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ABSTRACT 

Remote sensing of visible and near-infrared crop reflectance has been closely tied to crop growth 

and health.  The purpose of this research was to extend the application of remote sensing for 

irrigation and defoliation management of cotton (Gossypium hirsutum L.).  Leaf area index of 

cotton subjected to defoliation treatments was regressed against normalized indices of visible and 

near-infrared reflectance.  It was determined that combinations of red edge and near-infrared 

reflectance most accurately estimate leaf area index.  A camera system comprising off-the-shelf 

digital cameras was tested as a means of collecting visible and near-infrared reflectance data 

throughout the growing season and a correction factor for exposure value was derived to allow 

estimates of relative reflectance.  Vegetation indices based on camera and spectrometer 

reflectance measurements were compared with crop ground cover over three seasons and found 

to be sensitive to changes in ground cover within a limited ground cover range.  Irrigation 

treatments based on changes in ground cover and vegetation index values were found to use less 

water and have yields comparable to treatments irrigated based on soil tension measurements. 
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 CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

This literature review summarizes the effects of water stress on cotton growth.  It also examines 

the relationship of cotton reflectance with growth, leaf area index (LAI), and water stress, as well 

as the application of remote sensing technology to the identification of these factors.  Current 

remote sensing methods are examined as methods for determining water stress in cotton, and the 

chapter concludes with a problem statement and justification for this research.   

Cotton Growth and Water Stress 

The wild ancestors of domestic cotton (Gossypium hirsutum L.) were perennial vines, and 

despite selective breeding for determinate-type growth habits, cotton produces abundant 

vegetative growth if adequate water and nutrients are available.  Excessive vegetative growth 

diverts the plant’s energy away from lint and seed production.  Plant growth regulators such as 

mepiquat chloride are often applied to irrigated cotton to decrease growth, prevent boll rot, and 

facilitate machine harvest (Jost et al., 2006).  However, decreasing irrigation application to a 

level that allows adequate, but not excessive growth might allow high-yielding cotton with less 

water usage and lower plant growth regulator requirements. 

All plants are affected by soil moisture deficit.  Water is the primary component of actively 

growing crop plants, with water content ranging from 70-90% of the crop plant fresh mass.  

Water is essential to nutrient transport, chemical reactions, cell enlargement, transpiration, and 

several other plant processes.  Moisture deficit limits crop growth and development by inhibiting 

cellular growth, changing enzyme concentrations, and eventually affecting respiration, 

photosynthesis, and assimilate translocation (Gardner et al., 1984).   



 

2 

Bednarz et al. (2002) stated that cotton grown in South Georgia requires about 460 mm of water 

for maximum yields.  Although South Georgia receives about 600 mm of water during the 

growing season on average (Anonymous, 2006), periodic dry periods often cause crop water 

stress, which can be resolved by irrigation (Bednarz et al., 2002).  In Georgia, an estimated 

640,000 acres of cotton are irrigated, mostly with overhead irrigation such as center pivots 

(Harrison, 2005).   

In cotton, moisture deficit at varying levels reduces plant height, leaf area index (LAI), fruit 

production and retention, and ultimately impacts yield (Pettigrew, 2004).  Ball et al. (1994) 

observed that cotton leaf expansion was highly sensitive to water stress, which supports the 

statement by Gardner et al. (1984) that tissue expansion is particularly sensitive to plant water 

status.  The authors observed that root elongation was less sensitive to stress, and that root 

growth increased upon recovery from water stress.  Dumka et al. (2004) attributed the enhanced 

root growth in plants recovering from water stress to delayed fruiting, and observed a shift in 

fruiting patterns on the plants that were water stressed.  Another significant effect of water stress 

is the abscission of cotton fruiting structures in water stressed plants.  Guinn and Mauney (1984) 

observed that severe water deficit during flowering causes an immediate loss of bolls and 

decreases future flowering.  This can result in delayed maturity or decreased yield, depending on 

the plant’s ability to compensate.  The authors noted that suboptimal irrigation, on the other 

hand, had little effect on overall flowering and boll retention rates in their study, although it 

substantially decreased yield.  This was attributed to poor maturation of bolls under water-

stressed conditions.   

Because tissue expansion and vegetative growth are affected prior to severe water stress, 

measurements of vegetative growth, such as remote sensing vegetative indices, may be capable 
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of detecting changes in water status in time to correct deficiencies.  However, for these 

measurements to be effective, they must be sensitive to a wide range of vegetative cover and be 

as consistent as possible over time. 

Remote Sensing and Crop Growth 

Remote sensing has been used for decades as a large scale production tool for estimating and 

modeling crop growth (Ko et al., 2006; Plant et al., 2000; Roerink et al., 1996; Yang et al., 

2001b).  Full-season crop monitoring techniques can help cotton growers produce a quality crop 

and make management decisions for following years.  However, for remote sensing to be 

effective for in-season irrigation management decisions, it must provide a quick, accurate 

method for identifying crop growth characteristics and detecting stress events (Roerink et al., 

1996).   

Two types of remote sensing imagery are commonly used for monitoring crop growth and stress.  

Thermal imagery has been used to detect changes in crop temperature due to water or other stress 

(Cohen et al., 2005; Pinter et al., 2003), while combinations of visible and shortwave infrared 

imagery have primarily been used to detect changes in crop growth (Ahlrichs and Bauer, 1982; 

Boissard et al., 1992; Bouman, 1992; Hinzman et al., 1984; Huete, 1988; Ko et al., 2006; Yang 

et al., 2004).   

Of these, reflectance imagery is less expensive.  Shortwave reflectance has also been shown to 

be sensitive to leaf water content (Aldakheel and Danson, 1997; Danson et al., 1992; Peñuelas et 

al., 1997; Ripple, 1986), particularly , but field-scale measurements using reflectance regions 

sensitive to water are hampered by atmospheric moisture (ASD, 1999).   

Cameras and spectrometers estimate plant health and growth by measuring reflected radiation at 

visible and near-infrared wavelengths.  Plant reflectance is well-characterized.  Chlorophyll 
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absorbance dominates plant reflectance, with anthocyanin and xanthophyll absorbance also 

contributing to reflectance (Sims and Gamon, 2002).  Green leaves reflect little visible radiation, 

mostly in the green, but they reflect large portions of near-infrared radiation.  The red edge forms 

a boundary between the visible and near-infrared, and is a region of rapidly increasing 

reflectance with wavelength.  In contrast, soil reflectance tends to slope gently upward from the 

visible to the near-infrared.  Whole plant reflectance is influenced by both leaf chlorophyll 

density and ground cover fraction.  Therefore, soil reflectance, leaf chlorophyll density, and leaf 

area index (LAI; m2 leaf area / m2 ground area) all heavily influence crop reflectance.   

Spectral indices maximize the spectral contribution from vegetation and minimize the effects of 

soil reflectance, usually through ratios or normalized ratios of visible and near-infrared 

reflectance (Huete et al., 1985; Major et al., 1990).  These indices accurately estimate percent 

plant ground cover (the fraction of soil covered by plants) or leaf area index in many crops, 

because reflectance is highly correlated with leaf area even when plants are nitrogen- or water-

stressed (Ritchie, 2003).   

Although several reflectance regions throughout the shortwave infrared spectrum have been 

compared to crop health (for example, Osborne et al., 2002), combinations of green, red, red 

edge, and near-infrared (NIR) reflectance have consistently produced many of the closest 

relationships with crop growth and health, due to chlorophyll absorbance and leaf mesophyll 

structure (Carter and Spiering, 2002; Gitelson and Merzlyak, 1998; Horler et al., 1983).  

Additionally, indices based on these wavelengths allow the use of imaging devices with silicon 

photodetectors, which are less expensive than those made with materials that detect radiation 

above 1000 nm (ASD, 1999).   
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The most commonly used vegetation index to estimate LAI is the normalized difference 

vegetation index (NDVI), although there are several indices derived from the NDVI that are used 

to correct for soil or atmospheric effects (Gao, 1996; Huete, 1988; Huete et al., 1985; Plant et al., 

2000)  The NDVI consists of a normalized ratio of reflectance at a wavelength of interest and a 

reference wavelength in the form (λreference – λinterest)/(λreference + λinterest), where λ is the 

wavelength.  The reference wavelength is usually (but not always) in the near-infrared portion of 

the spectrum, since the near-infrared reflectance is not affected by chlorophyll (Curran, 1989).  

The most famous version of the NDVI uses red reflectance as the wavelength of interest (Rouse 

et al., 1973), but ratios that include other wavelengths often estimate chlorophyll content more 

closely than red (Gitelson and Merzlyak, 1997).   

Carter and Spiering (2002) noted that combinations of green or red edge reflectance and near-

infrared reflectance had a broader range of spectral sensitivity than did indices based on red 

reflectance, while Gitelson and Merzlyak (1997) observed increased accuracy of ground cover 

estimates by using a combination of green and near-infrared reflectance.  Conversely, DeTar et 

al. (2006) stated that combinations of near-infrared reflectance and red reflectance (λ = 686 nm) 

provided the most effective two-band estimates of growth changes in water stressed cotton.  

Peñuelas et al. (1997) suggested the use of a ratio of reflectance at 900 nm and 970 nm (a water 

absorption band) to estimate leaf water content.   

Vegetation indices provide a robust method for identifying crop growth characteristics and 

detecting general stress events.  Crop absorbance and reflectance are closely tied to biomass 

(Klassen et al., 2003; Osborne et al., 2002; Plant et al., 2000), although Pinter et al. (2003) 

warned that most vegetation indices lack the ability to diagnose specific stresses or determine 

why biomass levels differ.  However, the identification of stressed regions of a field allows 
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closer examination of the underlying causes, and remote sensing allows a closer examination of 

stressed locations.  Therefore, timeliness and sensitivity to general plant stress are important 

remote sensing characteristics.   

Irrigation and Remote Sensing 

Remote sensing and variable application are less closely associated with water than with other 

plant amendments, due to the scarcity of field-scale variable rate irrigation systems.  However, 

the increasing urban demands of water have made the water supply an important issue, and it is 

likely that water issues will continue to be dominant factors in future cotton production (Hutson, 

2004).  Efficient irrigation techniques that result in high cotton yields will allow cotton producers 

to maximize their yield potential for a given water supply.   

The introduction of variable rate technology has been shown to increase the application 

efficiency of several crop amendments (Koch et al., 2004; Yang et al., 2001a) and is being used 

commercially.  However, site-specific technology has only recently been introduced for 

irrigation (Perry et al., 2002).  Site-specific center pivot irrigation is unique from other site-

specific application, because of the limited spatial resolution of the system.  Irrigation decisions 

also require intensive crop moisture monitoring and quick irrigation decisions.   

The cost and timeliness of sensors, imaging platforms, flyovers, and image analysis affect 

production-level remote sensing (Pinter et al., 2003), and many of these costs are based on the 

system complexity.  Remote sensing of plant stress for irrigation is unique in its need for rapid 

processing and decision making, as well as the dynamic crop growth characteristics related to 

water status.  In-season analysis must be quick, simple, and sensitive enough to changes in 

vegetative growth to let the producer make irrigation decisions.  Minimizing the costs and 

processing time is important, because producers faced with other production tasks may be 
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inclined to ignore the data until after the growing season if it is not delivered quickly and in a 

simple manner.   

Remote Sensing Platforms 

Remotely sensed imagery provides both spatial and temporal estimates of cotton crop growth 

and health (Plant et al., 2000; Zarco-Tejada et al., 2005).  Most broad-scale remote sensing is 

provided via airplane or satellite imagery.  Although its use in production agriculture is still 

somewhat limited due to factors such as cost, system complexity, timeliness, and the influence of 

atmospheric conditions, advances in remote sensing technology have made remote sensing a 

more economical and practical approach for crop management.   

Current remote sensing platforms such as satellites, airplanes, and ground-based platforms are 

already used to obtain field-scale imagery with limited user intervention (Sui et al., 2005; 

Vierling et al., 2006; Yang et al., 2001b; Yang et al., 2003), helping growers produce a quality 

crop and make management decisions for following years.  

Satellites and airplanes cover a broad spatial area (typically larger than a single irrigated field) 

with a single image.  Aerial images measure reflected incident radiation from the sun and can be 

affected by atmospheric conditions (Jackson et al., 1983).   

Other intermediate platforms for both imagery and spectrometry, such as tethered blimps (Chen 

and Vierling, 2006; Vierling et al., 2006) have been suggested.  Advantages of these systems 

include price and scheduling flexibility, particularly for coverage of a few acres or less.  

However, the use of a spectrometer from a blimp requires extensive design to ensure an accurate 

field of view (Vierling et al., 2006), and the tethered blimp is limited in how high it can be 

flown.   



 

8 

Ground-based reflectance on a field scale is based on individual reflectance measurements, 

usually collected at several points throughout the field.  The measurements can be either passive 

(measurements of reflected sunlight) or active (measurements of reflected light from an electric 

light source).  Passive measurements are sensitive to ambient lighting conditions, while active 

reflectance measurements often use a modulated light source to minimize the effects of ambient 

light, as described by Sui et al. (2005).   

The Consumer Digital Camera  

Consumer-level digital cameras can make remote sensing technology even more accessible by 

offering low cost, quick download times, and ease of use for imaging.  Like spectrometers and 

research cameras, consumer cameras separate reflected radiation by wavelength (Adams et al., 

1998).   

However, digital cameras have several unique characteristics that can affect the usefulness of 

these systems for agronomic management.  Digital cameras designed for the consumer market 

are increasingly being used as research instruments due to their low cost and ease of use.  Levin 

et al. (2005) demonstrated that a consumer-grade digital camera could be used to accurately 

measure visual spectral properties of soils, and consumer cameras have been used for imaging 

work in a variety of disciplines, including forestry (Inoue et al., 2004), microscopy (Wunsam and 

Bowman, 2001), and even plastic reconstructive surgery (Galdino et al., 2001).   

However, off-the-shelf consumer grade cameras differ from research grade cameras and 

spectrometers, and these differences can affect the usefulness of the consumer cameras in 

agronomic remote sensing.  Point and shoot characteristics can lead to misleading measurements 

by allowing imaging that does not quantify automatic adjustments that the camera makes. 
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Spectrometers often use filters or light dispersion to separate wavelengths of incoming radiation 

into discrete reflectance bands and are often equipped with wavelength-specific optics (Sui et al., 

2005).  Though practical for research, this adds expense and complexity to the imaging system.   

Consumer cameras, on the other hand, are designed for ease of use.  The filters are integrated 

within the camera sensor, as described by Adams et al. (1998).   

Several parameters affect the camera image collection.  Camera shutter speed controls the time 

incoming light makes contact with the sensor, while aperture (F-stop) controls the amount of 

light that can pass into the camera.  Changes in aperture and shutter speed can compensate for 

each other, resulting in a standardized measure of exposure.  Film speed (ISO) determines the 

sensitivity of the sensor to incoming radiation.  White balance affects the color balance between 

red, green, and blue color channels.  It allows the camera to correct hue and produce realistic 

looking pictures under cloudy conditions or electric lights. 

Nearly all consumer cameras have completely automatic settings where the camera controls 

shutter, aperture, white balance, film speed, and contrast, allowing the user to point and shoot 

without adjusting settings.  Mid-level consumer cameras (those with prices currently ranging 

from about $100 to $500) also have manual settings that allow the user to adjust some or all of 

these parameters.  The cameras are designed to approximate a standardized measurement of 

human visual response (Sharma, 2003), and can have overlapping sensitivity between pixels that 

detect red, green, and blue (RGB) channels (Hong et al., 2000; Wu et al., 2000).  There is 

currently no standardized method for adjusting camera color parameters, so RGB output differs 

by camera (Hong et al., 2000).   

Many of the features that are attractive for general use can compromise remote sensing work.  

For instance, the Nikon 4300 default settings include automatic corrections for exposure, 
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aperture, ISO number, and white balance (Nikon).  In addition, these cameras use hot mirrors to 

minimize near-infrared (NIR) radiation transmission, limiting the camera spectral range to the 

visible spectrum (Chieng and Rahimzadeh, 2005).  This prevents the influence of NIR radiation 

on the camera color channels, but also prevents the camera from sensing NIR radiation.  The 

NIR region has long been associated with crop growth and health (Rabideau et al., 1946), and is 

widely used for vegetation indices, such as those based on the ratio vegetation index (RVI) and 

the normalized difference vegetation index (NDVI) (Jordan, 1969; Rouse et al., 1973).   

Many of the point and shoot features in consumer grade cameras can confound spectral 

estimates.  However, many of these features can be adjusted in the manual camera user settings.  

Features that should be locked include white balance, image adjustment, and ISO speed, since all 

of these features can affect the image exposure and channel balance.  Aperture on the Nikon 

4300 cannot be locked, and locking the shutter speed has a significant tradeoff.  With a single 

shutter speed, changes in exposure can be eliminated as a source of image variation, but there is 

a risk of miscalculation of the correct shutter speed.  A shutter speed that is set too fast will not 

allow sufficient image exposure, and a shutter speed that is set too slow will overexpose the 

image, resulting in image saturation.  The use of one shutter speed limits the camera to a narrow 

dynamic range.  A more robust solution would be the correction of images based on camera 

exposure, allowing images to be collected with a variety of exposure levels.   

Making a camera NIR sensitive involves modification of the camera by replacing the hot mirror 

with a filter that transmits infrared rather than visible radiation.  However, the procedure is often 

not too technically demanding (Chieng and Rahimzadeh, 2005), and the consumer camera might 

then be practical for the same remote sensing estimates as cameras designed for near-infrared 

imaging.  This would require a separate camera for collection of visible channels, and the 
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cameras would require some method of exposure correction between cameras.  A correction 

designed to compensate for changes in exposure might allow these cameras to be used as a viable 

remote sensing device, and because most successive camera models use similar optical systems, 

many of the principles applied to the specific camera will be similar to those of other camera 

models, particularly those in the same product line.   

Research Objectives 

The research for this dissertation was based on the following research objectives: 

1. Determine the combinations of visible and near-infrared reflectance wavelengths 

most sensitive to cotton growth and leaf area index changes; 

2. Develop a method for calibrating consumer-grade digital cameras to provide a 

consistent vegetation index (NDVI) measurements from visible and near-infrared 

brightness values; 

3. Compare the sensitivity of ground-based and aerial vegetation indices for estimating 

crop ground cover; and 

4. Evaluate an irrigation scheduling program based on detection of growth changes 

using vegetation indices. 

These objectives are highly interrelated.  Determining the combinations of visible and near-

infrared reflectance wavelengths sensitive to the broadest range of cotton growth and leaf area 

index changes identifies an index that can be used at the maximum range of crop growth.  This 

improves the sensitivity of the ground-based indices to estimate crop ground cover and detect 

changes in growth due to stress.   

Developing a calibration method for combining digital cameras to ascertain NDVI allows the use 

of this index with a limited amount of user intervention, while allowing consistent measurements 
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throughout the growing season.  It also allows a more appropriate comparison between an index 

based only on visible channels with an index based on visible and near-infrared channels.   

Finally, comparing the sensitivity of ground-based and aerial vegetation indices to crop growth 

allows the identification of limiting factors in each system for detecting growth changes based on 

these indices.   
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CHAPTER 2 

 

ESTIMATING DEFOLIATION OF TWO DISTINCT COTTON TYPES  

WITH REFLECTANCE DATA1 

 

 

 

 

 

 

 

 

 

 

 

 

1 Ritchie, G.L., and C.W. Bednarz. 2005. Estimating defoliation of two distinct cotton types 

using reflectance data. Journal of Cotton Science 9:182-188. Reprinted here with permission of 

publisher.
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Abstract 

Cotton defoliation is an important part of cotton harvest preparation.  Estimates of cotton 

defoliation allow producers to monitor harvest readiness and make further defoliation decisions 

as necessary.  However, visual estimates are subjective and may differ from one reviewer to the 

next.  Here, we propose a spectrometric method for quantifying cotton defoliation.  In 2003 and 

2004, leaf area index (LAI) was monitored on 0.91 m sections of row of multiple environments 

to quantify percent defoliation.  Reflectance over each plot was measured using a narrow-band 

spectrometer, and normalized difference vegetation index (NDVI) models composed of 

reflectance at all wavelengths were regressed against LAI to determine which wavelengths most 

accurately estimated changes in LAI.  Both linear and quadratic models were tested for their 

usefulness in estimating LAI.  Quadratic models more accurately estimated LAI in the red 

spectral region than did linear models, but reached maximum values at an LAI of about 1.5.  

Therefore, the quadratic models were of limited usefulness.  At the red edge (about 705 nm to 

720 nm), the quadratic and linear models had similar coefficients of determination, which were 

higher than those derived from linear models in other wavelengths.  These results suggest that 

reflectance indices based on red edge measurements can offer accurate, consistent defoliation 

estimates, and could potentially increase defoliation efficiency and decrease costs. 

KEYWORDS 

Remote sensing; leaf area index; wavelength; red edge 
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Introduction 

Cotton producers chemically defoliate their crop to terminate its growth and prepare it for 

machine harvest.  Defoliation gives the producer some control over harvest timing and increases 

harvest efficiency.  However, cotton variety and growing conditions influence the effectiveness 

of these chemicals.  Some conditions require two applications for proper defoliation, especially 

on irrigated cotton.  The timing of the second application is generally based on the effectiveness 

of the first application, and most defoliation estimates are based on visual observations.  

Although estimates allow cotton producers to determine the success of their strategy and decide 

on further management strategies, visual estimates are subjective and therefore can vary.  

Remote sensing can automate and standardize these estimates (Yang et al., 2003).   

Cameras and spectrometers estimate plant health and growth by measuring reflected 

radiation at visible and near-infrared wavelengths.  Plant reflectance is well-characterized, with 

most of the reflectance characteristics based on the spectral properties of chlorophylls and 

carotenoids (Sims and Gamon, 2002).  Chlorophylls exhibit strong absorption of blue and red 

light, while carotenoids primarily absorb blue light (Gitelson et al., 2002).  In green plants, 

chlorophyll absorbance dominates leaf reflectance.  Green leaves reflect little visible radiation 

because of the heavy absorbance of red and blue radiation by chlorophyll, but they reflect large 

portions of near-infrared radiation (Fig. 2.1).  The red edge forms a boundary between the visible 

and near-infrared, and is a region of rapidly increasing reflectance with wavelength.  In contrast, 

soil reflectance tends to slope gently upward from the visible to the near-infrared.   

Assuming atmospheric effects are minimized, three factors affect the reflectance of a 

cotton crop at each place in a field:  soil reflectance, the chlorophyll density in each leaf, and the 

leaf area.  Spectral indices maximize the spectral contribution from vegetation and minimize the 
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effects of soil reflectance, usually through visible and near-infrared reflectance ratios (Huete et 

al., 1985; Major et al., 1990).  These indices accurately estimate percent plant ground cover (the 

fraction of soil covered by plants) or leaf area index (LAI; m2 leaf area / m2 ground area) in 

many crops, because reflectance is highly correlated with leaf area even if plants are nitrogen- or 

water-stressed (Ritchie, 2003).   

The normalized difference vegetation index (NDVI) is widely used to estimate LAI.  The 

NDVI consists of a normalized ratio of reflectance at a wavelength of interest and a reference 

wavelength in the form (λreference – λinterest)/ (λreference + λinterest), where λ is the wavelength.  The 

reference wavelength is often (but not always) in the near-infrared portion of the spectrum, since 

the near-infrared reflectance is not affected by chlorophyll (Curran, 1989).  One commonly used 

version of the NDVI uses red reflectance as the wavelength of interest, but ratios that include 

other wavelengths often estimate chlorophyll content more closely than red (Gitelson and 

Merzlyak, 1997).   

Although defoliation estimates should be similar to general ground cover estimates, there 

are few reports in the literature about using this technology for estimating defoliation.  Yang et 

al. (2003) tested airborne color-infrared digital images obtained from an airplane as one method 

for estimating the success of several defoliation regimes.  However, the study focused on 

differentiating treatments rather than estimating LAI, and leaf area data were collected only near 

the conclusion of their study.  The study showed that differences in defoliation level can be 

identified by remote sensing, but they did not quantify these differences.   

The objective of this study was two-fold.  The first goal was to quantify defoliation level 

based on reflectance data and identify the spectral regions that most appropriately estimate LAI 
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before and during the defoliation process.  The second was to compare LAI estimates using 

NDVI with human defoliation estimates. 

Materials and Methods 

Studies were conducted in four cotton fields at three locations (Coastal Plain Experiment 

Station Ponder Farm, Gibbs Farm, and a locally rented field called the Water Tower Field) in 

2003.  All three locations are in Tift County, Georgia.  The Water Tower Field was planted with 

Delta&Pineland 555 BG/RR cotton with rows running east to west.  One field at the Ponder 

Farm was planted with Delta&Pineland 555 BG/RR cotton with rows running north and south, 

and another one was planted with Stoneville 4892 BG/RR cotton with rows running north to 

south.  The Gibbs Farm field was planted with Stoneville 4892 BG/RR cotton with rows running 

east to west.  The soil series for all three fields is a Tifton loamy sand (fine-loamy, kaolinitic, 

thermic Plinthic Kandiudults).  A comprehensive defoliation treatment of 110 g ha-1 thidiazuron 

(DROPP), 1.5 L ha-1 ethephon, and 0.44 L ha-1 tribufos (DEF 6) was applied when 75% of the 

cotton bolls were open using a Spider sprayer (West Texas Lee, Inc., Idalou, TX) with TeeJet 

8002 spray nozzles (Spraying Systems Co., Wheaton, IL).  In this study, the cotton LAI before 

defoliant was applied ranged from 1.0 (sparse cotton) to slightly over 2.0 (rank cotton).  

Reflectance was measured at each field prior to defoliant application, then at 1 to 3 day intervals 

until the plants were completely defoliated.  The cotton was sampled on four dates in the Water 

Tower Field, and on three dates in the other fields.   

Four plots were chosen at random on each sampling date at each site.  Plots were marked 

using bicycle flags prior to sampling.  Reflectance was measured at 1 m above the row center at 

each plot using a PAR/NIR spectrometer (Apogee Instruments, Logan, UT) with a fiber optic 

cable with a 30Ε full angle field of view.  Two sample readings were recorded from 0.91 m (3 ft) 
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of row and averaged to give an estimate of LAI.  Leaves were then removed from the plants in 

the 0.91 m of row, and leaf area was measured with a leaf area meter (Model LI-3100C, LI-COR 

Environmental, Lincoln, NE). 

Reflectance characteristics of each plot were compared with leaf area using regression 

analysis of NDVI vs. LAI at all wavelengths to determine which wavelengths were most suitable 

for defoliation estimates.  Linear and quadratic best-fit equations were calculated in Microsoft 

Excel.  After data sets were analyzed for each field and determined to not have significantly 

different slopes or intercepts, then pooled to determine an overall model that would be most 

appropriate for estimating LAI.   

In 2004, four human volunteers estimated defoliation rate at the Gibbs farm in a field of 

Delta&Pineland 555 BG/RR at sixteen randomly chosen places in the field with varying 

defoliation on three dates, and these estimates were regressed against LAI.  The volunteers each 

had at least two years of cotton defoliation estimation experience and five years or more of leaf 

area estimating experience.  Prior to the volunteers making their estimates, one of the volunteers 

was invited to give estimates of percent defoliation at both low and high LAI to allow all of the 

volunteers to base defoliation estimates off the same general scale.  The NDVI was also 

regressed against LAI to verify the accuracy of the model determined in 2003, as well as 

compare NDVI with human observation for determining percent defoliation.   

Results and Discussion 

The correlation or goodness of fit was based on the coefficient of determination (r2) of NDVI vs. 

LAI.  The coefficient of determination is a measure of the fraction of variance of the dependent 

variable that is explained by the independent variable.  LAI was chosen as the independent 
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variable, although for linear equations with one x and one y variable, the coefficient of 

determination does not change based on which is the independent variable. 

A comparison between NDVI and LAI for all wavelengths for the pooled data from 2003 

suggested the strongest correlations existed when one of the wavelengths is between 750 and 850 

nm and other wavelength is between 705 and 720 nm (Fig. 2.2).  The correlations showed the 

same trend regardless of which wavelength was designated λ1 and which was designated λ2, 

because reversing λ1 and λ2 merely gives positive and negative values of the same number.  It 

was also observed that the highest correlations were obtained in relationships to visible 

wavelengths when part of the NDVI included a wavelength between 750 and 850 nm.  Tarpley et 

al. (2000) and Read et al. (2002) observed similar trends in nitrogen estimation at both the cotton 

leaf and canopy levels.  Leaf nitrogen content and LAI are both closely related to chlorophyll 

content, so it is reasonable that the same trends are observed for studies of both LAI and nitrogen 

content.  It is useful to note that even with the potentially confounding influence of leaf 

chlorophyll content in plants approaching the end of their life cycle, high correlations were 

observed between LAI and NDVI. 

This high correlation was observed at each test site, with the highest r2 between 

reflectance indices and LAI for each field ranging from 0.82 to 0.96 for individual fields and 

0.83 for the pooled data (Fig. 2.3).  All fields except the Gibbs field had maximum r2 values 

above 0.90.   

As observed in Fig. 2.2, correlations between NDVI and LAI were wavelength 

dependent:  In Fig. 2.3, LAI had a higher linear correlation with NDVI values calculated from 

the red edge (highest r2 = 0.83) than with NDVI values calculated from the green (highest r2 = 

0.73) and red spectral regions (highest r2 = 0.79). 



 

27 

Quadratic LAI estimates had higher r2 values in the green and red spectral regions than 

linear estimates, and were similar to quadratic estimates at the red edge (Fig. 2.4).  However, a 

notable difference between quadratic LAI estimates derived from the red region and those at the 

red edge was the range of the quadratic model.  The high coefficients of determination (r2) for 

the quadratic models based on the red wavelengths were misleading, because the curves became 

asymptotic at the highest LAI (Fig. 2.5).  The result for each of these wavelengths was a curve 

with a high r2, but little usefulness above a certain LAI.  As shown in Fig. 2.6, the quadratic 

model derived from red edge data gave a higher leaf area estimate at high ground cover levels 

and a lower leaf area estimate at low levels of ground cover than did the quadratic model derived 

from the red region.  This difference suggests that red edge model is superior to the red model 

over the full range of LAI encountered in this study.   

Carter and Spiering (2002) noted that vegetation indices and chlorophyll content in single 

intact leaves had maximum r2 values at the red edge, similar to results from our field study.  

However, they observed that r2 values in green were comparable with values at the red edge, 

while those in the red were very low.  In contrast, we observed that r2 values based on ratios of 

green reflectance were lower than those based on the red and the red edge portions.  Part of this 

apparent contradiction can be explained by the difference in single leaf and plant canopy 

reflectance measurements.  In a single leaf, chlorophyll absorbance saturates at low leaf 

chlorophyll contents, because the sensor views only the leaf.  Conversely, cotton canopy LAI 

estimates are relatively unaffected by leaf chlorophyll content.  Instead, the dominant factor is 

the suppression of ground reflectance and the emergence of leaf reflectance in a scene with 

increasing LAI.  This increases the dynamic range of ratios that use red reflectance, so they can 

cover a moderate range of LAI.  However, this study suggests that the ratios that include the red 
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edge cover a wider dynamic range than those based on red reflectance, even when viewing an 

entire cotton canopy.  It is unclear why green reflectance does not indicate LAI as well as red 

reflectance.   

The 2004 spectral estimates of LAI were consistent with the 2003 findings.  The highest 

linear r2 between NDVI and LAI was 0.90 and occurred at about 710 nm.  The pooled data for 

2003 and 2004 also showed the same trend, with the highest r2 value of 0.83 occurring at about 

710 nm.  This high correlation value using data from two cropping seasons and two cotton 

varieties suggests that NDVI using a reference wavelength of 710 nm can provide a stable, 

consistent method for estimating LAI during the process of defoliation.   

Estimates of percent defoliation by human reviewers yielded r2 values with LAI for each 

person, but estimates of percent defoliation between people varied widely, especially at higher 

LAI (Fig. 2.7).   

General estimates of percent defoliation showed good correlation with LAI when 

compared to all LAI values, with r2 values ranging from 0.73 to 0.96 (Table 1).  Table 1 shows 

that coefficients of determination at low LAI (below 0.5) also tended to be high, ranging from 

0.55 to 0.87.  However, estimates of defoliation at LAI greater than 0.5 revealed some of the 

inherent weaknesses in human defoliation ratings.  One of the reviewers reported defoliation 

values that did not show a significant correlation with LAI (reviewer 2; r2 = 0.03), and one 

reported defoliation values that trended up rather than down with LAI (reviewer 1; slope = 18.2).  

Two of the reviewers estimated defoliation with r2 values similar to those of the NDVI method at 

both high and low LAI.  Both of these reviewers reported defoliation values that had r2 values 

above 0.48 (reviewer 3 r2 = 0.81; reviewer 4 r2 = 0.48) and similar slopes at both low and high 

LAI.   
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Another issue in visual determination of percent defoliation was evident in the wide 

range of defoliation estimates at higher LAI.  For instance, reviewer estimates of percent 

defoliation at LAI = 0.89 ranged from 15% defoliation to 65% defoliation.  This wide range of 

estimates suggests that it would be difficult to compare defoliation estimates directly between 

reviewers.  Part of this problem can be attributed to differing opinions as to what amount of leaf 

area constitutes a 0 level of defoliation.  A leafy cotton canopy will require some level of 

defoliation to reach a similar LAI to that of a less leafy cotton canopy that has not been 

defoliated.  Therefore, it is difficult to define what even constitutes percent defoliation.  

Furthermore, it is more complex to rate plants with more leaf area, and there is a greater chance 

for error.  It makes sense, therefore, to tie defoliation estimates to a standardized estimate of LAI, 

such as spectral measurements.  

Overhead leaf area estimates can be based on several scales of view, from ground-level 

measurements to satellite imagery.  Each scale offers unique challenges.  Ground-based 

measurements do not require an aerial platform, and the sensors can be mounted on tractors or 

other field equipment.  However, near-remote measurements only cover a small ground area, and 

are sensitive to sensor height and plant height.  Other issues, such as platform cost and 

atmospheric interference can also significantly affect management strategies with aerial and 

satellite imagery.  Aerial and satellite platforms are often at the mercy of weather conditions, and 

the turnaround time from data acquisition to data release can be prohibitive for use in defoliation 

scheduling.   

Another pertinent concern is the influence of senesced or dehisced leaves on leaf area and 

harvestability estimates.  Because these leaves have lost the majority of their chlorophyll, they do 

not have the characteristic chlorophyll reflectance seen in healthy leaves.  Most of these leaves 
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fall to the ground, but many, particularly when the producer uses a dehiscent, remain on the plant 

until harvest.  We did not encounter significant numbers of dehisced leaves in our studies, but 

this issue might need to be addressed on a case-by-case basis.   

Conversely, green leaves that fall from the plant could potentially cause an 

overestimation of LAI when using NDVI.  This can often be attributed to using a “green leaf 

defoliant” (e.g. a mixture of cyclanilide and ethephon), or simply due to wind or other 

mechanical removal of leaves.  In our study, green leaves on the ground were not removed prior 

to spectral measurements, and this may have been a source of some of the variability in NDVI 

measurements.  However, this effect may be minimized by at least two factors.  The first is the 

rapid loss of water and breakdown of chlorophyll in senesced leaves (Daughtry and Biehl, 1985).  

The second is the decreased influence of each leaf in the spectral scene based on its distance 

from the sensor, a principle that is discussed by Klassen et al. (2003).  The change in spectral 

influence would be greater if the sensor is close to the cotton plant. 

The use of a spectral system for estimating defoliation would advance defoliation work in 

several areas.  First, standardized estimates based on spectral changes would allow consistent 

estimates of defoliation both spatially and temporally.  This might help quantify the effects of 

different conditions on defoliation rates.  Defoliation estimates could also be performed on a 

larger scale, and defoliation might be performed as a variable rate application based on 

georeferenced LAI estimates.  This could potentially improve efficiency of defoliant 

applications, as well as decrease application rates.   
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Fig. 2.1. Characteristic leaf and soil reflectance at different wavelengths from 400-900 nm.   
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Fig. 2.2. Coefficient of determination (r2) for the relationships between LAI and two-band 

combinations in the NDVI equation (λ2 - λ1)/(λ2 + λ1) during the 2003 season.  The regions with 

the highest r2 values consisted of combinations of wavelengths at the red edge (700-715 nm) and 

near-infrared (750-850 nm) regions of the spectrum. 
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Fig. 2.3. Coefficient of determination (r2) of NDVI by wavelength of interest (8) for each field in 

the 2003 defoliation trial.  The reference wavelength (λ1) was an average of reflectance between 

800-850 nm, and the wavelength of interest (λ2) appears on the horizontal axis.  The dashed line 

represents an r2 of 0.90. 
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Fig. 2.4. Coefficient of determination (r2) vs. wavelength for linear (gray line) and quadratic 

(black line) relationships of cotton canopy reflectance with leaf area index from the 2003 study.  

Coefficients were derived at each wavelength for 51 leaf area samples.   
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Fig. 2.5. Comparing the fit of linear (solid line) and quadratic (dashed line) equations for NDVI 

vs. leaf area index at 600 nm and 710 nm.  NDVI based on a wavelength in the red region 

reached a maximum at a LAI of about 1.5, while NDVI based on a wavelength at the red edge 

continued to slope upward at higher LAI levels.  
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Fig. 2.6. Comparison of NDVI by wavelength as an estimate of LAI.  The best spectral indicator 

of LAI should give a low minimum estimated LAI and a high maximum LAI.  Based on this 

principle, the spectral region between 705 nm and 720 nm (vertical lines) yielded the best 

estimates of high and low NDVI. 
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Fig. 2.7. Comparison of NDVI710 nm with reviewer estimates of defoliation.  Comparison of 

NDVI with a reference wavelength of 710 nm (NDVI710 nm) and estimates of defoliation by four 

reviewers with LAI at low (LAI < 0.5) and high (LAI > 0.5) LAI levels. 
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Table 2.1. Comparison of LAI estimates at low (LAI < 0.5) and high (LAI > 0.5) LAI levels 

based on coefficient of determination (r2) and slope for NDVI based on a reference wavelength 

of 710 nm (NDVI710 nm) and four reviewers. 

Reviewer 
r2 

(all LAI) 
r2 

(LAI<0.5) 
Slope 

(LAI<0.5) 
r2 

(LAI>0.5) 
Slope 

(LAI>0.5) 
NDVI710 nm 0.90 0.87 0.50 0.50 0.17 
1 0.96 0.87 -92.8 0.54 18.2 
2 0.73 0.64 -78.9 0.03 7.86 
3 0.94 0.76 -94.1 0.81 -75.7 
4 0.90 0.55 -40.4 0.48 -26.0 
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CHAPTER 3 

 

PREPARATION OF A LOW-COST DIGITAL CAMERA SYSTEM  

FOR REMOTE SENSING1 
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Abstract 

Off-the-shelf consumer digital cameras offer a convenient and user-friendly remote sensing 

method, if they can provide consistent remote sensing data.  Two Nikon COOLPIX 4300 digital 

cameras were evaluated in tandem to determine the effectiveness of a cross-camera calibration 

procedure that would allow concurrent use of these cameras to obtain visible and near-infrared 

images without preset shutter speeds or aperture settings.  One camera was not modified, and the 

other was modified to be near-infrared sensitive using a Hoya R720 filter.  Each camera was 

calibrated at 5 exposure levels using a reflectance target consisting of 26 diffuse reflective color 

samples, and equations were developed that would allow exposure compensation and the 

conversion of brightness values to relative reflectance values.  The procedure was tested on 36 

cotton plots (Gossypium hirsutum) in an irrigation study during the 2006 growing season.  

Images obtained on 8 dates during the season using the two cameras were corrected for exposure 

and converted to relative reflectance values.  The normalized difference vegetation index 

(NDVI) values from the plots were then compared with ground-based spectrometer 

measurements of NDVI.  The corrected camera-based NDVI values were closely correlated (r2 = 

0.72) with the spectrometer NDVI values, suggesting that the camera system can provide a 

consistent estimate of crop reflectance characteristics if exposure compensation is provided. 

Introduction 

Remotely sensed imagery provides both spatial and temporal estimates of cotton crop growth 

and health (Plant et al., 2000; Zarco-Tejada et al., 2005).  Most broad-scale remote sensing is 

provided via airplane or satellite imagery.  Although its use in production agriculture is still 

somewhat limited due to factors such as cost, system complexity, timeliness, and the influence of 
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atmospheric conditions, advances in remote sensing technology have made remote sensing a 

more economical and practical approach for crop management.   

Consumer-level digital cameras may make this technology even more accessible through 

improved optics, quick download time, and the separability of images into component colors 

(Adams et al., 1998).  However, digital cameras have several unique characteristics that can 

affect the usefulness of these systems for agronomic management.   

The Consumer Digital Camera  

Digital cameras designed for the consumer market are increasingly being used as research 

instruments due to their low cost and ease of use.  Levin et al. (2005) demonstrated that a 

consumer-grade digital camera could be used to accurately measure visual spectral properties of 

soils, and the Nikon COOLPIX camera line has been used for imaging work in a variety of 

disciplines, including forestry (Inoue et al., 2004), microscopy (Wunsam and Bowman, 2001), 

and even plastic reconstructive surgery (Galdino et al., 2001).  Although the Nikon COOLPIX 

4300 was used for this study, it is likely that any camera with the right features and image quality 

could be useful for imaging.  However, off-the-shelf consumer grade cameras differ from 

research grade cameras and spectrometers, and these differences can affect the usefulness of the 

consumer cameras for agronomic management.  One valid concern is that the point and shoot 

characteristics might lead to misleading measurements by allowing imaging that does not 

quantify automatic adjustments that the camera makes. 

Spectrometers often use filters or light dispersion to separate wavelengths of incoming radiation 

into discrete reflectance bands and are often equipped with wavelength-specific optics (Sui et al., 

2005).  Though practical for research, this adds expense and complexity to the imaging system.   
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Consumer cameras, on the other hand, are designed for ease of use.  The filters are integrated 

within the camera sensor, as described by Adams et al. (1998).   

Several parameters affect the camera image collection.  Camera shutter speed controls the time 

incoming light makes contact with the sensor, while aperture (F-stop) controls the amount of 

light that can pass into the camera.  Changes in aperture and shutter speed can compensate for 

each other, resulting in a standardized measure of exposure.  Film speed (ISO) determines the 

sensitivity of the sensor to incoming radiation.  White balance affects the color balance between 

red, green, and blue color channels.  It allows the camera to correct hue and produce realistic 

looking pictures under cloudy conditions or electric lights. 

Nearly all consumer cameras have completely automatic settings where the camera controls 

shutter, aperture, white balance, film speed, and contrast, allowing the user to point and shoot 

without adjusting settings.  Mid-level consumer cameras (those with prices currently ranging 

from about $100 to $500) also have manual settings that allow the user to adjust some or all of 

these parameters.  The cameras are designed to approximate a standardized measurement of 

human visual response (Sharma, 2003), and can have overlapping sensitivity between pixels that 

detect red, green, and blue (RGB) channels (Hong et al., 2000; Wu et al., 2000).  There is 

currently no standardized method for adjusting camera color parameters, so RGB output differs 

by camera (Hong et al., 2000).   

Many of the features that are attractive for general use can compromise remote sensing work.  

For instance, the Nikon 4300 default settings include automatic corrections for exposure, 

aperture, ISO number, and white balance (Nikon).  In addition, these cameras use hot mirrors to 

minimize near-infrared (NIR) radiation transmission, limiting the camera spectral range to the 

visible spectrum (Chieng and Rahimzadeh, 2005).  This prevents the influence of NIR radiation 
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on the camera color channels, but also prevents the camera from sensing NIR radiation.  The 

NIR region has long been associated with crop growth and health (Rabideau et al., 1946), and is 

widely used for vegetation indices, such as those based on the ratio vegetation index (RVI) and 

the normalized difference vegetation index (NDVI) (Jordan, 1969; Rouse et al., 1973).   

Many of the point and shoot features in consumer grade cameras can confound spectral 

estimates.  However, many of these features can be adjusted in the manual camera user settings.  

Features that should be locked include white balance, image adjustment, and ISO speed, since all 

of these features can affect the image exposure and channel balance.  Aperture on the Nikon 

4300 cannot be locked, and locking the shutter speed has a significant tradeoff.  With a single 

shutter speed, changes in exposure can be eliminated as a source of image variation, but there is 

a risk of miscalculation of the correct shutter speed.  A shutter speed that is set too fast will not 

allow sufficient image exposure, and a shutter speed that is set too slow will overexpose the 

image, resulting in image saturation.  The use of one shutter speed limits the camera to a narrow 

dynamic range.  A more robust solution would be the correction of images based on camera 

exposure, allowing images to be collected with a variety of exposure levels.   

Making a camera NIR sensitive involves modification of the camera by replacing the hot mirror 

with a filter that transmits infrared rather than visible radiation.  However, the procedure is often 

not too technically demanding (Chieng and Rahimzadeh, 2005), and the consumer camera might 

then be practical for the same remote sensing estimates as cameras designed for near-infrared 

imaging.  This would require a separate camera for collection of visible channels, and the 

cameras would require some method of exposure correction between cameras.  A correction 

designed to compensate for changes in exposure might allow these cameras to be used as a viable 

remote sensing device, and because most successive camera models use similar optical systems, 
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many of the principles applied to the specific camera will be similar to those of other camera 

models, particularly those in the same product line.   

This paper presents a method for calibrating a system of visible and near-infrared cameras for 

exposure, both within camera and between cameras.  The methodology was designed to evaluate 

a simple calibration system and to determine the accuracy and efficacy of using a consumer-level 

digital camera system to estimate visible and near-infrared reflectance.   

Materials and Methods 

Camera Setup  

Two Nikon COOLPIX 4300 consumer digital cameras were used together for this experiment.  

The Nikon 4300 camera has a 4.0 megapixel (2272x1704 pixel) resolution, costs under $400 

new, and weighs ~300 g with battery.  Images were collected on manual setting with presets of 

sunlight white balance, no image adjustment, ISO 100 sensitivity, and normal noise reduction.  

The aperture cannot be preset, but the aperture was recorded in the camera metafile (info.txt) 

each time an image was collected.   

The first camera was not modified and was used to collect visible images with red, green, and 

blue (RGB) channels.  Each channel is 8-bit (256 color), resulting in a 24-bit (16.7 million color) 

RGB combination.  The CCD is covered with a cyan-yellow-green-magenta (CYGM) filter array 

(Nikon, 2004). 

The second camera was modified by removing the hot mirror (11 x 12 x 2.5 mm) from between 

the lens assembly and the CCD array and replacing it with a piece of Hoya R720 infrared filter 

cut to 11 x 12 mm, similar to the method described by Cheng and Rahimjadeh (2005).  The 

visible and near-infrared transmission characteristics of both the hot mirror and the filter are 

shown in Fig. 3.1, as determined using a StellarNet spectrometer (Apogee Instruments, Logan, 
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UT) on a white polytetrafluoroethylene (PTFE) reflectance target under direct sunlight.  

Although the camera was modified to be insensitive to visible radiation, the resulting image still 

has RGB channels (Fig. 3.3) that are influenced by both the algorithm in the camera that corrects 

for color balance and the differing sensitivity of the filter array components to NIR radiation.  

The optical characteristics of both cameras were tested to estimate the practicality of using a 

tandem of visible and near-infrared cameras to estimate vegetation indices.   

RGB channels and the Near-Infrared 

The RGB channels were tested individually to determine which channel would yield the most 

consistent estimates of infrared.  A reflectance panel constructed of several swatches with 

different reflectivity was constructed (Fig. 3.3).  The swatches included a white reflectance 

standard made of polytetrafluoroethylene (PTFE), a photographic gray card, and several diffuse 

paint samples with varying visible and NIR reflectance.  All of the materials in the reflectance 

target had unique reflectance properties, including total reflectance by wavelength and 

reflectance of corresponding wavelengths.  Many of the dominant colors were chosen from the 

same color swatches, allowing the same reflectance characteristics at different brightness levels. 

Photographs were collected at 5 exposure levels simultaneously with each camera.  The images 

were downloaded and opened in Adobe Photoshop CS2 (Adobe Systems, Inc., San Jose, CA), 

and a region in the center of each target color was selected using the rectangular marquee tool.  

The brightness of each channel was observed using the histogram function and recorded in a 

spreadsheet.  Brightness value standard deviations did not exceed 2.0 for any of the targets, and 

typically ranged from 1 to 1.5. 
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Exposure and Lens Distortion Correction 

Relative exposure level for each camera was calculated as shown in Equation 1: 

             Equation 1 

In this case, F is the camera f-stop, and shutter is the shutter speed in seconds.  This equation is 

well-documented in photography and is based on the relationship between aperture and shutter 

speed in determining exposure (Jacobsen et al., 2000).  Corrections for exposure level were 

made within camera. 

Lens distortion was estimated at the 8-mm focal length by photographing a reference grid with 

the camera normal to the grid and correcting the image in Adobe Photoshop CS2 using the lens 

correction filter until the lines of the grid most closely approximated vertical and horizontal 

parallel lines.  

Calibration Panel Test of NDVI  

Because this research was designed to provide a straightforward method for determining 

vegetation indices with a consumer grade camera system, the normalized difference vegetation 

index (NDVI) was used to test the calibration between cameras at multiple exposure levels.  

NDVI is calculated as (ΔNIR - ΔRed)/ (ΔNIR + ΔRed), where ΔNIR and ΔRed are NIR and red 

reflectance (Rouse et al., 1973).  The steps of estimating this index based on camera brightness 

values are outlined in Table 3.1. 

NDVI for each material was determined using the Apogee spectrometer and reflectance probe.  

Estimated NDVI values were then calculated from the exposure-corrected brightness values of 

the visible and near-infrared cameras.  The visible camera exposure varied by 1.4 shutter stops, 

and the NIR camera exposure varied by 0.95 shutter stops.  The relative exposure difference 

between the visible and NIR cameras ranged from -2.01 to 0.39 shutter stops, based on the 

)/(log 2
2 shutterFEv =
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calculation shown in Equation 1.  Brightness values were then obtained for the visible camera 

red channel and the NIR camera blue channel. 

Field Testing of Calibrated Cameras 

The camera setup was used for monitoring the growth characteristics of cotton in an irrigation 

study of 36 plots conducted at the Stripling Irrigation Research Park in Camilla, Georgia in 2006 

on a Lucy loamy sand (loamy, kaolonitic, thermic, Arenic, Kandiudults).  Fertility, weed control, 

and insect scouting and control measures were in accordance with the University of Georgia 

Cooperative Extension Service guidelines.  Images were collected at altitudes of 75 to 300 m 

above the plant canopy on 8 cloud free days between 10:30 AM and 12:30 PM from June 20 to 

July 21, 2006 (49 to 80 days after planting).   

On most days, the camera field of view did not cover the entire study area, so plot image 

segments were collected from 37 visible images and 37 near-infrared images over the course of 

the study.  There were 35 recorded visible exposure values that ranged from 11.2 to 14.0, with a 

mean exposure value of 12.9.  There were 36 recorded NIR exposure values that ranged from 

12.0 to 14.8, with a mean exposure of 13.9.  This resulted in 37 exposure combinations between 

the visible and NIR cameras that ranged from -1.9 (NIR camera exposed almost 2 stops less than 

visible camera) to 0.4 (NIR camera exposed almost 1/2 stop greater than visible camera) and 

averaged -1 with a standard deviation of 0.6. The visible brightness channels were corrected to 

match the exposure level of the near-infrared camera.  Corrected aerial NDVI measurements 

from the digital cameras were compared with ground-based point measurements of NDVI.   

The ground based NDVI measurements were performed 1.5 m above the plant canopy using an 

Apogee Vis/NIR spectrometer with fiber optic cable and 30Ε full angle field-of-view, with 

reference reflectance measured using the PTFE reflectance standard used for the other tests.   
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Results 

Near-Infrared Image Characteristics 

The near-infrared images exhibited strong red channel color saturation, which resulted in images 

with a pink cast.  As shown in Fig. 3.4, red channel brightness values saturated at incident light 

levels well below the saturation point of the blue and green channels.  The red channel reached 

saturation point at a blue brightness value of 180, or about 70% of maximum.  This is likely due 

to high transmission of near-infrared radiation by the red-transmitting filters in the color filter 

array.  The saturation of the red channel makes it incapable of accurately measuring high levels 

of reflected near-infrared radiation, unless the camera white balance is adjusted to compensate 

for this saturation.  If the red channel saturates, it must be discarded prior to image analysis to 

prevent misleading results.  The blue and green channels did not show any appreciable color 

saturation, with the blue channel more sensitive to infrared light than the green channel, as 

shown in Fig. 3.4.  The higher sensitivity of the blue channel compared to the green channel 

suggests that it would have a higher signal-to-noise ratio and therefore more suitability for image 

analysis, although comparison of brightness values between the channels shows a high linear 

correlation (r2 = 0.97) between blue and green brightness values in most cases (Fig. 3.4).   

Lens Distortion 

A 3.5% barrel distortion was observed for both cameras at the 8-mm focal length, based on 

measurements obtained from the reference grid and correction in Photoshop.  When it is 

necessary to georectify the images, this distortion should be taken into consideration, as well as 

camera angle and location.  As described in the materials and methods, the lens distortion 

correction filter was used in this case to correct distortion when necessary.  Another way to 
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address this issue would be to take images from a sufficient distance that the regions of interest 

were toward the center of the image to avoid sampling distorted pixels. 

Camera Exposure and Reflectance 

Changes in exposure significantly affected the relationship between camera channel brightness 

and target reflectance (Fig. 3.5), suggesting the importance of an exposure correction.  For 

example from Fig. 3.5, the red channel brightness values of the gray standard (red reflectance = 

18%) ranged from 92 to 193, depending on exposure level.  In targets with higher reflectance, 

this change was not as pronounced, due to the curvilinear sensor response.   

The relationship between channel brightness and reflectance was nonlinear for all channels.  At a 

given exposure value, camera linearity is dependent upon the spectral range of the target.  

Targets with similar reflectance would have a nearly linear slope between reflectance and 

channel brightness.  However, high-contrast scenes show the nonlinearity of the camera sensor.  

At high channel brightness levels, materials with similar brightness values will be difficult to 

differentiate.  However, because all of the exposure levels yielded similar patterns in the 

relationship between channel brightness and reflectance, much of this can be corrected by 

changing shutter speeds and correcting to a common exposure level.   

There is a strong linear relationship between channel brightness values at multiple camera 

exposures (r2 = 0.986, 0.993 and 0.997 for blue, green, and red channels, respectively), as shown 

in Fig. 3.6.  This linear relationship allows a single linear correction based on relative exposure 

between two exposure levels.  This led to a simple correction of visible channel brightness based 

on change in exposure, as shown in Fig. 3.7.  Coefficients of determination between reflectance 

and the corrected channel brightness were 0.943 for the blue channel, 0.957 for the green 

channel, and 0.984 for the red channel, suggesting a very tight relationship.   
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The near-infrared camera channels also had a curvilinear relationship between reflectance and 

brightness.  However, the blue and green channels of the NIR camera did not respond in the 

same way over the entire region of the near-infrared spectrum examined.  This was particularly 

noticeable on reflectance targets that reflected significantly less 700-800 nm than 800-900 nm 

light (none of the samples reflected appreciably more 700-800 nm light than 800-900 nm light).  

To determine the extent of the difference between channels, NIR reflectance of each target was 

divided into 700-800 and 800-900 nm regions, and blue and green channel brightness values 

were plotted against reflectance from each region (Fig. 3.8).   

Reflectance targets with a 700-800: 800-900 nm reflectance ratio greater than 0.80 were termed 

“uniform NIR reflectance,” and targets with 700-800: 800-900 nm reflectance ratio less than 

0.80 were termed “varied NIR reflectance.”   

The NIR blue channel brightness values correlated well with 800-900 nm reflectance, regardless 

of whether the targets had uniform or varied NIR reflectance.  However, as shown in Fig. 3.8, the 

blue channel brightness relationship with 700-800 nm reflectance showed large differences 

between targets with uniform and varied NIR reflectance.  This suggests that the blue channel is 

relatively insensitive to 700-800 nm radiation.   

The NIR green channel brightness values showed changes when compared with both the 700-

800 nm and 800-900 nm reflectance of materials with varied NIR reflectance.  However, when 

compared with an average of the 700-900 nm reflectance, all targets, including those with varied 

NIR reflectance had the same brightness to reflectance relationship, as shown in Fig. 3.9.  It was 

therefore determined that the NIR green channel is sensitive to radiation from both the 700-800 

nm range and the 800-900 nm range (Fig. 3.9).  This might be of interest for some applications, 

because the 700-800 nm range corresponds with the region of rapidly increasing plant 



 

 53

reflectance termed the “red edge,” and the 800-900 nm range corresponds with a region of nearly 

constant plant reflectance termed the “red shoulder.”  The red edge region is almost within the 

range of human sight, while the red shoulder region is further from the visible range, but still 

within the range of silicon photo detectors.  However, the strong relationship between the blue 

and green channels on the NIR camera in the field (Fig. 3.4) suggests that it would be difficult to 

identify changes in plant growth by comparing the channels. 

Another aspect of this concept is that the NIR camera might be used to effectively calculate two 

separate NIR regions, based on the difference between the reflectance characteristics of the green 

and blue channels.    

The comparison of blue channel values with 800-900 nm reflectance and green channel values 

with 700-900 nm reflectance resulted in close correlations with reflectance, as shown in Fig. 3.9.  

Like the visible camera channels, exposure compensation with the NIR camera involved a linear 

correction between exposure levels.  For the NIR blue channel, the compensation was simpler 

compared to the visible channels, because exposure could be corrected without changing the 

slope of the relationship (Fig. 3.10).  This correction resulted in a high correlation between 

reflectance and the exposure-compensated channel brightness values, as shown in Fig. 3.11. 

NDVI Estimates from Calibration Targets 

As shown in Fig. 3.12, there was a high correlation between the spectrometer red NDVI and the 

camera red NDVI (r2=0.96).  The correlation was also linear, despite the nonlinear relationship 

between camera brightness and reflectance, suggesting that the model adequately corrected for 

this nonlinearity on the reflectance target. 

Field Testing of Exposure Correction 
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This method was tested on data from a remote sensing study conducted in 2006 to verify its 

ability to correct for changes in exposure in remote sensing of plants.  One unique aspect of the 

study was that relative exposure differences trended positive rather than negative, with 

differences ranging from -0.4 to 1.85 shutter stops.  This would be expected, since plants reflect 

a high percentage of near-infrared radiation and a low percentage of visible light.  Therefore, as 

the crop matures, the scene becomes brighter in the near-infrared and darker in the visible.  

Correction for exposure improved the relationship of camera NDVI values with those obtained 

with a ground-based spectrometer from an initial r2 value of 0.37 to a final value of 0.72, as 

shown in Fig. 3.13.   

Discussion 

Characterization of the cameras revealed that consumer digital cameras can be used in tandem as 

a basic system to estimate visible and near-infrared reflectance, provided that several practical 

aspects are considered when using these cameras for remote sensing research.  Assuming that the 

camera is set to eliminate automatic white balance correction, perhaps most dramatic is the issue 

of exposure measurement and correction.  Calibration of the camera must take into account the 

calculated exposure, rather than the estimated exposure level based on the camera bracketing.  Of 

particular concern is the incorrect aperture level recorded by the near-infrared sensitive camera 

in this study.  It would be worthwhile to characterize the effects of aperture on brightness of any 

camera considered for such experiments to identify issues such as this prior to using the camera.  

After aperture was corrected for in the near-infrared camera, correction of cameras to exposure 

level was consistent within the tested range of exposure levels for each camera (at least 1.5 stops 

for the visible camera and at least 1 stop for the near-infrared camera).  This allowed for good 

corrections between exposure levels, not only within camera, but between cameras.   
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For these tests, the selected setting was sunlight for both cameras, since nearly all of the images 

were collected on sunlit days.  Another possibility would be to set a white correction manually, 

which would eliminate color saturation for the NIR camera.  The disadvantage to such a white 

correction is that it would be difficult to duplicate between cameras, whereas an algorithm 

programmed into the camera firmware would have similar results between cameras of the same 

model.   

Another issue of note is correction for lens aberrations.  Lens distortion was observed with both 

cameras, although the percent lens distortion was nearly identical for both.  Another issue to be 

mindful of is the effect of brightness fall-off, where brightness decreases significantly toward the 

corners of the image, due to the increasing obliquity in the view away from the nadir axis, as 

well as lens vignette effects (Dean et al., 2000).  However, much of this can be minimized by 

using images that include the regions of interest near the center of the image.  If this requires the 

collection of multiple images for a target location, using exposure correction and a vegetation 

index can decrease the effects of scene brightness changes.   
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Fig. 3.8. Transmittance spectra of Nikon hot mirror and Hoya R720 infrared filter.  Most hot 

mirror transmittance occurs at wavelengths of less than 670 nm, while most transmittance of the 

infrared filter occurs above 710 nm. 
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Fig. 3.9.  Reflectance characteristics of selected colors from the reflectance target. 
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Fig. 3.10. Visible and near-infrared images of the reflectance target separated by channel.   
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Fig. 3.11. Comparison of red, green, and blue channel brightness values from the near-infrared 

sensitive Nikon 4300 camera.  The blue channel was chosen as the reference near-infrared 

channel because it had higher brightness values than the green channel and did not saturate as the 

red channel did. 
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Fig. 3.12. Uncorrected brightness values of blue, green, and red channels compared with target 

reflectance.  
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Fig. 3.13. Correction of red, green, and blue channels for camera exposure.  The upper limit was 

255, due to camera constraints.   

 



 

 62

 

Reflectance
0.0 0.2 0.4 0.6 0.8 1.0

C
or

re
ct

ed
 B

rig
ht

ne
ss

0

50

100

150

200

250 Red
r2 = 0.984

C
or

re
ct

ed
 B

rig
ht

ne
ss

0

50

100

150

200

250 Blue
r2 = 0.943 

C
or

re
ct

ed
 B

rig
ht

ne
ss

0

50

100

150

200

250 Green
r2 = 0.957

y = 255 (1-e-3.95*x)

y = 246 (1-e-4.41*x)

y = 255 (1-e-3.39*x)

 

Fig. 3.14. Corrected channel brightness from visible camera at 5 exposure levels (as shown in 

Fig. 3.6) compared with reflectance. 
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Fig. 3.15. Blue and green near-infrared camera channel values compared with NIR reflectance.  

Materials with a red edge: red shoulder reflectance ratio greater than 0.80 were termed “uniform 

NIR reflectance,” while those with a ratio less than 0.80 were termed “varied NIR reflectance.”  

None of the samples had a 700-800: 800-900 nm reflectance ratio greater than 1.03. 
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Fig. 3.16. Blue channel values compared with 800-900 nm reflectance (a) and green channel 

values compared with 700-900 nm reflectance (b).   
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Fig. 3.17. Correction of NIR camera blue channel for camera exposure.     
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Fig. 3.18. Corrected blue and green channel values compared with 800-900 nm reflectance (blue 

channel) and 700-900 nm reflectance (green channel). 
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Table 3.2. Steps of calculating NDVI from uncorrected visible and near-infrared images.  All of 

the steps are shown using equations for the red channel of the visible camera. 

 Step Equation 

1 Collect uncorrected images  
2 Calculate exposure level of both cameras )/(log 2

2 shutterFEv =  

3 Correct brightness values of one camera to match 
exposure level of second camera 

)33.0/(*8943.0 33.0/
v

E Exy v Δ−= Δ

4 Convert brightness values to relative reflectance 
values 

39.3

)
255

1ln( x

y
−

−=

 

5 Calculate NDVI 
dNIR
dNIRNDVI

Re
Re

+
−

=
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Fig. 3.19. Relationship between NDVI values of reflectance target measured using a 

spectrometer and reflectance probe with NDVI values calculated from corrected visible red (5 

exposure levels) and NIR blue (3 exposure levels) channels.  Exposure differences from the 

visible camera to the NIR camera based on the calculation in Equation 1 ranged from -2.0 to 0.39 

shutter stops. 
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Fig. 3.20. Effect of exposure correction on relationship of camera NDVI with NDVI values 

obtained with a ground-based spectrometer.  Comparison was made over 7 dates during the 2006 

growing season on cotton.  No other corrections were made. 
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CHAPTER 4 

COMPARING THE DYNAMIC SENSITIVITY OF AERIAL AND GROUND-BASED 

SPECTRAL ESTIMATES OF COTTON GROUND COVER1 
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Abstract 

Field-scale remote sensing of plant stress requires timely measurements that are sensitive to 

changes in crop growth and health.  Aerial and ground-based remote sensing platforms can be 

used to identify growth characteristics through measurements of crop reflectance.  Normalized 

difference vegetation index (NDVI) and Green:Red ratio measurements obtained from low-

altitude visible and near-infrared (NIR) aerial images of cotton plots (Gossypium hirsutum L.) 

were compared with ground cover fraction measurements to determine the sensitivity of the 

indices to cotton growth.  Ground-based spectrometer NDVI measurements were also evaluated 

for simplicity and sensitivity to ground cover fraction.  The cotton was subjected to four 

irrigation regimes in a 4x4 latin square design 2004 and five regimes in a randomized block 

design in 2005 and 2006.  Both spectrometer (r = 0.64 to 0.85) and camera (r = 0.83 to 0.88) 

indices were strongly correlated with ground cover fraction, particularly between ground cover 

fractions of 0.20 and 0.80.  In addition, the indices were sensitive to changes in growth between 

irrigation treatments from growth stages of first square to peak bloom.  Spectrometer red edge 

NDVI was sensitive to a wider range of ground cover than spectrometer red NDVI.  Camera 

Green:Red ratio, the simplest index examined, had a high linear correlation (r2 = 0.86) with 

ground cover fraction throughout the growing seasons over a three year period, suggesting that 

this index might allow quick, simple, and accurate crop growth estimates in a production setting.   

Introduction 

Remote sensing offers an attractive alternative to intensive soil or tissue sampling for broad scale 

crop growth and health estimates (Famiglietti et al., 1999).  One general class of remote sensing 

vegetation indices uses ratios or normalized ratios of reflected visible and near-infrared light to 

improve sensitivity to crop growth (Bannari, 1995; Elvidge and Chen, 1995).  These indices have 
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been shown to be correlated with crop ground cover fraction, a sensitive indicator of changes in 

crop growth and radiation capture (Asrar et al., 1992).  Improvements in timeliness and cost of 

remote sensing systems will continue to expand the use of this technology, provided that simpler 

and less costly systems can still accurately estimate crop health.   

Ground Cover Fraction and Crop Growth 

Ground cover fraction is typically defined as the ratio of green vegetation to the total scene 

detected from the vertical direction (Purevdorj et al., 1998).  This measurement has been shown 

to be highly correlated with crop growth and radiation capture (Klassen et al., 2003), and has 

been proposed to be a more sensitive indicator than leaf area index of crop growth and radiation 

capture by Asrar et al. (1992).   

Ground cover fraction measurements are commonly made using a digital camera mounted facing 

down toward the crop canopy (Purevdorj et al., 1998).  The images are processed, and plant 

pixels are separated from soil pixels in software, either manually or by using software that has 

been designed to discriminate between plant and soil pixels.  Ground cover fraction 

measurements have the potential to be very precise (Klassen et al., 2003), but in the field, several 

factors may affect accuracy, including camera height, lighting conditions, and the plot 

separability.   

Camera height affects measurements at both the ground level and at high altitudes.  Ground level 

measurements tend to be the most precise measurements, since there are high quantities of both 

plant and ground pixels.  However, the measurements are affected by the distance of the camera 

above the plant canopy, since a camera near the canopy will be influenced by the plant being 

closer than the soil to the camera.  Increases in altitude increase the ground area sensed by each 

camera pixel (Fig. 4.2), so high-altitude images become impractical for ground cover estimation 
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when the area sensed by each pixel becomes a significant portion of row width.  At this point, 

vegetation indices, which estimate fractional ground cover from the spectral characteristics of a 

scene, are more appropriate.   

Remote Sensing Vegetation Indices 

Current remote sensing platforms such as satellites, airplanes, and ground-based platforms are 

used to obtain field-scale imagery with limited user intervention (Sui et al., 2005; Vierling et al., 

2006; Yang et al., 2001; Yang et al., 2003).    

Satellites and airplanes cover a broad spatial area (typically larger than a single irrigated field) 

with a single image.  Because of the high altitudes associated with these platforms crop growth 

estimates are made primarily with vegetation indices, such as the normalized difference 

vegetation index (NDVI), its variants, and other indices that minimize soil reflectance effects or 

atmospheric effects (Elvidge and Chen, 1995; Huete, 1988; Rouse et al., 1973).  Other 

intermediate platforms for both imagery and spectrometry, such as tethered blimps (Chen and 

Vierling, 2006; Vierling et al., 2006) have been suggested.   

Aerial images measure reflected incident radiation from the sun and can be affected by 

atmospheric conditions (Jackson et al., 1983).   

Ground-based reflectance measurements are typically collected at several points throughout the 

field, and reflectance measurements can be either passive (measurements of reflected sunlight) or 

active (measurements of reflected light from an electric light source).  Active reflectance 

measurements often use a modulated light source to minimize the effects of ambient light, as 

described by Sui et al. (2005).   
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Reflectance Measurements 

Although several reflectance regions throughout the shortwave infrared spectrum have been 

compared to crop health, combinations of green, red, red edge, and near-infrared (NIR) 

reflectance have consistently produced many of the closest relationships with crop growth and 

health, due to chlorophyll absorbance and leaf mesophyll structure (Carter and Spiering, 2002; 

Gitelson and Merzlyak, 1998; Horler et al., 1983b).   

Vegetation indices measure reflectance interactions by wavelength as ratios, differences, ratioing 

differences and sums, and by forming linear combinations of wavelengths in order to increase 

vegetation signal and minimize other effects from soil or the atmosphere (Jackson and Huete, 

1991).  However, most vegetation indices are also sensitive to soil properties, plant canopy 

geometry, solar angle, cloudiness, and other atmospheric effects (Baret and Guyot, 1991).   

Provided soil, plant, and atmospheric effects are accounted for, vegetation indices provide a 

robust method for identifying crop growth characteristics and detecting general stress events.  

Crop absorbance and reflectance are closely tied to biomass (Klassen et al., 2003; Osborne et al., 

2002; Plant et al., 2000), although Pinter et al. (2003) stated that most vegetation indices offer 

general estimates of crop growth and health rather than diagnosing specific stresses that 

contribute to differences in biomass. 

Remote sensing of plant stress for irrigation is unique because of the need for rapid processing 

and decision making, as well as the dynamic crop growth characteristics related to water status.   

Much of the geoprocessing of the target site, such as defining a geometric model, choosing 

appropriate control points, and loading a digital elevation model, can be completed prior to the 

growing season.  However, in-season analysis must be quick, simple, and sensitive enough to 

changes in vegetative growth to let the producer make irrigation decisions.  Minimizing the costs 
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and processing time is important, because producers faced with other production tasks may be 

inclined to ignore the data until after the growing season if it is not delivered quickly and in a 

simple manner.   

The objectives of this research were to compare measurements of fractional ground cover, 

vegetation indices based on visible and near-infrared (NIR) aerial imagery, and ground-based 

vegetation indices from a spectrometer for sensitivity to crop growth.  The vegetation indices 

chosen for this study included the Green:Red ratio, as described by Adams et al. (1999), and the 

red and red-edge variants of the normalized difference vegetation index (NDVI), as described by 

Ritchie and Bednarz (2005). 

Materials and Methods 

The research was conducted at the Stripling Irrigation Research Park in Camilla, Georgia during 

2004-2006.  Delta & Pineland 555 BG/RR was seeded in 0.91 m rows at a rate of 126,000 plants 

ha-1.  Planting dates were 5 May 2004, 20 Apr. 2005, and 2 May 2006.  In 2004, the study was 

conducted under a variable-rate center pivot based on the design described by Perry et al. (2002).  

Buffer regions were designated between treatment nozzle packages to avoid irrigation overlap, 

and all ground-level measurements were done in the center of each treatment to avoid the buffer 

regions.  Plot lengths ranged from approximately 21 m on the inner row of the smallest treatment 

to 37 m on the outer row of the largest treatment.  The design was a 4 x 4 Latin square with four 

irrigation treatments ranging from well-watered to non-irrigated.  Plots were strip-tilled. 

WatermarkTM sensors (Irrometer, Riverside, CA) were placed in each plot at depths of 20, 40, 

and 60 cm.  Watermark sensors estimate soil tension based on electrical resistance through a 

granular matrix between two electrodes.  The sensor has a 0-200 kPa range.  Fertility, weed 

control, insect monitoring and control were done in accordance with the University of Georgia 
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Cooperative Extension Service Guidelines.  To ensure a uniform stand, all plots were irrigated 13 

mm prior to emergence with the overhead system. 

In 2005 and 2006, the study was continued on lateral irrigation systems designed to allow 

watering of plots in a randomized design.  There were five irrigation treatments, which ranged 

from well-watered to non-irrigated, with four replicates of each treatment.  In 2005, all 20 plots 

were conventional tillage, while in 2006, 20 plots were strip-tilled, with an additional 16 plots 

that were conventional tillage with four of the irrigation levels.   

As with the 2004 study, buffer regions were designated between treatment nozzle packages to 

avoid irrigation overlap, and all measurements were performed in the center of each treatment to 

avoid the buffer regions.  Plot lengths were 21 m.  Early irrigation was applied to all plots after 

planting at a rate of 13 mm in 2005 and 20 mm in 2006 to ensure uniform emergence.  Crop 

height was managed using mepiquat chloride at 550 mL ha-1 at squaring, then 550-1400 mL ha-1 

uniformly applied over all treatments at 1-2 week intervals based on management guidelines for 

a total of 3500-4200 mL per year for the studies.  Prior to harvest, plots were defoliated with 2.3 

L ha-1 ethephon plus cyclanilide and 0.7 kg ai ha-1 thidiazuron when the crop reached 90% open 

boll.   

Aerial Imagery 

Aerial imagery was collected using a 5 m * 2.5 m tethered blimp (Southern Balloon Works, 

Deland, FL) and a two-camera remote system.  The blimp has a 40 N lift rating by the 

manufacturer.  The camera system included two Nikon 4300 digital cameras, one of which was 

modified to be near-infrared sensitive, a Digisnap 2100 electronic shutter release device 

(Harbotronics, Gig Harbor, WA), and a radio control system that allowed simultaneous remote 

firing of the cameras from the ground.  The camera settings were based on the methods described 
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in Chapter 3 (sunlight white balance, ISO100, image adjustment off, exposure correction applied 

between cameras).  The blimp was flown over the plots at heights that ranged from about 45 m 

for ground cover measurements to about 180 m for vegetation index measurements.  Images 

were collected 2-3 times per week on average through late bloom, with collection dates 

determined by environmental factors such as cloud cover and wind (>20 mph), and 

measurements were collected between 10 AM and 1 PM.  In 2004, 6-8 rows from each plot were 

selected for ground cover and vegetation index measurement, due to the spatial constraints of the 

variable rate center pivot.  In 2005 and 2006, four rows of each plot were selected from each 

plot.  Spatial resolution varied with plant height based on the relationship shown in Fig. 4.2. 

Ground Cover 

Plot markers were placed adjacent to each plot for identification purposes after emergence, and 

images were collected 45-75 m above the cotton plots for ground cover measurements.  Ground 

cover was estimated from the four center rows spanning the length of the plot.  Images were 

opened in Adobe Photoshop CS2, and image angle was corrected using the measure tool and the 

autorotate function.  The rectangular marquee tool was used to select each plot of interest, and 

the selection included four plant rows and four soil rows (Fig. 4.1).  Each plot was extracted into 

its own work space.  Image pixels containing plants were separated from pixels containing soil 

using the magic wand tool, and the number of plant pixels and total pixels were recorded from 

the Photoshop histogram values.  Ground cover fraction was calculated as the ratio of plant 

pixels to total pixels.  Images were collected 2-3 times per week, as weather permitted.   

Normalized difference vegetation index (NDVI) values were calculated from the visible and 

near-infrared images based on camera brightness values and the relationship between camera 

brightness, camera exposure, and scene reflectance of the two cameras, as determined in Table 
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2.1.  The center four rows of each plot were selected, and the NDVI for each plot was calculated 

from the mean image brightness for each plot measured from the visible and near-infrared 

channels.   

Ratios of the mean green to mean red brightness values from the visible camera were calculated 

for each plot, as described by (Adamsen et al., 1999).  The purpose of these measurements was 

to determine whether an index based solely on visible brightness characteristics might be 

practical for estimation of crop growth.   

Spectrometer Measurements 

Ground-level reflectance of each plot was measured using an Apogee Vis-NIR spectrometer 

(Apogee Instruments, Inc., Logan, UT) with an effective spectral range of 400-900 nm and a 

spectral resolution of 1.4 nm (full width, half maximum height).  Each reading consisted of an 

average of three spectral scans, and two were collected in each plot on each sampling date.  A 

white polytetrafluoroethylene (PTFE) reflectance standard was used as a reference, and 

reflectance by wavelength was calculated as the ratio of scene reflectance to the reflectance of 

the standard.  References were collected at 10-15 minute intervals, or whenever clouds were 

passing over.  Reflectance measurements were collected only when direct sunlight was available, 

on average twice a week.   

Spectrometer measurements from all treatments were compared with ground cover, with the 

exception of the most water-stressed treatment on day 76 after planting in 2004, when the crop 

was wilted to such an extent that the spectrometer measured very little vegetation.   

Analysis 

Ground cover measurements using the visible and NIR cameras were compared to determine 

whether one method estimated higher ground cover levels than another, as well as to determine 
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the error associated with the ground cover estimates.  The error was calculated as the standard 

error of the estimate. 

The camera and spectrometer-based vegetation indices were compared with ground cover and 

with each other to determine sensitivity to changes in crop growth from low to high levels of 

ground cover. 

In addition, the sensitivity of each index to within-date growth variability was tested by an 

ANOVA comparison of treatment mean separation at three crop growth stages: between first 

square and first bloom, after first flower, and near peak bloom.   

Results 

Ground Cover 

Image-based estimates of ground cover with visible and near-infrared cameras were highly 

correlated, as shown in Fig. 4.3 (r2 = 0.93; standard error of estimate 0.04).  However, the 

sensitivity of this method is limited by the distance of the cameras above the crop canopy.  

Klassen et al. (2003) noted that images too close to the crop canopy can overestimate ground 

cover, based on the distance formula.  At larger distances from the crop canopy, this method is 

limited by the relationship between the pixel size and the crop row width (Fig. 4.2).  The 

decreased pixel resolution limits the accuracy of this method, particularly at distances greater 

than 50 m, where the ratio is greater than 0.05 (5%).  A second difficulty with ground cover 

estimation is the effect of shadows and different reflectivity of soil, both of which can complicate 

ground cover estimates.  Cloudy conditions decrease shadows and provide the simplest ground 

cover estimates.   



 

 82

Ground Cover and Spectral Indices 

Ground cover estimates and spectral estimates correlated closely throughout the growing season 

during each year, with correlation coefficients ranging from 0.64 to 0.95, as shown in Table 4.1.  

Of particular interest was the high correlation between the camera Green:Red ratio and the other 

indices, since this index would allow the use of a single camera, decreasing the cost and 

complexity of the system.  A comparison of Green:Red ratio with NDVI (Fig. 4.4) showed a 

linear relationship with a high correlation (r2 = 0.90) between the two indices.  The linear 

correlation suggests that these indices have a similar dynamic range.  A comparison of the two 

indices over the entire study area (Fig. 4.5 and Fig. 4.6) showed similar trends within the field, 

and both indices correlated closely with each other.  However, the two indices were not linearly 

correlated, as shown in Fig. 4.6.  At low index values, NDVI continued to trend downward, 

while the Green:Red ratio did not.  The lack of change in Green:Red ratio as NDVI values 

decrease suggests that there is a range of low NDVI values that the Green:Red ratio does not 

account for.  This is less noticeable in situations where soil and plant reflectance are integrated in 

the image, because the green plants affect both indices.   

As shown in Table 4.1, the Green:Red ratio correlated more closely with ground cover and 

spectrometer-based indices than the camera NDVI, although the differences in correlation were 

small.  Part of this may be due to the need for exposure correction between the visible and near-

infrared cameras, as well as small alignment errors between visible and near-infrared images.  

Exposure correction adds a small error to estimates of NDVI, as discussed in Chapter 3.   

Neither of the camera-based vegetation indices tested had a linear relationship with the entire 

range of ground cover.  For example, Fig. 4.7 shows that Green:Red ratio values saturated at 

both low and high levels of ground cover.  This suggests that a shortcoming of these indices is 
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their spectral dynamic range, an issue that has been reported by several authors (Carter and 

Spiering, 2002; Gitelson and Merzlyak, 1997; Horler et al., 1983a).   

Spectrometer-based spectral indices were closely related with each other.  However, NDVI710 

showed a greater dynamic range than NDVI, as shown in Fig. 4.9.  This concept was emphasized 

in a study on the sensitivity of indices to leaf area index (Ritchie and Bednarz, 2005), where red 

edge-based NDVI estimates were sensitive to a broader range of leaf area index values than 

NDVI estimates based on red and near-infrared reflectance.   

The NDVI710 index reached a maximum at a ground cover fraction of less than 0.80, as shown in 

Fig. 4.10.  This index also reached a maximum at camera Green:Red ratio values greater than 1.3 

(Fig. 4.8), suggesting that this index is less sensitive to high levels of ground cover than is the 

Green:Red ratio.  However, Fig. 4.8 also indicates that NDVI710 is more sensitive to low levels of 

ground cover than the camera Green:Red ratio.   

Some of the scatter in the relationship between camera and spectrometer estimates of NDVI is 

attributable to differences in scale.  As shown in Table 4.2, spectrometer and camera NDVI 

values of individual plots tended to be highly correlated, particularly in the well-watered 

treatments (irrigation treatments 1-3), with r2 values ranging from 0.66 to 0.96 in the strip tillage 

plots, and from 0.78 to 0.95 in the conventional tillage plots.  The slope of the relationship was 

also similar between plots for both tillage treatments.  This suggests that some of the variance 

between the two methods is plot-specific, and can be described the unique relationship between 

the sampling points for the spectrometer and the plot at large, which was measured by the 

spectrometer.   
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Treatment Comparisons 

Treatment comparisons using ground cover fraction, camera Green:Red index, and spectrometer 

measurements throughout the growing seasons from 2004-2006 are shown and discussed in 

Chapter 5.  A comparison of indices during 2006 at squaring, early bloom, and near peak bloom 

is shown in Fig. 4.11.  All of the indices showed significant differences at the P=0.05 level 

between irrigation treatments at all three dates, with the exception of the camera NDVI index 

(P=0.075).  In addition, camera NDVI had larger variance, as indicated by higher treatment 

variances and lower significance levels at all dates.   

Discussion 

Ground cover fraction measurements had the broadest dynamic range of any remote sensing 

method tested.  However, these measurements require imagery with a high pixel resolution, and 

separation can be complicated by shadows, soil texture and brightness, and the difficulty in 

analyzing pixels that include both soil and plant.  Ground cover fraction is also time consuming 

to calculate if done by hand, and computer-based measurements require careful oversight to 

avoid the effects of changes in lighting, soil background, shadows, and changes in plant 

reflectance (Hayes and Han, 1993).  However, this method is appropriate for plot-level 

measurements of crop growth, since it can measure entire plots at altitudes that still allow high-

resolution separation of plant and soil pixels.  Another advantage is the ability to conduct ground 

cover measurements on cloudy days, which interfere with most conventional aerial imagery. 

None of the spectral indices detected a full range of crop cover, although the indices were 

sensitive to different ranges of ground cover levels.  The NDVI710 was more sensitive to low 

levels of vegetation than the camera indices (Fig. 4.8), but was less sensitive to high ground 

cover.  One probable reason for this is the increased plant influence due to its closer proximity to 
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the sensor.  Klassen et al. (2003) emphasized the effect of apparent size in measurements of plant 

growth, suggesting that the increased influence of the plant material causes an overestimation of 

green cover.  This over-estimated green cover, in turn, would result in saturation of the 

vegetation index at a lower level than if the spectrometer was further from the plants.   

The camera Green:Red ratio was linearly related with camera NDVI throughout the growing 

season (Fig. 4.4), even though the Green:Red index is a ratio, and the NDVI is a normalized ratio 

with bounding levels of -1 to 1.  Ratios of red and near-infrared reflectance are not linearly 

related with NDVI.  Comparisons of these indices over a broad range of pixel values on a single 

date suggest that both indices detect similar treatment differences, as shown in Fig. 4.5.  The 

relationship is approximately linear at NDVI values above 0.20, but Green:Red ratio values are 

linearly correlated with low values of NDVI, as shown in Fig. 4.6.     

The spectrometer NDVI710 had better dynamic range than NDVI, as well as a higher correlation 

with ground cover and camera vegetation indexes.  This agrees with other studies (Carter and 

Spiering, 2002; Horler et al., 1983b; Ritchie and Bednarz, 2005) that suggest that red edge 

measurements can improve the dynamic range of indices used to estimate chlorophyll density at 

both the leaf and plant canopy levels.   

The results from this study suggest that the camera NDVI, camera Green:Red ratio, and 

spectrometer NDVI710 nm indices all have useful attributes for specific remote sensing needs.  The 

higher sensitivity of NDVI710 nm suggests that it would be more appropriate for ground-based 

measurement systems; however, aerial systems based on this index would require more extensive 

consumer camera modification than indices based on visible channels.  The consistency of the 

aerial NDVI measurements over the growing season despite the wide range of camera exposure 

differences suggests that this index can provide a robust NDVI estimate.  The Green:Red ratio, 
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which has already been shown to be effective for estimating leaf senescence (Adamsen et al., 

1999), also provides a very simple method for ground cover estimates, although it appears to be 

less sensitive to low levels of ground cover than the NDVI.  The Green:Red ratio allows a 

simple, low-cost, single camera system for remote sensing of crop growth.   
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Fig. 4.21. Ground cover measurements included four plant rows and four soil rows.  Plant pixels 

were separated from soil pixels using the magic wand selection tool, as shown by the selection 

mask in the bottom frame. 
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Fig. 4.22. Ratio of pixel width to cotton row width based on camera height. 
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Fig. 4.23. Comparison of visible and near-infrared ground cover estimates during 2004.
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Table 4.3. Pearson correlation matrices for 2004-2006. 

  Ground Cover NDVIspec NDVI710 Green:Red NDVIcamera 

2004 Ground Cover 1.00     

 NDVIspec 0.83 1.00    
 NDVI710 0.85 0.92 1.00   
 Green:Red 0.88 0.85 0.88 1.00  
 NDVIcamera 0.85 0.83 0.86 0.91 1.00 
       

2005 Ground Cover 1.00     
 NDVIspec 0.64 1.00    
 NDVI710 0.66 0.85 1.00   
 Green:Red 0.93 0.72 0.80 1.00  
 NDVIcamera 0.89 0.70 0.79 0.94 1.00 
       

2006 Ground Cover 1.00     
 NDVIspec 0.87 1.00    
 NDVI710 0.89 0.97 1.00   
 Green:Red 0.92 0.91 0.93 1.00  
 NDVIcamera 0.91 0.92 0.92 0.96 1.00 
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Fig. 4.24. Comparison of visible and NIR camera NDVI with visible camera Green:Red ratio.  

Green:Red ratio was closely correlated with camera NDVI. 
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Fig. 4.25. Green:Red ratio and NDVI on July 21, 2006.  Both indices showed similar trends 

throughout the growing season. 
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Fig. 4.26. Relationship of camera Green:Red ratio with camera NDVI on July 21, 2006.  Both 

indices were calculated from pixel values over the entire field. 
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Fig. 4.27.  Relationship between Green:Red camera ratio and fractional ground cover (2004-

2006).   
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Fig. 4.28. Relationship of NDVI710 collected with the spectrometer with the Green:Red ratio 

collected with the visible camera (2004-2006).  The camera measurements continued to trend 

upward after the spectrometer NDVI stopped its upward movement. 
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Fig. 4.29. Comparison of spectrometer NDVI710 with spectrometer NDVI (2004-2006). 
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Fig. 4.30. Comparison of spectrometer NDVI710 with ground cover fraction (2004-2006). 
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Table 4.4.  Relationship between camera NDVI and spectrometer NDVI by plot over n=8 days. 

Conservation Tillage  Conventional Tillage 
Irrigation Rep r2 Slope Intercept  Irrigation Rep r2 Slope Intercept

20-cbar 1   0.93 2.44 -0.85  20-cbar 1 0.82 2.37 -0.83
 2 0.83 2.09 -0.69   2 0.78 2.31 -0.88
 3 0.82 1.58 -0.49   3 0.83 2.28 -0.84
 4 0.96 1.92 -0.63   4 0.87 2.24 -0.82
40-cbar 1 0.91 2.75 -1.05  40-cbar 1 0.88 2.40 -0.90
 2 0.81 2.38 -0.89   2 0.83 3.16 -1.33
 3 0.71 2.12 -0.77   3 0.90 2.47 -0.94
 4 0.75 1.62 -0.48   4 0.92 2.38 -0.92
Aerial 1 0.66 2.29 -0.80  Aerial 1 0.89 2.24 -0.80
 2 0.86 2.79 -1.07   2 0.90 2.72 -1.08
 3 0.78 1.97 -0.65   3 0.95 2.34 -0.93
 4 0.68 1.25 -0.27   4 0.88 2.33 -0.93
Aerial-3 days 1 0.86 2.15 -0.76  Aerial-3 days 1 0.81 2.35 -0.85
 2 0.60 1.73 -0.58   2 0.76 2.65 -1.05
 3 0.77 1.56 -0.49   3 0.92 1.89 -0.65
 4 0.77 1.75 -0.56   4 0.80 1.34 -0.38
Non-irrigated 1 0.86 3.04 -1.20    
 2 0.55 1.67 -0.58    
 3 0.52 1.39 -0.36    
 4 0.65 0.93 -0.16    
 



 

 

99

20
-c

ba
r

40
-c

ba
r

Ae
ria

l

A
er

ia
l -

 3

D
ry

la
nd

G
ro

un
d 

C
ov

er
 F

ra
ct

io
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

20
-c

ba
r

40
-c

ba
r

Ae
ria

l

A
er

ia
l -

 3

D
ry

la
nd

G
re

en
:R

ed
 R

at
io

0.0

0.2

0.4

0.6

0.8

1.0

1.2 ab ab a
b b

a
b b bb

20
-c

ba
r

40
-c

ba
r

Ae
ria

l

A
er

ia
l -

 3

D
ry

la
nd

N
D

V
I 71

0 
nm

0.0

0.1

0.2

0.3

0.4

0.5

0.6
a a ab a

b

20
-c

ba
r

40
-c

ba
r

Ae
ria

l

Ae
ria

l -
 3

D
ry

la
nd

C
am

er
a 

N
D

V
I

0.0

0.1

0.2

0.3

0.4 ab a ab

b b

20
-c

ba
r

40
-c

ba
r

Ae
ria

l

Ae
ria

l -
 3

D
ry

la
nd

G
ro

un
d 

C
ov

er
 F

ra
ct

io
n

0.0

0.2

0.4

0.6

20
-c

ba
r

40
-c

ba
r

Ae
ria

l

Ae
ria

l -
 3

D
ry

la
nd

G
re

en
:R

ed
 R

at
io

0.0

0.2

0.4

0.6

0.8

1.0

1.2 a ab a
b ba ab ab

b

a

20
-c

ba
r

40
-c

ba
r

Ae
ria

l

Ae
ria

l -
 3

D
ry

la
nd

N
D

V
I 71

0 
nm

0.0

0.1

0.2

0.3

0.4

0.5

0.6 a a a a b

20
-c

ba
r

40
-c

ba
r

Ae
ria

l

Ae
ria

l -
 3

D
ry

la
nd

C
am

er
a 

N
D

V
I

0.0

0.1

0.2

0.3

0.4

0.5

20
-c

ba
r

40
-c

ba
r

Ae
ria

l

Ae
ria

l -
 3

D
ry

la
nd

G
ro

un
d 

C
ov

er
 F

ra
ct

io
n

0.0

0.2

0.4

0.6

0.8

1.0

20
-c

ba
r

40
-c

ba
r

Ae
ria

l

Ae
ria

l -
 3

D
ry

la
nd

G
re

en
:R

ed
 R

at
io

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

a a a ab ba a
ab

b

a

20
-c

ba
r

40
-c

ba
r

Ae
ria

l

Ae
ria

l -
 3

D
ry

la
nd

N
D

V
I 71

0 
nm

0.0

0.2

0.4

0.6

0.8

a a a a
b

20
-c

ba
r

40
-c

ba
r

Ae
ria

l

Ae
ria

l -
 3

D
ry

la
nd

C
am

er
a 

N
D

V
I

0.0

0.2

0.4

0.6
a a a

ab
b

Squaring

First Bloom

Peak Bloom

20
-c

ba
r

40
-c

ba
r

Ae
ria

l

Ae
ria

l -
 3

D
ry

la
nd

S
pe

ct
ro

m
et

er
 N

D
V

I

0.0

0.2

0.4

0.6

0.8

1.0

a a a a b

20
-c

ba
r

40
-c

ba
r

Ae
ria

l

Ae
ria

l -
 3

D
ry

la
nd

Sp
ec

tro
m

et
er

 N
D

VI

0.0

0.2

0.4

0.6

0.8

20
-c

ba
r

40
-c

ba
r

Ae
ria

l

Ae
ria

l -
 3

D
ry

la
nd

S
pe

ct
ro

m
et

er
 N

D
V

I

0.0

0.2

0.4

0.6

0.8

1.0
a a a a b

a a a b
a

LSD=0.11 LSD=0.079 LSD=0.022 LSD=0.026 LSD=0.074

LSD=0.067 LSD=0.079 LSD=0.020 LSD=0.026 Not 
Significant

LSD=0.045 LSD=0.059 LSD=0.027 LSD=0.041 LSD=0.054

 

Fig. 4.31. Comparison of treatment means at squaring, early bloom, and near peak bloom, 2006.  Error bars represent standard error of 

mean, and letters represent LSD significant differences at P=0.05.  Camera NDVI at first bloom was not significant at the 0.05 level, 

but was significant at the 0.10 level.
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COTTON IRRIGATION MANAGEMENT USING REMOTE SENSING1 
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Abstract 

Cotton irrigation scheduling methods tend to be underutilized because they are expensive 

or time consuming to institute on large acreages.  With the introduction of variable rate 

irrigation systems, remote sensing offers a relatively low-cost method to estimate water 

status on large acreages and water accordingly.  We evaluated overhead imagery as an 

irrigation scheduling method from 2004 to 2006.  Images were collected with visible and 

near-infrared cameras suspended from a tethered blimp, and remote sensing-based 

irrigation was compared with irrigation triggered by soil tension measurements using 

WatermarkTM soil moisture sensors.  In 2004, the experiment consisted of a control 

treatment with irrigation triggered by Watermark sensors at a 40-cbar trigger point; a 

remote sensing treatment where irrigation was triggered at the first identified changes in 

crop growth; a remote sensing treatment where irrigation was triggered three days after 

the first identified changes in crop growth; and a non-irrigated treatment.  In 2005 and 

2006, an additional treatment (irrigation triggered by Watermark sensors at a 20-cbar 

trigger point) was added.  Significant changes in growth between treatments were 

detected in all three years, particularly for the non-irrigated treatment and the treatment 

irrigated three days after stress was detected.  The non-irrigated treatment yielded 

significantly lower than the other treatments in 2004 and trended lower in 2006, as well 

as having higher micronaire levels during all three years.  The remote sensing-based 

irrigation treatments had comparable yield and fiber quality to the Watermark –triggered 

treatments in all three years.  Irrigation treatments triggered by remote sensing data used 

as much as 60 mm less water per year than the treatments irrigated based on soil moisture 

triggers. 
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Introduction 

Cotton Growth and Water Stress 

The wild ancestors of domestic cotton (Gossypium hirsutum L.) were perennial vines, and 

despite selective breeding for determinate-type growth habits, cotton produces abundant 

vegetative growth if adequate water and nutrients are available.  Excessive vegetative 

growth diverts the plant’s energy away from lint and seed production.  Plant growth 

regulators such as mepiquat chloride are often applied to irrigated cotton to decrease 

growth, prevent boll rot, and facilitate machine harvest (Jost et al., 2006).  However, 

decreasing irrigation application to a level that allows adequate, but not excessive growth 

might allow high-yielding cotton with less water usage and lower plant growth regulator 

requirements. 

All plants are affected by soil moisture deficit.  In cotton, moisture deficit at varying 

levels reduces plant height, leaf area index (LAI), fruit production and retention, and 

ultimately impacts yield (Pettigrew, 2004).  Bednarz et al. (2002b) stated that cotton 

grown in South Georgia requires about 460 mm of water for maximum yields.  Although 

South Georgia receives about 600 mm of water during the growing season on average 

(Anonymous, 2006), periodic dry periods often cause crop water stress, which can be 

resolved by irrigation (Bednarz et al., 2002b).   

Variable Rate Irrigation 

In Georgia, an estimated 640,000 acres of cotton are irrigated, mostly with overhead 

irrigation such as center pivots (Harrison, 2005).  However, the increasing water demands 

and decreased stream flow have made the water supply an important issue, and it is likely 

that water issues will continue to be dominant factors in future cotton production 
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(Hutson, 2004).  Efficient irrigation techniques that result in high cotton yields will allow 

cotton producers to maximize their yield for a given water supply.   

The introduction of variable rate technology has been shown to increase the application 

efficiency of several crop amendments (Koch et al., 2004; Yang et al., 2001a) and is 

being used commercially.  However, site-specific technology has only recently been 

introduced for irrigation (Perry et al., 2002).  Irrigation based on site-specific soil 

moisture measurements would require intensive soil moisture monitoring, increasing 

price and complexity of irrigation management.    

Remote Sensing 

Remote sensing has been used as a field-scale production tool for estimating and 

modeling crop growth (Ko et al., 2006; Plant et al., 2000; Roerink et al., 1996; Yang et 

al., 2001b).  Full-season crop monitoring techniques can help cotton growers produce a 

quality crop and identify spatial variation in the field.  However, for remote sensing to be 

effective for in-season irrigation management decisions, it must provide a quick, accurate 

method for identifying crop growth characteristics and detecting stress events (Roerink et 

al., 1996).   

Two types of remote sensing imagery are commonly used for monitoring crop growth 

and stress.  Thermal imagery has been used to detect changes in crop temperature due to 

water or other stress (Cohen et al., 2005; Pinter et al., 2003), while combinations of 

visible and shortwave infrared imagery have primarily been used to detect changes in 

crop growth (Ahlrichs and Bauer, 1982; Boissard et al., 1992; Bouman, 1992; Hinzman 

et al., 1984; Huete, 1988; Ko et al., 2006; Yang et al., 2004).  Of these, reflectance 

imagery is the least expensive.  Shortwave reflectance has also been shown to be 
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sensitive to leaf water content when measured close to the plant (Aldakheel and Danson, 

1997; Danson et al., 1992; Peñuelas et al., 1997; Ripple, 1986), although field-scale 

measurements using water-sensitive reflectance bands are hampered by absorption by 

atmospheric moisture (ASD, 1999).  Instead, general reflectance indices that estimate 

crop growth are commonly used to estimate crop vigor, and management focuses on 

amendments that are the most likely to increase vigor.   

Our research objectives for this project were to determine the effects of an irrigation 

program based on remote sensing data on crop growth and yield characteristics.   

Materials and Methods 

Plot Setup and Design 

The research was conducted at the Stripling Irrigation Research Park in Camilla, Georgia 

during 2004-2006 in fields planted with Delta & Pineland 555 BG/RR in 0.91 m rows at 

a seeding rate of 126,000 plants ha-1.   

In 2004, the crop was planted on May 5, with a 4x4 Latin square plot design irrigated 

with a variable-rate center pivot such as the ones described by Perry et al. (2002).  The 

treatment plots followed the radial pivot pattern.  Buffer regions were designated between 

treatments to avoid irrigation overlap, and all measurements were performed in the center 

of each treatment.  Plot lengths ranged from approximately 21 m on the inner row of the 

smallest treatment to 37 m on the outer row of the largest treatment.  WatermarkTM 

sensors were buried at depths of 20, 40, and 60 cm in each plot, and the design was a 4 x 

4 Latin square with the following treatments: 

1. Irrigation based on Watermark triggers of -40 cbars at 20 cm and -50 cbars 

at 40 and 60 cm (40-cbar trigger); 
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2. Irrigation based on detection of water deficit using aerial imagery (aerial 

trigger); 

3. Irrigation three days after detection of water deficit using aerial imagery to 

simulate a remote sensing program that cannot make flyovers when the 

stress is first detected (aerial-3 days); and  

4. Non-irrigated plots with irrigation applied only at the beginning of the 

season to aid crop establishment (non-irrigated). 

1. In 2005 (planted April 20) and 2006 (planted May 2), the plot was a 

randomized block design with 5 treatments and 4 replicates irrigated with a 

variable application linear irrigation system.  The treatments were the same as 

for 2004, with the addition of a treatment with irrigation based on Watermark 

triggers of -20 cbars at all depths (20-cbar trigger). 

As with the 2004 study, buffer regions were designated between treatment nozzle 

packages to avoid irrigation overlap, and all measurements were performed in the center 

of each treatment.  Plot lengths were 21 m.  The plots were harvested mechanically, and 

each plot was weighed and ginned at the University of Georgia Tifton Micro-Gin.  In 

2004 and 2005, fiber quality analysis was conducted at Cotton Inc. (Cary, NC), with three 

fiber samples per plot.  In 2006, fiber quality analysis was conducted at Starlab, Inc. 

(Knoxville, TN), with three fiber samples per plot.   

Aerial Imagery 

Aerial imagery was collected using a 4.5 m long tethered blimp (Southern Balloon 

Works, Deland, FL) and a two-camera remote system.  The blimp has a 4 kg lift rating by 

the manufacturer.  The camera system included two Nikon 4300 digital cameras, one of 
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which was modified to be near-infrared sensitive, a Digisnap 2100 electronic shutter 

release device (Harbotronics, Gig Harbor, WA), and a radio control system that allowed 

simultaneous remote firing of the cameras from the ground.  The blimp was flown over 

the plots at heights that ranged from about 45 m for ground cover measurements to about 

180 m for vegetation index measurements.  Images were collected 2-3 times per week on 

average through late bloom, with collection dates determined by environmental factors 

such as cloud cover and wind (>20 mph).  In 2004, six to eight rows from each plot were 

selected for ground cover and vegetation index measurement because of the variable rate 

center pivot orientation.  In 2005 and 2006, four rows were selected from each plot.   

In-season remote sensing irrigation decisions were made based on three indicators of 

changes in crop growth based on water stress.  The first indicator was significantly lower 

ground cover fraction in the remote sensing treatment than the Watermark trigger 

treatment.  The second indicator was a significant decrease in ground cover fraction from 

one day to the next.  This trigger was designed to allow irrigation in the event that all of 

the treatments, including the soil moisture trigger treatments, showed water stress.  

Finally, significantly slower growth in the remote sensing treatment compared to the 

Watermark treatment from one day to the next was used as an indicator.  The purpose of 

this trigger was to identify a decrease in crop growth, even if ground cover fraction of the 

remote sensing treatment was initially higher than in the Watermark trigger treatment.  

Significance was determined using a pairwise t-test between the Watermark treatment 

and the imagery-based treatment with a significance of P=0.05.  During 2004, early-

season physiological wilt due to water stress occurred at soil moisture levels that did not 
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trigger irrigation at the 40-cb level, so the 2005 and 2006 triggers were based on the 

difference between the 20-cbar treatment and the aerial image treatment.     

Ground Cover Measurements 

Plot markers were placed adjacent to each plot for identification purposes after 

emergence, and images were collected 45-75 m above the cotton plots for ground cover 

measurements.  Ground cover was estimated from the four center rows spanning the 

length of the plot.  Images were opened in Adobe Photoshop CS2, and image angle was 

corrected using the measure tool and the autorotate function.  The rectangular marquee 

tool was used to select each plot of interest, and the selection included four plant rows 

and four soil rows.  The pixels within the boundaries of each plot were copied and pasted 

into a new file, which was used for ground cover fraction measurements.  Image pixels 

containing plants were separated from pixels containing soil using the magic wand tool, 

and the number of plant pixels and total pixels were recorded from the Photoshop 

histogram values.  Ground cover fraction was calculated as the ratio of plant pixels to 

total pixels.  Images were collected 2-3 times per week, as weather permitted.   

Camera NDVI and Green:Red Ratio 

Normalized difference vegetation index (NDVI) values were calculated from the visible 

and near-infrared (NIR) images based on camera brightness values and the relationship 

between camera brightness, camera exposure, and scene reflectance of the two cameras, 

as determined in Chapter 3.  The visible camera was corrected by exposure to the near-

infrared camera and camera brightness values were converted to relative reflectance 

values.  NDVI was then calculated using the visible camera red channel and the NIR 

camera blue channel as (RNIR-Rred)/ (RNIR+Rred), where RNIR is the relative reflectance 



 

 112

calculated from the NIR camera and Rred is the relative reflectance calculated from the 

visible red channel. The center four rows of each plot were selected, and the NDVI for 

each plot was calculated from the mean image brightness for each plot measured from the 

visible and near-infrared channels.  These measurements came from images collected 2-3 

times per week.  Additionally, ratios of the mean green to mean red brightness values 

from the visible camera were calculated for each plot, as described by (Adamsen et al., 

1999).  The purpose of these measurements was to determine whether an index based 

solely on visible brightness characteristics might be practical for estimation of crop 

growth.   

Spectrometer Measurements 

Ground-level reflectance of each plot was measured using an Apogee Vis-NIR 

spectrometer (Apogee Instruments, Inc., Logan, UT) with an effective spectral range of 

400-900 nm and a spectral resolution of 1.4 nm (full width, half maximum height).  Each 

reading consisted of an average of three spectral scans, and two were collected in each 

plot on each sampling date.  A white polytetrafluoroethylene (PTFE) reflectance standard 

was used as a reference, and reflectance by wavelength was calculated as the ratio of 

scene reflectance to the reflectance of the standard.  NDVI was then calculated as (R800-

840-R650-700)/ (R800-840-R650+700), where R800-840 is the reflectance from 800-840 nm and 

R650-700 is reflectance from 650-700 nm.  Red edge NDVI (NDVI710) was calculated as 

(R800-840-R707-710)/ (R800-840-R707+710), where R800-840 is the 800-840 nm reflectance, and 

R707-710 is the 707-710 nm reflectance.  References were collected at 10-15 minute 

intervals, or after clouds were passed over.  Reflectance measurements were collected 

only when direct sunlight was available, on average twice a week.   
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Statistical analyses included a comparison of both in-season growth differences and final 

yield differences between treatments.   

Porometer Measurements 

A LI-COR 1600 leaf porometer (LI-COR Biosciences, Lincoln, NE) was used to estimate 

cotton leaf water status for all treatments based on leaf transpiration and stomatal 

resistance.  For each measurement, a leaf about five nodes below the meristem was 

clamped to the porometer cuvette, and leaf transpiration and resistance were calculated 

by the porometer based on measurements of temperature, relative humidity, and the flow 

rate of air through the cuvette required to maintain a constant humidity (LI-COR, 1989).  

Porometer measurements were collected near midday to avoid the effects of 

condensation, and the system was kept clean to avoid moisture effects from debris 

(McDermitt, 1990). 

Results 

The study comprised three years with very different rainfall patterns (Fig. 5.1).  The 2004 

growing season rainfall was significantly lower than the historic seasonal average rainfall 

for Camilla, despite heavy rainfall due to tropical storm Frances on day 124 (Fig. 5.2).  

The 2005 growing season was very wet, with heavy rainfall from June until August.  As 

shown in Fig. 5.2, heavy rainfall occurred from 65-80 days after planting, and again from 

85-100 days after planting.  In 2006, rainfall was about the same as the seasonal average 

during the growing season, but most of the rainfall during the early and middle of the 

2006 growing season came during two periods, 130 mm rainfall from day 17-20 and 250 

mm between days 81 and 110.   
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Although the rainfall differed for the growing seasons, treatments showed similar trends 

in water application during the growing season.  In each growing season, the irrigations 

based on Watermark readings resulted in the highest cumulative application rates (Fig. 

5.3).  Irrigation levels for the aerial imagery treatment from 2004-2006 ranged from 20 

mm less to 60 mm less over the growing season compared to the highest watering rate for 

the Watermark triggered irrigation.  In 2006, the aerial imagery treatment and the 40-cbar 

Watermark trigger treatment used the same amount of irrigation water, while in 2004 and 

2005 the aerial image treatment used 20 mm less irrigation water on average.  The aerial-

3 days trigger used less irrigation water during every year of the study than the 

Watermark trigger treatments (Fig. 5.3) and used less water than the aerial trigger in 

every year except 2005.  The decreased water use compared to the aerial trigger was due 

to interruption of irrigation by rainfall events. 

Watermark Measurements 

Watermark measurements for 2004 for all treatments are shown in Fig. 5.4.  The value at 

each depth for each treatment is the average of the Watermark readings in all four 

replicates.  The non-irrigated treatment showed stress based on tension readings of -50 

cbar or more at one depth or more from day 62 to day 100.  The other treatment that 

showed extensive water stress based on Watermark readings was the aerial treatment, 

which had Watermark readings more negative than -50 cbar on three occasions.  The 

aerial -3 days treatment did not show significant stress based on Watermark readings 

during the season.   

In 2005, the wet growing season resulted in very little measured levels of stress based on 

Watermark readings (Fig. 5.5).  The non-irrigated treatment had Watermark averages 
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approaching -50 cbar from day 63 to day 80, followed by a decrease in the tension at all 

treatments and depths on day 80, due to the heavy rainfall event shown in Fig. 5.2.   

In 2006, two periods of moderate stress occurred, based on Watermark readings (Fig. 

5.6).  The first occurred prior to day 57, as shown by increasing tension in all treatments, 

followed by a rainfall event that eliminated this tension at all depths.  The second period 

of soil drying occurred between 70 to 90 days after planting.  The treatment most 

impacted by these drying periods was the non-irrigated treatment.  As with 2005, heavy 

rainfall in the latter part of the season resulted in wetter soils throughout the remainder of 

the growing season.   

Ground Cover 

Changes in fractional ground cover between irrigation treatments occurred during all 

three growing seasons, as shown in Table 5.1.  In 2004, significant differences in ground 

cover were identified on day 64 and continued through the rest of the growing season.  

However, most of these differences were seen in the non-irrigated treatment and the 

aerial -3 days treatment compared to the Watermark and aerial trigger treatments.  The 

non-irrigated treatment showed the lowest ground cover fraction on all days after day 64, 

and the aerial -3 days treatment showed significant decreases in ground cover on days 68 

and 69, with a trend toward lower fractional ground cover from day 64 to day 89 of 

ground cover measurements.   

In 2005, significant differences in ground cover fraction between treatments occurred on 

days 55, 68, 76, 79, and 86, with the Watermark triggers trending highest for all dates 

except day 55.  Ground cover fraction for 2005 for all treatments was higher than for 

2004, likely because of the heavy rain and consequent rank growth of the cotton. 
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In 2006, significant differences between treatments were observed on days 52, 57, 58, 62, 

64, 70, 71, 73, 78, and 80.  Prior to day 62, the 20-cbar Watermark trigger treatment 

showed the highest fractional ground cover, but after day 62, this treatment was not 

significantly higher than the 40-cbar trigger treatment the rest of the season.  After day 

62, the aerial imagery trigger treatment ground cover fraction values were not 

significantly lower than those of the 20-cbar treatment except on day 69, when a paired t-

test showed a significant difference for a one-tailed test at P=0.05 (t=1.98) between the 

aerial treatment and the 20-cbar treatment.   

Vegetation Indices 

Vegetation indices, as shown by the Green:Red ratio example in Table 5.2, showed 

similar trends to measurements of ground cover in estimating changes in crop growth 

between treatments.  In 2004, significant changes between treatments were identified on 

days 68, 76, and 89.  The camera-based vegetation indices did not identify differences 

between the 40-cbar and aerial treatments, but the indices were sensitive to the decrease 

in ground cover between days 58 and 62.   

In 2005, day 55 showed high Green:Red values for the non-irrigated treatment compared 

to the other treatments, but subsequent days showed the non-irrigated treatment values 

significantly lower than the 20-cbar treatment values on days 68, 76, and 79.   

In 2006, significant differences in camera vegetation index values were identified on days 

52-80.  After day 57, the non-irrigated treatment showed consistently lower vegetation 

index values than the 20-cbar, 40-cbar, and aerial treatments.  The exception was day 69, 

in which the non-irrigated treatment was not significantly lower than the other treatments.  
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This may have been due to the recovery growth after the rainfall on days 63 and 65, as 

shown in Fig. 5.2 and its effect on soil moisture, as shown in Fig. 5.6. 

Spectrometer-based vegetation indices (Fig. 5.7) showed similar trends to those observed 

with ground cover fraction and image-based vegetation indices.  In 2004, significant 

differences in NDVI710 were measured on days 69 and 76.  In 2005, differences were 

observed only on day 68, while in 2006, significant differences were observed on days 

51, 64, 71, 73, 78, and 80.     

The trends for all of the indices in 2006 are shown in Figs. Fig. 5.7 and Fig. 5.8.  All 

methods for estimating crop growth detected differences during the growing season; 

however, the camera vegetation indices were sensitive to cloud cover, as shown in Fig. 

5.8.  Cloud cover decreased vegetation index values, but differences between treatments 

were still significant, as shown on day 73.  The other dates included did not have 

significant clouds during data collection. 

Porometer Resistance 

Porometer resistance, as shown in Table 5.4, showed similar trends to ground cover and 

vegetation index measurements of crop stress.  In 2004, significant differences were 

identified on days 65, 69, 82, and 89.  However, there were no significant differences 

between any of the irrigated treatments.  In 2005, the non-irrigated treatment did not have 

significantly higher porometer resistance readings than the other treatments.  In 2006, the 

non-irrigated and aerial-3 days treatments had significantly higher resistance values than 

the other treatments on day 50, and higher values than the 20-cbar treatment on day 57.  

The non-irrigated treatment was not significantly higher on the other days.   
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Lint Yield 

The 2004 study was the only year in which significant yield differences between 

treatments were evident (Fig. 5.9), despite changes in soil moisture and plant growth 

between treatments in all three years.  This can likely be explained by the heavy rainfall 

in both 2005 and 2006, particularly from July to the end of the growing season.  The non-

irrigated treatment in both 2005 and 2006 received about 600 mm of rain (Fig. 5.2), while 

the irrigated treatments in 2004 received a combined total of only about 600 mm rain and 

irrigation combined, even with the heavy late-season rain from Tropical Storm Frances, 

which added almost 140 mm to the cumulative total.   

Fiber Quality 

Fiber quality was impacted by irrigation treatment, as shown in Table 5.5.  In 2005, only 

micronaire showed a treatment effect, with the aerial-3 days treatment cotton having 

significantly lower micronaire than the 20-cbar treatment.  However, in 2004 and 2006, 

non-irrigated treatment had significantly higher fiber strength and micronaire than the 

cotton irrigated based on the most conservative Watermark readings.  Fiber length also 

trended toward longer fiber for the non-irrigated treatment, with significant differences 

found in 2006 between the non-irrigated and 20-cbar treatments.     

Discussion 

Soil Tension Measurements and Remote Sensing 

Watermark readings and vegetation indices both tracked trends in moisture, but created 

differences in treatment.  For instance, during 2004, the aerial trigger treatment showed 

soil tension values indicative of stress during much of the season (Fig. 5.4), while the 

aerial -3 days treatment did not show significant stress.  However, the aerial -3 days 
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treatment had lower ground cover fraction averages from day 64 to day 89 than for the 

40-cbar and aerial treatments, with a significant difference occurring on day 68.  

Likewise, the Watermark averages of the aerial trigger in 2006 suggested no water deficit 

during the early growing season, prior to day 57 (Fig. 5.6).  However, significant 

decreases in ground cover fraction were observed for this treatment compared to the 20-

cbar treatment (Table 5.1).  These differences are likely due to the heterogeneity of the 

soil, which can make soil moisture, and hence crop growth, highly variable (Famiglietti et 

al., 1999).  The added scale of remote sensing measurements might improve estimates of 

plant moisture needs across a field.   

Treatment Separation Based on Remote Sensing 

Vegetative indices that measure crop growth showed sensitivity to changes in crop 

growth at low levels of water stress, particularly early in the season.  However, with the 

exception of 2004, remote sensing did not trigger irrigation after about 75 days after 

planting.  The heavy rainfall late in the season in both 2005 and 2006 appears to have 

provided adequate water for the plants, particularly since measurements of soil moisture 

content did not show stress.  The ability of the indices to indicate late season water deficit 

stress would require research during additional years when there are periods of late 

season drought conditions, similar to the conditions of 2004.  However, this also suggests 

that early-season crop growth (prior to 75 days) is very sensitive to water content, and 

might allow the determination of spatial water conditions that can serve as an irrigation 

rate template for the rest of the season, decreasing the need for repeated aerial images.    
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Effects of Remote Sensing Triggered Irrigation on Yield and Fiber Quality 

The irrigation treatments based on remote sensing triggers (aerial and aerial – 3 days) had 

comparable yields with the treatments based on Watermark triggers (Fig. 5.9).  These 

yields were significantly higher than the non-irrigated treatment in 2004 and trended 

higher in 2006.  The yield for all treatments was suppressed in 2005 compared to 2004 

and 2006, probably due to the heavy rainfall experienced throughout the season.  The 

non-irrigated treatment was only statistically different from the irrigated treatments in 

2004, but the heavy rainfall in 2005 and 2006 and the consequent yield recovery suggest 

that low or moderate growth reduction in cotton due to decreased soil moisture may not 

significantly impact yield if adequate water is applied at some point.  This agrees with the 

conclusion by Pettigrew (2004) that the degree of moisture deficit stress is a significant 

aspect of yield response.  This also suggests that cotton can reach levels of water deficit 

detectable by remote sensing and still produce yields consistent with unstressed cotton.  

Using remote sensing triggers to detect these changes was shown in this study to both 

adequately irrigate the crop and save water.   

The effects of irrigation treatment on fiber quality may be tied to either changes in 

maturity rate between treatments or changes in fruiting distribution, both of which can be 

affected by overhead irrigation.  Bednarz et al. (2002a) concluded that cotton fiber 

length, uniformity, and strength were all affected by crop maturity at the time of 

defoliation, and inadequate irrigation and nutrient application increases crop maturity rate 

(Reddy et al., 1992).       

Pettigrew (2004) reported trends toward higher fiber strength and shorter length in non-

irrigated cotton compared to irrigated cotton, but acknowledged that irrigation effects on 
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length were too inconsistent to be definitively assessed.  Pettigrew also noted that 

micronaire content was related to fiber maturity, and that nonirrigated cotton with higher 

fiber maturity had higher micronaire content than irrigated cotton.   

Conclusion 

The results of this study suggest that vegetation indices that measure cotton growth are 

sensitive to water stress during early fruiting.  Therefore, remote sensing may provide an 

adequate means for setting irrigation rates leading into the period when the cotton plant 

uses the most water.  Timeliness and scheduling flexibility are still challenges with 

current remote sensing technology, which would make it difficult for full-season 

irrigation scheduling.  Although high-frequency remote sensing throughout the season is 

not practical at this time, the improvement of low-cost remote sensing platforms may 

make remote sensing practical for irrigation decisions, particularly when tied to the 

variable application of other crop amendments.  Decreased water application due to 

irrigation treatment also do not appear to significantly impact yield or cotton quality 

compared to treatments based on soil moisture measurements.   
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Fig. 5.32.  Cumulative rainfall between May and October, 2004-2006, compared with 

historical rainfall average for Camilla.  
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Fig. 5.33. Accumulated rain and irrigation by treatment during the 2004-2006 growing 

seasons.
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Fig. 5.34. Cumulative irrigation by treatment 2004-2006.  The 2004 study did not have 

20-cbar trigger treatment. 
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Fig. 5.35. Watermark measurements by depth and treatment, 2004. 
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Fig. 5.36. Watermark measurements by depth and treatment, 2005. 
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Fig. 5.37. Watermark measurements by depth and treatment, 2006.
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Table 5.5. Fractional ground cover by treatment for 2004-2006 growing seasons†.   
 

Irrigation Treatment  Days after 
planting 20-cbar 40-cbar Aerial Aerial-3 Non-irrigated LSD 

 Ground Cover Fraction  
2004       
48   0.34±0.016  0.33±0.010  0.33±0.018  0.33±0.017 NS‡ 

55   0.40±0.027  0.40±0.017  0.40±0.047  0.39±0.019  NS 
57   0.39±0.015  0.41±0.023  0.41±0.010  0.37±0.016  NS 
58   0.42±0.016  0.42±0.019  0.43±0.016  0.42±0.024  NS 
62   0.36±0.014  0.40±0.045  0.39±0.052  0.35±0.030  NS 
64   0.46±0.004 a* 0.45±0.020 a 0.41±0.036 ab 0.37±0.014 b 0.055 
68   0.53±0.020 a 0.57±0.017 a 0.42±0.027 b 0.35±0.035 b 0.076 
69   0.55±0.019 a 0.51±0.022 ab 0.44±0.02 bc 0.41±0.065 c 0.090 
76   0.74±0.026 a 0.70±0.040 a 0.67±0.022 a 0.51±0.040 b 0.086 
89   0.72±0.009 a 0.73±0.011 a 0.68±0.029 a 0.55±0.045 b 0.071 
2005       
55 0.66±0.03 a 0.56±0.03 b 0.58±0.02 ab 0.58±0.02 ab 0.58±0.07 ab 0.086 
62 0.60±0.03 0.57±0.03 0.56±0.07 0.58±0.05 0.50±0.04 NS 
68 0.68±0.01 a 0.67±0.03 a 0.61±0.02 b 0.60±0.02 b 0.60±0.04 b 0.054 
70 0.72±0.04 0.68±0.03 0.65±0.01 0.65±0.02 0.67±0.03 NS 
76 0.75±0.01 a 0.75±0.01 a 0.70±0.01 b 0.69±0.02 b 0.69±0.02 b 0.031 
79 0.79±0.02 a 0.76±0.02 a 0.74±0.03 ab 0.75±0.01 a 0.69±0.02 b 0.062 
86 0.96±0.01 a 0.96±0.01 a 0.95±0.01 a 0.94±0.02 ab 0.92±0.01 b 0.025 
91 0.96±0.03  0.96±0.02  0.97±0.02  0.98±0.01  0.96±0.01  NS 
2006       
49 0.36±0.03  0.35±0.03 0.38±0.04  0.33±0.03  0.38±0.04  NS 
52 0.53±0.01 a 0.48±0.02 b 0.44±0.02 b 0.46±0.02 b 0.47±0.01 b 0.045 
57 0.50±0.03 a 0.46±0.03 ab 0.43±0.02 ab 0.41±0.02 b 0.44±0.03 ab 0.083 
58 0.53±0.02 a 0.46±0.02 bc 0.49±0.01 ab 0.42±0.02 c 0.43±0.04 c 0.060 
62 0.55±0.01 bc 0.58±0.01 ab 0.59±0.01 a 0.57±0.01 ab 0.51±0.02 c 0.038 
64 0.53±0.01 a 0.51±0.04 ab 0.53±0.02 a 0.50±0.02 ab 0.46±0.02 b 0.067 
69 0.62±0.03  0.61±0.04  0.59±0.06  0.50±0.04 0.58±0.04  NS 
70 0.65±0.01 ab 0.62±0.02 ab 0.67±0.03 a 0.59±0.01 b 0.61±0.03 ab 0.063 
71 0.69±0.05 ab 0.72±0.04 a 0.69±0.04 ab 0.60±0.02 c 0.62±0.02 bc 0.078 
73 0.64±0.03 a 0.63±0.04 a 0.66±0.04 a 0.58±0.06 a 0.46±0.04 b 0.108 
78 0.74±0.07 ab 0.77±0.03 a 0.72±0.05 ab 0.64±0.03 bc 0.60±0.02 c 0.113 
80 0.74±0.06 a 0.74±0.05 a 0.78±0.05 a 0.69±0.03 ab 0.60±0.05 b 0.113 
 
†Values represent treatment mean for each day after planting ± 1 standard error (n=4). 
‡Not significant at P=0.05 
*Letters within each row indicate LSD significance at P=0.05 by days after planting. 
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Table 5.6. Cotton Green:Red ratio by irrigation treatment and date 2004-2006†.  Letters indicate 

LSD significance of each row by date at P=0.05. 

 
 Irrigation Treatment  
 

Days after 
planting 20-cbar 40-cbar Aerial Aerial-3 Non-irrigated LSD 

  Green:Red Ratio  
2004 48   0.93±0.006  0.93±0.011  0.92±0.006  0.91±0.011  NS‡ 
 55   0.96±0.007  0.96±0.009  0.96±0.008  0.96±0.012  NS 
 57   0.95±0.013  0.94±0.012  0.95±0.007  0.94±0.010  NS 
 58   0.97±0.003  0.98±0.012  0.96±0.011  0.97±0.012  NS 
 62   0.95±0.030  0.93±0.009  0.93±0.002  0.95±0.041  NS 
 64   0.94±0.013  0.96±0.020  0.93±0.030  0.95±0.033  NS 
 68   1.00±0.016 a* 1.01±0.038 a 0.97±0.027 a 0.92±0.027 b 0.0478 
 69   1.02±0.019  1.01±0.013  0.95±0.021  0.95±0.045  NS 
 76   1.12±0.028 a 1.11±0.027 ab 1.07±0.024 b 0.99±0.018 c 0.0553 
 89   1.13±0.007 a 1.13±0.016 a 1.09±0.006 b 0.99±0.016 c 0.0287 
        
2005 55 1.08±0.018  1.11±0.037  1.12±0.021 1.10±0.023  1.14±0.018  NS 
 62 1.19±0.060 ab 1.15±0.055 ab 1.12±0.138 a 1.16±0.097 b 1.01±0.071 ab 0.2631 
 68 1.16±0.017 a 1.15±0.015 ab 1.13±0.018 a 1.16±0.018 b 1.12±0.002 b 0.0402 
 70 1.20±0.018 a 1.18±0.017 ab 1.16±0.022 a 1.17±0.022 b 1.16±0.014 b 0.0484 
 76 1.23±0.016 ab 1.21±0.011 ab 1.20±0.032 a 1.20±0.020 bc 1.13±0.024 c 0.0531 
 79 1.24±0.005 a 1.25±0.007 ab 1.22±0.013 ab 1.22±0.006 b 1.21±0.012 b 0.0250 
 86 1.41±0.010 ab 1.41±0.015 ab 1.37±0.028 a 1.38±0.013 b 1.40±0.034 ab 0.0644 
 91 1.41±0.005 a 1.41±0.014 ab 1.41±0.012 ab 1.43±0.010 c 1.39±0.014 bc 0.0311 
        
2006 49 0.96±0.01 a 0.94±0.01 0.94±0.01 0.94±0.02  0.95±0.01  NS 
 52 1.03±0.04 ab 1.03±0.02 ab 1.04±0.03 a 0.98±0.01 b 0.98±0.01 ab 0.059 
 57 1.00±0.02 a 0.99±0.01 ab 1.00±0.02 a 0.97±0.01 b 0.96±0.01 b 0.034 
 58 1.04±0.03 a 1.02±0.02 ab 1.04±0.04 a 0.99±0.01 b 0.98±0.01 b 0.047 
 62 1.06±0.03 ab 1.05±0.01 ab 1.07±0.03 a 1.02±0.01 bc 1.01±0.02 c 0.054 
 64 1.07±0.04 a 1.05±0.03 ab 1.06±0.04 ab 1.01±0.01 b 1.00±0.01 b 0.058 
 69 1.12±0.02 ab 1.13±0.02 ab 1.14±0.06 a 1.06±0.01 b 1.08±0.01 ab 0.072 
 70 1.18±0.04 a 1.17±0.05 ab 1.17±0.07 ab 1.07±0.01 c 1.09±0.03 bc 0.084 
 71 1.24±0.03 a 1.27±0.04 a 1.24±0.06 a 1.18±0.03 ab 1.13±0.02 b 0.099 
 73 1.13±0.03 a 1.14±0.03 a 1.16±0.03 a 1.10±0.01 ab 1.04±0.01 b 0.068 
 78 1.27±0.06 a 1.27±0.07 a 1.31±0.05 a 1.23±0.04 ab 1.15±0.04 b 0.117 
 80 1.28±0.04 a 1.31±0.04 a 1.31±0.05 a 1.24±0.03 ab 1.18±0.04 b 0.079 
 
†Values represent treatment mean for each day after planting ± 1 standard error (n=4). 
‡Not significant at P=0.05 
*Letters within each row indicate LSD significance by days after planting at P=0.05. 
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Table 5.7. Spectrometer NDVI710 by treatment and date 2004-2006†.   

 
†Values represent treatment mean for each day after planting ± 1 standard error (n=4). 
‡Not significant at P=0.05 
*Letters within each row indicate LSD significance by days after planting at P=0.05. 

 Irrigation Treatment  

 

Days 
after 
planting 20-cbar 40-cbar Aerial Aerial-3 Non-irrigated LSD 

  Spectrometer NDVI710  
2004 58  0.45±0.016 0.43±0.047 0.47±0.037 0.47±0.028 NS‡ 
 62  0.37±0.005 0.38±0.038 0.34±0.031 0.37±0.029 NS 
 64  0.49±0.012 0.47±0.031 0.48±0.035 0.46±0.029 NS 
 69  0.50±0.042 a* 0.51±0.026 a 0.51±0.027 a 0.47±0.049 b 0.027 
 76  0.52±0.004 a 0.52±0.017 a 0.52±0.020 a 0.38±0.041 b 0.110 
 82  0.64±0.014 a  0.64±0.015 a 0.65±0.023 a 0.59±0.052 a NS 
        
2005 55 0.57±0.008  0.56±0.034  0.56±0.030  0.57±0.021  0.56±0.040  NS 
 58 0.59±0.009  0.60±0.035  0.58±0.030  0.59±0.022  0.59±0.041  NS 
 62 0.59±0.012  0.60±0.017  0.59±0.035  0.58±0.019  0.57±0.007  NS 
 68 0.63±0.011 a 0.62±0.017 ab 0.61±0.035 ab 0.61±0.019 ab 0.59±0.006 b 0.028 
 72 0.64±0.017 0.65±0.013 0.65±0.013 0.64±0.005  0.64±0.006  NS 
 93 0.63±0.025 0.63±0.013 0.64±0.027 0.64±0.018 0.63±0.010 NS 
        
2006 49 0.46±0.015  0.46±0.012  0.46±0.019  0.45±0.021  0.47±0.028  NS 
 51 0.49±0.011 a 0.50±0.005 a 0.49±0.017 ab 0.51±0.010 a 0.47±0.022 b 0.027 
 57 0.50±0.019 a 0.47±0.037 b 0.51±0.017 a 0.51±0.010 a 0.50±0.028 a 0.050 
 58 0.48±0.010  0.50±0.012  0.46±0.029  0.50±0.022  0.48±0.005  NS 
 64 0.52±0.016 a 0.52±0.011 a 0.52±0.013 a 0.53±0.005 a 0.49±0.014 b 0.020 
 71 0.58±0.015 0.57±0.014 0.54±0.008 0.57±0.008 0.55±0.011 NS 
 73 0.61±0.010 a 0.63±0.005 a 0.62±0.010 a 0.57±0.027 a 0.49±0.053 b 0.077 
 78 0.59±0.015 a 0.61±0.007 a 0.61±0.005 a 0.59±0.010 a 0.54±0.018 b 0.035 
 80 0.62±0.010 a 0.62±0.009 a 0.63±0.010 a 0.62±0.004 a 0.59±0.008 b 0.022 
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Fig. 5.38. Spectrometer NDVI710 nm and red NDVI during 2006 growing season.  Bars represent 

the standard error of the mean (SEM; n=4). 
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Fig. 5.39. Ground cover fraction, Camera NDVI, and camera Green:Red ratio values during the 

2006 growing season.  Bars represent SEM (n=4). 
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Table 5.8. Porometer resistance by treatment and days after planting 2004-2006†. 

†Values represent treatment mean for each day after planting ± 1 standard error (n=4). 
‡Not significant at P=0.05 
*Letters within each row indicate LSD significance by days after planting at P=0.05. 
 
 

 Irrigation Treatment  
 

Days 
after 
planting 20-cbar 40-cbar Aerial Aerial-3 Non-irrigated LSD 

  S cm-1  
2004 55  0.36±0.02  0.38±0.03  0.34±0.04  0.42±0.03  NS‡ 
 58  0.34±0.02  0.45±0.16  0.39±0.02  0.38±0.04  NS 
 65  0.44±0.02 b 0.39±0.02 b 0.5±0.02 ab 0.64±0.12 a 0.17 
 69  0.38±0.05 b 0.36±0.03 b 0.78±0.36 b 2.21±0.46 a 0.78 
 72  0.48±0.06  0.43±0.05  0.46±0.05  0.51±0.05  NS 
 76  0.55±0.10  0.64±0.15  0.56±0.12  0.64±0.12  NS 
 82  0.4±0.06 b 0.41±0.08 b 0.44±0.04 b 2.29±1.11 a 1.55 
 89  0.34±0.01 b 0.4±0.03 b 0.48±0.04 b 0.79±0.14 a 0.19 
 93  0.42±0.05  0.41±0.03  0.48±0.07  1.15±0.68  NS 
        
2005 48 0.33±0.03  0.37±0.04  0.34±0.02  0.48±0.18  0.36±0.03  NS 
 55 0.24±0.02  0.27±0.01  0.21±0.02  0.27±0.01  0.32±0.07  NS 
 62 0.78±0.06 a 0.48±0.1 c 0.66±0.1 ab 0.49±0.02 bc 0.42±0.04 c 0.15 
 63 0.4±0.04  0.48±0.15  0.49±0.11  0.5±0.06  0.52±0.12  NS 
 68 0.34±0.04  0.38±0.03  0.39±0.06  0.35±0.02  0.33±0.02  NS 
 72 0.26±0.02  0.26±0.01  0.3±0.02  0.27±0.01  0.28±0.01  NS 
 91 0.21±0.01 b 0.24±0.01 ab 0.26±0.02 a 0.21±0.01 b 0.22±0.02 ab 0.04 
        
2006 45 0.61±0.02 b 0.70±0.08 ab 0.77±0.10 a 0.74±0.09 ab 0.67±0.07 ab 0.15 
 48 0.66±0.11  1.07±0.21  1.82±1.31  1.73±0.76  1.35±0.42  NS 
 50 0.72±0.08 b 0.73±0.07 b 0.76±0.05 b 3.55±1.39 a 3.87±0.60 a 1.68 
 57 0.40±0.03 b 0.45±0.03 ab 0.44±0.02 ab 0.48±0.02 a 0.48±0.03 a 0.08 
 64 0.50±0.04  0.73±0.2  0.59±0.12  0.57±0.12  0.52±0.06  NS 
 70 0.59±0.05  0.56±0.07  0.54±0.05  0.93±0.32  0.80±0.10  NS 
 73 0.63±0.13  0.41±0.03  0.59±0.13  1.15±0.39  1.17±0.90 NS
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Fig. 5.40. Lint yield 2004-2006.  
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Table 5.9. Fiber length, uniformity, strength, and micronaire by treatment 2004-2006†. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

†Values represent treatment means ± 1 standard error (n=4). 
‡Not significant at P=0.05 
*Letters within each column indicate LSD significance by treatment at P=0.05. 

 

Irrigation 
Treatment 

Length Uniformity Strength Micronaire 

 inches % g tex-1  
2004     
40-cbar 1.118±0.006  81.12±0.216  29.86±0.28 b* 4.275±0.103 b 
Aerial 1.131±0.008  80.92±0.213  30.38±0.21 b 4.267±0.091 b 
Aerial-3 1.120±0.008  81.39±0.381  30.56±0.49 ab 4.325±0.082 b 
Non-irrigated 1.137±0.009  81.11±0.176  31.33±0.05 a 4.517±0.057 a 
LSD NS‡ NS 0.82 0.188 
     
2005     
20-cbar 1.107±0.005  80.89±0.18  28.68±0.07  4.483±0.033 a 
40-cbar 1.102±0.006  80.88±0.37  28.69±0.68  4.425±0.143 ab 
Aerial 1.107±0.005  80.60±0.27  28.88±0.22  4.263±0.113 ab 
Aerial-3 1.103±0.003  80.30±0.27  28.41±0.43  4.208±0.088 b 
Non-irrigated 1.102±0.003  80.53±0.26  28.04±0.44  4.417±0.081 ab 
LSD NS NS NS 0.232 
     
2006     
20-cbar 1.091±0.018 b 80.38±0.28 ab 28.66±0.51 b 4.883±0.068 b 
40-cbar 1.093±0.011 ab 80.26±0.22 b 29.48±0.34 ab 4.867±0.103 b 
Aerial 1.111±0.003 ab 80.63±0.12 ab 29.13±0.19 ab 4.808±0.107 b 
Aerial-3 1.108±0.010 ab 80.56±0.14 ab 29.26±0.33 ab 5.000±0.042 ab 
Non-irrigated 1.116±0.010 a 80.84±0.35 a 29.83±0.62 a 5.217±0.048 a 
LSD 0.024 0.553 0.906 0.220 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

Ground-based vegetation indices based on red edge and near-infrared reflectance were more 

sensitive to high and low levels of vegetation than were vegetation indices based on other 

wavelengths.  This was evident both in measurements of leaf area index during cotton defoliation 

and measuring in-season ground cover fraction.  Ground-based vegetation index measurements 

based on the red edge and near-infrared wavelengths were also highly correlated with leaf area 

index over a period of days, as well as between years, suggesting that a sensing system based on 

these wavelengths will allow consistent estimates of defoliation level, as well as in-season 

measurements of plant growth.  

Consumer-grade digital cameras, such as the Nikon COOLPIX 4300, can be modified to provide 

infrared images, providing an approximation of cotton near-infrared reflectance.  Although the 

spectral range of a consumer digital camera is limited to the visible portion of the spectrum due 

to a hot mirror integrated into the lens assembly, replacement of the hot mirror with a near-

infrared transmitting filter such as the Hoya R710 filter results in a camera that primarily senses 

near infrared radiation.  The visible wavelength sensitivity of the color bands of a digital camera 

depend upon the color filter array integrated in the photo sensor, but the camera sensitivity of the 

red, green, and blue channels is closely correlated with red, green, and blue reflectance measured 

with a spectrometer.  The relationship between channel brightness and reflectance is not linear, 

but the relationship between brightness measurements of a target at different exposure levels 

within the camera is linear.  This linear relationship allows exposure compensation, providing a 
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correction method between digital brightness values of visible and near-infrared cameras at 

different exposures.  NDVI values based on brightness values and exposure differences between 

the cameras were shown to provide a consistent estimate of both crop ground cover fraction and 

ground-based spectrometer vegetation indices.   

Comparison of ground cover fraction with camera-based NDVI measurements using visible and 

near-infrared cameras, visible camera Green:Red ratio, and spectrometer measurements showed 

that all of the indices estimate cotton vegetative growth consistently at ground cover fractions 

between 0.30 and 0.75.  However, direct comparisons between camera NDVI and camera 

Green:Red measurements indicate that Green:Red ratio values are less sensitive than NDVI to 

lower ground cover fractions.  Green:Red ratio and camera NDVI measurements had similar 

correlations to ground cover fraction, with Green:Red ratio tending to have slightly higher 

correlation values throughout the growing season.  However, this variation is very small can 

probably be explained by small image alignment and exposure issues over a range of several 

photographs and exposure differences.  The similarities between the two indices suggests that 

Green:Red ratio measurements from a single camera can provide and accurate, low-cost 

alternative to a two-camera system that collects visible and near-infrared images.   

Ground-based spectrometer NDVI710 nm measurements were more sensitive to both low and high 

ground cover fractions than NDVIred, suggesting that NDVI710 nm is a more appropriate index for 

measuring a broad range of ground cover.   

Camera and spectrometer vegetation indices and ground cover fraction measurements were 

sensitive to changes in cotton growth due to water stress.  Irrigation treatments based on remote 

sensing data showed rapid growth recovery upon irrigation, and did not yield significantly 

different from treatments based on soil moisture measurements alone.  In addition, these 
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treatments used less irrigation water during the growing season than the treatments irrigated 

based on soil moisture measurements.  Irrigation treatments that received less water had higher 

length, uniformity, strength, and micronaire content.   

Cotton irrigation management is important for both production and water conservation.  

Commercially available variable rate irrigation systems now allow precision irrigation of crops.  

However, in-season estimates of irrigation timing and rate based on crop growth must be 

sensitive to a wide range of crop growth, as well as sensitive to changes in crop growth due to 

water stress.  A system that maintains consistent estimates of crop growth from one sampling 

date to the next is also desirable, particularly if it is simple and inexpensive.   

The research presented here suggests that ground-based and aerial remote sensing estimates of 

ground cover fraction are sensitive to changes in cotton growth due to water stress, and that an 

irrigation regime based on these changes can provide adequate crop water and reduce irrigation 

application rates compared to blanket applications of water based on soil moisture measurements 

in a few locations.
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APPENDIX A 

Lens Distortion 

Lens distortion is common in consumer camera zoom lenses.  These lenses are designed to be 

used over a broad zoom range, and the distortion is in part a tradeoff between the wide angle 

(zoomed out) and telephoto (zoomed in) characteristics of the lenses.  Shih et al. {, 1995 #212} 

attributed this to a compromise between barrel distortion (vertical and horizontal lines in the 

picture appear to bow outward) at wide angle and pincushion distortion (vertical and horizontal 

lines in the picture appear to bow inward) at the telephoto zoom.  An example of barrel distortion 

is shown in Fig. A.1.   

Lens distortion was estimated at the 8-mm focal length by photographing a reference grid with 

the camera normal to the grid and correcting the image in Adobe Photoshop CS2 (Adobe 

Systems, Inc., San Jose, CA) using the lens correction filter until the lines of the grid most 

closely approximated vertical and horizontal parallel lines.   

Lens distortion at the 8-mm focal length was estimated to be about 3.5% for both visible and 

near-infrared cameras, as shown in Fig. A.2.  
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Fig. A.1. An example of 3.5% image barrel distortion.  Both the visible and NIR cameras were 

observed to have about a lens barrel distortion of about 3.5%. 
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Fig. A.2. Image before (top) and after (bottom) image correction.  Image correction was 

performed using the lens correction filter in Adobe Photoshop with a 3.5% correction filter.  The 

black border around the images emphasizes the correction required to minimize the barrel 

distortion.
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Fig. A.3. Comparison of plant height and nodes above first square/ white flower by treatment in 

2006.  Error bars represent standard error of the mean (n=4). 
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