinesis. These septins localize to the mother-bud neck (area of division after formation of the daughter cell) and mutations in one septin result in loss of localization of the others. Septins recruit and interact with many proteins involved in cell cycle regulation and help coordinate nuclear and cell division with morphology to ensure normal bud formation via the morphogenesis checkpoint (GLADFELTER et al. 2001a; GLADFELTER et al. 2002; GLADFELTER et al. 2001c; LEW 2003; LEW and REED 1995). If bud formation is disrupted, the nuclear cycle is paused by the morphogenesis checkpoint. This ensures that only one nucleus is present in each cell. Septins localize to the prebud emergence site where they form caps that
help recruit the bud emergence machinery, form a ring at the mother bud neck as the bud emerges, and form an hourglass structure as the bud develops. The hourglass breaks into two rings as septins help coordinate cytokinesis (GlADFELTER et al. 2001b; GlADFELTER et al. 2005; LEW 2003). Septin hourglass, scaffolds and rings at the neck form diffusion barriers that keep the machinery necessary for growth and cytokinesis localized and concentrated to this area (BARRAL 2009; BARRAL et al. 2000; DOBBELAERE and BARRAL 2004; DOUGLAS et al. 2005; FINGER 2005; TAKIZAWA et al. 2000). After cytokinesis, a ring remains that marks the position of the division event and determines the position for the emergence of the next bud (CHANT 1996; CHANT and PRINGLE 1995; FLESCHER et al. 1993). They are also likely involved in the response to mating pheromone (FORD and PRINGLE 1991; KIM 1991; KONOPKA et al. 1995). During spore formation two additional septins, Spr3 and Spr28, play roles during spore wall formation and localize with other septins to the developing prospore wall in sporulating cells and their deletions can cause mislocalization of the other septins (DE VIRGILIO et al. 1996; FARES et al. 1996; LONGTINE et al. 1996).

\textit{S. cerevisiae} has been a great model system for studying septin complexes and dynamics. Here, septins organize into heteroligomeric filamentous octamers that give rise to septin rings and filaments (BERTIN et al. 2008a; MCMURRAY et al. 2011). These nonpolar hetero-octamers are composed of two representatives of each septin molecule organized as: Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 (BERTIN et al. 2008a). In addition, EM studies have shown that long filaments can align in pairs forming higher order structures after the initial filament is formed. Removal of septin members from the complex can result in abnormalities whose severity depends on the member that is removed (MCMURRAY et al. 2011). FRAP experiments showed that septin turnover occurs prior to bud emergence, hourglass splitting and ring
disassembly, while there is no turnover during bud formation and cytokinesis in *S. cerevisiae* (Barral 2009; Caviston et al. 2003; Dobbelaere et al. 2003). In addition, within a complex, septin monomers can be old or new, so that certain septins can be recycled from complex to complex throughout development (McMurray and Thorner 2008a). This provides more evidence of the large dynamics of septin complexes not only by the changes of structure dynamics throughout development, but also within the complex itself.

Schizosaccharomyces pombe also has seven septins (Spn1, Spn2, Spn3, Spn4, Spn5, Spn6 and Spn7) and ring formation only requires a minimum of three septins in a complex (Spn3-Spn4-Spn1 or Spn4-Spn1-Spn2) (An et al. 2004b). Here, septins are involved in, but not essential for, cytokinesis. Septin defects are associated with abnormal septin localization and septin deletion mutants show only a delay in breakdown of the septum before cell separation (An et al. 2004a). Septins Spn1, 2, 3 and 4 form a complex that is diffusely localized throughout interphase (An et al. 2004b). Septins are recruited to the division site after the cytokinesis machinery is assembled, unlike septins in *S. cerevisiae*, but they also form a ring that splits and encloses the actin-myosin ring for cytokinesis (Berlin et al. 2003; Tasto et al. 2003; Wu et al. 2003).

In the pathogenic yeast *Candida albicans*, septin defects impair cell separation and cells are linked together forming chains. Here, septins localize very similarly to *S. cerevisiae* during budding. During hyphal growth septins assemble and disassemble as septin bands at the base of emerging germ tubes and septation sites, and form collars at hyphal tips (Berman and Sudbery 2002; Gladfelter and Sudbery 2008; Sudbery 2001; Warenda and Konopka 2002a). A cap of septins localizes to tips and an unknown signal makes a cloud of septins anchor to the wall staying behind from the polarizing tip and marking future septation sites. Septins remain
localized to pre-septation sites until the septum is formed. Interestingly, there are septin dynamics differences in *C. albicans* which affects if the fungus displays budding or hyphal growth. In the yeast form, the collar is frozen as in *S. cerevisiae*. After transition to hyphal growth, Cdc11 is phosphorylated and the Cdc10 subunit, assisted by Shs1, is dynamically exchanged with the cytoplasmic pool (Gonzalez-NoVo *et al.* 2008; Sinha *et al.* 2007; Warenda and Konopka 2002b). These dynamics prevent cell separation and allow for hyphal growth. In contrast to bud and hyphal morphogenesis, septins form long filamentous structures during chlamydospore morphogenesis (Martin *et al.* 2005).

In *Cryptococcus neoformans* Cdc3 and Cdc12 are essential for growth at body temperature (37°C) and their deletion results in reduced virulence (Kozubowski and Heitman 2009). Septin mutants also display abnormal nuclear distribution. In *C. neoformans* septins localize to emerging spores, septa and clamp connections and are involved in morphology, sporulation, clamp cell fusion, nuclear dynamics and contribute to virulence (Kozubowski and Heitman 2009).

Ashbya gossypii has five septin proteins (Cdc3, Cdc10, Cdc11, Cdc12, Shs1/Sep7), septin mutants shift mitosis sites and it has been suggested that septin rings promote mitosis near new branches (Helfer and Gladfelter 2006). *A. gossypii*, septins also form a cap at the hyphal tip and septins then become anchored to the membrane, forming a band as seen in *C. albicans*. In *A. gossypii* septins form various rings in the hyphae and their morphological and behavioral differences are regulated by Elm1p and Gin4p kinases (Demay *et al.* 2009; Helfer and Gladfelter 2006).

In the plant pathogen *Ustilago maydis*, a normal contractile actomyosin ring is necessary for septin ring formation. Sep3 is required for normal cellular morphology and division during
budding and lipid-induced filamentous growth in culture. Sep3 defects showed reduced symptoms in maize due to morphological defects in filamentous cells in planta. Sep3 is also involved in the differentiation of hyphae into teliospores and their germination, and forms multiple buds in strains carrying a mutation in the regulatory subunit of the protein kinase A, suggesting connections between Sep3 and cAMP signaling during morphogenesis (Boyce et al. 2005). U. maydis septins undergo dynamic rearrangements from hourglass collars into ring structures during septation (Böhmer et al., 2009, (Cánovas and Pérez-Martín 2009). The Don3 kinase initiates septin reorganization during secondary septum formation (Böhmer et al. 2009). In U. maydis, Sep1 and sterol-rich domains show interdependent partial colocalization and seem to maintain and stabilize polarity (Cánovas and Pérez-Martín 2009), and Sep4 localizes as cortical fibers (Alvarez-Tabares and Perez-Martin 2010).

In another plant pathogen Magnaporthe oryzae, if the septation location is disturbed, the fungus does not cause rice blast disease (Saunders et al. 2010). Septins form a pre-mitotic ring during appressorium morphogenesis, containing Sep4 and 5, which defines the position of the appressorium septum. After mitosis, nuclei migrate and the actomyosin ring forms in the forming appresorium for septation. SEP1 is a spatial regulator for cytokinesis and is therefore required for appressorium-mediated infection (Saunders et al. 2010).

In Aspergillus nidulans there are five septins (AspA, AspB, AspC, AspD and AspE) (Momany et al., 2001). AspB temperature sensitive mutants displayed irregular septa, high numbers of branches, and immature asexual reproductive structures (Westfall and Momany 2002). AspA and AspC deletions showed increased germ tube and branch emergence, abnormal septation, and abnormal conidiophores (Lindsey et al. 2010). Polyclonal antibodies against the most-highly expressed septin AspB showed that it localizes to septa, emerging secondary germ
tubes and branches, and developing conidiophores (Westfall and Momany 2002). Similar to budding yeast, AspB forms a ring at septa that eventually splits into two rings. Similar to *C. albicans* and *A. gossypii*, AspB forms a ring or collar at emerging secondary germ tubes and branches. AspB also forms rings that circumscribe the emerging budding layers of conidiophores (asexual reproductive structure). AspA-GFP and AspC-GFP localize as discrete spots or bars in dormant and expanding conidia, as rings at forming septa and at the bases of emerging germ tubes and branches, and as spots and filaments in the cytoplasm and near the cell cortex. In conidiophores, AspA-GFP and AspC-GFP also localize as rings at the bases of emerging layers. AspA and AspC display abnormal localization in each other’s deletion backgrounds suggesting that they interact. (Lindsey *et al.* 2010).

Septins in animals

Septins in animals are also key for cytokinesis and localization to the cleavage furrow has been shown in *C. elegans* and *D. melanogaster* (Fares *et al.* 1995; Nguyen 2000). In mammals septins are involved in a variety of processes. One of its roles is the organization and coordination of the actin and microtubule cytoskeletons. Septin filaments colocalize to actin and microtubule fibers. Moreover, different septins preferentially bind certain modified cytoskeletal elements. For example, SEPT2 is not associated to actin that is rapidly turned over, but it is to polyglutamylated microtubules; while SEPT4 binds stress fibers and cortical actin (Kinoshita 2006; Kinoshita *et al.* 2002; Kinoshita *et al.* 1997; Schmidt and Nichols 2004a; Spiliotis and Nelson 2006; Spiliotis 2010; Spiliotis *et al.* 2008b; Spiliotis *et al.* 2005; Surka *et al.* 2002; Xie *et al.* 1999).

Septins have also been shown to associate to membranes and have been suggested to provide shape and control growth emergence by its interactions with the membrane, cytoskeleton
and their associated proteins (Gilden and Krummel 2010; Tanaka-Takiguchi et al. 2009).

Actin and septins colocalize and are codependent. Upon treatment with actin depolymerizing agents septin filaments form arc-shaped structures (Kinoshita et al. 2002). Therefore, septin filament integrity is dependent on F-actin integrity and adaptor proteins seem to help bridge actin-septin interactions, making their structures interdependent (Spiliotis and Nelson 2008).

Septins have also been shown to regulate microtubule stability and treatment with microtubule depolymerizing agents causes septin mislocalization (Kremer et al. 2005; Spiliotis et al. 2005). Microtubule modifications can regulate microtubule binding partners which can modulate cellular processes. Microtubules directly interact with septins in mammals and also show preferential binding. The SEPT 2/6/7 complex binds both free tubulin as well as polymerized microtubules (Nagata et al. 2003; Spiliotis and Nelson 2008). Septins have been reported to localize with centromeres, kinetochore, spindles and microtubule organizing centers (Gromley et al. 2003; Qi et al. 2005; Shu et al. 1995; Spiliotis and Nelson 2008; Vega and Hsu 2003).

In mammals, SEPT2 associates with polyglutamylated microtubules facilitating vesicle transport by maintaining this microtubule modification and hindering MAP4 binding (microtubule associated protein 4) (Spiliotis et al. 2008).

Septins in mammals are also involved in morphogenesis and form diffusion barriers. For instance, in developing polar neuron cells, septins are involved in the morphogenesis of normal mature spines and interestingly septin knockdown defects vary from septin to septin (Tada et al. 2007). Particularly, SEPT7 localizes at the base of dendritic protrusions similar to septin localization at the bud neck in S. cerevisiae. SEPT7 overexpression increased dendrite branching and the density of dendritic protrusions, while its knockdown resulted in reduced dendrite arborization and increased proportion of immature protrusions. Also, SEPT4 and SEPT14 are
involved in neuron formation and cell polarity maintenance during brain development (SHINODA et al. 2010). Septins are also involved in the formation of diffusion barriers (Schmidt and Nichols 2004b). SEPT2 is essential for retaining receptor-signaling pathways in the primary cilium and is also key for diffusion in the cleavage furrow of dividing cells (HU et al. 2010; SCHMIDT and NICHOLS 2004b). The annulus (composed of septins) of the mouse sperm tail is also key in the formation of diffusion barriers and proper function of the sperm (IHARA et al. 2005; KWITNY et al. 2010).

Contributions of this dissertation to the septin field

Though septin studies in yeast have been very useful; unicellular cells cannot address how septins coordinate cell division across compartments in multicellular organisms or how they function in highly polar cells such as neurons. Septins in animals show differential splicing making their studies more challenging. Filamentous fungi, being highly polarized multicellular organisms, are a more tractable model system to study septin biology in multicellular systems. Here we present a continuation on the characterization of AspB, which is the most highly expressed septin during asexual reproduction in A. nidulans (Momany et al., 2001). AspB is closely related to Cdc3 in S. cerevisiae and C. albicans, Spn1 in S. pombe, and Sep1 in C. neoformans and U. maydis (PAN et al. 2007a). aspB was previously reported to be essential (Momany and Hamer 1996). aspB temperature sensitive mutants displayed irregular septa, high numbers of branches, and immature asexual reproductive structures (Westfall and Momany 2002). Immunofluorescence with polyclonal antibodies showed that AspB localizes to septation and branching sites, and conidiophore interface layers (Westfall and Momany 2002). Here we show that deletion of aspB is not lethal, but causes aberrant morphology in several developmental stages and severe defects in asexual reproduction. AspB is key for conidiophore
morphology and sporulation as ΔaspB showed conidiophores with fused abnormal layers, very few conidia attached to conidiophores and poor conidiation, which explains why this mutant was not recovered in the first study. AspB-GFP in vivo fluorescence studies showed that AspB localizes not only as dots, rings and caps but also as filaments and bars throughout vegetative growth and asexual reproduction. AspB localizes to areas of emerging growth and AspB filaments are lost in the absence of septins AspA and AspC, suggesting that septin-septin interactions are necessary for filament formation. AspB filaments are present in dormant and early germinating conidia, but are extremely reduced in hyphae of ΔaspE. This suggests that AspE, which belongs to a septin family only found in filamentous fungi, has evolved to maintain septin filament stability in highly polar growing cells. AspB seems to control emergence of growth in conjunction with its interactions with microtubules as ΔaspB results in hyperemergence of germtubes and branches that can be reduced by depolymerization of microtubules. In addition AspB might be involved in nuclear migration as AspB colocalizes with microtubules and near nuclei and ΔaspB results in binucleated conidia and clumped nuclei. Furthermore, less microtubule bundles were observed in newly formed branches of ΔaspB and depolymerization of microtubules resulted in abnormal AspB filaments. AspB might also control polarity in conjunction with its interactions with actin as polarity defects, such as swelling and lysis, were observed in ΔaspB after depolymerization of actin. In addition tropomyosin TpmA, which blocks myosin access to actin for active trafficking, was lost from actin filaments and localization to septa was very faint in ΔaspB. Still, actin filaments labeled with lifeact-egfp were visible in ΔaspB. AspB colocalized with actin vesicles and depolymerization of actin resulted in abnormal AspB cytoplasmic ring localizations. AspB might also be involved in growth by playing roles in endocytosis as AspB colocalized with endocytic vesicles and the endocytic zone...
is absent or of abnormal length and abnormally positioned in ΔaspB. In summary, AspB plays roles in fungal morphology, growth, nuclear dynamics and asexual reproduction and its filamentous localization throughout fungal growth and development might control polar growth by its interactions with the endocytic machinery, actin and microtubules and/or their associated proteins.

Figure 1.1. *Aspergillus nidulans* life cycle. (A) *A. nidulans* asexual dormant conidia (stage 1) initiate growth in the presence of a carbon source and grow isotropically (stages 2). Conidia switch from isotropic to polar growth with the emergence of a germ tube (stage 3). This germ tube continues to extend in a polar manner (stage 4). Growth is then divided by the formation of a septum (stage 5). Septa are crosswalls that divide the growth in an apical growing tip compartment and subapical non growing compartments (stage 6). Growth is initiated in nongrowing compartments with the emergence of a lateral branch (stage 7). (B) *A. nidulans* forms conidia from a conidiophore structure. This structure is made from a specialized hypha that swells at the tip (stage 1) from which layers bud: metulae (stage 2) and phialides (stage 3). Conidia continuously bud from the phialide layers and form conidial chains (stage 4). Adapted from (Momany 2002)
Figure 1.2. **Septin domains and filaments.** (A) Septins belong to the P-loop NTPase Family that includes the myosin/kinesin and Ras Superfamily of GTPases (SPILOTIS 2010). Septins have a N-terminus of variable length followed by a Polybasic Region (PBR) (PAN et al. 2007). The PBR is the region next to the GTP binding domain and it seems to be important for membrane interactions through Phosphatidylinositol binding (BERTIN et al. 2008; BERTIN et al. 2010; TANAKA-TAKIGUCHI et al. 2009). There are six key amino acids in this region where a basic residue (Histidine, Lysine, Arginine) can be found in positions 1, 2, 5, and 6 in 60-78% of septins and a Glycine follows the PBR in 90% of septins (PAN et al. 2007). Septins have a GTP binding domain with the G1, G3 and G4 motifs found in the Ras superfamily. G1 seems to form a loose loop for GTP binding, G3 interacts with Mg$^{2+}$ and the β and γ phosphates of GTP and G4
seems to provide GTP specificity (PAN et al. 2007). Septins belong to a class of G proteins activated by nucleotide-dependent dimerization (GADs) and its ability to hydrolyze GTP is not clearly understood (SPILIOTIS 2010). Septins have a unique element region (SUE) made of 53 amino acids, where half of the residues are conserved in 50-90% of septins (PAN et al. 2007). Most septins (except for the CDC10 group) have a coiled-coil region near the C-terminus that is key for septin-septin and septin-protein interactions and for septin bundling which form the different septin structures seen in Fluorescence microscopy. Coiled coils usually contain a repeated heptad pattern of hydrophobic (h) and charged (c) amino-acid residues (hxxhcxc) (PAN et al. 2007). Adapted from (PAN et al. 2007). (B) GTP-binding drives the formation of hetero-oligomeric complexes, which assemble into higher-order nonpolar filaments (BERTIN et al. 2008). In S. cerevisiae septins assemble as non polar filaments made of basic heteroctameric rods composed of two monomers of four different septins: Cdc3, Cdc10, Cdc11 and Cdc12. Septins interact through their N and C-terminal called the NC-dimer and their GTP binding domain called the G-dimer to form the basic octameric rod. (C) Octameric rods can interact with other rods to form long filaments. (D) Septin filaments can also form paired filaments by interactions through the coiled coil domains (double arrow) for septin bundling which form the different septin structures seen in Fluorescence microscopy. Adapted from (BERTIN et al. 2008).
References

ALVAREZ-TABARES, I., and J. PEREZ-MARTIN, 2010 Septins from the phytopathogenic fungus Ustilago maydis are required for proper morphogenesis but dispensable for virulence. PLoS ONE 5: e12933.

BÖHMER, C., C. RIPP and M. BÖLKER, 2009 The germinal centre kinase Don3 triggers the dynamic rearrangement of higher-order septin structures during cytokinesis in Ustilago maydis. Molecular microbiology 74: 1484-1496.

DE MAY, B., R. MESEROLL, P. OCCHIPINTI and A. GLADFELTER, 2009 Regulation of distinct septin rings in a single cell by Elm1p and Gin4p kinases. Molecular Biology of the Cell 20: 2311.

GROMLEY, A., A. JURCZYK, J. SILLIBOURNE, E. HALILOVIC, M. MOGENSEN et al., 2003 A novel human protein of the maternal centriole is required for the final stages of cytokinesis and entry into S phase. A. Gromley and A. Jurczyk contributed equally to this work. The online version of this article includes supplemental material. Journal of Cell Biology 161: 535-545.

IHARA, M., A. KINOSHITA, S. YAMADA, H. TANAKA, A. TANIGAKI et al., 2005 Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa, pp. 343-352.

KINOSHITA, M., S. KUMAR, A. MIZOGUCHI, C. IDE, A. KINOSHITA et al., 1997 Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes & development 11: 1535-1547.

KWITNY, S., A. V. KLAUS and G. R. HUNNICUTT, 2010 The annulus of the mouse sperm tail is required to establish a membrane diffusion barrier that is engaged during the late steps of spermiogenesis. Biol Reprod 82: 669-678.

NGUYEN, T. Q., 2000 The C. elegans septin genes, unc-59 and unc-61, are required for normal postembryonic cytokineses and morphogenesis but have no essential function in embryogenesis, pp. 3825-3837.

QI, M., W. YU, S. LIU, H. JIA, L. TANG et al., 2005 Septin1, a new interaction partner for human serine/threonine kinase aurora-B. Biochemical and Biophysical Research Communications 336: 994-1000.

RUSSELL, S. E. H., and P. A. HALL, 2005 Do septins have a role in cancer?, pp. 499-503.

SHU, H., Z. LI, M. PALACIOS, Q. LI and H. JOSHI, 1995 A transient association of gamma-tubulin at the midbody is required for the completion of cytokinesis during the mammalian cell division, pp. 2955-2962.

CHAPTER 2

THE SEPTIN ASPB IN *ASPERGILLUS NIDULANS* FORMS BARS AND FILAMENTS AND
PLAYS ROLES IN GROWTH EMERGENCE AND CONIDIATION\(^1\)

Abstract

Septins are found in fungi and animals, but not in plants. In yeast, septins form rings at the mother-bud neck. In animals, septins form filaments that colocalize with cytoskeletal elements. In the filamentous fungus *Aspergillus nidulans* there are five septins, *aspA/cdc11*, *aspB/cdc3*, *aspC/cdc12*, *aspD/cdc10*, and *aspE*. *AspB/cdc3* was previously reported to be the most highly expressed septin and to be essential. Using improved gene deletion techniques, we found that deletion of *aspB/cdc3* is not lethal, but results in aberrant germ tube emergence, branching and asexual development (conidiation). Deletion of the *aspB* gene results in hypergermtube and hyperbranch emergence and thin, hooked abortive branches. Conidiophore layers are abnormal and conidiation is extremely poor. AspB-GFP localizes to sites of septation and branching and emerging layers of the conidiophore. AspB also localizes to sites of germ tube and branch emergence and forms filamentous arrangements, bars and filaments, whose localization varies with developmental and morphological changes. Bars are found in dormant and early germinating spores, remain in subapical nongrowing compartments and display fast movements. Filaments form as the germ tube emerges, localize to the hyphal and branch tips and display slower movements within compartments and near nuclei. AspB filaments are lost in the absence of septins AspA and AspC, suggesting that septin interactions are necessary for filament formation. AspB filaments are extremely reduced in hyphae of Δ*aspE*. This suggests that AspE, which belongs to a septin family only found in filamentous fungi, has evolved to maintain septin filament stability in highly polar growing cells.
Introduction

Septins are evolutionarily conserved GTP binding proteins that form filamentous complexes (VERSELE and THORNER 2005). These cytoskeletal elements are found in all eukaryotes except higher plants (ESTEY et al. 2011; PAN et al. 2007b). Septins are involved in numerous events such as cytokinesis, vesicle trafficking, nuclear division, cytoskeleton organization, polarity maintenance, compartmentalization of pre-existing cellular material and formation of diffusion barriers (KINOSHITA 2006; LINDSEY and MOMANY 2006; McMURRAY and THORNER 2008b; RUSSELL and HALL 2005; VERSELE and THORNER 2005). In addition, septin defects have been associated with diseases such as leukemia and many other types of cancer, Parkinson’s, Alzheimer’s, Down’s syndrome and schizophrenia (HALL and FINGER 2008).

Septins cdc3, cdc10, cdc11 and cdc12 were first discovered in a screen for temperature-sensitive cell cycle mutants in *Saccharomyces cerevisiae* by Hartwell and named “septins” for their roles in septum formation (HARTWELL 1971b). Septin mutations in *S. cerevisiae* result in multibudded cells defective in cytokinesis (HARTWELL 1971a; LONGTINE et al. 1996). Early in the cell cycle, septins localize as a cap at the future site of bud emergence. As the bud emerges, septins localize first as a ring at the mother/bud neck and later as an hourglass structure as the bud develops (GLADFELTER et al. 2001a; GLADFELTER et al. 2005b; LEW 2003). These septin structures form diffusion barriers that keep the polarity machinery and key proteins for growth localize to the daughter cell (ORLANDO et al. 2011). At cytokinesis, the hourglass structure converts into two rings. Septin scaffolds at the neck form diffusion barriers that keep the machinery necessary for growth and cytokinesis localized and concentrated to this area (DOBBELAERE and BARRAL 2004; DOUGLAS et al. 2005; FINGER 2005; OH and BI 2011; TAKIZAWA et al. 2000). In addition, septins are part of the morphogenesis checkpoint that
controls and coordinates bud formation and nuclear division. If bud formation is disrupted, the
nuclear cycle is paused by the morphogenesis checkpoint. This ensures that only one nucleus is
present in each cell (LEW 2003).

In *S. cerevisiae* septins organize into hetero-oligomeric filamentous octamers that give
rise to septin rings (BERTIN *et al.* 2008). These nonpolar hetero-octamers are composed of two
monomers of each septin molecule. Individual septins can be recycled from complex to complex
throughout development (MCMURRAY and THORNER 2008a). FRAP experiments showed that
septin turnover occurs prior to bud emergence, hourglass splitting and ring disassembly, while
there is no turnover during bud formation and cytokinesis in *S. cerevisiae* (BARRAL 2009;
BARRAL *et al.* 2000; CAVISTON *et al.* 2003; DOBBELAERE *et al.* 2003). In addition, EM studies
have shown that long filaments can align in pairs forming higher order structures after the initial
filament is formed. Removal of septin members from the complex can result in abnormalities
whose severity depends on which member is removed (MCMURRAY *et al.* 2011).

Septins have also been studied in other fungal systems. In *Schizosaccharomyces pombe*,
septins are mainly involved, but not essential, in cytokinesis. Septins assemble into a ring that
splits and encloses the actin-myosin ring for cytokinesis (AN *et al.* 2004). In *Candida albicans*,
septin mutations result in defects in cell separation forming cell chains. During budding, septins
localize very similarly to *S. cerevisiae*. During hyphal growth, septins assemble and disassemble
forming septin bands at the base of emerging germ tubes and septation sites, and collars at
hyphal tips (BERMAN and SUDBERY 2002; GLADFELTER and SUDBERY 2008; SUDBERY 2001;
WARENDA and KONOPKA 2002). Unlike bud and hyphal development, septins form long
filamentous structures during chlamydospore morphogenesis (MARTIN *et al.* 2005). In
Cryptococcus neoformans septins are involved in morphology, sporulation, clamp cell fusion and
nuclear dynamics (Kozubowski and Heitman 2009). Here septins localize to emerging spores, septa and clamp connections. \textit{A. gossypii}, has five septin proteins (Cdc3p, Cdc10p, Cdc11p, Cdc12p, Shs1/Sep7p) that form various rings in the hyphae and their morphological and behavioral differences are regulated by Elm1p and Gin4p kinases (DeMay \textit{et al.} 2009; Helfer and Gladfelter 2006). In \textit{A. gossypii}, septin mutants shift mitoses from the normal site and it has been suggested that septin rings promote mitosis near new branches (Helfer and Gladfelter 2006). In \textit{Ustilago maydis}, septins undergo dynamic rearrangements from hourglass collars into ring structures during septation (Böhmer \textit{et al.} 2009; Canovas and Pérez-Martín 2009). Sep3 is required for normal cellular morphology and division during budding and filamentous growth. Sep3 is also involved in the germination and differentiation of hyphae into teliospores and may be connected to cAMP signaling during morphogenesis (Boyce \textit{et al.} 2005).

In mammals, septins are involved in a variety of processes. In developing polar neuron cells, septins are involved in the morphogenesis of normal mature dendritic spines (Tada \textit{et al.} 2007). Sept7 localizes at the base of dendritic protrusions and its overexpression increases dendrite branching and density of dendritic protrusions, while its knockdown results in reduced dendrite arborization and increased proportion of immature protrusions. In mammals, septins are also involved in the formation of diffusion barriers (Schmidt and Nichols 2004). SEPT2 is essential for retaining receptor-signaling pathways in the primary cilium and is also key for diffusion in the cleavage furrow of dividing cells (Hu \textit{et al.} 2010; Schmidt and Nichols 2004). The annulus (composed of septins) of the mouse sperm tail is also key in the formation of diffusion barriers and proper function of the sperm (Ihara \textit{et al.} 2005; Kwitny \textit{et al.} 2010).
Though septin studies in yeast have been very useful; studies of unicellular cells cannot address how septins coordinate cell division across compartments in multicellular organisms or how they function in highly polar cells such as neurons. Filamentous fungi, being highly polarized multicellular organisms, in addition to their different cell geometries, make them suitable model systems to answer these questions. *Aspergillus nidulans* has 5 septins: AspA, AspB, AspC, AspD and AspE. We previously showed that deletions of *aspA*, *aspC*, or both *aspA* and *aspC* result in early and increased germ tube and branch emergence, abnormal septation, and disorganized conidiophores and their normal localization is codependent; suggesting that AspA and AspC interact (LINDSEY et al. 2010b). *aspB* was previously reported to be essential and immunofluorescence showed that AspB localizes pre- and postmitotically to septation, branching sites, and conidiophore interface layers (MOMANY and HAMER 1997b; WESTFALL and MOMANY 2002). Here we show that *aspB* deletion is not lethal, but causes aberrant morphology in several developmental stages and severe defects in asexual reproduction. AspB-GFP localizes not only as dots, rings and caps but also as bars and filaments throughout vegetative growth and asexual reproduction. We observed rapid large scale movements of AspB bars in cells with young germ tubes and more restricted movement of AspB filaments in longer hyphae. AspB-GFP structures are lost in the absence of AspA, AspC and at times in the absence of AspE. AspB seems to play roles in fungal growth and asexual reproduction and its filamentous localization throughout fungal growth and development requires certain septin partners and resembles other cell cytoskeleton.
Materials and Methods

Strains and growth conditions

Experiments were carried out using A. nidulans strains presented in Table 2.1. Fungal cultures for microscopy, crosses, DNA isolation and strain purification studies were grown in minimal medium (MM) (1% glucose, nitrate salts, biotin, trace elements and 1% thiamine, pH 6.5) or with complete medium (CM) (1% glucose, 2% peptone, 1% yeast extract, 1% casamino acids, 0.01% vitamins and supplements, nitrate salts solution and trace elements, pH 6.5, 1.8% agar was added for solid medium.) (Kafer 1977). Additional supplements were added depending on strains auxotrophic markers (i.e. pyridoxine HCl, p-aminobenzoate, riboflavin HCl, arginine and uridine and uracyl (Kaminskyj 2001). Strains were cultured at 30°C.

Gene targeting and tagging

Septin deletions with \textit{AfpyrG} and tagging with \textit{gfp} were constructed as described by Yang et al. (YANG \textit{et al.} 2004). We amplified around 2kb upstream and downstream of \textit{aspB} from \textit{A. nidulans} genomic DNA strain A850 (Table 2.1), and amplified the \textit{AfpyrG} marker from the plasmid pFNO3 as explained in the above reference and using primers listed in Table 2.2. AccuPrime Pfx DNA Polymerase was used to amplify and fuse DNA fragments with annealing temperatures as described by Szewczyk et al. (SZEWCZYK \textit{et al.} 2007). PCR products were separated on 1% agarose gel and purified using the QIA quick gel extraction kit (QIAGEN Inc., Valencia, CA). Typical \textit{Aspergillus nidulans} protoplast transformation was used in combination with strains and new techniques modified in the nonhomologous DNA repair pathway (Table 2.1) (SZEWCZYK \textit{et al.} 2007; YANG \textit{et al.} 2004; YELTON \textit{et al.} 1984). We verified that the native \textit{aspB} gene was tagged with C terminal \textit{gfp} at the native locus, driven by the native promoter by PCR and confirmed that only the single tagged copy of \textit{aspB} was present in the strain and that it
was integrated at the native \textit{aspB} locus by Southern Blot. Transformants were selected by auxotrophic markers of preference (considering future analysis and crosses) and verified by PCR (as described in Yang et al. \cite{Yang04} and confirmed by Southern Blot \cite{Brown01}). All PCRs and Southern Blot primers were designed to amplify or detect a product of different sizes for both positive and negative results, and the untagged wild type strain A850 was used as a control. Genetic crosses were used to recover \textit{nkuA} in strains of interest as previously described \cite{Harris01}; strains were crossed to wild type strains A773 and A850. Strains with preferred auxotrophic markers were selected and PCR verified for recovery of \textit{nkuA}. \textit{aspB/aspB-gfp} heterozygous diploids were constructed as previously described by Harris \cite{Harris01} using AYR6 (haploid \textit{aspB-gfp}) and wild type A850 as parents.

\textbf{Microscopy}

Culture preparation: Conidia were harvested from agar plates with sterile water. For fungal observation and characterization, 1×10^4 or 1×10^7 spores were grown in 10 ml of MM or CM liquid in a Petri dish containing a glass cover slip, and incubated at 30°C. To examine conidiophores, a flame-sterile coverslip was put over a water agar plate, followed by a block of MM or CM plus supplements. The block was inoculated with fungal spores in water and a flame-sterile coverslip was placed on top. Unsealed plates were incubated for 1, 2 and 3 days at 30°C. To stain cell wall and septa, we followed protocols previously published by Momany \cite{Momany01}. Calcoflour Blankophour BDH was used to stain septa and Hoechst 33342 (for dormant conidia) and Hoechst 33258 bis-benzimide were used to stain nuclei. Photoshop CS3 was used to combine DIC or light images with fluorescence images and for micrograph organization, improve contrast and brightness and/or Hue saturation coloration. Microsoft Excel was used to make graphs.
Fluorescence microscopy: For *in vivo* GFP observations strains were incubated as described above until the appropriate time point at 30°C, and coverslips with attached fungus were not fixed, but mounted in 8-10µls of liquid medium onto slides. Incubation time points for examining fungal development at 30°C were as follow: isotropic growth (4-5 hrs), germ tube emergence (6-7 hrs), hyphal elongation and septation (9-11hrs), branching (12-16hrs). Fungal hyphae were viewed using a Zeiss Axioplan microscope with a Plan –NEOFLUAR 100X/1.30 NA oil immersion objective lens, X-cite Fluorescence Illumination System (EXFO), and were digitally photographed using Zeiss Axiocam MRc CCD (charge-coupled device) camera and software.

Confocal microscopy: Strains were prepared as for fluorescence microscopy. A Leica SP2 Spectral Confocal Scanning Laser Microscope was used with the 63X HCX PL APO 1.20 W CORR water immersion objective lens. The Ar/HeNe laser was used for GFP excitation with a wavelength of 488nm (20%) and filter RT 30/70. Images were acquired with the AxioCam CCD (Zeiss) camera and the Leica Confocal LCS Lite software. Image collection and Z-stacks were calculated by the software based on the observed fluorescence of each sample and consequently the amount Z-stack sections varied for each samples and the program adjusted X/Y settings to avoid distortion of the data. Beam expander was set to 3 and scanning setting was 1024 x 1024. Reference images were taken with white light microscopy not DIC. Line and frame average varied on the GFP background, but in general we used a line average of 1-4 and a frame average 2-6, and Q-Lut was used as a reference to avoid collection of saturated pixels. Maximum Projection was used in the LS software to combine Z-stack images and brightness and contrast were adjusted to enhance image presentation.
Time lapse microscopy: For *in vivo* gfp examination, strains were prepared as described above, but a Gene Frame® (Thermo Scientific) adhesive was used prior to mounting. This adhesive was mounted onto slides making a small well to which 100µls of MM liquid medium were added, and coverslips with adhering fungus were floated on top. An Olympus IX-71 inverted fluorescence microscope with the Olympus 100X/1.35 NA U Plan Apo objective lens was used and a mercury light source. Images were acquired with the Photometrix Cool Snap HQ CCD camera and the Delta Vision Experiment Designer software was used to collect time lapse data and movies. Time lapse was set for collection of GFP and DIC simultaneously with a time frame of 5 sec, but due to the exposure and dual image collection time lapse in between frames varied from 5-10 seconds. We used flat-field calibration and when focus was lost it was adjusted manually. Data was analyzed using DIC movies as reference and movies were edited with Windows Movie Maker to show data from the same focal plane.

Results

aspB is nonessential, but required for normal growth and morphology

The *Aspergillus nidulans aspB* septin was previously reported to be essential (MOMANY and HAMER 1996). To further characterize septins in *A. nidulans*, we used improved gene targeting techniques using fusion PCR and Δ*nkuA* strains with reduced nonhomologous recombination (YANG et al. 2004) to create strains in which septin genes *aspA, aspC*, *aspD* and *aspE* were replaced with *pyrG* from *A. fumigatus (AfpyrG)* (LINDSEY et al. 2010a). In order to verify that *aspB* was an essential gene, we included it in the analysis. Surprisingly, Δ*aspB::AfpyrG* transformants were recovered. We verified that the *aspB* gene was replaced with the *AfpyrG* marker by PCR and DNA hybridization (data not shown). We crossed the resulting
ΔaspB ΔnkuA strain to wild type, selected for ΔaspB nkuA+ progeny and verified them by PCR. All strains used in this study are described in Table 2.1.

We examined freshly harvested wild type and ΔaspB conidia by differential interference contrast microscopy (DIC) and scored relevant phenotypes. Freshly harvested wild type conidia were of uniform size measuring ~3µm (MIMS et al. 1988; TRINCI 1969). In contrast, ΔaspB conidia ranged from ~3 to ~5µm (data not shown). To determine whether conidial size might be related to nuclear number, we used Hoechst 33342 to stain nuclei of dormant conidia. As expected, wild type (wt) conida were all uninucleate (n=200) (ROSENBERGER and KESSEL 1967). However, ΔaspB conidia were both uninucleate (61%) and binucleate (39%), and the binucleate conidia were generally larger (n=200) (Figure 2.1A). Binucleate conidia were also observed in ΔaspA (30%) and ΔaspC (38%) (Supplemental Figure 2.1). In wild type, nuclei are uniformly distributed along the hypha (XIANG and FISCHER 2004). In ΔaspB hyphae, nuclei appeared smaller and clumped relative to wild type (Figure 2.3).

In S. cerevisiae, septins are important in determining when and where buds will emerge (CARROLL et al. 1998; CID et al. 2001; FORD and PRINGLE 1991; HAARER and PRINGLE 1987; KIM 1991; MINO et al. 1998). To determine whether aspB affects when and where germ tubes will emerge, we compared wild type and ΔaspB after incubation at 30°C. After 4hrs of incubation at 30°C, wt cells were not yet polar (0%, n=300) while in ΔaspB cells polarization was visible in 20% of cells (n=300) (Figure 2.1B). After 6hrs of incubation, few wild type cells formed more than 1 germ tube (10%, n=200) while many more ΔaspB cells formed more than 1 germ tube per cell (34%) (Figure 2.1C and Figure 2.2A).

In S. cerevisiae septins are required for septation (HARTWELL 1971a; LONGTINE et al. 1996). To determine whether aspB is necessary for septation, we compared wild type and ΔaspB
strains after 11-14 hrs of incubation at 30°C. In *A. nidulans*, compartmentalization of growth by septation gives rise to an actively growing tip compartment and inactive subapical compartments that later initiate polar growth by forming one branch per compartment (DyneSEN and Nielsen 2003; Fiddy and Trinci 1976). At 11hrs most wild type hyphae had 1-2 septa (71 %, n=200) while a minority of ΔaspB germlings had septa (12%) (Figure 2.1D). However, when ΔaspB cells were examined at 14hrs, virtually all had formed septa indicating that septation was delayed, but not absent in ΔaspB. Septa in ΔaspB strains appeared to be morphologically normal by DIC microscopy, but Calcofluor staining of chitin faded much more quickly under UV light in ΔaspB cells compared to wild type (data not shown) suggesting that there might be abnormalities in septum organization.

As expected, in wild type, branches were fairly uniform tubes of 5µm in diameter with a single branch formed in most compartments (69%, n=200). In the ΔaspB strain, branches were often stunted, thin (2-2.5 µm in diameter) and hooked (67%) with 2 or more branches per compartment (13%) (Figure 2.1E and Figure 2.2B). To determine if these abnormal branches might be branch initials which later elongated into normal branches, we observed ΔaspB after 16-18 hours of incubation at 30°C. Even at this later time point branches remained thin, short and hooked indicating they were abortive branch initials (data not shown).

A. nidulans produces asexual spores (conidia) on specialized structures (conidiophores) in a process that has been compared to *S. cerevisiae* budding (Mims et al. 1988). During conidiophore development, a specialized foot cell is delineated by septa, an aerial hypha emerges from the foot cell, the tip of the aerial hypha swells to form a vesicle from which two specialized layers bud: metulae and phialides. Conidia bud from phialides forming a conidial chain that can be many units long (Mims et al. 1988). When isolating ΔaspB, we observed very poor
Conidiation. To determine whether *aspB* plays a role in asexual reproduction, we examined conidiophore development. As expected, after 2 days of incubation wild type conidiophores were morphologically normal with discrete, organized layers (97%, n=200). In contrast, conidiophores in the Δ*aspB* strain were morphologically abnormal with disorganized layers (100%, n=200) that formed many fewer conidia, with only 1-2 conidia visible on most phialides (Figure 2.1F and Figure 2.2C).

AspB forms bars and filaments throughout vegetative growth and conidiophore production

Using polyclonal antibodies, we previously reported AspB localization to forming septa, branches and conidiophore layers in *A. nidulans* (Westfall and Momany 2002). Immunofluorescence of cytoplasmic proteins in fungi requires fixation and digestion of the fungal cell wall in order for the antibodies to reach their target epitopes. To characterize AspB localization in live cells we used fusion PCR in a Δ*nkuA* strain as previously described to construct a strain carrying a single copy of *aspB-gfp*, replacing the native *aspB* gene (Lindsey et al. 2010a; Yang et al. 2004). To ensure that localization was not affected by deletion of *nkuA*, we crossed *aspB-gfp ΔnkuA* to wild type, selected for *aspB-gfp nkuA*⁺ progeny and verified them by PCR. Because diploid cells are larger and better for microscopy, and to further reduce the concentration of GFP- tagged AspB in the cell, we constructed a heterozygous diploid strain carrying a single copy of wild type *aspB* and a single copy of *aspB-gfp* (Harris 2001). In the haploid *aspB-gfp* and heterozygous diploid *aspB-gfp/aspB* strain, conidial nuclear number, polarity establishment, germ tube emergence, septation, branching and conidiophore formation were nearly identical to wild type, showing that the GFP tag does not interfere with normal function (Figure 2.1, A-F).
We visualized AspB-GFP localization in live cells throughout development using fluorescence microscopy. In freshly harvested conidia AspB-GFP localized as rings, dots and ~1µm thick bars of variable lengths (Figure 2.4A). As the spores began to swell, we also observed AspB-GFP localized as small X-shaped structures (Figure 2.4B inset). AspB-GFP localized as a cap in emerging germ tubes and as a collar at the base of germ tubes (Figure 2.4B). Bars were also seen in newly formed germ tubes (Figure 2.4B). As germ tubes continued to extend AspB-GFP filaments which appeared thinner and longer than bars were also observed (Figure 2.4C-H). In older hyphae, tip localization was mostly as filaments and subapical localization was mostly as bars (Figure 2.4F-G). AspB-GFP localized as a ring at septa as previously shown by immunofluorescence (Figure 2.4H) (WESTFALL and MOMANY 2002). During branch emergence AspB-GFP localized as filaments perpendicular to and just below the nascent branches of less than 2.5µm in length (Figure 2.4I and 2.4K). As branches extended to ~3µm in length, the perpendicular filaments disappeared and AspB-GFP filaments were seen within branches (Figure 2.4M-N, 2.4P, 2.4R). In newly formed branches AspB-GFP localized as a cap (Figure 2.4J, 2.4L, 2.4M, 2.4O, 2.4Q and 2.4T) or single bright dot at branch tips (Figure 2.4L). AspB-GFP bars and/or filaments were also seen in mature branches. A low level of cytoplasmic AspB-GFP was also seen in all developmental stages. This cytoplasmic signal was excluded from nuclei and the extreme apices (~0.5µm) of hyphae and branches.

During conidiogenesis, we observed AspB-GFP localization to several conidiophore layers by confocal microscopy (Figure 2.5). Figure 2.5A shows a single hypha with several intermediates in conidiophore development. AspB bars and filaments were observed in the main hypha and in foot cells at the base of the aerial hypha. In aerial hyphae with developing vesicles at the tips AspB-GFP localized as a cap. In swollen vesicles AspB-GFP localized as a diffuse
cap. In budding layers AspB-GFP localized as rings at the base of emerging layers and disappeared once the layer was complete (Figure 2.5B). AspB-GFP remained localized to the phialide-conidium interface where there is constant nuclear division as conidia are continuously made (reviewed by (TIMBERLAKE 1990)). AspB-GFP bars were observed in conidia both on the conidial chain and free (Figure 2.5C-D). In free conidia, the ends of some AspB-GFP bars appeared to be frayed, giving the impression of unraveling (Figure 2.5D).

AspB-GFP bars and filaments show dynamic movement

Septins have been reported to be dynamic, changing conformational arrangements, with subunits being recycled from one structure to another through development (CID et al. 2001; GLADFELTER et al. 2001b; KINOSHITA 2006; LONGTINE and Bi 2003). To determine whether AspB-GFP bars show dynamic movement in *A. nidulans*, we used time lapse fluorescence microscopy. During isotropic growth and early germ tube emergence, AspB-GFP bars moved freely throughout the conidium and/or bounced back and forth from the tip of germ tubes. In addition, many bars seemed to have one end anchored in the region of the membrane, while the other end moved in and out of the plane of focus. For example, Figure 2.6A shows a bar that appeared to have one end anchored and one end oscillating back and forth (Figure 2.6A, time frames 2-7). Eventually, both ends began to move freely followed by an apparent break into two pieces that moved independently in and out of the plane of focus (Figure 2.6A, time frames 10-27). In contrast to the rapid large scale movements of AspB bars in cells with young germ tubes, AspB filaments in longer hyphae showed more restricted movement. Figure 2.6B shows the slower gradual movement in and out of the plane of focus of a long filament that extends through the hypha into the branch tip (Figure 2.6B).
AspB rings, bars and filaments are lost in the absence of other septins

We recently showed that in *Aspergillus nidulans* septins AspA and AspC interact as AspA-GFP forms abnormal structures in ΔaspC strains, while AspC-GFP does not localize in ΔaspA strains (LINDSEY et al. 2010a). To determine whether AspB interacts with other septins we crossed the *aspB-gfp* strain to ΔaspA, ΔaspC, ΔaspA ΔaspC, ΔaspD and ΔaspE strains and selected progeny carrying *aspB-gfp* and the appropriate septin deletion. Progeny were checked by PCR to verify the *aspB-gfp* cassette was present and the appropriate septin was deleted. Strains were characterized throughout vegetative growth and asexual reproduction. AspB-GFP rings, bars and filaments were lost in all stages of development and reproduction in ΔaspA, ΔaspC and ΔaspA ΔaspC strains with only cytoplasmic localization in 100% of the population (Figure 2.7IB-II, Figure 2.8B, and data not shown). In the ΔaspD strain AspB-GFP bars were present only half as often as in wild type, while filaments were only slightly reduced (Figure 2.7IC-II). AspB-GFP localization to septa and conidiophores seemed normal in ΔaspD (Figure 2.7IC and Figure 2.8C). Interestingly, AspB-GFP bars, rings and filaments were present through early germ tube emergence of ΔaspE, but localization was mostly as dots and/or X’s in older hyphae (Figure 2.7ID-II). AspB-GFP localization to septa and conidiophores appeared to be normal in ΔaspE (Figure 2.7ID and Figure 2.8D).

Discussion

aspB affects the emergence of new growth foci

Septins display a variety of functions and their essentiality varies (CAO et al. 2009; GILDEN and KRUMMEL 2010; GLADFELTER 2010; OH and Bi 2011). *Aspergillus nidulans* has 5 septins (AspA-E) and we have previously shown that septins *aspA* and *aspC* are not essential (LINDSEY et al. 2010a). We also previously reported that *aspB* was essential (MOMANY and HAMER 1996),
but using new gene deletion techniques we isolated viable ΔaspB mutants. A possible reason that ΔaspB was not recovered from our initial screen is that our strategy for isolation depended on conidiating colony sectors and, as we show here, ΔaspB strains make few conidia.

In S. cerevisiae, septins are required for proper bud emergence and morphology and septin mutants fail to complete cytokinesis (Hartwell et al. 1974). In A. nidulans, cells do not separate at cytokinesis, but septa partition the organism into unique compartments and septation is coordinated with nuclear division (Clutterbuck 1970; Harris et al. 1994; Momany and Hamer 1997a; Wolkow et al. 1996). Septation gives rise to actively growing tips and non-growing subapical compartments. These compartments remain arrested in interphase until branch initiation (DyneSEN and Nielsen 2003; Fiddy and Trinci 1976). Surprisingly, ΔaspB did not abolish septation but delayed it. Therefore, AspB might play a role in septation timing rather than septum formation. The more rapid loss of Calcoflour label in ΔaspB septa versus wild type septa suggests that AspB might be important for septum organization, though careful ultrastructural studies will be needed to clarify this point.

In S. cerevisiae, septins have been shown to be regulated by the cell cycle (Gladfelter et al. 2005b; Lew 2003). In addition, septin interactions with microtubules and kinetochore proteins in mammals suggest roles in nuclear division (Spiliotis and Nelson 2006; Surka et al. 2002). In S. cerevisiae septin mutants continue nuclear division forming multinucleated buds. Interestingly, ΔaspA, ΔaspB and ΔaspC showed both normal uninucleate conidia and abnormal binucleate conidia (Figure 2.1 and Supp. Figure 2.1), suggesting that loss of these septins might cause defects in nuclear division and/or migration at the conidium-phialide interface. In addition, ΔaspB and ΔaspC might also cause defects in nuclear migration in hyphae as clustered nuclei
were sometimes observed at later stages of growth (Figure 2.3 and Supp. Figure 2.1) (Spiliotis et al. 2005; Xiang et al. 1994).

In *S. cerevisiae*, septin mutations result in an aberrant bud emergence pattern and chains of elongated buds, but multiple buds do not emerge simultaneously (Gladfelter et al. 2005b; Hartwell 1971a). Upon deletion of *aspB* in *A. nidulans*, we observed the emergence of extra growth foci in the form of germ tubes and branches suggesting a role in selecting new growth sites similar to septin involvement in bud site selection in *S. cerevisiae* (Figures 2.1 and 2.2) (Gladfelter et al. 2005a). However since yeast septin mutants don’t display the simultaneous emergence of multiple buds, AspB appears to have a role in suppressing new growth foci not seen in *S. cerevisiae*. Alternatively, AspB may be involved in selecting the emergence of a single growth zone and/or might work with the polarity machinery to control growth emergence.

AspB forms bars and filaments throughout vegetative growth and sporulation

Septins in vegetatively growing fungi have been shown to mainly form dots, rings, collars or caps. More recently septin bars and filaments that resemble animal septins have been reported in limited developmental stages of some fungi (Demay et al. 2009; Gladfelter 2010; Juvvadi et al. 2011; Kozubowski and Heitman 2009; Lindsey et al. 2010a; Lindsey et al. 2010c; Martin et al. 2005; Pablo-Hernando et al. 2008). Here we report that the *A. nidulans* AspB septin localizes as rings, bars and filaments throughout vegetative growth.

Septins in a variety of systems have been shown to be dynamic (Cid et al. 2001; Gladfelter et al. 2001b; Kinoshita 2006; Longtine and Bi 2003). In *S. cerevisiae*, septins at the mother bud neck change conformation throughout budding, shifting from a ring to a collar and then dividing at cytokinesis (Cid et al. 2001; Gladfelter et al. 2001b; Kinoshita 2006; Longtine and Bi 2003). In this study we observed that *A. nidulans* new growth emerged through
AspB collars during the formation of germ tubes, branches and conidiophore layers, processes that are morphologically quite similar to budding in yeast. An AspB ring that divided into two rings was seen at forming septa, a process that is morphologically similar to cytokinesis in yeast.

In addition to the yeast-like collars and rings, we also observed AspB rods and filaments, structures that are much more like septins in animal cells. In freshly harvested dormant conidia of *A. nidulans* we observed AspB bars mostly in the center of the cell and/or near the cell periphery. The presence of this bar in dormant spores shows that the septin filament is assembled before breaking of dormancy and growth initiation. The deletion of *aspB* resulted in the emergence of multiple germ tubes suggesting that in wildtype conidia, the AspB bar might suppress the emergence of extra growth foci.

In *A. nidulans*, as germ tubes emerged and hyphal tips elongated, AspB localized as caps to polar tips and formed thick bars and thinner filaments within the hyphae. Bars showed rapid oscillating movements and filaments showed slow waving movements. AspB bars and filaments were frequently found in the same compartment before septation, and occasionally before branch initiation and in mature branches. Interestingly, in older hyphae AspB bars mainly remained in quiescent subapical regions while AspB filaments were observed in actively growing areas including branching compartments and emerging branches. We only rarely observed bars and filaments within the same compartment of older hyphae. Similarly during conidiophore formation, AspB bars were only seen in the quiescent regions where layers were not actively budding. The presence of septin bars in dormant conidia and quiescent regions of hyphae and conidiophores is consistent with bars playing a role in suppressing emergence of new growth foci.
AspB interacts with AspA and AspC throughout vegetative growth and sporulation and with AspE in extending hyphae

Septins have been shown to interact and colocalize forming complexes and heteropolymers that regulate different aspects of cell dynamics, which can be abolished or perturbed in the absence of one or more of the septin members (CAO et al. 2009; LONGTINE et al. 1996; McMURRAY et al. 2011). Generally, septin-septin interactions are key for function and septin heteroligomers are seen in all models studied to date (CAO et al. 2009; KREMER 2008; McMURRAY 2008). AspB rings, bars and filaments were lost in the absence of AspA or AspC suggesting that these three septins interact in a variety of septin morphologies. In contrast, AspB localization was only slightly affected by the loss of AspD, suggesting that either AspD does not interact directly with AspB or that, if these interactions exist, they are not necessary for the formation of rings, bars and filaments. In the absence of AspE, AspB localization was similar to wild type in dormant conidia, early germ tubes and conidiophores. Interestingly in elongating hyphae, AspB bars and filaments were lost suggesting that AspE might maintain septin bar and filament stability in highly polar cells (PAN et al. 2007a). This is especially interesting because AspE belongs to a septin family found exclusively in fungi that grow by highly polar tip extension, the filamentous fungi.

Acknowledgments

This work was supported by the UGA Graduate Recruitment Opportunity Fellowship (GRO), Robert Watkins American Society of Microbiology Fellowship, Plant Biology Palfrey Grant, and Dissertation Completion Grant from the University of Georgia to Yainitza Rodriguez; by the NSF grant MCB 0211787 to Michelle Momany and the Office of the Vice President for
Research at the University of Georgia. We thank Rebecca Lindsey for the construction of the \textit{aspB::aspB-gfp} and \textit{aspB::AfpyrG} strains.

Tables and Figures

Table 2.1: Strains and plasmids used

<table>
<thead>
<tr>
<th>Strain/plasmid</th>
<th>Genotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pFNO3</td>
<td>ga5-gfp, AfpyrG, kan</td>
<td>(YANG et al. 2004)</td>
</tr>
<tr>
<td>A1145 (TN02A7)</td>
<td>pyrG89; pyroA4; nkuA::argB; riboB2</td>
<td>(YANG et al. 2004)</td>
</tr>
<tr>
<td>A1147 (TN02A25)</td>
<td>pyrG89; argB2; pabaB22; nku::argB; riboB2</td>
<td>(YANG et al. 2004)</td>
</tr>
<tr>
<td>A850</td>
<td>biA1; argB::trpC_B; methG1; veA1; trpC801</td>
<td>FGSC</td>
</tr>
<tr>
<td>A773</td>
<td>pyrG89; wa3; pyroA4</td>
<td>FGSC</td>
</tr>
<tr>
<td>ARL115</td>
<td>pyrG89, aspB::aspB-gfp- AfpyrG; argB2; pabaB22; nku::argB; riboB2</td>
<td>This study</td>
</tr>
<tr>
<td>ARL144</td>
<td>pyrG89, aspB::AfpyrG; pyroA4; nkuA::argB; riboB2</td>
<td>This study</td>
</tr>
<tr>
<td>ARL157</td>
<td>aspC::AfpyrG; pyrG89; pyroA4</td>
<td>(LINDSEY et al. 2010b)</td>
</tr>
<tr>
<td>ARL162</td>
<td>aspC::AfpyrG; aspA::argB; pyrG89; pyroA4; biA1; argB::trpC_B; veA1; trpC801</td>
<td>(LINDSEY et al. 2010b)</td>
</tr>
<tr>
<td>AYR1</td>
<td>pyrG89, aspB::AfpyrG; pyroA4; riboB2</td>
<td>This study</td>
</tr>
<tr>
<td>AYR6</td>
<td>pyrG89, aspB::aspB-gfp-AfpyrG; argB2</td>
<td>This study</td>
</tr>
<tr>
<td>AYR10</td>
<td>aspB::aspB-gfp-AfpyrG</td>
<td>This study</td>
</tr>
<tr>
<td>AYR20</td>
<td>aspB::aspB-gfp-AfpyrG; aspA::argB2</td>
<td>This study</td>
</tr>
<tr>
<td>AYR21</td>
<td>aspB::aspB-gfp-AfpyrG; aspA::argB2</td>
<td>This study</td>
</tr>
<tr>
<td>AYR22</td>
<td>aspB::aspB-gfp-AfpyrG; aspA::argB2</td>
<td>This study</td>
</tr>
<tr>
<td>AYR23</td>
<td>aspB::aspB-gfp-AfpyrG; aspC::AfpyrG</td>
<td>This study</td>
</tr>
<tr>
<td>AYR24</td>
<td>aspB::aspB-gfp-AfpyrG; aspC::AfpyrG</td>
<td>This study</td>
</tr>
<tr>
<td>AYR25</td>
<td>aspB::aspB-gfp-AfpyrG; aspC::AfpyrG; aspA::argB2</td>
<td>This study</td>
</tr>
<tr>
<td>AYR26</td>
<td>aspB::aspB-gfp-AfpyrG; aspE::AfpyrG</td>
<td>This study</td>
</tr>
<tr>
<td>AYR27</td>
<td>aspB::aspB-gfp-AfpyrG; aspE::AfpyrG</td>
<td>This study</td>
</tr>
<tr>
<td>AYR32</td>
<td>aspB::AfpyrG; pyroA4; argB2</td>
<td>This study</td>
</tr>
<tr>
<td>AYR35</td>
<td>aspB::aspB-gfp-AfpyrG; pyroA4</td>
<td>This study</td>
</tr>
<tr>
<td>AYR45</td>
<td>aspB::aspB-gfp-AfpyrG; nkuA::argB; aspD::Afpyr</td>
<td>This study</td>
</tr>
<tr>
<td>AYR50</td>
<td>An-H1-chRFP::pyroA4; aspB::aspB-gfp-AfpyrG</td>
<td>This study</td>
</tr>
<tr>
<td>AYR64</td>
<td>aspB::aspB-gfp-AfpyrG; pyroA4; aspD::pyrGAf</td>
<td>This study</td>
</tr>
<tr>
<td>AYR65</td>
<td>aspB::aspB-gfp-AfpyrG; pyroA4; aspD::pyrGAf</td>
<td>This study</td>
</tr>
<tr>
<td>ASH26</td>
<td>aspA::argB2, pyrG89, wa3; argB::trpC_B methG1, pyroA4</td>
<td>(LINDSEY et al. 2010b)</td>
</tr>
<tr>
<td>ASH41</td>
<td>aspE::AfpyrG; riboB2</td>
<td>This study</td>
</tr>
</tbody>
</table>

\(^a^\) The symbol \(\backslash\) indicates haploids fused to make diploid strain.
Table 2.2: Primers for constructing \textit{aspB-gfp} and \textit{AspB}

<table>
<thead>
<tr>
<th>Primers for GFP Tag</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AspB-GSP1</td>
<td>CAGAAGGTGCAACCTGTTTCAAGGGAACTTAC</td>
</tr>
<tr>
<td>AspB-GSP2</td>
<td>ACGAAGAGAATCCCTTCTTCTTCTTTCTTT</td>
</tr>
<tr>
<td>AspB-GFP1</td>
<td>GGAAAGAGGAAGGATTTCTCTCTCTTGGAGCTGGTGCAGGAGCCTG</td>
</tr>
<tr>
<td>AspB-GFP2</td>
<td>CGGGGTCTCCGACTAAGCTCTCTGTCTCTGAGAGGAGGACCTGATGCG</td>
</tr>
<tr>
<td>AspB-GSP3</td>
<td>ACAGAGCGCTTAGCTCGGAACCCCGACGGTC</td>
</tr>
<tr>
<td>AspB-GSP4</td>
<td>GATACTGAACGTCTCAGTCGGCCGCAAGC</td>
</tr>
<tr>
<td>AspB-SSP3</td>
<td>GCGTCGATGCTAAGAATTAGCTTCCC</td>
</tr>
<tr>
<td>AspB-SSP4</td>
<td>CGAGATCCATGCTAGCTAGTAGTAGTAC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primers for aspB deletion</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AspB-Up-F</td>
<td>CTGTTCAATTGGATACGTCCGAG</td>
</tr>
<tr>
<td>AspB-Up-R</td>
<td>GAAGATGGAGATCCGACGATGCTATAGG</td>
</tr>
<tr>
<td>AspB pyrG1</td>
<td>GCCTATACAGCTGACTCCATTTCTTCGCTCAAACATTGCTCTTCCTCCCTC</td>
</tr>
<tr>
<td>AspB pyrG2</td>
<td>GTGGAGAATCAACCGTGAAGTTCCTACAAATAAGTTGCTGAGAGGAGGCCTGATAGG</td>
</tr>
<tr>
<td>AspB-Down-F</td>
<td>CTCTACGTTTGATTCTCCACG</td>
</tr>
<tr>
<td>AspB-Down-R</td>
<td>CTACAGGATGACACCCCAGTCAG</td>
</tr>
<tr>
<td>AspBKOCk-up</td>
<td>GGTCTCCCTGGGTGTGACAGTACC</td>
</tr>
<tr>
<td>pyrgAFCcheck Rv</td>
<td>CAGAGCCHCAGAGGAGCCCTTGAAG</td>
</tr>
</tbody>
</table>
Figure 2.1. *aspB* is required for normal growth and morphology. (A) *ΔaspB* forms uninucleate and binucleate spores. Dormant spores from wt, *aspB-gfp* and *ΔaspB* were stained with Hoescht 33342 and the number of nuclei were counted. n=200. (B) *ΔaspB* breaks dormancy earlier than wild type. Spores were incubated for 4hrs at 30°C and categorized as dormant (~2.5µm), isotropic (~5µm) and polar (presence of a germ tube). n=200. (C) *ΔaspB* forms multiple germ tubes. Spores were incubated for 6hrs at 30°C and the number of germ tubes were counted. n=300. (D) *ΔaspB* delays septation. Spores were incubated for 11hrs at 30°C and the number of septa were counted. n=200. (E) *ΔaspB* hyperbranches. Spores were incubated for 14hrs at 30°C and the number of branches per compartment delineated by 2 septa were counted. n=200. (F) *ΔaspB* forms abnormal conidiophores. Spores were incubated in agar between coverslips for 2 days at 30°C. Conidiophores were categorized as normal if all layers were present and abnormal if layers were absent or aberrant. n=200.
Figure 2.2. Δ*aspB* shows hyperemergence of growth and abnormal conidiophores. (A) Δ*aspB* forms multiple germ tubes, while wild type forms 1 germ tube. (B) Δ*aspB* forms multiple abnormal and stunted branches per compartment, while wild type forms 1 branch per compartment. (C) Δ*aspB* forms disorganized conidiophores. Arrow denotes new aerial hypha arising from vesicle. Wild type forms many conidia and conidiophores are organized with different layers (V-vesicle, P-phialide, M-metulae, Cc-conidia chain). Conditions for growth as in Figure 2.1. Scale bar is 5μm.
Figure 2.3. ΔaspB shows clumped nuclei. (A) Wild type nuclei positioned along hyphae. (B) ΔaspB results in clumped nuclei, particularly near branches. (C) ΔaspB shows clumped nuclei: ΔaspB showed more nuclei in 15µm around the most basal branch than wild type. To delineate the area for nuclear counts, the most basal branch was identified, 7.5µm from the center of the branch to the left and right of the branch was measured (total area = 15µm). n=200. Spores were incubated for 14-16hrs at 30°C and nuclei were stained with Hoechst 33258. Scale bar 5µm.
ΔσρB shows clumped nuclei. ΔσρB showed more nuclei in 15μm around the most basal branch than wild type.
Figure 2.4. AspB forms bars and filaments. (A) AspB forms bars (*), rings (^) and dots (arrow head) in dormant and germinating spores. Inset shows enlarged view of a ring, scale bar is 0.5µm. (B-D) AspB forms “X’s” (#) in addition to bars, rings and dots as conidia swell. Inset shows enlarged view of an “X”, scale bar is 0.75µm. AspB forms caps and collars as the germtube emerges, bars that localize to conidia and filaments (arrows) that localize to tips. (E-G) AspB forms bars that localize subapically and filaments that localize to tips as the hypha extends. Cytoplasmic gfp fluorescence is excluded from nuclei (N). (H) AspB forms rings at septa. (I-R) AspB forms filaments in branching compartments, caps as the branch emerges and dots at the tip of branches. Filaments localize to newly formed branches. (S) Filaments and bars localize to longer branches. (T) Top view of a branch cap. Incubation time points for following AspB-GFP structures at 30°C were as follow: isotropic growth (4-5 hrs), germ tube emergence (6-7 hrs), hyphal elongation and septation (9-11hrs), branching (12-16hrs). Scale bar is 5µm.
Figure 2.5. AspB forms bars, filaments, caps and rings during conidiophore formation. (A) AspB-GFP localization at several stages of early conidiophore development. AspB-GFP forms bars (*) and filaments (arrow) in conidiophores stalks. AspB-GFP forms caps (C) in aerial hyphae. AspB-GFP caps are diffuse in swollen vesicles. AspB-GFP forms rings (◦) at the base of budding layers. (B) AspB-GFP remains localized at the phialide-conidium interface as conidia form. (C) Conidial chains attached to conidiophores show AspB-GFP localization as dots and bars. (D) AspB-GFP forms bars on conidia freshly detached from conidiophores. Some bars looked “frayed” (X) at the ends. Spores were incubated in agar between coverslips for 1, 2 and 3 days at 30°C. Confocal Microscopy was used. Scale bar is 5µm.
Figure 2.6. AspB bars and filaments move. (A) AspB-GFP bar (*) in a germinating conidium moves away from the cell periphery, oscillates in and out of the plane of focus and breaks in two. “Frayed” ends (X) can be observed. (B) AspB-GFP filaments (arrow) show slower movement than bars at hyphal tips. Cytoplasmic gfp fluorescence is excluded from nuclei. Filaments move near nuclei and tips. Time lapse fluorescence microscopy was used. Numbers represents time lapse frame. Frames are 5-10 seconds apart. Conditions for growth as in Figure 2.4. Scale bar is 5µm.
Figure 2.7. AspB structures are lost in the absence of AspA and AspC and filaments and bars are lost in hyphae in the absence of AspE. (I.) AspB-GFP structures in septin deletion backgrounds. (A) AspB-GFP structures: rings (^), dots (arrow head), bars (*) filaments (arrow) and at septa (S). (B) All AspB-GFP structures are lost in ΔaspA ΔaspC. (C) All AspB-GFP structures are found in ΔaspD strains. (D) All AspB-GFP structures are found in early ΔaspE, but was mostly as dots and/or “X’s” in hyphae. Conditions for growth as in Figure 2.4. (II.) AspB-GFP structures found in septin deletion backgrounds. Spores were incubated for 10hrs at 30°C and AspB structures were classified by filament, bar, spots (rings, dots, X’s) and cytoplasmic. n=100. In ΔaspA ΔaspC AspB-GFP was only found in the cytoplasm and structures as spots, bars and filaments were lost. In ΔaspD there was a slight reduction of AspB-GFP bars and filaments. In ΔaspE AspB-GFP was mostly localized to spots and the cytoplasm and very few bars and filaments were observed. Scale bar is 5µm.
I.

A. aspB-gfp

B. aspB-gfp ΔaspA ΔaspC

C. aspB-gfp ΔaspD

D. aspB-gfp ΔaspE

II.

AspB-GFP filament and bar localization is lost in the absence of AspA and AspC and is largely reduced in the absence of AspE.
Figure 2.8. AspB bars are lost in conidiophores in the absence of AspA and AspC. (A) AspB-GFP bars (*) in conidiophores. (B) AspB-GFP bars are lost in conidiophores in \(\Delta aspA \Delta aspC \). (C) AspB-GFP bars and dots (arrow head) in \(\Delta aspD \). (D) AspB-GFP bars and dots in \(\Delta aspE \). Conditions for growth as in Figure 2.5. Scale bar is 5\(\mu \)m.
Supplemental Figure 2.1. \(\Delta aspA \) and \(\Delta aspC \) show multinucleated conidia and nuclear abnormalities. (I.) \(\Delta aspA \) and \(\Delta aspC \) show multinucleated conidia. Dormant spores from wt, \(\Delta aspA \) and \(\Delta aspC \) where stained with Hoescht 33342 and the number of nuclei were counted. n=100. (II.) \(\Delta aspA \) and \(\Delta aspC \) show nuclear abnormalities. (A) Wild type nuclei positioned along hypha. (B) \(\Delta aspA \) nuclei show a “tail” (arrow). (C) \(\Delta aspC \) shows clumped nuclei. Spores were incubated for 14-16hrs at 30°C and nuclei were stained with Hoechst. Scale bar 5\(\mu \)m.
I. **Δmut-1 and Δmut-1C show multinucleated conidia**

II. A.
B.
C.
References

BÖHMER, C., C. RIPP and M. BÖLKER, 2009 The germinal centre kinase Don3 triggers the dynamic rearrangement of higher-order septin structures during cytokinesis in Ustilago maydis. Molecular microbiology 74: 1484-1496.

DE MAY, B., R. MESEROLL, P. OCCHIPINTI and A. GLADFELTER, 2009 Regulation of distinct septin rings in a single cell by Elm1p and Gin4p kinases. Molecular Biology of the Cell 20: 2311.

References:

Gladfelter, A., 2010 Guides to the final frontier of the cytoskeleton: septins in filamentous fungi. Current Opinion in Microbiology.

HARTWELL, L., J. CULOTTI, J. PRINGLE and B. REID, 1974 Genetic Control of the Cell Division Cycle in Yeast A model to account for the order of cell cycle events is deduced from the phenotypes of yeast mutants. Science 183: 46-51.

IHARA, M., A. KINOSHITA, S. YAMADA, H. TANAKA, A. TANIGAKI et al., 2005 Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa, pp. 343-352.

KWITNY, S., A. V. KLAUS and G. R. HUNNICUTT, 2010 The annulus of the mouse sperm tail is required to establish a membrane diffusion barrier that is engaged during the late steps of spermiogenesis. Biol Reprod 82: 669-678.

RUSSELL, S. E. H., and P. A. HALL, 2005 Do septins have a role in cancer?, pp. 499-503.

SZEWCYK, E., T. NAYAK, C. OAKLEY, H. EDGERTON, Y. XIONG et al., 2007 Fusion PCR and gene targeting in Aspergillus nidulans.

YELTON, M., J. HAMER and W. TIMBERLAKE, 1984 Transformation of Aspergillus nidulans by Using a
CHAPTER 3
INTERACTIONS OF THE \textit{ASPERGILLUS NIDULANS} SEPTIN ASPB WITH OTHER CYTOSKELETAL ELEMENTS1

1Hernández-Rodríguez, Y., Cowden, S., and Momany, M. 2011. To be submitted to Eukaryotic Cell.
Abstract

The cell cytoskeleton plays key roles in vesicle, protein and organelle trafficking as well as cell growth and morphology. The coordination of these roles and modifications to the cell cortex ensure normal growth emergence. Therefore, different cytoskeletons interact to regulate these processes. The polarity machinery travels along the actin and microtubule cytoskeletons by association with motor proteins to reach future growth addition sites. Nevertheless, how these cytoskeletal elements interact and relay proteins, vesicles, and organelles is not clearly understood. Septins have been shown to interact and organize both cytoskeletons and to play roles in cell morphogenesis, division, vesicle trafficking, and form diffusion barriers for growth. It has been suggested that septins might bridge interactions between the actin and the microtubule cytoskeleton. Still, septin interactions with actin and microtubules are not completely understood. Here we explored these connections by studying the septin AspB and its interaction with actin and microtubules in the filamentous fungus *Aspergillus nidulans*. We show that AspB partially colocalizes with microtubules and actin and that these cytoskeletal elements are necessary for normal AspB localization. To further assess interactions of actin and microtubules with AspB, we followed hyperemergence of growth phenotypes in ΔaspB in the absence of actin and microtubule filaments. We found that microtubules, but not actin, facilitate hypergrowth emergence in aspB deletion mutants. In addition we showed that the tropomyosin TpmA (which blocks access of myosin to actin filaments) is not localized to actin filaments in ΔaspB and this mutant displays polarity defects during branch emergence in the absence of actin. Finally we showed that AspB colocalizes with endocytic vesicles (AbpA) and that the endocytic zone is of abnormal size and abnormally positioned in ΔaspB. Therefore our studies in *Aspergillus nidulans* suggest that the AspB septin might help stabilize polarity axes by
interacting and/or organizing actin, microtubules and endocytosis, and for that reason actin, microtubules and septins might interact to ensure normal polar growth.

Introduction

Septin heteropolymers form scaffolds that recruit proteins involved in many cellular processes and form diffusion barriers that compartmentalize cells to ensure proper cell division and growth. Septin studies have focused for many years on its role in cytokinesis, however more evidence accumulates that the different septin morphologies, and their interactions within a cell, dictate their vast variety of roles. As cytoskeletal elements, they are involved in cell morphology in fungal and animal cells. Studies in yeast have shown that septin defects arrest growth, can cause mislocalization of cortical markers, affect morphology, cytokinesis and can result in chains of cells (Gladfelter 2010; GlADFelter et al. 2001; GlADFelter 2006; GlADFelter et al. 2005; Oh and Bi 2011). More recently, filamentous fungi lacking individual septins have been shown to display abnormal morphology and growth emergence (Alvarez-Tabares and Perez-Martín 2010; Lindsey et al. 2010a; Oh and Bi 2011). In animal cells, septins have been shown to also affect growth and morphology as defective expression of septins affected dendrite morphology and promoted actin-containing protrusions (Oh and Bi 2011; Tada et al. 2007; Xie et al. 2007).

In mammalian cells, septin filaments localize to membranes and to actin and microtubules in the cytoplasm (Kinoshita 2006; Spiliotis and Nelson 2006; Versele and Thorner 2005). Septins can form scaffolds and diffusion barriers, and organize the cytoskeleton to allow morphogenesis and cell division (Oh and Bi 2011). Studies of septin associations and interactions with other cell cytoskeletons are still ongoing. Actin, and some actin binding proteins, interact with septins and show codependence in vivo and in vitro, still their exact
interaction is not completely clear (KINOSHITA 2003; KINOSHITA 2006; KINOSHITA et al. 2002; KINOSHITA et al. 1997). Microtubule interactions with septins are less understood, but recent studies point to septins organizing microtubules and controlling associations with modifying enzymes, microtubule binding proteins and motors (SPILIOTIS et al. 2008; SPILIOTIS and NELSON 2006; SPILIOTIS 2010). Therefore, septins might regulate microtubule dependent trafficking and growth.

For growth emergence, cells need to find mechanisms to overcome the stability of the cell cortex. Modifications of cortex rigidity can be accomplished by rearranging lipids within the membrane and binding actin, as well as lipid and actin associated proteins. Septins have been implicated in affecting the stability of the cortex, and consequently control growth emergence (Gilden and Krummel 2010). For these roles, septins have been shown to associate to membranes through lipids or associated proteins (BERTIN et al. 2008; BERTIN et al. 2010; McMURRAY et al. 2011; TANAKA-TAKIGUCHI et al. 2009). For instance, SEPT5 in mammals localizes to membranes and negatively regulates vesicle docking which blocks growth emergence (AMIN et al. 2008; BEITES et al. 2005). Also, septin contacts with lipids can provide a network for actin-cortex interactions (GILDEN and KRUMMEL 2010; TANAKA-TAKIGUCHI et al. 2009). In mammals, septin interaction with myosin II has been suggested to also negatively regulate growth emergence (JOO et al. 2007). On the other hand, septin interactions with microtubules seem to allow growth emergence as SEPT2 in mammals promotes transport along microtubules and therefore polar growth (SPILIOTIS et al. 2008a; SPILIOTIS 2010b).

The actin and microtubule cytoskeletons have been extensively studied for their roles as tracks for vesicle trafficking, which is key for hyphal growth. Still, polar growth requires many machineries to work in unison to achieve this goal (LICHIUS et al. 2011). Rapid hyphal growth
requires microtubules and actin patches concentrating at the tip apex and endocytosis, as endocytic mutants can be lethal. In *A. nidulans* microtubules are necessary for rapid hyphal extension, endocytosis is coupled with actin patches at tips and the endocytic protein SlaB is essential (ARAUJO-BAZAN *et al.* 2008; HERVAS-AGUILAR and PENALVA 2010; HORIO and OAKLEY 2005; PENALVA 2010).

The septins, as a more recently discovered cytoskeletal element, have been shown to be important for many cellular roles and it is becoming evident that their interactions with actin and microtubules somehow dictate growth and morphology (LICHIUS *et al.* 2011). It seems that actin, microtubules and septin polymers roles integrate to allow for targeted secretion and trafficking for hyphal growth and morphogenesis (LICHIUS *et al.* 2011). The next step is to understand how all these cytoskeletons communicate. It has been suggested that septins might bridge interactions between actin and microtubules and work as diffusion barriers to ensure that polarity markers, as well as processes that ensure growth, such as endocytosis, remain polarized and localized to areas of new growth (GILDEN and KRUMMEL 2010; LICHIUS *et al.* 2011; SPILIOTIS 2010a). Here we explored this possibility by studying the septin AspB and its interaction with actin, microtubules and endocytic markers in the filamentous fungus *Aspergillus nidulans*. We show that AspB partially colocalizes with microtubules and actin, and that microtubules, but not actin, facilitate hypergrowth emergence in *aspB* deletion mutants. In addition we show that the tropomyosin TpmA (which blocks access of myosin to actin filaments) is not localized to actin filaments in Δ*aspB*. Interestingly, polarity defects are observed in *aspB* deletion mutants in the absence of actin during branch emergence. We also show that AspB localization is abnormal in the absence of actin or microtubule polymers. Finally we show that AspB colocalizes with actin decorated endocytic vesicles (AbpA) and that the endocytic zone is of abnormal size and
abnormally positioned in ΔaspB. Therefore our studies suggest that the septin AspB might help organize and/or stabilize actin and microtubules and endocytosis to ensure normal polar growth.

Materials and Methods

Strains and growth conditions

Experiments were carried out using A. nidulans strains presented in Table 3.1. Some of these strains have been previously used for other studies, donated by other labs or obtained by genetic crosses. Progeny from crosses were selected by auxotrophic markers of preference (considering future analysis and crosses) and verified by PCR as described in Yang et al. (Yang et al. 2004).

Fungal cultures for microscopy, crosses, DNA isolation and strain purification studies were grown in minimal medium (MM) (1% glucose, nitrate salts, biotin, trace elements and 1% thiamine, pH 6.5) or in complete medium (CM) (1% glucose, 2% peptone, 1% yeast extract, 1% casamino acids, 0.01% vitamins and supplements, nitrate salts solution and trace elements, pH 6.5, 1.8% agar was added for solid medium.) (Kafer 1977). Additional supplements were added depending on strains’ auxotrophic markers (i.e. pyridoxine HCl, p-aminobenzoate, riboflavin HCl, arginine and uridine and uracyl (Kaminskyj 2001). Strains were cultured at 30°C.

Microscopy

Culture preparation: Conidia were harvested from agar plates with sterile water. For fungal observation and characterization, 1 x 10^4 or 1 x 10^8 spores were grown in 5 or 10mls of MM or CM liquid in a petri dish containing a glass cover slip, and incubated at 30°C. To stain cell wall and septa, we followed previously published protocols (Momany 2001). Calcofluor Blankophour BDH was used to stain septa and Hoechst 33342 (for dormant conidia) and Hoechst 33258 bis-benzimide were used to stain nuclei. Samples were viewed using a Zeiss Axioplan
microscope with a Plan –NEOFLUAR 100X/1.30 NA oil immersion objective lens, X-cite Fluorescence Illumination System (EXFO), and were digitally photographed using a Zeiss Axiocam MRc CCD (charge-coupled device) camera and software. Photoshop CS3 was used to combine DIC or light images with fluorescence images and for micrograph organization, improve contrast and brightness and/or Hue saturation coloration. Microsoft Excel was used to make graphs and calculate statistics from biological replicates.

Fluorescence microscopy: For in vivo fluorescence observations, strains were incubated as described above until the appropriate time point at 30°C, and coverslips with attached fungus were not fixed, but mounted in 8-10µls of liquid medium onto slides. Incubation time points for examining fungal development at 30°C were as follow: isotropic growth (4-5 hrs), germ tube emergence (6-7 hrs), hyphal elongation and septation (9-11hrs), branching (12-16hrs).

Immunofluorescence microscopy: Strains were grown as described above. Coverslips with attached fungus were fixed for 30 minutes in 200mM PIPES, 500mM EGTA, 1M MgSO4, DMSO and 37% Formaldehyde (50ml 200mM PIPES pH 6.7, 10ml 500mM EGTA pH 8.5, 1ml 1M MgSO4, 10 ml DMSO, 20ml 37% Formaldehyde and 9ml ddH2O), followed by three 10 minute washes with PBS. Coverslips were then transferred to 100µl of the digestive solution on parafilm in a humid chamber for 1hr at room temperature (1.5ml = 0.013g Drisilase, 0.096g Gluconex, 1.5µl Zymolase, 750µl Egg White, 50mM Sodium Citrate until 1.5ml); followed by three 10 minute washes with PBS. Coverslips were then incubated with pre-chilled methanol for 10 minutes at -20°C; followed by two 10 minute washes with PBS. Coverslips were transferred to a blocking solution for 15 minutes (TBST + 5% skim milk), and then washed twice with TBST for 5 minutes. Coverslips were incubated on 100µl of the primary antibody (1:500 TBST) on parafilm in a humid chamber for 1 hour at room temperature (or at 4°C overnight); followed
by four 10 minute washes with TBST. Primary antibodies used: monoclonal mouse anti α-Tubulin clone DM1A (Sigma T-9026), monoclonal mouse anti α-Tubulin Tyrosine (TuB-1A2) (Sigma T9028), monoclonal mouse anti α-actin N350 (Amershan). Coverslips were then incubated on 100µl of the secondary antibody (1:100 TBST) on parafilm in a covered (dark) humid chamber for 1 hour at room temperature, followed by four 10 minute covered (dark) washes with TBST. Secondary antibodies used: Goat α-mouse Dylight 488 and Goat α-mouse Dylight 549 (Jackson ImmunoResearch Inc). Coverslips were then stained for chitin and nuclei and mounted onto slide as previously described (Momany 2001); and stored at 4°C in the dark until viewing.

Depolymerization of actin and microtubules

Strains were grown until the suitable time point in 5mls of medium as described above. Spores were incubated at 30°C for 4hrs for germtube emergence and 8-10hr for branch emergence and cytoskeleton dependence analyses. To determine the concentration of Benomyl to use, depolymerization of microtubules was assessed at different concentrations by following the disappearance of microtubule filaments under Benomyl treatment in the *tubA-gfp* strain (6µg Benomyl/ml of DMSO; 1-1.5hrs). To determine the concentration of Cytochalasin A to use, depolymerization of actin was assessed at different concentrations by following the disappearance of actin filaments under Cytochalasin A treatment (1µg Cytochalasin A/ml of DMSO; 1-1.5hrs) in the TpmA-GFP labeled strain. For cytoskeleton dependence analysis, strains were viewed live (no fixing). For growth emergence phenotype analysis, cells were fixed and stained for chitin and nuclei as previously described (Momany 2001). Calcofluor Blankophour BDH was used to stain septa and Hoechst 33258 bis-benzimide was used to stain nuclei.
Results

AspB-GFP partially colocalizes with microtubules and the UncA kinesin, and depolymerization of microtubules results in abnormal AspB-GFP filaments

In our previous studies we showed that AspB forms filaments and bars reminiscent of mammalian septins and cytoskeletal elements, and ΔaspB strains showed clumped nuclei (Hernandez-Rodriguez et al. unpublished, (Kinoshita 2003; Kinoshita 2006; Lindsey and Momany 2006; Surka et al. 2002). In Aspergillus nidulans, nuclear migration and positioning is a coordinated process achieved by microtubules and other protein partners (Helmstaedt et al. 2008; Suelmann and Fischer 2000; Veith et al. 2005; Xiang et al. 1994; Xiang and Fischer 2004; Yamamoto and Hiraoka 2003). To assess if AspB interacts with microtubules, we examined colocalization of AspB-GFP with microtubules. In the absence of alternative functional protein fluorescent tags, we did colocalization studies by using a combination of Immunofluorescence and GFP-based Fluorescence microscopy. Spores were incubated for 12-14hrs at 30°C. To label AspB, we used an aspB-gfp tagged strain (AYR35, Table 3.1) and to label microtubules we used mouse α-TubA antibodies and the goat α-mouse Dylight588 on the aspB-gfp tagged strain. We found that AspB-GFP partially colocalized with α-TubA labeled microtubules (Figure 3.1). We also observed AspB-GFP localization near Hoechst and H1-mRFP labeled nuclei (Figure 3.1, Figure 3.3 and Supplemental Figure 3.1).

To assess if AspB-GFP structures interact and depend on microtubules, we depolymerized microtubules with Benomyl and examined the effects on AspB-GFP structures. Spores were incubated for 8-10hrs at 30°C followed by Benomyl treatment (6µg Benomyl/ml of DMSO; 1-1.5hrs) and samples were imaged without fixing by Fluorescent microscopy. Depolymerization of microtubules was assessed by following the disappearance of microtubule filaments under
Benomyl treatment in the *tubA-gfp* strain. In the absence of microtubule filaments, AspB-GFP formed crossed or star filaments that seemed to be held by a ring (Figure 3.2). These crossed and star filaments typically had an AspB-GFP ring-like structure near the point where filaments crossed. More than 50% of the population showed AspB-GFP star filaments and more than 30% showed only cytoplasmic AspB-GFP localization (Supplemental Figure 3.2). These data indicates that AspB and microtubules partially colocalize and that microtubules are, for the most part, needed for normal AspB-GFP localization.

Septins in mammalian systems have been shown to partially colocalize with microtubules and some septins preferentially bind a specific population of microtubules for vesicle trafficking (Gilden and Krummel 2010; Kinoshita et al. 2002; Kremer et al. 2005; Lindsey and Momany 2006; Silverman-Gavrila and Silverman-Gavrila 2008; Spiliotis et al. 2008; Spiliotis 2010; Surka et al. 2002). Recently it was shown that *A. nidulans* has a special population of tyrosinolated modified microtubules (Tyro-microtubules) (Zekert and Fischer 2009). Because AspB-GFP only partially colocalized with α-TubA, we examined whether AspB has preferential binding to a subset of microtubules. We used a combination of Immunofluorescence and GFP-based Fluorescence microscopy. To label AspB we used the aspB-gfp tagged strain and to label Tyro-microtubules we used mouse α-Tyro-TubA antibodies and goat α-mouse Dylight588 on the aspB-gfp tagged strain. AspB-GFP partially colocalized with α-Tyro-TubA labeled microtubules (Figure 3.3). Zekert et al., had also shown that the Kinesin motor UncA preferentially bound detyrosinolated microtubules (Zekert and Fischer 2009). Since we only observed partial colocalization of AspB with microtubules and tyrosinolated microtubules, we wondered if AspB could colocalize with UncA and detyrosinolated microtubules. In addition the ΔuncA strain showed more branching which was
also seen in ΔaspB (Hernandez-Rodriguez et al., unpublished data (ZEKERT and FISCHER 2009)). We constructed doubled label strains carrying aspB-gfp and mrfp-uncArigor. Spores were incubated for 6-14hrs at 30°C and live Fluorescence microscopy was used. We found AspB-GFP also partially colocalized with mRFP-UncArigor (Figure 3.4). To this point we have only been able to observe partial colocalization with microtubules, tyrosinolated microtubules and UncA bound microtubules. Therefore, the AspB-microtubule interaction is still unclear.

In mammals, microtubules seem to somehow organize septins, still their codependence is unclear (SPILIOTIS 2010). To further assess whether AspB interacts with microtubules, we examined TubA-GFP labeled microtubules in the ΔaspB background. Spores were incubated for 6-12hrs at 30°C and live Fluorescence microscopy was used. In early germination we didn’t find a clear pattern or phenotype of microtubules in ΔaspB (data not shown). However, we did observe phenotypes during branch emergence. To quantify the phenotype, we examined newly formed branches (≤5µm) closest to the conidial compartment for presence or absence of microtubule filaments. In wild type, microtubules form bundles that run along the hypha and branches. In newly formed branches, less than 5% of the population in wild type showed no microtubule filaments compared to more than 60% in ΔaspB (Figure 3.5). We also observed fewer microtubule bundles along ΔaspB hyphae than in wild type (data not shown). These data suggests that AspB might help organize/stabilize microtubules in emerging axes and might explain the abortive branching phenotype observed in ΔaspB (Hernandez-Rodriguez et al., unpublished data).

TpmA-GFP is lost from actin filaments in ΔaspB

Septins and actin in mammals have been shown to be interdependent and septins use F-actin cables as templates for filament formation (KINOSHITA et al. 2002; SCHMIDT and NICHOLS
To further explore AspB interactions with the cytoskeleton, we examined AspB interactions with actin. To assess this interaction, we first attempted colocalization studies. In the absence of alternative functional protein fluorescent tags we attempted colocalization by using a combination of Immunofluorescence and GFP-based Fluorescence microscopy. Unfortunately partial cell wall digestion, to ensure that AspB-GFP filaments were present, hindered antibody labeling of actin filaments. Therefore, to evaluate AspB interactions with actin, we depolymerized actin with Cytochalasin A and examined the effects on the AspB-GFP structures. Spores were incubated for 8-10hrs at 30°C followed by Cytochalasin A treatment (1µg Cytochalasin A/ml of DMSO; 1-1.5hrs) and samples were imaged without fixing by Fluorescent microscopy. Depolymerization of actin was assessed by following the disappearance of actin filaments under Cytochalasin A treatment in the \textit{tpmA-gfp} strain. Depolymerization of actin resulted in many small AspB-GFP free-floating cytoplasmic rings (Figure 3.6). To further assess if AspB interacts with actin, we used tropomyosin TpmA-GFP to label actin filaments in the \textit{ΔaspB} background. Tropomyosin is an actin filament-stabilizing protein and TpmA-GFP has been shown to localize to septa, tips and actin filaments \cite{Pearson2004}. Spores were incubated for 8-10hrs at 30°C and live Fluorescence microscopy was used. TpmA-GFP localizations to actin filaments and tips are lost in \textit{ΔaspB} and localization to septa is very faint (Figure 3.7). To assess whether actin filaments are present in \textit{ΔaspB}, we crossed a strain carrying \textit{alcA(p)-lifeact-egfp} with \textit{ΔaspB}. Actin filaments were visible in \textit{ΔaspB} (Supplemental Figure 3.3). These data suggests that AspB helps maintain and/or stabilize TpmA localization to actin filaments and that actin filaments help maintain and/or stabilize AspB localization to its structures.
Depolymerization of actin affects AspB-GFP localization and results in polarity defects during branch emergence in ΔaspB, and hypergrowth emergence in ΔaspB is partially dependent on microtubules but not actin.

Together, colocalization studies, AspB-GFP structures under depolymerization of actin and microtubules, and actin and microtubule phenotypes in ΔaspB hint at some kind of interaction between these cytoskeletons and AspB. One of the prominent phenotypes observed in ΔaspB is the hyperemergence of germtubes and branches. To further assess interactions of actin and microtubules with AspB, we followed hyperemergence of growth phenotypes in ΔaspB in the absence of actin and microtubule filaments. We hypothesize that septins, actin and microtubules work together for normal polar growth and that perhaps septins organize both cytoskeletons. If this is true, then both cytoskeletons are disorganized promoting hyperemergence of growth in ΔaspB. Therefore, if the cytoskeletons are depolymerized, then hyperemergence of growth would reduce and growth occur wherever the polarity machinery could access without the aid of mediated-trafficking. To assess these hypotheses, spores were incubated for 4hrs (germtube emergence) and 10hr (branch emergence) at 30°C followed by depolymerization of microtubules or actin. Depolymerization of microtubules was assessed by following the disappearance of microtubule filaments under Benomyl treatment (6µg Benomyl/ml of DMSO; 1-1.5hrs) in the TubA-GFP labeled strain. Depolymerization of actin was assessed by following the disappearance of actin filaments under Cytochalasin A treatment (1µg Cytochalasin A/ml of DMSO; 1-1.5hrs) in the TpmA-GFP labeled strain. Samples were then transferred to fresh pre-warmed medium for recovery. TubA-GFP and TpmA-GFP localizations were recovered after switching to fresh medium (Supplemental Figure 3.4). Recovery lasted until wild type initiated germtube or branch emergence. Then samples were
fixed and stained with Calcofluor for septa and Hoechst for nuclei. We found that depolymerization of microtubules, but not actin, reduced hypergermtube and hyperbranch emergence in ΔaspB (Figure 3.8). In the microtubule depolymerization experiments, during germtube emergence, after recovery from the DMSO solvent control, only 2% of wild type showed hypergermtube emergence compared to almost 30% of ΔaspB. However, after recovery from microtubule depolymerization with Benomyl, 2% of wild type and ΔaspB showed 3 or more germtubes per conidium (hypergermtube emergence). During branch emergence, after recovery from the DMSO solvent control, only 2% of wild type showed hyperbranch emergence compared 51% of ΔaspB. However, after recovery from microtubule depolymerization with Benomyl, 4% of wild type and 11% of ΔaspB showed 3 or more branches per compartment (hyperbranch emergence) (Figure 3.8). These data suggests that hypergrowth emergence in ΔaspB is partially dependent on microtubules and that perhaps septins help organize and/or stabilize microtubules during growth emergence.

The effects of Cytochalasin A treatment during hyperemergence of growth phenotypes in ΔaspB were different (Figure 3.8). During germtube emergence, after recovery from the DMSO solvent control, 0% of wild type showed hypergermtube emergence compared to 4% of ΔaspB. After recovery from actin depolymerization with Cytochalasin A, 0% of wild type and 2% of ΔaspB showed 3 or more germtubes per conidium. During branch emergence, After recovery from the DMSO solvent control, only 1% of wild type showed hyperbranch emergence compared 11% in ΔaspB. After recovery from actin depolymerization with Cytochalasin A, 3% of wild type and 12% of ΔaspB showed 3 or more branches per compartment (hyperbranch emergence) (Figure 3.8). Because the comparison of growth emergence with and without depolymerization of actin did not result in large reductions of growth emergence as microtubule
depolymerization did, we suggest that depolymerization of F-actin does not reduce hypergrowth emergence in *AaspB*. However we did find some abnormalities during branch emergence after recovery from actin depolymerization with Cytochalasin A. For the data presented in Figure 3.8, assessment of hyperbranch emergence was done by counting the number of branches in the branching compartment closest to the conidial compartment after recovery from Cytochalasin A. In wild type identifying the conidial compartment was straightforward as hardly any swelling to the size of a conidial compartment (~5µm) was observed after Cytochalasin A treatment (Figure 3.9 and Supplemental Figure 3.5). We noticed that this assessment was difficult in *AaspB*. Interestingly, recovering hypha of *AaspB*, after depolymerization of actin during branch emergence, resulted in extreme swelling and compartment lysis which made determining the conidial compartment difficult (Figure 3.9). The emergence of 2-3 hyphal tubes was commonly observed from swelling compartments. This phenotype suggests problems in polarity and/or cell wall stability in *AaspB* during branch emergence in the absence of actin.

AspB colocalizes with an endocytic internalization marker and the endocytic zone is of abnormal size and abnormally positioned in *AaspB*

Actin and microtubules are necessary for holding the tip growth apparatus in position and together respectively, and play roles in exocytosis, which is key for polar growth (FISCHER-PARTON *et al.* 2000; PENALVA 2010). To further explore AspB roles with both cytoskeletons and polar growth, we colocalized an endocytic marker with AspB-GFP and examined endocytic zones in *AaspB*. For colocalization studies, we used the actin binding protein AbpA which has been shown to be an endocytic marker and to localize to cortical actin patches (not actin filaments) (ARAUJO-BAZAN *et al.* 2008). We constructed double labeled strains carrying *aspB-gfp* and *abpA-mrpf*. Spores were incubated for 12-14hrs at 30°C and live Fluorescence
microscopy was used. AspB-GFP partially colocalized with AbpA-mRFP at tips (Figure 3.10). This indicates that AspB partially localizes with actin patches and endocytic sites.

To further explore AspB roles in endocytosis, we examined SlaB-GFP localization in \(\Delta aspB \). We used SlaB because it also localizes to endocytic sites and it is more abundant and cortical than AbpA, making it easier to characterize endocytic sites in \(\Delta aspB \) (ARAJO-BAZAN et al. 2008). In addition SlaB has been shown to be essential and necessary for polarity maintenance in hyphal tips (HERVAS-AGUILAR and PENALVA 2010). Spores were incubated for 12-14hrs at 30°C and live Fluorescence microscopy was used. Hyphal tips were imaged by sequentially selecting areas where all tips were easily distinguished and not overlapping with other tips. To avoid bias, the selection of tips was done using DIC microscopy. Once the tip was positioned, the fluorescent SlaB-GFP image was taken. This avoided knowing the SlaB-GFP localization before collecting the data. Twenty five tips (~50 micrographs) were collected for each strain per time point. Biological replicates were done and the trend was the same. The data presented is a combination of time points which had similar statistics. In wild type, SlaB-GFP formed rings that are clearly excluded from the tip apex (~4.6µm exclusion in average) (Figure 3.11-12). In \(\Delta aspB \), SlaB-GFP zone showed none or half of the exclusion distance from the tip apex (~2.3µm exclusion in average). In wild type, the SlaB-GFP zone length was ~5.9µm in average. However in \(\Delta aspB \), the SlaB-GFP zone length was ~3.7µm in average. Therefore, SlaB-GFP showed less exclusion distance from tips and narrower endocytic zone lengths in \(\Delta aspB \) suggesting that AspB might help maintain and/or organize endocytic sites.
Discussion

AspB interacts with microtubules and actin

Septins are cytoskeletal elements that are found in fungi and other eukaryotes but not in plants. Septin heteroligomeric filaments form diffusion barriers, organize the cytoskeleton and are involved in nuclear division, cytokinesis and vesicle trafficking (CAO et al. 2009; Gilden and Krummel 2010; Spiliotis and Nelson 2006). In fungi, the cell cytoskeleton is composed of actin, microtubules and septins, and their unified roles control organelle and protein transport, endocytosis, septation, and cell polarity (Lichius et al. 2011). Therefore, these cytoskeletal elements are key for determining the morphology and growth of fungal cells, but their individual roles depend on the extent to which polar growth is exhibited. For instance in budding yeast, microtubules do not appear to play as crucial roles as actin does for growth, but microtubules are key for nuclear division. Here, some septins are essential, play roles in cytokinesis, coordination of nuclear division and polar growth (Douglas et al. 2005; Gladhelter et al. 2005; Oh and Bi 2011). In filamentous fungi, microtubules are important for rapid polar growth, nuclear distribution, hyphal morphology and holding the tip growth apparatus in position, while actin is required for normal apical growth, hyphal tip shape and holding the tip growth apparatus together (Gilden and Krummel 2010; Gladhelter 2010; Lichius et al. 2011). Here, septins have been shown to be important for controlling growth emergence (Alvarez-Tabares and Perez-Martin 2010; Lindsey et al. 2010). Though many model systems have been used to understand septin-actin-microtubule interactions, there are still many unanswered questions. Here we show that in Aspergillus nidulans actin, microtubules and septins might interact to ensure normal polar growth.
In general, protein colocalization can serve as the initial step for providing useful clues to protein-protein interaction. Septins have been shown to colocalize with both actin and microtubules (Hanai et al. 2004; Juvvadi et al. 2011; Kinoshita et al. 1997; Nagata et al. 2003; Pablo-Hernando et al. 2008; Silverman-Gavrila and Silverman-Gavrila 2008; Spiliotis et al. 2008a; Spiliotis 2010a; Surka et al. 2002; Wu et al. 2003). Here we show that in Aspergillus nidulans the septin AspB partially colocalizes with actin and microtubules. We previously showed AspB-actin colocalization during septum formation, and here we show that AspB colocalizes with actin patches at the tips (Harris 2001; Westfall and Momany 2002). To better understand their interactions, we will examine AspB-actin colocalizations throughout fungal growth when actin fluorescent tags for A. nidulans become available. Here we also show that AspB partially colocalizes with microtubules, tyrosinolated microtubules and UncA bound microtubules, and occasionally localized near or in between nuclei. We were unable to assess whether these colocalizations are cell cycle dependant as chemical synchronization for nuclear division resulted in abnormal septins (data not shown). In the future, we are interested in synchronizing populations using cell cycle mutants and following AspB localization with microtubules and the UncA motor. This will help better understand septin-microtubule interactions and nuclear phenotypes observed in ΔaspB.

Septins display, to an extent, codependence with both actin and microtubules (Böhmer et al. 2009; Kinoshita et al. 2002; Kinoshita et al. 1997; Kremer et al. 2005; Nagata et al. 2003; Schmidt and Nichols 2004b; Silverman-Gavrila and Silverman-Gavrila 2008; Spiliotis et al. 2008a; Spiliotis 2010a). To further understand septin-actin and septin-microtubule interactions, we assessed codependency by following AspB arrangements in the absence of actin and microtubule polymers and vice versa. Depolymerization of actin resulted in many small
AspB-GFP free-floating cytoplasmic rings similar to phenotypes observed in mammals (Kinoshita et al. 2002). Also, in the absence of AspB, tropomyosin (TpmA) did not localize to actin filaments and septa labeling was very faint. Still, actin filaments were present in the absence of AspB. Therefore, AspB and actin interactions might be somehow codependent as actin filaments might help maintain and/or stabilize AspB localization to its structures and AspB might help maintain and/or stabilize TpmA localization to actin filaments. This might in turn control growth emergence by controlling the tropomyosin block of motors to actin filaments. Likewise, depolymerization of microtubules mostly resulted in cytoplasmic or abnormal AspB-GFP filaments; and in the absence of AspB, microtubule bundles were less frequent in newly formed branches. This phenotype could explain the abortive branching observed in ΔaspB (Hernandez-Rodriguez et al., unpublished data). These data suggests that AspB and microtubule interactions might be somehow codependent and AspB might help organize and/or stabilize microtubules in additional growing axes.

AspB might help stabilize and/or organize polar sites.

It has been suggested that septins might control growth addition to the cortex by its interaction with the cytoskeleton (Gilden and Krummel 2010). Our data also points in that direction. One of the striking phenotypes in ΔaspB is its hyperemergence of growth. This phenotype has also been reported for ΔaspA and ΔaspC (Lindsey et al. 2010a). This suggests that septins are somehow involved in controlling polar growth. To investigate this role, we assessed growth emergence in ΔaspB after recovery from actin or microtubule depolymerization. Depolymerization of actin did not reduce hyperemergence of growth but resulted in swelling and lysis of hyphae during branch emergence in ΔaspB. In the absence of actin, during branch emergence, ΔaspB displayed polarity and/or cell wall defects. Therefore, actin might be
important for cell wall stability and maintaining polar growth during branch emergence in ΔaspB. On the contrary, depolymerization of microtubules reduced hypergermtube and hyperbranch emergence in ΔaspB. These data suggest that hypergrowth emergence in ΔaspB is partially dependent on microtubules, but not actin, and that perhaps septins help organize and/or stabilize microtubules during growth emergence.

 Trafficking of vesicles by motors to growth emergence sites is key for polar growth. Septins have been shown to control the access of myosin motors to actin filaments (Gilden and Krummel 2010; Joo et al. 2007). Here we show that tropomyosin (TpmA), which blocks access of motors to actin, is lost from actin filaments. We propose that ΔaspB hypergrowth emergence might be, in part, a result of hyperaccess of motors to actin filaments which could result in more trafficking of the polar growth machinery. We are interested in following actin motor dynamics in ΔaspB to explore this possibility. Though hypergrowth emergence was not reduced in the absence of actin filaments, we did find polarity defects during branch emergence. Conversely, septin-microtubule interactions have been shown to have different roles in growth emergence (Gilden and Krummel 2010; Kremer et al. 2005; Spiliotis et al. 2008a). Septins can interact with microtubules and motors for trafficking of vesicles to promote growth emergence, but some septins can block access of vesicles to membranes so that growth is not added (Amin et al. 2008; Beites et al. 2005; Beites et al. 1999; Gilden and Krummel 2010). Therefore, AspB might be acting as a negative regulator of growth, so that in its absence microtubule cargos have more access to the cortex and promote hyperemergence of growth; and/or AspB helps organize and/or stabilize microtubules to ensure trafficking and growth emergence to a specific area.

 During polar growth, actin and microtubules serve as tracks for vesicle trafficking towards and away from the growing axes (Gilden and Krummel 2010; Lichius et al. 2011). Bridging
between these cytoskeletons is necessary to target protein vesicles to their final destinations. Though the cell cytoskeleton is very important for polar growth, endocytosis is also necessary for maintaining growth extension (Araujo-Bazan et al. 2008; Hervas-Aguilar and Penalva 2010; Orlando et al. 2011; Penalva 2010). In addition, diffusion barriers are necessary to maintain endocytic areas. Septin form barriers that maintain asymmetric localization of the polarity machinery (Orlando et al. 2011; Schmidt and Nichols 2004a). Septin localization and interactions with the cytoskeleton, along with their roles as diffusion barriers, suggest that septins might help bridge interactions between actin and microtubules, and might form diffusion barriers to ensure normal endocytosis during polar growth. We have shown several lines of evidence that suggest AspB-actin interactions: 1) actin binding protein (ApbA) colocalizes with AspB, 2) actin filaments are necessary for normal AspB localization, 3) tropomyosin (TpmA) localization to actin filaments is lost in the absence of AspB, and 4) actin is important for polar growth during branch emergence in ΔaspB. In addition we have shown several lines of evidence that suggest AspB-microtubule interactions: 1) microtubules partially colocalize with AspB, 2) microtubules are necessary for normal AspB filaments, 3) microtubules are unable to populate all polarity axes in the absence of AspB, and 4) microtubules facilitate hypergrowth emergence in ΔaspB. Other lines of evidence from our previous studies also suggest AspB-microtubule interactions as microtubules are necessary for nuclear migration and ΔaspB results in clumped nuclei. Here we show that AspB-GFP can localize near nuclei. Even with all these lines of evidence, as in mammalian systems, AspB-microtubule interactions are still unclear (Spiliotis 2010a). In terms of septins roles related to endocytosis, we have shown that AspB colocalizes with an endocytic internalization marker and the endocytic zone is of abnormal size and abnormally positioned in ΔaspB. AspB partially colocalizes with AbpA and therefore with actin
patches and endocytic sites. SlaB, a more cortical endocytic site marker, is less or not excluded from tips and the smaller zone lengths in \(\Delta aspB \) show that endocytic sites are abnormal. This suggests that AspB might help maintain and/or organize endocytic sites. All together we have shown that AspB might help stabilize polarity axes by possibly interacting and/or organizing actin, microtubules and endocytosis.

Acknowledgments

This work was supported by the Dissertation Completion Grant from the University of Georgia to Yainitza Rodriguez; and by the NSF grant MCB 0211787 and NSF grant DevMech 1051730 to Dr. Michelle Momany. We want to thank Stephen Osmani, Steve Harris, Miguel Peñalva, Reinhard Fisher and Hiroyuki Horiuchi for sharing strains.
Tables and Figures

Table 3.1: Strains used

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A850</td>
<td>biA1; argB::trpC; methG1; veA1; trpC801</td>
<td>FGSC</td>
</tr>
<tr>
<td>A773</td>
<td>pyrG89; wA3; pyroA4</td>
<td>FGSC</td>
</tr>
<tr>
<td>HA344</td>
<td>An-H1-chRFP::pyroAAf;(pyroA4::argB2); pyrG89; nkuA::argB</td>
<td>Stephen Osmani</td>
</tr>
<tr>
<td>AAV122.1</td>
<td>pyrG89; argB2; pyroA4Δnku::argB; tpm::gfp::pyr-4</td>
<td>Steve Harris</td>
</tr>
<tr>
<td>AAV124.1</td>
<td>pyrG89; argB2; pyroA4ΔnkuA::argB; tubA::gfp::pyr-4</td>
<td>Steve Harris</td>
</tr>
<tr>
<td>SNZ54</td>
<td>TNO2A3 transformed with pNZ520, pyroA4 (mRFP-UncA rigor)</td>
<td>Reinhard Fisher</td>
</tr>
<tr>
<td>1794</td>
<td>pyroA4 argB, nKuA::argB, argB2, slaB-GFP::pyrGAFpyrG89</td>
<td>Miguel Peñalva</td>
</tr>
<tr>
<td>1417</td>
<td>biA1 pantoB100 abpA::mRFP pyrG89</td>
<td>Miguel Peñalva</td>
</tr>
<tr>
<td>A1149LA-1</td>
<td>pyrG89::alcA(p)-lifeact-egfp-pyrG, pyroA4 nkuA::argB</td>
<td>Hiroyuki Horiuchi</td>
</tr>
<tr>
<td>ASH59</td>
<td>AYR32 X 1794</td>
<td>This study</td>
</tr>
<tr>
<td>AYR1</td>
<td>pyrG89*, aspB:: AfpyrG; pyroA4; riboB2</td>
<td>Previous study</td>
</tr>
<tr>
<td>AYR6</td>
<td>pyrG89, aspB::aspB-gfp- AfpyrG; argB2</td>
<td>Previous study</td>
</tr>
<tr>
<td>AYR32</td>
<td>AYR1 X A850</td>
<td>Previous study</td>
</tr>
<tr>
<td>AYR33</td>
<td>AYR6 X AAV124.1</td>
<td>This study</td>
</tr>
<tr>
<td>AYR35</td>
<td>AYR6 X A773</td>
<td>Previous study</td>
</tr>
<tr>
<td>AYR40</td>
<td>AYR6 X SNZ54</td>
<td>This study</td>
</tr>
<tr>
<td>AYR50</td>
<td>AYR35 X HA344</td>
<td>This study</td>
</tr>
<tr>
<td>AYR63</td>
<td>AYR35 X1417</td>
<td>This study</td>
</tr>
<tr>
<td>AYR68</td>
<td>AYR32 X AAV122.1</td>
<td>This study</td>
</tr>
<tr>
<td>AYR70</td>
<td>AYR32 X A1149LA-1</td>
<td>This study</td>
</tr>
</tbody>
</table>

FGSC, Fungal Genetics Stock Center, Department of Microbiology, University of Kansas Medical Center (Kansas City, KS).
Figure 3.1. AspB-GFP partially colocalizes with α-TubA labeled microtubules. AspB-GFP can partially colocalize with microtubules. Arrows denote areas of colocalization of AspB-GFP and α-TubA. AspB-GFP was also found near or in between some nuclei. Nuclei are in blue, AspB in green and TubA in red. Spores were incubated for 12-14hrs at 30°C.

Immunofluorescence microscopy was used. Nuclei were labeled with Hoechst 33258 bis-benzimide, AspB was labeled using the AspB-GFP strain and TubA was labeled with α-TubA mouse antibodies (Sigma) and α-mouse Dylight 588 antibodies (Jackson ImmunoResearch). Micrographs were collected in black and white and Photoshop CS3 was used to combine, overlay, organize, improve contrast and brightness and/or colorize (Hue saturation) micrographs. Scale bar is 5µm.
Figure 3.2. Depolymerization of microtubules results in AspB-GFP star filaments. (A) TubA-GFP filaments are not affected by DMSO. (B) TubA-GFP filaments are not observed under Benomyl treatment. (C) AspB-GFP filaments are not affected by DMSO. (D) AspB-GFP forms abnormal filament clusters and star filaments (*) under Benomyl treatment. (E) Enlarged star filaments from matched micrographs denoted by black lines. Star filaments showed a ring (^) that seemed to hold them together. Refer to Supplemental. Figure 3.2 for phenotypic counts. Spores were incubated for 8-10hrs at 30°C. Depolymerization of microtubules was assessed by following disappearance of microtubule filaments under Benomyl treatment (6µg Benomyl/ml of DMSO; 1-1.5hrs) in the TubA-GFP labeled strain. Live microscopy was used. Photoshop CS3 was used to combine, overlay, organize and improve contrast and brightness of DIC and fluorescent micrographs. Scale bar is 5µm.
Figure 3.3. AspB-GFP partially colocalizes with α-Tyrosinolated TubA labeled microtubules. AspB-GFP can partially colocalize with Tyrosinolated microtubules. Arrows denote areas of colocalization of AspB-GFP and α-Tyrosinolated TubA. AspB-GFP was also found near or in between some nuclei. Nuclei are in blue, AspB in green and TubA in red.

Spores were incubated for 6-14hrs at 30°C. Immunofluorescence microscopy was used. Nuclei were labeled with Hoechst 33258 bis-benzimide, AspB was labeled using the AspB-GFP strain and TubA was labeled with α-Tyrosinolated TubA mouse antibodies (Sigma) and α-mouse Dylight 588 antibodies (Jackson ImmunoResearch). Micrographs were collected in black and white and Photoshop CS3 was used to combine, overlay, organize, improve contrast and brightness and/or colorize (Hue saturation) micrographs. Scale bar is 5µm.
Figure 3.4. AspB-GFP partially colocalizes with mRFP-UncArigor. AspB-GFP can partially colocalize with mRFP-UncArigor. Arrows denote areas of colocalization of AspB-GFP and mRFP-UncArigor. In early germination AspB-GFP seem to connect (^) or cross (*) mRFP-UncArigor. AspB-GFP is in green and mRFP-UncArigor in red. Spores were incubated for 6-12hrs at 30°C. Live microscopy was used. Micrographs were collected in black and white and Photoshop CS3 was used to combine, overlay, organize, improve contrast and brightness and/or colorize (Hue saturation) micrographs. Scale bar is 5µm.
Figure 3.5. *AaspB* showed less microtubule filaments in branches. (I.) *tubA-gfp* and *ΔaspB*
tubA-gfp strains. *ΔaspB* showed more branches without microtubule filaments. Live microscopy
was used. Photoshop CS3 was used to combine, overlay, organize and improve contrast and
brightness of DIC and fluorescent micrographs. Scale bar is 5µm. (II.) *ΔaspB* has more newly
formed branches without microtubule filaments compared to wild type. Spores were incubated
for 12hrs at 30°C. Newly formed branches (≤5µm) were assessed for presence or absence of
microtubule filaments (n=200). Live microscopy was used.
I. $tubA$-gfp

II. $\Delta aspB$ has more newly formed branches without microtubule (Mt) filaments compared to wild type
Figure 3.6. Depolymerization of actin results in many AspB-GFP free-floating cytoplasmic rings. AspB-GFP filaments are not affected by DMSO. AspB-GFP forms many free-floating cytoplasmic rings under Cytochalasin A treatment. Inset from zoomed in area (^) shows a closer view of the small cytoplasmic rings. Spores were incubated for 8-10hrs at 30°C.

Depolymerization of actin was assessed by following the disappearance of actin filaments under Cytochalasin A treatment (1µg Cytochalasin A/ml of DMSO; 1-1.5hrs) in the TpmA-GFP labeled strain; see materials and methods for details. Live microscopy was used. Photoshop CS3 was used to combine, overlay, organize and improve contrast and brightness of DIC and fluorescent micrographs. Scale bar is 5µm.
Figure 3.7. TpmA-GFP localization to actin filaments and tips are lost in \textit{AaspB}. (A) TpmA-GFP localizes to septa (S). (B-C) TpmA-GFP localizes to actin filaments (arrow head) and tips (*). (D) TpmA-GFP localizes faintly to septa in \textit{AaspB}. (E-F) TpmA-GFP localization to actin filaments and tips are lost in \textit{AaspB}. Spores were incubated for 12-14hrs at 30°C. Live microscopy was used. Photoshop CS3 was used to combine, overlay, organize and improve contrast and brightness of DIC and fluorescent micrographs. Scale bar is 5µm.
Figure 3.8. Depolymerization of microtubules, but not actin, reduced hypergermtube and hyperbranch emergence in ΔaspB. The first part of the graphs compares germtube or branch emergence before treatment of wild type and ΔaspB. Then graphs compare germtube or branch emergence after treatment and recovery from Benomyl, Cytochalasin A or DMSO (solvent control) of wild type and ΔaspB. (A) Depolymerization of microtubules reduces hypergermtube emergence in ΔaspB. (B) Depolymerization of microtubules reduces hyperbranch emergence in ΔaspB. (C) Depolymerization of actin does not reduce hypergermtube emergence in ΔaspB. (D) Depolymerization of actin does not reduce hyperbranch emergence in ΔaspB. For hypergermtube emergence analyses the number of germtubes (gt) were counted and grouped as 0gt, 1gt, 2gt or 3 or more gt (≥3br); n=300. For hyperbranch emergence analyses, Calcofluor staining was used to delineate compartments and the number of branches (br) in the most basal compartment (closest to the conidal compartment) were counted and group as 0br, 1br, 2br or 3 or more br (≥3br); n=300. Spores were incubated for 4hrs (germtube emergence) and 10hr (branch emergence) at 30°C. Depolymerization of microtubules was assessed by following the disappearance of microtubule filaments under Benomyl treatment (6µg Benomyl/ml of DMSO; 1hr) in the TubA-GFP labeled strain. Depolymerization of actin was assessed by following the disappearance of actin filaments under Cytochalasin A treatment (1µg Cytochalasin A/ml of DMSO; 1hr) in the TpmA-GFP labeled strain. Recovery lasted until wild type initiated germtube or branch emergence. Coverslips were fixed and stained with Calcofluor Blankophour BDH for septa and Hoechst 33258 bis-benzimide for nuclei.
A) Depolymerization of microtubules reduces hypergermtube emergence in \(\Delta \text{aspB} \).

B) Depolymerization of microtubules reduces hyperbranch emergence in \(\Delta \text{aspB} \).

C) Depolymerization of F-actin does not reduce hypergermtube emergence in \(\Delta \text{aspB} \).

D) Depolymerization of F-actin does not reduce hyperbranch emergence in \(\Delta \text{aspB} \).
Figure 3.9. Depolymerization of actin results in polarity defects during hyperbranch emergence in ΔaspB. (I.) ΔaspB showed extreme swelling and lysis (arrow) after treatment and recovery from Cytochalasin A and not DMSO as described in Figure 3.7 during hyperbranch emergence. Nuclear staining showed nuclei and cytoplasm leaking from lysed compartments. Lysis was not observed in wild type. See Supplemental Figure 3.4 for comparisons to wild type. Photoshop CS3 was used to combine, overlay, organize and improve contrast and brightness of DIC and fluorescent micrographs. Scale bar is 5µm. (II.) ΔaspB showed extreme swelling after actin depolymerization. Samples treated and recovered from Cytochalasin A as described in Figure 3.7 were assessed. Each individual was categorized as swelling if an area of equal or larger size than the conidial compartment or a swollen lysed area was observed; and non swelling if the conidial compartment was easily identified and no other swollen area was found (n= 200). Swollen areas in ΔaspB were larger than in wild type.
I.

\[\text{ΔaspB DMSO} \quad \text{ΔaspB Cytochalasin} \]

II.

ΔaspB showed extreme swelling during branch emergence after recovery from actin depolymerization

![Bar graph showing percentage populations of swelling and non-swelling phenotypes in wild type and ΔaspB strains.](image)
Figure 3.10. **AspB-GFP partially colocalizes with AbpA.** AspB-GFP can partially colocalize with AbpA-mRFP at tips. AspB-GFP is in green and AbpA-mRFP in red. Spores were incubated for 12-14hrs at 30°C. Live microscopy was used. Micrographs were collected in black and white and Photoshop CS3 was used to combine, overlay, organize, improve contrast and brightness and/or colorize (Hue saturation) micrographs. Scale bar is 5µm.
Figure 3.11. SlaB-GFP showed less exclusion distance from tips and smaller zone lengths in $\Delta aspB$. Spores were incubated for 12-14hrs at 30°C. Live microscopy was used. For measurements, micrographs of each individual were taken and analyzed using Photoshop CS3 to combine, overlay, organize, improve contrast and brightness and measure DIC and fluorescent micrographs. (A) $\Delta aspB$ showed less SlaB-GFP exclusion distance from the tip apex compared to wild type. Wild type: Mean 4.71µm and Median 4.4µm. $\Delta aspB$: Mean 2.17µm and Median 2.5µm. n=50. (B) $\Delta aspB$ showed smaller SlaB-GFP zone lengths compared to wild type. Wild type: Mean 5.95µm and Median 5.85µm. $\Delta aspB$: Mean 3.73µm and Median 3.75µm. n=50.
A. \textit{ΔaspB} showed less SlaB-GFP exclusion distance from the tip apex compared to wild type.

B. \textit{ΔaspB} showed smaller SlaB-GFP zone lengths compared to wild type.
Figure 3.12. SlaB-GFP showed smaller zone lengths and localized at or very close to the tip apex in ΔaspB. Some micrographs used for Figure 3.11 analysis are shown to exemplify results. SlaB-GFP in the wild type background showed wide zones that are excluded from the tip. SlaB-GFP in the ΔaspB background showed narrower or no zone and localization was closer or not excluded from the tip. Photoshop CS3 was used to combine, overlay, organize and improve contrast and brightness of DIC and fluorescent micrographs. Scale bar is 5µm.
Supplemental Figures

Supplemental Figure 3.1. AspB-GFP filaments and bars localize near nuclei. AspB-GFP filaments and bars can be found near nuclei from dormant conidia to mature hypha. H1mRFP was used to label nuclei. Live microscopy was used. Micrographs were collected in black and white and Photoshop CS3 was used to combine, overlay, organize, improve contrast and brightness and/or colorize (Hue saturation) micrographs. AspB-GFP in green and H1 labeled nuclei in blue. Scale bar is 5µm.
Supplemental Figure 3.2. Microtubule depolymerization results in AspB-GFP star filament formation. AspB-GFP localizations were assessed in Benomyl and DMSO treatments as described in Figure 3.2 and classified as: normal filaments, spots (rings, dots, bowties), cytoplasmic and star filaments. Under Benomyl treatment AspB-GFP localization was mostly cytoplasmic or as star filaments. Refer to Figure 3.2 for phenotypic micrographs. Conditions as described in Figure 3.2. n=300.
Microtubule depolymerization results in AspB-GFP star filament formation

- Normal Filaments
- Spots
- Cytoplasmic
- Star Filaments

AspB GFP localization

% population

- Benomyl
- DMSO
Supplemental Figure 3.3. Actin filaments are present in *AaspB*. *alcA(p)-lifeact-egfp* was used to label actin and this construct was crossed into *AaspB*. Actin filaments (arrow head), localization to tips (*) and septa (s) are present in *AaspB*. Live microscopy was used. Photoshop CS3 was used to combine, overlay, organize and improve contrast and brightness of DIC and fluorescent micrographs. Scale bar is 5µm.
$alcA(p)$-lifeact-egfp

$\Delta aspB\ alcA(p)$-lifeact-egfp
Supplemental Figure 3.4. TubA-GFP and TpmA-GFP localizations under Benomyl and Cytochalasin A treatments respectively are reversible and not affected by DMSO. (A) TubA-GFP filaments (arrow) are not affected by DMSO. (B) TubA-GFP filaments are not observed under Benomyl treatment. (C) TubA-GFP filaments are recovered after switching coverslips to fresh pre-warmed medium; see materials and methods for details. (D) TpmA-GFP filaments (arrow head), localization to tips (*) and septa (S) are not affected by DMSO. (E) TubA-GFP localizations are not observed under Cytochalasin A treatment. (F) TpmA-GFP filaments are recovered after switching coverslips to fresh pre-warmed medium; see materials and methods for details. Conditions as described in Figure 3.7. Live microscopy was used. Photoshop CS3 was used to combine, overlay, organize and improve contrast and brightness of DIC and fluorescent micrographs. Scale bar is 5µm.
Supplemental Figure 3.5. Wild type hardly shows swelling during branch emergence after recovery from Cytochalsin A treatment. Conditions as described in Figure 3.7 and 3.8 DIC image of wild type during branch emergence after recovery from Cytochalsin A treatment shows normal not swollen hypha. Refer to Figure 3.8 for phenotypic counts. Scale bar is 5µm.
Wild type under Cytochalasin A treatment
References

ALVAREZ-TABARES, I., and J. PEREZ-MARTIN, 2010 Septins from the phytopathogenic fungus Ustilago maydis are required for proper morphogenesis but dispensable for virulence. PLoS ONE 5: e12933.

BÖHMER, C., C. RIPP and M. BÖLKER, 2009 The germinal centre kinase Don3 triggers the dynamic rearrangement of higher-order septin structures during cytokinesis in Ustilago maydis. Molecular microbiology 74: 1484-1496.

GLADFELTER, A., 2010 Guides to the final frontier of the cytoskeleton: septins in filamentous fungi. Current Opinion in Microbiology.

GLADFELTER, A. S., 2006 Control of filamentous fungal cell shape by septins and formins, pp.

HELMSTAEDT, K., K. LAUBINGER, K. VOSSKUHL, O. BAYRAM, S. BUSCH et al., 2008 The nuclear migration protein NUDF/LIS1 forms a complex with NUDC and BNFA at spindle pole bodies. Eukaryot Cell 7: 1041-1052.

KINOSHITA, M., 2003 Assembly of Mammalian Septins, pp. 491-496.

LICHIUS, A., A. BEREPKI and N. D. READ, 2011 Form follows function-The versatile fungal cytoskeleton. Fungal Biology.

CHAPTER 4
CONCLUSIONS AND FUTURE EXPERIMENTS

Cells synchronize different processes through the interaction of organelles with a variety of machineries made of proteins, vesicles and/or enzymes to function and survive. Many of these interactions occur through the cell cytoskeleton, which is also key for providing cell structure and shape. Fungal cells have 3 cytoskeletons: actin, microtubules and septins. Actin and microtubules have been extensively studied for many years in a variety of model systems. Septins have been recently accepted as a cytoskeleton and its roles are less understood. Many questions remain in the field on how the cell cytoskeletons communicate. It has been suggested that septins might bridge these interactions (Lichius et al. 2011). Septins are an interesting group of proteins to study because of the diverse roles they play (Bertin et al. 2008; Cao et al. 2009; Douglas et al. 2005; Gladfelter 2006; Gladfelter et al. 2005; Kinoshita 2006; Kremer et al. 2005; Lichius et al. 2011; Lindsey and Momany 2006; McMurray et al. 2011; Oh and Bi 2011; Rodal et al. 2005; Spiliotis and Nelson 2006a; Spiliotis and Nelson 2006b; Versele and Thorner 2005). Still, their roles seem to depend on the model system and/or the cell type being studied. Our work has focused on understanding septins roles in polar growth and their interaction with other cell cytoskeletons. Here we show that the septin AspB in Aspergillus nidulans plays roles in growth emergence. Our work also shows that AspB might interact with actin and microtubules. It is plausible to think that septins play roles in growth emergence by bridging interactions between the other cell cytoskeletons and their accessory proteins.
The first study on the septin AspB attempted to construct a knockout strain whose isolation depended on its ability to conidiate, and because a deletion mutant was never recovered it was identified as an essential gene (Momany and Hamer 1996). A second study identifying all septins in *Aspergillus nidulans* (AspA, AspB, AspC, AspD and AspE) showed that AspB is the mostly highly expressed septin during conidiation (Momany *et al.* 2001). In a third study, temperature sensitive mutants were used to characterize AspB, showing phenotypic abnormalities, irregular septa, high numbers of branches, and immature asexual reproductive structures (Westfall and Momany 2002). Polyclonal α-AspB antibodies showed that AspB localizes premitotically as a ring at sites of branching and secondary germ tube emergence and postmitotically to septation sites dependent on actin. Also, AspB antibodies labeled conidiophores transiently to the vesicle/metula and metula/phialide interfaces, and persistently to the phialide/conidiospore interface (Westfall and Momany 2002).

New gene targeting techniques for *Aspergillus nidulans* were described by Yang *et al.* that provided a new era for studying, tagging and deleting genes (Yang *et al.* 2004). Using these techniques our lab decided to delete and construct protein tags for all septin genes. *aspB* was included in the study to ensure that it was essential. Surprisingly a deletion mutant for *aspB* was isolated and it showed very poor conidiation and abnormal colony coloration which explains why it was not isolated in the first study. None of the septins have been shown to be essential in *Aspergillus nidulans* and the characterization of AspA and AspC have been published, AspB is shown here and AspD and AspE are currently ongoing.

aspB-gfp and Δ*aspB* strains started the dissertation project presented here. The phenotypic characterization and localization studies provide powerful insights for understanding septin functions and allow us to hypothesize possible roles that will drive future research. In this
conclusion I will review all the phenotypes and localization studies presented in this dissertation and will use it as a base for hypothesizing and proposing possible roles and suggesting future experiments that could address these ideas.

AspB play roles in growth emergence and nuclear dynamics, and shows abnormal endocytic zones

Septins were first discovered in yeast for their roles in cell division and some septins were shown to be essential. Yeast show very limited polar growth during bud emergence which reverts back to isotropic growth, compared to filamentous fungi who exhibit a small window of isotropic growth, as they break dormancy, and committed nonreversible polar growth once the germ tube emerges. Septins have been extensively studied in yeast, and though studies are still ongoing, it serves as a basic model from which roles can be extrapolated to other systems. Studying septins in mammalian models brings further complications as humans have 14 septins with differential splicing that can add up to 30 different septin proteins. Still many studies in animal cells also allow us to extrapolate findings to simpler model systems. Studying septins in the filamentous fungus *Aspergillus nidulans* allows for a closer understanding of septin roles in multicellular organisms, as growth is divided by crosswalls creating different compartments that remain connected making it a multicellular organism, and roles in highly polar cells such as neurons.

When we recovered *aspB* deletion mutants we decided to characterize its phenotype throughout fungal growth and asexual reproduction and use nuclear and chitin staining to assess further roles. We assessed the number of nuclei in the freshly isolated conidia and noticed that a significant percentage of the population showed binucleated conidia when wild type shows uninucleated conidia. Because septins play roles in nuclear division in both yeast and animals,
this finding made us think of several possible scenarios taking place in the $\Delta aspB$ conidia: 1) conidia in $\Delta aspB$ germinate quicker and therefore display double the nuclear content compare to wild type, 2) conidia in $\Delta aspB$ do not arrest in interphase as wild type conidia do until the appropriate carbon source is sensed, 3) nuclear division in the phialide-conidia interface of the conidiophore is abnormal in $\Delta aspB$ and more nuclei are encapsulated in the conidia and/or 4) nuclear migration in the phialide-conidia interface of the conidiophore in $\Delta aspB$ is abnormal and more nuclei are encapsulated in the conidia. To distinguish from these scenarios several things could be done. For scenario #1, counts of wild type vs. $\Delta aspB$ at the same time point can be used to assess whether both strains are germinating at the same time. To quickly assess this phenotype, we did Hoechst staining of conidiophores and did counts of wild type vs. $\Delta aspB$ to assess whether they are germinating at the same time point. Staining of nuclei in conidiophores didn’t provide much clues and it seemed that the number of nuclei in conidia was normal, but because these structures are thick with many conidia attached, focal resolution was not clear and perhaps Confocal microscopy could help clear these results. On the other hand, time point counts did reveal some clues. We found that $\Delta aspB$ strains germinated earlier than wild type as freshly harvested spores inoculated at the same time, concentration, media and temperature as wild type resulted in $\Delta aspB$ polarizing conidia while the majority of cells in wild type were still undergoing isotropic expansion. This hinted at the possibility that $\Delta aspB$ conidia are germinating earlier than wild type, though the exact reason is still not clear. For scenario #2, Flow cytometry could be used to compare the nuclear content of Hoechst stained nuclei of wild type vs. $\Delta aspB$. For scenarios #3 and #4 nuclear staining and Confocal microscopy of conidiophores can provide clues. Time lapse and confocal microscopy of $\Delta aspB$ in combination with nuclear division mutants and/or markers, nuclear migration mutants and/or microtubule markers can be used to
see if nuclear division and/or migration is abnormal. We did attempt to look at microtubules in the ΔaspB strain to see if there were any abnormalities in conidiophores, but again the resolution at which we examined didn’t provide clear results.

We also found that ΔaspB strains showed multiple germtubes. This phenotype was also reported for ΔaspA and ΔaspC but not to the extreme displayed by ΔaspB. During germtube emergence wild type forms 1 germtube per conidium which extends to form the hypha and later on produces a secondary germtube from the same conidium. In ΔaspB, 2-4 germtubes will emerge almost simultaneously from the same conidium. This hypergermtube emergence phenotype hints at two possible roles for AspB in growth emergence: 1) AspB acts as a negative regulator for growth, so that more sites are available for growth emergence in the absence of AspB, 2) AspB selects the area of growth by maintaining the growth machinery localized to one specific area, so that the polar machinery is diffused and growth emergences from several sites in the absence of AspB, 3) cytoskeletal elements involved in recruitment, maintenance and trafficking of the polarity machinery are disorganized in the absence of AspB and promote hyperemergence of growth. To assess scenario #1, overexpression mutants can be used, expecting that if AspB is a negative regulator of growth, then overexpression of AspB would reduce germtube emergence. We attempted to do so, but Real Time PCR showed that we fail to obtain overexpression of AspB and because of the puzzling results from the constructs we decided to explore overexpression phenotypes later on. For assessing scenario #2, polarity markers can be used, such as Cdc42 or the Tea proteins, and follow their localization in ΔaspB. Unfortunately there is no Spitzenkörper at this early stage to assess mislocalization or the presence of multiple Spitzenkörper to evaluate if different polarity machinery centers are assembled at the same time, but the use of polarity markers should help answer this question. To
assess scenario #3, septin deletions phenotypes can be assessed in the absence of actin and microtubules. We studied this last scenario by depolymerizing both cytoskeletons in the absence of AspB. We found that depolymerization of microtubules, but not actin, in ΔaspB reduced hypergermtube emergence. This hints that septins organize/stabilize microtubules during germtube emergence.

Interestingly, though septins are key for cytokinesis in budding yeast and animal cells, we found that septation, which is A. nidulans equivalent to cytokinesis, is not disrupted but delayed. In A. nidulans the formation of cross walls called septa compartmentalize growth forming actively growing apical compartments and subapical compartments arrested in growth until the emergence of a branch (HARRIS 2001; HARRIS et al. 1994; MOMANY and HAMER 1997; MOMANY and TAYLOR 2000). Septation occurs concomitant with the third nuclear division and a hyphal size threshold (WOLKOW et al. 1996). We found that in ΔaspB septation was delayed as at a set time point ΔaspB hardly showed septated hyphae while the majority of hyphae in wild type were septated. Interestingly, branching in ΔaspB initiated before septation which was not seen in wild type. These phenotypes hint that perhaps AspB is not required for septation and in its absence recruitment, trafficking and/or maintenance of the septation related machinery is abnormal and/or delayed. To assess this scenario time lapse microcopy can be used to follow the localization of the septation related machinery during septum formation in wild type compared to ΔaspB and assess whether the recruitment and or maintenance of this machinery is abnormal in ΔaspB. We also noticed that Calcofluor staining of septa in ΔaspB bleached faster than in wild type, hinting that there are some abnormalities in the septum composition. To assess these abnormalities TEM analysis and chitin labeling could be done to compare wild type and ΔaspB septa morphology and composition.
We also found that $\Delta aspB$ strains showed hyperemergence of branches. This phenotype was also reported for $\Delta aspA$ and $\Delta aspC$, but again not to the extreme displayed by $\Delta aspB$.

During branch emergence wild type forms 1-2 branches per compartment. In $\Delta aspB$, we saw the emergence of numerous branches from the same compartment and some branches were abnormally thin and hooked. These branches seem abortive as they did not extend at later time points. These phenotypes hint at possible defects and roles: 1) As proposed for germtube emergence, AspB acts as a negative regulator for growth, so that in the absence of AspB, more sites are available for growth emergence, 2) As proposed for germtube emergence, AspB selects the area of growth by maintaining the growth machinery localize to one specific area, so that in the absence of AspB the polar machinery is diffused and growth emergences from several sites, 3) because $\Delta aspB$ showed branching before septation and multiple abnormal branches emergence, perhaps delayed septation impedes compartmentalization of the growth machinery that allows for the emergence of 1-2 branches per compartment and therefore a diffuse machinery initiates multiple branches simultaneously, but only the ones with the appropriate amount of polarity factors are able to maintain polarity and the remaining display abnormal morphologies and abort growth, and/or 4) perhaps cytoskeletal elements involved in requirement, maintenance and trafficking of the polarity machinery are disorganized in the absence of AspB promoting hyperemergence of growth and only the axes where the cytoskeletons continue to be present are able to maintain polar growth. To assess scenario #1 overexpression of the septins can be used to determine if they are negative regulators and if so we would expect a reduction in the emergence of growth upon overexpression. For scenarios #2 and #3 localization of polarity markers can be followed by time lapse microscopy to identify if the machinery is diffused and mislocalized at certain developmental stages in $\Delta aspB$. For
scenario #4, septin deletion phenotypes can be assessed in the absence of actin and microtubules. We studied this last scenario by depolymerizing both cytoskeletons in the absence of AspB. We found that depolymerization of microtubules, but not actin, reduced hyperbranch emergence in ΔaspB. This hints that septins organize/stabilize microtubules during branch emergence. Interestingly, actin depolymerization during branch emergence in ΔaspB resulted in polarity defects (swelling and lysis) hinting that septins organize/stabilize actin for normal polar growth during branch emergence.

When isolating ΔaspB we noticed that colonies were brown-pink on plates, looked very sick and produced very little conidia. Higher resolution studies showed that conidiophores were abnormal in 100% of the population. These displayed merged layers and/or absence of layers, high deposition of chitin in the phialide-conidia interphase and poor production of conidia. These phenotypes show that AspB is key for asexual reproduction and conidiophore morphology, but how exactly it controls it is not understood. Perhaps construction of double mutants of aspB and genes already identified to play roles in conidiation can be assessed to find interactions and indentify pathways in which AspB might be working.

Nuclear related phenotypes were also observed in hyphae of ΔaspB. We observed clumping of nuclei particularly near branches and a high number of nuclei in conidial compartments of older hyphae. These phenotypes point to several possible roles: 1) AspB is part of the nuclear migration machinery in A. nidulans, and/or 2) nuclear division is continuous or abnormal in conidial compartments. To evaluate scenarios #1 and #2 time lapse microscopy using microtubule and nuclear labels in ΔaspB can be used to follow nuclear division and migration. We assessed microtubules in ΔaspB strains and observed less bundles in hyphae and
less bundles invading newly formed branches. These particular phenotypes also support that in the absence of AspB, reduced microtubule bundles could result in abortive branches in $\Delta aspB$.

Endocytosis is important for polar growth (Penalva 2010). Because we observed hyperemergence of growth in $\Delta aspB$ we assessed endocytosis in this mutant. We found that endocytic zones are of abnormal size and abnormally positioned in $\Delta aspB$ as the SlaB endocytic marker showed smaller zones and none or less exclusion from hyphal tips compared to wild type. These phenotypes point that endocytosis is abnormal in $\Delta aspB$ and/or perhaps endocytic vesicles are targeted or moved to inappropriate zones leaving the machinery diffused or attached to abnormal areas and promoting hyperemergence of growth. These ideas could be assessed by time lapse microscopy and FRAP of endocytic markers and following their recycling and destinations. Actin and microtubule labels could be added to these experiments to complement the proposed ideas of cytoskeleton disorganization promoting hyperemergence of growth.

AspB forms bars and filaments, interacts with AspA, AspC and AspE, and colocalizes with nuclei, actin and microtubules

We found that AspB localizes throughout development and growth. In dormant conidia we observed the localization of AspB bars. The presence of bars in dormant spores shows that the AspB septin structure is assembled before isotropic and polar growth. From these observations we can propose that these bars might be storage areas of preassembled septins that are “ready to go” when the cell breaks dormancy and starts growth. Another possibility is that this bar serves as a diffusion barrier that allows for the emergence of growth in only one area of the conidium and maintains polarity related machinery localized and concentrated to the hemisphere of the conidium where growth will emerge. To assess these ideas, time lapse of Cdc42, other polarity establishment machinery, actin and microtubules could be followed and
colocalized as the cell breaks dormancy, grows isotropically and initiates polar growth. These experiments will provide great insights on why the septins bars are present in dormant cells and persist throughout germtube emergence. To assess if AspB bars are storage areas, FRAP can be used in conjunction to the above experiments and see how septin dynamics affect polarity establishment dynamics and germ tube emergence. Because septins have been shown to be recycled in *S. cerevisiae*, it would be interesting to follow the fate of “pre-assembled septins” compared to new septins similar to what was done by the Thorner lab in *S. cerevisiae* (McMurray and Thorner 2008). We also observed the formation of rings at the base of emerging growth (germtubes, branches and conidiophore layers) hinting that AspB shapes and/or controls the emergence of growth. In conjunction to the deletion phenotypes and experiments described above to understand septin roles in the control of growth emergence, FRAP experiments could also assess what would happen to the emergence of growth in relation to septin dynamics and how AspB ring dynamics compare to rings in *S. cerevisiae*.

In elongated hyphae we observed filaments that localized to areas of active growth and bars that remained localized to subapical areas with no growth emergence. These two structures could be displaying different roles. Bars could be: 1) negatively regulating the emergence of growth in those areas, 2) pre-assembled septins ready to go for when new growth is added and/or 3) could be forming diffusion barriers to ensure that the polarity machinery is recruited and or remains localized to areas for new growth. To assess these ideas, experiments proposed in the previous section looking at the machinery dynamics in the absence of septins, with FRAP of the septin bars and following the effects on localization of the growth machinery could help distinguish between these scenarios. We have seen that AspB can colocalize with microtubules, the UncA kinesin motor and actin endocytic vesicles and in ΔaspB growth emergence is
abnormal and endocytic zones are abnormally position and of abnormal length. Perhaps AspB filaments at tips help to bridge interactions of actin and microtubules and the polarity machinery to ensure normal polar growth. Time lapse microscopy and colocalization of septins, actin, microtubules, endocytic vesicles and associated proteins, will help assess these possible roles.

We also observed the localization of bars and filaments to conidiophores as well as rings at the base of emerging layers. AspB bars were only seen in regions where layers were not actively emerging. The presence of septin bars in dormant conidia and quiescent regions of hyphae and conidiophores is consistent with bars playing a role in suppressing emergence of new growth and experiments like the ones proposed above could also address this in conidiophores.

Septins form heteropolymers and the absence of certain septins can affect complex assembly and function (AN et al. 2004; BERTIN et al. 2008; BERTIN et al. 2010; CAO et al. 2009; McMURRAY et al. 2011; OH and Bi 2011; SPILIOTIS and Nelson 2006b; VERSELE et al. 2004; VERSELE and THORNER 2005). We observed that AspB structures could be affected in the absence of septin partners. In the absence of AspA, AspC and both, all AspB structures were lost and only cytoplasmic fluorescence was observed. In elongated hyphae of ΔaspE, AspB filaments and bars were extremely reduced. This shows that septin–septin interactions are needed for bars and filament structures of AspB, that AspA and AspC interact with AspB and that perhaps AspE, a septin only found in filamentous fungi, helps stabilize filaments in longer polar cells. To further assess these interactions our lab is working on following structures of all septins in different septin deletion backgrounds. Also, preliminary experiments, not shown in this dissertation, showed that in protein pull downs using AspB as bait, septins AspA, B, C and D were identified. Further protein immunoprecipitation and MS analyses as well as colocalization studies and protein crystallography will help understand septin-septin interactions.
We also found that AspB colocalized with microtubules, tyrosinolated microtubules and UncA bound microtubules. This data does not address direct interaction between septins and microtubules, but the AspB localization near and between nuclei, nuclei clumping in ΔaspB, AspB colocalization with microtubules, AspB abnormal filaments after depolymerization of microtubules, microtubule bundle defects in ΔaspB, and reduced hypergrowth emergence in ΔaspB after depolymerization of microtubules, hint at septin-microtubule interactions. Perhaps septins interact with microtubules for nuclear migration and the experiments described above can help address this. Perhaps septins interact with microtubules during growth emergence and the experiments described above can also address this as well as colocalization and time lapse studies of AspB with microtubule binding proteins and motors and time lapse microscopy of microtubule motors in ΔaspB. In addition septin protein pull downs may identify proteins that bind or interact with microtubules which will also help understand their interaction.

We found that AspB colocalized with AbpA labeled vesicles and therefore actin as AbpA is an actin binding protein. This data does not address direct interaction between septins and actin, but the AspB colocalization with AbpA, previously reported septin localization to septa being dependent on actin (Westfall and Momany 2002), AspB abnormal free-floating cytoplasmic rings after depolymerization of actin, loss of tropomyosin TpmA localization to actin filaments and faint localization to septa in ΔaspB, and polarity defects during branch emergence after actin depolymerization in ΔaspB, hint at septin-actin interaction. Perhaps septins interact with actin during growth emergence and the experiments described above can also address this. The fact that tropomyosin, which blocks myosin motors from actin filaments, is lost from actin filaments in ΔaspB, suggests that hypergrowth emergence could be caused by hyperaccess of myosin to actin filaments. Following myosin motors along actin filaments by
time lapse microscopy in \(\Delta aspB \) could provide clues as well as colocalization and time lapse studies of AspB with myosin motors.

Concluding perspective

In general there are many tools in *Aspergillus nidulans* including a classical genetic system with many mutants and proteins tags available for assessing the proposed scenarios. Time lapse and Confocal microscopy are powerful tools for assessing many of these hypotheses in the septin deletion mutants and colocalization dynamics with fluorescent protein tags. Also, Electron microscopy could answer many questions related to cell wall and morphological abnormalities observed in \(\Delta aspB \). We are continuing studies with AspB and investigating its interactions with actin and microtubules and their associated proteins. In addition we will conduct septin-septin and septin-protein interaction studies looking at proteins that interact with AspB at certain developmental stages and monitor \(aspB \) expression patterns from germination to septation. All these studies will possibly show septins diverse roles in nuclear dynamics, morphology, growth and its interaction with other cytoskeletons. We expect that these studies will further support the idea that the key to septin function in any organism or in any moment in development is based on its structural arrangements and protein partners.
References

LICHIUS, A., A. BEREPKI and N. D. READ, 2011 Form follows function-The versatile fungal cytoskeleton. Fungal Biology.

CHAPTER 5
APPENDICES

GROWTH POLARITY

SEPTINS ASPA AND ASPC ARE IMPORTANT FOR NORMAL DEVELOPMENT AND LIMIT THE EMERGENCE OF NEW GROWTH FOCI IN THE MULTICELLULAR FUNGUS *ASPERGILLUS NIDULANS*

ASPERGILLUS TERREUS ACCESSORY CONIDIA ARE MULTINUCLEATED, HYPERPOLARIZING STRUCTURES THAT DISPLAY DIFFERENTIAL DECTIN STAINING AND CAN INDUCE HEIGHTENED INFLAMMATORY RESPONSES IN A PULMONARY MODEL OF ASPERGILLOSIS

1 Reprinted here with permission of publisher.
Chapter 11

Growth Polarity

MICHELLE MOMANY AND YAINITZA HERNÁNDEZ-RODRÍGUEZ

ASPERGILLOSIS AND POLAR GROWTH

All filamentous fungi use highly polar extension, adding new materials to the tips of hyphae and branches, to explore their environments in search of nutrients. Highly polar growth allows Aspergillus fumigatus to explore and invade blood vessels and tissues, resulting in the necrosis characteristic of invasive aspergillosis (Denning and Stevens, 1990; Latgé, 2001).

The small (3-μm) conidia of A. fumigatus are ubiquitous in the environment and are frequently inhaled (Beffta et al., 1998; Latgé, 2001; Pitt, 1994). In individuals with competent immune systems, alveolar macrophages and neutrophils internalize and destroy conidia before they cause disease. Conidia can also be internalized by cells which do not destroy them. Endothelial and epithelial cells have been shown to take up conidia (Lopes Bezerra and Filler, 2004; Paris et al., 1997; Wasylka and Moore, 2002). Conidia within epithelial lung cells eventually germinate and grow. Their hyphae penetrate the cell from the inside and escape to the extracellular space (Wasylka and Moore, 2002).

A. fumigatus conidia that survive to germinate eventually elaborate hyphae that invade blood vessels and from there disseminate to other sites in the host (Denning et al., 1992; Latgé, 1999) and continue to extend by polar growth, forming the filamentous, branching network common in histological sections from invasive aspergillosis patients.

A. FUMIGATUS POLAR GROWTH IN VITRO

Most of the more detailed knowledge we have of polar growth in A. fumigatus has come from in vitro characterization of early development in both A. fumigatus and Aspergillus nidulans. One thing that is clear from in vitro studies is that early development is characterized by predictable, synchronous switches between isotropic (round) and polar (tubular) morphologies. Dormant conidia are round with a uniform size and nuclei arrested in interphase (Bergen and Morris, 1983; Harris, 1997; Robinow and Canten, 1969). When A. fumigatus conidia are inoculated into medium containing a carbon source, they break dormancy and begin synchronous nuclear division and morphological development. Nuclear division and morphological development remain roughly synchronous for several nuclear divisions, at about 12 h in rich medium at 37°C (Fig. 1) (Momany and Taylor, 2000; A. Breakspear and M. Momany, unpublished data). After breaking dormancy conidia expand isotropically for approximately 4 h at 37°C. They polarize and send out the first germ tube by 6 h. Germ tubes continue polar growth to become hyphae, with the first septa forming near the bases of the hyphae by 10 h. At about the same time, the first branches emerge on the apical sides of septa. Hyphae continue polar growth, extending and branching to give rise to visible colonies by 24 h (Fig. 2). Within 36 h conidiophores develop. These asexual reproductive structures include several isotropic cell layers and produce isotropic dormant conidia, beginning the whole cycle again.

MECHANISMS OF FUNGAL POLARITY

Saccharomyces cerevisiae undergoes polar growth, although the growth is less dramatic than that seen in filamentous fungi (Pruyne and Bretscher, 2000). Unbudded yeast cells expand isotropically, switching to polar growth with bud emergence. For bud expansion, growth is once more isotropic. In a broad overview, polar growth in S. cerevisiae can be thought of as having three steps: (i) cortical markers specify the position for polar growth; (ii) signaling proteins such as the Rho GTPase
Cdc42 and its associated proteins relay this information to the morphogenetic machinery; (iii) the morphogenetic machinery deposits new cellular material in the appropriate area. The morphogenetic machinery includes everything needed to make and direct new cellular material: the cytoskeleton, secretory system, and cell wall biosynthetic machinery. Filamentous fungi generally lack homologs of the S. cerevisiae cortical markers, suggesting that cortical markers are very divergent in different fungi or that filamentous fungi use a different system for establishing positional information (Harris, 2006; Harris and Momany, 2004). One intriguing possibility is that the polarity axis in filamentous fungi is established in a stochastic manner and then becomes

Figure 1. A. fumigatus conidia were inoculated into complete medium and incubated at 37°C. Samples were fixed at the time points indicated. Arrowheads indicate septa. Asterisks indicate branches. Bars, 10 µm. (Images courtesy of Andrew Breakspear.)

Figure 2. Diagrammatic representation of A. fumigatus growth stages. See text for details.
stabilized (Harris, 2006). In contrast to cortical markers, Rho GTPases and their associated proteins and the morphogenetic machinery proteins are highly conserved among fungi.

Despite sharing core machinery, important differences between polar growth in filamentous fungi and yeasts are beginning to emerge. A recent review of polar growth in filamentous fungi highlighted several of the unique features, most notably a role for microtubules in polar growth of filamentous fungi and the importance of the Spitzenkorper, a collection of vesicles at the tip that appears to be analogous to the polarisome (Harris, 2006). In the last few years, several A. fumigatus mutations have been described that affect the isotropic-polar switch at germ tube emergence or the ability to maintain polar growth once it is established in the hypha. These polarity-related mutations fall into one of two categories. They are either mutations in signaling genes or in cell wall genes. It should be noted that because filamentous fungi are characterized by polar extension, in many cases it is difficult to say whether the inability to properly polarize results from a polarity defect or is a consequence of a more general growth defect.

Polarity-Related Signaling Genes

Calcineurin A is a serine/threonine-specific protein phosphatase involved in the antigenic response through calcium signaling. Deletion of the calcineurin A catalytic subunit, cnalA, or the Ca^{2+}-calmodulin binding subunit, calA, results in conidia with reduced surface rodlets and attenuated virulence. Deletion of calA also results in polarized conidia (a teardrop rather than round shape) that are unable to germinate (da Silva Ferreira et al., 2007; Steinbach et al., 2006).

rasA and rasB encode GTPases involved in morphogenesis and signaling. Mutation of rasA causes reduced polarization and other morphological abnormalities. Deletion of rasB results in delayed polarization and a failure to properly maintain polar growth seen as dichotomous branching. Deletion of rasB also results in a loss of virulence (Fortwendel et al., 2004, 2005).

mpkA encodes a mitogen-activated protein kinase involved in cell wall integrity and signaling (Du et al., 2006; Valiante et al., 2007). Deletion of mpkA results in broad, hyperpolar hyphae (hyperbranching) with no reduction in virulence.

Protein kinase A (PKA) is involved in cyclic AMP signaling, which is important for development and virulence. pkaC1 encodes the catalytic subunit of PKA, and deletion of pkaC1 results in a delay of polarization (Liebmann et al., 2004). Deletion of the regulatory subunit pkaR also results in delayed polarization along with broader germ tubes and hyphae (Zhao et al., 2006). Deletion of either PKA subunit also causes a loss of virulence.

Polarity-Related Cell Wall Genes

The conidial cell wall is composed of chitin, galactomannan, α-1,3-glucan, and β-1,3-glucan (Latgé et al., 2005). A. fumigatus has seven different chitin synthase genes (Ach5E, Ach5B, Ach3C, Ach3D, Ach3E, Ach3F, and Ach3G). Strains with a deletion of any single chitin synthase gene do not show a phenotype. However, ΔchsG ΔchsE double deletion conidia show improper polarization, taking on a teardrop shape, and have less chitin and more α-1,3-glucans in their walls. Interestingly, the ΔchsG ΔchsE mutant germinates early but shows no reduction in virulence (Auffauve-Brown et al., 1997; Mellado et al., 1996, 2003).

ags1, ags2, and ags3 encode α-1,3-glucan synthases. Ags1 localizes to the cell wall periphery, while Ags2 localization is intracellular. Deletion of ags1 results in reduced α-1,3-glucan in the cell wall. Deletion of ags1 and ags2 results in tip splitting, basically a failure to maintain polarity. Deletion of ags1 and ags2 does not affect virulence (Beauvais et al., 2005). Deletion of ags3 results in early germination, an increase in melanin in the conidial cell wall, and increased virulence (Maubon et al., 2006).

gel1 and gel2 encode glycosylphosphatidylinositol (GPI)-anchored β-1,3-glucanosyltransferases involved in cell wall biosynthesis. Though deletion of gel1 shows no phenotype, deletion of gel2 or both gel1 and gel2 results in hyperpolarized phialides on conidiophores which produce conidia without melanin. Virulence of these mutants is reduced (Mouyna et al., 2005).
egcm33 encodes a GPI-anchored protein involved in fungal morphology. Its deletion results in conidia with an increased diameter, defective separation, and increased chitin content (Chabane et al., 2006; Romano et al., 2006). Interestingly, Δecm33 shows an early switch to polar growth (germination) and increased virulence.

Afpg-a encodes the catalytic subunit of the GPI–N-acetylgalactosaminyl-transferase complex, which is involved in biosynthesis of GPI-anchored proteins. Deletion of Afpg-a results in swollen conidia, an early switch to polar growth (germination), cell lysis, and early conidiation. Interestingly, in this case early germination and conidiation don’t result in increased virulence, but rather in decreased virulence (Li et al., 2007).

Afpm1 encodes a protein mannosyl transferase that adds mannose to serine or threonine residues of target proteins. In systems where targets have been identified, they are mostly cell wall or secreted proteins. De-
<table>
<thead>
<tr>
<th>Related function and gene(s)</th>
<th>Protein</th>
<th>Defects upon deletion</th>
<th>Deletion fully virulent?</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signaling-related genes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cnaA</td>
<td>Calcineurin A (Ser/Thr protein phosphatase) catalytic subunit</td>
<td>Conidia lack surface rosettes; abnormal hyphae; reduced colony growth and conidiation</td>
<td>No*</td>
<td>Steinbach et al., 2006</td>
</tr>
<tr>
<td>cadA</td>
<td>Calcineurin A (Ser/Thr protein phosphatase) Ca2+/calmodulin-binding unit</td>
<td>Conidia have reduced surface rosettes, some with abnormal polarized morphology (teardrop) and some unable to polarize; hyperpolarized hyphae (hyperbranching); reduced colony growth</td>
<td>No*</td>
<td>da Silva Ferreira et al., 2007</td>
</tr>
<tr>
<td>rasA</td>
<td>Ras GTPase</td>
<td>Dominant-negative mutants have reduced polarization; dominant-active mutants have reduced conidiation and abnormal conidiophores</td>
<td>NT</td>
<td>Fortwendel et al., 2004</td>
</tr>
<tr>
<td>rasB</td>
<td>Ras GTPase</td>
<td>Delayed polarization, failure to maintain polarized hyphae (dichotomous branching) and reduced colony growth</td>
<td>No*</td>
<td>Fortwendel et al., 2005</td>
</tr>
<tr>
<td>mpkA</td>
<td>MAP kinase</td>
<td>Thick hyperpolarized (hyperbranching) hyphae and reduced colony growth</td>
<td>Yes</td>
<td>Valiante et al., 2007</td>
</tr>
<tr>
<td>pkaC1</td>
<td>PKA catalytic subunit, cAMP signaling pathway</td>
<td>Delayed polarization and reduced colony growth and conidiation</td>
<td>No*</td>
<td>Liebmann et al., 2004</td>
</tr>
<tr>
<td>pkaR</td>
<td>PKA regulatory subunit</td>
<td>Reduced and delayed polarization, broader germ tubes and hyphae, reduced colony growth and conidiation, and abnormal conidiophores</td>
<td>No*</td>
<td>Zhao et al., 2006</td>
</tr>
<tr>
<td>Cell wall-related genes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chsG and chsE</td>
<td>Chitin synthases</td>
<td>Double mutant has polarized conidia (teardrop); early switch to polar growth; reduced colony growth</td>
<td>Yes</td>
<td>Mellado et al., 2003</td>
</tr>
<tr>
<td>ags1 and ags2</td>
<td>α-1,3-Glucan synthase</td>
<td>Double deletion does not maintain polarized growth integrity (dichotomous branching); abnormal conidiophores and poor conidiation</td>
<td>Yes</td>
<td>Beauvais et al., 2005</td>
</tr>
<tr>
<td>ags3</td>
<td>α-1,3-Glucan synthase</td>
<td>Thicker conidial cell wall; increased melanin; early switch to polar growth</td>
<td>Yes, hypervirulent</td>
<td>Maubon et al., 2006</td>
</tr>
<tr>
<td>gel1 and gel2</td>
<td>GPI-anchored β-1,3-glanosyl transferase</td>
<td>gel2 or double deletion, no melanin in conidia; germination requires special medium; slow colony growth rate; some hyperpolarized phialides</td>
<td>No*</td>
<td>Mouyna et al., 2005</td>
</tr>
<tr>
<td>ecm33/sps2</td>
<td>GPI-anchored protein involved in fungal morphology</td>
<td>Increased conidial diameter; early switch to polar growth</td>
<td>Yes, hypervirulent</td>
<td>Chabane et al., 2006; Romano et al., 2006</td>
</tr>
<tr>
<td>Atp6</td>
<td>GPI-anchored protein; biosynthesis of GPI anchors</td>
<td>Swollen conidia; early switch to polar growth, cell lysis and early conidiation</td>
<td>No*</td>
<td>Li et al., 2007</td>
</tr>
<tr>
<td>Atpm1</td>
<td>PMT O-mannosyltransferases</td>
<td>Thin conidial cell wall; early switch to polar growth; reduced colony growth and poor conidiation at 42°C</td>
<td>Yes</td>
<td>Zhou et al., 2007</td>
</tr>
</tbody>
</table>

*NT, not tested; MAP, mitogen-activated protein; cAMP, cyclic AMP.
*Acinuated or no virulence.
letion of *Alpmt1* results in conidia that switch early to polar growth (early germination) and have thin walls. Strains with *Alpmt1* deleted are fully virulent (Zhou et al., 2007).

CONCLUSIONS

Because polar extension is critical to robust growth of filamentous fungi, one could predict that it is critical for virulence in invasive aspergillosis. Bearing in mind the caveats that it is often difficult to distinguish polarity defects from general growth defects and that the number of polarity-related genes so far examined is small, the recent literature supports the idea that polarity is needed for virulence. In most cases the deletion of polarity-related signaling genes leads to reduced or late polarization as measured by germ tube emergence. Deletion or mutation of *calA*, *rasA*, *rasB*, *pkaC1*, and *pkaR* all resulted in delayed or reduced germination and reduced virulence (Table 1). The only polarity-related signaling gene whose mutation did not lead to reduced polar growth was *mpkA*, which showed hyperpolarization. Consistent with the idea that polar growth is critical for virulence, Δ*mpkA* showed no reduction in virulence.

In most cases the deletion of polarity-related cell wall genes leads to early polarization as measured by germ tube emergence. Deletion of *chsG* and *chsE* or of *ags3*, *ecm33*, *Alpig-a*, or *Alpmt1* lead to early germ tube emergence (Table 1). With the exception of Δ*Alpig-a*, these mutants were fully virulent. Indeed, two of the deletions with early germ tube emergence, Δ*ags3* and Δ*ecm33*, were more virulent than wild type. Δ*Alpig-a*, the deletion strain that showed early germ tube emergence along with a decrease in virulence, also showed cell lysis, perhaps offsetting the advantages of early polarization.

At this point it is still difficult to say how much of the correlation between polarity and virulence is simply a correlation between rapid, robust growth of the pathogen and increased virulence. A better understanding of the mechanisms underlying polar growth of *A. fumigatus* in vitro and in vivo might allow the contributions of polarity and of robust growth to the organism’s pathogenesis to be separated.

REFERENCES

 Septins AspA and AspC Are Important for Normal Development and Limit the Emergence of New Growth Foci in the Multicellular Fungus Aspergillus nidulans

Rebecca Lindsey,† Susan Cowden, Yainitzia Hernández-Rodriguez, and Michelle Momany

Department of Plant Biology, University of Georgia, Athens, Georgia 30602

Received 14 September 2009/Accepted 23 November 2009

Septins are cytoskeletal proteins found in fungi, animals, and microsporidia, where they form multiseptin complexes that act as scaffolds recruiting and organizing other proteins to ensure normal cell division and development. Here we characterize the septins AspA and AspC in the multicellular, filamentous fungus Aspergillus nidulans. Mutants with deletions of aspA, aspC, or both aspA and aspC show early and increased germ tube and branch emergence, abnormal septation, and disorganized conidiophores. Strains in which the native aspA has been replaced with a single copy of aspA-GFP driven by the native septin promoter or in which aspC has been replaced with a single copy of aspC-GFP driven by the native promoter show wild-type phenotypes. AspA-GFP and AspC-GFP show identical localization patterns as discrete spots or bars in dormant and expanding conidia, as rings at forming septa and at the bases of emerging germ tubes and branches, and as punctate spots and filaments in the cytoplasm and at the cell cortex. In conidiophores, AspA-GFP and AspC-GFP localize as diffused bands or rings at the bases of emerging layers and conidial chains and as discrete spots or bars in newly formed conidia. AspA-GFP forms abnormal structures in ΔaspC strains while AspC-GFP does not localize in ΔaspA strains. Our results suggest that AspA and AspC interact with each other and are important for normal development, especially for preventing the inappropriate emergence of germ tubes and branches. This is the first report of a septin limiting the emergence of new growth foci in any organism.

Septins are novel cytoskeletal proteins first discovered in a screen for Saccharomyces cerevisiae cell cycle mutants (14). The core septin proteins, Cdc5, Cdc10, Cdc11, and Cdc12, localize to the mother/bud neck, where they assemble into heteropolymers that organize proteins necessary to complete cytokinesis and ensure proper coordination between bud formation and nuclear division (4, 16, 37, 38).

S. cerevisiae septins first appear as a cortical patch at the budding site. They later form a ring through which the bud emerges and then develop into an hourglass-shaped complex at the base of the bud that splits into two rings to complete cytokinesis (8, 10, 23). In the dimorphic fungus Candida albicans, septins assemble during the formation of buds and pseudohyphae, localize to prebud sites, and form rings at the mother/bud neck. During hyphal growth septins localize to hyphal tips and transiently as a basal band within germ tubes (33, 39). The genome of the filamentous fungus Ashbya gossypii is 90% homologous and syntenic with the genome of S. cerevisiae, though it grows in the filamentous morphology rather than the yeast morphology (6). In A. gossypii septins localize as discrete filamentous bars at septation sites, at tips of hyphae, and at the bases of emerging branches. A. gossypii septins are not essential, though they have been shown to be involved in mitosis, sporulation, hyphal morphogenesis, and septum formation (5, 9).

In mammals, septins ensure proper growth, cell migration, vesicle trafficking, and cell division (19, 32, 35, 42). Mammalian septins form distinct filaments that colocalize with and appear to organize the actin and microtubule cytoskeletons (19, 31, 35), punctate patterns at neuron terminals and vesicles, and rings in sperm cells (2, 15, 18, 43).

Aspergillus nidulans is a multicellular filamentous fungus that has five septins, AspA, AspB, AspC, AspD, and AspE (29). All five septins are expressed during vegetative and asexual growth, with AspB having the highest expression levels (29). Immunofluorescence studies showed that AspB localizes to septa and conidiophore layers and anticipates the sites of branch emergence (40). To better understand the roles of septins in shaping the growth of multicellular organisms, we characterized A. nidulans septins AspA and AspC, orthologs of S. cerevisiae Cdc11 and Cdc12, respectively (30). Septin deletion mutants were characterized throughout vegetative and asexual development. AspA and AspC are necessary for normal development and morphogenesis as well as sporulation. AspA and AspC were found to localize as rings, caps, puncta, or filaments throughout development. Localization of AspA and that of AspC appear to be mutually dependent, as AspC was unable to localize in the ΔaspA strain and AspA localization was abnormal in the ΔaspC strain.

† Corresponding author. Mailing address: Department of Plant Biology, University of Georgia, Athens, GA 30602. Phone: (706) 542-2014. Fax: (706) 542-1805. E-mail: momany@plantbio.uga.edu.

‡ Present address: U.S. Department of Agriculture, Agricultural Research Service, Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Richard B. Russell Agricultural Research Center, 950 College Station Road, Athens, GA 30605-2720.

† Published ahead of print on 30 November 2009.

MATERIALS AND METHODS

Strains and media. Strains used in this study are listed in Table 1. Media used were previously described (13). Strain construction and growth were done by standard A. nidulans techniques (13, 17). All incubations were at 30°C and in
TABLE 1. A. nidulans strains used in this paper

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype*</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A28</td>
<td>pda26 A1</td>
<td>FGSC</td>
</tr>
<tr>
<td>A773</td>
<td>pgyG99 w34 prx4A</td>
<td>FGSC</td>
</tr>
<tr>
<td>A789</td>
<td>ba1A arg8::npt_B methG1 vea1 tcpC801</td>
<td>FGSC</td>
</tr>
<tr>
<td>A1147</td>
<td>pgyG99 arg82 pda26 w34A::arg8 rib92B</td>
<td>FGSC</td>
</tr>
<tr>
<td>A1145</td>
<td>pgyG99 prx4A w34A::arg8 rib92B</td>
<td>FGSC</td>
</tr>
<tr>
<td>A3585</td>
<td>apx1::arg82 ba1A arg8::npt_B methG1 vea1 tcpC801</td>
<td>This study</td>
</tr>
<tr>
<td>A3586</td>
<td>apx1::arg82 ppyG89 w34A::arg8::npt_B methG1</td>
<td>This study</td>
</tr>
<tr>
<td>ARL141</td>
<td>apx4::GFP-Apx4pG pgyG99 ba1A arg8::npt_B methG1 vea1 tcpC801</td>
<td>This study</td>
</tr>
<tr>
<td>ARL157</td>
<td>apx4::Gfp1G pgyG99 prx4A</td>
<td>This study</td>
</tr>
<tr>
<td>ARL159</td>
<td>apx4::Gfp1G pgyG99 ba1A</td>
<td>This study</td>
</tr>
<tr>
<td>ARL161</td>
<td>apx4::Gfp1G pgyG99 ba1A arg8::npt_B methG1 vea1 tcpC801</td>
<td>This study</td>
</tr>
<tr>
<td>ARL162</td>
<td>apx4::Gfp1G ba1A arg8::npt_B methG1 vea1 tcpC801</td>
<td>This study</td>
</tr>
<tr>
<td>ARL183</td>
<td>apx4::Gfp1G ppyG89 w34A::arg8 ba1A</td>
<td>This study</td>
</tr>
<tr>
<td>ARL185</td>
<td>apx4::Gfp1G ppyG89 w34A::arg8</td>
<td>This study</td>
</tr>
<tr>
<td>ARL201</td>
<td>apx4::Gfp1G ppyG89 w34A::arg8</td>
<td>This study</td>
</tr>
<tr>
<td>ARL205</td>
<td>apx4::Gfp1G ppyG89 w34A::arg8</td>
<td>This study</td>
</tr>
<tr>
<td>ARL206</td>
<td>apx4::Gfp1G ppyG89 ba1A arg8::npt_B methG1 vea1 tcpC801</td>
<td>This study</td>
</tr>
</tbody>
</table>

* The symbol \& indicates haploid foci made to disrupt diploid strain.
* FGSC, Fungal Genetics Stock Center, Department of Microbiology, University of Kansas Medical Center (Kansas City, KS).

complete medium (1% glucose, 0.2% peptone, 0.1% Casamino Acids, 0.1% yeast extract, trace elements, nitrate salts, and 0.01% vitamins, pH 6.5) with amino acid supplements (17) except where noted. Green fluorescent protein (GFP) diploid strains were generated as previously reported (12) by mixing conidiospores from a wild-type strain (A773 or A789) with those from the AspA-GFP (ARL141) or AspC-GFP (ARL159) strain, respectively. Heterokaryotic germ tubes were plated into minimal agar from which only diploids could emerge. The resulting diploid conidia were streaked for isolation two times to yield strains ARL205 and ARL206, respectively. Localization was examined in four GFP bright strains for each diploid.

Growth conditions and microscopic observations. Preparation and growth of cells were as previously reported (28). Briefly, conidia were inoculated on sterile coverslips in liquid complete or minimal medium and incubated at 30°C in a petri dish. Cells were fixed, septa were stained with calcifluor (American Cyanidin, Wayne, NJ), and nuclei were stained with Hoechst 33342 (Sigma, St. Louis, MO). Morphological observations were made using a Zeiss (Thornwood, NY) Axioskop microscope with appropriate filters, and digital images were acquired using an Axio (Axion Technology) digital imaging system. For all GFP fusion observations, recipient strain had not been transformed with GFP cassettes were viewed under identical settings to verify that there was no autofluorescence. Images were prepared using Photoshop CS version 6.0 (Adobe, Mountain View, CA). For quantification of phenotypes, counts of 200 cells were done. All experiments were repeated at least three times with similar results. A representative data set is shown.

Axenic structures. Preparation of conidiospores was as previously reported (20). Briefly, conidia were inoculated on the edges of a square of complete agar medium which was sandwiched between two coverslips and placed on top of water agar to prevent the complete agar from drying out. Plates were incubated inverted at 30°C for 2 days. To observe conidiospore structures, coverslips with

TABLE 2. Primers

<table>
<thead>
<tr>
<th>Construct or primer type</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>apx4 deletion</td>
<td>Forward: GCTCTAGAGACCGCCGCAAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>Flank 1</td>
<td>Reverse: TCCATGACGAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>Flank 2</td>
<td>Reverse: TCCATGACGAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>Δapx4 check</td>
<td>Reverse: TCCATGACGAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>apx4::Gfp</td>
<td>Forward: GCTCTAGAGACCGCCGCAAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>Native apx4</td>
<td>Reverse: TCCATGACGAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>Plasmid pFN03 (G4s::Gfp)</td>
<td>Forward: AGGCCGGAGGAGCAGGCAGAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>Downstream native apx4</td>
<td>Reverse: TCCATGACGAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>apx4::Gfp check</td>
<td>Reverse: TCCATGACGAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>apx4 deletion</td>
<td>Forward: GCTCTAGAGACCGCCGCAAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>Upstream native apx4</td>
<td>Reverse: TCCATGACGAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>Plasmid pFN03</td>
<td>Forward: AGGCCGGAGGAGCAGGCAGAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>Downstream native apx4</td>
<td>Reverse: TCCATGACGAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>Δapx4 check</td>
<td>Reverse: TCCATGACGAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>apx4::Gfp</td>
<td>Forward: GCTCTAGAGACCGCCGCAAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>Native apx4</td>
<td>Reverse: TCCATGACGAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>Plasmid pFN03</td>
<td>Forward: AGGCCGGAGGAGCAGGCAGAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>Downstream native apx4</td>
<td>Reverse: TCCATGACGAGGGCCGACAGGAG</td>
</tr>
<tr>
<td>apx4::Gfp check</td>
<td>Reverse: TCCATGACGAGGGCCGACAGGAG</td>
</tr>
</tbody>
</table>

complete medium (1% glucose, 0.2% peptone, 0.1% Casamino Acids, 0.1% yeast extract, trace elements, nitrate salts, and 0.01% vitamins, pH 6.5) with amino acid supplements (17) except where noted. Green fluorescent protein (GFP) diploid strains were generated as previously reported (12) by mixing conidiospores from a wild-type strain (A773 or A789) with those from the AspA-GFP (ARL141) or AspC-GFP (ARL159) strain, respectively. Heterokaryotic germ tubes were plated into minimal agar from which only diploids could emerge. The resulting diploid conidia were streaked for isolation two times to yield strains ARL205 and ARL206, respectively. Localization was examined in four GFP bright strains for each diploid.

Growth conditions and microscopic observations. Preparation and growth of cells were as previously reported (28). Briefly, conidia were inoculated on sterile coverslips in liquid complete or minimal medium and incubated at 30°C in a petri dish. Cells were fixed, septa were stained with calcifluor (American Cyanidin, Wayne, NJ), and nuclei were stained with Hoechst 33342 (Sigma, St. Louis, MO). Morphological observations were made using a Zeiss (Thornwood, NY) Axioskop microscope with appropriate filters, and digital images were acquired using an Axio (Axion Technology) digital imaging system. For all GFP fusion observations, recipient strain had not been transformed with GFP cassettes were viewed under identical settings to verify that there was no autofluorescence. Images were prepared using Photoshop CS version 6.0 (Adobe, Mountain View, CA). For quantification of phenotypes, counts of 200 cells were done. All experiments were repeated at least three times with similar results. A representative data set is shown.

Axenic structures. Preparation of conidiospores was as previously reported (20). Briefly, conidia were inoculated on the edges of a square of complete agar medium which was sandwiched between two coverslips and placed on top of water agar to prevent the complete agar from drying out. Plates were incubated inverted at 30°C for 2 days. To observe conidiospore structures, coverslips with
FIG. 1. Multiple germ tubes and branches emerge from ΔaspA, ΔaspC, and ΔaspA ΔaspC strains. Conidia of wild-type and mutant strains were inoculated into liquid medium and incubated for 5, 8, or 14 h; fixed; and photographed with differential interference contrast optics. Panels show composites of multiple cells from each time point. Scale bar, 5 μm.

aerial hyphae and conidiophores attached were fixed, mounted on slides, and observed microscopically.

Fluorescent tags and gene knockouts. The ΔaspA strain was generated by transforming A. nidulans AS50 with plasmid pOAS15 using the protoplasting method. Approximately 800 bp upstream of the aspA gene (flank 1) was amplified using the Molecular Bio Products EasyStart Micro 20 kit (San Diego, CA) with primers AspAko_XbaI_1 and AspAko_BamHI_1 (Table 2), which introduced XbaI and BamHI sites, respectively. Approximately 1,000 bp downstream of the aspA gene (flank 2) were PCR amplified using the Molecular Bio Products EasyStart Micro 20 kit (San Diego, CA) with primers AspAko_HindIII_2 and AspAko_KpnI_2 (Table 2), which introduced HindIII and KpnI sites, respectively. The PCR products were cut with the appropriate restriction enzymes and then ligated on either side of the argB gene in the pAspB2 plasmid, resulting in plasmid pOAS15. Flank 1 was located at the 3' end of the argB gene, and flank 2 was located at the 5' end of the argB gene. After pOAS15 was confirmed by restriction digestion, it was used to transform A. nidulans AS50 by the protoplasting method. The resulting transformants were checked by PCR (primers listed in Table 2) and confirmed by Southern blotting to ensure that a single homologous integration under the endogenous promoter was obtained.

All PCRs and fusion PCRs were conducted using Invitrogen AccuPrime PFX DNA polymerase as previously described (44). The ΔaspC strain was generated by a complete replacement of the aspC gene with the AffyrG gene. This was done by amplifying three separate fragments: the first fragment was 1 kb upstream of the aspC start codon (AS50 template), the second fragment was 1 kb downstream of the aspC stop codon (AS50 template), and the third fragment was the AffyrG gene (pFNO3 plasmid template), which included 300 bp before the aspC start codon and 30 bp after the stop of the aspC stop codon added to facilitate fusion PCR (primers listed in Table 2). Each DNA fragment was run on an 0.8% agarose gel, and the bands were excised and cleaned with the Qiagen QIAquick gel extraction kit (Maryland). Equal amounts of each fragment were used in the fusion PCR. The fusion PCR product was then run on a gel to ensure that a single band was obtained, and the band was then excised and gel purified with the Qiagen QIAquick gel extraction kit (Maryland). The cleaned DNA was used to transform A. nidulans Δfka1 strains by protoplasting. The resulting transformants were checked by PCR, which utilized primers in the 5' region of the cassette and the pyrG region of the cassette (Table 2). The colonies that were positive for the fusion cassette were analyzed by Southern blotting to confirm that only a single copy of the cassette was incorporated by homologous recombination at the desired location.

Cassettes for GFP fusion were created in the S. Osrani lab and obtained through the Fungal Genetics Stock Center (http://www.fgsc.net) (44). GFP strains were constructed by amplifying the target gene (aspA or aspC) excluding the stop codon (AS50 template), 2 kb downstream of the target gene (AS50 template), and the GFP AffyrG cassette (pFNO3 template) with the addition of approximately 30 bp before and after the stop codon added to the 5' and 3' ends to facilitate the fusion PCR (primers listed in Table 2). Each PCR product was run on an 0.8% agarose gel, and the band was excised and cleaned with the Qiagen QIAquick gel extraction kit (Maryland). Equal amounts of each fragment were used for the fusion PCR. After fusion PCR the DNA was run on a gel, excised to ensure that a single band was obtained, and gel purified with the Qiagen QIAquick gel extraction kit (Maryland). A. nidulans Δfka1 strains were then transformed with the cleaned DNA by the protoplasting method. The resulting transformants were checked by PCR, which utilized primers that flanked the entire fusion PCR product (Table 2). The colonies that were positive for the fusion cassette were analyzed by Southern blotting to confirm that only a single copy of the cassette was incorporated by homologous recombination at the desired location. At least four independent transformants were characterized.

RESULTS

In ΔaspA, ΔaspC, and ΔaspA ΔaspC strains, germ tubes emerge early, germ tube and branch emergence increases, and septation and conidiation are reduced. In the filamentous fungus A. nidulans development begins with uninucleate asexual
conidiospores break dormancy in the presence of a carbon source. Soon after conidia break dormancy, nuclear division begins and a single primary germ tube emerges and grows by tip extension (11, 13, 27). After germings pass a critical size threshold, nuclear division triggers septum formation (41). This normally occurs when germings contain 8 to 16 nuclei. At about the same time a secondary germ tube emerges from the conidium in a bipolar pattern, opposite from the site where the first germ tube emerged. After subapical and apical compartments are formed through septation, generally only one branch emerges per active subapical compartment of the hypha (21). To determine if the septins AspA and AspC play roles in A. nidulans development, we compared wild-type strains to strains in which individual septin genes were deleted (ΔaspA, ΔaspC, ARL161) or in which both septins were deleted (ΔaspA ΔaspC, ARL162). After 5 h at 30°C, no germ tubes were yet visible in the wild type, while 52 to 58% of deletion strain cells had germ tubes (n = 200; Fig. 1 and 2). When incubated for 8 h, 92% of wild-type cells had one germ tube, while 75 to 82% of single deletion mutants and 95% of double deletion mutants had two or more germ tubes (Fig. 1 and 2). If two germ tubes formed in the wild-type strain, they were usually separated by 180°. In the septin deletion mutants multiple germ tubes were adjacent to each other or separated by 45°, 90°, or 180° (data not shown). Branch emergence was assayed by counting the number of hyphae that had formed at least one branch. When cells were incubated for 14 h, branches emerged in 7% of wild-type cells, 58% of ΔaspA cells, 56% of ΔaspC cells, and 82% of the double deletion mutants (n = 200; Fig. 1 and 2). In addition to branching early, the mutants also showed more branches or branch initials relative to wild type.

Because septin deletion mutants appeared to develop more rapidly than wild type and because nuclear division is known to trigger septation (41), we scored septation based on nuclear number rather than time of incubation. After 11 h of incubation, nuclei and septa were labeled and only hyphae with 16 nuclei were scored. All wild-type cells, 12% of ΔaspA cells, and 3% of ΔaspC cells with 16 nuclei had septa (n = 200). No ΔaspA ΔaspC cells with 16 nuclei contained septa (data not shown). To determine whether septation in the septin deletion mutants was reduced or simply delayed, we examined cells after 15 h of incubation, a time when all hyphae had >32 nuclei. All wild-type cells and 95% of ΔaspA cells had at least one septum. In contrast, only 28% of ΔaspC and 38% of ΔaspA ΔaspC cells had at least one septum (n = 200; Fig. 2). The intensity of septum staining with calcofluor was reduced and difficult to see and photograph in ΔaspC and ΔaspA ΔaspC cells compared to wild-type and ΔaspA cells (data not shown). In plate assays of growth, we saw no obvious defect of septin deletion mutants with addition of the cell wall-perturbing agent calcofluor and no obvious difference in radial growth rate at restrictive temperature (data not shown).

During asexual reproduction (conidiation), an aerial hypha emerges from the main hypha and swells at its tip to form a vesicle. From the vesicle two ordered layers of cells emerge sequentially (metulae and phialides), ultimately giving rise to chains of conidiospores.

We compared conidiophores (asexual structures) of wild type to septin-deleted strains (Fig. 3). Wild type had regular layers and a chain of conidiospores (Fig. 3A). ΔaspA, ΔaspC, and ΔaspA ΔaspC mutants had irregular and fused layers in the conidiophore and produced fewer spores (Fig. 3B to H). AspA and AspC localize to dormant conidia, emerging germ tubes, emerging branches, septa, and emerging conidiophore layers. To localize the septins, we made in-frame fusions of GFP to the 3' end of the open reading frames encoding AspA and AspC. To make expression as close to wild-type levels as
possible, fusions were integrated at the asp4 or aspC locus behind the native asp promoter, replacing the wild-type gene. To determine whether the GFP tag might interfere with septin function, we compared the phenotypes of AspA-GFP fusion strains (AspA-GFP, ARL141, and AspC-GFP, ARL161) with those of wild-type and septin-deleted strains. Germ tube and branch emergence, septation, and conidiation were all wild type in the septin-GFP strains, indicating that the GFP tag does not interfere with function (Fig. 2 and data not shown).

AspA-GFP was visible as spots or short rods in dormant conidia. There was generally a single very bright spot either alone or with dimmer spots (Fig. 4A). As the conidium expanded, AspA-GFP localization became more punctate and cortical (Fig. 4A and B), and as polarization occurred, AspA-GFP was found at the base and growing tip of the germ tube (Fig. 4B). In hyphae, AspA-GFP showed cytoplasmatic localization that was often punctate at the cortex and brighter at hyphal tips and emerging branches (Fig. 4C, D, E, and G). AspA-GFP was also visible as a ring or cap at forming septa and emerging branches (Fig. 4E and F). In conidiophores, AspA-GFP localized transiently to each individual layer as it emerged, persistently to the phialide-conidiophore interface at the base of the forming chain of spores and generally as a single bright spot in each conidium, either alone or with dimmer spots (Fig. 5). Localization of AspA-GFP was also examined in a heterozygous diploid strain containing one copy of aspA-GFP and one of native asp4 (ARL205). Localization of AspA-GFP in the heterozygous diploid strains was identical to localization in the haploid strain (data not shown). Localization of AspC-GFP was virtually indistinguishable from AspA-GFP at all stages examined in both haploid and heterozygous diploid strains (data not shown).

AspA localizes abnormally in ΔaspC cells, and AspC fails to localize in ΔaspA cells. In most cases where septins have been studied, different septins interact to form heteropolymers. To investigate whether AspA and AspC require each other for localization, we made strains in which one septin was fused to GFP and the other septin was deleted. From crosses of AspC-GFP and Δasp4 strains, we examined four progeny that contained both the deletion and the GFP fusion based on PCR analysis (ARL182 to ARL185). In all cases we no longer observed specific localization of AspC in the Δasp4 background in vegetative or asexual growth (Fig. 6A). From crosses of AspA-GFP and ΔaspC strains, we examined two progeny that contained both the deletion and the GFP fusion based on PCR analysis (ARL198 and ARL201). AspA-GFP in ΔaspC cells localized as a tiny bright dot in conidia (Fig. 6B). AspA-GFP
continued to localize as a single very bright dot or a short bar at different locations during the remaining developmental stages (Fig. 6B), except in the conidiophore where multiple dots were seen (Fig. 6B).

DISCUSSION

AspA and AspC interact genetically and have similar functions in germ tube and branch emergence, septation, and conidiation. Our finding that ΔaspA, ΔaspC, and ΔaspA ΔaspC strains are viable is in sharp contrast to findings in *S. cerevisiae*, where the orthologous genes, **CDC11** (aspA ortholog) and **CDC12** (aspC ortholog), are essential (7). Phenotypes of ΔaspA and ΔaspC strains were almost identical in *A. nidulans*, with both strains showing early and increased germ tube emergence, increased branch emergence, delayed or reduced septation, and disorganized conidiophores. The only phenotype that differed between the deletion strains was seen after 15 h of incubation, at which time ΔaspA cells made normal levels of septa after an initial delay, while ΔaspC cells showed a reduction in the total number of septa.

The very similar phenotypes in ΔaspA and ΔaspC strains suggest that AspA and AspC play very similar roles in germ tube and branch emergence, septation, and conidiation. The identical localization patterns of AspA-GFP and AspC-GFP are consistent with the view that these septins have similar functions. However, the increased severity of all phenotypes in the ΔaspA ΔaspC double mutant suggests that there might be subtle differences between these septins. One possible difference would be the individual positions of AspA and AspC within multisepin complexes. In *S. cerevisiae*, AspA ortholog Cdc11 and AspC ortholog Cdc12 associate directly with each other in the bud neck septin complex, where Cdc12 is thought to be the central septin associating with both Cdc11 and Cdc3 and linking them into the complex (3, 37). Our finding that AspA localizes to abnormal structures in strains lacking AspC and that AspC does not localize at all in strains lacking AspA suggests that the Cdc11 ortholog AspA might be the central septin in the *A. nidulans* septin complex and/or that AspA might be needed for the retention of AspC in complexes.

AspA and AspC localize as spots, rings, collars, and filaments. Consistent with the idea that AspA and AspC play similar roles, AspA and AspC show virtually identical localization patterns. Typically, fungal septins localize as rings or collars through which new growth emerges, cross walls delineating compartments, or caps at hyphal tips (22). AspA and AspC show these typical fungal localization patterns, forming rings or collars through which germ tubes, branches, and conidiophore layers emerge; septa delineating hyphal compartments; and diffuse caps at tips of actively growing hyphae (Fig. 4 and 5). In addition to these typical fungal localization patterns, AspA and AspC localize as dots or short bars, puncta, or elongated filaments, patterns previously described mainly for animal septins (Fig. 4) (22).

AspA and AspC are involved in, but not required for, septation. While *S. cerevisiae* strains with mutations in septin core complex members make no septa and cannot complete cytokinesis (16), *Schizosaccharomyces pombe* septic mutants form septa and divide, though the process is delayed in some mutants (24, 34). Thus, it was not too surprising that *A. nidulans* ΔaspA, ΔaspC, and ΔaspA ΔaspC strains made at least some septa. After an initial delay, ΔaspA strains made near-wild-type...
on staining with the chitin-binding dye calcifluor, suggesting that AspC has a unique role in septation and that this role cannot be filled by other septins. This is somewhat similar to the case in S. pombe, where a mutant in Spn3, the AspC ortholog, shows delayed cytokinesis, a more severe effect than loss of Spn3 (1). These differences in septin defects are consistent with recent literature showing that though different septins interact for proper function, septin dynamics within a complex can vary (5).

AspA and AspC influence the number of new growth foci and their patterns. During vegetative growth ΔaspA, ΔaspC, and ΔaspA ΔaspC mutants showed increased emergence of new growth foci, making extra germ tubes and branches (Fig. 1). In addition to having too many germ tubes, their spatial pattern is disrupted in ΔaspA, ΔaspC, and ΔaspA ΔaspC mutants. In wild-type A. nidulans, a single germ tube emerges from the conidium and is generally followed later by emergence of a second germ tube 180° relative to the first (27). In contrast, second germ tubes in the ΔaspA, ΔaspC, and ΔaspA ΔaspC mutants emerge axial or at 45° or 90° relative to the first germ tube, indicating a disruption of spatial pattern. In wild-type hyphae generally a single branch emerges from each compartment delineated by septa (21). Thus, we cannot predict the normal position for a second branch within a compartment and so cannot determine whether the multiple, closely spaced branches that emerge from compartments of ΔaspA, ΔaspC, and ΔaspA ΔaspC mutants indicate a disruption of spatial pattern or simply an increase in the number of new growth foci.

During asexual reproduction in A. nidulans, a regular, organized, multilayered conidiophore that bears chains of spores (conidia) is made by a process that closely resembles budding in yeast (36). During conidiation in ΔaspA, ΔaspC, and ΔaspA ΔaspC mutants, the multiple layers of the conidiophore are disorganized and the number of conidia is reduced (Fig. 3). This disorganization appears to affect different layers of the multilayered structure in individual conidiophores within a population. In some conidiophores the deletion phenotype appears to be a patterning defect, and in others it appears to be a cell division or separation defect.

In S. cerevisiae, septin mutants show disruption of normal axial and bipolar budding patterns (24, 26), and so the disruption of germ tube emergence patterns in ΔaspA, ΔaspC, and ΔaspA ΔaspC mutants was not too surprising. However, we were very surprised to see the increased germ tube and branch emergence in the A. nidulans septin mutants. Though S. cerevisiae septin mutants form cells with multiple buds, this multibud phenotype is thought to result from failure to complete cytokinesis, which normally separates buds from the mother cell, not from simultaneous emergence of new buds (25). During vegetative growth of filamentous fungi like A. nidulans, there is no separation of germ tubes and branches from the hypha comparable to the separation of buds from the mother cell at cytokinesis in yeast. Cytokinesis in filamentous fungi results in partitioning of hyphal compartments by septa, a process which still takes place in the ΔaspA, ΔaspC, and ΔaspA ΔaspC mutants, although it is delayed or reduced. This is, to our knowledge, the first report of an increase in the number of new growth foci associated with loss of septin function in any or-

FIG. 5. AspA localizes to emerging conidiophore layers. The AspA-GFP strain was incubated on agar between glass coverslips, and live cells were photographed using fluorescence microscopy. AspA-GFP at vesicle-metula interface (A) and phialide-conidiospore interface (B and C). Scale bar, 5 μm.
FIG. 6. AspC fails to localize in Δasp-4 cells, and AspA localizes abnormally in ΔaspC cells. (A) An AspC-GFP, Δasp-4 strain was incubated, and live cells were photographed using fluorescence microscopy. (B) An AspA-GFP, ΔaspC strain was incubated, and live cells were photographed using fluorescence microscopy. Scale bar, 5 μm.

ACKNOWLEDGMENT

This work was supported by National Science Foundation grant MCB-0211787 to M.M.

REFERENCES

5. DeMay, B. S., R. A. Mestrole, P. Occhipinti, and A. S. Gladfelter. 2009. Regulation of distinct septin rings in a single cell by Elm1p and Girdl1p kinases. Mol. Biol. Cell 20:2311–2326.

Aspergillus terreus accessory conidia are multinucleated, hyperpolarizing structures that display differential dectin staining and can induce heightened inflammatory responses in a pulmonary model of aspergillosis

Eszter Deak,1 Michael Nelson,2 Yainitza Hernández-Rodriguez,2 Lalitha Gade,1 John Baddley,1 Michelle Momany,3 Chad Steele2 and S. Arunmozhi Balajee1,4

1Mycotic Diseases Branch; Centers for Disease Control and Prevention; Atlanta, GA USA; 2Department of Medicine; University of Alabama-Birmingham; Birmingham, AL USA; 3Department of Plant Biology; University of Georgia; Athens, GA USA

Key words: Aspergillus terreus, accessory conidia characterization, β-glucan, aspergillosis, pathogenesis

In addition to phialidic conidia (PC), A. terreus produces accessory conidia (AC) both in vitro and in vivo. AC are distinct from PC in cell surface architecture, with the AC surfaces displaying more β-glucan, a molecule that can be a trigger for the induction of inflammatory responses. The present study follows β-glucan cell surface presentation throughout the course of germination of both types of conidia, and analyzes the differential capacity of AC and PC to elicit immune responses. Results show that AC display early, increased dectin-1 labeling on their cell surfaces compared to PC, and this differential dectin-1 labeling is sustained on the cell surface from the time of breaking dormancy through early germ tube emergence. Mouse alveolar macrophages showed a stronger inflammatory cytokine/chemokine response when challenged with AC than with PC in both ex vivo and in vivo experiments, correlating with the greater exposure of β-glucan exhibited by AC. Further, histopathologic staining of the lungs of mice challenged with AC demonstrated heightened cell recruitment and increased inflammatory response compared to the lungs of mice challenged with PC. Our study also demonstrates that AC are multinucleate structures with the ability to germinate rapidly, polarizing in multiple directions and producing several hyphal extensions. We present evidence that A. terreus AC are phenotypically distinct from PC and can be potent activators of the innate immune mechanism thus possibly playing a role in this organism’s pathogenesis.

Introduction

Aspergillus terreus produces two types of asexual conidia: accessory conidia (AC, asexual conidia formed directly on hyphae) and phialidic conidia (PC, asexual conidia arising from conidiophores generated on hyphae).1 Accessory conidia are produced both in vitro and in vivo, and a recent study from our laboratory indicated that AC were morphologically distinct from PC in that they lacked a pigment-like outer layer and were larger than PC.1 We demonstrated other phenotypic differences between these two conidial forms including the ability of AC to germinate more rapidly, enhanced adherence of AC to microspheres, heightened AC metabolic activity, less cell membrane ergosterol and lower susceptibility of AC to the antifungal drug amphotericin B.1,2,3 Additionally, our study showed that dormant AC displayed uniform β-glucan staining, with enhanced staining in a ring pattern suggestive of a bud scar, in contrast to PC, for which β-glucan staining demonstrated a non-uniform staining pattern.1

β-glucan recognition has been shown to be important in innate immune defenses against many pathogenic fungi, including Pneumocystis carinii, Coccidioides posadai, Histoplasma capsulatum and Aspergillus fumigatus.2,3 In the yeast Candida albicans, exposure of β-glucan patches at budding and cell separation has been shown to elicit inflammatory responses in macrophages through Dectin-1 mediated β-glucan recognition.4,5 In A. fumigatus, the β-glucan moieties are concealed in dormant conidia by surface hydrophobins or rodlet layers.17 Over the course of germination surface β-glucans are unmasked, becoming most evident during spore swelling and early germ tube formation, and are again veiled in the early stages of hyphal growth.4,5,11,18 Exposed β-glucans are recognized by Dectin-1 receptors on alveolar macrophages, and thus induce stage specific inflammatory responses against fungal morphological forms undergoing rapid

1Correspondence to: S. Arunmozhi Balajee; Email: f16@cdc.gov
Submitted: 01/14/11; Revised: 04/11/11; Accepted: 04/12/11
DOI:

www.landesbioscience.com Virulence 1
cell cycle processes, indicative of the potential for invasion or early infection. Blockage of Dectin-1 recognition of β-glucans substantially increases susceptibility to infection through down-regulation of chemokine/chemokine production. Phenotypic differences and unique germination and metabolic rates between Aspergillus species conidia may account for differences in invasiveness and dissemination. The same may be true of AC compared to PC. Given our recent findings of differential labeling of β-glucan on AC compared to PC, the present study was designed with the following objectives: (1) to compare β-glucan labeling over time on A. fumigatus conidia and A. terreus AC and PC, (2) to measure cytokine/chemokine production by macrophages exposed to AC versus PC ex vivo and (3) to compare inflammatory responses to AC and PC in an in vivo pulmonary mouse model of aspergillosis. Additionally, we explored other phenotypic features of AC including number of nuclei and polarization of these structures.

Results

Species-specific differences in β-glucan display on phialidic conidia. Staining with soluble dectin-1 was performed on A. fumigatus and A. terreus PC to demonstrate surface β-glucan display. As described previously in reference 20, no β-glucan label was observed on the surface of dormant A. fumigatus PC (Fig. 1A). In contrast, dormant A. terreus PC exhibited irregular staining around the conidia. During germination, PC from both species displayed uniform binding of dectin-1 to the cell surface (Fig. 1B). Early germlings of A. fumigatus displayed staining over the entire conidial and hyphal surface, with concentrated staining at the tips, whereas A. terreus germlings displayed uniform dectin-1 staining on both the conidia and the germ tube, without enhanced tip staining (Fig. 1C). Dectin-1 labeling was apparent on mature A. fumigatus hyphae, but low. Meanwhile, the A. terreus hyphae demonstrated intense punctuate (spotted) staining, and the emergence of AC that displayed dectin-1 staining (Fig. 1D).

Staining with soluble dectin-1 is heightened on Aspergillus terreus accessory conidia. Given the differences observed in A. terreus PC and AC β-glucan labeling in our previous study, we were also interested in looking at stage-specific β-glucan display between these conidial forms. We therefore examined the ability of dectin-1 to recognize A. terreus AC at different stages of maturation (Fig. 2). Fluorescence microscopy revealed that, in contrast to the irregular staining of A. terreus dormant PC (Fig. 1A), the entire surface of freshly harvested AC bound dectin-1, with a heightened detection of evidence on one side of the AC (Fig. 2A). A. terreus PC exhibited uniform dectin-1 labeling as swelling occurred (Fig. 1B), while the pattern of swollen AC continued to have uniform staining with enhanced “ring-shaped” staining (Fig. 2B). Early germ tubes emerging from A. terreus PC stained homogenously (Fig. 1C), whereas the AC germlings maintained very strong dectin-1 recognition on the originating conidial surface, with concentrated ring-shaped patch staining similar to that seen in the dormant and swollen stages, in addition to uniform staining of the entire germ tube (Fig. 2C). During hyphal extension, dectin-1 labeling became more irregular for A. terreus PC (Fig. 1D) and AC (Fig. 2D) hyphae. At this stage, the two conidial forms looked identical, as both were producing AC on their hyphae, and the attached AC were clearly recognized and stained with soluble dectin-1. Accessory conidia that were attached to hyphae did not have the heightened ring-shaped staining observed on harvested AC.

Aspergillus terreus conidia are multinucleate structures. The DNA intercalating Hoechst dye was employed to ascertain nuclear content within freshly harvested AC (Fig. 3B) and PC (Fig. 3C). Accessory conidia were found to be multinucleated, with the nuclear number varying considerably. On average, AC contained three to four nuclei, but as many as seven could be distinguished in some AC. Nuclear staining was absent in several AC, possibly due to insufficient incorporation of the Hoechst dye into the cells or nonviability of the conidia. Hoechst staining was also performed on AC still attached to the hyphae (Fig. 3A). Again, the AC were found to contain multiple nuclei. Furthermore, AC were found to produce multiple germ tubes in early germ tube formation (Fig. 4). Dormant A. terreus PC were found to contain, on average, two, with as many as three nuclei (Fig. 3C), whereas dormant A. fumigatus PC contained only one nucleus (Fig. 3D).

Aspergillus terreus accessory conidia, but not phialidic conidia, elicit a heightened inflammatory response. Given that β-glucan displayed different patterns of expression in AC and PC, we hypothesized that inflammatory responses to the two conidial forms would also differ. Initial examination of the inflammatory response utilized mouse alveolar macrophages exposed to either AC or PC ex vivo. The results showed that, consistent with the pattern of β-glucan display, co-culture of AC with alveolar macrophages elicited a heightened inflammatory response, with significantly increased production of MCP-1, IL-6, IL-1β, G-CSF, TNFα, CXCL2/MIP-2, KC, CCL4/MIP-1β, CCL3/MIP-1α and IL-1α compared to PC elicited responses after only 2 h (data not shown). Differences in chemokine/chemokine production proved more profound after 6 (Fig. 5A) and 20 (Fig. 5B) h. Production of chemokines and cytokines was not appreciably altered by heat killing the conidia (data not shown). Negligible levels of chemokine and cytokine production were observed for unstimulated alveolar macrophages (controls).

Further investigations assessed chemokine and cytokine production in the lungs after intratracheal challenge with A. terreus AC or PC. In vivo and ex vivo experiments demonstrated a similar trend of increased chemokine/chemokine production elicited by AC compared to PC, albeit with more G-CSF, MCP-1, IL-6 and IL-1β production observed in vivo (Fig. 6A). Additionally, hematoxylin and eosin staining, also performed on the lungs of these intratracheally challenged mice, indicated infiltration of cells into the site of infection (Fig. 6B), in support of the chemokine and cytokine data. Little inflammatory response was observed in PBS-challenged mice (controls).

Discussion

The extent of differences inherent amongst the aspergilli is often underappreciated, but is evidenced by phenotypic features such
Figure 1. Differential dectin-1 binding on *Aspergillus fumigatus* and *Aspergillus terreus* phialidic conidia. Soluble dectin-1 binding *A. fumigatus* and *A. terreus* phialidic conidia at various stages of germination (A) dormant conidia (B) swollen conidia (C) early germ tube formation and (D) late germination. Differential interference microscopy (DIC) and fluorescence images were captured by microscopy at 40x (A) and 100x (B–D), and are representative of 3 experiments. Scale bars denote 5 μm and 10 μm for 40x and 100x magnification, respectively.

as color, hydrophobicity, rate of germination, cell size and surface structure. For instance, although both *A. fumigatus* and *A. nidulans* conidia contain two hydrophobins, RodAp and RodBp (*A. fumigatus*), RodAp and DewAp (*A. nidulans*), and the rodA gene of *A. fumigatus* has been shown to complement homologous RodAp mutations in *A. nidulans*, the rodB gene is unable to complement *A. nidulans* DewAp mutations in spite of having the same molecular mass and similar signal sequence. Analysis of physicochemical properties in the RodAp knockouts of the two species also suggests that there may be other differences in the composition of their outer cell walls, i.e., lipid and glycoprotein content, that are unmasked by disruption of the rodlets upon germination.

Similarly, the asexual conidia of *A. fumigatus* and *A. terreus* are distinct in color and cell size and recent studies in our laboratory indicate differential rates of germination and hydrophobicity between these conidia. In this study, we further demonstrate that *A. terreus* PC have an average of two nuclei compared to *A. fumigatus* conidia, which often contain one nucleus. Additionally, PC of both species exhibit distinct cell surface characteristics including β-glucan expression. Specifically, there was no β-glucan staining on the surface of dormant *A. fumigatus*
cells, i.e., Toll-like receptor 4 (TLR4) and mannose receptors, thus modulating stage specific immune responses.17,20,21,22 Here, we show that the two different conidial types of \textit{A. terreus} have differential \(\beta\)-glucan display and accordingly are recognized differently by immune cells. The influence of differential patterns of \(\beta\)-glucan presentation on pathogenicity for AC versus PC, and the consequences of altering these patterns, requires deeper investigation.

Phenotypically, \textit{A. terreus} AC are lighter in color compared to PC. Previous SEM and TEM studies from our laboratory demonstrated that the cell surface of AC appear to be devoid of a yet to be characterized fungal pigment in contrast to the PC surface.1 \textit{A. fumigatus} conidia lacking the pigment melanin are white in color and a recent study demonstrated that albino \textit{A. fumigatus} conidia induced significantly more proinflammatory cytokines in human peripheral blood mononuclear cells (PBMC), as compared to melanized wild-type conidia.23 Similarly, in the present study, we found that production of cytokines/chemokines elicited by AC was greater than that elicited by PC, both ex vivo and in vivo in a mouse model. This heightened proinflammatory response could be attributed to “albino” AC (lacking pigment) that display strong cell surface \(\beta\)-glucan. Since we only inactivated the conidia by heat killing and did not perform additional blocking experiments with Laminarin (for \(\beta\)-glucan), we cannot at this time rule out the presence of other stimulatory PAMPs, like mannan derivatives on the AC surface. However, we did use \textit{A. fumigatus} as a control since staining of \textit{A. fumigatus} with Dectin-1 has been well characterized in previous studies. An additional limitation of this study was that we did not elucidate fungal burden or survival and thus mice were sacrificed at 18 h post-challenge. Future studies, powered to understand survival after challenge with PC and AC need to be performed.

Our studies show that \textit{A. terreus} AC are multinucleate and may contain as many as seven nuclei. To ensure that the AC were not breaking “dormancy” upon detachment from the hyphae, thus inducing cell cycle stages to progress within the conidial structures and the multiple nuclei observed, Hoechst staining was performed on AC still attached to the hyphae. These AC were also found to contain multiple nuclei, again varying in number. In \textit{A. oryzae}, multi-nucleation of conidia conferred greater viability and resistance to UV radiation and freeze-thaw treatment, thus resulting in better adaptation to adverse environmental conditions and could ensure conidial preservation.24 Although such viability experiments were not performed in the present study, there is some evidence that AC are at least more resistant to antifungal drugs than PC. If indeed multinucleation imparted viability benefits to AC, this would be a significant virulence factor for \textit{A. terreus} as it would allow the organism to survive the harsh environment of the host during infection.

Alternatively, multinucleation could suggest a rudimentary form of conidia that have not yet evolved cell cycle control mechanisms, the evolutionary benefit of which might be rapid germ tube emergence. In fact, our previous studies demonstrated that AC germinated much more rapidly than either \textit{A. fumigatus} or \textit{A. terreus} PC, and this study found that the AC formed multiple

Figure 2. Dectin-1 binding on phialide conidia and accessory conidia at different germination stages. Soluble Dectin-1 binding on \textit{A. terreus} phialic and accessory conidia at (A) dormant conidia (B) swollen conidia, (C) early germ tube formation and (D) late germination. DIC and fluorescence images were captured by microscopy at 40x (A) and 100x (B-D), and are representative of 3 experiments. Within windows, arrows depict the ring-like staining pattern on AC at 100x (A). Scale bars denote 5 \(\mu\)m and 10 \(\mu\)m for 40x and 100x magnification, respectively.
developmental stages appear to proceed comparably resulting in similar mycelial masses as assessed visually under a microscope (data not shown). The ability for each AC to produce multiple hyphae and subsequently more AC and ultimately more hyphae in a very short period of time perhaps sets the stage for rapid invasion and dissemination during infection in spite of inducing strong immune responses.

In summary, our study demonstrates phenotypic differences between \textit{A. fumigatus} and \textit{A. terreus}, specifically β-glucan display. Additionally, we demonstrate differences in cell surface β-glucan between the two \textit{A. terreus} asexual conidia, elucidate the role of AC in inducing inflammatory responses in a mouse model of aspergillosis, and demonstrate multinucleation and hyperpolarization in these structures, all of which may contribute towards the pathogenicity of this organism.

\textbf{Materials and Methods}

Isolation of \textit{A. terreus} phialidic and accessory conidia. To assess surface β-glucan exposure and nuclear staining for both conidial forms, \textit{A. terreus} AC and PC from isolates CLF 29 and CLF 52, recovered from an environmental and a clinical sample respectively, were harvested along with \textit{A. fumigatus} (ATCC1022) conidia as control. Since no significant differences were observed between the two \textit{A. terreus} isolates, all following ex vivo and in vivo studies were performed with \textit{A. terreus} AC and PC from isolate CLF 52. \textit{A. terreus} isolates were cultured on Sabouraud dextrose agar plates (SDA) and incubated at 37°C for three days. To prepare PC inocula, colonies were gently probed with a loop and the resultant conidia were suspended in Sabouraud dextrose broth (SDB) and counted on a hemocytometer. For AC harvest, PC were collected in phosphate-buffered saline (PBS), and 5×10^7 cells/ml transferred to Sabouraud dextrose broth (SDB) with 0.1% Tween 20 (SDB Tween) and incubated for 7 days, after which AC were harvested as described previously in reference 25.

β-glucan exposure studies. Conidia were adhered to cover slips and allowed to incubate at 0, 5, 10 and 20 h for \textit{A. fumigatus}, 0, 8, 11 and 20 h for \textit{A. terreus} AC and 0, 4, 7 and 12 h for \textit{A. terreus} AC to induce swollen conidia, early and late germ tubes respectively. Conidia were incubated with s-lectin-mFc (Chad Steele),26 on ice for 45 minutes, washed with 1x PBS (plus 0.01% Tween), resuspended in Alexa Fluor 594 conjugated chicken anti-mouse antibody (Molecular Probes) diluted 1:250 in 1x PBS plus 0.01% Tween, and incubated on ice for 45 minutes. Conidia were washed with 1x PBS/0.01% Tween, resuspended in Fluoromount G (Electron Microscopy Sciences), mounted onto slides and examined under a fluorescent microscope (Zeiss Axiovert 25).

\textbf{Animal experiments}. Male C57BL/6 mice, 6–8 weeks of age, were purchased from the National Cancer Institute, National Institutes of Health (Bethesda, Maryland United States). All mice were maintained in a specific pathogen free environment in microisolator cages within an American Association for Laboratory Animal Science certified animal facility at the University of Alabama at Birmingham. Animal studies
Figure 5. *Aspergillus fumigatus* accessory conidia elicit a heightened inflammatory response by alveolar macrophages. Alveolar macrophages were co-cultured with *A. fumigatus* AC or PC. Supernatants were collected at (A) 6 or (B) 20 h and assayed for chemokine/cytokine levels by Bio-Plex or ELISA. Experiments were performed 3 times.
Figure 6. Mice intratracheally challenged with Aspergillus terreus accessory conidia exhibit enhanced chemokine/cytokine production and cell recruitment in lungs. C57BL/6 mice were intratracheally challenged with AC or PC. (A) Chemokine/cytokine levels in the supernatants of homogenized lungs collected at 18 h post-challenge with AC or PC (data to indicate from figure). (B) Hematoxylin and eosin staining of sections of lungs post-challenge with AC or PC (also denote figure labels). All experiments were performed 3 times.

were reviewed and approved by the University of Alabama at Birmingham Institutional Animal Care and Use Committee (IACUC).

For ex vivo studies, ten to fifteen healthy mice were anesthetized with isoflurane intraperitoneally and sacrificed by exsanguination. Lungs were subsequently lavaged with PBS, lavage fluids pooled and alveolar macrophages collected as previously described in reference 11. Harvested alveolar macrophages were co-cultured with live PC or AC at MOI of 1:1 ratio for 2, 6 or 20 h in a 96-well plate at 37°C, 5% CO₂ in RPMI 1640 with 10% heat inactivated fetal calf serum. Controls included alveolar macrophages cultured in medium alone. Cytokine and chemokine levels were assessed in the supernatants using the Bio-Plex Protein Array System (Bio-Rad, Hercules, California United States) as per the manufacturer’s instructions. MIP-2 concentrations were also determined using a commercially available ELISA kit (R&D Systems, Minneapolis, Minnesota, United States) as per manufacturer’s instructions. In another set of experiments, harvested mouse alveolar macrophages were challenged with heat killed PC or AC at MOI of 1:1 for 6 h, and supernatants were assessed for cytokines/chemokines. Both conidia types were heat killed by incubation at 100°C for 10 minutes prior to co-culture.
with alveolar macrophages and efficacy of heat killing confirmed by plating on SDA.

For in vivo studies, eight mice were anesthetized and 7.5 x 10⁵ conidia in 50 μl AC or PC administered intratracheally. At 18 h post-challenge, one lung was collected from each mouse for hematoxylin and eosin (H&E) and Gomori methenamine silver (GMS) staining, and the second lung homogenized and cytochrome levels measured as above.

Nuclear staining of PC and AC. Nuclear staining of PC and AC was accomplished by fixing (3.7% formaldehyde, 0.2% Triton X-100, 50 mM phosphate buffer, pH 7) cells for 30 minutes, followed by incubation with Hoechst dye (1 mg/ml) for 5 minutes. Conidia were washed with distilled water, resuspended in Fluomount G (Electron Microscopy Sciences), mounted onto slides and examined by UV detection under a fluorescent microscope (Zeiss Axiovert 25).

Disclaimer

The findings and conclusions in this article are those of the author(s) and do not necessarily represent the views of the CDC.

References