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ABSTRACT 

In this study, I investigated three middle school mathematics classrooms from the 

complex perspective, a theoretical framework that redefines classrooms as potentially complex 

phenomena. A mathematics class can become a learning system when individual students form a 

collective mathematizing entity. Such entities parallel the type of communities mathematicians 

learn and work in. This perspective suggests that student learning can be augmented by attending 

more closely to cognizing classroom collectives. Questions abound, however, about how such 

complex entities emerge and are sustained. I selected and studied three classroom episodes that 

demonstrated complex formation through fine-grained videotape analysis. My study 

demonstrated the existence of mathematizing complex systems that jointly created mathematics 

and regulated themselves––all at the class level. I describe a variety of underlying principles for 

teacher action that provided for the emergence of mathematizing complex systems in these 

classes, although the method of each varied. Such research can help teachers and teacher 



 

educators augment individual learning in their own mathematics classrooms by occasioning 

similar collective behavior.  
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DEDICATION  

To those who for our tomorrow give their todays. 
 

… 
 

But I must refrain from such trite clichés. 

That dedication will never do! 

For using such unlinguistic ways, 

‘Twill set my committee’s wrath ablaze… 
 

Remember, tongue, ‘thy doctoral defense,’ 
 

Your destiny hangs upon their review: 
 

With chalk and blood and sweat and tears… 
 

… 
 

No, no—Not that again! 
 

Cast such language, far flung & hence. 
 

Remember, soul! The ivory walls, 
 

Black robes. The hood. Academia’s jargon! 
 

You’ve left your youth, a new world calls 
 

Suffice it be, tho’ ere I part 

The wind’s my beacon; stars, the chart. 

I’ll try again, admit my fault! 

One last time, is all I dare: 

 

To teachers, everywhere. 
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PREFACE 

 
grook  /gruk/  n. “A grook ("gruk" in Danish) is a form of 
short aphoristic poem. It was invented by the Danish poet 
and scientist Piet Hein. He wrote over 7,000 of them, most 
in Danish or English, published in 20 volumes. …His gruks 
first started to appear in the daily newspaper "Politiken" 
shortly after the Nazi Occupation in April 1940 under the 
signature Kumbel Kumbell. The poems were meant as a 
spirit-building, yet slightly coded form of passive resistance 
against Nazi occupation during World War II. The grook 
are characterized by irony, paradox, brevity, precise use of 
language, sophisticated rhythms and rhymes and often 
satiric nature.”1 

 

  Example: 

   Problems   By Piet Hein2 
 
   Problems worthy 
     of attack 
   prove their worth 
     by hitting back. 

 

 

1From Wikipedia, the free encyclopedia 
2 From http://chat.carleton.ca/~tcstewar/grooks/grooks.html

http://chat.carleton.ca/~tcstewar/grooks/grooks.html
http://chat.carleton.ca/~tcstewar/grooks/grooks.html
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My Dissertation ‘Tis A Grook 

My dissertation  
‘Tis a grook; 

Just simply marks? 
Perhaps, but look!  
E Pluribus Unum 

A sketch, half-done? 
Put ‘em together, 

Out of Many, comes One! 
Can ‘ya see it now—? 

What d‘ya think? 
I see nothing — just lines. 

Or splashes of ink. 
Mighty separate and lonely. 
Combine’m! Perceive’m!  

The Parts, if arranged, 
Together should cleave’m. 
Perceptions transformed! 

“Now a Whole.”—Claims the I*: 
“United, we stand, 
Divided, we die.” 
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CHAPTER 1 

INTRODUCTION 

 When we try to pick out anything by 
itself, we find it hitched to everything 

else in the universe. 
—John Muir  

 
 How one looks determines what one sees. Mathematics education has used a variety of 

psychological perspectives on the teaching and learning process to inform its work. These 

outlooks, by necessity, have provided visions and perceptions of mathematics education shaped 

by the particular lens being used. Although the myriad viewpoints each offer vital insight unique 

to themselves, these perspectives have, with rare exceptions, focused on how individual students 

make sense of mathematics (B. Davis & Simmt, 2003). Intensive work with constructivist 

epistemologies, for example, involves only the individual pupil’s cognitive constructions. Even 

social constructivist researchers, although acknowledging the social component of mathematics 

learning, still maintain the individual as the “locus of learning” (B. Davis & Simmt, p. 153) when 

they examine the social implications for learning; classes still are viewed as “groups-of-

individuals” (Lave, 1996, p. 149).

When it comes to teaching mathematics, the story is much the same: Contemporary 

mathematics instruction is designed for augmenting the learning of individuals. Differentiated 

instruction is a clear example of carrying classroom mathematics learning to the individual-is-

the-focus extreme, where some researchers suggest teachers should adapt their instruction to 

meet the diverse needs of unique individuals (Darling-Hammond, Ancess, & Ort, 2002). Other 
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researchers have called for smaller class sizes (Bloom, 1984) to facilitate the teaching of the 

individual. Homogenizing the mathematics class through tracking or grade-level advancement is 

an attempt to “individualize the group,” perhaps glossing over the richness inherent in classroom 

environments. The fact that students are assembled in a classroom to learn mathematics results 

from efforts to make schooling efficient and affordable, and not from a plan to create and harness 

community action for learning. In addition, the competitive nature of classes, the assignment of 

individual grades, and the assessment of the isolated individual’s capacities through closed-book, 

written examinations confirms that although students are together in classrooms, mathematics 

learning has focus on the individual. 

Various researchers have suggested such dominant individualistic perspectives could be 

balanced with a perspective on the social (Boaler, 1999; B. Davis & Simmt, 2003; B. Davis & 

Sumara, 2001; Schoenfeld, 1994). Such a view would be beneficial, especially as many believe 

mathematics, as a domain, transcends any individualistic perspective. These social supporters 

view mathematics in a similar way as many individualistic researchers: not as a static knowledge 

domain––an external thing to be internalized by a learner––but rather a socially created, 

culturally dependent, often-fallible domain (Ernest, 1990) linked to a community’s exploits; 

mathematics becomes an interconnected, dynamically fluid, ever-changing something that exists 

through nested collective action. Individuals are necessary, to be sure, for that action, but not 

sufficient by themselves to explain the domain of mathematics. 

These people maintain that mathematics exists through the collective actions of many 

people over thousands of years. It belongs to no one and yet is accessible to many, if not all; it is 

a constant communal humanistic creation (Romberg, 1994). Great discoveries by many 

individuals and groups have woven the tapestry of current mathematical thought: people like the 
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Pythagoreans, the Arab algebraists, Cardano’s band, Descartes, and Newton and Liebniz. 

Mathematics does not reside in any single mind, nor is it the result of any single individual’s 

effort. Mathematics is collective. What is considered mathematical––fundamental axioms, 

appropriate terminology, conventional representations, mathematically valid propositions––is all 

socially driven, “a cultural product” (Ernest, 1990). Axioms, theorems, and proofs––they all 

arise out of social intercourse. Whether mathematical principles exist independent of human 

experience is an intriguing philosophical question, but the mathematics we know is known 

through us––collectively. People determine the rules, set the bounds, create the language, and 

argue the case.  

From this perspective, mathematics emerges through communicative correspondence, 

socially posed questions, and group deliberations. Possibly because formal mathematics strips 

ideas to the simplest abstract structures of which people are capable, however, society often 

views the domain of mathematics as sterile and separate , forgetting that mathematics as a 

discipline has arisen out of and is embedded in humanity’s activity. There is nothing pure or 

simple about the domain, and heated debates still rage over various mathematical concepts (see 

the Mathematical Intelligencer, a journal discussing such debates), as well as over the nature and 

boundaries of the discipline itself. 

All mathematical discovery, all mathematical activity, all mathematical explanation can 

be seen to take place in a complex social context. Newton recognized this social dependence: “If 

I have seen farther than others,” he said, “it is because I stood on the shoulders of giants.” 

Mathematics is determined as much from human history as it helps to shape history’s course––

the two are intrinsically linked. Much more than numbers or computations, mathematics is of, 

by, through, and for the many.  
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With increasing understanding of individual student thinking, the field of mathematics 

education has been developing novel approaches to the study of collective classroom learning 

(Cobb & Yackel, 1995; B. Davis & Simmt, 2003). As Boaler (1999) stated, “The behaviors and 

practices of students in mathematical situations are not solely mathematical, nor individual, but 

are emergent as part of the relationships formed between learners and the people and systems of 

their environments” (p. 260). This recognition of the dependence of mathematics on the 

collective indicates a fruitful area for research, virtually untouched by a century of mathematics 

education research. A handful of researchers have begun to investigate mathematical learning in 

collectives using the newly-developed theory of complexity theory (B. Davis & Simmt, 2003), 

which investigates the cognition of learning systems: Mathematics is a collective action by 

thinking entities that engage in communal mathematizing––as a whole––and provide substantial 

opportunities for individual contributions. Because “complex systems transcend their 

components” (B. Davis & Sumara, 2001, p. 88), creating novel phenomena unpredictable from 

the components’ behavior, a new kind of research is needed to understand the behavior of these 

systems:  

At each level of complexity entirely new properties appear, and the understanding 
of the new behaviors requires research which I think is as fundamental in its 
nature as any other.… At each stage entirely new laws, concepts, and 
generalizations are necessary, requiring inspiration and creativity to just as great a 
degree as in the previous one. Psychology is not applied biology, nor is biology 
applied chemistry. (Anderson, 1972, p. 393) 
 

Complexity theory allows mathematics classes functioning jointly as mathematizing superminds 

to be envisioned and studied from a scientific perspective. It opens up a vista heretofore unseen 

by previous individualistic perspectives. 

These complex systems are composite entities formed from interacting, interrelated 

components: “For reasons that are not fully understood, under certain circumstances agents can 
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spontaneously cohere into functional collectives—that is, they can come together into unities that 

have … potential realities that are not represented by the individual agents themselves” (B. Davis 

& Simmt, 2003, p. 141). These smaller entities interact synergistically to form a whole whose 

potentialities are larger than the sum of the parts. The whole becomes an object with power that 

did not exist previously in any of the components, and the whole often exhibits holistic learning 

capabilities at the system level (Delic & Dum, 2005). Examples of complex systems abound, 

from ant colonies to economies to nations. The human body is made up of trillions of individual 

organisms––cells––that are independent living creatures (they can even be separated from the 

larger host and kept alive, as in blood transfusions, organ transplants, skin grafts, etc.), but when 

brought together these tiny creatures interact in such a way as to form a larger whole that is much 

more than the sum of its parts. The cells exist together not only in one location, they also exist 

together functionally. And just as individual cells can form a larger person, so too can 

individuals in a classroom merge to form a larger learning entity––a mathematically functioning 

classroom “organism.” 

Complexity theory may help researchers understand classroom dynamics because 

students’ actions are affecting the system they constitute while simultaneously being affected by 

that system (B. Davis & Simmt, 2003). The mathematical development occurring is an entire 

class phenomenon—the result of “joint productive activity” (Stein & Brown, 1997, p. 175). 

Knowledge becomes “stretched over” (Lave, 1988, p. 1) the entire class, not the domain or 

possession of any one individual; the mathematics is situated, social, and distributed (Putnam & 

Borko, 2000). Whereas individual and social constructivist paradigms focus on the individual as 

the “locus of learning,” complexity theory sheds light on how the class as a whole develops 

mathematics. Individual knowledge in such a situation cannot be understood, complexity 
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theorists claim, by slicing up the classroom and ignoring the larger collective entity of which the 

individual is an active part.  

This perspective suggests that individual student mathematical learning can be 

augmented if teachers attend closely to such cognizing classroom collectives (B. Davis & 

Sumara, 2001); these entities, as “mathematizing communit[ies]” (Sfard, 2003, p. 381), parallel 

the type of communities mathematicians learn and work in (Romberg, 1994). The goal of the 

present study was to understand more about how complex classes learn mathematics, and what 

contributes to their formation as complex systems. I hoped to illuminate mathematics learning in 

these classrooms from this unorthodox perspective and also to specify strategies for creating 

such environments: 

Complexity research tries to identify general principles of emerging organizations 
common to such systems, … to understand the organizational structure of these 
systems in a coherent, possibly compact and rigorous way, and ultimately to 
simulate and optimize their behaviors. (Delic & Dum, 2005, p. 1) 
 

I investigated three teachers’ middle school mathematics classes as they engaged in collective 

mathematical action. Using the work of Brent Davis and his colleagues (e.g., B. Davis & Simmt, 

2003; B. Davis & Sumara, 2001), and additional complex perspectives (e.g., Jackson, 1991; 

Johnson, 2001; Lovelock, 1991), I analyzed how these classes developed mathematics jointly. In 

other words, I put down the common mathematics education “individual psychologizing” lens 

and picked up the complexity one to consider how the collective class itself––as an intelligent, 

identifiable entity in its own right––develops (or learns) mathematics. In particular, I addressed 

the following research questions: 

 (1)  Is there evidence for the existence of mathematizing complex systems in 

mathematics classes? 

 (2)  If so, what contributes to the development of such systems? 
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 (3)  How could complexity theory contribute to mathematics education? 

 In this study, I describe the theoretical perspective of complexity theory, and the manner 

in which I prepared for and conducted my study. I then dedicate one chapter to each research 

question. First, I provide evidence of joint lesson emergence and whole-class regulation as 

indicators of complex systems in each of these teacher’s classrooms. In other words, adopting the 

framework of complexity theory allowed me to see complex systems operating in these 

classrooms. Second, I detail the common teacher actions that I observed as contributing to 

forming and sustaining these systems. I conclude with envisioned benefits complexity theory 

may bring to mathematics education.
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CHAPTER 2 

THEORETICAL FRAMEWORK 

 

What is mathematics? How is it best learned? 

––Blake Peterson 

 

 The two questions above have haunted me and fueled this research. The study is an 

attempt to answer the questions, which were posed in 2000 by my instructor in a course on 

methods of teaching secondary mathematics. As an undergraduate, I had rather superficial 

responses––my vision was definitely limited. But when I began graduate work in mathematics 

education at Brigham Young University 2 years later, the stimulating environment of graduate 

education provided a fertile ground for transforming my beliefs. After 6 years of graduate school, 

I believe I can provide a more thoughtful response to Peterson’s two questions than I did before. 

In the present study I investigated learners’ joint mathematical activity that gave rise to collective 

mathematics. This standpoint has opened up a new horizon on the nature of mathematics and 

how it can best be learned. Complexity theory has helped me to recognize the role 

mathematizing social systems play in classroom learning dynamics. Although this perspective 

views mathematics learning differently than common contemporary views (B. Davis & Simmt, 

2003) such as constructivism and social constructivism, I will briefly discuss these two latter 

epistemologies as they provide a background from which to consider complexity theory. 

Constructivisms 

Individual Constructivism 

 Constructivist learning theory purports that “humans are builders, not recorders, of 

knowledge” (Lauren Resnick, quoted by Kilpatrick, 1986, p. 162). Individuals organize their 

experience by constructing knowledge, where “knowledge is whatever [a human being] holds 
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invariant in the changing flow of experience” (von Glasersfeld, 1975, p. 10). In constructivism, 

unlike epistemologies of absorption or maturation, knowledge is not viewed as an external object 

needing to be internalized by the cognizing organism because “the world cannot enter into a 

cognitive organism’s domain all in one piece” (von Glasersfeld, 1985, p. 91); rather, knowledge 

is an internal viable construction, and “cognition must be considered a process of subjective 

construction on the part of the experiencing organism, rather than a discovering of 

[mathematical] reality” (von Glasersfeld, 1975, abstract). 

 Therefore, constructivist epistemology might envision the mathematics teacher’s 

responsibility as facilitating and guiding “students [to] actively construct their mathematical 

ways of knowing as they strive to be effective by restoring coherence to the worlds of their 

personal experience” (Cobb, 1994, p. 13). From the constructivist point of view, “instruction 

should facilitate children’s construction of knowledge rather than present information and 

procedures to children” (Carpenter, Fennema, Peterson, Chiang, & Loef, 1989, p. 528), for 

“‘meaning’ in mathematics is the fruit of constructive activity” (R. Thom, 1973, p. 204). The 

teacher forms mental models of the students’ understanding (von Glasersfeld, 1985, p. 14) and 

adjusts instruction accordingly. If the teacher perceives that the student is creating incorrect 

constructions, the teacher can present tasks or situations that challenge the faulty construction of 

the individual, for “knowledge can…be seen as something which the organism builds up in the 

attempt to order the as such amorphous flow of experience by establishing repeatable 

experiences and relatively reliable relations between them” (von Glasersfeld, 1985, p. 17). Those 

teachers wishing to facilitate student understanding “should help students to construct 

mathematical knowledge rather than to passively absorb it” (Carpenter et al., 1989, p. 502). 

Lecture, presentation, or telling are not the main means of instruction. Methods of teaching based 
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on a constructivist epistemology are “sometimes called constructivist teaching, sometimes 

experiential learning, and sometimes ‘discovery learning’” (R. B. Davis, 1994, p. 89, emphasis 

in original). 

 Two salient principles can be gleaned from the myriad beneficial insights provided by 

constructivist epistemology. First, learning occurs through constructive mental action as one tries 

to make sense of one’s experiences. Second, constructive action is a process in which incomplete 

understanding is reformed into a more coherent, environmentally harmonious one: 

Understanding does not form ready-made and complete all at once. Deeper understanding comes 

only through a transformation of incomplete understanding, and attempting to bypass that 

crucial, yet often misunderstood stage of partially faulty learning is detrimental to the stability of 

the learner’s mental framework.  

Social Constructivism 

This second perspective of social constructivism sheds additional light on student 

learning in social settings because individual constructivism gives “priority to individual 

student’s sensory-motor and conceptual activity” (Cobb, 1994, p. 14, emphasis added). Social 

constructivism considers the crucial social component of learning (e.g., Vygotsky, 1978); with 

this view, social interaction is seen as essential for personal mathematics understanding (Cobb, 

Wood, & Yackel, 1990). That interaction can involve the sharing of one’s personal sense 

making, which helps to refine and hone one’s private understanding, as well as the hearing of 

others’ sense making. Hearing about another’s understanding allows the individual to make 

sense of another’s sense making, a two-layered sense-making process. Individual constructivism 

focuses mostly on individual knowledge organization, whereas social constructivism considers 

individual construction in the context of social interaction (Cobb, 1994). Social constructivism 
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maintains that although individual students still construct mathematical knowledge for 

themselves, the interactions of the classroom are essential to this process, for “meaning arises 

through interactions. Meaning is a social product, a creation that is formed as people interact” 

(Yackel, 2000, p. 12).  

In social constructivism, principles of the individual constructivist view are combined 

with an awareness of the importance that symbolic interactionism (Woods, 1992) and social 

norms (Cobb et al., 1990, p. 135) play in affecting the individual’s construction of meaning, for 

“individuals are seen to develop personal understandings as they participate in the ongoing 

negotiation of classroom norms” (Yackel, 2000, p. 2). In a social constructivist classroom, the 

teacher guides the construction of classroom norms that facilitate the construction of 

mathematical ideas by the students: 

Instruction … focuses on conceptual development as opposed to procedures and 
skills. A typical class session consists of teacher-led discussions of problems 
posed in a whole class standing, collaborative small-group problem solving, and 
follow-up whole class discussions in which children explain and justify the 
problem interpretations and solutions they developed during small group work.  
(p. 4) 
 

Dialogic functioning, or thinking about another’s thinking (as opposed to univocal transmission), 

plays a critical part as students digest each other’s interpretations and understanding (Wertsch & 

Toma, 1995). The teacher is fundamental in creating a classroom environment “where students 

are expected to discuss, that is, explain their thinking and ask questions of others” (Yackel, 2000, 

p. 17). Such discussions are critical in developing mathematical reasoning (Schwartz & 

Hershkowitz, 1999). Both individual and social constructivisms are useful lens for understanding 

certain phenomena in mathematics education. 
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Theoretical Framework of Complexity Theory 

Complexity theory does not displace individually or socially inclined constructivist ideas, 

but rather augments those views to include the possibility that by engaging in unified group 

action, the individual interacting agents (students) form entities (classes) whose global range of 

cognition and action lies beyond the scope of any single agent; and also, by participating in such 

an active entity, individuals increase their mathematical understanding. Mathematics educators 

are realizing not only the importance of healthy classroom interaction for substantive 

mathematics understanding but also how such interactions forge the individuals in the classroom 

into a larger learning system. 

Such unifying action holds great potential for individual mathematics learning. I agree 

with Richards (1991): “Mathematics is a socially constructed human activity.…Yet each 

individual constructs his or her own mathematics” (p. 15). Thus, an individual learns 

mathematics through a sense-making process of individual action coupled with the combined 

interactions of others’ sense making. If taken alone, individual or social constructivist paradigms 

(Cobb, 1994), although helpful to understand mathematics learning, do not describe larger 

entities that may be acting upon the learning process of students in dynamic classrooms, nor how 

these entities develop or learn. Although powerful, with these perspectives “the individual tends 

to be seen as the locus of learning and the fundamental particle of social action.” (B. Davis, 

Sumara, & Simmt, 2003, p. 223). Complexity theory, or the “science of learning systems” (B. 

Davis & Simmt, 2003, p. 137), envisions the “classroom community [as] an adaptive, self-

organizing—complex—unity” (p. 164). Complexity theory provides a perspective to examinea 

mathematics community as a learning entity capable of a collective mathematizing that would 

benefit individual learning (B. Davis & Simmt, 2003). It considers the collective creating 
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mathematics through the collaborative mathematical action of its interconnected members. 

Rather than viewing a class as the mere sum of individual students, complexity theory examines 

individual agents cohering into larger cognizing units, enabling “researchers to regard such 

systems, all at once, as coherent unities” (p. 140). Complexity provides an alternative perspective 

for mathematics education previously unseen and unstudied. 

What does a complex class look like? Imagine a mathematics teacher posing a word 

problem to a class. After working alone or in small groups, the students have developed various 

ideas and possible solutions (the individual constructivist paradigm is insightful here by detailing 

how students are building individual mental constructions of mathematical ideas). The teacher 

then begins a whole-class discussion by choosing various students to present their solution 

methods (such action is describable by social constructivism, being the sum of individual 

contributions; the students are developing meaning through their sharing and exposure to other’s 

sense making). As students begin to question one another’s thinking and consider the resulting 

classroom discourse, subsequent mathematical discussion becomes a product of previous class 

action. If allowed to continue, the students will get new mathematical ideas from the whole-class 

discussion, and those new ideas can trigger other ideas. None of the ideas existed previous to the 

whole-class discussion. At this point, the emerging ideas could not have been predicted; they are 

interconnected and adapted by the students’ participation. The class has become, at least 

temporarily, a complex system, a unified whole that can regulate its own mathematical behavior. 

The whole develops mathematical terminologies, definitions, strategies, representations––even 

some of the mathematical problems they raise themselves. The domain of mathematics is being 

carved out by the community itself.  
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The nascent science of complexity theory provides mathematics education with a 

perspective on this class that can help explain the nature of mathematics learning in such 

dynamic situation: 

Still very much an infant, this new science of complexity promises to describe the 
universe in much more accurate and appropriate terms, yielding, in consequence, 
deeper understanding and more reliable prediction. It also promises to much more 
closely ally the physical world with that of the mind, unifying what was 
previously thought dichotomous. (Peak & Frame, 1994, p. 5) 
 

Complexity theory attempts to grapple with mystifying phenomena. How do researchers 

understand situations such as the growth of civilization, weather patterns, the flocking motions of 

birds, or any complex phenomenon? Broadly speaking, complexity is the study of phenomena 

that cannot be described by merely studying components of the phenomena.  

Although many authors cite Weaver’s (1948) seminal paper as the formal inauguration of 

complexity theory (e.g., B. Davis & Simmt, 2003; Delic & Dum, 2005), its roots stretch deep 

into history. A variety of thinkers have proposed holistic perspectives that recognized certain 

phenomena as more than the sum of their parts. One of the earliest was Aristotle, who in 

Metaphysics described objects whose wholes were greater than the parts. In 1932, prior to 

Weaver’s (1948) paper, Sellars had described “organized complexity” (Ellis, 2003 ). However, 

these beginnings of holistic considerations came to be eclipsed by scientific reductionism––a 

prevalent view that understanding comes from breaking apart phenomena to study the 

components. The parts explain the whole:  

The reductionist seeks to reduce a description of a complex system to a simple 
recipe of ingredients. A reductionist views a human being as “nothing but” so 
many liters of water and so many grams of calcium, etc. However, the facts set 
out by a reductionist are of very little use if one needs to understand the workings 
of the system. From the list of the ingredients constituting the human body, it 
would be very difficult to predict the intelligence of the human being or its 
emotions. 
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When stated in this way, reductionism obviously has severe limitations, but it is 
surprising how entrenched reductionism has been amongst scientists who see a 
human being as “nothing but” a computer or “nothing but” a biological organism 
engaged in the search for survival of the species. (Kaye, 1993, pp. 8–9) 

 
Although providing much insight for science, the reductionist view neglects the combined 

influence of various components that give rise to new phenomena that cannot be described by 

summing the analyzed parts: “Although it is certainly true that all matter is made up of extremely 

large numbers of pieces, these pieces often behave collectively, yielding new properties” (Peak 

& Frame, 1994, p. 121).  

The reductionist paradigm held sway in the scientific community until the middle of the 

20th century. In fact, the way many mathematics classes operate reflects such a perspective for 

the discipline itself, as Stigler and Hiebert (1998) explained: 

If one believes that mathematics is mostly a set of procedures and the goal is to 
help students become proficient in executing the procedures, as many U.S. 
teachers seem to believe, then it would be understandable also to believe that 
mathematics is learned best by mastering the material incrementally, piece by 
piece. This view of skill-learning has a long history in the U.S. Procedures are 
learned by practicing them many times, with subsequent exercises being slightly 
more difficult than the exercises that preceded them. Practice should be relatively 
error-free, with high levels of success at each point. Confusion and frustration 
should be minimized; they are signs that the earlier material was not mastered. 
The more exercises, the more smoothly learning will proceed. (p. 7) 
  

The breaking of the reductionist monopoly on science can be linked to such projects as the 

Manhattan Project (which developed the first atomic weapons) and Ultra (Britain's top-secret 

code breaking group), which provided an unprecedented occasion for disparate groups to merge 

and coalesce. The Manhattan Project had over 200,000 people working around the clock. Warren 

Weaver was head of the Applied Mathematics Panel of the U.S. Office of Scientific Research 

and Development, coordinating mathematicians doing operations research. In 1948 he published 

his groundbreaking paper delineating complexity and called for science to actively embrace 
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phenomena describable only by considering holistic group action. In his paper, Weaver described 

research perspectives over the previous several hundred years, setting the stage for his argument 

that science needed a new branch of inquiry. He described simple systems, disorganized complex 

systems (later termed complicated systems [B. Davis & Simmt, 2003]), and organized 

complexity. Simple systems “tend to involve only a few interacting objects or variables…. For a 

simple system, actions and interactions of each part can be characterized in detail and the 

behavior of the system can be predicted with great precision” (B. Davis & Simmt, p. 139). A 

billiard’s trajectory or a satellite’s orbit are examples of simple (easily predictable) systems. 

Complicated systems are larger versions of simple systems, “situations such as astronomical 

phenomena, magnetism, and weather that might involve millions of variables or parts [but still] 

phenomena [that] are determined and reducible to the sum of their parts” (p. 139). Both simple 

and complicated systems can be described by analyzing the component pieces of the system. The 

parts (if properly understood) explain the whole. Organized complex systems, however, possess 

properties that are emergent and adaptive, rendering impossible a reductionist approach to 

understanding the systems. The parts by themselves do not explain the whole. 

Since 1948, increasing numbers of scientists have left the ranks of the reductionists to 

consider the world from holistic perspectives. Examples are Herbert Simon, Nobel Prize winner 

in economics, and P. W. Anderson, winner in physics. Interest in complex phenomena gradually 

developed until blossoming into a full-grown science in its own right in the mid-1980s, 

crystallizing in the founding of the Santa Fe Institute in 1984 (Delic & Dum, 2005). Since then, 

there have been other centers dedicated to the study of complexity, such as the University of 

Michigan’s Center for the Study of Complex Systems and Duke University’s Center for 

Nonlinear and Complex Systems.  
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Complexity theory (the study of complex systems by complexivists) is not a discipline in 

its own right (B. Davis & Simmt, 2003). Rather, it is a perspective that stretches across a variety 

of disciplines. Because the concept of complexity is embraced by scholars in many fields, it has 

become an ambiguous term, similar to the path of such educational terms as constructivism 

(Kilpatrick, 1986), community (Grossman, Wineburg & Woolworth, 2001), pedagogical content 

knowledge (Shulman, 1987), and reflection (Rodgers, 2002), with people using the same term in 

many different ways. Understandably, a large number of scholars from various fields are 

investigating complex phenomena, and no universal definition of complexity exists (B. Davis et 

al., 2003; Delic & Dum, 2005; Gell-Mann, 1995). Some have tried to measure it quantitatively 

(e.g., Kolmogorov’s measure as described in Li & Vitányi, 1993), but in doing so they 

discovered an intriguing paradox. A random pattern should be considered the least organized––

after all, it is only random. In measures of complexity, simple patterns rate lower than more 

complicated patterns because they can be reproduced with fewer initial conditions and thus 

reduced in length. Amazingly, the least complex pattern of all, a random pattern, turns out to be 

the most complex; the only way to duplicate it is with itself—it is absolutely irreducible. 

Unfortunately, the situation is clouded further because some readers may confuse 

complexity with something very complicated, with the interpretation that if all the initial 

conditions and all the variables affecting the system were known, and if sufficient computing 

power existed, then the behavior of the system could be predicted. For example, such a reader 

might interpret Peak and Frame (1994)’s description of complexity in this way: 

Even if all the rules are strictly deterministic and are known exactly, there is still 
room for the intrusion of disarray when many variables are involved. An accurate 
description of a system consisting of a large number of independent pieces, 
despite all of them behaving perfectly deterministically by simple rules, can 
require more information than we can process…. The complexity of the system 
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overwhelms our ability to make accurate predictions; its behavior is as good as 
random. (p. 121) 

To assume that complex systems are just complicated versions of simpler systems is a fallacy, as 

is the assumption that if we were not overwhelmed by the information, we could predict 

precisely their behavior. Such a view returns one to the reductionist perspective, that only 

understanding components will explain the higher order structure arising from them. B. Davis 

and Sumara (2001) stated: 

Unlike complicated objects, which are the sum of their parts, complex systems 
transcend their components. Their actions can be spontaneous, unpredictable, and 
volatile. As well, whereas complicated systems tend to be described in the 
language of classical physics, researchers draw more on biology to describe the 
unfolding of complex systems. Terms like organic, ecological, and evolutionary 
have come to figure much more prominently in studies of complex behavior. At 
the same time, attempts to discern or impose direct causes and simple correlations 
on complex systems have been largely abandoned. Complex forms do not lend 
themselves to simple analyses or interventions. (p. 88, emphasis in original)  
 

Similarly, Anderson (1972) remarked: 

The main fallacy in [thinking of a complicated system as complex] is that the 
reductionist hypothesis does not by any means imply a “constructionist” one: the 
ability to reduce everything to simple fundamental laws does not imply the ability 
to start from those laws and reconstruct the universe. In fact, the more the 
elementary particle physicists tell us about the nature of the fundamental laws, the 
less relevance they seem to have to the very real problems of the rest of science, 
much less to those of society. The … hypothesis breaks down when confronted 
with the twin difficulties of scale and complexity. The behavior of large and 
complex aggregates of elementary particles, it turns out, is not to be understood in 
terms of a simple extrapolation of the properties of the few particles. Instead, at 
each level of complexity entirely new properties appear, and the understanding of 
the new behaviors requires research which I think is as fundamental in its nature 
as any other …. At each stage entirely new laws, concepts, and generalizations are 
necessary, requiring inspiration and creativity to just as great a degree as in the 
previous one. Psychology is not applied biology, nor is biology applied chemistry. 
(p. 393) 
 

Anderson called for research to investigate such complex nonreductive behaviors. An organized 

complex system “is not just the sum of its parts, but the product of the parts and their 

interactions” (B. Davis & Simmt, 2003, p. 138). Therefore, it is essential that complex 
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phenomena be studied holistically as complete entities, at the level of their emergence, for these 

systems 

emerge in the interactions of agents that are themselves dynamic and adaptive. These 
nontrivial systems change their own operations through operating. Such phenomena are 
not entirely predictable, as they have capacities to respond in different ways to the same 
sorts of influences. More significantly, they can learn new responses. (pp. 139–140) 

 
Two Indicators of Complex Systems 

In this study I will examine the existence of complex systems based upon two indicators 

of complex systems: emergence and self-regulation.  

Emergence. The first indicator of a complex system is emergence. Delic and Dum (2005) 

described two approaches to the study of complexity, with each perspective possessing its “own 

language and priorities: one looks into complexity as an emergent phenomenon to be understood, 

while the other looks into complexity as an engineering problem to be tackled” (p. 2, emphasis in 

original). Because the present study related to education and involved human beings, I took the 

first perspective, that complex human behavior is an emergent phenomenon to be understood.  

It is impossible to read articles about complexity without encountering ideas about 

emergence. But what exactly is emergence? It has become a nebulous, even mystical, concept 

about which scientists and other scholars have little agreement. In this report I define emergence 

as a macro-level phenomenon of some collective that none of its components exhibits. That is, 

the collective taken holistically gives rise through the combined actions of its components to new 

phenomena that did not exist previously in any component—in fact, they could never exist in 

those components. This view is in line with many other researchers’ definitions.  

A principle common to all complex systems is the emergence of higher-level behavior 

not present in the components of the system: 
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Emergence and unpredictability are hallmarks of [complex] systems. Emergence 
is in essence the acknowledgment that systems as diverse a economies, cells, or 
ant colonies cannot be characterized by the behaviour of their individual 
components––humans, chemicals, ants––but only by the higher level 
organisations that grow out of them…. Complexity research tries to identify 
general principles of emerging organizations common to such systems across 
diverse areas, to understand the organizational structure of these systems in a 
coherent, possibly compact and rigorous way, and ultimately to simulate and 
optimize their behaviors. (Delic & Dum, 2005, p. 1) 
 

These emerging complex systems cannot be studied by just looking at the individual components 

but must maintain their integrity to be properly understood. The system’s behavior is not the 

result of individual components’ isolated behavior, but rather “it is composed of and arises in the 

co-implicated activities of individual agents” (B. Davis & Simmt, 2003, p. 138). The linked 

behavior of the system's components gives rise to the overall system dynamics: 

Discussions of emergence are often accompanied by such illustrative examples as 
the flocking of sandpipers, the spread of ideas, or the unfolding of cultural 
collectives. These sorts of self-maintaining phenomena transcend their parts—that 
is, they present collective possibilities that are not represented in any of the 
individual agents. (p. 140) 
 

Feedback and rules are critical to allowing such collective behavior to develop (Johnson, 2001).  

 Self-regulation. A second indicator of complex systems is self-regulation. This concept 

means that individual agents can coalesce through self-organization to form sustaining, self-

regulating complex systems through their own interdependent activities (B. Davis & Simmt, 

2003), without apparent outside governing forces: “Such self-maintenance can arise and evolve 

without intentions, plans, or leaders” (p. 140). Johnson (2001) described the myth of the ant 

queen: Many people believe the queen somehow governs the behavior of the ant colony. 

Although the queen lives deep in the nest with little contact with other ants, ant colonies exhibit 

mystifying behavior, such as progressing collectively through infant, adolescent, and adulthood 

stages without any single ant controlling that behavior. Individual ants live only a few years. The 
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queen isolated in the egg chamber does not send out commands to the hordes of worker ants. 

They operate the same way in queenless ant farms. The ant colony is an example of a self-

regulating entity not governed by a leader. It solves problems such as finding the shortest 

distance to food sources and creating the colony trash mound optimally distant from the nest. 

Johnson also described the baffling behavior of slime molds. Single-celled backyard organisms 

under certain conditions coalesce to form moving collectives. For decades, mycologists believed 

in a pacemaker hypothesis, which specified that certain cells triggered and governed collective 

slime mold behavior (slime mold is a misnomer––slime molds are not molds, but actually 

colonies of bacteria). But recent research has demonstrated that there are no pacemaker cells 

controlling collective slime mold behavior: Rather, the collective self-organizes through the 

mutual interactions of the individual bacteria.  

 How does this phenomenon connect to complex mathematics classrooms? Certainly a 

mathematics teacher exercises some control in his or her class. But just as ants or bacteria 

interact among themselves and shape global colony behavior, so too does classroom interaction 

contribute to classroom-specific culture and sociomathematical norms (Cobb & Yackel, 1995) as 

the community, through its operating, defines itself. Sure, a teacher exerts influence in this 

process, more than any other agent, but the teacher is not ultimately responsible for the final 

collective behavior. Independent student action contributes greatly to the emergent personality 

and intellect of the mathematics class. Ant colony behavior develops or emerges as the ants go 

about their daily tasks. Bacterial colonies develop colony-wide defense tactics or sporulate (form 

spore stalks) through the intricate interaction of the organisms. Similarly, the way a class 

operates mathematically in a complex class develops in like manner as students are allowed to 
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interact and share ideas with one another, and the mathematics is “seen to emerge as the 

collective practices of the classroom community evolve” (p. 31). 

Such formation into an organized entity is not controlled from outside but is initiated by 

the interaction of the individual agents in the system (the teacher is one of those agents): “These 

events of self-organization might be further described as ‘bottom-up,’ as emergent 

macrobehaviors … arising through localized rules and behaviors of individual agents, not 

through the imposition of top-down instructions” (B. Davis & Simmt, 2003, p. 141). In addition, 

not only can complex systems form and then regulate their own behavior, but they often coalesce 

into even-higher-level systems, with more sophisticated self-regulation. Why would something 

that appears to self-regulate, such as a thermostat-controlled room, not be considered a self-

regulating complex system? Because it exhibits no complexity. The mechanism of self-

regulation did not organize itself into its present structure. It was prestamped by design. Nor 

could a thermostat repair itself if disturbances to its functioning occurred. It is not truly self-

regulating. It cannot adapt, for example, if a spring comes loose, or a lever breaks. 

 Part of the reason complex systems are able to maintain their self-regulating organization 

is because they are adaptive, or possess the remarkable ability to learn, “where learning is 

understood in terms of the adaptive behaviors of phenomena that arise in interactions of multiple 

agents” (B. Davis & Simmt, 2003, p. 137). 

Examples on Earth of the operation of complex adaptive systems include … 
learning and thinking in animals (including people), the functioning of the 
immune system in mammals and other vertebrates, the operation of the human 
scientific enterprise, and the behavior of computers that are built or programmed 
to evolve strategies—for example, by means of neural nets or genetic algorithms. 
(Gell-Mann, 1995, p. 4)  
 

Through the interaction of individual agents, the collective system can exhibit the capacity to 

adapt to changing circumstances: “Broadly speaking, complex systems consist of a large number 
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of heterogeneous highly interacting components (parts, agents, humans, etc.). These interactions 

result in highly non-linear behavior, and these systems often evolve, adapt, and exhibit learning 

behaviors” (Delic & Dum, 2005, p. 1). An example is the genomic web response of bacterial 

colonies when faced with a lethal antibiotic. Bacteria share genetic information, jointly solving 

the problem of developing genetic antibiotic resistance in as little as 48 hours (ben Jacob, 1998). 

The colony has adapted to its changing environment, creating a response when individual 

bacteria share their genetic information. Thermostats exhibit no such behavior when landlords 

try to install an upgraded system. 

Necessary Conditions for Complexity 

 Various authors have cited particular aspects or conditions necessary for the development 

of complex systems, sometimes referred to as the “laws of emergence” (Corning, 2002). Johnson 

(2001) described a mixture of negative and positive feedback, structured randomness, neighbor 

interactions, and decentralized control. B. Davis and Simmt (2003), adapting selectively from 

various authors, highlighted five necessary conditions: internal diversity, redundancy, neighbor 

interactions, decentralized control, and organized randomness. I used the Davis and Simmt list of 

criteria for the present study, hereafter referred to as Davis’s criteria. 

Davis’s Criteria 

 Internal diversity. The first criterion needed for the system to exist is internal diversity, 

which highlights the varied nature of the components of a complex system. The components are 

not identical, and the variation in the components and their features provides the system with a 

rich repertoire of resources from which to draw. For example, in studies of medical pathology, 

microorganisms are isolated and then grown rapidly on nutrient-saturated Petri dishes. This 

procedure produces microbial colonies that grow rapidly in stress-free environments, but the 
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bacteria display virtual genetic homogeneity. The layperson might consider bacteria as eating 

and reproducing machines––certainly not capable of intelligent action, decision making, or social 

cooperation. Environmental microbiologists, however, who study natural microbial colonies in 

their stress-filled native environments, have discovered that such colonies possess amazing 

internal genetic variation, which provides for highly sophisticated collective action including 

communal engineering, collective defense, wolf-pack hunting strategies, colony-wide 

communications systems, social memory, and group problem solving––all possible because of 

the diversity that individual microorganisms contribute to the larger colony’s operation (ben 

Jacob, 1998). 

 Redundancy. Redundancy is a second criterion vital for the formation of complex 

systems. Whereas internal diversity provides a system with the qualities needed for creative 

action, too much diversity can cause the system to disintegrate. Redundancy provides the 

element of commonality around which varied individual agents can coalesce. For example, 

although bacteria in a natural colony possess varied genetic information, they also come from the 

same species; their methods of communication, defense, reproduction, and movement are 

identical. Such similarities provide the footing for cohesive action. Too much redundancy, 

however, stifles the growth of a complex system. The richest complex systems demonstrate a 

delicate equilibrium between redundancy and internal diversity.  

 Decentralized control. Complex systems demonstrate a democratic operation; they are 

not dictatorial––no one is calling the shots or dictating the directions. This third critical property 

was mentioned previously in the discussion of self-regulation. Decision making is dispersed 

among the individual interacting agents. Some agents may have a greater impact than others in 

determining a system’s outcome (the mayor of a city exerts more influence than a postal clerk, 
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for example), but the action is still distributed among the interacting components. There is no 

controlling super power.  

 Neighborhood interactions. The ability of the individual components, especially close 

neighbors, to interact with each other is the fourth essential part of a complex system. Through 

this interaction, information is shared, decisions are made, and complexity emerges. Restricting 

neighborhood interactions dampens the ability of individual components to operate systemically, 

which minimizes the global collective behavior. The more freedom given to intercourse among 

agents, the more creative, rich, dynamic, and unpredictable the system’s actions. 

 Organized randomness. Of the five criteria needed for complex system formation, none is 

as important as, or more difficult to understand than, organized randomness. The term seems 

paradoxical; B. Davis and Simmt (2003) call it an “oxymoron” (p. 154). Yet just as with internal 

diversity and redundancy, complex systems display a fragile suspension between organized 

collective behavior and unpredictable, unplanned behavior. Complex systems are rule bound, 

which means that they operate according to universal, orderly principles: Not just anything can 

happen. At the same time, individual agents can operate with great freedom within the rule 

framework, which means they have great latitude for action: Just as not everything is allowed, 

neither can nothing happen. Rather, the restrictions placed on complex system components are 

enabling. The rules provide for coherence and redundancy, and the freedom to operate within the 

rule system creates creative spaces for individual action from which the system draws its energy. 

For example, teachers who prescribe everything that students should do for an assignment 

restrict the students’ learning opportunities, yet giving students complete latitude can create 

chaos. A balance must exist between allowing unpredictable responses and having those 
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responses be manageable by the system as a whole. As I describe below, I refer to this criterion 

as organized chaos because events in classrooms are not purely random. 

 Davis’s criteria are necessary conditions for the development of a complex system. They 

should not be mistaken for indicators of complexity. For example, rocks exhibit internal diversity 

of minerals. A mosaic tiled floor exhibits redundant elements. Billiard balls interact with their 

neighbors (with help from the cue, or course). The Mandelbrot set appears as mathematically 

organized chaos. None of these are complex systems. In fact, B. Davis and Simmt (2003) 

described how all five criteria could be met by a group of agents, and even then a complex 

system might not form. But the criteria are still necessary for the possibility of a complex system 

to arise, or for it to be occasioned (B. Davis & Simmt). Conversely, emergence and self-

regulation are indicators of the presence of a complex system. Davis’s criteria produce the 

possibility, and the indicators demonstrate the existence, of the product of complexity. Where 

emergence and self-regulation are, there lies complexity as well. 

Complexity Research  

General Complexity Research 

 Complexity theory has been used in a wide array of studies. E. Thompson (1991) applied 

complexity to perception of color and argued that color “emerges from the mutual encounter of 

the (visual) brain and the universe” (p. 86). Scientific arguments that color resides in an object 

(e.g., an apple appears red because the skin of the apple is red) versus the more prevalent theory 

that color is the reflected light perceived by an observer (e.g., the apple is not red; red is the only 

color of light reflected to the observer) are recast with complexity theory to describe chroma as 

“an ecologically emergent visual domain” (p. 86) where the “experiential domain … emerges 

from the codetermination of perceiving animals and their environments” (p. 90). Jencks (1995) 
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described urban architectural movements from a complex perspective in her book The 

Architecture of the Jumping Universe. Space constraints and creativity merged to create modern 

trends in architectural designs. Zajonc (1991) applied complexity theory to understanding 

cognition, arguing that “we are the inheritors not only of material monuments [by great artists] 

but cognitive ones as well” (p. 113). He argues that all cognition for intelligent beings is linked, 

and that breakthroughs in discovery are precipitated by some sort of connection.  

 Current trends in immunological research (Tada, 2004; Varela & Anspach, 1991) 

consider the immune system to be a multicellular complex organism residing within an animal’s 

bloodstream, and that internal superorganism overcomes disease through a process of adaptive 

learning capable of memory, basic cognitive mechanisms, and even recognition and self-

awareness (e.g., a healthy immune system does not attack its host or itself). 

 Bacteriologists over the last decade (ben Jacob, 1998; Shapiro, 1998) are considering 

bacterial colonies from a holistic perspective. Rather than being a mighty clump of individual 

organisms, like a herd of single-celled wildebeests on a microscopic savanna, the colony itself is 

a single entity––a multicellular (though not always connected) organism. Margulis and Guerrero 

(1991) described the paradox of the microscopic Mixotricha, a tiny organism that assists certain 

Australian termites in digesting wood cellulose: the organism is composed of five species of 

microorganisms working synergistically. Two species of spirochete helically motile bacteria 

provide the motions on the external portion of the organism for movement. The nucleoplasm is 

another organism, embedded with two other species of organism––one unidentified. They stated: 

In the arithmetic of life, one is always many. Many often make one, and one, 
when looked at more closely, can be seen to be composed of many. Conventional 
arithmetic leads us astray making us think that there are eternal numbers 
identifying real “things”—things that we tend to think in science are only known 
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when they are numbered. But in life “things” have a different way of adding up. 
(p. 51) 

For several decades researchers have considered ecosystems from the complex perspective 

(Delic & Dum, 2005; Jackson, 1991; Todd & Todd, 1991), the most extreme view being that of 

Gaia (Lovelock, 1991), that the earth is a self-regulating entity that maintains a stable 

temperature for life on its surface despite the variable heat produced by the sun over time. This 

view reflects Hutton’s 1785 claim when he stated before the Royal Society of Edinburgh, “I 

consider the earth to be a superorganism and that its proper study should be by physiology” 

(Lovelock, p. 31). 

 Wolfram (1983) used complexity theory to describe research with mathematical cellular 

automata. W. I. Thompson (1991) used complexity theory to describe discovery in the scientific 

process:  

What the mind is bringing together is precisely what the elitist culture strives to 
keep apart …. Discovery … is essentially a surprise. It is the result of putting 
things together that, ordinarily, are kept apart [so they] can be seen together. (pp. 
16–17) 

 
Similar examples of applying complexity to research problems could be drawn from economics, 

geography, political science, history, and so forth (Johnson, 2001). 

Complexity Research in Mathematics Education 

 Only recently have mathematics education researchers used complexity theory in their 

research. The dominant group of researchers has been Brent Davis and his colleagues (B. Davis 

& Simmt, 2003; B. Davis & Sumura 2001; B. Davis, Sumara & Kieren, 1996). Davis et al. 

(1996) described a brief, two-paragraph example of elementary children’s fraction solution 

strategies to launch a theoretical discussion about curriculum emerging in “mutally specifying 
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relationships” (p. 151) between pupils, teachers, and context. The latter portion of the article 

detailed a nonmathematical example of an anti-racism discussion in a secondary school and how 

complexity sheds light on that situation. B. Davis and Sumara detailed professional development 

work with a group of teachers after school using complexity as the theoretical lens. They 

explained their work with inservice teachers and how the spontaneous attributes of the teachers’ 

collective related to complexity theory. B. Davis and Simmt described similar professional 

development work from a complex perspective and elaborated that activity against the backdrop 

of Davis’s criteria. They also analyzed a single lesson from an elementary classroom by 

investigating whole-class discussion after 10 minutes of partner work. Focusing on one student’s 

response, they described the criteria. They concluded that class action is appropriately described 

through a complex perspective and that attempts to fragment classroom action prevent observers 

from understanding how children learn mathematics in school.  

 Leikin (2004) studied the cooperative learning of preservice and inservice teachers. One 

participant described the cooperative learning group as a “collective brain” (p. 239). Leikin 

concluded that working cooperatively might develop a collaborative Vygotskian Zone of 

Proximal Development that would “attribute strongly to the development of teachers’ collective 

mind” (p. 246). J. Thom (2005) studied a 30-minute example of a group of 3 fifth-grade students 

solving a cube counting problem. Using the theoretical lens of complexity, she investigated the 

emergent mathematics of this collective and how their strategies affected the mathematical 

functioning of the coherent entity. Each of these studies used examples to illustrate attributes of 

complexity as well as how complexity might shed light on better understanding various 

dynamics apparent in the phenomena. It is not apparent whether the studies were specifically 
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designed to investigate complexity in educational settings or to expand complexity theory for 

educational research, but I assume they were not. 

Why Use Complexity Theory? 

Complexity theory is an additional lens for understanding the learning of mathematics in 

classroom environments because it can “redescribe a classroom collective as a learning system” 

(B. Davis & Simmt, 2003, p. 144), furnishing a fresh vision to teachers and researchers that the 

class as a whole may be another entity in the classroom, one capable of learning, creating, and 

acting––in short, all the behavior that any individual student would demonstrate, but behavior at 

the class level. John Muir (1911/1988), the famous naturalist, claimed: “When we try to pick out 

anything by itself, we find it hitched to everything else in the universe” (p. 110). Such a 

perspective applies to individual students in mathematics classrooms: We cannot select a student 

without finding that he or she is hitched to everyone else in the classroom. We discover “how the 

whole becomes not only more than but very different from the sum of its parts” (Anderson, 1972, 

p. 395). There is a growing movement in mathematics education to recognize the role that 

community involvement plays in individuals’ developing mathematical understanding, and 

“complexity theory informs … how collective learning practices can support personal learning” 

(B. Davis & Sumara, 2001, p. 85).  

 Mathematics teachers can teach not just individual students but a larger something in 

their classroom: “The teacher's main attentions should perhaps be focused on the establishment 

of a classroom collective—that is, on assuring that conditions are met for the possibility of a 

mathematical community” (B. Davis & Simmt, 2003, p. 164). Then the individual students can 

learn mathematics through the interactions they have in this larger learning system. Rather than 

classes merely being “groups-of-individuals” (Lave, 1996, p. 149), where the teacher can 
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struggle to deliver personalized instruction to every student, a class can become a new 

individual––a group-as-individual. Complexity theory augments understanding the development 

of mathematics for students, for “in collaborative learning, distributed expertise and multiple 

perspectives enable learners to accomplish tasks and develop understandings beyond what any 

could achieve alone” (Edelson, Pea, & Gomez, 1996, p. 32). The union with the whole helps 

extend the learning possibilities of the parts. Creating complex unities in the classroom is far 

more intricate than merely clumping students together in groups or forcing classroom dialogue: 

Within the context of the mathematics classroom, an implication here is that 
group work, pod seating, and class projects may be no more effective at 
occasioning complex interactivity than traditional straight rows—if the focus is 
not on the display and interpretation of diverse, emergent ideas …. Without these 
… the mathematics classroom cannot become a mathematics community. (B. 
Davis & Simmt, p. 156) 
 

In the next chapter, I discuss the methods employed in this study to investigate such 

mathematizing class systems in context, presenting evidence for their existence and delineating 

the developmental factors that appeared to allow such systems to thrive.  
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CHAPTER 3 

METHOD 

Children and teachers are not  
disembodied intelligences,  

not instructing machines  
and learning machines, 

 but whole human beings  
tied together in a complex  

maze of social interconnections. 
––Willard Waller 

  
 

 The present study concerned the mathematics classes of three middle school teachers. In 

this chapter I detail how I came to work with these classes, what I did while working with them, 

and how I managed the resulting data. Three main sections compose the chapter: I describe the 

participants of the study, the procedure used to collect data, and data analysis.  

Participants 

Selection of Classes 

 Without selecting classes that displayed frequent complex activity, I would have been 

unable to investigate the phenomenon of interest. Good sites yield the rich, thick data prized by 

qualitative researchers (Bogdan & Biklen, 2003), whereas poor sites provide thin, possibly 

useless, data. I began my search in January 2006 by talking with several public-school 

mathematics teachers I knew. I described my interest in finding classes in which students 

engaged in robust mathematical conversations. In January and early February, I visited two 

teachers who claimed to have such classes. One was a high school class that yielded an 

intriguing diverse classroom environment but that lacked the rich student-to-student discussions I 

needed; the students engaged in many one-on-one dialogues with the teacher. The second class, a 
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first-grade class, engaged in the type of discussions I was looking for, but not nearly at the 

intensity I wanted.  

 These two attempts highlighted the fact that asking teachers whether their classes fit 

certain criteria was risky because few teachers will readily admit that they do not have student-

to-student mathematical discussions. Asking teachers about their classes proved an ineffective 

way to identify classes with good student-to-student discussions. I decided to contact people who 

could recognize rich student-to-student mathematical discussions and who had observed a large 

number of teachers. I described the type of class I was looking for to mathematics education 

faculty members and graduate students at the University of Georgia (about two dozen people, in 

person) and at Brigham Young University (two people, by email). The two criteria I described 

were that the teachers’ lessons should have healthy student dialogue and that student ideas 

should form a substantial part of the lesson. I considered these criteria to be essential for 

complex class behavior to emerge: If students were not able to share their ideas with one another 

in an open manner, and if those ideas were not valued, I assumed no mathematics class collective 

would materialize.  

 Healthy student dialogue. By healthy student dialogue, I meant that students would 

actively consider and discuss each other’s ways of thinking. Students would be talking to each 

other about mathematics, not just responding to the teacher; and such oral action would be a 

natural part of their class culture. It would also be dialogic in nature (Wertsch & Toma, 1995). 

Such dialogue is not common in typical mathematics classes given restricting, often mandated, 

timetables for content coverage and looming pressure to test. Most classes I had observed in 

prior work during my career where student dialogue occurred had engendered only a type of 

“number talk” or “answer giving” (Richards, 1991), as if the students’ role were to fill in the 
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teacher’s blank by mind reading (e.g., Teacher: “What would be the next step in solving this 

problem?” Student: “Do such-and-such, just like you showed us in the previous examples”). In 

this type of unnatural discussion, a single answer needs to be “found.” Sometimes various 

students chime in to agree or disagree, but that is not what I term healthy student dialogue. 

 One might be concerned that my presence as an observer in the initial site screening 

process might have altered the dynamics of class dialogue. I do not believe, however, that a 

teacher whose class was not already producing healthy student dialogue could suddenly get 

students talking productively about mathematics on the day I visited. Students not accustomed to 

mathematical discussion require time to acquire this ability (as do teachers in learning to 

maintain such activity). 

 Student ideas should form a substantial part of the lesson. I wanted classes in which not 

only would students engage in rich mathematical discussions with each other (often mediated by 

the teacher), but also their developing ideas would be incorporated into the lesson, forming much 

of its substance. This approach would not result in a lesson formed by teacher talk, a preplanned 

presentation with occasional participation by students, but rather a lesson with key foundational 

questions posed by the teacher (usually by posing and maintaining good mathematical tasks) that 

formed the skeletal structure around which the bulk of the lesson would be fleshed out by the 

students. Students would talk actively about their mathematics, and it would get considerable 

classroom “air-time.” Their ideas would often be put on the boards; and the ideas would carry 

weight and would often be referred to later in the lesson or in subsequent lessons.  

 I define lesson to be the class’s public enacted curriculum or, alternatively stated, the 

class’s shared mathematical actions and objects. This includes all discussion, class action, 

representation, ideas, commentary, problems, definitions, etc. that are publicly presented, 
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discussed, debated, argued, or questioned. A teacher may privately prepare for the lesson by 

developing a lesson plan, which specifies concepts, goals, examples, and problems to be raised 

in the lesson. But the lesson plan is not the actual lesson, because much may occur in the lesson 

that is not included in the lesson plan. Similarly, not all of a lesson plan may be enacted in the 

actual lesson. It is privately prepared, and not the product of shared action. For this reason, I do 

not consider homework to be part of the lesson, as students work independently; however, if 

public discussion occurs over certain ideas from the previous night’s homework, this discussion 

of the homework would now be considered part of the current day’s lesson. 

 Observations. The mathematics educators gave me the names of roughly 2 dozen 

teachers whose classes they thought met the criteria. I contacted these teachers identified by the 

mathematics education experts, explained my desire to consider their classes for the study, asked 

permission from them and their principals, set up appointments, and visited their classes 

(preferably sitting in the back of the room to give me a wide view). I needed to observe the 

recommended mathematics classes because I wanted to choose those that exhibited the most 

potential for collective mathematical activity. 

I visited 10 teachers and their classes in the southern United States and 8 teachers and 

their classes in the western United States to select the sites. Appendix A lists the classrooms I 

visited and my evaluation. I made 25 classroom visits, with repeat visits of some teachers. I 

observed the lessons but did not participate in them. I considered classes at all levels of 

schooling: 2 kindergarten classes, 1 first-grade class, 1 fourth-grade class, 10 middle school 

classes, 3 high school classes, and 1 graduate school class. I found one teacher in the southern 

United States and three in the western United States whose classes exhibited regular healthy 

student dialogue and in whose lessons student ideas played a substantial role. One of the western 
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teachers was pregnant, and I decided that her classes would not be suitable for the study because 

she might occasionally be absent during data collection. I visited the remaining three teachers 

(all middle school teachers) again to verify that their classes met the 2 criteria for selection. 

During the summer of 2006, I formally invited the three teachers to participate in the study. I 

also met with each of their respective principals, as well as one district research supervisor who 

asked to discuss the study with me. All names used in this report are pseudonyms. 

The Teachers and Their Schools 

Ms. Auburn at Orange Blossom Middle School. Ms. Auburn taught for 12 years at 

another middle school in her same district, and then 3 years at Orange Blossom. She was 

bilingual in Spanish and English, had lived abroad for several years, and taught Spanish classes 

in addition to mathematics. She said she was “dedicated to understanding how students think 

about and learn math as a means of creating mathematical literacy in children.” Ms. Auburn held 

a B.A. in mathematics education (Secondary Level 4) from a nearby university and was also 

Nationally Board Certified. She was the district’s mathematics specialist for 3 years while the 

district attempted to implement a mathematics curriculum program funded by the National 

Science Foundation and recognized by the National Council of Teachers of Mathematics 

(NCTM) as embracing a problem-solving approach. Because of backlash from parents, the 

district made the innovative curriculum optional, and many teachers had returned to the 

curriculum used previously. Ms. Auburn had served as past president for her state’s chapter of 

the NCTM. Her department was tolerant and open to the way she taught mathematics. I once 

overheard her suggest to a colleague that she (Ms. Auburn) might consider moving to a new 

junior high being build in a nearby city and hand-picking the mathematics teachers to form a 

cohesive department.  
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Orange Blossom Middle School. Orange Blossom Middle School was located in the small 

but rapidly growing city of Plumgarden (population 15,000) which bordered two larger cities. 

The school enrolled 1,200 students in seventh, eighth, and ninth grades. The school district, 

which encompassed several cities, had 46 elementary schools, 10 junior highs, and 7 high 

schools. Of the student body, 96 percent were Caucasian and 2 percent Hispanic, with 10 percent 

receiving free or reduced lunch. Plumgarden was a rapidly developing affluent suburb of a 

metropolitan area of over 1 million to the north, and included hundreds of plush new homes 

worth over half a million dollars each.  

Mr. Murano at Green Acres Junior High School. Mr. Murano was in his eighth year of 

teaching: the first year as a full-time intern at a local high school, and the next seven at Green 

Acres. He had a B.S. in mathematics education from a nearby university, where he said he had 

been first exposed to the reform agenda in mathematics teaching recommended by the National 

Council of Teachers of Mathematics (NCTM). His primary goal was to have students doing 

mathematics in his classroom, thinking, reasoning, and exploring. He focused more on the 

process than the result of “learning mathematics,” passing a test, and so on. He said: “[My] goal 

is to provide [the students] with opportunities and experiences that will challenge them to do 

excellent work and create many connections.” He had made five presentations at local or 

national mathematics education conferences in recent years. A speaker of English and Spanish, 

he lived for 2 years in a Latin American country. The first day I observed his classes, he tutored 

in Spanish a student who had come from Guatemala only 3 weeks before, while instructing the 

rest of class in English. Mr. Murano was a National Board Certified (Early Adolescent 

Mathematics) teacher, a winner of several prestigious local awards, and the winner of a sizable 

cash grant from a local bank. He taught mathematics only.  
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Green Acres Junior High School. Green Acres Junior High School enrolled 1,500 

seventh, eighth, and ninth graders in the two cities that bordered Plumgarden. Their populations 

were 24,000 and 30,000. The school district was the same as Ms. Auburn’s. Both cities were 

lower middle class. One-quarter of the students at Green Acres Junior High were on free or 

reduced lunch, with 92 percent Caucasian students and 5 percent Hispanic. Mr. Murano taught in 

a portable classroom. He had 36 desks crowded into the room, with 38 students (2 of whom sat 

not at desks but in a side aisle on chairs borrowed from the hall). 

The mathematics department at Green Acres had considerable friction over how 

mathematics should be taught. Mr. Murano and a few other teachers supported communities of 

inquiry, but most did not. He commented to me once how this division created quite a bit of 

stress as he interacted with colleagues, especially as they soon had to jointly choose a new 

department textbook. He also indicated that some felt resentment among the other faculty, as he 

was being recognized by various organizations for the exemplary work he was doing in his 

classes, while other teachers, mostly senior in status, were not. 

Ms. Sandy at Bridgewater Middle School. Ms. Sandy had 14 years of school-teaching 

experience. She taught a year in each of two public schools, the next year in a private school, and 

then stopped teaching for many years to raise a family. She returned to teaching and had taught 

at Bridgewater for 11 years. She had a B.S. in music education when she began teaching and 

later returned to a local university for an M.Ed in middle grades education (mathematics 

concentration) in 1999. She earned an Ed.S in middle grades education (ESOL concentration) in 

2005 from the same university. She had worked with a regional education services agency to 

help local schools in the district implement the current mathematics curriculum. She taught a 

social studies class in addition to her three mathematics classes.  



 

  

39 

 Ms. Sandy was a well-known teacher who, with her classes, had been the subject of 

several research projects, including a three-year National Science Foundation-funded study of 

students’ algebraic reasoning and a dissertation study of the teaching of algebra. In addition, 

videotapes of her lessons were available on the Web site of the state department of education. 

Consequently, she had much experience with teaching while being videotaped. She said, “All of 

these projects helped me to reflect on my teaching and students’ learning.”  

Bridgewater Middle School. Bridgewater Middle School enrolled about 800 students in 

sixth, seventh, and eighth grades. It was located in a poor section of the small city of Hamilton 

with a population of under 4,000 in a rural county of 15,000 that was on the verge of becoming a 

suburban community for a large metropolitan area. Almost 90 percent of the students received 

free or reduced lunch. Roughly a third of them were African American, about 2 percent were 

Hispanic, and the remaining 65 percent or so were Caucasian. The county school district had a 

primary school (K–2), an elementary school (3–5), Bridgewater Middle School (6–8), and a high 

school (9–12). Of the three teachers I studied, Ms. Sandy came from the most supportive 

department, and the school administration was strongly committed to improving mathematics 

education. I had a chance to observe three of Ms. Sandy’s colleagues, and each had student 

communities forming in their classrooms. Her classroom was located in a new wing added to the 

school, which had previously functioned as the county high school. 

Procedure 

 The goal of the study was to investigate whether mathematics classes could form 

mathematizing complex systems, and if so, how such systems developed. The goal required a 

research approach that allowed for clarifying insight and deepening understanding about a 

specific phenomenon. I chose a qualitative approach because the research questions required 
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understanding complex phenomena. Qualitative methods are especially well suited to dealing 

with classroom phenomena because “qualitative researchers are concerned with process rather 

than simply with outcomes or products” (Bogdan & Biklen, 2003, p. 6). The research questions 

addressed processes: the process of forming a complex system and the process by which such a 

system developed mathematics.  

 Qualitative research is composed of a variety of submethodologies or research genres. 

The particular genre for my study was socio-communicative, which “explores the meaning 

participants make in social interactions and settings, [with] the locus of interest … 

communicative behavior [and in which] researchers … turn their focus onto fine-grained 

interactions of speech, acts, and signs” (Rossman & Rallis, 2003, p. 100). These methods were a 

good match for my research questions because I scrutinized both verbal and nonverbal human 

communicative actions in classrooms.  

Data Collection 

 Because “complex unities must be studied at the levels of their emergence” (B. Davis & 

Simmt, 2003, p. 143), I had firsthand, continuous, minimally unobtrusive and documented 

contact with the classes during data collection. Thus, I was using an ethnographic approach for 

data collection (Rossman & Rallis, 2003) as I attempted to understand the emergent 

mathematical culture (Bogdan & Bilken, 2003) in these classes.  

 By firsthand, I mean that I stayed in the classroom, engaging in a type of “environmental 

research” similar to the methods employed by environmental microbiologists to study bacteria in 

their natural environments (ben Jacob, 1998) and identified by Stigler and Hiebert (1999) as a 

critical factor for understanding class dynamics: “No state that we know of regularly collects and 

uses data directly related to instructional processes in the classroom …. We need to know what is 
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going on in … classrooms” (p. 8). I did not rely on secondhand accounts of class action by using 

interviews or questionnaires or by examining student assessments. Instead, I was in the middle of 

the action as it unfolded naturally. 

 Although the students I had observed for the site screening in early 2006 were not the 

same as those that participated in the study the next school year, I assumed that teachers 

manifesting complex systems with one set of students could reasonably be expected to have such 

systems with the next set, whereas if a teacher was not creating a complex system one year, 

chances were he or she would not the following year. By studying three teachers, I also provided 

an element of redundancy in case for some reason a selected teacher was inconsistent. 

 By continuous, I mean that I made uninterrupted classroom observations, without 

skipping a day, for 3 to 6 weeks, depending on the class. Such continuity was essential to 

understanding the development of the various lessons and actions I would analyze in depth. I did 

not, as some researchers have done, make periodic visits and then attempt to reconstruct the 

class’s behavior by filling in the gaps. The continuity gave me a picture of what had happened 

prior to any particular day I was studying (except the first day, obviously), and where the lesson 

led (except for the last lesson). Continuity became context enabling. 

 By minimally unobtrusive, I mean that I attempted to be as an unobtrusive as possible 

given that I had cameras and equipment in the room. I did not interfere with the instruction; I 

conducted no interventions or student interviews. I tried to be a “fly on the wall.” I did chat in a 

friendly manner when spoken to, and I handed out mechanical pencils when students expressed 

the need. After the first few days, the students’ interest in my presence noticeably subsided as 

they saw that day after day, I just stood behind the cameras, monitoring the equipment and 

jotting notes. I knew normal class dynamics were returning when I observed students located 
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right in front of me and my primary camera secretly pass candy and notes, and quietly poke and 

kick each other when the teacher turned around. During one lesson, I overheard a visiting 

university supervisor ask the teacher whether the cameras bothered the students. The teacher 

responded, “No, they’re quite used to it. The first few days they noticed them, but then they just 

ignored it.”   

 By documented contact, I mean that I attempted to capture the activity in reproducible 

form for later analysis: high-quality stereo sound audio recordings of class dialogue recorded by 

multiple cameras videotaping from two (in one class, five) perspectives. One videocamera 

remained stationary in the back of the classroom to capture as much of the whole-class 

interaction as possible. I directed the second camera at the individuals who were speaking or 

producing mathematical work at the focus of the class’s attention. From August until November 

2006, I was an active observer of the activities in these selected classrooms as I videotaped, took 

fieldnotes, and conducted after-class interviews on the class dynamics. In addition, I took after-

class fieldnotes while reviewing the videotapes, concentrating on events related to complex 

mathematical behavior. The videotaping and fieldnotes were an attempt to capture collective 

mathematical development in the classrooms. I also collected data on the less-public aspects of 

the classroom collectives by interviewing the teachers (audio- and videotaped). I paid the 

teachers $25.00 per hour of interview time. Mr. Murano declined to be interviewed because he 

was so busy. He had two student teachers that semester, was working with two researchers from 

a nearby university, and had recently been appointed vice chairman of the school-community 

council in addition to his other responsibilities. I conducted one interview with Ms. Auburn and 

two interviews with Ms. Sandy. The interviews were transcribed verbatim, and the transcriptions 

rechecked multiple times for accuracy. Archival copies of all videorecordings were made, and 
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the recordings were digitized to facilitate analysis. Because the data (with a few minor 

exceptions) can be used in instruction and research, the complex activity of these classrooms has 

been captured and preserved for continued analysis and instruction. I approached the data 

collection task as creating a high-quality dataset I could use throughout my career, rather than 

just for this study. 

I purchased high-quality omnidirectional microphones to hang from the ceiling of the 

classroom and table microphones for the tables near the cameras. Both sets of microphones had 

cables running through a mixer into the primary and secondary cameras. During whole-class 

discussion, the ceiling microphones recorded, and the table microphones were turned down using 

the mixer which was next to me and the primary camera. When whole-class discussion would 

give way to individual, partner, or group work, then I would turn down the ceiling microphones, 

and turn up the table microphones. When I was using more cameras in the classroom, the sound 

was recorded by those additional cameras through the cameras’ own internal recording systems. 

Although the table microphones were effective in picking up sound, they were ineffective in 

trying to capture the dialogue of students at a distance. As the transcripts attest, I was able to 

capture almost all class dialogue. Sometimes students would speak so low the ceiling 

microphones would not pick up their murmur, but in those cases the teacher could not hear them 

either and would ask the students to repeat their comment more loudly. 

I had previously submitted and obtained human subjects permission for the study. I 

sought informed consent from the teachers and students (and their parents or guardians) and 

indicated to the teachers and students that their participation was voluntary. Students declining to 

participate (or students whose parents or guardians declined to have their children participate) 

were not used in the study, and most were reseated out of camera range. Table 1 lists information 



 

  

44 

on the eight classes used in the study. The participation response was high, with all students in 

one class agreeing to participate (this was the only class filmed with five cameras, giving 

complete classroom video coverage that eliminated camera blindspots as opposed to the usual 

two-camera coverage for the remaining seven classes). Table 2 catalogs the dates in 2006 when I 

was in teachers’ classes. 

 

Table 1 

Class Enrollment and Participation in Study 

Teacher Class Period Grade N(class) N(study) 
 
Auburn 

 
Prealgebra 

 
80 min., daily 

 
7 

 
32 

 
28 

  
Prealgebra 

 
80 min., daily 

 
7 

 
36 

 
32 

  
Algebra 

 
80 min., daily 

 
7 

 
25 

 
24 

 
Murano 

 
Algebra 

 
80 min., every other day 

             
             7, some 8 

 
38 

 
37 

  
Algebra 

 
80 min., every other day 

              
            7, some 8 

 
38 

 
36 

 
Sandy 

 
Prealgebra 

 
50 min., daily 

 
8 

 
19 

 
17 

  
Prealgebra 

 
50 min., daily 

 
8 

 
17 

 
16 

  
Algebra 

 
50 min., daily 

 
8 

 
26 

 
26 

 

Data Analysis 

 The study was designed as a systematic attempt to study classroom-based complexity and 

the resulting development of a mathematical collective through case studies of classes. The case 

study approach is particularly well-suited for classroom-based research because it is “an 

especially good design for practical problems—for questions, situations, or puzzling occurrences 

arising from everyday practice” (Merriam, 1998, p. 11). At this point, the study developed into 
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Table 2  

Dates of Data Collection 

Teacher Dates of observation Dates of filming Note 

 

Auburn 

 

23–25 Aug. 
(3 days) 

 

28 Aug.–15 Sept. 
(14 days) 

 

Audiotape of teacher discussion on 
24–25 Aug. No class on 26 Aug. 

 
Murano 

 
23–26 Aug. 

(4 days) 

 
28 Aug.–15 Sept. 

(14 days) 

 
Audiotape of teacher discussion on 
24–26 Aug. 

 

Sandy 

 

None 

 

21 Sept.–13 Oct., 
23 Oct.–8 Nov. 

(30 days) 

 

16–21 Oct.:  Intersession (no regular 
school; no filming) 

 

 

a combination of instrumental case studies (Stake, 1994) that would generate theory for broader 

application. This decision also allowed me to compare and contrast a specific teacher’s classes or 

to compare and contrast several teachers’ classes. 

 During the analysis stage, I departed from the usual multiple case study approach (which 

begins by analyzing cases individually), and I began to look across cases for comparison of 

puzzling, insightful, curious, or confusing events. I examined similar instances in other teachers’ 

classes, crossing the sequential case-analysis boundary at the outset. I have subsequently viewed 

these classes not as isolated cases of a shared yet rare phenomenon but rather as isolated classes 

with common underlying properties that contribute to the emergence and sustaining of the 

phenomenon. So although I had designed my study to follow case study methods of analysis, I 

adopted a more strategic approach of blending the cases and looking instead at the underlying 

properties contributing to complex class activity and their subsequent effect on the lesson 
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development. The data set for this study was therefore composed of the particular episodes I 

selected, set against the background of the full data set of classes collected through the 

ethnographic approach. 

 During the first stage of data analysis, I identified the subset of 3 complex episodes, one 

from each teacher, I would use as the core episodic segments for the main data analysis out of all 

the videotapes I had available. Selection of episodes occurred as I reviewed lessons identified in 

my fieldnotes during data collection or during perusal of the videotapes afterward. I was looking 

for compact units of class activity demonstrating that student ideas were forming substantial 

parts of the lesson through healthy student dialogue: the same two criteria I had used for 

selecting research sites. I chose one complex episode for each teacher to form the core set of data 

for analysis, followed by 6 supplementary episodes that informed my analysis. For two of the 

teachers, the episodes I selected were, according to my observation and later reflection on the 

lessons, the best examples of complex activity I saw. For the remaining teacher, because many 

episodes existed of roughly equal quality, I chose an episode that was characteristic of the 

teacher’s style. Table 3 lists the main and supplementary data sources for the analysis, including 

the 1999 Trends in Mathematics and Science Study (National Center for Educational Statistics, 

2003). U.S. lessons from that study were used for comparative purposes (described later in 

chapter 5).  

I selected these episodes so that I could study collective mathematical development 

through fine-grained constant comparative analysis. I analyzed the main episodes by examining 

what features seemed to contribute to forming the complex system and how the system was 

sustained. In addition, I transcribed the three main episodes, with multiple rechecking and 

revising for accuracy. Using the transcripts, I was able to track how the collective participation 
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constructed the joint mathematical ideas. Such fine-grained analysis was crucial; I took the 

perspective that “the qualitative research … demands that the world be examined with the 

assumption that nothing is trivial, that everything has the potential of being a clue that might 

unlock a more comprehensive understanding of what is being studied” (Bogdan & Biklen, 2003, 

p. 5). 

 

Table 3  

Data Sources  
Teacher Name Episode Length (min.) 

    
Auburn 
 

Soccer Problem 
 

Main 
 

24 

Murano Susan’s and Manuel’s Problems Main 80  

 End of Manuel’s Problem Supplementary 80  

Sandy Perimeter Problem Main 34 

 Algebra Balance Supplementary 5 

Auburn Interview 1 Supplementary Approx. 60 

Sandy Interview 1 Supplementary Approx. 60 

 Interview 2 Supplementary Approx. 60 

TIMSS Teacher 1 U.S. Lesson 1 Supplementary Approx. 50  

TIMSS Teacher 2 U.S. Lesson 2 Supplementary Approx. 50  

TIMSS Teacher 3 U.S. Lesson 3 Supplementary Approx. 50  

TIMSS Teacher 4 U.S. Lesson 4 Supplementary Approx. 50  

 

I reconstructed the formation of the system during each of the three main episodes by 

documenting the individuals’ active participation in the episode. Using Spradley’s (1980) 

qualitative framework of space, actors, and activities (I use the word actions in this dissertation), 

I emphasized the actors participating and actions occurring in the classroom space. What 
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occurred? Who did it? How did it emerge? And what was the action’s apparent effect on other 

actors and later actions? Because the emerging ideas were not the product of any one individual 

but rather the synergistic interplay of multiple sources of understanding being shared in a 

community, the structure and evolution of the mathematical concepts in each episode were 

mapped with contributing individuals and events tagged and followed throughout. This approach 

allowed me to delineate who contributed what ideas to the growing concept and how suggestions 

and items of understanding were accepted, rejected, or modified by the collective. In particular, I 

examined how mathematical ideas emerged and evolved throughout the episode: how individuals 

added to the collective mathematizing and reciprocally how the collective appeared to influence 

individual understanding (as manifested by later comments or student work). Through this 

process, I was able to document the mathematical possibilities afforded students and how certain 

students contributed to those possibilities. In this way, I developed theory from the bottom up: 

Qualitative researchers tend to analyze their data interactively. They do not search out 
data or evidence to prove or disprove hypotheses they hold before entering the study; 
rather, the abstractions are built as the particulars that have been gathered are grouped 
together.  

Theory developed this way emerges from the bottom-up (rather than from the top-down), 
from many disparate pieces of collected evidence that are interconnected. The theory is 
grounded in the data. (Bogdan & Biklen, 2003, p. 6) 
 

Instead of looking at individual lessons separately, I looked across the spectrum of class actions 

in the main episodes, comparing and contrasting.  

Constant Comparative Method 

The data were analyzed according to the constant comparative method as originally 

described by Glaser (1965). The constant comparative method “is concerned with generating and 

plausibly suggesting (not provisionally testing) many properties and hypotheses about a general 
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phenomenon” (p. 438, emphasis in original). I chose the constant comparative method because it 

fit well with my desire to investigate a poorly understood phenomenon for which little theory 

existed. In addition, the method was well suited to the diverse data sources I was using, including 

videotapes, interviews, fieldnotes, student written work, literature, and my own experiences in 

classrooms as a teacher, supervisor, and student—all considered valid data sources under the 

constant comparative method. In the method, a wide data net augments theory creation. A final 

reason I used the constant comparative method was its inherent “flexibility which [aids] the 

creative generation of theory” (p. 438).  

I followed the four main stages of the method: comparing, integrating, delimiting, and 

writing. Initially, I compared events in the main episodes, writing memos to record my 

developing ideas. As those developing ideas began to coalesce, I began to limit the type of 

comparing I was doing to refine the categories as my theoretical lens became more focused. I 

reached a point of saturation where the incidents became more understandable and codable, and I 

began the writing process by attempting to describe what I was learning, knowing that much of 

what I had discovered I would use in this report.  
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CHAPTER 4 

WERE THE CLASSES  

MATHEMATICALLY COMPLEX SYSTEMS? 

 
We teach who we are. 

––J. J. Irvine  
 

 

Chapter 4 has two sections that describe evidence substantiating the claim that the three 

mathematics classes operated as complex systems. The indicators I present as evidence are 

mathematical emergence and self-regulation. All the class actions I detail were mathematical. 

Before discussing the two indicators, I describe each episode to provide a context. 

Three Teachers’ Episodes 

Ms. Auburn’s Episode: The Soccer Problem 

Ms. Auburn’s episode lasted 24 minutes. It was the third day of school and the first day 

of filming. She used a problem (see Figure 1) that she had given the students the night before to 

complete as homework. She began the period with a short opening activity and pop quiz, and 

then she gave the students about 2 minutes to review the work they had done on the problem the 

night before and to gather their thoughts. She began a whole-class discussion by asking for a 

volunteer, Lillian, to put her solution on the board. As Lillian was going to the board, Ms. 

Auburn told the remaining students to compare their own strategy and answer with Lillian’s. 

Lillian shared her solution strategy with the class: She had simply added the number of 

players together to get 22 high-fives. Asked to show her method, another student, Jasmine, said, 
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“Mine is completely different, because I did it in a completely different way.” Jasmine had 

double-counted the high-fives (when the high five was given, it counted as a high-five for both 

  

At the conclusion of a soccer game of two teams, each including eleven players, 
each player on the winning team gave high-fives to each player on the losing 
team. Then each player on the winning team also gave high-fives to each other 
player on the winning team. How many high-fives were given? 
 

Figure 1. The Soccer Problem. 

Persons), obtaining an answer of 242 high-fives (11 × 11 = 121; 121 × 2 = 242). At this point, 

many students appeared eager to share their strategies, raising their hands to volunteer. Ms. 

Auburn surveyed the hands and asked Bryan to go to the board and share his method. He did, 

presenting a restructuring of the problem in which only some of the winning soccer players gave 

high-fives, resulting in 66 high-fives (5 winners × 11 losers = 55; 55 + 11 winners = 66). 

 Now the class was full of palpable energy, manifested through loud comments and many 

students wiggling in their seats with hands raised. Ms. Auburn said, “Now we have three totally 

different answers on the board. How are we going to figure out what’s correct or what’s not 

correct?” Many students whose method differed from the three already given wanted to share 

theirs. The next volunteer Ms. Auburn chose was Trevor, a bright, vocal student who had been 

anxiously but patiently waiting with his hand up. He shared his strategy, which involved 

breaking the problem into two smaller problems: first counting the number of high-fives the 

winning team gave to the losing team (11 × 11 = 121), and then devising a pictorial 

representation without double counting to explain how the winning team high-fived each other. 

As Trevor showed his solution, affirmative murmurs rippled across the class, indicating that 

others had used a similar strategy. But Trevor made a slight error in adding up the number of 
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high-fives the winning team gave each other (56 instead of 55), which several students openly 

questioned. 

 Rather than correcting the error, Ms. Auburn mentioned that some students were saying 

the partial sum was 55 rather than 56. As Trevor silently checked his arithmetic at the board, 

several students were allowed to describe the similar methods they had used. Hayden had 

invented a method of pairing addends that added to 10 (such as 9 + 1, or 8 + 2) to achieve a 

quick sum of 55, and it avoided the pitfalls of Trevor’s less systematic strategy. Trevor then 

announced that he had made an arithmetic error, and the partial sum should be 55, making the 

grand total of 176 instead of 177 high-fives.  

Jasmine was allowed to return to the board, revise her method, and correct her answer. 

She adopted Trevor’s strategy and arrived at 176. Lillian, when she returned to the board and 

modified her strategy, was still struggling with double counting, which another student, Addison, 

identified. Ms. Auburn said to the class that they as a class were coming to a consensus on both a 

method and an answer. But another student, Danielle, commented that the last winning team 

member would not high-five himself or herself, so the partial addition sum should be 54, not 55. 

When Ms. Auburn asked the class what they thought about Danielle’s suggestion, soft mumbles 

were heard as the students thoughtfully considered Danielle’s claim.  

Ms. Auburn selected six volunteers, three on a team, to enact a high-five simulation for 

the class. She asked the class what type of strategy they should use to keep track of the high-

fives given by the students in the simulation. One student proposed that each simulator should 

just keep track of how many high-fives he or she gave (which would result in double counting). 

This proposal was a clear indication that some students were still struggling with what 
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constituted a high-five. Ms. Auburn asked the class how many agreed with this student’s 

proposition, and enough students concurred that she decided to proceed with his suggestion.  

 The students did two simulations in a row before the class recognized they were double 

counting when the winning team high-fived each other. They needed to develop a system to 

prevent double counting the high-fives. As part of the clarification during this activity, Trevor 

commented that the class did not yet have a clear definition of what high-five meant. The class 

finally agreed that one high-five consisted of a unique contact between two individuals. A 

method was proposed to avoid double counting during a third simulation. 

 Ms. Auburn readdressed Danielle’s concern that the last person did not high-five himself 

or herself, so the last 1 in Trevor’s method should not be used. Trevor, and many others in the 

class, now agreed that Danielle’s point was valid and that the partial sum should be 54, not 55. 

Hayden then interrupted and convinced the class with a persuasive argument that although the 

last person on the winning team would never give a high-five to himself or herself, the last high-

five counted was between the second-to-the-last and the last winning team member. He made a 

clear explanation for distinguishing between the cardinality of the set of the remaining winning 

players and the number of high-fives given between them. His argument convinced the class that 

the partial sum was 55, and the total number (and the solution to the Soccer Problem) was 176 

high-fives. 

 Then another student, Wyatt, explained his method. His method was valid, but like 

Trevor, he had made an arithmetic error, which students quickly pointed out. Wyatt’s method 

counted the number of high-fives each winning player gave, starting with the first who gave 11 

high-fives to all the losing team members and then 10 to his other 10 winning team players, and 

so on. Another student, Devon, offered a corrected method based on Wyatt’s method. Ms. 
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Auburn wrote it on the board, adding it to what she had written when Hayden offered a rebuttal 

to Danielle’s 54. Ms. Auburn asked Hayden to repeat his partial-sum counting strategy (9 + 1; 8 

+ 2; 7 + 3, etc.). The class again came to a consensus that the correct answer was 176, fortified 

with this similar though different method.   

Mr. Murano’s Episode: Susan’s Problem and Manuel’s Problem.  

Mr. Murano’s episode took almost the entire 80-minute period. The episode began with 

the students completing a worksheet (see Appendix B) that focused on Susan’s Problem shown 

in Figure 2. Mr. Murano reviewed with the class what a recursive routine was and how to do it 

on a calculator. He asked the students whether 25 + 2.5x was the same as 2.5x + 25, apparently to 

remind the students about some of the work they had done 2 days before (because they were on 

block scheduling, their mathematics class met every other day). He then instructed the students 

to work with their partner to find a good window on the graphing calculator that would 

adequately display the graph of y = 2.5x + 25. The students moved their desks together and 

worked quietly in pairs to find and record a window, with Mr. Murano circulating silently. After 

most students had finished this part of the worksheet, he began a whole-class discussion and 

asked for a volunteer to show an example of a “good window.” Kaleb used the overhead display 

calculator at the front of the room to show his window; then Mr. Murano led the class in a 

discussion of what made a “good window choice.”  

Mr. Murano asked for a volunteer to explain a method for solving the problem of how 

many weeks would be needed for Susan to save $139.99, one of the subproblems. Nadia 

volunteered to show her method on the overhead, which the class discussed together. Andy, a 

rather quiet student, was asked by Mr. Murano to show his method, which he did. Then Mr. 

Murano asked for another volunteer; Boston volunteered and explained his method, which he 
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said was similar to Nadia’s but different because he used a recursive routine. Unfortunately, 

while Boston demonstrated, he lost count of how many times he had pushed the enter button on  

 

Figure 2. Susan’s Problem. 

 

his calculator. A student mentioned that Boston was using Andy’s method. Boston started to 

enter the recursive routine again, but rather than continue all the way to the answer, he said, 

“You just keep pushing ‘enter’,” and started to sit down. Mr. Murano asked Boston to finish his 

recursive procedure at the front of the class. A lively discussion ensued because Boston started 

counting weeks when the initial $25 was deposited at Week 0. He had counted 47 enters. Some 

students argued that the first entry of $25 at the beginning did not count as Week 1 (Week 1 

started once the first deposit of $2.50 had been made), so the answer should have been 46, not 

47, weeks. After some discussion, Boston recognized his error. This worksheet was now 

completed, and the students put it away as Mr. Murano distributed the next worksheet. 

Mr. Murano had the students work on Manuel’s Problem (Figure 3) in pairs (see 

Appendix C for a copy of the worksheet for Manuel’s Problem). After a few minutes, he asked 

 

Susan’s grandmother gave her $25 for her birthday. Instead of spending the 
money, she decided to start a savings program by depositing the $25 in the 
bank. Each week, Susan plans to save an additional $2.50. 
 

1. Make a table of values for the situation. 
2. Write a function rule for the amount of money Susan will have 

after t weeks. 
3. Find a viewing window for the problem situation. 
4. How much money will Susan have after 7 weeks?  Write this 

equation. Show how you found your solution. 
5. Susan wants to buy a school ring. When will she have enough 

money to buy the $139.99 ring?  Write this equation. Show how 
you found your solution. 
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for attention and stated, “Excellent! Now we’re all going to go through and make sure all have 

come to the same conclusion about what is happening with Manuel. We need to make sure that 

we all, all agree. And again, hopefully you’ll notice, that there are several different ways.” 

Different solution strategies were presented by different students, similar to the discussion of 

Susan’s Problem. One student, Bradley, eagerly asked to share his method; Mr. Murano agreed. 

He recommended that students write down other students’ ideas on the worksheet, and the class 

period ended.  

 

 

Manuel worked all summer and saved $1090. He plans to spend $30 a 
week. 
 

1. Make a table of values for the situation. 
2. Write a function rule for the amount of money than Manuel will 

have after t weeks. 
3. Find a viewing window for the problem situation. 
4. How much money will Manuel have after 11 weeks?  Write this 

equation. Show how you found your solution. 
5. When will Manuel be out of money?  Write this equation. Show 

how you found your solution. 
6. [There is no number six on the worksheet. A numbering error.] 
7. How will the line change if Manuel had initially earned $1300?  

Graph the line. What changed?  What did not change? 
8. How will the line change if Manuel spent $200 on school clothes 

and started the year with only $890?  Graph the line. What 
changed?  What did not change? 

9. How will the line change if Manuel starts with the $1090, but 
decides he will only spend $25 a week?  Graph the line. What 
changed?  What did not change? 

 

Figure 3. Manuel’s Problem. 

Ms. Sandy’s Episode: The Perimeter Problem  

Ms. Sandy’s episode occurred in the third week (the fifth week of school) of the six 

weeks I spent with Ms. Sandy and her students. The episode was roughly 30 minutes long. 

Before the students entered the classroom, Ms. Sandy wrote the problem shown in Figure 4 on 



 

  

57 

the front board. She began the lesson by asking Cassidy to come to the board and be the scribe 

for the class. Cassidy drew a table with four columns: a ‘base’ column, a ‘height’ column, a 

‘perimeter’ column, and a ‘correct solution?’ column. Ms. Sandy took a back seat in the 

classroom and asked the class what they needed to do to solve the problem. The students, who 

had not yet worked with equations but had solved similar problems with “guess-and-check 

tables,” recommended creating a table (which was also in the problem statement). Cassidy 

created a table on the board, and Ms. Sandy said, “Let’s start guessing.”   

 

 

The base of a rectangle is three centimeters more than twice the height. The 
perimeter is 60 centimeters. Use a guess & check table to find the base and 
height. 

 

Figure 4. The Perimeter Problem. 

One student said 25, and Ms. Sandy asked whether that was the base or the height. The 

student said it was the base. Cassidy wrote 25 on the board in the base column and then wrote 22 

in the height column, doing the height computation herself. Ms. Sandy now asked Cassidy where 

she got the 22, and Cassidy, assuming she must have done something wrong, erased her 22. 

Cassidy then asked the student who had proposed the original 25 what the height should be. This 

question triggered discussion in which students debated whether they should divide 25 by 2 and 

then subtract 3 or should subtract the 3 first and then divide by 2. Cassidy wrote 9.5 on the board, 

saying that you divide the base by 2 and then subtract 3. Ms. Sandy asked how to find the 

perimeter (perhaps not noticing the 9.5 already on the board or perhaps just ignoring it 

temporarily). One student said 25 + 9.5; others mentioned that you should multiply 25 and 9.5. 

The class noisily went back and forth on how to compute perimeter. To restore order, Ms. Sandy 

sharply asked to see some hands if people wanted to talk. She chose another student, Macky, 



 

  

58 

who said that to find the perimeter you should double the base and double the height and then 

add them together. Murmurs of agreement were expressed, which abruptly ended the argument. 

Ms. Sandy, noticing Cassidy’s 9.5, digressed momentarily from the perimeter discussion to ask 

the class how they knew that 9.5 was a correct value for the height. She said that doubling 9.5 

gives 19 and adding 3 yields 22, which is not 25. One student argued that the height was 9.5 

because you added 3 to get 12.5 and then doubled the height to get a base of 25. It took a few 

minutes of discussion for the class to agree that only one of the methods of computing the height 

was valid. They realized that the height divided by 2 minus 3 was different than the height minus 

3 divided by 2. The problem called for the latter computation. One student said the height should 

be 11, and Ms. Sandy asked for justification, which the student correctly gave. Cassidy wrote 11 

on the board. Returning to the perimeter discussion, the class found that the original guess of 25 

for the base did not yield a perimeter of 60. Cassidy put an × in the ‘correct solution?’ column, 

signifying that the row was not the solution. 

Braxton guessed another base value of 20.5, gave the height as 9.5, and then revised it to 

be 6.5. Both times, Ms. Sandy doubled the proposed height and added 3, which did not yield 

20.5. Another student said they should choose a base value that was easier (a whole number), 

and other students concurred, so they decided to choose 21. The students eventually decided that 

the height for a base of 21 was 9 and that that combination gave the desired perimeter of 60.  

Ms. Sandy asked about a general rule. The class discussed 2(b + h) = 60, and Cassidy put 

that in the perimeter column. They tried to list b in terms of h, which was now seen as easier than 

starting with b and working backwards to derive h. They decided on b = 2(h) + 3. Ms. Sandy 

asked the students to work individually to come up with an equation for the perimeter in the 

perimeter column that used the base expression and the height expression. After about three 
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minutes the students were brought back together for a whole class discussion, Braxton proposed 

that the perimeter was equal to twice the height plus 3 plus twice the height again: p = 2 (h) + 3 +  

2 (h). Opinions were split between whether this expression yielded 60 when h was 9 (the 

students were not following the conventional order of operations) or whether it was 39. The class 

computed it together, with Cassidy writing on the board, and together they agreed that it was 39. 

Cassidy wrote (2 h + 3 × 2) + (h × 2). Ms. Sandy encouraged the class to substitute 9 for the 

height and see whether 60 was the result. After more discussion (and trial-and-error 

computations), the class realized they needed to adjust the parentheses slightly: Cassidy wrote p 

= (2 h + 3) × 2 + (h × 2). They cheered once they had written a formula that gave 60. During the 

remainder of the period, the students worked in groups of four to create equations for similar 

word problems from their textbook.  

Mathematical Emergence 

 One of the indicators of the presence of a complex system is emergence: Something 

arises through multiple individual interaction that supersedes any individual’s characteristics. It 

is a property that belongs to the whole system and not to any single member. In all three 

teachers’ classes I witnessed mathematical emergence, or the joint creation of mathematics. Not 

exclusively the product of teacher action, mathematics developed––or emerged––in these 

episodes, through collective action as the class jointly created the lesson. No single individual 

was responsible for the lesson, or the shared public enacted curriculum. Different strategies, 

different terminologies, different representations were all woven together to form a larger fabric 

superseding any individual’s lone labor. The final tapestry of class action was a holistic 

phenomenon, understandable only through considering the collective’s actions. 
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Joint Lesson Construction 

The classes that I studied demonstrated consistent, reliable joint lesson construction. I 

define joint lesson construction to be formative class action in which the lesson becomes an 

embodiment of the class’s collective mathematical activity. Such a phenomenon, where the 

emergent accomplishments supersede that of any individual, is a hallmark of complex systemic 

action. In each episode, the lesson was an active construction by the entire class rather than the 

result of any single individual’s actions or even the sum of multiple individuals’ actions. 

Students’ ideas built on previous student ideas, and influenced later class actions. 

Some general examples follow that differentiate lessons arising from a single individual’s 

action, the sum of individuals’ actions, and complex action. The purest form of a single 

individual creating a lesson is the lecture––a lone production. Univocal transmission, as opposed 

to dialogic functioning, dominates. An example of a lesson formed through the sum of 

individuals’ actions is when the teacher shows, tells, presents, or demonstrates the mathematics 

to be learned, with occasional questions to students that have only one correct response (as if the 

job of students is to fill in the blank). Such a lesson is a construction of more than one individual, 

but it is a preplanned presentation with slight adjustments to accommodate students’ remarks. A 

second example of a lesson formed through the sum of different individuals’ actions is slightly 

more dynamic: The teacher has the students work on a worksheet and then asks several students 

to come to the board and present their solutions to different problems. If a student makes a 

computational error, other students may point it out and give correcting help or redo the problem 

correctly. This lesson is the result of multiple people’s actions, but again it is just the sum of 

various individuals’ actions––additively––like laying a hardwood floor with each piece of wood 

fitting with others to make the floor. 
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A lesson arising from complex action involves student participation in such a way that 

the lesson grows out of the individuals’ contributions. For example, the teacher poses a 

challenging question to the students, who work individually. Then they have a whole-class 

discussion about different solution methods. As different students present their methods, and 

discussion about the accuracy or efficiency of different methods occurs, the lesson becomes a 

dynamic entity. It can be likened not to a hardwood floor but to a living tree. Later parts of the 

lesson grow out of and receive nourishment from earlier parts. Dialogic functioning is essential 

for this growth to occur; students consider previous ideas and use them for further action. 

Another way to express this is that students’ strategies often were shaped by contributions by 

others. Students question one another and use each other’s ideas to further the discussion. The 

lesson becomes a jointly constructed object, meaning that the actions of individuals develop and 

shape subsequent action. Sections of the lesson are not simply presented or demonstrated, 

plugged into place like precut blocks; rather, the lesson grows organically. It is dynamic, 

unpredictable, and unique. A teacher who might try to involve a different set of students in the 

“same lesson” discovers that the second lesson is far different from the first. 

 Although the three teachers contributed to the formation of these jointly created lessons, 

the lessons belonged neither to the teachers nor to any student. Instead the class as a whole 

owned the lesson, for it was the creator. To illustrate joint lesson construction, I describe how the 

emergent mathematical lesson was the result of collaborative unified activity by many 

individuals––an indicator that a complex system was present.  

Ms. Auburn’s Joint Lesson Construction  

Ms. Auburn’s episode demonstrated the emergence of joint lesson construction. No 

single individual––not Ms. Auburn, not Trevor, not Hayden, no one––was responsible for the 
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creation of the lesson. The lesson was joint in the sense that individuals participated by giving 

their ideas to the whole class to contribute to whole-class action; it was joint in the sense that 

such action influenced later action. Dialogic functioning, not univocal transmission, dominated. 

Sometimes the whole class appeared confused (e.g., when Trevor’s arithmetic error produced 

competing ideas); sometimes the class appeared stumped (e.g., by Danielle’s insightful remarks, 

which halted all discussion temporarily); sometimes the class understood (e.g., when Hayden 

convinced the class that Danielle’s concern was not valid). Unlike lessons that are largely 

preplanned and then enacted by the teacher, the lesson in Ms. Auburn’s class included emergent 

whole-class action. The class as a whole developed the lesson through the synergetic actions of 

individuals. The students were dialogically involved, creating their ideas in response to other 

students’ ideas. Several students, such as Jasmine, Lillian, Caitlyn, and Trevor, showed visible 

signs of cognitive change. Students cited each other’s means of operation (e.g., Danielle said, “I 

kind of did it his way”). Vocabulary was developed, different strategies considered, terminology 

refined, and definitions created (a definition of high-five, for example). There was student 

justification, reasoning, questioning, and debate. Ms. Auburn’s class was operating not as a mere 

sum of individuals’ actions but as a complex system—action critically influenced subsequent 

action.  

The class was fragmented in its understanding as it considered various solution methods. 

With some students’ validation of Trevor’s corrected method, the class began to accept his 

strategy as valid but was still confused about whether to count the last high-five. By doing some 

simulations and defining a high-five, the class was able to rectify Danielle’s concern, and further 

insight was gained into the problem’s solution by the consideration of Wyatt’s method. Hayden’s 

creative partial summation added mathematical creativity to the end of the lesson––helping to tie 



 

  

63 

everything together. The halting stumblings of the class gave way when Trevor’s strategy was 

presented. It drove the remainder of the lesson. The act of jointly solving this mathematical task 

became a “togethering activity,” transforming the class into a complex system.  

Mr. Murano’s Joint Lesson Construction 

In Mr. Murano’s episode, the class as a whole jointly completed a previously assigned 

worksheet and began another, but in an unusual manner strikingly different than worksheet work 

involving dozens of similar problems. The activity was different because of teacher-guided 

student sharing and thinking about each other’s ways of operating. In other words, unlike 

classrooms in which the worksheet is often a practice instrument that teachers give students to 

complete alone (or possibly to work on in small groups) to reinforce the day’s lesson or to 

review previous concepts, the worksheet in Mr. Murano’s class was completed a section at a 

time, with partner work followed by whole-class discussions after each section. It did not 

reinforce the lesson; it’s completion constituted the lesson. Previous class action influenced (and 

was sometimes cited) in later class action. The worksheet acted both as a repository for the 

problems the class would work on together and as a location for student mathematical work and 

recording. Mr. Murano’s class jointly wrestled with and solved problems that had not been 

previously presented in class. The worksheet was not a collection of repetitious exercises but 

rather an instrument for innovative whole-class instruction. 

This episode was different from Ms. Auburn’s episode: It was more structured, and the 

work was more tightly guided by the teacher. Certainly the worksheet contributed to the 

structure. As with Ms. Auburn’s class, however, Mr. Murano’s class as a whole was jointly 

constructing the lesson. It emerged out of the discussions by the class that occurred in work with 

a partner. Mr. Murano engaged his algebra class in an oscillation between whole-class discussion 
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and partner work. When the whole-class discussion stopped, the students were working in pairs 

on the same problems. It was not like some lessons in which during the 20 to 30 minutes of 

worksheet time allocated at the end of the lesson, some students race ahead while others move 

more slowly. The synchrony of the work in pairs was critical so that whenever Mr. Murano 

brought the students back together, they could have a coherent discussion because they had all 

worked on the same problem. 

 The questions on Mr. Murano’s worksheet were not numerous problems very similar to 

previously demonstrated examples. Rather, the worksheet was a guide to the problems the 

students would work on jointly, almost as if Mr. Murano had given the students copies of his 

lesson plan with the solution paths left blank. Also, the problems were original in the sense that 

the students had not done such problems before. They were problems that took thought, time, 

struggle, effort, and discussion to solve. In the 80-minute episode, the class did 11 worksheet 

problems, the last 3 of which were very similar (only the y-intercept of the equation varied), 

which meant that roughly 5 to 10 minutes of class time were dedicated to each problem, quite 

unlike typical worksheet problems, which can normally be solved rather quickly. The episode 

took place during the third week of the course, and already the students were engaged with 

complex algebraic concepts that are usually not studied until much later: writing general linear 

equations, identifying slope, graphing and interpreting linear functions, working with x- and y-

intercepts, and even writing equations in point-slope form. The students had begun the algebra 

course not having been taught about linear relationships.  

As the students worked on Susan’s Problem and Manuel’s Problem, there was no clear solution 

path and no mimicking of previous steps Mr. Murano had demonstrated. In the whole-class 

discussions, various strategies and methods were shared that the students began to incorporate 
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into their own work. When students referred to each other’s methods by name (e.g., Nadia’s way 

or Andy’s method), they showed that they were thinking through each others’ work and 

comparing it with their own or that of others.  

Thus, Mr. Murano’s lesson, like Ms. Auburn’s, was a group construction as the class 

worked to solve the problems on the worksheet. Mr. Murano broke the class into pairs to work 

on the problem before bringing them together to talk about their work. This approach could have 

had several advantages for the students’ mathematical learning. Allowing the students to work on 

the problem prior to the whole-class discussion might have yielded a healthier, more robust 

discussion. In addition, it might have allowed those students who might not willingly speak out 

in whole-class discussions the option of thinking through the mathematics by themselves prior to 

thinking about how others dealt with it. Mr. Murano also took advantage of the work in pairs to 

ask a pair pointed questions or provide individualized assistance. But after letting the pairs work 

independently, Mr. Murano always brought the class back together to come to consensus about 

the tasks worked on and to explore jointly the finer details of the problem. This discussion 

prepared for the next worksheet problem. 

Not all of the lesson activity might appear to have been mathematical. For example, how 

is finding a good window on the graphing calculator related to mathematics? Is there even a right 

answer? Yet the students were learning how to evaluate choices, make wise decisions, and 

communicate them to other students in a convincing manner. And they were forming the 

sociomathematical norms so vital to mathematics learning (Cobb & Yackel, 1995). They were 

learning proper ways to interpret a visual representation of a linear relation, the parts of a graph 

(like the x- and y-intercepts) that were important to include in the window, and the language of 
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technology so the calculator could be a beneficial tool. The work in Mr. Murano’s class, even 

when using calculators, was mathematical. 

Ms. Sandy’s Joint Lesson Construction   

Ms. Sandy’s episode is a third example of joint lesson construction. It was also an 

embodiment of class action. No students solved the problem on their own, and Ms. Sandy, 

although guiding the class in certain directions, let most of the ideas emerge through the joint 

student talk. As the students were talking about possibilities, especially in the formation of the 

general equation, they would incorporate each other’s ideas (or debate them as invalid by 

offering counterexamples). 

An occurrence in Ms. Sandy’s episode should be illustrative of this characteristic of 

complex joint behavior. During the emergence of the lesson, Braxton wanted to choose 20.5 as 

the new base, with 9.5 and then 6.5 as the height. Ms. Sandy doggedly showed that these heights 

were not valid for a base of 20.5. Multiple students murmured that this was too tricky of a 

number to use, and wanted a whole number, which other students agreed with. Hearing the shift 

in students’ attitude toward a new base, Ms. Sandy agreed to investigate a new base. She 

accepted Mckenna’s base of 21. Easier to compute with, this new value proved to yield both a 

rapid height by the students and the valid solution to the problem. The point is that the holistic 

behavior of the agents––the actions of the collective––were dynamic and adaptive to the 

circumstances. Braxton was eagerly trying to find a valid base value after the first attempt of 25 

proved too large. Other students grew frustrated with his unusual decimal guess. The resulting 

conversation involved a group movement toward consensus (wanting to use a whole number 

value) that began almost unheard, but ballooned rapidly to become the dominant direction of the 

group. No single individual was responsible for this behavior––it was complex emergence.  



 

  

67 

Other examples for these teachers could be cited. But suffice it to say that the lesson in 

each episode was an unpredictable chain of events through mutual action by varied participants 

that relied on previous class action and utilized other’s ideas. The resulting emergent 

mathematics was macrobehavior none possessed by himself or herself. The entire class’s action 

would be needed to understand the resulting lesson. For example, mathematical terminology 

evolved during class lessons. This emergence and crystallization of terminology was a dynamic 

process involving many individuals. Conventional terminology was introduced as the lessons 

progressed: Words like steepness or slant were replaced over time by slope. Ms Auburn 

described how she would highlight and model appropriate terminology as it began to emerge in 

class discussions:  

I don’t know that when I first started teaching I ever consciously made a decision 
about that, but over the last few years, I have realized that, yes, I do have to model 
[appropriate language]. And the language that I use is the language that they will 
pick up. So when we’re talking about slope, it is easy to start out talking about the 
steepness of the line, but then I do want the correct mathematical language out 
there, so that I will start using that. So it’s not just the steepness, but it’s the slope 
of the line. What does the “slope” tell us? What does the “y-intercept” tell us? So 
that those are words that they hear, and become familiar with as well.  
(Interview 1) 
 

Often, however, correct mathematical terminology was introduced by a student who had heard it 

used in that context before, and the teachers highlighted the correct terminology when it arose. 

All of these episodes can be viewed from the standpoint that the class as a unified whole 

was constructing the mathematics, which was embodied in the lesson. Just watching the actions 

of the teacher or of some particularly vocal student would not explain the dynamic emergence of 

the mathematics in these episodes. Such mathematical emergence is evidence of a 

mathematically complex system. 
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Self-Regulation 

The second indicator of the presence of a complex system in these classes was self-

regulation. Each of the classes exhibited self-regulation during the selected episode. Members of 

the system approved or disapproved of other members’ mathematical actions, and they made 

such approval or disapproval known to the others. Although some regulation came from the 

teacher, a substantial amount came from the students. The longer they jointly operated with a 

specific concept, the more sophisticated their self-regulation became, probably because of their 

comfort with the topic. Some of the self-regulation was modeled by the teacher, and in time the 

students began to incorporate the teacher’s actions into their own methods. The more some 

students operated in those ways, the more other students followed suit. But the students would 

also spontaneously react to each other’s mathematical discussions, often providing further 

evidence or counterexamples for another student’s claim. Such action led to rules and ways of 

operating that were understood by the entire class. I take spontaneous student mathematical 

discussion not initiated by the teacher, especially the approving or disapproving of others’ 

mathematical ideas, as evidence that the class as a whole was self-regulating its mathematical 

behavior. 

 Two examples from Ms. Auburn’s class illustrate the self-regulation. First, when Jasmine 

was correcting her first attempt to solve the Soccer Problem, she forgot to add the last 10, giving 

45 instead of 55 as the partial sum. Trevor interrupted and commented that she needed to include 

the other 10, which she did. This intervention was not initiated by Ms. Auburn. Second, toward 

the end of the lesson when the class was about to accept Danielle’s incorrect notion that the 

partial sum was 54 (because the last person would not high-five himself or herself), Hayden 

interrupted with a comment, contrary to the direction the teacher was headed, and gave a clear 
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description of why 54 was not correct. This intervention, too, was not initiated by Ms. Auburn. 

Hayden demonstrated that the last 1 in the partial sum was how many high-fives were given by 

not the last person, but the second to last. This comment led to a careful diagramming of the 

problem on the board by Ms. Auburn, which was used in the final summary.   

An example from Mr. Murano’s class also illustrates self-regulation: Boston incorrectly 

described how many weeks passed when he was counting in front of the class (by how many 

times he pressed the enter key during his recursive routine). Several students instantly pointed 

out that the number should be 46 instead of 47. This intervention was not initiated by Mr. 

Murano. The students’ uproar seemed to have initiated Mr. Murano’s question as to why it 

would have been 46 weeks instead of 47 weeks. His question led to an insightful discussion 

about the y-intercept. 

 Similarly, near the end of Ms. Sandy’s episode, many students erroneously computed the 

perimeter to be 60 when checking one of the heights. In fact, many students reported that it 

should work. Without Ms. Sandy saying anything, Raul jumped in to disagree. He said that the 

height was 39, which he then revised to 40––not 60. As the class rechecked their arithmetic, they 

realized that they were not following the order of operations and that Raul was correct.  

Nonmathematical Systems 

This study dealt only with complex systems containing mathematically based 

phenomena. Complex nonmathematical phenomena also arose that were legitimate and deserve 

brief mention even though they were not the focus of the study. I had hypothesized that any 

classroom could be the scene of various complex systems because of the nature of human 

beings’ social interactions when a group is brought together for an extended time. People often 

begin to exhibit unified intelligent behavior as they interact. I observed a variety of complex 
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systems at the research sites that I would not consider mathematical complex systems. Examples 

include clandestine distribution networks (to distribute candy or other forbidden objects), 

clandestine communication networks (e.g., small-group or class-wide note passing), classroom 

group movements (such as rapidly escalating disruptions that elicited an untypically harsh 

teacher intervention, or sudden student mobbing of an area), secret student-student helping 

(coordinated efforts to help other students appear to understand teacher questions or 

mathematical concepts without the teacher’s knowledge), and nonmathematical small-group or 

whole-class humor. These actions all met the criteria for a complex system because they 

included some form of global behavior that no single participating individual demonstrated.  

I recorded examples of each of the complex nonmathematical systems mentioned above. 

Some were so subtle they could be easily overlooked: Students would rather craftily form 

“illegal” partial-class systems that excluded the teacher. Often the hidden systems I observed 

involved fewer than a dozen actively participating students, but occasionally the systems grew 

quickly.  

The teacher was usually not part of the observed nonmathematical systems, aside from 

those dealing with whole-class nonmathematical humor. Many of these systems exhibited 

considerable sophistication and coordination––evidence that even so-called slow learners, 

problem students, or lazy pupils could exhibit intelligence, motivation, and concentration when 

functioning as interested parties in a purposeful social unit. Many students who might be 

considered “mathematically uninclined” exhibited behavior that demonstrated their hidden 

abilities. Unfortunately, some of those students viewed school as a boring game that needed 

some social spicing-up, classroom learning as an amusing obstacle they enjoyed collectively 

dodging, and school mathematics as ritualized hoop jumping. They channeled their energies into 
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mathematically unproductive systems. Although some of those systems (such as a system 

manifesting class-specific humor) were natural and probably valuable for maintaining a healthy 

ecological classroom balance, others were a distraction from learning mathematics. Nevertheless, 

such intriguing multi-agent behavior possessed the complex qualities of emergence and self-

regulation. The behavior deserves mention because, as discussed in chapter 5, when the teachers 

successfully combated disruptive nonmathematical systems and rechanneled the students’ 

energies into the developing mathematical system, the system profited thereby.  

The perspective of complexity theory helped me to see two phenomena in these classes, 

emergence and self-regulation, which indicate the presence of complex systems. I describe in the 

next chapter the factors I observed influencing the formation and sustaining of thes 

mathematizing complex systems according to Davis’s criteria (B. Davis & Simmt, 2003). 
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CHAPTER 5 

HOW WERE THE COMPLEX SYSTEMS  

FORMED AND MAINTAINED? 

 

 

In the fields of observation, chance  
favors the prepared mind.  

—Louis Pasteur 

 

This chapter addresses the second research question of what contributes to the 

development of complex systems in mathematics classes. More particularly, I investigate how 

complex systems were formed and maintained in these mathematics classes. I identified a variety 

of common actions shared by the three teachers’ classes that I believe provided for complex 

system formation in those classes. These actions can be organized under the framework of 

Davis’s criteria. I conclude that creating a complex system in one’s class depends on the actions 

taken by the teacher.  

Because the norms and the ways of operating in the system had been established early in 

the year, as the classes continued over the next several weeks, each teacher spent less time 

training the class how to act, which left more time for the lessons. Although all three teachers 

took similar actions, subtle differences existed in the methods they employed. I first highlight the 

shared principles by which these teachers operated and then describe variations. In other words, 

the overall strategies for conducting their classes appeared similar, whereas the teachers’ tactics 

had both similarities and differences. This chapter has five sections, one for each of the criteria 

B. Davis and Simmt (2003) identified as essential for complex system formation and function: 
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internal diversity, redundancy, neighborhood interactions, decentralized control, and organized 

chaos.  

I began my study with the belief that I would find additional criteria needed for complex 

class formation beyond Davis’s criteria. I anticipated augmenting the list of essential criteria, but 

during the analysis I discovered that their criteria are robust. Therefore, I discuss each criterion 

below, with the various manifestations of each criterion. 

Internal Diversity 

 Internal diversity refers to the differences among the individual agents operating in a 

complex system. Such diversity provides a fertile reserve of abilities that can be used by the 

system as a whole. All three teachers highlighted for their students, and subsequently capitalized 

on, the diversity among the students. For example, Mr. Murano and Ms. Auburn used similar 

tasks the first week of school to emphasize the importance of diversity in the class. The diversity 

was already present, but they used activities that highlighted it. Through the discussions they 

made the diversity apparent to the students and helped them recognize its importance for the 

successful operation of the class.  

For example, the first day Mr. Murano repeatedly emphasized the importance of working 

together while reviewing his disclosure document (Appendix D). It stated:  

Success in class is directly affected by student participation. Understanding 
mathematics requires discussion, reasoning, and presentation of concepts by 
students…. Participation in class is essential for students to learn for 
understanding. (emphasis in original) 
 

The same day, he partitioned the class into groups of four and asked each group to take various 

polygonal cardboard pieces and form four squares. The catch was that he gave each student in 

the group a resealable bag with several pieces inside, but no bag contained the pieces needed to 

form a complete square. The two rules the groups were to follow were as follows: (1) There 
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could be no talking, and (2) all pieces had to be used in making the four squares. Mr. Murano 

had mixed the contents of each bag with pieces from the other bags, so that each group had the 

pieces needed to complete four squares, but no bag alone could make a square. Over time, the 

students recognized what he had done, and began to work together. 

After the students completed the activity, Mr. Murano led a class discussion of the 

importance of students using each other’s ideas in learning mathematics and in joint problem 

solving. He commented to me later that there was much variation across groups in the time it 

took to realize that they needed to share pieces. 

 Ms. Auburn also highlighted student diversity. The first day of class, she played a Name 

Game, in which by starting in one corner of the room and working their way around, the class 

could learn everyone’s names: The first student said his or her name, and then the second student 

repeated the first student’s name and said his or her name. This process continued with each 

student repeating the names of all the preceeding students before saying his or her own name. At 

the very end, Ms. Auburn attempted, with some help, to say every student’s name. The activity 

would prove crucial over the next few days as the students began to talk about each other’s ideas 

in whole-class discussions. Because they knew each other’s names, their ability to hold a 

discussion and talk about each other’s ideas was greatly enhanced. Although learning names is 

not a mathematical activity, Ms. Auburn saw it as important for strengthening the mathematical 

potential of her class:  

 I always make a big deal about kids getting to know each other’s names, 
not only me, but also other kids in the class, because if they know 
somebody’s name, they are more likely to talk to them than just [to say], 
“Oh, the kid in the black shirt.” So we spend time getting to know each 
other’s names. (Interview 1) 
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Ms. Auburn saw learning names as contributing positively to mathematical whole-class 

discussions. She then described the discussion she has with her students after the Name 

Game, where the team nature of basketball was compared to learning and doing 

mathematics: 

 
Then I also do “On the Court.” I talk to kids about: What is it like at the 
basketball game? If you’re in the stands, what does it feel like? What are you 
doing to participate in the game? Do you have an outcome? Like, do you have any 
effect on the outcome of the game [in the stands]? Whereas if you are a player in 
the game, you definitely have an outcome.… You actually get to participate and 
get to be a part of what is going on. So we get to talk about “On the Court.” What 
does it mean if you’re “on the court?” What are you participating [in]? How are 
you involved in mathematics? Are you just cheering on the smartest kid in the 
class, or are you actually doing your math and thinking about it? … I want the 
kids to realize that they have to be involved. They can’t just leave it for someone 
else. (Interview 1) 

 
 

Ms. Auburn also implemented a Mathematician of the Week program. Each week she 

would pick one student from each of her classes and put his or her name on the Mathematician of 

the Week poster at the front of the room. She would describe to the class what mathematical 

actions the student had performed the previous week to become the Mathematician of the Week. 

She also engaged her students in a mathematical task with partners, to help facilitate their 

enculturation into the class: 

We start out at the very beginning working in … partners, and they have to talk to 
each other. I always do an activity at the beginning of the year that has them 
working with someone else. And I want them to do that, because otherwise there 
are always kids who would say, “Well, I would rather work on my own. I don’t 
want to talk to someone else.” …. So I always start out the beginning of the year 
with at least one activity where they have to think [together]…. It is that whole 
idea of working in a group, starting out…. We start at the very beginning and 
have them go to the board sharing ideas, and start out from the very beginning 
modeling the behavior that I want them to do, asking questions, thinking out loud, 
and working in groups. (Interview 1) 
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On the second day of class, Ms. Auburn introduced her disclosure document (see 

Appendix E), which also highlighted the importance of students’ diverse contributions. It read in 

part as follows: 

Students will receive 10 or 15 participation points each week if they participate 2 
or 3 times a week in class. Participation means sharing ideas with the class, 
reading out loud, asking appropriate questions…. Being in class and participating 
in the class discussions is a significant part of the student’s learning and 
understanding. 
 

 These were some of the activities Mr. Murano and Ms. Auburn conducted for their 

students to highlight the importance of recognizing and appreciating the diversity in their classes. 

Ms. Auburn said, “So, they have to start thinking about ‘Oh, our classroom is a group, we are a 

team, we are a team together’” (Interview 1). These teachers wanted their students to understand 

that the talents and capacities of every individual in the classroom were important, and that 

respecting others’ ideas, as well as participating oneself, was essential for healthy class 

discourse. 

 Although I did not observe the first few weeks of Ms. Sandy’s class, she did say similar 

things to her class: “I like [my students] to work in groups, and I like them to get in groups right 

off the bat [at the beginning of the school year]” (Interview 1). 

The three teachers also capitalized on the diversity in their classrooms; they turned it into 

an advantage for mathematics instruction. By internal diversity, I refer not to demographic 

differences but instead to differences among students in how they think about and operate with 

mathematics. In fact, I believe that mathematical diversity is the most important form of diversity 

in classrooms for mathematics learning. Each teacher created an environment that brought 

mathematical diversity out into the open for the students to consider in the development of their 

own mathematical understanding. I do not contend that differences in race, culture, social 
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economic status, or other qualities are unimportant to mathematics learning, but in considering 

the impact on the class as a system, I want to emphasize the diversity of students’ mathematical 

thinking. The great differences in how the students thought about, talked about, represented, and 

understood mathematical ideas were essential to the collective mathematical action in these 

classes. 

Mr. Murano and Ms. Auburn, whose classes were relatively homogeneous racially and 

economically, and Ms. Sandy, whose classes were very diverse racially and economically, 

highlighted for students and capitalized upon the inherent diversity of students’ ways and means 

of operating mathematically. These teachers (1) presented and maintained cognitive demand of 

difficult mathematical problems with no clear solution path, and (2) created a respectful social 

space for different ideas to be presented and discussed.     

Pose Challenging Problems 

Stein, Smith, Henningsen, & Silver (2000) have identified the posing of challenging 

tasks, and then maintaining the cognitive demand of the tasks as critical to mathematics learning. 

Each teacher posed such tasks and strove to maintain the cognitive demand. The main 

mathematical problems in which the three teachers engaged their students provided seedbeds for 

diverse mathematical thinking. Each teacher used his or her own type of problem. Mr. Murano 

used original worksheet problems that had a variety of subcomponents, Ms. Sandy gave 

problems from the curriculum textbooks and materials, and Ms. Auburn used an amalgamation 

of problems either borrowed from a variety of curriculum resources or originals. They all gave 

challenging problems that allowed for a variety of solution methods even though each main 

problem had a single right answer, and thus the students had space for exercising individual 

creativity and mathematical insight. In the episodes, one can see how the Soccer Problem, 
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Susan’s Problem, Manuel’s Problem, and the Perimeter Problem were all challenging open-

ended problems, especially as they involved new mathematics with which the students were not 

familiar. The problems allowed for a variety of different mathematical viewpoints to be used in 

their solution. In addition, no teacher lessened the cognitive demand of the problems later in the 

lesson. For example, Ms. Sandy commented on maintaining the cognitive demand of a problem 

in her first interview: 

If they don’t do it, they don’t get it. I think that it is very good to struggle through 
a problem. I know that I do not necessarily like to struggle through a problem, if I 
have to, but I know I understand it when I have…. You can always tell when the 
lightbulb comes on. If they have struggled through something, and they have had 
to do it themselves––.… Telling them something is the last resort for me. I am 
going to think of all the questions I can think of, to get them going where I think 
they should go, without being too leading. But if they’re not doing it, it is not 
helping. They have to really do it…. I think they are going to learn it by thinking 
about it. (Interview 1) 

 
Create Respectful Spaces  

In addition to posing challenging problems, the respectful social space that the teachers 

created was essential for bringing forth the mathematical diversity allowed by the main problem. 

This attribute of the community was highlighted by the National Council of Teachers of 

Mathematics (NCTM, 2000) as critical to student learning: 

The … teacher should strive to establish a communication-rich classroom in 
which students are encouraged to share their ideas and to seek clarification until 
they understand…. To achieve this kind of classroom, teachers need to establish 
an atmosphere of mutual trust and respect…. When teachers build such an 
environment, students understand that it is acceptable to struggle with ideas, to 
make mistakes, and to be unsure. This attitude encourages them to participate 
actively in trying to understand what they are asked to learn because they know 
that they will not be criticized personally, even if their mathematical thinking is 
critiqued. (p. 270) 

 
The teachers worked hard to mold a classroom climate that would be conducive to the 

sharing of tentative mathematical ideas. For example, Ms. Auburn solicited volunteers to share 
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their solutions to the Soccer Problem. Later in the lesson, she allowed those students who wanted 

to revise their method (e.g., Lillian, Jasmine) in response to other students’ comments (e.g., 

Trevor’s, Hayden’s) the opportunity to return to the board and do so. The message was clear: 

Revision of prior work was allowed in her classroom. Tentative ideas could be shared, 

competing viewpoints debated, and opinions raised––all within a safe social climate. Mr. 

Murano made encouraging comments whenever his students volunteered ideas. He constantly 

used such terms as excellent, good, and very good to describe students’ ideas (69 such 

affirmations in his episode). With such affirmations, he communicated to the students that 

sharing ideas in his classroom was to be commended. Ms. Sandy would refuse to move forward 

in any aspect of the lesson when the students were quiet. She would simply wait for a response, 

or repeat the question and wait some more. In her class, thoughtful student comments were 

expected, and once they were expressed, she would ask the class what they thought about the 

student’s ideas rather than pass judgment herself.  

 Ms. Sandy in an interview talked about the attitude she tried to instill in students:  

Who do you think is right? Let’s vote. It’s okay, if that is what you believe, then 
you should stick to it. If somebody proves you wrong, and you agree that you 
were wrong, it’s okay. It is better to make a mistake and figure out how to fix it, 
than not to figure out how to fix it…. It is all just a matter of when people have 
their own opinion, and everybody being comfortable with their own opinion. But 
when you find that your opinion may not be the way things should really work, 
you have the guts to change your mind. And I think that they do. (Interview 1) 

 
She noted that the students in her algebra class in particular, would be willing to stand up for 

their opinion until evidence convinced them otherwise:  

They are not afraid to change their mind, and they are not afraid to be wrong. And 
in a lot of cases they are willing to admit that they were wrong, and [say], “Oh, 
yeah, I see it now.” And I think that comes with having math confidence. 
(Interview 1)  
 

Ms. Auburn expressed the same opinion about her class atmosphere:  
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I work really hard to get kids to respect each other, listen to each other’s ideas 
even. I know that I have a lot of kids that say, “Oh, he has got to be right because 
he is the smartest kid in the class.” And my comment to that is, “Well, okay, I am 
the teacher, does that mean I’m always right? Does that mean I never make 
mistakes? Does that mean they never can make mistakes, or think about a 
problem in a different way than you thought about it? So it is always good to ask 
questions and wonder: “Well, how did you get that? Does it make sense in this 
context? Does it carry on?” So I always want [my] kids to also think about their 
mathematics, and question where did it come from. (Interview 1) 

 
 Part of creating a respectful space was the movement of students’ seating. This 

movement allowed students to work with and get to know their classmates. The teachers moved 

students around to new seats several times a semester. Ms. Sandy commented, “I like to change 

them around, like every book we do, for every unit, so they do not have to work with the same 

people all of the time” (Interview 1). Ms. Auburn indicated such repositioning helped unify the 

class:  

Ricks:   You said a phrase [earlier in the interview]: “The class as a group.” 
 

Ms. Auburn:  Oh. 
 

Interviewer:  Could you say a little more about that? 
 
Ms. Auburn: I usually do a new seating chart about once a month, so they get to 

know other kids. They always, they always have a different squish 
partner with whom they have to work. So when you talk about the 
class as a whole group, they really are a group as a whole. And 
they have to learn to respect and listen to each other’s ideas as the 
kids are at the board presenting and talking. (Interview 1; see p. 97 
for a definition of squish partner) 

 
 

Redundancy 

 Internal diversity provides complex systems the resources needed for creative movement. 

Yet too much diversity can spell disaster. A nascent system can be torn apart by differences. B. 

Davis and colleagues (B. Davis & Simmt, 2003; B. Davis & Sumara, 2001) claimed that the 
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characteristic of redundancy provides a counterforce against internal diversity’s impulse toward 

separation. Redundancies are various shared qualities among the system’s smaller agents that 

allow for cohesive joint operation––the adhesives for complex systems. I noted several 

redundant categories shared by these complex classes: (1) common norms, (2) common tasks, 

and (3) common mathematical orientations. 

Common Norms 

Mr. Murano and Ms. Auburn developed class norms jointly with their classes during the 

first few days of school. These teachers made joint norm formation an explicit activity 

culminating in a tangible product. They spent considerable time on it, first discussing how 

important it was for the class to develop shared expectations for all to learn equally, and then 

engaging each class in creating a unique written list of the norms the class would strive to follow 

(within the broader climate the teacher created through his or her disclosure document). Ms. 

Auburn said:  

We talk about: Norms are normal behavior. What we would expect from other 
people, when we’re working in a group of 2, or 4, or as a whole class? And I post 
them up on the bulletin board. And I have to keep reminding kids all year long. 
It’s not just like, “Oh, we have our norms, and we are set to go!” It’s like every 
day, every week, every month, we have to remind them what the norms are, and 
be polite and let others [have] a chance to talk, and listen while somebody else is 
talking. And not just to keep your mouth shut, but actually listen to what they are 
saying, and go, “Oh, does that concept make sense to me? If not, what do I 
disagree with? What do I agree with in their presentation?” (Interview 1) 
 

These norms were not imposed by the teacher but arose through student discussion about good 

ways of acting in groups and together as a whole class. Because the norms were posted, the 

teachers and students could cite them easily. Any disciplinary action by the teacher had an added 

effect because the students had previously agreed on the norms. The consistent reference to the 

norms by the teacher reinforced their effectiveness.  
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Ms. Sandy did not have posted norms, but she did comment in an interview that the way 

she acted helped students learn proper modes of conduct:  

Maybe I should post [norms] on the wall. If you are … doing what you are 
supposed to be doing, everything goes smoothly; respect each other; opinions are 
good no matter what they are…. I expect them to know how to follow rules, and 
to know what decent classroom behavior should be. And I hope, without having 
to spell it all out, that I treat them the way they feel comfortable, they feel valued, 
they feel like they can say anything and not be laughed at. (Interview 1) 

 
Thus, for all three teachers, the implicit or explicit norms provided for the maintenance of 

respectful social spaces for student discussions. 

Common Tasks 

The second redundant element I observed these teachers use was the concept of jointly 

solving the same task. Each teacher engaged the students in a shared class-wide effort on the 

same mathematical task, which yielded rich mathematical discussions. Whether the teacher 

asked students to work individually or in groups prior to a whole-class discussion was less 

important than asking all students to work on the same problem together at the same time. Once I 

watched as Ms. Sandy deviated from this practice, asking different groups to solve different 

problems and to create individual posters to present to the class. The next day, as each group 

presented its results, she had noticeably more management problems. Some of the students who 

were not presenting and were not familiar with the other groups’ problems, quickly tuned out of 

the discussion. But for the most part, all three teachers involved students together in common 

tasks so the subsequent whole-class discussions could be coherent, meaningful, and communal. 

Common Mathematical Orientations.  

A third form of redundancy that I witnessed was the development of a consistent 

mathematical orientation: similar educational experiences, whole-class formation of shared 

terminology, mathematical language and its structure (mathematical grammar), mathematical 
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ways of operation (strategies and methods), and representation. Cobb (Cobb & Yackel, 1995) has 

used the term sociomathematical norms to describe “normative aspects of whole class 

discussions that are specific to students’ mathematical activity” (p. 8). I use common 

mathematical orientations because when it comes to describing redundant mathematically 

related elements in the classroom, I believe sociomathematical norms is too narrow a term. I 

observed the shared ways students operated mathematically, including their dispositions, 

confidence levels, tenacity, and even being mathematically skeptical. That behavior permeated 

the class action and was not confined to aspects of whole-class discussion. I see 

sociomathematical norms as a subset of common mathematical orientations.  

An additional distinction between mathematical orientations and sociomathematical 

norms is that sociomathematical norms are negotiated by the community––like an individual’s 

beliefs and values, but at the class level. Some aspects of common mathematical orientations, 

however, may be inherent in a class because the students have had similar curriculums or 

textbooks in previous year, and may even have had the same teachers. This experience is an 

obvious source of redundancy, as the members of the community know enough collectively 

about the subject to begin a conversation. The students have had previous mathematics courses 

together and have used textbooks, calculators, and group work to do mathematics. To some 

extent they all understand basic arithmetic and elementary mathematics terminology. They share 

some overlapping “knowledge in the head” (Andrew Izsák, personal communication) from 

which they can build common understanding. Other aspects of a common orientation may not be 

beliefs or values at all––as Cobb and Yackel (1995) claim all sociomathematical norms are––

such as mathematical grammar (how mathematical symbols are ordered or arranged to properly 

communicate ideas) or common mathematical strategies understood by the class as a whole. In 
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addition, assisted by community construction of sociomathematical norms, the way in which 

students engage with mathematics, whether privately or interactively, also has a redundant 

element. 

In Mr. Murano’s and Ms. Auburn’s classes, the teachers from the beginning of the year 

developed further the common mathematical orientations by modeling appropriate forms of 

mathematical discourse and behavior. They consciously made explicit certain ways of 

mathematical operation so that the students could more easily communicate and understand each 

others’ work. Through the class’s joint actions, initially modeled in appropriate ways by the 

teacher, the students continued to develop and refine class-specific language for describing 

mathematical ideas, objects, and procedures. The class as a whole developed a unique language 

system. The emergence of classroom-specific mathematical humor, with inside jokes no outsider 

would understand, showed that some of the class’s language was unique. In addition, the 

teachers began to use conventional mathematical language, which was then integrated into the 

class’s discourse. An example of this language was in Ms. Auburn’s class when students first 

used an arm or a hand motion to describe how one line differed from another, then adopted the 

word steepness, and finally began using slope after Ms. Auburn introduced the term.  

The approaches to solving problems, the ways of representing mathematical ideas, the 

mathematical strategies and solution paths, and the manner of appropriate mathematical debate––

all were developed through joint class action from disparate initial elements into a cohesive, 

shared, class-specific orientation toward mathematical action. I give two clear examples of this 

development from the episodes. In Mr. Murano’s class, the various student ideas about solving 

Susan’s Problem and Manuel’s Problem began to converge toward a common understanding. 
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Mr. Murano tried to make this convergence explicit when he began the discussion of the linear 

equation for Manuel’s Problem:  

Excellent! Now we’re all going to go through and make sure all have come to the 
same conclusion about what is happening with Manuel. We need to make sure 
that we all, all agree. And again, hopefully, you’ll notice that there are several 
different ways. Okay. So, some of you probably came up with things slightly 
differently than others. 
 

Ms. Auburn, in her episode, emphasized several times to the students that the class was coming 

to a common understanding:  

 
Ms. Auburn: Okay. So now, does [her] answer match Trevor’s answer? 
 
Trevor:  Yes. 
  
Students: Yes! Yes! 
 
Ms. Auburn: Oh, so we are starting to come to more of a consensus?   

 
And at the end of the episode: 
 

Ms. Auburn: So, 176 [high-fives]. 
 
Students: Yeah. Yes! 
 
Ms. Auburn: Do we have a consensus?  
 
Students: Yes. Yes.  

 
Additionally, from the various solution methods presented, each class would gravitate toward 

simple, concise, efficient, and correct strategies through the communal discussions.  

In the beginning, the students often struggled to express their ideas orally. In Mr. 

Murano’s class, a week before the main episode, Boston was trying to explain how he found a 

trend line (approximation of a line of best fit) for some data the class was working on. He 

graphed his trend line on top of his data points using the overhead display calculator. 

Mr. Murano:   So, tell us about it. What did it do? 
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Boston: That. [Looks sheepishly at Mr. Murano.] 

Students: [Laughter.] 

Boston: Like that. It looks kind of okay. 

A little while later, after Boston showed his equation, his difficulty in describing his 

mathematical thought-processes was again evident through his cryptic language: 

Mr. Murano: What is the deal with the 3 there [referring to Boston’s y-intercept]? 

Negative 3? Why did you do that? 

Boston: ‘Cuz. 

Students: [Laughter.] 

Mr. Murano:  ‘Cuz why? 

Boston: [Showing with his hand.] I had to move it, like [waves his hand] this way. 

See? [More waving.] Yeah. I don’t know. It would fit it better. ‘Cuz, um, I 

can’t explain it very well. 

Mr. Murano: Okay. 

Boston later became much more proficient at explaining his thinking. Many times the students 

would attempt to explain their mathematical thinking and stop by saying, in effect: “I know what 

I am trying to say, but I don’t know how to say it,” or “I know how to do it myself, but I can’t 

explain it.”  

The careful efforts by these teachers to model precise explanation and to push for 

precision when students explained their thinking to others laid the groundwork for developing 

the class-specific mathematical orientations that eventually involved conventional terminology. 

For example, Mr. Murano relied heavily on technology to introduce the concept of linearity; his 

students learned about doing the recursive routine either by hand or on the calculator to model a 
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constant rate of change. Ms. Auburn’s students, when learning about linear relationships, did not 

learn about recursive routines on the calculator (at least while I was there). So although both 

groups of students were learning the same formal mathematics, the context was different. 

Decentralized Control 

 Decentralized control is the third criterion B. Davis and Simmt (2003) considered 

essential for complex system formation. I observed three features of decentralized control that 

were shared by the three teachers: (1) They relinquished mathematical authority, (2) their 

language was dominated by plural (we, us, our) language rather than singular (I, me, my) 

language, and (3) they engaged their classes in mathematical discussions that veered between 

chaotic and controlled. This is consistent with what the NCTM (2000) has described as 

reminding “students that they share responsibility with the teacher for the learning that occurs in 

the lesson” (p. 60). 

Relinquishing Mathematical Authority  

The teachers took pains to remove themselves as the mathematical authority in the class. 

They regarded the social unit—the collective—as the mathematical authority (except in rare 

instances when clarification was needed). The common plea by students to a teacher hovering 

over the desk––“Is this answer correct?”––illustrates the position a teacher often holds in the 

power dynamics of a mathematics class. In all three of these teachers’ classes, however, the 

teachers took explicit action to demonstrate to the class that they were distancing themselves 

from the position of a mathematical authority. These actions were verbal or physical, and they 

left mathematical issues unresolved. 

The teachers used explicit language to communicate that they were not going to tell 

whether a student was right or wrong. For example, Julio asked Ms. Auburn to just tell the class 
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which method was correct after three students had presented different answers to the Soccer 

Problem. She responded simply, “I don’t have the answer.” When a student asked Ms. Sandy to 

tell the class the answer to an equation in another episode, a student, Raul, said that she would 

never tell the answer, because “she never does.” Although some students continued to try to get 

answers from her, Ms. Sandy was adamant about responding with another question for the 

questioner or the whole class.  

Ms. Auburn said: “I like for them to think of themselves as a team, the whole class as a 

team, so they can say, ‘Oh, we have to work together. It is not just me against other people.” Or, 

“I am competing against them. But we really are a team’” (Interview 1). The teachers still 

maintained an adult presence, ultimately responsible for management, student participation, 

assessment, homework assignment, and other activities needing adult authority in a middle 

school classroom. They also set the tone for the expectations for mathematical expression, 

mathematical description, precision, and questioning. But when it came time for passing 

judgment on the correctness of a method or answer, or for choosing sides on a mathematical 

debate, the teachers deftly and deliberately deflected any questions back to the students. Thus the 

mathematical authority was passed back to the class itself.  

This authority reduction was highlighted by the NCTM (2000) as helping students 

develop “productive habits of reasoning” (p. 345): 

In order to evaluate the validity of proposed explanations, students must develop 
enough confidence in their reasoning abilities to question others’ mathematical 
arguments as well as their own. In this way, they rely more on logic than on 
external authority to determine the soundness of a mathematical argument.         
(p. 345) 

 
Additionally, all three teachers would sometimes leave issues unresolved when students 

were unable to come to a consensus. Mr. Murano was especially prone to let ideas remain 
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unresolved until a later time or lesson when the students had learned more––a characteristic of 

the teaching of the mathematician R. L. Moore (Cohen, 1982), who commonly left unresolved 

issues in his teaching. 

All three teachers also displayed physical manifestations of their removal from a position 

of judgment. For example, all three would leave the front of the room and let students take their 

place: The student who held the marker became the focus of class attention. The teachers often 

went to the back of the classroom during discussions, as if removing themselves from the 

students’ range of vision allowed the students to focus more on who was talking and not to be 

preoccupied with the subtle physical cues that teachers often give during mathematical 

discussions. Mr. Murano, in his cramped portable classroom, would sit in a student chair or stand 

against the back wall between rows. Ms. Auburn, in a larger room, would sit at her desk or on an 

empty desktop at the back of the room. Ms. Sandy would sit in a chair at the back of her room. 

Singular–Plural Ratio 

During analysis, I noticed teachers’ constant use of we, us, and our in their dialogue. I 

compared the use of the singular forms me, I, and my with the use of we, us, and our. For each 

teacher, I examined the entire lesson from which the sample episode came and obtained data that 

showed how singular or plural forms were used by the teacher. As can be seen in Figure 5, for all 

three teachers plural usages were more frequent than singular ones and increasingly so as the 

lesson progressed. The horizontal axis represents the time as the lesson progressed. The vertical 

axis represents the accumulated number of singular or plural forms used by a teacher during his 

or her lesson. For each page of transcript, I counted all the singular language (I, me, my) and all 

the plural language (we, us, our). 
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Figure 5. Three teachers’ singular-plural language. 
 
 

For comparison, it proved helpful to transpose my data against other American 

classrooms. I chose the four lessons highlighted in the 1999 Trends in International Mathematics 
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and Science Study (TIMSS) video study as typical classes (National Center for Educational 

Statistics, 2003). The TIMSS study investigated several dozen American lessons, and researchers 

chose four to highlight what the researchers considered “typical American lessons.” 

Sophisticated sampling techniques were used, as well as rigorous analysis by the researchers, 

which are described by the National Center for Educational Statistics (NCES, 2003). 

As can be seen in Figure 6, the ratio of singular–plural usage is quite different for the 

U.S. teachers in TIMSS. As a group, the TIMSS teachers did not follow a consistent pattern of 

usage. In Lessons 1 and 2, singular uses were more frequent and tended to be increasingly so as 

the lesson progressed. In Lessons 3 and 4, plural uses were more frequent but not by much, and 

not increasingly so. Only Lesson 4 showed any similarity to that of the three teachers in the 

present study, but toward the end of that lesson, the me usage rebounded sharply. Compare the 

absence of a pattern in the TIMSS data with the dramatic consistency among Ms. Auburn, Mr. 

Murano, and Ms. Sandy. They have significant plural growth in plural usage and similar 

singular-plural ratios. These graphs provide evidence that, compared with typical U.S. teachers, 

the teachers in the present study were more likely to use language that signaled their 

identification as part of a classroom community and less as the authority. 

Table 4 shows these totals by teacher. Figures 5 and 6 provide additional information not 

visible in Table 4 because the progress of language usage throughout the lesson can be seen.  

Ms. Auburn mentioned that this approach to teaching, by involving the students jointly as 

a mathematics community, enabled her to understand what the class as a whole was 

understanding. In other words, it facilitated assessment––almost as if the teacher, by listening to 

whole-class discussion, was “reading the system’s mind.” Here is a portion of the interview: 
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Figure 6. TIMSS 1999 U.S.teachers’ singular-plural language. 
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Table 4 

Number and Percent of Singular and Plural Forms in Lessons 

Teacher Singular 
N 

Singular 
% 

Plural 
N 

Plural 
% 

 
Ms. Auburn 53 32 113 68 
 
Mr. Murano 

 
62 

 
29 151 71 

 
Ms. Sandy 62 30 142 70 
 
       Total  171 30 406 70 
 
TIMSS Teacher 1 172 70 72 30 
 
TIMSS Teacher 2 76 56 59 44 
 
TIMSS Teacher 3 114 45 142 55 
 
TIMSS Teacher 4 59 49 62 51 
 
       Total  421 56 335 44 
     

 
 
Ricks:  As a teacher, do you do things, or have kind of a sense of, how the class as 

a whole is doing? 
 

Ms. Auburn:  Yeah. Like mathematical-wise? Why, how they are doing? 
 

Ricks:   Yes. 
 

Ms. Auburn:  Or just working together?   
 

Ricks:   I’m thinking more about the mathematics. 
 

Ms. Auburn:  Yeah. 
 

Ricks:  Like are they getting a concept? Are they not getting it? But now I am 
talking about the class as a whole. 

 
Ms. Auburn:  As a whole. 
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Ricks:  I’m kind of interested about this process. If like, if you have ever thought 
about it, or––? 

 
Ms. Auburn:  Actually, I do, and it is very interesting, because, well, especially 

when we have new teachers, and I mentor them and stuff, it is 
really interesting to talk with them about before you give a quiz or 
before a test. “How do you think your class is going to do? What 
do they know, what do they don’t know?” For me, teaching this 
way [through my method] allows me to know a lot more about 
what my kids as a class [motions with her hand in a circle] as a 
whole [know], because I get to walk around the room, and see their 
work, and as a whole, I would say, I could determine whether 
they’re working together. They’re strong. Their mathematical ideas 
are good, and there might be one or two kids who are struggling, 
and those are the ones that I have to help, and give extra help with. 
Or, as a class as a whole, they are not doing so well. So you need 
to go back and to figure out where their holes are. What are they 
missing? What do we need to do to bring them up? It really is, it is 
really that personality thing, where a class as a whole––they have a 
good feeling, and they’re working mathematically, or they 
struggle…. I am not always exactly correct in my thinking, but I 
usually have a good feel about what the kids know, and when to 
move on, and when to approach the next concept. (Interview 1) 

 

Navigating Between Chaos and Control 

I observed an interesting pattern that all three teachers manifested. The teachers 

relinquished control of the lesson until the class action reached a critical point, at which time 

they regained lesson control. By lesson control, I refer to the regulation of the way the 

mathematics was enacted in the whole-class discussions—that is, who spoke, who went to the 

front, who responded to questions, and so forth (which is different from being a mathematical 

authority who controls what is considered correct or incorrect mathematically). As a discussion 

progressed, the teacher would turn over to the students more and more of the creative act of the 

lesson formation––the enactment of the mathematics. The students would then become more 

engaged and animated as the mathematical discussion accelerated. For example, they would 

become increasingly less likely to raise their hands to speak before commenting. The dialogue 
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became rapid-fire. Sometimes students would stand up at their desk they became so involved. 

The volume of discussion would increase as well. At such a juncture, the teacher would step in 

and retake control of the lesson. Like a parent teaching a toddler to walk, the teacher would 

move back and forth between letting go and holding on. This navigation between chaotic and 

controlled lesson enactment required constant give-and-take maneuvers by the teachers. There 

was a liberating action when students were given more control (providing for rich dialogue about 

mathematics) that no doubt would not have occurred had teachers not let go of the lesson’s reins. 

As the discussion became more excited and louder, however, becoming increasingly difficult to 

understand as more students began participating, the teacher almost always reined in the class 

before control was lost. When the class came under more control, the joint actions appeared to 

slow, but then the teacher would give more control back to the class. Such navigation was 

apparent when I transcribed the lesson. I would reach points of difficulty because so many 

students were talking over each other that I had a hard time figuring out who was saying what. 

But then I would observe that the teacher would calm things down, and the dialogue would 

become easier to transcribe.  

For example, at a certain point in solving the Perimeter Problem, Ms. Sandy appeared 

overwhelmed by the students’ discordant dialogue and asked to see some hands (which was not a 

common occurrence in her normal whole-class discussions, unless things started to get rowdy): 

Ms. Sandy:  Well, how you find perimeter then? 
 
Student:  By adding! 
 
Ms. Sandy:  Well, it said “add.” 
 
Braxton:  No, you find the perimeter by multiplying! 
 
Raul:  It just said find the perimeter by adding.   
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Student: And then add 3. 
 
Ms. Sandy:  Excuse me, I need to see some hands. We are going nowhere fast. We 

have a lot of problems to do today.   
 

[Hands raise.]  
 

Student:  You add up––you multiply the––uh, the––. 
 
Student:  Hey, wait? 
 
Student: It’s, it’s––. 
 
Kody:   Oh, I know! I know! 
 
Ms. Sandy:  I still hear people talking, and I have hands up ready to go. 
 
Ms. Sandy:  Macky, how you find the perimeter of the rectangle?   
 
Macky:  Add double the base and the height, and add them together. 
 
Ms. Sandy:  Double the base and the height?  
 
Macky: Yeah. 

 
Another example from Ms. Auburn’s class demonstrates essentially the same thing: 

Tevor: So from 10 to 1, that would end up being 56, so I just added 121 and 56, 
and that was 177. 

 
Ms. Auburn: ‘Kay, I saw some answers over here that were very close to those. 
 
Students: It is 55. I thought it was 55? 55! 
 
Ms. Auburn: Oh! 
 
Students: I thought it was 55! It is 55! 55! 
 
Ms. Auburn: Oh, wait, you guys. Hayden and––tell me [to Devon] your first name 

again––? 
 
Devon: Devon. 
 
Ms. Auburn: ––Devon both think it’s 55 instead of 56. 
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Each teacher seemed to have a different point at which he or she became uncomfortable and 

regained control of the lesson: Mr. Murano had short cycles of lesson control, Ms. Auburn had 

longer cycles, and Ms. Sandy exerted the least control—so much so that occasionally her class 

became so boisterous that she had to exert tremendous effort to get the students back on task. I 

make no judgment about which approach would be most beneficial.   

Neighborhood Interactions 

 The fourth characteristic of Davis’s criteria (B. Davis & Simmt, 2003) is neighborhood 

interactions between components of a complex system. The most noticeable characteristic of the 

three teachers’ classrooms was the dynamic interaction of the students. All three classes had 

dialogic (Wertsch & Toma, 1995) student discussions about mathematics. The three teachers 

used similar strategies to enhance the way students conversed about mathematical ideas. As a 

side note, I use neighborhood interactions in a way consistent with typical literature on 

complexity (e.g., Johnson, 2001), which describes individual agents interacting. B. Davis and 

Simmt (2003) described neighborhood interactions as the ideas of students that come in contact 

with one another. Presumably, if students interact, so will their ideas. Ms. Auburn said: 

That is probably my biggest philosophy: The more kids are involved sharing and 
talking about the mathematics, the more likely they are to do it than if they have 
to sit back and be a notetaker, or just plugging in problems. And because of that, I 
spend a lot of time at the beginning of the year setting up my classroom so that 
kids know that I want them to participate. They work with partners. They work on 
their own. So it’s not always a partner group. They have to think on their own as 
well. But also getting kids to come to the board, be willing to share, and for some 
kids just been able to explain they’re thinking is a whole new thought process. 
(Interview 1) 

 

Partner Work 

All three teachers engaged their students in considerable work with a partner. Because 

Ms. Sandy’s room had two-person tables with two chairs at each table, she would have the 
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students at each table collaborate on mathematical problems. She would specify only when 

discussion was not allowed. Most of the time, however, talking to one’s neighbor about 

mathematics was not considered cheating or otherwise inappropriate. Unless discussion was 

prohibited, the students engaged with each other about mathematics. Certainly, the two person 

tables facilitated partner interactions. 

 Mr. Murano and Ms. Auburn, in classrooms with separate student desks, taught their 

students a movement strategy to promote partner interaction: They created squish partners. The 

first few days of school, they taught their students to move their desks together for partner work. 

Ms. Auburn arranged six parallel rows of desks in three sets of pairs and taught the students that 

when she said “Squish with your Squish Partner,” the students were to bring their desks together 

so that their desk was touching that of their partner from the other row. She taught the students 

how to join desks quickly: They used several minutes the first day to practice squishing and 

unsquishing.  

Mr. Murano had his room laid out in six rows, too, and he taught the students to squish 

together in a similar arrangement as Ms. Auburn. He also used the words squish and squish 

partner. In both classes, it was obvious when the teacher wanted the students to work as partners 

because they were specifically asked to squish. Students would also talk quietly to one another 

even when their desks were not together. Such quiet discussion was allowed unless explicitly 

forbidden or disruptive. 

Group Work 

All three teachers regularly engaged their students in group work, typically a group of 

four. In Ms. Auburn’s and Mr. Murano’s classes, the students were taught how to rotate their 

desks so they were facing each other in a group of four. In Ms. Sandy’s classes, the students in 
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front would usually rotate their chairs to the table behind them to form a group of four. The 

students became efficient at forming a group quietly and disengaging to come back to the whole-

class discussion with minimal disturbance. Mr. Murano and Ms. Auburn also practiced this four-

person group movement the first day, forming and unforming groups. 

Whole-Class Discussion 

Most important, all three teachers would involve students in daily whole-class 

discussions (Yackel, 2000). Ms. Sandy was most likely of the three to begin such a discussion 

without prior independent, partner, or group work. Dialogic functioning was a key component of 

the whole-class discussions. The students were able to talk to each other and question each 

other’s mathematical activity: They interacted mathematically. Like mathematicians, they 

engaged in justification, explanation, interpretation, contradiction, reasoning, and the like. The 

whole-class discussions allowed the classes to become mathematical communities. As Ms. 

Auburn claimed:  

  Because, even as a mathematician, if you are working on something, very few 
people do isolated mathematics on their own. And even if they do, when it is 
published, it becomes the work of everybody, and [there are] lots of peers who 
review it. So in everyday life, when people solve mathematical problems, they 
talk to someone else. They think about: “Oh, what is the problem that actually has 
to be solved? What are we doing? What’s our approach? How are we going to 
take this on? Is this idea going to work? Is it not going to work?” So I think, very 
few things in this world are isolated ideas. People work in groups, and they 
collaborate, and they talk back and forth. So I think as far as mathematics, that is 
part of what they do as well. (Interview 1) 

 
During the whole-class discussion the complex system was most clearly present as joint lesson 

construction emerged. I observed the teachers using four techniques to maintain healthy whole-

class discussions. They (1) modeled transparent thinking, (2) modeled critical colleague 

commentary, and (3) thoughtfully selected student strategies for demonstration. 
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 Transparent thinking. The teachers modeled for their students appropriate interaction that 

required clearly described sense making, something the NCTM (2000) has stated as necessary 

for effective mathematics instruction (p. 123). That clarity allows others a window into one’s 

thoughts. Ms. Auburn described the modeling she did:  

I do realize that my behavior effects my classroom a lot, so the language I 
use is the language my kids will pick up. How I respect them and behave 
towards them is a lot of how they respect each other. And then I also 
encourage my kids, like, if I see behavior that I think is a problem, I will 
ask them “What’s wrong?” so that they can see, and model their behavior. 
(Interview 1) 
 

For example, when a student was at the board describing something he or she had done, each of 

the teachers would often stop the student and ask for a clearer, more precise explanation—an 

explicit description of what the student was thinking when he or she used the strategy. The 

teachers rejected opaque communication; they required an ungarbled, understandable rendering 

of the student’s thinking. Not surprisingly, most students were unaccustomed to producing 

precise descriptions of their mathematical actions. The students struggled to express their actions 

appropriately, as they developed a suitable production vocabulary to meet the teacher’s 

expectations.  

 Critical colleague commentary. In addition, to further model clear interaction with others, 

the teachers also modeled appropriate questioning of others’ thinking. While one student was 

describing his or her thinking in a transparent manner, the other students were encouraged to 

critically assess the mathematical description. In other words, it was the responsibility of those 

receiving the communication to critically examine its mathematical validity. As Ms. Auburn 

said:  

What’s their mathematical reasoning behind it? If someone else can talk them into 
changing their mind, is it a valid reason? Can they be convinced to change their 
mind just because someone else says: “Oh, my way is better. Or is it really 
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mathematically valid?” So I do push towards explaining why. Where did it come 
from? So it’s not just the two equations are equivalent. “Okay, yeah, we all agree. 
Why are they equivalent ones?” (Interview 1) 

 

The receiving party was to accept, question, or reject the first party’s discussion. Such action 

fostered mathematical interactions, as the two parties jointly developed a clearer understanding 

of the phenomenon. Respectful critique was an appropriate form of commentary; respectful 

rebuttal or appropriate acceptance was expected. This approach reflects a perspective sanctioned 

by the NCTM (2000):  

In mathematically productive classroom environments, students should expect to 
explain and justify their conclusions. When questions such as, What are you 
doing? Or Why does that make sense? Are the norm in a mathematics classroom, 
students are able to clarify their thinking, to learn new ways to look at and think 
about situations, and to develop standards for high-quality mathematical 
reasoning. (p. 341) 

  

Thoughtful Selection. I observed two aspects of teacher actions that contributed to the 

dynamics of class interaction: equalizing participation and careful selection. Critics of the study 

of complex systems in education sometimes claim that only the aggressive, vocal students 

benefit from the actions of the system because only they are participating. In this study, each 

teacher used his or her own technique to encourage student participation and to help all students 

become involved in the discussion. The NCTM (2000) said that “all students should have the 

opportunity to learn” mathematics (p. 29), which requires such equalizing. 

Mr. Murano, for example, gave each student a form on which the student was to record 

whether he or she had been tardy, the main idea of the day’s lesson, and any homework and quiz 

scores. As part of the form, he had a space for each day to indicate when the student had 

participated orally. He would use a cylindrical stamp with a little “smiley face.” When a student 

went to the board to present or discuss his or her ideas, Mr. Murano would sit in the vacated 
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seats. While the student was up front, he would pull out the stamp and stamp the student’s form. 

He would tell the students that they needed to keep the form on the corner of their desks so that 

he could come by and give them a stamp for participation. In that way he encouraged 

participation, as the stamps contributed to students’ grades. Sometimes Mr. Murano would select 

a quiet student to share his or her thoughts. For example, he asked Andy, an especially quiet 

student, to share his strategy during the discussion of Susan’s problem. Mr. Murano could 

quickly glance at the students’ sheets as he walked around the room to tell how much a particular 

student had participated that week.  

With a marker Ms. Auburn wrote the names of all the students in her class on a side 

board, and she would put check marks after the students’ names when they participated. She 

gradually delegated this responsibility to students who sat near the board.  

As I look around my kids, some of them are very quiet. They’ll sit there and not 
say anything unless they are specifically asked to participate, or I ask them a 
question about what’s going on, and those are the kids I want to become involved 
as well. And so, I love having all my names on the board because then I can look 
over and go though. Trevor has participated six times; Damien has not 
participated at all! “Damien, what you think? How is it going? Where does it 
come from? What are you thinking as you go along?” Because otherwise it is very 
easy to always let the kids who are always outgoing to drive the conversation. 
Because the other kids have great thoughts as well. It’s just they are not as willing 
to stand up and go, “Wait, pick me! Pick me!” So, I love having that as an 
involvement so I can track what kids are saying and where they are going and 
how they are thinking about mathematics. For even the quiet kids. And having 
them share and see what’s going on. (Interview 1) 
 

Because Ms. Auburn frequently rotated the seating arrangements, all the students in a class had 

an opportunity to record the participation on the side board. If a student declined to be a recorder, 

another one was asked to do it. With this system, Ms. Auburn could easily glance over during a 

whole-class discussion and see which students were lacking in participation points. Each week 

the students were required to have a certain number of participation points. Because the system 
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was public, some students would start encouraging the quieter ones to participate so they could 

earn participation points. Ms. Auburn remarked about this practice in an interview: 

 It is interesting to see kids that haven’t participated, then they are like: “Oh, 
Damien hasn’t had a chance! Let us let Damien have a chance to come to the 
board!” And it is fun to see different personalities of kids as they get to … 
become the cheerleaders and they get to stand back and cheer someone else on as 
they go along. And I had a class last year that every time that someone came to 
the board, they wanted to applaud. To give them the hand [demonstrating by 
clapping]. And I am like, “Okay! It is fun to cheer kids on and stuff.”  

 (Interview 1) 
 

Ms. Sandy had no tangible way of keeping track of which students participated, but she 

would often walk around the room, sit next to quiet students, and engage them as part of the 

classroom discussion. She made a concerted effort to ask the quieter students their thoughts 

during whole-class discussion. For example, she mentioned to me in an interview that although 

Addison was a good thinker, she would not normally participate voluntarily unless Ms. Sandy 

called on her. And so she called on Addison frequently. 

Careful selection is another technique that I observed the teachers using to facilitate 

whole-class discussion. In addition to selecting less vocal students, the three teachers attempted 

to select students based upon the observed mathematical substance of their strategies. For 

example, while the students worked individually or in pairs, Mr. Murano would circulate around 

his room with a clipboard, making notes about the different ways the students were approaching 

a problem. This practice is similar to the way Japanese teachers have been observed to teach 

(Lewis & Tsuchida, 1998). During the later whole-class discussion, Mr. Murano would refer to 

his clipboard, if needed, to ask a student to share a particular strategy. Similarly, Ms. Auburn and 

Ms. Sandy would selectively choose students based upon the mathematics they had done rather 

than purely nonmathematical criteria. Ms. Auburn commented about this tactic: 
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Ricks:  When you go around, like when you select examples of student 
work to take pictures of, or when you ask specific students to go to 
the board, do you, do you choose those kids for a reason? 

 
Ms. Auburn:  I do…. Like, if as I am walking around and everybody is doing the 

problem in the same way, and so there might be one or two ways, 
then I will choose kids who have both ways…. If I’m walking 
around the room, and I see several different strategies, then I will 
pick––let’s say, I see five different strategies––I will pick three of 
them that I think are good to focus on. And sometimes I will pick 
work because I want kids to discuss “Oh, wow! That was an 
interesting way that they did it.” Sometimes I will take work 
because this is definitely more efficient than I saw from these kids, 
and I want them to go: “Oh, I hadn’t thought about it [like that]. I 
could do it that way.” And so, it depends on the lesson, and it 
depends on how many different strategies. Or if it’s something that 
I see kids are going to struggle with later. But usually it is pretty 
purposeful; most of the time it is. (Interview 1) 

 

There was often foresight and mathematical justification for the choice of the students that were 

chosen. It was often premeditated selection––on mathematical grounds––rather than arbitrary or 

based on equalizing participation. The teachers had mathematical purpose behind the decision 

making they engaged in. True, at certain times it did not matter whom they chose to present; 

someone was needed to start the discussion. For example, in the beginning of the Soccer 

Problem discussion, Ms. Auburn chose Lillian seemingly randomly. Yet at other times in her 

teaching, it was clear she was carefully selecting a certain student’s work to highlight it for the 

class. She would sometimes take a digital picture of the student’s work to later project on the 

front of the board for the entire class to see. These thoughtful techniques of equalizing 

participation and carefully selecting students because of the mathematical contributions they 

could make to the lesson greatly facilitated the whole-class discussion.  
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Organized Chaos 

 Organized chaos is the final key feature of Davis’s criteria (B. Davis & Simmt, 2003; B. 

Davis & Sumara, 2001) and was a key element of the teachers’ actions. I will use the term 

organized chaos instead of organized randomness which B. Davis used. With regards to 

organized chaos, I have identified two common techniques I noticed these teachers use: (1) 

actuated luck and (2) mathematical management. These were qualities that each of the teachers 

used to organize seemingly random occurrences in the classroom. 

I changed B. Davis’s term organized randomness to organized chaos because chaos 

seems more appropriate for describing classroom environments. I do not believe the events in a 

mathematics class occur at random. They may appear to an observer to be random, but I contend 

that all actions have some motive and reasoning behind their occurrence, and so random is not 

the best way to describe even the most jumbled events in a classroom. Mathematically chaotic 

behavior contains some element of randomness or spontaneity, but it is structured against some 

underlying organization. Over time, patterns emerging out of turbulence indicate hidden 

constraints. Complex systems require some background organization but with the freedom for 

individual creative expression, which organized chaos implies. 

Actuated Luck 

An observer might consider that these teachers had great luck during their lessons. The 

students appeared say the right things to help the discussions along, or a student’s mistake early 

on would prove to be a significant asset in understanding a later concept. After observing these 

complex classes, other teachers might consider themselves unlucky, saying, “Why don’t my 

students talk in my class like that!” or “Why don’t my students bring up these points?” The three 

teachers, however, displayed a principle I call actuated luck: Their so-called luck was the 
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phenomenon of preparing for, recognizing, and using effectively the spontaneous occurrences in 

a discussion to further the mathematical goals of the lesson. These teachers took opportunities to 

highlight comments that would benefit the lesson. For example, during an interview, Ms. Auburn 

noted how she took student comments and integrated them into the lesson: 

In seventh-grade algebra today when [that student] said, “Oh, I would take the 
slope, times it by x, and add it to the y-intercept,” I had not anticipated anybody 
verbalizing the equation in that form, but it was perfect! Oh, we can take that 
[student’s comment], and we can go to y = mx + b. So they know slope-intercept 
form. (Interview 1) 
 

The teachers appeared lucky because they prepared their classroom environments to promote 

beneficial events, highlighted such events as they unfolded, and capitalized on them. These 

classrooms had rich, sustained mathematical discussions because the teachers had the expertise 

and experience to pose substantial problems that would engage their students in mathematical 

challenges. For example, Ms. Auburn described how she had consciously practiced asking good 

questions:  

When I first started teaching this way, my biggest focus was on questioning. 
Knowing how to ask the right question, that gets kids to think mathematically. 
Right now, I’m a little better at questioning. I have worked on that for a lot of 
years, so it is getting better…. And it is a lot easier to do for me to do now than it 
ever would’ve been 5 or 10 years ago. Part of that is because I feel very 
comfortable teaching the mathematics that I’m teaching, and I feel very 
comfortable in the classroom setting that I’ve created. So even if I make a 
mistake, it’s okay, it’s okay to go: “Oh, you know what! I was wrong. I didn’t 
think of it [from] that point of view.” (Interview 1) 
 

Surprising things happened in their classrooms of which they could take full advantage because 

they had created a dialogic space for student ideas to be elicited. The teachers appeared to 

recognize when a critical juncture occurred in the lesson to move the class into deeper 

mathematical activity. They apparently knew the right thing to say, the right point to make 

explicit, or how to elicit the right question because when the special, unpredictable events 
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occurred, they seized the moment. Ms. Auburn described how in previous years she might have 

overlooked an aspect of student thinking that would have proved valuable: 

I used to teach … kids how to solve a proportion by cross multiplying…. I was 
always pushing them to do cross multiplication even though they had some great 
mathematical ideas, and they could see that reasoning. Now it is, like, “Okay, 
you’re right. That works. How would you use that idea to solve this type of 
problem?” So it gives, it gives me more flexibility to say, “Oh, take that idea. And 
where can you go from this idea and still be able to solve a proportion? But solve 
it a different way.” (Interview 1) 
 

What started out as a straightforward mathematical task in these classes yielded intriguing 

discussions through the orchestrating actions of the teachers. They were able to elicit student 

ideas, would continue to ask the right questions, and made appropriate choices so that rich, 

mathematical class discussions would ensue. NCTM (2000) supported such actions:  

To be effective, teachers must know and understand deeply the mathematics they 
are teaching and be able to draw on that knowledge with flexibility in their 
teaching tasks. They need to understand and be committed to their students as 
learners of mathematics and as human beings and be skillful in choosing from and 
using a variety of pedagogical and assessment strategies. (p. 16) 
 

Ms. Auburn offered some advice about how other teachers could use student activity for the 

lesson’s advantage: 

You have to be able to say, “Okay, if I’m looking at these ideas and I give kids a 
chance, can I take it farther than I thought?” Or, maybe, I might have to take a 
little longer than I thought because their ideas, they’re not understanding as in-
depth as what I wanted them to go. So you have to be flexible time-wise, and 
either advance your lesson plan and go farther, or be able to back up and say, 
“Maybe I need a little more time on that idea.” (Interview 1)   
 

 Part of the principle of actuating luck was appropriate teacher action during critical 

moments in the lesson. The three teachers possessed the ability to ask the right question at the 

right time. They seemed to recognize when the classroom action was at the point where their 

intervention in a specific way could propel the class into more productive mathematical 

experiences and acted before the moment passed. Their lessons were like a “swiftly flowing 
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river” (Lewis & Tsuchida, 1998). An example was when Boston was explaining his recursive 

method in solving one of Susan’s problems in Mr. Murano’s episode. He was at the board and 

had lost count of how many times he had done the recursive routine. Rather than redoing the 

entire 40 or so recursions on his calculator, he simply said, “I just kept doing that [pushing the 

calculator’s enter button] until I got down, to, like 40.” When Boston began to move toward his 

seat, Mr. Murano seized the moment and explicitly asked him to finish the routine up front so the 

class could see what would happen. Here is the dialogue in context: 

Boston: That is 2, right there, so because she started out with 25 [dollars], 
right there. And then she, the second week, she put in 2.5 
[dollars]––so that is the second week. And that is [pushing the 
calculator’s enter button] third, fourth, fifth, sixth, seventh. I just 
kept doing that [pushing the calculator’s enter button] until I got 
down, to, like 40. [moves to sit down.] 

 
Mr. Murano:  Keep going. Let us see what you got.  
 
Boston: Okay, it is… 
 
Student: [Forty-]seven.  
 
Student: Six. 
 
Boston:  Seven. 
 
Mr. Murano:  Six or seven.? 
 
Student: Six. 
 
Student: That’s six. 
 
Student: Six. 
 
Student: Seven. 
 
Boston:  That is [forty-]seven because you started out with 25 [dollars]. 
 
Mr. Murano:  Okay. Let us see what he comes up with. What did we start out 

with?  
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A less-experienced teacher might have simply let Boston sit down and resumed the lesson. When 

Boston redid the routine, the class began a heated debate about whether the final value was 46 or 

47. The students recognized that the initial value $25.00 was not the first week, a critical idea in 

understanding the y-intercept. This recognition led into a deeper discussion of the y-intercept. 

All three teachers recognized that their classroom actions would have considerable 

impact on the direction of the lesson and tended to act in ways that would provide for rich 

mathematical discussions. They engaged the students in an organized though unpredictable 

discussion through actions that affected the entire lesson. They seemed to be asking, “How will 

my action affect the big ideas in this mathematical lesson?” They showed the sort of knowledge 

that the NCTM (2000) has called for:  

Teachers need several different kinds of mathematical knowledge— … the whole 
domain … curriculum goals … important ideas [for the] grade level … challenges 
[for] students … how the ideas can be represented … [and] how students’ 
understanding can be assessed. This knowledge helps teachers make curricular 
judgments, respond to students’ questions, and look ahead to where concepts are 
leading and plan accordingly. Pedagogical knowledge, much of which is acquired 
and shaped through the practice of teaching, helps teachers understand how 
students learn mathematics, become facile with a range of different teaching 
techniques and instructional materials, and organize and manage the classroom…. 
Their decisions and their actions in the classroom—all of which affect how well 
their students learn mathematics—should be based on this knowledge. (p. 16) 

 
Mathematical Management 

The management style of the three teachers was related to the mathematics. Books on 

management talk about consistency in management. If one student acts in a certain way, and the 

teacher provides a certain type of reward or punishment, the teacher should to act similarly with 

other students. Often, however, these teachers would allow multiple students to talk at the same 

time without doing anything. At first, I was baffled by their lack of intervention. At other times a 

student might make the slightest comment, and the teacher would provide instant discipline. 
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Their actions seemed contrary to contemporary theories of equitable classroom management. 

Were these teachers poor classroom managers? I do not think so. I found that the criterion they 

used for imposing discipline was not the volume of talk but whether the activity had stopped 

contributing to the actions of the mathematical class system. 

If students were talking, even quietly, and the teacher recognized that the talk did not 

relate to the mathematics of the lesson, the teacher was quick to impose discipline. If students 

were talking loudly about appropriate mathematics, however, as long as it was part of the 

system’s actions, then the teacher was likely to let such activity continue. In all three classes 

there was a clear pattern of positively reinforcing mathematical actions and dampening 

nonmathematical actions. This pattern is directly connected to complexity theory’s idea of 

positive and negative feedback (Johnson, 2001). 

 As can be seen in this chapter, the teachers’ actions played a critical role in the 

development of a complex system in their classes. The level at which internal diversity, 

redundancy, decentralized control, teacher interaction, and organized chaos were present in the 

class was directly correlated with the teachers’ action. The three teachers appeared to operate in a 

similar manner following common principles that led to fertile ground for creating complex 

mathematizing systems in their classrooms. These actions are listed with the Davis framework, 

in Table 5. 
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Table 5. 

Davis’s Criteria and Common Teacher Actions. 

Davis’s Necessary Criteria Action Subaction 
 
1. Highlighting for student the importance       
bbof diversity.  

 

2. Capitalizing on diversity a)  Posing challenging problems 

 
Internal diversity 

 b)  Creating respectful spaces 
1. Common norms  
2. Common tasks  

Redundancy 

3. Common mathematical orientations  
 
a) Verbal 1. Relinquishing mathematical authority 
b)  Physical manifestation 

 c) Leaving issues unresolved 
2. Singular-plural ratio  

 
Decentralized control 

3. Navigating between chaos and control  
 
a)  Partner work 
b)  Group work 

 
1. Varied size of neighborhood 

c)  Whole-class discussions 
 
a)  Transparent thinking 2. Ways of interacting 
b)  Critical colleague commentary 

 
Neighbor interactions 

3. Thoughtful selection a)  Equalizing participation 
  b)  Careful selection  

 
1. Actuating luck 

 
 
Organized chaos 

2. Mathematical management  
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CHAPTER 6 

CONTRIBUTIONS OF COMPLEXITY THEORY  

FOR EDUCATION 

 
Each of us is a multitude. 

––Walt Whitman 
 

 In chapter 4, I provided evidence that the three teachers’ classes demonstrated the 

presence of complex systems. Each class manifested mathematical emergence and self-

regulation. In chapter 5, I detailed the role the teacher played in elaborating the five criteria 

identified by B. Davis (B. Davis & Simmt, 2003) as essential for complex system formation and 

function: internal diversity, redundancy, decentralized control, neighborhood interactions, and 

organized chaos. Chapters 4 and 5 affirm and contribute to the complex theory espoused by 

complexivists (B. Davis & Simmt; B. Davis & Sumara, 2001). In this chapter, I discuss 

contributions of complexity theory for education. I first describe some similar perspectives to 

complexity theory and how complexity theory differs from these perspectives. Next, I detail the 

phenomenon of shifting class arrangements, which delineates, through the perspective of 

complexity, a phenomenon I observed in the three teachers’ classes. Finally, I conclude with 

some general contributions I see complexity theory making to mathematics education. 

Differences from Similar Perspectives 

 The reader might ask how complexity theory is different from other perspectives such as 

the emergent approach (Cobb & Yackel, 1995) and the situated perspective (Boaler, 1999). 

Researchers use many theoretical lenses, perspectives, sub-perspectives, and bridging 

perspectives. Take constructivism, for example. Doolittle (2007) described “a constructivist 
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continuum” detailing exogenous, cognitive, information processing, psychological, dialectical, 

social, sociocultural, symbolic interactionist, endogenous, schema-based, and radical 

constructivisms (not to mention social constructionism) to try to make sense of the bewildering 

array of theories and subtheories.  

 The emergent perspective. Fortunately for the constructivists, Cobb and his colleagues 

(Cobb & Yackel, 1995; Cobb & Yackel, 1995) illuminated the emergent perspective as a way to 

harmonize individual psychological constructivism with interactionist constructivism. They 

claimed that their approach coordinates (Cobb & Yackel, pp. 11–24) those two constructivisms, 

where “learning is a constructive process that occurs while participating in and contributing to 

the practices of the local community” (p. 19). The individual contributes to the community, and 

vice versa. Whether a researcher takes an individualistic or interactionist perspective depends on 

the question at hand, always being mindful that the other perspective is intrinsically linked and 

always in the background.  

 Such a blending suggests a complex perspective, and indeed, the emergent perspective 

shares many similarities with complexity theory. For example, the emergent perspective 

considers classrooms as “ecosocial systems,” as does complexity theory. The emergent 

perspective considers domains nested within domains, just as complexity theory considers 

systems to be nested within systems. The emergent perspective also draws parallels between the 

larger social actions and the individual actions within the social. Cobb and Yackel (1995) stated: 

“Students are seen to always perceive, act, and learn by participating in the self organization of a 

system which is larger than themselves—the community of practice established in the 

classroom” (p. 14). That statement might have been written by a complexivist. It sounds like 

emergence. 
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 What is the difference between complexity theory and the emergent perspective? 

Complexity theory is about higher order behavior developing through the interaction of agents. It 

highlights the new entity formed by such action and the holistic nature of action. As such, 

complexity theory emphasizes that reducing the emergent system to its components would 

destroy the macrobehavior of the larger system. The emergent perspective, although identifying 

the classroom community as an organized social system larger than the student, is about 

harmonizing individual cognition with the cognition arising from interactions. It still maintains 

the view of the individual as the “locus of learning” (B. Davis & Simmt, 2003). The emergent 

perspective remains silent about the larger ecosocial system as a cognitive, adaptive, self-

regulating entity in its own right. So although acknowledging an extra-student system, the 

emergent perspective does not investigate that larger system holistically (as complexity theory 

considers necessary if the behavior of the whole is to be regarded). As B. Davis and Simmt 

(2003) wrote: “Such analyses … stop short on the matter of the actual identifications of 

classroom collectives…. Social norms ... emerge and evolve [and are] described on the level of 

interacting agents, not as properties of an emergent unity” (p. 144). But if one wished to 

coordinate analyses of class cognition with individual student learning, the emergent perspective 

would prove helpful. I see complexity theory as a friend of the emergent perspective, and not a 

twin, because of its different focus. 

The situated perspective. The situated perspective is another related theory. How is 

situativity related to complexity? The situated perspective examines the activity of individuals in 

communities of practice. Boaler (1999) explained:  

Situated perspectives differ from many [other learning theories] that have gone 
before them, in their focus upon broad activity systems (Greeno and MMAP, 
1998) or communities of practice (Lave, 1988). Most distinctively, situativity 
locates learning as a social and cultural activity and success is not a focus upon 
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the cognitive attributes that individuals possess, but upon the ways in which those 
attributes play out in interaction with the world. (p. 260) 
 

In the situated perspective, learning is situated, social, and distributed (Putnam & Borko, 2000). 

Knowledge lies between individuals rather than in their heads: It “locates learning in 

coparticipation in cultural practices” (Cobb, 1994, p. 14). Situated cognition goes beyond 

constructivist views, claiming that: 

to the extent that being human is a relational matter, generated in social living, 
historically, in social formations whose participants engage with each other as a condition 
and precondition for their existence, theories that conceive of learning as a special 
universal mental process impoverish and misrecognize it. (Lave, 1996, p. 149) 
 

Individual learning cannot be understood without also recognizing the social and contextual 

factors in which it is embedded; in fact, learning cannot be understood if looking only at an 

individual’s mental cognition (whether individually or socially constructed), for as Lave 

recognized, “learning is part of [people’s] changing participation in changing practices” (p. 150).  

Unlike constructivist theories, “situated perspectives turn the focus away from individual 

attributes and towards broader communities” (Boaler, 1999, p. 261). Stein and Brown (1997) 

commented: 

Learning is seen to result from the fact that individuals bring various perspectives 
and levels of expertise to the work before them. As individuals work toward 
shared goals, they together create new forms of meaning and understanding. 
These new meanings and understandings do not exist as abstract structures in the 
individual participants’ minds; rather they derive from and create the situated 
practice (or context) in which individuals are coparticipants. (p. 159) 
 

Learning is not viewed as a knowledge construction but rather as a “social practice” (Lave, p. 

150); it is not “a process of intra-individual change [but is] primarily social in nature, [for] 

‘learning and development occur as people participate in the sociocultural activities of their 

community’” (Stein & Brown, p. 158). 
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Teaching … is a cross-context, facilitative effort to make high-quality educational 
resources truly available for communities of learners. Great teaching in schools is 
a process of facilitating the circulation of school knowledgeable skill into the 
changing identities of students. Teachers are probably recognized as “great” when 
they are intensely involved in communities of practice in which their identities are 
changing with respect to (other) learners through their interdependent activities. 
(Lave, p. 158) 
 
For mathematics learning, the situated perspective “emphasizes the socially and 

culturally situated nature of mathematical activity” (Cobb, 1994, p. 13). It sees learning 

mathematics as “a process of enculturation into a community of practice” (p. 13). This claim 

does not mean the individual student is not important, but to facilitate individual learning 

requires helping students move from the edges of participation in the classroom mathematics 

community toward the core and helping them “from assisted to unassisted performance” (Stein 

& Brown, 1997, p. 172), thus changing their mathematical identities as they change their 

mathematical practice. Like the emergent perspective, situated learning does not explicitly focus 

on holistic macrobehavior through component interaction. It is another friend of complexity 

theory, but again not a twin. Situativity may help researchers understand processes occurring in 

complex systems, but it is not a theory designed to investigate or explain the spontaneous 

cohesion of agents into larger, more organized collectives. 

Shifting Arrangements 

 Complex systems are often nested within larger complex systems, and boundaries are 

often vague (B. Davis & Simmt, 2003). This nesting and vagueness occur not because the 

framework for complex systems is inadequate to describe the nested phenomena, but rather 

because the transient, dynamic, and stacked nature of complex systems makes exact delineation 

difficult. For example, when does one ecosystem (a complex system) end and another begin? 

Also, different types of ecosystems (e.g., arboreal, river, cave, and leaf-litter ecosystems) can 
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exist inside a larger ecosystem (tropical rain forest); and they can even overlap one another, and 

transform into another system. One can think of a class in such a way: a constantly shifting  

conglomeration of complex systems, some mathematical, some not. In the classes I observed, 

both the teacher and the students recognized different entities in the classroom (e.g., those 

detailed in Figure 7) and moved fluidly back and forth between these different systems during 

classroom action (as manifested by their dialogue in the examples below). 

 I make a distinction between complex systems and groups of individuals in classrooms. A 

complex system is composed of interacting individuals that manifest behavior that supersedes 

any individual. A group is a collection of individuals that does not produce higher-order 

behavior. A group is only the summation of individuals and therefore not a complex system. A 

complex system produces a greater whole that supersedes the sum of its components. Exactly 

when a group morphs into a system is not clear but is related to the emergent moment. One 

moment it is not a system: the next it is. This mysterious transformation has been described by 

researchers as “magic” (Corning, 2002). For example, Mr. Murano’s square activity in which he 

asked his students to work in groups of four the first day of class is a good example of the 

difference between group and system. Imagine a group of students starting that activity. It begins 

with these students grouped together by four’s, and making four squares from four bags of 

pieces. The students will begin to work independently. So although they are grouped together, 

there is no holistic behavior superseding the individuals. They are a group of students––the four 

minds are working independently of each other on four separate problems. Some individuals will 

eventually realize that completing the squares can not be done if an individual works in isolation 

from his or her other group members. Their actions can indicate to the other group members that 
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they need to work together, sharing pieces to complete the four squares. As the students begin 

grabbing pieces from other group member’s partially constructed squares or from other 
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members’ piles and begin to work together to form one square and then another, the group is 

transforming into a system. They are now operating jointly, with behavior that supersedes any 

individual. The four problems become the property of the system. No single person is 

responsible for solving the four problems––they have become a system effort. Mental action of 

agents becomes combined. 

I identified shifts from one class arrangement to another based on changes in dialogue. I 

discuss eight of those arrangements or shifts between arrangements, some illuminated with 

excerpts from transcripts. They are obviously just a sample of possible arrangements to illustrate 

the main idea of shifting class arrangements of systems and groups. 

Whole-class system. The first arrangement is the whole-class system. This arrangement is 

identifiable by the plural language used by system participants: we, us, and our. An example is 

Ms. Sandy’s Perimeter Problem. She had called on a quiet student (Mckenna) to explain how she 

had suggested the correct base that the class had been working on for some time: 

Ms. Sandy: Now how did you find it so quick?   
 
Mckenna:  Um,… I just did it by “guessing and checking.” I just put in a lot of 

numbers and just sort of…. 
 
Ms. Sandy:  And the random number worked? 
 
Mckenna: Yeah. 
 
Ms. Sandy:  That’s cool! That’s what “guessing and checking” is, though. We are just 

guessing a number, going through the process of the problem, to see if it 
works. But what if there was a simpler way to do this? 

 
Student:  I wish there was.   
 
Kody: There probably is. 
 
Ms. Sandy:  There is! 
 
Morgan:  Really, I want to know. 
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Ms. Sandy: And that is what we are going to learn how to do. 
 
Students:  Yeah! Oh, boy. Yes! 

 

Ms. Sandy’s language suggests that she considered herself at this time to be an active participant 

in the whole-class system. The transcript continues, and not only does Ms. Sandy use plurals to 

demonstrate she is part of the system, but so does Braxton: 

Ms. Sandy:  So another color, like black or something. Don’t erase anything…. How 
can we write––. How can we write a general rule, a general rule that works 
every time to find the perimeter of a rectangle? 

 
Braxton:  First we have to, um,… we have to divide … [mumbles]. 
 
Ms. Sandy:  Multiply what? 
 
Braxton:  Like, um… [mumbles]. 
 
Ms. Sandy: You multiply height to get base? 
 
Braxton:  Yes. 
 
Ms. Sandy: What if we know the base and height? 
 
Braxton:  Then I guess we…. 
 

 
An example of dialogue indicating shifting class arrangements arose in Ms. Auburn’s 

episode right after the three disparate solutions were shown by three students. Ms. Auburn’s 

dialogue indicated that she was part of the whole-class system: “We have three totally different 

answers on the board. So how are we going to figure out what is correct?” Julio then took a 

typical student action: He tried to separate her from the rest of the system and put her back into 

the role of teacher-as-mathematical-authority. Because it was the fourth day of school, and Julio 

had had little experience with Ms. Auburn’s ways of operating, his remark was understandable. 

He might have been thinking, “Our teacher will now show us which of these three different 
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students solutions is correct!” But Ms. Auburn responded that she was not the authority; the class 

was: 

Ms. Auburn:  Okay, so now we have three totally different answers on the board. 
So how are we going to figure out what is correct or what is not 
correct? 

 
Julio:  You are going to tell us the answer. 
 
Ms. Auburn: I don’t have the answer. We are going to see and try to figure out a 

way to tell what is correct. Because if you are really a 
mathematician, do you have someone to go to for an answer book? 

 
Students: No! 
 
Ms. Auburn:  So we have to figure out a way to know which answer is correct, 

right? 
 

This example shows a whole-class system that temporarily halted as Julio tried to force the 

teacher out of the system (to form a teacher-separate system or teacher-separate group with the 

teacher acting as mathematical authority). But Ms. Auburn refused, and the class continued 

functioning as a whole-class system. 

Teacher-separate system. In a teacher-separate system, the teacher is not a functioning 

part of the class system; the system consists of the students only. The students are the ones who 

are cognitively joined, but the teacher is not. One of the supplementary episodes I analyzed was a 

5-minute segment in which Ms. Sandy introduced solving one-variable equations with the 

variable on both sides of the equation, such as 2x + 1 = x + 6. Although short, this episode was a 

remarkable example of a teacher-separate system because Ms. Sandy initiated the activity in 

complete silence and spoke hardly a word throughout it, with only an occasional question or 

comment to the struggling students here or there. Her mind was not joined with the students. 

Despite her silence, however, the students began vocalizing their thoughts as they jointly tried to 

make sense of what was going on. At first, they did not know whether it was even a mathematics 
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problem, but by listening to other students’ dialogue, the class began to form a “collective brain” 

as they focused on solving the problem. They jointly wrestled with Ms. Sandy’s actions, and 

began––as a student system, without her help––to make sense of the equations she was 

modeling. Students who appear confused in the beginning are heard to adopt other’s sense-

making, and the collective discussion demonstrated a universal movement toward consensus 

about what Ms. Sandy was doing with the manipulatives. 

Student-separate system. At times, the students’ dialogue showed that they recognized 

they were part of separate classroom groups. For example, in Ms. Auburn’s episode when Trevor 

was at the board speaking to the rest of the class, he referred to himself as I, not we. This usage 

indicates that Trevor saw himself as an entity separate from the class, so it was a student-separate 

system. Later, while the class was preparing to do a simulation and considering strategies to keep 

track of the high-fives the simulators gave, Trevor mentioned that maybe the class as a whole, of 

which he was now a part, should come up with a recognizable definition of high-five: “Maybe 

we need to define what we mean by––. Maybe we need to define what we mean high-five by?” 

The class was now operating as a whole-class system, and Trevor’s language matched this 

classroom system arrangement. Such dialogue indicates that the students were becoming aware 

of where they were situated in the different groups that made up the class. 

Teacher-student separate system. In this class arrangement, the teacher and a student are 

both removed from the class system’s cognitive effort. An example would be when a student is 

presenting a solution to the class to consider, and the teacher asks the student to explain a little 

more to the class about what he or she is doing. 

Student-pair systems. In this arrangement the larger class system is fragmented into many 

pairs, each pair potentially forming a small system. An example from the main episodes was 
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when Mr. Murano’s students stopped the whole-class discussion and began working in pairs to 

solve worksheet problems in preparation for later whole-class discussion. Two levels of complex 

systems existed in the classroom: the whole-class system (which became temporarily inactive) 

and the two dozen or so two-person systems that were working independently. The pairs formed 

complex minisystems because the students worked jointly to solve a novel problem. The action 

of each two-person system was a unified effort. As Mr. Murano walked around and observed 

what the students were doing (and gave suggestions to pairs that were stuck), he was part of the 

whole-class system but outside all of the two-person systems. I would not consider an outsider 

observing or asking questions about two students’ joint work to be a formation of a three-person 

system, because no holistic behavior arises from such an encounter. As B. Davis and Simmt 

(2003) admit, however, the boundaries between systems are foggy. If the students began an 

intellectual dialogue with the teacher, the teacher might temporarily join a three-person 

minisystem. 

When pairs of students work on meaningful mathematics, many of them will work 

together jointly, producing behavior that evidences complexity. Should a pair of students work 

side-by-side yet remain intellectually autonomous, they would function only as a student-pair 

group or collection. There would be no interaction of ideas, and so no mixture of ideas. 

Conceivably, a class arrangement of student-pair systems may also have some student-pair 

groups if some pairs are not operating cognitively together. 

When Mr. Murano brought the class back to a whole-class discussion, most of the two-

person minisystems dissolved (or became inactive), melting back to form the larger class system 

of which Mr. Murano was also a part. A few groups continued to work, whispering back and 

forth during the whole-class discussion, but those continuing minisystems were still part of the 
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larger classroom system. I would classify the shifted systems that occurred above as an example 

of a whole-class system transforming into student-pair systems, and then back again to a whole-

class system. 

Multi-student systems. This class arrangement was just like student-pair systems, except 

that more students, usually four, were participating in each minisystem. I also observed 

differentiation between participants, both vocally and intellectually, and I believe the students 

sensed that as well. 

Teacher-separate group. I noticed that the three teachers would often move out of the 

whole-class system when dealing with management issues or instructing the students to do 

certain assignments. Their language shifted from us and we to I or me. The shift was 

understandable because the teacher, although giving authority to students for operating 

mathematically, was the adult and ultimately responsible for management. Although these 

teachers were not the mathematical authority in the classroom, they maintained other teacher 

roles. Although the curriculum was jointly developed by the students and the teacher, the teacher 

decided what the class would do next, even if that decision was influenced by student action. 

None of the teachers asked students questions like the following: “Should we have a homework 

assignment tonight? If so, what problems would you like to work on? Should we have a test at 

the end of this chapter?” When it came to issues of mathematical judgment, however, the 

teachers did delegate great responsibilities to students, as indicated by their dialogue (e.g., “What 

do we think about this?”).  

Teacher-students separate groups. I observed this class arrangement only once. It 

occurred in Ms. Sandy’s class, when she wrote (-3)2 = 9 on one side of the board and –3 2 = 9 on 

the other. She told students to physically move on the side of the room that they thought was the 
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correct equation. Soon students had formed two separate groups, one supporting the first 

equation as correct, and the other the second. I say group because no mental action had combined 

in either group of students. She then asked each group to select a spokesperson who would argue 

their position. She called this “playing court.” She then had the selected two students come to the 

board and present their arguments or proofs for why they thought their equation was correct and 

the other was incorrect. The two groups of students were to listen to the arguments and decide 

which side they now supported. As the two spokespersons presented evidence for which equation 

they considered to be accurate, students were constantly moving back and forth between groups. 

Sometimes the first equation was supported by a clear majority, with the second equation rapidly 

losing student support. But the support seesawed back in favor of the second, then back to the 

first again. Erika, the second equation’s spokesperson, eventually presented a convincing 

argument that because the negative sign was written up high, it was connected to the number 3, 

so regardless of parentheses placement, negative 3 times negative 3 was positive 9. Students 

seesawed back to her side. Cassidy, the first equation’s spokesperson, even began to doubt her 

own arguments at this point. The class ended without a clear victor. I present this example as a 

unique arrangement in which the teacher sat isolated from the class monitoring the debate, while 

the students argued their position and two groups of students listened intently.  

Complexity theory helps explain these different systems and groups. It predicts that when 

agents are allowed to interact in certain ways, a system can form. Complexity theory also 

illuminates the phenomena of nested levels of systems. If the interaction of the agents is 

restricted, complexity theory foretells why the collection will maintain a group status without 

ever bumping up a level to demonstrating higher-order––or systemic––behavior (Anderson, 

1972). 
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In addition, both Ms. Auburn and Ms. Sandy agreed in their interviews that their classes 

had personalities, something B. Davis and Simmt (2003) had observed and which complexity 

theory explains (no interview data available for Mr. Murano). A class would form a perceptible 

personality when it became a system because the system demonstrated holistic behavior through 

the interacting components that could be perceived holistically. Here is a portion of a transcript 

from Ms. Auburn’s interview: 

Ricks:   Do you consider that your classes have personalities? 
 
Ms. Auburn:  [Nodding]. Very, very, very much so. Every class every year has a 

personality. And it is really interesting. Like my seventh graders’ 
algebra class has a very different personality than my seventh 
grade pre-algebra classes. I think they are, they are much more 
willing to challenge each other on mathematical ideas, and––but 
they are also very fun-loving. They like to have a good time, and to 
be excited, and to have fun with math. So just from day-to-day, 
my, like, my B-1 class might be––part of that might be “time of the 
day,” as A-1 is more willing to get involved and more willing to 
talk to each other. I am sure it is part of the day, but they are more 
willing to sit back and just––. So it is more of a challenge to get 
them, they are not as interactive with each other. And so, yeah, 
classes from time to time have different personalities, and it is just 
the makeup of the kids, how they interact with each other. Are they 
willing to work with each other? To come to the board? …. So, 
yeah, every class, every year has a different personality. (Interview 
1) 

 

One limitation of current complexity theory is the lack of any concrete description of how 

nested systems may transit between levels or even morph into a different system. For example, in 

Mr. Murano’s classroom, the participants were aware of which systemic entities they were a part, 

and their dialogue revealed the movement between these systems. For instance, when Mr. 

Murano was walking between two-person minisystems and offering them advice, he would 

sometimes stop and talk to the entire class. He would say such things as “I want you to 

remember to….” Later, in whole-class discussion, his dialogue would change, indicating that he 
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recognized he was now part of a different class arrangement. He would say something like, 

“Now what do we think of that strategy?” The shift from I to we indicated that he considered 

himself in the same operational system as the students. In whole-group discussion, he would 

refer mainly to the class as a whole––us––and later in the same discussion refer back to when the 

students were working in pairs and mention himself instead of the class––I. The following 

example is taken from a whole-class discussion shortly after the students had worked quietly as 

partners to illustrate this shifting dialogue: 

Mr. Murano:  Excellent. Did everybody hear that? The whole goal of this 
[making a good graphing window] is that we can better see what 
is happening. And so if we see those [x- and y-axes], it makes it 
easier to read; it makes it easier to see what’s happening. 
Excellent. All right. Let us go on to Number 4. How much money 
will Susan have after seven weeks? I saw several different people 
trying it and doing it different ways, so I wanted, I wanted some 
of them to come up. Anabelle, will you come up and show us 
what how you got it, please?  

 
A little later, after Anabelle had shown her method: 

Mr. Murano: Questions for her [Anabelle]? Are we okay? I saw several people 
do it that way. Excellent. Andy did it differently. Andy, would 
you go up and show us how you did it?  

 
I observed agents fluidly move into and out of systems, as well as the systems fluidly 

moving within a nested system framework; I recommend complexity theory be 

augmented to more clearly describe these phenomena. 

 In addition to developing a robust theory of systemic transformations, I believe that 

complexity theory also needs to include the possibility that students, because of their intellectual 

prowess (as compared to ants or bacteria), often stratify within a developing system. They 

develop recognizable roles. When students interact, there are certain social behaviors that may 

cause one to dominate over the other, and vice versa. For example, a vocal student may appear 

dominant in partner work, and the quieter student may let his or her partner fulfill that role. But 
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at the same time, the quieter student may be more mathematically competent and so may 

dominate the mathematical direction the partnership takes. This idea of differentiation among 

participation of agents in a complex system is especially apparent with a teacher. The teacher is 

not on equal grounds with the students most of the time, and the class members recognize this. 

Although complexity theory recognizes decentralization, or a movement to share power, as vital 

for complex formation, however, there does not yet exist a coherent theory of stratifying agents 

and their different roles. Emergent macrobehavior can still arise with interacting individuals even 

if there is not equality among them. In an ant colony there are workers and guards, caretakers 

and a queen. Complexity theory currently lacks a robust theoretical frame to describe how 

systems diversify while they form, and maintain or destroy such inequality while they operate. 

 For example, one pair of students in Ms. Auburn’s class, Quinn and Danielle, were a 

prime example of diversified agents. The first week I observed this pair, Quinn was the dominant 

partner. I considered him at the time to be the leader of the pair. Not only was he more 

aggressive vocally, but Danielle had recently moved into the area and so was adjusting to the 

move. The first week she was rather disoriented because she had come from a different 

mathematics background than the rest of the students in Ms. Auburn’s class, having not attended 

the same elementary school. Danielle was timid and shy. One day she burst into quiet tears over 

a small mathematical misunderstanding, which Ms. Auburn soothingly resolved in a way that did 

not bring attention to the situation. Danielle was struggling with her own perception of her 

mathematically abilities, especially when paired with Quinn, who appeared to be superior 

mathematically because of his frequent participation. And Quinn was indeed bright.  

As the days passed, however, Quinn’s mathematical aggressiveness, demonstrated by his 

rapid assumptions while solving problems (which often yielded errors), was tamed by Danielle’s 
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plodding attempt to understand. Quinn was often ahead in partner work, working jointly with 

Danielle only when she asked questions––in more a partner group than a partner system. But as 

time passed, Danielle would often catch Quinn’s errors and ask him about them. Soon, I noticed 

that Quinn was asking questions of Danielle, and Danielle often showed mathematical 

dominance as they worked together to solve problems. She would often explain to Quinn a 

difficult part or point out errors on his paper. I believe that Quinn was recognizing that Danielle 

was a peer mathematically, and they began to function more smoothly together as a student-pair 

system. Somehow complexity theory needs expand as to accommodate such fluid roles to be a 

more helpful framework for mathematics education. 

General Contributions 

Mathematics is to a great degree an intellectual domain enacted by a Social (Ernest, 

1990). By Social, I refer not to a “group-of-individuals” (Lave, 1996) but to the group-as-

individual, the collective from the perspective of complexity theory. Whether at the classroom, 

department, national, or international level, mathematicians of all ages interact with one another. 

Complexity could be used to re-envision mathematics as an emergent phenomenon of the 

system’s actions and products. This activity may result in collective-approved definitions, terms, 

strategies, methods, algorithms, and so forth. These are embodied because they arise through the 

action of the system—as mathematical actions and objects. They are subsequently used by the 

system for further action, which in turn may produce more sophisticated mathematical objects.  

Although in the classes I studied, the students learned conventional terminology, 

symbols, and algorithms, such mathematical objects were just a small portion of the mathematics 

that emerged. Much more lay underneath. The submerged mathematics––both actions and 

objects––was not readily apparent unless one watched the co-construction of mathematical ideas 
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in those classes. That formative mathematics was as much mathematics as was the finished, 

refined, abstracted––formal––mathematics encapsulated in theorems, equations, terminology, 

algorithms, symbols, and definitions.  

The rudimentary symbolization, obscure representations, halting beginnings, side scratch 

work hastily erased, dead-end tries, and scribbled notes––all were mathematics. From 

kindergarten to high school, academic lunchrooms to conference halls, mathematicians of all 

ages scribble and attempt and backtrack and reattempt and refine and share. They share questions 

and solution attempts; they communally debate; they question, raise counterexamples, reason, 

argue, and collectively justify (Polya, 1945/2004). On top of, and growing out of, the social 

forming comes the collective formalization that many consider mathematics. But I consider 

forming just as much mathematics as the end result.  

Although different classes may engage in related activity and develop similar if not 

identical mathematical ideas, the mathematical activity that led to those ideas is unique to that 

class and its actions. In other words, each complex class develops, independently of other 

systems, its own mathematical domain. The mathematics is emergent. The mathematics taken as 

a whole includes the actions and the mental products of those actions and is unique to the 

systems that engaged in those actions and developed those products. If one had not been privy to 

its formation, one would be unlikely to understand the entire mathematics that the system 

developed. 

 Examples of this uniqueness include student ideas that are referred to by name, such as 

Osvaldo’s Observation, Trevor’s Way, or Danielle’s Question. Specific methods and questions to 

a large extent shape the resulting complex mathematical formation, and observations and 

questions are context specific. The existence of classroom-based mathematical humor, which 
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only that class would understand because of the mathematical activity the class had engaged in, 

is more evidence that the emergent mathematics is unique to the system and has developed a 

distinctive microculture. The total mathematics exists as an independent domain reserved for the 

participants in that classroom. Although general principles may be shared with others, there is no 

way to recreate the actions in which all participated, so the developed mathematics is owned by 

those participants only. As the Greek philosopher Heraclitus claimed, one can never step into the 

same river twice. 

The present study has identified the existence of mathematizing complex systems, as well 

as delineating specific factors within B. Davis’s criteria that seem to support and possibly 

promote complexity. In particular, the critical and central role the teacher plays in this process 

has been highlighted. This study was the first study to take the five criteria and explore them in 

multiple classrooms. This study was the first to search for evidence of complexity in middle 

school mathematics classrooms, environments known to be generally isolating (Lewis & 

Tsuchida, 1998; Shulman, 1987; Stepanek, 2000; Valli, 1997). One might say that I have taken a 

“collective conceptual orientation” (Bowers & Nickerson, 2001, quoted in B. Davis & Simmt, 

2003, p. 143) to these criteria for complex formation. In particular, I investigated how the 

teachers’ actions contributed to each criterion, as well as affecting others at the same time. All 

three teachers regularly employed methods that met the criteria, and I observed mathematizing 

complex systems in each of their classes.  

Although perhaps unaware of the term collective conceptual orientation, each teacher 

nonetheless believed strongly in the importance of establishing and maintaining working 

mathematical communities in their classrooms. They were acting in ways commensurate with B. 

Davis and Simmt’s (2003) recommendation that “a teacher’s main attentions should perhaps be 
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focused on the establishment of a classroom collective—that is, on insuring that conditions are 

met for the possibility of a mathematical community” (p. 164). Each teacher had his or her own 

style and utilized unique methods, of course, but their actions related to each of the criteria 

contributed synergistically to the formation of complex systems in each class. The lessons I 

observed were animated and intriguing––in two of the episodes, the students actually cheered 

after solving a problem. Genuine mathematical celebration in a middle school mathematics 

classroom? How unusual (NCTM, 2000). 

Much of what I have found as important to create and sustain complex systems is not new 

for mathematics educators. Many of the ideas have been practiced since the 19th-century 

(Parshall, 2003), and elaborated or added to by later research. For example, posing a challenging 

question and maintaining its cognitive difficulty is recognized as important for student learning 

(Stein et. al., 2000). Likewise for creating a respectful space for discussion, modeling transparent 

mathematical thinking, developing a “community of inquiry” (NCTM, 2000, p. 345), and many 

other principles. And the field already recognizes the importance of the teacher for teaching 

(Stigler & Hiebert, 1999). So a logical question is: How does this study of complexity contribute 

to mathematics education? If most of these principles are already recognized by the mathematics 

education community as important for substantial student learning, how does complexity theory 

provide for an increased understanding of mathematics teaching and learning? I see two principal 

ways, related, and both involving vision. 

First, complexity theory helps us see the why. It broadens our understanding of the factors 

influencing mathematics learning. For example, internal diversity is recognized as important for 

learning mathematics. But why is student diversity beneficial? Is it only so students can consider 

others’ sense making and learn mathematics? Rather than connecting the diversity to 
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mathematical learning, I see complexity theory illuminating a different possibility: Diversity 

contributes to mathematics learning in a roundabout way by first enhancing the richness of 

mathematical actions in a classroom. To understand why diversity affects mathematics learning 

requires broadening the tunnel vision of reductionism, recognizing that diversity positively 

affects much more than learning, and recognizing that those other things also affect learning. 

There is an interconnected web whose global strength supports mathematics learning. Diversity 

contributes to strengthening the student interactions and interacting leads to possible 

redundancies in a class as students share and borrow common ideas.  

Also with a complexivist understanding, student interaction helps develop common 

mathematical orientations. These orientations emerge through systemic behavior as the class 

develops a joint supermind to tackle the challenging mathematical problems it faces. Common 

mathematical orientations could not develop without this neighborhood interaction. Students 

would not be able to consider and critique each other’s thinking and come to consensus as a class 

on common procedures, language, and representations.  

Also, common mathematical orientations contribute to decentralizing classroom 

mathematical control. Students play active roles in developing mathematical procedures and 

terminology. Some of these are unfamiliar and even pleasantly surprising to teachers. Students 

are learning as they jointly develop a class orientation which constitutes genuine mathematical 

activity: the nitty-gritty of doing mathematics. Rather than the teacher acting as the mathematical 

authority and dictating definitions and procedures, the emergence of common mathematical 

orientations strengthens the sharing of mathematical truth.  

And so these attributes contribute synergistically to mathematics learning. Students’ 

mathematical diversity, when combined with appropriate redundant class understanding (taken-
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as-shared), under liberating constraints provided by a teacher who shares the burden of 

mathematical proof with dialogically functioning (Wertsch & Toma, 1995) students, develops a 

mathematical community. This unified approach parallels how “teachers need to … be able to 

represent mathematics as a coherent and connected enterprise” (NCTM, 2000, p. 17). If 

mathematics is together, then so could be its teaching and learning.  

The present study contributes to this broadening vision by telling a story––a cohesive 

commentary––about how three teachers in their own ways met B. Davis’s criteria to provide 

apparently meaningful mathematical environments for student learning. And the presence of 

each of these criteria contributed to the emergence of something that was not there before––a 

mathematizing class entity. I have documented the presence of such a system in each teacher’s 

classroom. Why is that significant? Davis’s criteria have been described by mathematics 

education researchers, however, these have been described, for the most part, in isolation from 

each other. This is, comparably, rather like taking a reductionist approach attempting to 

understand the wholes in mathematics education.  

This observation points to a simple yet tantalizing idea, the second way complexity 

affects our vision: It helps us see beyond (the parts). Much mathematics education research has 

focused on one topic or another. Many have investigated the diversity inherent in mathematics 

classrooms. Others have investigated common social mathematical norms and the importance of 

working together in communities. Power relationships and teacher authority have been studied, 

as well as enabling constraints (B. Davis & Simmt, 2003). Perhaps the field has been in a 

reductionist rut––each discovering intriguing tiles, but none the mosiac. In attempting to 

understand how students learn mathematics, and how mathematics might effectively be taught, 

perhaps we have focused as a field too finely on the contributing components in isolation, too 
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intently on specific features and qualities, and have lost sight of the larger wholes that might be 

possible.  

The history of mathematics is replete with examples of such dawning awareness of larger 

things. The ideals of shape and number, of geometry and analysis, long separated, were brought 

together by Descartes. Further work by Riemann would pave the way for Einstein’s connection 

of mechanics with electromagnetism. Calculus is a mighty whole formed from the initial separate 

parts of differentiation and integration. Galois transformed our view of the structure of algebra 

by describing the larger system. Euler linked analysis and prime distribution. And on and on. 

These were moments of vision, of stepping back and seeing beyond the parts. Of forms nested in 

forms, of system linked to system, all seen together from a grander view. And thus by seeing, 

they saw more. As Johann von Goethe (1988) wrote: “Every new object, clearly seen, opens up a 

new organ of perception in us” (p. 39).  

Perhaps we mathematics educators have been missing the forest for the separated trees, 

the whole for the curious parts, the thing for this or that, effective instruction for this teacher 

attribute or that class feature. Perhaps we have missed mathematics learning for mathematical 

reasoning or computational efficiency or student diversity. Perhaps we are slicing up some 

organized whole, some something that must be fully seen to be fully known. Layers of carbon, 

too closely seen, are mistaken for graphite, not diamond-sheen. In our zeal for knowledge, our 

commitment to improvement, our desire to serve, maybe we have neglected some larger entity 

vital to substantial mathematics learning.  

I do not mean to disparage the previous work. It has been productive. It has led to 

increases in the nation’s mathematical abilities. But maybe mathematics learning (and teaching) 

involves this and that, together. And maybe there is much more, which lies beyond the 
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periphery, beyond the parts, if only we could see it. Interconnected, interrelated, adaptive, self-

organizing features, that combined, make a larger something––invisible to even the best 

mathematics education researchers who lack a global perspective. Complexity helps us begin to 

have such an outlook. 

Complexity theory illuminates the idea that each of the components for effective 

instruction is important, not in and of itself, but because of the effect it has on other factors in the 

complex process of learning. It is the togetherness that is important. Mathematical learning is a 

whole that emerges out of the interacting parts. “Whereas I was blind, now I see” (John 9:25). 

And thus we see by seeing more. At first they were just parts, now they are whole to me. The 

whole is more, if seen beyond the parts. 
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CHAPTER 7 
 

SUMMARY, IMPLICATIONS, AND CONCLUSIONS 

 

When the learner is ready, the teacher appears. 
––Chinese proverb 

 

Summary 

Complexity theory provides a space in which to examine how classroom collectives 

create mathematics––mathematics not as the sum of individual contributions but as the 

embodiment of actions by the collective taken as a single acting organism. Such a perspective is 

recent in mathematics education. This study had three primary research questions. First, I wanted 

to find evidence for the existence of mathematizing complex systems in mathematics classes. 

Second, if such systems existed, I wanted to better understand the factors that contributed to the 

development of such systems. Finally, I investigated how complexity theory could aid 

mathematics education. 

My study complimented previous mathematics education complexity studies by looking 

more closely at how such systems develop mathematics in a class environment. Leiken (2004) 

and B. Davis and Sumara (2001) investigated only teacher collectives. Thom (2004) studied 

actual students, but only one group of 3 fifth-graders isolated from their class. B. Davis and 

Simmt (2003) described an example of actual classroom action, which study would be most 

analogous to my study. Like them, I also investigated classroom action. But my study also 

investigated multiple-teacher whole-class environments––the place students normally learn 

mathematics. In addition, my study selected teachers proficient at creating complex class 
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environments to obtain a sample of “rich” data in detail (Merriam, 1998). My study added to the 

previous complex studies in mathematics education research by including and integrating five 

dimensions of (1) mathematics students (2) in their mathematical classes (3) taught by their 

mathematics teacher (4) over extended periods of time (5) from specially selected classes. 

 I did extensive groundwork to find vivid examples of class complexity.  

I began by talking to several university mathematics educators who recognized the importance of 

student-to-student discussions and who had extensive experience observing classes. They 

nominated teachers whose classes might exhibit healthy student dialogue and whose lessons 

might contain substantial student contributions. After observing 18 of those teachers in two 

states, I selected 3 middle school teachers––2 western and 1 southern––and their mathematics 

classes for my research. I filmed eight of their classes with multiple cameras for 3 to 6 weeks in 

the fall of 2006. In the words of Stigler and Hebert (1999), my investigation provides “a 

penetrating … look into classrooms” (p. 9) of a complex nature. Drawing from over 340 hours of 

videotaped observations in these classes, I selected three exemplary episodes, one from each 

teacher, to provide the core data for the study. As sources of supporting data, I used several 

additional video episodes, teacher interviews, fieldnotes taken in and after class, and memos.  

I discovered substantial evidence of mathematizing complex systems in these three 

teachers’ classes. The three episodes exhibited joint lesson construction, where the lesson was a 

communal development that emerged through the class’s action. I documented the shifting 

arrangements in which the individuals in these classes participated, especially the teachers, who 

through their language indicated that they were functioning parts of the larger system of which 

the students were also an active part. The three classes also exhibited mathematical self-
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regulation as members of the class would spontaneously acknowledge or critique others’ actions 

or ideas. 

I observed several actions each teacher used to develop and sustain the complex systems 

in his or her classes. All three teachers recognized and capitalized on students’ mathematical 

diversity. All three recognized the importance of class norms, with two teachers explicitly 

posting a list of student-produced norms in their classrooms. And all three posed challenging 

questions that allowed for whole-class discussion. During mathematical discussions, the teachers 

orchestrated the expansion or contraction of freedom to interact, which provided a space for 

student creativity without inducing system-halting chaotic behavior. In addition, the teachers 

distanced themselves from the mathematical-authority role, and the class as a whole developed 

the mathematics. 

The teachers integrated individual, partner, group, and whole-class work, engendering an 

environment where individual student ideas could be respectfully debated and critically 

considered. Although the methods employed by the teachers varied, their teaching had the five 

criteria identified by Brent Davis and his colleagues (B. Davis & Simmt, 2003; B. Davis & 

Sumara, 2001) as needed for complex system formation: internal diversity, redundancy, 

decentralized control, neighborhood interactions, and organized chaos. I found evidence for the 

critical role the teacher plays in developing a mathematizing complex system, specifically in 

creating an environment conducive to the criteria listed above. By modeling appropriate behavior 

and removing themselves as the mathematical authority, these teachers empowered the students 

to begin regulating their own mathematical actions. The system of the class as a whole adapted 

to increasingly challenging problems, demonstrating that the system was an adaptable learning 

entity. Out of this joint classroom action arose a communally built lesson that embodied the 
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social mathematizing––the social mathematizing with its products was the mathematics––a 

collectively sculpted version of ideas, language, representations, and strategies. 

In addition, I conclude that Davis’s criteria form a robust set needed to occasion complex 

system formation. I have detailed several common teacher actions that illustrate how the Davis 

criteria were enacted by the teachers, including but not limited to posing challenging problems, 

creating respectful spaces, relinquishing mathematical authority, varying the size of the 

neighborhood, equalizing participation, and mathematical management. 

Implications 

Implications for Practice 

The holistic perspective of complexity theory holds implications for the teaching and 

learning of mathematics. Complexity theory allows teachers to consider instruction in a new 

light. Teachers who attempt to transmit to their students another Social’s mathematics––

embodied action from some other system––may reduce the dynamic social and intellectual 

domain of mathematics to a collection of external mathematical objects (definitions, terms, 

algorithms, etc.) needing to be remembered and memorized (R. B. Davis, 1994). Embodied 

action from an unknown system may become nothing more than an alien thing the students 

(many desperately) try to make sense of.   

 This observation suggests part of the teacher’s role in classrooms as developing and 

sustaining a mathematizing class system (B. Davis & Simmt, 2003). Once created, that system 

then creates its own mathematics. Students in such a class could learn mathematics as they 

experience it firsthand by participating in a mathematizing complex system. They would 

experience the process by which mathematics is born, the action of the mathematizing complex 

system, and the collective embodiment of their collective action. Mathematics would not be an 
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external something to be absorbed, a curiosity from the past that would help them learn about 

stranger things to come (in the next mathematics course, for example). Instead, it would be 

intrinsically connected to themselves because they produced it. Their experience would produce 

the action that would subsequently be embodied by the collective as a mental object. Similarly, 

only participants in that systemic creation could have a deep understanding of the creation. The 

one who knows creation best is the creator––it could be no other way. 

Classrooms are good locations for learning mathematics because students are already 

brought together physically. Simply bringing students together, however, does not imply that 

they will be functioning together mentally. The power of classrooms for mathematics education, 

I believe, lies in the opportunity classes provide for bringing minds together through joint 

mathematizing––from a group of individuals to a system. Such mathematizing capitalizes on the 

intellectual and social possibilities already inherent in classrooms, possibilities that are necessary 

for the development of healthy mathematical microworlds within which students can operate to 

occasion substantial mathematics learning (B. Davis & Simmt, 2003). 

The Social was the focus in the classes I studied. The Social is the whole class (or subsets 

of the whole class) taken from a complex perspective. The Social is an entity that regulates, 

emerges, and adapts to its environment. The Social does mathematics, creates mathematics, and 

is shaped by mathematics. And the Social is greatly affected––yes, even initially formed––

through teacher action. 

 This study demonstrates that the teacher plays a critical role in determining the 

environment of the classroom. The teacher creates the space and the circumstances. The three 

teachers I studied activated the social potential of their classes in the direction of mathematical 

activity. They treated mathematics as a social endeavor rather than an external object to be 
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learned. They created mathematical communities in their classrooms, with students becoming 

neophyte mathematicians. How to achieve such an environment is critical for augmenting 

student learning, for “by attending to [such complex] matters, a teacher can greatly increase the 

likelihood of complex transcended possibilities within the classroom” (B. Davis & Simmt, 2003, 

p. 145). Teachers and teacher educators can learn to appreciate the complex perspective for 

“when discrete agencies interact, in synergism, the total effect is greater than the sum of 

individual effects” (Sztajn, 2001, p. 3). And such an effect holds promise for individuals.  

Similarly, the practice of creating a complex system could be scaled up to the 

professional development level. The isolation of American teachers is well-documented (Hart, 

Schultz, Najee-ullah, & Nash, 1992; Stepanek, 2000). Such isolation, often reinforced by 

entrenched school cultures and norms, is damaging to the profession of teaching (Ball, 

Lubienski, & Mewborn, 2001) and prevents teachers from developing reflective practices 

(Schön, 1983). Stigler and Hiebert (1999) have commented that: 

For whatever reason, teaching in the United States is considered a private, not a 
public, activity. The consequences of this isolation are severe…. U.S. teachers 
work alone, for the most part, and when they retire, all that they have learned is 
lost to the profession. Each new generation of teachers must start from scratch, 
finding its own way. (pp. 123, 136) 

 
Recent research demonstrates the importance of breaking the isolation barrier and beginning to 

work together to improve one's teaching practice (Grossman et al. 2000). In addition, 

implementing rigorous reform proposals will prove to be impossible if teachers remain secluded 

in their work. Complexity theory suggests why teachers would benefit by working jointly, just as 

students benefit by working jointly in mathematics classrooms. 
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Implications for Research 

 The study was designed to investigate the existence and maintenance of mathematizing 

complex systems in public-school classrooms. My assumption was correct that a search for 

classes with healthy student dialogue in which student ideas formed substantial parts of the 

lesson would identify teachers who operated in ways conducive to forming a complex system. 

With all three teachers, I observed the formation of complex systems. I do not believe the 

composition of the class had much to do with the presence of complex systems. I observed 

students in an upper-middle-class affluent suburban middle school, a lower-middle-class 

suburban middle school, and small city middle school. Complex systems manifested themselves 

in each of these environments. However, investigating mathematics teaching and learning further 

from a complex perspective seems important, especially in other contexts and at different grade 

levels (as I only investigated middle school classes). 

I believe researchers can flesh out complexity theory more substantially in educational 

settings: students with developing cognitive capacities, especially in the presence of a teacher, 

may show complex behavior far different than an ant or bacterial colony. In particular, 

mathematics education could benefit by a more detailed framework of complexity theory. 

Complexity needs a more defined theory about how intellectual agents that recognize a hierarchy 

of power––whether intellectual, political, economic, or social––organize themselves and regulate 

their behavior. Various leaders emerge in intellectual groups. Dewey (1933/1960) noted that 

phenomenon when he wrote, “In reality the teacher is the intellectual leader of a social group … 

not in virtue of official position, but because of wider and deeper knowledge and matured 

experience” (p. 273).  
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The teacher is the one who creates and maintains the environment where students can 

dialogically function and where the students’ ideas are validated as substantial parts of the 

lesson. To investigate further the teacher’s role in a mathematizing community, especially as a 

social leader with different powers than those of the other community members, is an intriguing 

research possibility. I hypothesize that a teacher using specific complex strategies might take any 

group of students and create the necessary conditions to occasion a complex system. This 

hypothesis would be an intriguing possibility for future research. 

The study has several limitations with respect to understanding mathematizing complex 

systems, each of which opens up more research options. First, the study was not designed to 

investigate student learning in such systems. I have anecdotal evidence of student learning from 

records of classroom dialogue; videotapes of individual, partner, and group work; and artifacts. 

But I did not attempt to measure students’ mathematical understanding. It is conceivable, though 

unlikely, that some students were not learning mathematics with meaning. There may have been 

students, particularly the quieter ones, who were not learning as much as their more active peers. 

I studied the whole system, so I cannot make claims about individuals. Future research could 

investigate individual learning during collective action. I anticipate examining student artifacts 

more closely in later studies to describe the learning of those students for which I have some 

data. I suspect that a learner operating actively in such a system would achieve better 

mathematical understanding than one trying to learn mathematics in a group of individuals not 

functioning complexly. This suspicion remains to be examined and possibly validated. 

A second limitation to my study was that I studied teachers who were competent in 

creating mathematizing complex systems. I did not investigate teachers attempting for the first 

time to create a complex system in their classrooms. Although I believe teachers can learn to 
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create such complex systems, the study did not address that issue, which would be another area 

for fruitful research. For example, researchers might wish to help preservice teachers emphasize 

the five criteria in their student-teaching experience as a way to dampen negative aspects of the 

“apprenticeship of observation” (Lortie, 1975), and then observe the outcomes. Additionally, the 

report could be shared with inservice teachers in professional development activities. 

A final limitation to my study and another area of additional research could be 

investigating mathematics lessons where the teacher is learning mathematics along with the 

students, where the class as a whole takes a step into the dark into uncharted, unknown 

mathematical terrains. The teacher would have no previous experience and so becomes a fellow 

explorer instead of guide with the students. 

 
Conclusions 

The many perspectives on mathematics education provide intriguing windows on the 

mathematics teaching and learning process. Each contributes an alternative viewpoint that 

enriches understanding and enlightens action. Different perspectives often share commonalities, 

and at the same time, each endows new insight through its distinctive lens. Complexity theory 

envisions mathematics classes as possible collectives––mathematical microcommunities––which 

jointly construct mathematics. This perspective considers a class as a single, self-regulating 

entity that learns. This viewpoint predicts how substantial––individual––student learning can 

occur through active participation in the larger mathematizing classroom organism. Additionally, 

complexity theory can illuminate why certain phenomena in mathematics classrooms occur, as 

well as how best to deal with, and sometimes control, these phenomena for positive student gain. 

Finally, complexity theory explains how vital attributes of teacher action and class environments 
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can interact synergistically to create a learning environment with potential far beyond 

environments with certain positive attributes in isolation.   

My study observed mathematical complex systems in three teachers’ classes. I also 

detailed the manifestations of teacher actions, paralleling Davis’s criteria for complex system 

formation, that seemed to help develop the complex systems in these classes. And my work with 

complexity theory has opened up new perspectives on the social side of mathematics learning in 

dynamic classrooms. Complexity theory holds great promise to illuminate new avenues of 

understanding in mathematics education. 

 Maybe students’ mathematical diversity, when allowed to interact in fluid, nonrepressed 

ways with other students’ ideas around intriguing topics produces holistic emergent dimensions 

of the teaching and learning process that have yet to be fathomed by the mathematics education 

community. We may not even have the language to describe these constructs. Perhaps the B. 

Davis’s criteria only indicate a wider domain of expertise needed for enhanced mathematical 

behavior––a this and that and those––all together. Emerson gave us great advice when he 

penned, “Never did any science originate but by a poetic perception” (Emerson, 1903–1904, p. 

365). Complexity theory helps us step back and by seeing the whole together, perceive. 

 

 * “Now a Whole.”––Claims the Eye. (Referring to the grook on page xii of the Preface) 
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APPENDIX A 

Classes Observed for Site Selection 

Month Teacher  Grade Teacher-
student 
discussion 

Student-student 
discussion 

Student ideas 
forming substantial 
parts of the lesson 

Use? 

 
South 

 
January  Arnold 

Mendez 
 

9 Much None Little  No 

February Rosa 
Martinez 
 

1 Much Some Little  No 

 Lennard 
Stewart  

6 (Class 1) Much Some Some Maybe 

  
 

6 (Class 2) Some Some Some Maybe 

 Deborah 
Sanchez 
 

K Much None Little  No 

 Braxton 
Mendelli 
 

K Much None Little  No 

 Richard 
Trolley 
 

4 Much None Some Maybe 

 Jennifer 
Sandy 

7 & 8  
(Class 1) 

Much Much Much Use 

  7 & 8 
(Class 2) 

Much Much Much Use 

 
West 

 
March Timothy 

Vereen 
 

9, 10, & 11 Much None Little  No 

 Sheila 
Auburn 

7 (Class 1) Much Much Much Use 

  
 

7 (Class 1) Much Much Much Use 

 Dr. Ron 
Tormic 
 

Graduate  
University 

Much Much Much Maybe 

 Alex 
Oppenheim 
 

10 Much Much Little  No 

 Jimmi 
Bremen 
 

7 Some Some Little  No 

 Theodore 
(Ted) 
Murano 
 

7 & 8 
(Class 1) 

None  
(because of 
group work for 
next day’s 
lesson but good 
activity) 
 

Much None (because of 
group work) 

Maybe 
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Month Teacher  Grade Teacher-

student 
discussion 

Student-student 
discussion 

Student ideas 
forming substantial 
parts of the lesson 

Use? 

March 
 
 
 
 

Theodore 
(Ted) 
Murano 
 
 

 
7 & 8 
(Class 2) 

 
None  
(because of 
group work for 
next day’s 
lesson but good 
activity) 
 

 
Much 
 

 
None (because of 
group work) 

 
Maybe 

  
 
 

7 & 8  
(Class 1) 

Much Much Much Use 

  
 
 

7 & 8 
(Class 2) 

Much Much Much Use 

 Misty 
Dickens 
 

9 Much Some Some Maybe 

 Aubrie 
Rosen 

7 Some Some Little  No 

 
South 

 
May  Tasha 

Fergusson  
 

6 Much Some Some No 

 Daniel 
Chaucer 
 

7 Some Some Little  No 

 Will 
Wright 
 

7 & 8 Some Some Little  No 

 Jennifer 
Sandy 
 

7 & 8 
(Class 1) 

Much Much Much Use 
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APPENDIX B 
 

 Susan’s Problem Worksheet 
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APPENDIX C 

 Manuel’s ProblemWorksheet 
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APPENDIX E 
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