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ABSTRACT 

 Software visualization (SV) involves the use of the crafts of typography, graphic design, 

animation, and cinematography with modern Human-Computer Interaction technology to 

facilitate both the human understanding and effective use of computer software.  Software 

visualizations are often used to portray both concrete and abstract concepts and range from 

depictions of source code to performance characteristics to the execution of an algorithm as a 

discrete or continuous sequence of graphical images, or algorithm visualization.  Numerous 

algorithm visualizations have been developed for use in educational settings.  However, studies 

that were designed to demonstrate the pedagogic effectiveness of algorithm visualizations have 

been markedly unsuccessful, in spite of high expectations.  In response to these results, lists of 

recommended features have been suggested to algorithm visualization system designers, but 

most of these features have not been proven to be beneficial. 

 The broad goal of this research is to provide an empirically-validated method for 

designing and evaluating the effectiveness of dynamic visualizations.  Our approach has been to 

identify features of these visualizations and systems that may improve learning, to create 



 

software that can isolate features of interest and aid in evaluating the usefulness of these features, 

and to then use the software to conduct and analyze user studies. 

This research: 

i) assembles an initial listing of features of SVs and SV systems and introduces a 

framework for testing the effectiveness of each, 

ii) provides verified design guidelines for dynamic visualizations, 

iii) applies concepts already researched and established in perceptual psychology and 

cognitive psychology to the design of effective SVs, 

iv) offers an explanation of the inevitable variability present in studies involving 

human subjects through the investigation of the effects of individual differences 

on comprehending SVs, and 

v) objectively classifies SV systems and makes them widely and easily available in a 

way never done before, with VisIOn, an Interactive Visualization Ontology. 
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CHAPTER 1 

INTRODUCTION 

 

The field of visualization has been described as a discipline concerned with the use of 

graphical representations in the computing environment [69].  Software visualization (SV) 

involves the “use of the crafts of typography, graphic design, animation, and cinematography 

with modern HCI (Human Computer Interaction) technology to facilitate both the human 

understanding and effective use of computer software” [60].  Software visualizations are often 

used to portray both concrete and abstract concepts and range from depictions of source code to 

performance characteristics to the “execution of an algorithm as a discrete or continuous 

sequence of graphical images”, or algorithm visualization [27].  Algorithm animations (AAs) are 

dynamic algorithm visualizations.  Numerous algorithm animations have been developed for use 

in educational settings and claims of the pedagogical benefits of these tools have been made 

since they were first brought into existence decades ago [5, 9].   

1.1   The Problem 

Assumptions that visualizations are better than textual descriptions and that dynamic 

displays are better than static displays have led some educators and researchers to believe that 

students who use algorithm animations should understand concepts faster and more accurately 

than those who use only textual and/or static depictions [13, 30].  These assumptions have been 

questioned and tested by a number of researchers [13, 30, 38, 44, 45, 87].  Unfortunately, as 

expressed in [36], the results of these studies and others have “yielded mixed results” and have 
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“fail(ed) to substantiate” the belief that these tools are better than alternate forms of learning.  

Gurka and Citrin [28] state that these studies that were “designed to demonstrate the pedagogic 

effectiveness of algorithm animation programs have been markedly unsuccessful, in spite of high 

expectations.”   

Developers often build AAs based on their own opinions and expectations of use rather 

than on studies of student behavior [81].  Some of these developers mention the lack of a 

rigorous, objective method for evaluating the effectiveness of their systems, but acknowledge 

that creating such a method would be very difficult and complex [9, 60].  Lists of recommended 

features have been suggested to AA system designers [55, 71], but most of these features have 

not been proven to be beneficial.  Few empirical studies have been conducted to attempt to gain 

insight into the effect of specific animation features on learning an algorithm [44, 73], and there 

has yet to be a comprehensive, empirically supported method proposed for designing algorithm 

animations and systems and for evaluating their effectiveness. 

1.2   Research Questions 

The mixed results of the previously mentioned studies have shown that some versions of 

software visualizations enhance learning, as indicated by students’ test scores, while other 

studies have revealed that students using SV systems had no advantage over their counterparts 

who learned via the more traditional methods of lecture and/or reading text with static images.  

Why?  Are the visualizations and systems appropriately designed?  Were the color, shape, size, 

and number of graphical objects selected to maximize the viewer’s “cognitive economy” [85]?  

Can the user control the speed, granularity, or input set?  These are the types of questions 

investigated in the first portion of this research. 
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RESEARCH QUESTION:  How do perceptual, attentional, and cognitive concepts 

contribute to effective animation design? 

Algorithm animations have been developed since the early 1980s and currently hundreds, 

maybe thousands, exist.  So, how does an instructor efficiently find and select an animation or 

system that is relevant to a particular topic?    Will that tool be beneficial to students who interact 

with it?  Can it be seamlessly integrated into the curriculum of a particular course?  Was it 

empirically evaluated?  Is there any literature describing its architecture, capabilities, and 

installation requirements?  Answers to these questions are not readily available for most SV 

systems, further contributing to the lack of success of these tools and the motivation behind the 

other part of this research. 

RESEARCH QUESTION:  How can the effectiveness of software visualizations be 

evaluated in an objective, systematic manner? 

1.3 Methodology 

The general problems that this research addresses are the design and evaluation of 

effective dynamic visualizations.  In particular, we focus on visualizations and visualization 

systems designed for computer science education.  Our approach has been to identify features of 

these visualizations and systems that may improve learning, to create software that can isolate 

features of interest and aid in the evaluation of the usefulness of these features, and to then use 

the software to conduct and analyze user studies. 

Appropriate graphical representations of concrete and abstract concepts and attributes 

such as color, shading, dimension, size, shape, texture, and motion are some of the types of 

characteristics considered when creating effective visualizations.  Mackinlay [47] explains that 

effectiveness should be determined by whether a graphical language takes full advantage of the 
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capabilities of the output medium and the human visual system.  The effectiveness of a 

visualization should also be evaluated based upon its purpose.  For instance, viewers of scientific 

displays are often trying to explore data to make inferences that could possibly lead to some type 

of breakthrough, so evaluations should consist of a way to measure the visualization’s ability to 

lead the scientist to such observations [72].   

Information visualization (IV) is “the use of computer-supported, interactive, visual 

representations of abstract data to amplify cognition” [14].  Therefore, effectiveness in the IV 

domain may be based on the amount of time needed to interpret data represented by images.  A 

dynamic visualization used for pedagogical purposes, such as an algorithm animation, should be 

evaluated based on its ability to accurately convey the intended concept to a student in a manner 

that is intuitive and requires less effort than other approaches to conveying those same concepts. 

A software visualization system is a web-based or stand-alone application used to 

specify, execute, and control software visualizations.  The definition of effectiveness of a 

visualization system can also vary depending on the environment in which it is used.  Software 

systems in the bioinformatics and information visualization domains need to be capable of 

displaying large amounts of data in a meaningful, scalable manner.  In the software visualization 

domain, we define effectiveness of a system to be how well and easily a system can be used by 

the software visualization designer to communicate information to the software visualization 

viewer. For a designer, an effective SV system would be one that allows her to efficiently specify 

what and how information is to be displayed and manipulated.  Speed control, zooming, and the 

ability to input data are the types of system features that allow a viewer to interact with a 

visualization and should also be considered when evaluating the effectiveness of an SV system. 
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Designing and evaluating algorithm animation systems are highly interrelated tasks.  

They both involve “de-featuring” the visualizations or systems and then establishing the level of 

usefulness of each feature.  We have conducted experiments that isolate a feature and measure its 

effect on the comprehension of an algorithm.  These may be perceptual/attentional features (i.e. 

color, motion, etc.) of the animation or attentional/cognitive features (i.e. various types of 

interaction) offered by the software visualization system. 

The results from these studies are then used to develop design guidelines for creating 

more effective AAs and systems for use in educational settings.  These same studies also assist in 

determining to what extent each feature contributes to the viewer’s ability to perceive and 

comprehend the depicted algorithm and can, in turn, assist in providing a validated method for 

evaluating an entire visualization or system.   

When creating dynamic visualization systems, one must consider both the design of the 

animation and the functionality provided by the system to support user engagement.  This 

research investigates perceptual, attentional, and cognitive features through studies that focus on 

low-level characteristics and types of interaction as well as their influence on overall algorithm 

comprehension.  Through collaboration with perceptual psychologists, software packages have 

been developed [42, 65] that we are using to create, conduct, and analyze these experiments.   

Evaluating the effectiveness of a software visualization system, including algorithm 

animation systems, is currently a largely subjective and non-systematic process.  Our approach 

employed to address this problem was to first create a software visualization ontology schema 

whose classes and properties consist of a reconciliation of existing taxonomies plus other 

features.  This ontology was then employed in an interactive online tool called VisIOn [67] that 

allows anyone with Internet access to classify software visualization systems in a very detailed 
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and impartial manner.  As we and others continue to conduct empirical studies that investigate 

the contributions of individual features to the overall effectiveness of different types of software 

visualization systems, the entry of the results of these studies into VisIOn can then be used to 

provide an objective rating for each system. 

Determining the pedagogical contribution and value of every feature is an enormous task 

that would take years for one researcher or group to accurately accomplish, since software 

visualizations contain hundreds of features that should be considered.  Proper investigation will 

require that each feature, as well as combinations of features, be implemented into a software 

package and then studied with human subjects.  In this research, we have started this process by 

describing and implementing a framework that includes software packages, experimental 

designs, techniques, and analysis, as well as examples of how to recognize the implications these 

results may have in the design and evaluation of effective algorithm animations. 

1.4   Contributions 

This section describes my contributions to this overall research project and the 

contribution of this research to the software visualization and computer science education 

communities.  The research discussed in this document is a component of a larger project
1
 that 

involved other graduate students from The University of Georgia and Georgia Institute of 

Technology (Georgia Tech).  My involvement included: 

i) Development of applications – Interactive Visualization Ontology (VisIOn) [67], 

Just Noticeable Difference (JND), and several VizEval modules (FileCreator, 

FolderFileChecker, TestFileSwitcher, and PreviewFrame) [65]. 

                                                 
1
This material is based upon work supported by the National Science Foundation under Grant 

No. IIS-0308063. Any opinions, findings and conclusions or recommendations expressed in this 

material are those of the author(s) and do not necessarily reflect the views of the National 

Science Foundation (NSF). 
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ii) Extending and maintaining software packages - System to Study the Effectiveness 

of Animation (SSEA) [42, 63] and the TestTaker module of VizEval [70]. 

iii) Experiment set-up, design, execution and analysis – Effect of flash cue on 

detection and localization [19], Cueing and motion in AA comprehension [64], 

Interactive questioning in AA comprehension, part I [66], Interactive questioning 

in AA comprehension, part II, Eye-tracking study, part I [40].  

iv) Supervising and assisting Master’s students on research ideas, software design 

and implementation, and preparing for and conducting empirical studies – 

Matthew Ross [70], Sujith Thomas [84], Bina Reed [63], Shradha Kaldate [40], 

Manish Agarwal [1], and Joseph Hohenstern. 

The confusion and frustration stemming from the mixed results of previous studies have 

contributed to the sparse use of SVs in educational settings and have led some SV researchers to 

shift focus to other areas.  However, many computer scientists within and outside of the SV 

community still believe that these tools, when designed properly, stand to greatly benefit those 

who use them.  This research: 

i) initiates a comprehensive listing of features of AAs and AA systems and 

introduces a framework for testing the effectiveness of each, 

ii) takes advantage of the body of knowledge already established in perceptual 

psychology and cognitive psychology,  

iii) offers an explanation of the inevitable variability present in studies involving 

human subjects through the investigation of the effects of individual differences 

on comprehending AAs, and  
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iv) classifies and makes widely and easily available SV systems, in a way never done 

before, with VisIOn. 

Results of studies in this work have found that some perceptual/attentional features, such 

as cueing, increase performance on some tasks (localization) while harming performance on 

others (detection), and vice versa.  We have also found that features such as motion, cueing, and 

interactive questioning may enhance attention and perception, but this enhancement does not 

necessarily translate into improved comprehension of an algorithm.  These types of results aid in 

informing the design and evaluation of effective SVs and SV tools.  

1.5   Overview 

Chapter 2 provides background information about algorithm animations, related 

empirical studies, and psychology terms used to describe various AA features.  Chapter 3 

describes the purpose and architecture of the three software packages developed to create, 

conduct, and analyze experiments, and Chapters 4 and 5 describe the design, procedure, and 

results of the six studies conducted thus far.  Chapter 6 explains the means by which we classify 

and propose to objectively evaluate SV systems through the creation and use of VisIOn (An 

Interactive Visualization Ontology).  A summative analysis of the studies, a conclusion, and 

ideas for future work are presented in Chapter 7.  Figure 1.1 provides a visual overview of this 

research.     
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Figure 1.1: Visual overview of our research procedures and contributions. 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

 

2.1   Algorithm Animation Background 

The video entitled “Sorting Out Sorting” created by Ron Baecker [4] in 1981 is usually 

noted as the first algorithm animation.  It was created to teach students the step-by-step 

operations of three different algorithms as well as to demonstrate the run-time performance of 

each.  Shortly afterwards, others [10, 11, 76, 78] developed software systems to automate the 

creation of algorithm animations with the capabilities of sound, color, multiple views and 

multiple dimensions.  More recent AA systems have been designed with the intention of students 

using them to easily create their own animations [79].   

In the early to mid 1990’s, some researchers began to test whether these animations 

actually added the expected educational benefits for which they were designed.  Some studies 

found that students who used algorithm visualizations significantly outperformed those who used 

an alternate method to learn the algorithm [13, 44] while other studies found no difference 

between the performance of the two groups [26, 44].  The conflicting and unexpected results of 

some of the initial studies sparked an interest in determining what factors contribute to the 

effectiveness of an algorithm animation or system. 

A number of papers have been published addressing the usefulness of AAs evaluated 

through anecdotal [10, 79] and empirical studies [37, 39], as well as factors to consider when 

designing an AA for pedagogical purposes [55, 71].  These studies have ranged from comparing 
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the use of an AA to a non-visualization method [3, 30], to having students build their own AA 

[35, 79], to comparing features of one AA against those in another [44, 73].  Please see 

Appendix E for a “Quick Glance of Algorithm Animation Studies by Feature”.  My research 

focuses on this last approach, comparing features of one algorithm animation to another, and 

takes into account individual differences of participants in addition to findings and concepts from 

perceptual and cognitive psychology.  Little related work exists for this approach. 

2.2   Visualization and Psychology 

Designing and evaluating algorithm animations to make them more effective for users 

fall within the human factors and human-computer interaction domains.  Human factors 

psychology is an “interdisciplinary field which discovers and applies information about human 

behavior, abilities, limitations and other characteristics to the design and evaluation of products, 

systems, jobs, tools, and environments for enhancing productive, safe, and comfortable human 

use” [62].  It involves the application of perceptual and cognitive processes to improve the 

usability of applications and the performance of their users.  Human-Computer Interaction (HCI) 

involves the study and practice of usability.  It includes creating technology that “people will 

want to use, will be able to use, and will find effective when used” [15].  Preece et al. [59] 

believe that the main objective of HCI has been to “understand and represent how humans 

interact with computers in terms of how knowledge is transmitted between the two.” 

Consideration of perceptual, attentional, and cognitive concepts is important in the 

development of effective visualizations.  Cognitive psychology is the study of internal mental 

processes such as problem solving, decision making, language, and short- and long-term memory 

[24].  Knowledge gained through perception, reasoning, or intuition is cognition [20].  The AAs 

and systems that we study were designed for users to gain knowledge about the depicted 
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algorithms.  We describe cognitive features of AA systems, such as interactive questions, to be 

those that require a user to solve problems or think about the implementation of the algorithm 

she is viewing.  Since knowledge can be gained through perception, we investigate features of 

AAs that may affect how a viewer perceives the animation. 

Perception is the process of acquiring, interpreting, and organizing sensory information 

[24].  Factors that affect perceptual performance include arousal, fatigue, mental load, monotony, 

boredom, sensory deprivation, sleep deprivation, anxiety, fear, isolation, and aging  [48].  

Currently, AAs are perceived using vision and some have tapped into the use of auditory senses.  

Perceptual characteristics of AAs include components of the layout such as data set size and the 

use of color and sound.  

Attention is defined as the cognitive process whereby a person concentrates on some 

features of the environment to the relative exclusion of others [24, 46]. “Learning is most 

efficient when a person is paying attention” [50].  Attention can be allocated voluntarily or 

involuntarily.  As described by Prinzmetal et al. [61], voluntary attention, also referred to as 

goal-directed or endogenous attention, occurs when observers “allocate attention to the spatial 

location that may contain information that is important to immediate task goals”.  Involuntary 

attention, also referred to as stimulus-driven or exogenous attention, occurs when an observer’s 

attention is captured by a stimulus event “even when the stimulus event is unrelated to the 

current goal-directed activity”.  Different types of cues, questions, and motion can be used within 

algorithm animations to guide a viewer’s attention to important actions occurring on specific 

portions of the screen.  

Cognitive load theory addresses the limited capacity of the independent channels in the 

human information-processing system [49, 58].  The theory is based on a cognitive design that 
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involves a limited working memory that interacts with a relatively unlimited long-term memory.  

The theory explains how only a restricted amount of cognitive processing can occur in the 

visual/spatial channel or the auditory/verbal channel at any given time.   

Researchers in various fields have performed studies to focus on different factors that 

they hypothesize will have an impact on the effectiveness of a visualization or visualization tool 

used within their respective environments.  In general, features pertaining to the design of the 

display and to interaction with the tool have been evaluated [34, 44, 72], and an overlap exists in 

the types of evaluations conducted.  For example, the idea of creating appropriate visual 

metaphors discussed by Rhyne et al. [68] for use in bioinformatics visualizations coincides with 

the idea of increasing the use of the human visual system by using graphics that are easily 

perceived [74]. Such graphical displays are believed to reduce the level of cognitive effort 

needed to interpret the represented concept, thus creating a cognitive economy [85] in which the 

visualization is easy to understand but not oversimplified [86]. 

2.3   Studies of Individual Features 

When designing visualizations or visualization tools, “information needs to be presented 

in a way that makes it unambiguous to perceive and understand” [59].  One challenge is to 

identify perceptual factors of a visualization or visualization tool that could be used to help 

reduce the viewer’s cognitive load and then to properly isolate, analyze, and apply results to a 

“real-world” application.  Studies on perceptual factors such as color, sound, and touch have 

been successful in identifying proper usage in creating tools for specific domains [33, 34, 82].  

For instance, color has been found to be most useful for identification tasks and as a form of 

redundant coding [59]. 
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Similar to research done by Healy et al. [33, 34] for information visualizations, our work 

involves conducting low-level, perceptual studies and using the results to inform the design of 

algorithm animations.  However, our work differs in that we have taken our analysis a step 

further to empirically evaluate the effectiveness of the individual features on the performance of 

the higher-level, cognitive task of comprehending the algorithm.  

The term “de-feature” is used by Morse et al. [51] to describe how they approached their 

studies of visualizations used in the information retrieval domain.  They point out that usability 

studies tend to focus on visualization systems as a whole and not the visualization itself.  They 

were able to gain insight into the effect of various display techniques on a user’s ability to 

accurately perform tasks and on the time to completion.  For complex tasks, they also found a 

correlation between participant preference and performance and felt that the “subjects like to use 

things that make them successful”. 

2.4   Algorithm Animation System Design 

Röβling et al. [71] feel that effective learning from algorithm visualizations (AVs) 

probably will not be achieved purely with “bigger and better graphics”, and they have proposed 

nine pedagogical requirements for developing AVs that address features such as the architecture, 

the display design, and the interaction provided to and encouraged of the user.  Naps et al. [55] 

provide a similar list of best practices for designing educational visualizations and argue that 

“visualization technology, no matter how well it is designed, is of little educational value unless 

it engages learners”.  However, many of these suggestions have not been proven to be beneficial, 

and in some cases empirical studies have produced results that contradict the usefulness of some 

of these recommended features.  For instance, the use of interactive questioning and multiple 

views have been recommended by both groups, but findings have shown that these features 
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slightly harm performance [38, 66] and increase the time spent using the system without 

increasing learning [73], respectively. 

An agenda for evaluating graphical representations was described by Scaife and Rogers 

in which consideration is given to external representations, internal representations, and the 

interaction between the two [74]. They provide a survey of related studies and identify useful 

findings but also point out assumptions and/or lack of proof of certain assertions made by other 

researchers.  Some of these most popular claims are: 

► static visualizations are better than textual descriptions. 

► animated visualizations are more effective than static ones. 

► virtual reality is better than animation. 

► three-dimensional diagrams are better than two-dimensional. 

► solid modeling is better than wire-frame modeling. 

► color is better in visualizations than black and white. 

► interactive graphics are better than non-interactive graphics.  

They state that these generalizations have been made without adequate proof of what is 

cognitively gained by graphical representations that are more explicit, interactive, and dynamic.   

Tudoreanu [85] explains the concept of cognitive economy as it pertains to the algorithm 

animation domain.  It “seeks to minimize the load of the cognitive system” by reducing the 

complexity of a visualization while maximizing the amount of important information shown. 

Through empirical studies, he identifies the management of a user’s cognitive load as being a 

key factor in determining the effectiveness of a visualization.  He states that visualization 

environments that are too complex and increase the user’s cognitive load are no more beneficial 

than viewing no visualization at all. 
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The design of an animation and proper interaction are key factors contributing to the 

effectiveness of pedagogical tools, specifically algorithm animations.  Features that can be 

classified as either animation or interaction design have been evaluated, but in a somewhat 

random or non-systematic manner.  The remainder of this section discusses these studies as they 

relate to design and interaction features of algorithm animations. 

2.4.1  Animation Design 

Components of an animation include graphical objects, color, sound, motion, textual 

labels, captions, a code view, and visual cues.  At times, these type of features, referred to as 

“representational characteristics”[36], have been discredited as having little pedagogical benefit 

[36, 55, 71] because only a few studies investigating these features have led to statistically 

significant results [44, 73].   

Lawrence studied user preferences and the effects of labels on objects, varying data set 

sizes, and choice and orientation of graphical objects [44 ].  While she found the variations in 

these attributes did not increase learning, the results have been useful in showing that these 

features do not decrease learning and that viewers’ preferences do not necessarily make a 

difference in algorithm comprehension [3, 44].  Meanwhile, other studies have shown that 

features of the animation design contributed to a significant increase in learning.  For instance, 

allowing a user absolute control over the speed [73], including textual and visual cues [44], and 

reducing the number of colors used in the display [44] have all been found to enhance the 

pedagogical value of algorithm animations.  The usefulness of these features was determined by 

participants’ performance scores on assessments of their comprehension of the animated 

algorithm presented during a session.  Our research investigates the effect of these types of 

features on comprehension as well as the viewer’s ability to perceive the animation.   
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2.4.2  Interaction Design 

Grissom et al. [27] established an engagement taxonomy that categorizes six levels of 

interaction of students with visualization tools.  In order of increasing engagement, the categories 

are: 

1. No viewing,  

2. Viewing,  

3. Responding,  

4. Changing,  

5. Constructing, and  

6. Presenting.   

Even though the categories can overlap, the hypothesis is that the greater the level of 

engagement, the greater the learning benefit.  This taxonomy coincides with research published 

in 1954 [18] that has since been described as the “Learning Pyramid” [56] represented in Figure 

2.1.    

The “Learning Pyramid” illustrates an increase in the retention of information as more 

interactive learning methods are utilized.  Similar to the learner engagement taxonomy, students 

are believed to retain more knowledge as they perform tasks that more actively involve them in 

the learning process.  Our studies on interactive questioning techniques compare viewing to 

responding as well as types of questions within the responding category. The studies discussed in 

this section have investigated differences in performance in relation to the levels of this 

taxonomy. 

Several successful attempts have been made to show that students who actively interact 

with a visualization technology enjoy an enhanced learning experience over those who only 
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attend a lecture [13, 27, 30] or read a textual description [30] with static images.  However, no 

significant difference in performance was found between the two groups in similar studies 

conducted by the same researchers [30] when participants in the non-visualization group were 

given a “carefully designed” handout with exercises.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: A representation of the “Learning Pyramid” [56]. 

 

 

In some studies in which a performance increase was found, the specific contributing 

factors could not be discerned.  For example, a study investigating the effects of prediction and 

animation on algorithm comprehension found that subjects who were asked to make predictions 

while viewing an animation performed significantly better on post-tests than the other three 

groups (prediction only, animation only, and neither). However, it was not clear whether 
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prediction or animation alone were significant factors, or if it was only the combination of the 

two that had a significant effect.  

The goal of studies presented in [39] was to determine whether predictive interaction has 

a positive impact on learning.  After conducting two studies in which students interacted with the 

Interactive Data Structure Visualizations (IDSV) courseware, Jarc et al. concluded that 

predictive interaction was not beneficial in general and that it may be most useful for difficult 

concepts and dynamic displays. 

Hansen et al. [30]  performed a series of experiments in which they compared the use of 

their fully functional Hypermedia Algorithm Visualization (HalVis) system against text-only 

learning, lecture, XTango (another visualization system) [77], and “reduced” versions of HalVis 

in which some views or features were removed. Of their eight experiments, two are related to our 

current research.  One experiment involved participants passively viewing an animation 

presented by XTango compared to those who were interactively taught the same algorithm using 

HalVis.  Even though the HalVis group significantly outperformed the XTango group on a post-

test, HalVis offers additional views (i.e. a conceptual view that shows a real-world analogy to the 

algorithm) and features, such as probes, than those provided by the chosen XTango animation, 

and none of these characteristics can be singled out as the reason for the better performance of 

the HalVis group [30].  Therefore, other experiments were conducted in which a full-version 

HalVis was compared to versions without certain views or features.  As a result of these 

experiments, they found that participants who were required to answer pop-up questions 

performed better, though not significantly, than those who were not [30].   

The recommendation to allow students to enter their own input set into an algorithm 

animation [55, 71] falls under the “changing” category of the student engagement taxonomy 
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[27].  Lawrence et al. conducted two studies [44, 45] that found a significant improvement in 

performance for students who entered data sets compared to those who did not.  In contrast, 

Saraiya et al. [73] found that students who entered their own data performed slightly worse than 

those who were given good examples.  In the Lawrence et al. studies, the participants who 

entered their own data sets were exposed to the algorithm either through written text or lecture 

before attempting to create examples, whereas it is not clear if the students in the last study were 

given any introductory material about the algorithm and were likely to have entered random, 

meaningless data sets. 

Constructing an algorithm visualization, the fifth category in the student engagement 

taxonomy, can be accomplished through hand construction or direct generation in which the 

learner maps the algorithm to a visualization through some type of code augmentation or script.  

In some studies, students who created algorithm animations were reported to have improved 

performance [35] and to have found the course more enjoyable because it was more engaging 

[79] while another study found no effect [36]. 

2.5  Summary 

Hundreds of algorithm animations and systems exist including those that can run over the 

internet [39], as a standalone application [79], or both [31].  This related work section has 

highlighted key eras in the evolution of algorithm animations.  When AAs were first brought into 

existence in the early 1980’s [5], the main focus was on developing a visualization tool that 

could dynamically show students the execution of an algorithm.  In the early to mid 1990’s, 

some researchers became concerned with classifying software visualizations and testing whether 

they actually added the expected educational benefits for which they were designed.  The varied 

and unexpected outcomes of some of the initial studies [44] resulted in additional studies and 
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recommendations of factors believed to contribute to the effectiveness of an AA or AA system 

[55, 73]. 

This research investigates the effectiveness of algorithm animations and systems from 

both a design and an evaluation perspective.  Assumptions about the usefulness of various 

features and interaction have been turned into hypotheses and were empirically evaluated.  Since 

some AAs have proven to be effective educational tools while others have not, the 

implementation of certain features within the various AAs must contribute to these differences in 

effectiveness.  Therefore, we compare AAs against one another by contrasting feature(s) between 

the two and conducting user studies with student participants.  Some of the variation found in 

these studies on the effectiveness of AAs on comprehension may also be due to individual 

differences amongst students.  We have taken this into consideration and started collecting and 

analyzing assessments designed to differentiate students based upon the type of learner they 

identify themselves to be and scores on various ability tests.   The results of these studies will aid 

in designing effective algorithm animations and in objectively evaluating those that already exist.  
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CHAPTER 3 

FRAMEWORK AND METHODOLOGY 

3.1 Introduction 

The approach undertaken in this work to design effective software visualizations bears 

some similarity to research done in the information retrieval [51] and information visualization 

[32] domains.  Our method involves de-featuring visualizations and systems to first identify 

individual characteristics that are commonly used in existing AAs or that were found to be of 

interest.  In our work, these features are investigated at a perceptual level, meaning they are 

presented in a simple, context-free display in which studies are conducted on the viewer’s ability 

to detect and localize changes.  These features are then integrated back into an algorithm 

animation and higher-level studies are performed to determine if the features found to enhance 

perception will in turn enhance cognition or the viewer’s ability to comprehend the depicted 

algorithm.   

To accomplish these tasks, several software packages have been developed to automate 

and simplify the creation, execution, and analysis of experiments designed to test features of 

algorithm animations and systems.  This chapter describes the overall purpose and architecture of 

the software and provides an overview of how an experimenter may use the various graphical 

user interfaces to accomplish their tasks.  Specific scenarios of the usage of these software 

packages are detailed in Chapters 4 and 5 with descriptions of how the software has been used to 

create and conduct empirical studies. 
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3.2 Just Noticeable Difference (JND) Software  

Just Noticeable Difference, JND, is a testing application developed to conduct two-

alternative, forced-choice, discrimination threshold experiments.  Two-alternative, forced-choice 

experiments require participants to select one of two pre-determined options even if they do not 

believe either of them to be true.  Discrimination threshold experiments ask participants “to tell 

apart, or discriminate, two things that differ by only a slight increment” [43].  The results can 

then be analyzed using Weber’s Law which states that the “smallest difference in a specified 

modality of sensory input that is detectable by a human being” [24], or JND, is a constant ratio of 

the change in a stimulus and the original stimulus [7].  For studies conducted with this software, 

these terms mean that a viewer has to visually determine the taller of two bars and that the results 

can then be used to calculate a (just) noticeable difference for bar heights.     

The reason JND was developed was to conduct a preliminary study to determine the 

minimum difference between heights of bars that can be detected at a 95% confidence level.  In 

the algorithm animations studied in this research, vertical rectangular “bars” are used to represent 

data elements. The bar’s location indicates the index within an array and the height indicates the 

value.  To ensure that viewers are able to perceive the differences in values of elements depicted 

by the bars, JND has been used to conduct an experiment that provides the minimum step size, or 

difference between bar heights, for displays in our other studies. 

At the beginning of each participant session, the administrator may enter or modify data 

about the participant, the monitor, and the display (see Figure 3.1).  The ability to specify the 

variables displayed on this “Set Parameters” screen at runtime is provided for the perceptual 

psychologists who design and conduct these low-level studies.  The “Monitor Width” and the 

“Distance from Screen” must be entered in inches.  The “Display” of the bars may be a “Flash”, 



24 

shown for a specified amount of time and then hidden, or “Fixed”, shown until the participant 

selects an answer.  If “Flash” is chosen, then the administrator must enter the length of the flash 

in milliseconds in the “Flash Time” textbox.  The “Number of Trials” parameter will be the 

number of displays and questions shown to the viewer.   

 

 
Figure 3.1. Screenshot of the set-up window of JND.  The experiment administrator 

can overwrite the default values for each parameter. 

 

 

All other parameters can be entered in “Pixels” or “Degrees”, whichever is selected by 

changing the value of “Type”.  The degrees are computed based on the monitor width and the 

participant’s distance from the screen.  The angle of view (see Figure 3.2) is calculated and then 

the ratio of pixels per 1
o
  is used as a conversion factor.  As the administrator toggles between the 

“Pixels” and “Degrees” options, the values are automatically converted from one measurement 

to the other.   
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Figure 3.2.  A depiction of an overhead view of a participant during an experiment 

session. 

 

The “Select Color” button opens the screen shown in Figure 3.3 and allows the 

administrator to select the desired color of the bars to be displayed.  The values shown in Figures 

3.1 and 3.3 are the default values that were researched and agreed upon by members of our 

research group.  The use of such default values reduces the time needed to set up each 

experiment.  

 
Figure 3.3.  The color palette screen of JND.  It is used to select the color of the bars.  

The default value shown is green, Red / Green / Blue (RGB): 100 / 220 / 10 

Participant 

Monitor / Field of View 

Angle of View 
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Once the “Start” button on the “Set Parameters” window is pressed, a small screen (see 

Figure 3.4) appears requesting the participant to press any key to continue.  The purpose of this 

prompt is to guide the viewer’s focus to the same fixation point (the black dot) at the beginning 

of each trial.  

The viewer is then shown two vertical, rectangular bars, as illustrated in Figure 3.4, and 

must decide which bar is taller.  Depending upon the option selected by the experiment 

administrator, the bars may stay on the screen or they may appear for a specified number of 

milliseconds.  Since the user must judge which of the bars is taller and then select either the left 

or right bar, this is called a two-alternative forced-choice judgment. 

 
Figure 3.4.  Prompt to guide viewer’s focus to the same location at the beginning of each 

trial. 
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Figure 3.5.  Sample display and question. 

 

After the participant has completed all trials, a logfile is written with information about 

the session (see logfile__12.11.2006_13.35.58.txt in Figure 3.6).  It is a simple text file, and its 

name consists of the date (_mm.dd.yyyy) and time (_hh.mm.ss) the session began.   

 

 

 

 

 

 

 

 

Figure 3.6.  Sample logfile produced by one session of an experiment using JND. 

 

The parameter values entered on the set-up screen are printed at the beginning of the file.  

Then, for each trial, the heights of both the left and right bars, the difference between the two, the 

Participant ID: 123  Number of Trials:  5 
Type: Pixels (Degrees)  Monitor Width: 15.5  Distance from Screen: 28.65 
Step Size: 10 (0.21623713) Space Between: 48 (1.0379382) Space From Fix:  0 (0.0) 
Display:  Flash   Flash Time: 250 
Window Height:  768 (16.607012) Window Width:  1024 (22.142683) Bar Width:  16 (0.34597942) 
Base Bar Height:  100 (2.1623714) Min Height:  50 (1.0811857) Max Height:  768 (3.243557) 
 

H-l  H-r Diff Resp Correct? Time 
100 100 0      L         Yes   5500 
120 100 20      R         No    10625 
100 90 10      R         No    6469 
110 100 10      R         No    2125 
100 80 20      R         No    1984 
Number of trials completed: 5 
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user-entered response, the correctness of the response, and the response time are listed.  The data 

is entered in a tab-delimited format that can easily be copied into Microsoft Excel or read by a 

statistical software package for analysis.  The “Noticeable Difference Experiment”, described in 

Section 4.2, was conducted using JND.  

3.3 VizEval Package Suite 

The VizEval Suite [65] is an environment designed to support experimentation with the 

effect of various attributes of algorithm animation on the user’s ability to perceive and attend to 

objects and events occurring in software visualizations.  This is a software package that consists 

of several components (see Figure 3.7): FileCreator, TestCreator [84], TestTaker [70], and 

utility programs.  Each component serves a role in simplifying the process of creating, 

conducting, and analyzing studies of perceptual and attentional features of software 

visualizations.  The VizEval Suite allows the experiment administrator to develop an experiment 

(including specification of all of the graphics, animations and questions), to deploy that 

experiment, and to collect and organize the output. Automation is important because of the size 

and complexity of these perceptual studies, which may consist of hundreds of trials and complex 

orderings within a trial or across test participants.   
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Figure 3.7.  The VizEval Architecture.  

 

Each experiment consists of a number of blocks.  Each block contains some number of 

trials. In each trial, the participant views a short animation and is then asked a series of questions 

about what she saw and understood.   

The experiment administrator uses TestCreator to specify the components of the 

experiment.  For large experiments involving a substantial number of graphics and animation 

files, the FileCreator module may be used to automate their generation.  The TestTaker module 

executes the experiments: displays visualizations, presents questions, and records user responses, 

timing and other information in a log file. 

SKA [29] is a combination of a visual data structure library, a visual data structure 

diagram manipulation environment, and an algorithm animation system, all designed for use in 

an instructional setting. In the context of the VizEval suite, SKA serves as the graphics and 

animation engine.    

Graphical objects and their animations are specified in graphics and animation files, 

respectively.  These are simple text files that are processed by SKA at run-time. While such files 
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may be created manually using a text editor, it is desirable in the case of large experiments to use 

FileCreator to automate this process.  Researchers may allow the module to automatically 

generate a full set of graphical objects of all set sizes and of randomized heights, or may specify 

particular set sizes, heights, or other attributes. The administrator can also create animation files.  

Either an individual file or a set of files can be generated, using either experimenter-specified or 

random values.  

TestCreator [84] facilitates the design and generation of experiment test files. It leads the 

experiment designer step-by-step through the process of specifying each block, the trials within 

each block, and the graphics, animations, and questions associated with each trial (see Figure 

3.8).  TestCreator features support for five different types of questions: mouse (requires user 

interaction with a mouse), keyboard (requires interaction through the keyboard), multiple choice, 

N-Point (e.g. Likert Scale), and Yes/No (True/False). Additional customized question types may 

be created by extending the class “Question”. 

The experiment file shown in Figure 3.9 is generated by TestCreator and contains all 

information needed to run the experiment, including user instructions, questions, start method 

(enter key, mouse click, space bar), attractor (countdown timer, etc.), graphics and animation 

files to be used, as well as various timing and flow of control parameters. 
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Figure 3.8:  Screen shots of TestCreator.  The “Block” (top), “Trial” (bottom left), 

and “Question” (bottom right) windows are each used to specify information about the 

experiment. 
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Figure 3.9: Sample test file created by TestCreator and read by TestTaker. 

 

TestTaker [70] is the execution environment for the experiments. It keeps track of the 

user data, the date and time at which the experiment was conducted, and other metrics such as 

height and width of the screen, distance of the eyes from the screen and directory into which the 

log files are written.  TestTaker uses SKA to display the graphical objects and to execute the 

animation. Associated questions are then displayed. User responses and other needed 

information are written into a log file.   

Figure 3.10 depicts a sample user session.  In this case, eight bars without labels are 

shown. One or two bars have been cued (by flashing or changing color) and zero, one or two bars 

have changed height.  The users are then asked a series of questions to determine if they noticed 

that something changed (detection) and can identify the object that changed (localization).   

The sample log file in Figure 3.11 was created by TestTaker and displays all of the data 

captured during a session in plain-text.  The perceptual studies that have been conducted with 

VizEval thus far have consisted of hundreds of trials for each participant.  Although the log files 

TRIAL_NUMBER 
1 
NUMBER_OF_QUESTIONS 
5 
INSTRUCTION 
Trial 1 
ATTRACTOR 
Countdown 
START_METHOD 
Enter Key 
GRAPHICS_FILE 
4BarB.txt 
ANIMATION_FILE 
Four\cue1_ch0\03_XX_flash_XX_XX.anim 
TRIAL_START_TEXT 
Trial 1 
SHOW_QUESTION 
true 
PRE_ANIM_POST_TIMER_DELAY 
266 
QUESTION_TYPE 
YesNoQuestion 
QUESTION 
Did any of the bars change height? 
  . . . 

TEST_NAME 
Pilot Test 2 
GREETING_TEXT 
Insert general experimental instructions here. 
ENDING_TEXT 
You have reached the end.  Thank You! 
NUMBER_OF_BLOCKS 
1 
CANVAS_WIDTH 
980 
CANVAS_HEIGHT 
450 
BLOCK_NUMBER 
1 
NUMBER_OF_TRIALS 
288 
BLOCK_START_TEXT 
Begin Block One   
BLOCK_END_TEXT 
You have finished the first section. 
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can be read and manually analyzed, LogfileParser was created to automate this process, save 

hours of time, and reduce the likelihood of errors. 

 

 
Figure 3.10: The TestTaker interface during a session. 

 

 

 

 

Figure 3.11: Sample log file created by TestTaker. 

 

Test File: NSF_PILOT_TEST_HalfA.txt 
User Name: pmr 
User Distance: 3 
Screen Width: 5 
Screen Resolution: 5 
Start Time: 13:25:0 
Trial #: 1 
Graphics File: C:\MyWork\Research\Projects\VizEval\TestFiles\Experiment1\4BarB.txt 
Animation File: 

C:\MyWork\Research\Projects\VizEval\TestFiles\Experiment1\Four\cue1_ch0\03_XX_flash_
XX_XX.anim 

Question: Did any of the bars change height? 
User Response: Yes 
Correct Answer: No 
Question: Please click on the bar most likely to have changed height. 
Selected Bar: 3 
Question: How confident are you that this bar actually changed height? 
User Response: 7 
Correct Answer:  
Question: Please click on the bar second most likely to have changed height. 
Selected Bar: 2 
Question: How confident are you that this bar actually changed height? 
User Response: 7 
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  Other utility programs (TestFileChecker, TestFileSwitcher, and FilePreview) also were 

created to save time and reduce errors.  Since the test file read by TestTaker can be edited, 

graphics and animation file names can be changed, and directory structures can be altered, 

TestFileChecker was created to verify that all of the files that were specified within the test file 

exist at the given locations.  For some studies, the administrator may want all participants to 

view the same pairs of animations and graphics, but in a different order.  Originally, this was 

accomplished by the administrator either re-ordering the hundreds of files by cutting-and-pasting 

their names into an existing test file or by creating new test files with TestCreator and re-

entering the hundreds of trials and questions.  TestFileSwitcher will read in a test file, randomly 

order the pairs of animation and graphics files, and print a new test file with the same 

instructions and questions as the original test file.  FilePreview allows the administrator to 

quickly preview a graphics file alone or in combination with an animation without starting a 

session of TestTaker.       

VizEval Suite has been and is being used to assist researchers in conducting experiments 

on attributes that may contribute to the effectiveness of software visualizations. Compared to 

manual specification, VizEval provides a substantial time saving for the perceptual psychologists 

who are using the software.  Even though VizEval was created specifically for the types of tasks 

described above and in Section 4.3, it is a general application that can support experiments using 

other types of graphics, animations, and questions. 

3.4 System to Study the Effectiveness of Animations (SSEA)  

A System to Study the Effectiveness of Animations, SSEA, is a testing environment 

designed to study the effectiveness of dynamic software visualizations [42, 63].  It was created as 

a tool to investigate the effects of various design and interaction features of algorithm animations 
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on a viewer’s ability to perceive and comprehend a depicted algorithm.  SSEA is capable of 

running an animated graphical view (see Figure 3.12, AREA 2) simultaneously with an animated 

textual view (see Figure 3.12, AREA 4) of an algorithm.  The textual view is described as 

animated because the line of the source code that is currently being executed and graphically 

animated is highlighted.  Users can select a data set, pause, rewind and control the speed of the 

animation (see Figure 3.12, AREA 1).    

 
Figure 3.12: Screenshot of SSEA. 

 

An experiment can consist of questions asked via a pre-animation questionnaire or test, a 

post-animation test, or during the animation with pop-up questions (see Figure 3.12, AREA 5) 

and “traditional” questions (see Figure 3.12, AREA 3).  Pop-up questions appear over the source 
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code, pause the animation, and require a viewer to answer it before the animation will proceed.  

The experiment administrator can specify when a pop-up question appears by modifying the 

source code that implements the algorithm.  The text of the question is contained in an XML file.  

The “traditional” questions are located at the bottom of the screen and can be answered at any 

time and in any order.  The viewer is free to use the animation and displayed source code to 

assist in answering the questions. 

Each action performed by users as well as their responses to questions are stored in an 

XML log file.  SSEA contains a utility program that parses the XML file and converts the data 

into a tab delimited format for easier statistical analysis.   Experiment administrators can modify 

SSEA to display desired algorithms, colors, graphics and questions.    

A full description of SSEA’s architecture and capabilities can be found in [42, 63].  Since 

these publications, SSEA has been updated to administer pre- and post-tests and to play sound.  

The SSEA log file parser has also been modified to accommodate these changes.  

3.5 Conclusion 

Before developing these applications, we explored other software used to conduct 

perceptual and algorithm animation studies.  The decision to create our own software packages 

was reached because we found that existing packages did not provide the exact functionality we 

desired and that we could control variables by have consistent interfaces for our various types of 

studies. 

Creating the software has allowed for low-level studies to be conducted using VizEval 

and then, with the same look-and-feel, incorporate these perceptual/attentional features into an 

algorithm animation in SSEA.  These features are then investigated for their influence on the 

overall comprehension of the presented algorithm.  SSEA is additionally used to study 
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interaction and cognitive characteristics of algorithm animations and systems.  Now that these 

software packages have been developed and tested, our experiments can be carried out in a more 

efficient manner. 
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CHAPTER 4 

PERCEPTUAL AND ATTENTIONAL STUDIES 

 

4.1 Introduction 

The algorithm animations studied in this research were developed for pedagogical 

purposes, meaning they were created for students to gain knowledge about the depicted 

algorithms.  Cognition is the mental process involved in gaining knowledge, including aspects 

such as awareness, perception, reasoning, and judgment [20].  Therefore, viewers must be able to 

perceive what is displayed in order to gain knowledge from it.  Based on the cognitive load 

theory [49, 58] and related work [32, 68, 74 85], visualizations that are easier to perceive are 

capable of freeing some of an individual’s limited cognitive processing resources and can allow 

space within the working memory for processing of other, more complicated tasks. 

Attention is defined as the cognitive process whereby a person concentrates on some 

features of the environment to the relative exclusion of others [46, 89].   “Learning is most 

efficient when a person is paying attention” [50].  Again, these AAs have been developed for 

educational environments, so maintaining or guiding a viewer’s attention to critical actions in the 

animation can be vital to his comprehension of the algorithm.  Features that are referred to as 

perceptual and attentional tend to be low-level characteristics of the visualization or animation.  

For instance, during a sorting algorithm, the use of color to represent objects that are sorted 

versus those that are not sorted helps the viewer to quickly perceive that objects are grouped into 

two types.  The use of cues or certain motions may be effective in guiding a viewer’s attention to 

specific steps. 
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Algorithm animations often use rectangular shaped bars or some type of object for which 

the size indicates the value it represents (i.e. a taller bar represents a larger value).  These bars 

are often changed or moved to depict steps of the algorithm.  The objects are sometimes labeled 

with an alphanumeric value that is intended to add additional clarification to the user.  Another 

form of labels shown on the animation display are those used to provide textual descriptions of 

the current stage or step of the algorithm.  The placement and timing of these labels may have an 

effect on the comprehension of the algorithm.  The studies presented here address some of these 

low-level features.  We are designing and conducting experiments geared specifically towards 

studying the impact of these individual attributes on algorithm comprehension.  The results of 

these studies will inform the design of effective algorithm animations. 

Below is a listing of the perceptual and attentional experiments that have been conducted 

and analyzed along with the hypothesis, a description of the design and method, and a summary 

of the results.  

4.2 Noticeable Difference Study  

The purpose of this initial study was to determine a suitable difference in bar heights that 

will be noticeable by most viewers.  The graphical objects used in the algorithm animations in 

this research are vertical, rectangular-shaped bars.  Since the height of the bar represents its 

value, we wanted to ensure that viewers would be able to perceive the differences in heights of 

the bars and hence, the differences in the values the bars represent.  By empirically determining 

this value, other, higher-level features of algorithm animations can be compared, while 

controlling for the effect of the magnitude of the change in bar height. 

The question we sought to answer with this study was: What is a suitable difference in 

bar heights that will be noticeable by most viewers? 
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4.2.1 Participants 

Students enrolled in psychology courses at Georgia Tech participated with this study 

during the Spring and Fall 2004 semesters.  All participants had 20/20 vision after any necessary 

refractive correction. 

4.2.2 Design 

This was a discrimination threshold experiment conducted to establish the difference in 

bar heights to use in the graphical design of future studies.  It is classified as a two-alternative, 

forced-choice judgment because the participants had to select either the left or right bar as being 

taller, even if the bars appeared to be the same height.  The difference, or step size, was 

determined for the worst-case, viewing bars in the periphery.  Since algorithm animation viewers 

have varying levels of spatial resolution (or ability to detect spatial differences), the step size was 

selected so that all participants, including those with poorer spatial resolution, will be able to 

easily perceive the differences between the heights of the bars.  The minimum step size was 

determined by participants perceptually distinguishing one bar height from another with at least 

95% accuracy.      

4.2.3 Materials 

Dell Dimension desktop computers with Sony Trinitron 19” color monitors were used.  

Participants interacted with the JND software package, which managed the graphics and 

recorded participants’ responses.  To ensure the individual bars were clearly visible, they were 

approximately 0.75
o
 visual angle in width, colored green, and presented against a faint gray 

background [19].  The bars ranged in height from a set minimum to a set maximum number of 

pixels, in a constant increment of pixels. 

 



41 

4.2.4 Procedure 

Using the JND software, participants viewed multiple trials.  Each trial consisted of a pair 

of bars displayed on the top portion of the screen and one question at the bottom asking the 

participant to judge which bar was taller, the left or the right.  The two bars were always a set 

number of degrees or pixels apart, but their location on the screen varied from the center to the 

far left or right periphery.  Viewers clicked on the button “Left” or “Right” to indicate the bar 

they judged to be taller, and the responses were stored in a tab-delimited log file.   

4.2.5 Results 

From a viewing distance of 28.5 inches and a display resolution of 1280 x 1024, analysis 

of the results found 22 pixels to be a distinguishable difference between two bars even for 

participants with poorer spatial resolution and for bars in the periphery.  This result will aid in 

building graphical displays that will allow an experimenter to control for a viewer’s ability to 

perceive height changes and differences. 

4.3 Effect of Flash Cue on Detection and Localization 

This second experiment was designed to investigate the effect of a flash cue on a 

viewer’s ability to detect and localize bars that changed height.  Many existing algorithm 

animations use some type of cueing in hopes of drawing the viewer’s attention to an action that 

is occurring or about to occur.  Also, animations often consist of objects resizing or changing 

shape to indicate some other action or step of the algorithm.  These cues and changes take place 

in the midst of textual descriptions and often in conjunction with other windows with additional 

views of the algorithm.  Investigating whether the cues and changes are perceived as the 

algorithm animation designer intended would be difficult to analyze within the context of a 

complete algorithm animation.  Therefore, VizEval was used to conduct this study because the 
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display looks similar to the algorithm animations portrayed in SSEA, but only the features of 

interest (cues and height changes) are shown to the viewer.  The questions asked are specific to 

determining the viewer’s ability to perceive the actions taking place.   

The question we sought to answer with this study was: Does the use of a “flash” cue aid 

in the detection and localization of critical changes? 

4.3.1 Participants 

Thirty-six undergraduate students at Georgia Tech participated with this study during the 

Spring and Fall 2005 semesters.  All participants had 20/20 vision after any necessary refractive 

correction, and all received extra credit that could be allocated towards any psychology course in 

which they were enrolled during that semester. 

4.3.2 Design 

This study investigated 4 within-subject variables: labels, set-size, number of bars cued, 

and number of bars changed.  Each participant viewed 576 trials that were divided into 2 blocks 

of 288 each.  One block of trials displayed an alphabetical label placed underneath each bar and, 

as shown in Figure 4.1, one block did not display labels.  The other 3 variables were investigated 

within each block.  The display set-size varied to show 4, 8, or 16 bars.  During each trial, either 

1 or 2 bars were cued (flashed) followed by 0, 1, or 2 bars increasing or decreasing in height by 

22 pixels.    

4.3.3 Materials 

Participants interacted with the TestTaker module (see Figure 4.1 below) of the VizEval 

Suite, which managed the graphics and animations and recorded participants’ responses.  Dell 

Dimension desktop computers with Sony Trinitron 19” color monitors, 1280 x 1024 resolution, 

were used.   
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Figure 4.1: The TestTaker interface during a session. 

 

To ensure the individual bars were clearly visible, they were approximately 0.75
o
 visual 

angle in width, colored green, and presented against a faint gray background.  The bar heights 

represent the values of data elements in an array.  The bars varied in height from 44 to 374 

pixels, in increments of 22 pixels.  A preliminary study (described in Section 4.2) showed that an 

increment of 22 pixels was clearly detectable, even in the far peripheral portion of the screen and 

for participants with poorer spatial resolution.   

4.3.4 Procedure 

Students volunteered to participate in this study through an online system.  Sessions 

consisted of one or two students who signed consent forms, read introductory material and had 

their visual acuity tested before beginning the study.  Each participant then used the TestTaker 

module to complete two blocks of trials, one with labels and one without, and the order of the 

blocks was balanced across participants.  The other three variables (set-size, number of bars 

cued, and number of bars changed) were randomly varied within each block.   

Each trial began with a countdown displayed as a fixation point at the top center of the 

display window.  The countdown began after the user pressed the spacebar and when it ended 
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there was a short pause (a random number of milliseconds) before the start of the animation.  

Each of the 576 trials consisted of a brief animation followed by five questions.  Animations 

showed either one or two bars flash twice (hide/show for 100 milliseconds, two times), and then 

zero, one, or two bars were randomly increased or decreased in height by 22 pixels.  In trials 

where two bars were either cued or changed height, the bars were displayed on opposite sides of 

the screen.  This was done to encourage participants to simultaneously monitor both sides of the 

display. 

At the end of each animation, participants answered the following five questions by 

responding with the mouse: 

1. Did any of the bars change height? (Yes or No) 

2. Please click on the bar most likely to have changed height. 

3. How confident are you that this bar actually changed height? (1 = least …7 = 

most confident) 

4. Please click on the bar second most likely to have changed height. 

5. How confident are you that this bar actually changed height? (1 = least … 7 = 

most confident) 

4.3.5 Results and Analysis 

The results for detection and localization of changes in bar height differed. 

Perceptual/attentional characteristics that helped detection hurt localization, and vice versa.  

First, detection was significantly better when two bars simultaneously changed height than if 

only one changed (F(1,33)=62.96, p<0.001); conversely, localization performance was worse 

when two bars changed height (F(1,33)=89.18, p<0.001).  One possible cause of this result is 

that two bars changing height doubles the viewer’s chances of detecting a change but also 
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doubles the number of locations that must be stored in memory.  The location of the second bar 

is fading from memory while the participant answers questions about the location and confidence 

level associated with the first bar. 

Second, localization performance suffered, as expected, from the set-size effect.  

Meaning, participants’ ability to locate the correct bar that changed height decreased as the 

number of bars increased from 4 to 8 to 16.  However, detection performance was worse for 

smaller set sizes than larger sets when the bars were located in the periphery and was not 

affected by set-size effect when the bar locations were random. 

The use of labels was a third characteristic that produced differing performance levels for 

detection and localization activities.  While labels significantly improved localization 

performance (F(1,33)=7.88, p<0.008), they slightly harmed detection performance.  Labels were 

especially helpful in localizing bars when either two simultaneous changes in bar heights 

occurred or when 8 or 16 bars were displayed. The labels provided additional cues that helped to 

retain information about critical bar locations in working memory while they responded to other 

questions during each trial.  The slightly poorer detection performance on trials with labels may 

have been because the labels provided no critical information for detection, yet doubled the 

number of objects on the screen and added clutter to the display. 

Our results show that some perceptual/attentional characteristics of the animation display 

may help processing for one type of task, but harm another.  Thus, we must systematically 

consider both the users’ perceptual and attentional capabilities as well as the demands of the 

specific tasks involved in apprehending and comprehending algorithm animations.  
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4.4 Cueing and Motion in Algorithm Animation Comprehension   
 

Analysis of the flash cue study described in section 4.3 provided insight into the 

usefulness of a flash cue in detecting and localizing changes on a perceptual and attentional 

level.  This third experiment integrates the flash cue into an algorithm animation and investigates 

its effect on the comprehension of the depicted algorithm.  With this study we were able to 

investigate if using a flash cue to indicate that two bars were being compared helped the viewer 

perceive the comparison and, further, if the ability to notice the comparison increased the overall 

understanding of the algorithm.  We also tested a second factor, the type of motion used to 

illustrate an exchange of values within an array, and again, viewers were tested on their ability to 

notice this change and its effect on the comprehension of the algorithm. 

The question we sought to answer with this study was: Does the use of exchange motion 

and comparison cueing aid in the comprehension of algorithm animations? 

4.4.1 Participants 

Students were recruited from various undergraduate-level computer science courses at 

The University of Georgia during the Fall 2005 and Spring 2006 semesters.  Fifty-nine 

volunteers came into our research lab and spent approximately one hour viewing animations and 

answering questions.  Each participant received a five-dollar cash stipend at the completion of 

the experiment. 

4.4.2 Design 

Quicksort is a divide-and-conquer algorithm in which array elements are compared to a 

“pivot” value and then placed into a “lower” (value <= pivot) or “higher” (value > pivot) 

partition based on the comparison.  This study concurrently investigated two factors, cueing and 

exchange motion, each with two levels.  For cueing, the “Flash” group was presented with pairs 
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of bars that flashed three times when they were compared and the bars in the display for the 

“None” group did not flash when values were compared.  For both groups, arrows pointed to the 

2 bars being compared.  For motion, one group (Move) saw the bars swap positions using an arc-

shaped path.  The other motion (Grow) showed the bars stay in their positions, but grow or 

shrink to the size of the other bar.   

Table 4.1: 2 x 2 Factorial Experiment Design - Number of participants per group. 

 

 Move Grow 

Flash 14 16 

None 12 17 

 

To conduct this study, four animations of the quicksort algorithm were created and 

participants were randomly assigned to one of the four groups (Move/Flash, Move/None, 

Grow/Flash, Grow/None).   

4.4.3 Materials 

Experiments were conducted through the SSEA environment.  Each participant was given 

a packet that consisted of a consent form, an instruction sheet, a SSEA “cheat sheet”, scratch 

paper, and a feedback form.  Samples of these materials are in Appendix A.  The instruction 

sheet provided an overview of what was expected of each participant during the experiment and 

step-by-step instructions of how to use SSEA for the practice exercise.  The SSEA “cheat sheet” 

shows a screen shot of SSEA (see Figure 4.2) along with an explanation of each of the available 

views.  Studies were conducted on Dell Dimension desktop computers with high-resolution 17-

inch LCD flat-panel color monitors. 
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4.4.4 Procedure 

Upon arrival to the lab, each participant was given a packet and a brief verbal description 

of what it contained.  Students were randomly assigned to the various groups and were not aware 

that they were viewing different versions of the animation.  They each ran the “SSEA_Demo” of 

an algorithm that finds the maximum value of the input set.  Just as in the actual experiment, the 

demo contained an animated and pseudocode view of the algorithm and the participants were 

required to answer one pop-up question and four “traditional” test questions located at the 

bottom of the screen (see Figure 4.2).  The users were instructed to explore the interactive 

facilities of SSEA with specific, written steps of how to play, pause, or step through the 

algorithm, answer questions, etc.   

 
Figure 4.2. Screenshot of the SSEA program with a pop-up question displayed. 

 

 

After students were comfortable with the system, they ended the demo and began the 

portion of the study that we used for analysis.  The first screen presented was a questionnaire in 

which students indicated their gender, classification, and every undergraduate computer science 



49 

course taken in the past or in which they were currently enrolled.  Students then proceeded to 

view an implementation of the quicksort algorithm.  We chose to use the quicksort algorithm 

because of its complex nature, making it a challenging algorithm to understand and follow.   

The participants viewed their respective animation and all answered the same fifteen 

“traditional” test questions at their own pace.  All questions were multiple-choice and reflected a 

range of concepts related to comprehension of the quicksort algorithm.  These questions are 

similar to those on the post-test in Appendix C.  The students had access to these questions at all 

times, and they were allowed to use the animation or code to aid in their responses.  Since all 

interaction data is captured, we may eventually be able to find usage trends that may provide 

insight for future studies.   

Once students completed and submitted the traditional test questions, they were given the 

opportunity to comment on the animations they viewed, the SSEA system, or give any general 

feedback, through a paper survey form. After feedback forms were collected, students received 

payment for their participation. 

4.4.5 Results and Analysis 

Questions about perception, attention, and comprehension were investigated with this 

study.  To analyze the results, we used the SAS statistical software package to perform one-

factor and two-factor ANOVA analyses.  Statistical significance at the α = 0.05 level was 

employed. 

Perception and Attention 

The algorithm animation was periodically paused for users to answer pop-up questions.  

Each participant was required to answer the same set of eight pop-up questions that were 
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presented immediately following comparison or exchange actions.  Four questions were specific 

to the comparison action: 

1 - 2.  What elements were just compared? (Asked at two different steps.) 

3. What was the last comparison? 

4. What variables were compared? 

The other four were specific to the swapping action and the two sets of questions were 

intermixed: 

1 - 2.  What elements were just swapped? (Asked at two different steps.) 

3. What element was just swapped with 70? 

4. What variables were swapped? 

Table 4.2:  Averages for Pop-up Questions 

 Move Grow AVG 

Flash 72.9 % 71.6% 72.2 % 

None 62.3 % 58.4 % 60.0 % 

AVG 68.0 % 64.8 %  

 

Table 4.2 shows the average scores, by group, for all eight pop-up questions.  Participants 

in the cueing (Flash) group significantly outperformed the no-cueing (None) group on the pop-up 

questions overall, F(1,57)=4.44, p < 0.04, as well as the comparison specific questions, 

F(1,57)=10.39, p< 0.002.  The move group performed slightly better than the grow group 

overall, and significantly better on the swapping specific questions, F(1,57)=5.74, p < 0.02.  

Comprehension 

Comprehension was measured based on a participant’s performance on the “traditional” 

questions.   These questions were designed to cover the first three levels of Bloom’s Taxonomy: 

Knowledge, Comprehension, and Application [89].  Analysis of overall performance of the four 
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animation groups on the traditional questions as well as the individual levels yielded results that 

were not significant.   

 

Table 4.3: Averages for Comprehension Questions 

 Move Grow AVG 

Flash 61.6 % 61.6% 61.6 % 

None 59.1 % 60.4 % 59.9 % 

AVG 60.4 % 61.0 %  

 

In conclusion, participants who viewed the flash cue and participants who viewed the arc-

shaped motion performed significantly better on the perceptual and attentional questions.  

However, this benefit did not appear to translate into a higher comprehension of the algorithm.  

The use of labels and color provided redundant cues to the actions highlighted by flashing and 

motion, and apparently conveyed adequate information to the viewer.  Even though the features 

investigated in this study did not increase (nor did it decrease) comprehension, participants liked 

the “blinking” comparisons and animated swaps. 
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CHAPTER 5 

ATTENTIONAL AND COGNITIVE STUDIES 

5.1 Introduction 

As described earlier, Naps et al. [27] have identified six levels of student engagement that 

describe various levels of interaction with a visualization tool.  In order of increasing 

engagement, the categories are no viewing, viewing, responding, changing, constructing, and 

presenting.  The types of interaction design addressed by the following studies pertain to the 

second and third levels of this taxonomy: viewing and responding.   

Dynamic questions have been implemented into well-published algorithm animation 

systems [53, 76, 30] and given as a recommended feature for such pedagogical tools [71, 55].  

Several studies were conducted that partially investigate the use of dynamic questions by only 

considering one aspect, such as prediction [39], or the details were not provided [30].   

Interactive questioning techniques can vary based on when and how questions are asked 

as well as what is asked.  Questions can be in the form of a pop-up that stops the animation and 

forces the user to respond or of what we call “traditional”, worksheet-style questions that can be 

answered at any time with the assistance of the animation or code.  Questions may require the 

user to predict what is about to happen or to tell what they just saw or interpreted.  The questions 

may be low-level, asking about actions of the animation, and affect where the viewer places her 

attention.  Alternatively, the questions may be high-level and require the user to think about the 

algorithm.  We have investigated interactive questions by conducting a series of studies to 

address these different techniques.  We have also begun to explore variations in performance 
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inevitably present in studies involving human subjects by analyzing the effects of individual 

differences and attention (or visual focus as detected by eye-tracking equipment) on algorithm 

comprehension. 

5.2 Interactive Questioning in Algorithm Animation Comprehension, Part I 

Our cueing and motion study described in Section 4.2 tested whether a specific cueing or 

swapping technique increases a user’s ability to notice changes occurring at each step of an 

algorithm during execution and if greater ability to notice these changes enhances the overall 

comprehension of the algorithm [42].  During the design phase of the previous experiment, we 

decided to add pop-up questions as part of the animation of the algorithm.  The pop-ups 

immediately followed one of the comparing or exchanging actions and were intended to help 

determine whether these techniques increased a student’s ability to notice the actions taking 

place during the animation.  After adding the pop-up questions and running pilot tests, we felt 

that the questions forced us to pay better attention to the animation.  Analysis of the results of the 

cueing and motion experiment found a correlation between performance on the pop-up questions 

and regular test questions.  Therefore, we decided to follow up with this study on interactive 

questioning techniques.  

The question we sought to answer with this study was: Does the use of interactive 

questioning aid in the comprehension of algorithm animations?  If so, what types and how? 

5.2.1 Participants 

Students enrolled in various computer science undergraduate courses were recruited to 

come into our research lab and spend approximately one hour viewing animations and answering 

questions.  Thirty-four undergraduate students at the University of Georgia participated in this 
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study during the Spring and Fall 2006 semesters.  Each participant received a ten-dollar cash 

stipend at the completion of the experiment. 

5.2.2 Design 

The purpose of this study was to explore more than just the difference in performance 

between viewers who interact with the system via pop-up questions and those who do not.  We 

also wanted to determine if providing immediate feedback to the pop-up questions as well as the 

type of question asked have a significant impact on the performance results.  The types of pop-up 

questions were predictive (What will be the next step?) or responsive (What did you just see?).  

As shown in Table 5.1, our experiment design consisted of 6 groups.  Even though the no pop-up 

group for both predictive and responsive are the same, we included participants in both of these 

categories for analysis purposes.  

Table 5.1: 2x3 Factorial Experiment Design - Number of Participants Per Group. 

 
No 

Pop-up 

Without 

Feedback 

With 

Feedback 

Predictive 6 6 5 

Responsive 5 6 6 

 

Based on previous studies and intuition, we believed that the participants who were asked 

to predict the next step of the algorithm through a pop-up question and those who were provided 

the correct answers to their pop-up questions would perform better on the traditional test 

questions than participants in the other groups. 

5.2.3 Materials 

Experiments were conducted through the SSEA environment.  Each participant was given 

a packet that consisted of a consent form, an instruction sheet, a SSEA “cheat sheet”, scratch 

paper, and a feedback form.  A sample of these materials can be found in Appendix A.  The 
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instruction sheet provided an overview of what was expected of each participant during the 

experiment and step-by-step instructions of how to use SSEA for the practice exercise.  The 

SSEA “cheat sheet” shows a screen shot of SSEA (see Figure 5.1) along with an explanation of 

each of the available views.  

 

Figure 5.1. Screen shot of the SSEA program with a pop-up question displayed. 

 

Studies were conducted on Dell Dimension desktop computers with high-resolution 17-

inch LCD flat-panel color monitors. 

5.2.4 Procedure 

Upon arrival to the lab, each participant was given a packet and a brief verbal description 

of what it contained.  Students were randomly assigned to the various groups and were not aware 

that they were viewing different versions of the animation.    They each ran the “SSEA_Demo” 

of an algorithm that finds the maximum value of the input set.  Just as in the actual experiment, 

the demo contained an animated and pseudocode view of the algorithm and the participants were 

required to answer and submit the test questions located at the bottom of the screen (see Figure 
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5.1).  The users were instructed to explore the interactive facilities of SSEA with specific, written 

steps of how to play, pause, or step through the algorithm, answer questions, etc.  The demo did 

not contain pop-up questions of any form. 

After students were comfortable with the system, they ended the demo and began the 

portion of the study that we used for analysis.  The first screen presented was a questionnaire in 

which students indicated their gender, classification, and all undergraduate computer science 

courses taken.  Students then proceeded to view an implementation of the quicksort algorithm.  

We chose to use the quicksort algorithm because of its complex nature, making it a challenging 

algorithm to understand and follow.   

The participants viewed the animation and answered fifteen “traditional” test questions at 

their own pace.  These questions were accessible by the students at all times, and they were 

allowed to use the animation or code to aid in their responses.  Since all interaction data (i.e. 

changes to speed, replays, changing between input sets, selecting a question, etc.) is captured, we 

hope to eventually be able to identify usage trends that may provide insight for future studies.   

The animation for participants in the no pop-up group was never automatically paused 

and users were not required to interact with the AA system.  Students in the other groups were 

required to answer either eight predictive or eight responsive pop-up questions.  Half of the 

participants in each group were provided feedback in the form of the correct choice and a brief 

description.  

Once students completed and submitted the traditional test questions, they were given the 

opportunity to comment on the animations they viewed, the SSEA system, or give any general 

feedback, through a paper survey form. After feedback forms were collected, students received 

payment for their participation. 
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5.2.5 Results  

Several questions were addressed with this study and to analyze the results, we used the 

SAS statistical software package to perform one and two factor ANOVA analyses.  Statistical 

significance at the α = 0.05 level was employed. 

Pop-up versus No pop-up 

Does the type of interaction required through the use of pop-up questions enhance overall 

comprehension of an algorithm?  Similar to the results by Jarc et al. [39], we found that 

interactive questioning lessened performance, but not significantly (F(1,27)=1.49, p= 0.233).  

The no pop-up group had an average score of 76.4% while the pop-up groups had a combined 

average of 67.2%. 

The no pop-up group scores appear to have been tainted by four participants in that group 

who completed the experiment during a single session.  They spent on average 13.6 minutes 

viewing the animation and answering the test questions while the average for all participants in 

all groups (including these four) was 30.7 minutes.  Using the Pearson Product-Moment 

Correlation Coefficient, we found a linear relationship (r = 0.7266) between time spent and 

performance for the no pop-up group.  

Table 5.2:  Average percentage correct per group on the "traditional" test questions. 

 No Pop-up 
No 

Feedback 

With 

Feedback 

Average 

(Exludes 

“No Pop-up”) 

Predictive 77.8% 70.0% 65.3% 67.9% 

Responsive 74.7% 64.4% 68.9% 66.7% 

Average 76.4% 67.2% 67.3%  
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Table 5.3. Average percentage correct per group on the "pop-up" questions. 

 
No 

Feedback 

With 

Feedback 
AVG 

Predictive 43.8% 65.0% 53.4% 

Responsive 77.5% 93.8% 86.4% 

AVG 59.1% 80.7%  

 

Predictive versus Responsive 

Does requiring a student to predict the next step of an algorithm during execution 

enhance overall comprehension of an algorithm?  According to the results in Table 5.2, there is 

not much difference in scores for students who answer pop-up questions that require them to 

select the next action versus those who respond about the previous step.   

The difference in performance on the pop-up questions shown in Table 5.3 are 

statistically significant (F(1,18)=15.22, p=0.0013) but this is expected since predicting what is 

about to happen requires some level of understanding of the algorithm as opposed to identifying 

the action that just took place. 

Feedback versus No Feedback 

Does providing students with immediate feedback in the form of the correct answer and 

brief description enhance overall comprehension of an algorithm?  As shown in Table 5.2, 

students who received feedback performed better on the regular test questions than those who 

were only shown the pop-up question, but again the difference was not significant (F(1,18)=0.65, 

p=0.4336).  However, providing feedback to the pop-up questions significantly improved scores 

on the pop-up questions themselves (F(1,18=6.29), p=0.0233).    
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Use of Color 

Our last two experiments were run during the 2005 – 2006 school year and both used the 

SSEA program to show the same quicksort implementation to participants who were allowed to 

volunteer for only one of the studies.  Due to the high similarity between the materials and 

procedures of the two experiments, we were able to make comparisons between specific groups 

from the different studies. 

In the animation, color is used to indicate the current status (sorted, active/inactive, 

lower/upper partition) of a bar, or array element, as the algorithm executes.  For this experiment, 

we reduced the number of colors used in the animation from six to three and used fading to 

create an appearance similar to that of using additional colors. 

Answering the same fifteen test questions, the responsive-with-feedback group of this 

study who viewed the quicksort animation with three colors had an average score of 76% while 

the comparable group from the cueing and motion experiment who viewed an animation with six 

colors averaged 61.9%.  This difference is nearly significant (F(1,17)=3.59, p=0.0754).  

User Feedback 

Several students commented that the use of colors for grouping partitions was helpful as 

well as the “blinking comparisons” that we define as cueing.  Most of them stated that they really 

liked the synchronized pseudocode view even though a few followed up by saying that “there 

was too much to take in at once” or “stimulation overload”.  Many students also found the speed 

control, and step and replay functions to be very useful.  A few would like more details in the 

captions explaining the steps while others thought that the captions were distracting.  
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5.2.6 Analysis and Conclusion 

In general, conducting empirical studies of this sort in which students are recruited on a 

voluntary basis and asked to perform their best on a task that will not count towards a grade will 

involve outlier scores that contribute to a higher standard deviation and cause the results to not 

be statistically significant.  Even with this factor in mind, the data from this experiment still 

helps to strengthen previous findings and opens new areas of interest. 

As stated earlier, very few experiments have been conducted that focus strictly on the 

influence of pop-up questions on the comprehension of algorithms.  Our results support the 

findings of [39] in that interactive prediction does not help, and actually lessens, the overall 

performance on test questions.  Jarc et al. attributed the decrease in performance to weaker 

students treating the interaction as a guessing game, but we believe that the difference may be 

more related to the user having the opportunity to see the uninterrupted high-level execution of 

the algorithm without being required to focus on low-level, procedural actions.  We investigated 

this hypothesis in the two experiments discussed in the following sections.  First, Section 5.3 

describes a study in which we examined performance differences based on question complexity 

(high- or low-level) and how/when questions were asked and answered (at specific steps via pop-

ups or at anytime via traditional questions).  Next, we used eye-tracking equipment to capture 

and explore a user’s attention based on visual focal points and describe the results of this data as 

well as its correlation to performance and individual differences.         

If an AA developer chooses to use some type of interactive questioning technique, she 

may use either predictive or responsive questions since the performance on comprehension 

questions was nearly the same.  However, providing immediate feedback to those questions does 

appear to be a useful practice. 
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Using fewer colors requires the user to think less about what each color means and 

permits the user to focus more on the animation.  Hence, a cognitive economy is created that 

increases learning by minimizing a viewer’s mental load while maximizing the amount of 

information shown [85].    

Many users stated that they found the highlighting of the pseudocode in synchronization 

with the animation to be helpful.  We are interested in finding out how much and in what order 

students focus on the multiple views of the algorithm, another topic investigated through the use 

of an eye-tracking device and discussed in section 5.4.   

 5.3 Interactive Questioning in Algorithm Animation Comprehension, Part II      

For the first interactive questioning experiment, we expected the group of students with 

the dynamic questions to perform better on the comprehension questions, but since they 

performed worse, we investigated this phenomenon further.  One possible explanation for the 

poorer performance of the group with pop-up questions is that the low-level questions that were 

asked may have caused the participants to focus on the actions of the animation and not the 

overall execution of the algorithm.  This possibility is explored in this study by asking 

participants questions with different levels of complexity. 

This second interactive questioning study separates traditional questions from pop-up 

questions. Traditional questions can be considered interactive because the viewer is able to use 

the animation and code to answer the questions.  All of the pop-up questions used in this study 

were responsive with feedback since the first interactive study (see Section 5.2) found no 

difference in comprehension performance for the various groups.  For each set of interactive 

questions, one group of participants was asked low-, procedural-level questions and the other 

high-, comprehension-level questions.  The control group did not receive any questions during 



62 

the execution of the algorithm.  In addition to viewing the animation, all participants completed a 

pre-test, a questionnaire, a post-test, and a series of individual preferences and abilities tests.    

The questions we sought to answer with this study were: Does the use of interactive 

questioning aid in the comprehension of algorithm animations?  If so, what types and how? 

5.3.1 Participants 

Forty-four students enrolled in CS 1331, Introduction to Object-Oriented Programming, 

offered at Georgia Tech during the Fall 2006 semester participated in this study.  Each 

participant received extra credit in that course and a five-dollar stipend.  As an alternative, 

students who wished to earn extra credit without participating in the study could prepare a 

presentation containing an overview of the Mergesort algorithm, step-by-step implementation 

details, an analysis of runtime, and a comparison to other algorithms. 

5.3.2 Design 

As shown in Table 5.4, our experimental design consisted of two factors: level of 

question complexity and the method by which the questions were asked during the animation.  

We divided questions into two levels of complexity, low or high.  The low-level questions 

simply required the user to read or recall information presented on the screen.  Correctly 

responding to the high-level questions required understanding of the algorithm or functions 

executing within the algorithm. 

Table 5.4: 2x3 Factorial Experiment Design - Number of participants per group. 

 No 

Questions 
Traditional Pop-up 

Low 8 7 8 

High 7 7 7 

 

Even though the No Questions group for both Low and High are the same, we included 

participants in both of these categories for analysis purposes. 
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Some participants were not required to answer questions during the animation (“No 

Questions”).  Those who were required to interact with the AA were presented with questions 

either in the form of pop-ups or an onscreen worksheet (“Tradional”).  The traditional questions 

asked for details about the algorithm and were always available at the bottom of the screen.  The 

pop-up questions paused the animation at a particular step and required the user to respond 

before proceeding with the animation. 

For this study we collected data pertaining to individual differences between the learners 

and have begun to investigate whether algorithm animations may be better suited for students 

with certain learning preferences or with particular inductive, spatial, or memory capabilities. 

5.3.3 Materials 

The materials used for this study were the same as those for the first interactive 

questioning study described in Section 5.2 plus a pre-test (see Appendix B) and a battery of 

individual assessment tests.  The names, descriptions, and purposes for each of these tests are as 

follows: 

Surface Development (VZ-3) [23] 

The Surface Development assessment tests a participant’s spatial ability by requiring him 

to envision manipulating a three-dimensional object and to answer questions about the finished 

object.  The test used in this study specifically asked the participants to imagine folding a piece 

of paper into an object/cube and then match the edges of the flat piece of paper with the edges of 

the object.   

Figure Classification (I-3) [23] 

The Figure Classification assessment tests an individual’s inductive reasoning 

capabilities.  Participants were given a handout that contained several sets of figures in which 
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they had to recognize similarities and differences. Each problem contained 2 or 3 groups of 

figures with 3 items each.  The participant had to determine features that were similar amongst 

figures within each group and different from the other groups and then classify ungrouped 

figures based on their findings.   

Backward Digit Span (Working Memory) 

The Backward Digit Span assessment was used to measure each participant’s working 

memory.  The facilitator reads a series of 2 to 8 numbers aloud to the participant who then writes 

the numbers in backwards order after the facilitator finishes saying all 2 to 8 numbers of that 

series.  For example, the facilitator says 5 2 8, and the participant is expected to write 8 2 5, then 

the facilitator says 9 3 1 5 7 4 3 and the participant attempts to write 3 4 7 5 1 3 9. 

Learning Styles Inventory 

A learning styles inventory described in [25] and available at 

http://www.engr.ncsu.edu/learningstyles/ilsweb.html categorizes students into groups along 4 

different dimensions: Visual-Verbal, Reflective-Active, Intuitive-Sensory, and Global-

Sequential.  Participants answer 44 two-choice questions, 11 from each of the 4 groups, and are 

classified accordingly.  For instance, if a participant selects all visual responses for the 11 

questions in the Visual-Verbal category, then he will be self-classified as strongly visual.  

However, if another participant answers 5 verbal and 6 visual, then the difference of 1 would 

result in him being classified as a visual learner, but not having a high preference for either. 

Visual Acuity 

The computerized Vision Acuity test is a quick way to determine if a viewer is visually 

impaired.  We want to eliminate this as a factor that could influence performance on the various 

test, especially the algorithm animation comprehension test.  To complete this test, each 

http://www.engr.ncsu.edu/learningstyles/ilsweb.html
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participant sits a specified distance from the computer monitor and reads aloud the characters 

shown on a chart on the screen. 

Color Perception Deficiency Screening 

Deficiencies in color perception were screened using Ishihara Plates. 

5.3.4 Procedure 

The procedure for this experiment was basically the same as the first interactive 

questioning study.  This one also included written tests for the surface development, figure 

classification, and backward digit span assessments.  The overall flow for each participant was to 

sign a copy of the consent form, take a timed, written surface development and figure 

classification tests.   

Students were then able to work at their own pace on the computerized portion of the 

study in which they completed the SSEA demo, questionnaire, pre-test, algorithm animation, 

post-test, and learning styles assessment.  As each one finished, the backward digit span, visual 

acuity, and color perception deficiency tests were administered on a one-by-one basis. 

5.3.5 Results and Analysis 

Algorithm comprehension was measured by performance on pre- and post-tests; a subset 

of the questions in the post-test were asked as the pre-test.  The difference between each 

participant’s score on that subset of post-test questions and the pre-test was recorded as 

performance improvement. 

Performance by Question Type and Level 

Tables 5.5 – 5.8 show test and improvement scores by group.  The values displayed in the 

fifth column of each table are the average scores for the groups who were asked low- or high-

level, pop-up or traditional questions. 
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Even though the students were randomly assigned into one of the six groups, the pre-test 

scores indicate a nearly significant difference, (F(1,38)=3.4902, p=0.06946), in previous 

knowledge about the quicksort algorithm between the low-level  (average score of 44.17%) and 

high-level (60.71%) groups.  Also, the no questions group (59.17%) scored moderately higher 

than the pop-up group (49.17%).  The group types had no effect on the pre-test scores since the 

users had not viewed any versions of the animation.  This improbable circumstance of random 

assignment yielding groups with nearly significant differences in prior knowledge impedes the 

analysis of performance based on group type.  However, some inferences can be drawn, and 

fortunately, other data was gathered about participants’ individual abilities.  

Though large differences exist between the pre-test scores of some groups, most of these 

differences have been eliminated by the post-test (see Table 5.6).  This trend is especially 

noticeable within the “Traditional Only” group.  Pre-test scores differed by 17.86% whereas the 

post-test scores on those same questions differed by only 1.79%, a 32.14% improvement for the 

students who answered low-level questions versus only a 16.07% increase for those who 

answered high-level traditional questions.  A one-tailed t-test produced a p-value of 0.164638. 

Another observation deals with the “Pop-up Only” group.  Pre-test scores show that the 

students in the “High” group (42.19%) had more prior knowledge of the algorithm than those in 

the “Low” group (57.14%) with almost a +15% advantage and less room for improvement.  

However, their scores improved by 28.57% while the “Low” group only improved by 23.44%, 

meaning that high-level pop-up questions appear to be advantageous in increasing algorithm 

comprehension, though not significant.   
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Table 5.5: Pre-test scores.  Random assignment generated “High” versus “Low” groups with 

nearly significant differences in prior knowledge of the algorithm. (F(1,38)=3.4902, p=0.06946).   

 No 

 Questions 

Pop-up 

 Only 

Traditional 

 Only 

AVG  
(Excludes “No 

Questions”) 

Low 55.36% 42.19% 46.43% 44.17% 

High 62.50% 57.14% 64.29% 60.71% 

AVG 59.17% 49.17% 55.36%  

 

 

Table 5.6: Post-test (subset) scores.  These are average scores on the subset of post-test 

questions that were presented as the pre-test.  Notice the “Low-Traditional Only” scores are now 

only 1.79% less than the “High-Traditional Only” 

 No 

 Questions 

Pop-up 

 Only 

Traditional 

 Only 

AVG  
(Excludes “No 

Questions”) 

Low 76.79% 65.63% 78.57% 71.67% 

High 79.69% 85.71% 80.36% 83.04% 

AVG 78.33% 75.00% 79.46%  

 

 

Table 5.7: Improvement as a difference between pre-test and a subset of post-test scores.  A 

one-tailed t-test of the difference between the “Traditional Only” “Low” versus “High” groups 

produced a p-value of 0.164638. 

 No 

 Questions 

Pop-up 

 Only 

Traditional 

 Only 

AVG  
(Excludes “No 

Questions”) 

Low 21.43%  23.44 %  32.14 % 27.50 % 

High 17.19%  28.57 %  16.07 %  22.32 % 

AVG 19.17%  25.83 %  24.11 %   

 

 

Table 5.8: Post-test scores for all questions.  No statistically significant differences. 

 No 

 Questions 

Pop-up 

 Only 

Traditional 

 Only 

AVG  
(Excludes “No 

Questions”) 

Low 70.54% 67.97% 70.54% 69.17% 

High 71.09% 80.36% 74.11% 77.23% 

AVG 70.83% 73.75% 72.32%  
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The Pearson Product-Moment Correlation Coefficient, r, is a measure of the tendency of 

a pair of variables to increase or decrease together [89].  The value range of r is between -1.0 and 

+1.0 with |r| values close to 1.0 considered a strong correlation and values close to 0.0 to be 

weak.   Table 5.11 shows r between each pair of tests.  A fairly strong positive correlation was 

found between traditional and post-test performances (r = 0.746192) and a moderate linear 

relationship between scores on the pop-up questions and post-tests (r = 0.440713).  So, students 

who performed better on the interactive questions tended to also perform better on the post-test.  

Learning Styles 

As described earlier, the learning styles assessment consists of 44 two-choice questions, 

11 for each of the 4 categories (Visual-Verbal, Reflective-Active, Intuitive-Sensory, and Global-

Sequential).  To understand how the values were computed, imagine the scores for each category 

as a number line [-11, 11].  Starting at 0, each response moves the participant one score to the 

left or right.  If a participant responds in one “direction” for all 11 questions for one category, 

then his score will be either +/- 11.  If he answers 5 in one direction and 6 in the other, his score 

will be +/- 1, and he will be classified accordingly.  There is no significance to which level of a 

category is + or -; this signage was used only for grading, plotting, and comparison purposes.  

The chart in Figure 5.2 displays the distribution of scores on the learning styles assessment in 

which negative scores are for Reflective, Intuitive, Verbal, and Global learners and the positive 

scores are for Active, Sensory, Visual, and Sequential. 

Table 5.9 shows the number of participants, improvement, and post-test scores per 

learning styles category.  Students are almost evenly balanced (20 to 24) in the active/reflective 

and sequential/global groups.  Post-test scores are essentially the same for all groups when 

viewed as a whole, but further dividing the groups into levels based on their scores [±1, ±11] 
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within each category yields differences.  Specifically, the 9 students in the lower end of the 

sensory group (scores of +1 or +3)  had a significant improvement in comparison to the 10 in the 

lower end of the intuitive group (scores of -1 or -3), P(T<=t) =0.036583.  This implies that AAs 

may be better suited for intuitive learners who are good at grasping new concepts and prefer to 

learn by discovering [25].  

Table 5.9: Improvement and post-test scores by Learning Style. Indentation and shading are 

used to group the pairs of learning styles per category. 

LS - Group Count Improve-ment Post-All 

Reflective 24 25.52% 73.96% 

Active 20 20.00% 70.31% 

Intuitive 27 20.37% 72.69% 

Sensory 17 27.21% 71.69% 

Verbal 8 15.63% 73.44% 

Visual 36 24.65% 72.05% 

Global 24 21.88% 72.40% 

Sequential 20 24.38% 72.19% 
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A majority of participants were classified as being more visual learners (36) than verbal 

(8), and achieved a considerably higher level of improvement between pre- and post-test scores, 

though not significant (P(T<=t) = 0.180749).  On average, the visual learners improved by 

24.65% while the verbal learners only improved by 15.63% 

Differences in performance per learning style were much more evident for the interactive 

questions themselves.  Table 5.10 summarizes the count, the score, and select p-values for the 

pop-up questions and the traditional questions by complexity level.  P-values are shown only for 

pairs of low or high scores for a particular learning style’s category in which scores differed by a 

substantial amount and multiple students were classified.  For instance, 8 students were in the 

popup-low group, and for the intuitive/sensory category, 6 students were classified as intuitive 

while 2 were sensory.  The average scores shown in the Score Low column were 85.42% and 

100% respectively, and the difference was nearly significant with a p-value of 0.08124 shown in 

the P-Value Low column.      

The intuitive learners outperformed the sensory learners on the low-level traditional 

questions with a score of 96.88% to 62.50% and a p-value of 0.0134.  A similar trend was found 

for the high-level pop-up questions with scores of 87.50% to 70.83% and a p-value of 0.0955.  

However, the sensory group, who pay attention to detail and are “good at memorizing facts” 

[25], performed better on the low-level pop-up questions that asked for information about what 

was just shown.   The step-by-step nature of algorithms and hence the animation may contribute 

to the higher performance on the traditional questions for the sequential learners (85.00%) over 

the global group (70.83%), p = 0.1714. 

The observed differences in traditional test scores shown in Table 5.10 account for the 

low to moderate correlations between performance on traditional questions and each of the 
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learning styles.  These correlation values range from 0.2062 to 0.3472, irrespective of positive or 

negative.  Another moderate correlation was found between learning styles, Sensory-Intuitive 

and Sequential-Global (r = 0.4052).  This means that students who are sequential learners have a 

slight tendency to also be sensory learners, and the same for intuitive and global. 

 

Table 5.10: Interactive question scores by Learning Style.  A summary of performance 

differences between learning styles within a low or high level interactive questioning group. 

POP-UP SCORES 

LS – 
Group 

Count  
Low 

Count  
High 

Score  
Low 

Score  
High Avg 

P-Value 
Low 

P-Value 
High 

P-Value 
Avg 

Reflective 3 5 91.67% 80.00% 84.38% 

Active 5 2 87.50% 81.25% 85.71%    

Intuitive 6 4 85.42% 87.50% 86.25% 

Sensory 2 3 100.00% 70.83% 82.50% 
0.08124477 0.09548615 

  

Verbal N/A 1 N/A 62.50% 62.50% 

Visual 8 6 89.06% 83.33% 86.61%    

Global 5 3 92.50% 79.17% 87.50% 

Sequential 3 4 83.33% 81.25% 82.14% 
0.17452585 

    

         

TRADITIONAL - SCORES 

Reflective 6 2 79.17% 75.00% 78.13% 

Active 1 5 100.00% 67.50% 72.92%    

Intuitive 4 5 96.88% 67.50% 80.56% 

Sensory 3 2 62.50% 75.00% 67.50% 

0.01344336 0.39278227 0.19174695 

Verbal 1 2 100.00% 93.75% 95.83% 

Visual 6 5 79.17% 60.00% 70.45%  
0.08934513 0.0671377 

Global 5 4 80.00% 59.38% 70.83% 

Sequential 2 3 87.50% 83.33% 85.00%   
0.15815798 0.17143403 

 

Other Individual Differences 

The other tests of individual differences were surface development, figure classification, 

and backward digit span used to classify participants’ capabilities in spatial visualization, 

inductive reasoning, and working memory.  Some noticeable observations from these tests were 

a few moderate correlations with other performance metrics.  For instance, participants with 
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higher spatial capabilities were likely to be more global learners and also had higher inductive 

reasoning scores (r = 0.448) and post-test scores (r = 0.342).  Additionally, students with higher 

inductive reasoning skills tended to have higher scores on the traditional test questions.  

User Feedback 

Students again expressed that they liked the step-by-step code highlighting and the speed 

control and rewind functionalities.  When asked for specific opinions about the use of interactive 

questions, most students preferred the questions because they made them more comfortable, 

“focus” on the animation, and clarified what was happening.  One found the questions to be 

“annoying” and another found them helpful, but felt they “tended to interrupt (his) learning”.  A 

few students recommended adding sound in the form of a verbal description so that their visual 

focus could be more on the animation and not split between the animation and captions.  SSEA 

has already been extended to play sound, and an initial study is being prepared. 
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5.4 Eye-Tracking Study I: Correlation Between Attention, Comprehension, and 

Individual Differences 

 

Results from our first interactive questioning study showed that students who actively 

engaged with the animation via responding to pop-up questions had lower test scores.  One 

possible reason for this outcome could be that the pop-up questions encouraged students to focus 

on specific actions of the animation and not comprehend the overall implementation of the 

depicted algorithm.   

One goal of this first eye-tracking study is to determine if a relationship exists between 

the type of interactive questions asked and where the viewer places visual focus.  Specifically, if 

the viewer is required to answer low-level questions, will she shift her attention mostly to low-

level features such as object labels?  If interactive questions are asked, will the viewer focus on 

regions of the animation in a different way than if no questions are asked?  As in the second 

interactive questioning study, we administered assessments to differentiate students based on 

preferred learning styles and abilities such as inductive reasoning, working memory, spatial 

visualization, and fluid intelligence.    

The questions we sought to answer with this study were: Does the type of interaction or 

task required of a user affect which views and features are attended to and the time spent 

attending those views and features?  Is there a correlation between comprehension and gaze 

patterns? Between gaze patterns and individual preferences and differences? 

This section provides an overview and summary of our first eye-tracking study.  A 

complete description of the participants, design, procedure and materials can be found in [40].   

5.4.2 Overview  

Data from nine undergraduate, computer science students at The University of Georgia 

was analyzed for this study.  All participants were enrolled in the CSCI 4800/6800 Human-
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Computer Interaction course during the Spring 2007 semester and received credit in that course 

for participation in the study.  Students were randomly assigned into two groups.  Using SSEA, 

one group of five students interactively viewed an implementation of the quicksort algorithm 

with pop-up questions, and the other group of four viewed a version of the algorithm without 

pop-up questions.  The data collected included written and computer-based tests designed to 

assess algorithm comprehension and individual differences.  Each participant’s eye-movement 

was captured using the ASL Eye-Trac6000 eye tracking system.   

5.4.3 Results and Analysis 

Pop-up versus No-pop-up 

Algorithm comprehension was measured by performance on pre- and post-tests.  A 

subset of the questions in the post-test was presented to the students as the pre-test.  The 

difference between each participant’s score on that subset of post-test questions and the pre-test 

was recorded as performance improvement.  Reinforcing the trend detected in the first interactive 

questioning study, performance improvement was greater (15.63% versus 5.00%) for students in 

the no-pop-up group, who viewed an uninterrupted animation of the quicksort algorithm. 

As shown in Figure 5.2, the SSEA screen was divided into five areas of interest (AOI): 

control, animation, caption, post-test, and code.  We analyzed the periods of time spent viewing 

each AOI, or fixation duration, and the order in which they were viewed, or gaze pattern.  

During the learning phase, all participants spent the majority of their time watching the 

animation (average of 48.68% of fixation time), followed by the caption area (24.00%), then the 

code (14.33%), and the other 13.00% of time was split between viewing the controls or the 

question areas.  The differences between the pop-up and no-pop-up groups in time spent viewing 

the various AOIs was not statistically significant. 
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Figure 5.2: SSEA – Eye-tracker Areas of Interest 

 

Another finding was that students frequently switched attention back and forth between 

the animation and the caption areas with switches between the animation and code being the next 

most frequent pattern.  This means that students are taking advantage of the additional, verbal 

descriptions when the animation alone may not be sufficient.  Again, the differences in switching 

patterns between the two groups was not significant and implies that the use of pop-up questions 

does not overall influence which views and features are attended to and the time spent attending 

those views and features.  However, a closer examination of the data does show increases in 

attention to certain AOIs immediately following pop-up questions in which the answers can be 

found in those AOIs where attention was shifted.  This means that pop-up questions can be used 

to temporarily guide a viewer’s attention to specific actions or AOIs but that they may not have 

an effect on the overall viewing behavior.   

Individual Differences and Viewing Patterns 

Several strong correlations were discovered between learning styles and fixation 
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durations.  We found that students who self-identified themselves as reflective learners spent 

more time viewing captions (correlation score of 0.82) while more active learners spent less time 

(-0.94).  Moderate correlations between reflective learners and time spent viewing code (-0.6) 

and between active learners and time spent viewing code (0.55) and the animation (0.47) indicate 

that reflective learners, who prefer learning by thinking, used captions to comprehend the 

algorithm while the active learners, who prefer to learn by doing, viewing the animated graphics 

and code.  Students who were categorized as sequential (step-by-step) learners preferred to view 

the source code (0.801) while the global (big view) learners spent more time viewing the 

animation (0.858). 

Viewing Behavior Model Graph (VBMG) Clustering 

Viewing Behavior Model Graph (VBMG) Markov model based clustering [1] was used 

to group participants based on their viewing behaviors.  VBMG produced three clusters in which 

an apparent difference in viewing patterns for code and captions was observed while not much 

difference was found in the viewing patterns of the animation.  Results of this clustering showed 

that viewers who preferred to view code over caption had stronger spatial visualization abilities 

and those who preferred to view caption over code performed better on the reading span and 

inference tests. 

The results of this initial eye-tracking study have begun to provide insight into the role 

that individual preferences and abilities may impact performance and algorithm animation 

design.  Developers of AAs should not only consider the type of technology available when 

creating a visualization, but should also consider the desired goal of the system, and variations in 

the users’ learning styles and other abilities.       
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CHAPTER 6 

SOFTWARE VISUALIZATION ONTOLOGY 
 

6.1 Introduction 

The second major area of this research addresses evaluating the effectiveness of a 

software visualization system which is currently a subjective process.  Opinions of the usefulness 

of a system may be influenced by factors such as who or where it was developed or the number 

and types of displays available.  A system may be deemed effective because students who used it 

performed better on some type of test than a group of students who were given an alternative, 

supposedly comparable method of learning the same material.   

The ultimate goal of this portion of our research is to provide an objective rating method 

that can be used to score a software visualization or system based on specific, empirically 

supported criteria.  The higher the score, the more effective, and thus, the faster and more in-

depth a user will understand the intended concept.  Adequately determining the pedagogical 

significance of every feature would require years of research by an individual or a group.  Proper 

investigation will require that each of hundreds of features, as well as combinations of features, 

be isolated in a customized software visualization and then studied with human subjects.  The 

results of these experiments can then be used to give each feature a value that will in turn 

contribute to the score for the visualization or system of which it is included.   

This research has started to scratch the surface of this enormous task by using the results 

of our studies to categorize a feature as helpful or not.  As more studies are conducted, the extent 

to which each of the features contribute to the overall effectiveness of a system will become 
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more clear and hence provide a numerical value that is a weight of the level of usefulness of 

these features. 

6.2 Background 

An objective method for evaluating algorithm animations and the systems that support 

their creation and execution should involve de-featuring, classifying, and then scoring based on 

empirically determined weights of the usefulness of specific features.  These weights can be used 

to rate an algorithm animation based on whether it properly implements the assessed features and 

to rate an algorithm animation system based on whether it is capable of producing the features. 

This section includes a summary of projects geared towards evaluating or storing information 

about algorithm visualizations or systems followed by descriptions of a visualization ontology 

schema and related software visualization taxonomies.  

Visualizations and visualization software resources are plentiful and are often found as a 

list on an individual’s or research group’s website.  Borner and Zhou [6] present a survey of 

available Information Visualization repositories and resources that include information about 

some SV systems.  Several organizations have developed websites that contain information 

about SVs as a minor part of an extensive educational resource for computer science and 

mathematics such as the Computer Science Teaching Center [16], the Math Archives[83], and 

Netlib [88].   

The need for and difficulty of composing an objective evaluation process for algorithm 

animations has been acknowledged [9, 60] and plans have been made and partially implemented 

to evaluate, classify, and/or store information about algorithm animations and algorithm 

animation systems [12, 55].  The Complete Collection of Algorithm Animations (CCAA) [12] 
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and Algorithm Animation Repository (AAR) [55] are two examples such algorithm animation 

repository projects.   

CCAA provides an extensive listing of algorithm animations that can be run over the 

internet as well as brief descriptions and links to each.  *Note: This website, 

http://www.cs.hope.edu/~alganim/ccaa/, was available through 2006, but has been moved to a 

different server and will be re-instated (January 22, 2007 - personal communication).  The 

requirement that AAs listed on this site must be capable of running over the internet does not 

allow for the inclusion of stand-alone AA systems.  The website grouped AAs by the type of 

algorithm executed, and users were required to browse through the lists in order to find desired 

animations. 

Eight attendees of the 2001 Dagstuhl Seminar on Software Visualization (Seminar No. 

01211, May 20-25, 2001) formed a group to build an Algorithm Animation Repository that 

would serve as a means for algorithm animation developers to “publish” their work [17].  They 

explain that developers, especially of small-scale systems, are not rewarded for their efforts due 

to the lack of availability to the general public if the system is not documented in a published 

paper.  In hopes of raising the level of acceptance of algorithm animation software, they planned 

to have a Board of Editors who would referee and rank entries made into the repository.  

However, the URL [54] given as the location of the AAR indicates that their work has since 

shifted to improving the educational impact of algorithm visualizations.   

Participants in a workshop held at the UK National e-Science Centre in April 2004 

discussed the need for an ontology for visualization [8, 21].  Examination of their proposed 

categories (task and use, representation, process, and data) indicates that we could easily 

incorporate their high-level categories into our schema and position our SV classes as subclasses 

http://www.cs.hope.edu/~alganim/ccaa/
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to their categories.  In 2005, they followed up with an article [22] indicating the motivation for 

“seeking a more rigorous foundation for visualization” includes collaboration, composition, 

preservation (curation), and education.  They explain that meanings/language within a 

community can be expressed in different ways: terminology (definitions); taxonomy (definitions 

plus structure); and ontology (meanings, plus relationships that are machine processable).  

The software visualization portion of our visualization ontology schema emerged from 

the reconciliation of six of the most referenced taxonomies in the SV domain.  Below is a 

summary of each of these six, in chronological order.   

Myers [52] discusses the six combinations created by pairing the components of 2 axes – 

what is shown (code, data, or algorithm) and how it’s shown (static or dynamic).  For example, a 

static display of an algorithm may consist of snapshots depicting different stages of execution 

while a dynamic display would show the algorithm completing in a smooth, continuous motion. 

Brown [9] examines the nature of algorithm animation displays.  He uses the terms 

content as a category to describe the level of complexity of what is displayed, persistence to 

explain how much history of the data is shown, and transformation to represent how changes to 

data are shown.  He also discusses whether views can be used in different situations and termed 

this category reuse of views. 

Roman and Cox [69] developed a taxonomy that consists of scope, abstraction, 

specification method, interface, and presentation.  The aspect of the program being visualized is 

the domain or scope of the system.  Similar to Brown’s content, abstraction describes the level 

of complexity involved in creating a display, which can consist of simple, direct representations 

through more abstract, synthesized representations and is set by a user via the specification 
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method.  The viewer is impacted by the last two categories in that the interface is how they will 

interact with the system and the presentation is what they will see. 

Price et al. [60] define six major categories: scope, content, form, method, interaction, 

and effectiveness.   Their use of scope is different from that of Roman and Cox [69] in that it 

refers to the range of programs that the SV system can take as input rather than the aspect of the 

program being displayed, which Price et al. describe as content. The general appearance and how 

a user instructs the system are classified by form and interaction, respectively.  Method is how 

the animator must specify the desired display, and the effectiveness of a system is rated based on 

how well it communicates information to the viewer.  They qualitatively rank the effectiveness of 

a system based on its purpose, appropriateness and clarity, empirical evaluation, and production 

use. 

The tasks encountered during the development of a visualization of a parallel system 

were addressed by Stasko and Kraemer [41].  The focus is on parallel debuggers, performance 

evaluation systems, and program visualization systems.  Development is broken into three 

stages: data collection, data analysis, and display.  First, data collection is accomplished by a 

form of software or hardware instrumentation.  Then the data analysis stage involves 

calculations, ordering of events, and inferences about higher-level events based on the low-level 

data collected, which may be kept in short-term or long-term storage.  Displays can use graphs, 

nodes, coloring schemes, and layouts to show communication between processors, the order of 

execution of events, or other features of a program. 

Stasko and Patterson [80] focus on graphical views of computer programs.  Their 

taxonomy describes the level of each of four dimensions: aspect, abstractness, animation, and 

automation. As [52, 60, 69] have also categorized, aspect is the part of the program that is being 
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displayed.  Abstractness, similar to [69]’s abstraction, describes the level of customization of the 

visualization to the data being shown, and automation deals with the amount of input expected 

by the animator to create the visualization. 

While researching how others have classified SV systems, we found many discrepancies 

in definitions and use of terminology.  For instance, categories in various taxonomies have the 

same name but describe different aspects of a system, and even though most of the related 

taxonomies were created for program visualizations, the use of the term “program visualization” 

itself in certain contexts is described as “ambiguous” by Price et al. [60]. Therefore, we have 

reconciled the taxonomies described above into the SV portion of our Visualization Ontology.  

The benefit of using an ontology, rather than a taxonomy, is that we can show the relationships 

between the terms and concepts used by others in the field as well as the relationships between 

the different stages of the development of the system, the components of the system, and the 

usage of it.   

6.3 Software Visualization Ontology Schema 

The classes and properties of the visualization ontology schema consist of a 

reconciliation of existing taxonomies [9, 41, 52, 60, 69, 80] and additional features.  Generally, 

the term “taxonomy” refers to a hierarchical structure [24] that represents “is a” relationships 

between levels.  We have chosen to create an ontology because it permits us to specify the 

relationships between the categories and common terms, allows us to better show the stages of 

the development, animation, and viewing processes, which tend to be cyclic, and because an 

ontology permits the schema to grow in any direction.  Ontologies are specified by a schema for 

a domain, in our case SV, and instances representing real world objects. The schema consists of 

classes with attributes and relationships to other classes.   
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Figure 6.1:  The Software Visualization Ontology Schema 

 

Below are the classes of the software visualization portion of what will be an overall 

visualization ontology.  

Software Visualization System 

A software visualization system is used to create, modify, display, and interact with a 

software visualization. This class consists of attributes such as name, description, developer, url, 

institution, etc. that describe the background information of the system.     

User 

The animator and viewer, discussed above, are the users of the system.  Both can be 

ranked as a novice, an intermediate, or an expert user.   

Purpose 

The reason for which an SV has been developed and the environment in which it is to be 

used helps to describe the purpose of an SV system.  Some of the purposes that we have 
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identified are for use in education, performance evaluation, debugging, testing, problem solving, 

software design, documentation, and empirical studies. 

Content 

This category classifies a system based on what it displays.  A system may be designed to 

show code, data, algorithm or state of execution. 

Scope 

The scope of a software visualization system encompasses the range of programs that are 

viewable by the system as well as its portability.  A system with a fixed scope can only show the 

visualizations created by the developer.  A system with a scope that is not fixed provides more 

flexibility to the user.   

Specification Method 

As seen in Figure 6.1, specification method is directly related to the remaining classes.  If 

the animator has control over the data that is collected or how it is analyzed and portrayed, then 

the specification method is the way in which she must modify the system to accomplish any one 

of these tasks.  For example, a system may have a drag-and-drop style graphical user interface 

available for the animator to specify the type and location of graphics, or the animator may have 

to augment the source code to achieve the desired display.  

Data Collection 

This class addresses the questions of when, what, and how data is collected.  If data is 

gathered, it could be collected at compile-time, run-time, or both.  It might involve the collection 

of symbol table information, counts of low-level events, or the generation of higher-level 

“interesting events” through source code annotation.  Event-based data collection stores data 
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when an action by the user or another application occurs, whereas state-based data is collected as 

the status of a process changes.   

Data Analysis   

Once data is collected, some analysis may need to be done to obtain information of 

interest.  If so, those calculations or transformations will take place during this stage.  A very 

basic example would be determining the running time of a program.  The data collected is 

usually the start-time and the stop-time, and a simple subtraction will compute the execution 

time.   

Abstraction   

Before data of interest are displayed, some systems allow the animator the capability to 

tailor the graphics to be specific to the data it represents.  Visualizations that are very customized 

to the information it symbolizes are more abstract and may require more effort from the animator 

to specify than a generic display that the SV system can create automatically.  Graphics are 

considered direct representations of data if they are nonspecific and there is a direct mapping 

from the graphic back to the data.  Synthesized representations are created by the animator and 

attempt to depict his mental image of how the data should be displayed.  

Presentation 

Both hardware and software components are included in presentation.  The display 

medium and use of audio could be supported by a color monitor and stereo speakers, 

respectively.  Aspects of presentation controlled by the software include the use of color, 

dimension, and animation and the ability to show multiple views executing simultaneously.  
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Interaction 

The interaction category describes the various ways that a viewer can interact with and 

control a visualization.  The ability to zoom, control the speed and direction, and input data sets 

are common methods of interaction allowed to the viewer.  This class also addresses how the 

viewer interacts (i.e. via a graphical interface or command line) with the system.  Additionally, 

we have included a taxonomy created by Grissom et al. [27] that specifically addresses the 

viewer’s level of interaction; the stages in increasing level of engagement are no viewing, 

viewing, responding, changing, constructing, and presenting.  

Effectiveness 

Effectiveness is arguably the most important class to users because they can utilize the 

ratings to decide if the system is worth investing the time needed to access and operate it.  

Developers may also find the effectiveness rating to be important.  During the design phase, 

knowledge of some of the factors that influence the effectiveness of a system can help them to 

make better-informed decisions about what tools to use and how to use them.  If the evaluation is 

of the developer’s own system, the ratings can provide feedback on what others feel they did 

well or need to improve upon.   

To ensure consistent ratings of the various systems, one person or a trained group could 

be responsible for using, evaluating and classifying each system.  Since such a responsibility 

would require a tremendous amount of time and commitment, we are attempting to limit the 

subjectivity that can exist in rating systems by providing attributes that are clearly identifiable.  

The type for most of the properties is Boolean while other properties have fixed values that can 

be selected from a drop down list.   
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Our goal is to eventually be able to use basic characteristics of SVs and SV systems to 

compute an overall effectiveness rating.  In the meantime, we will rely heavily on users’ 

opinions and allow them to provide feedback about a system by rating the ease-of-use, the clarity 

to the user, the accuracy, and the overall rating.  Two additional effectiveness properties that we 

currently include are the results of empirical studies, if they exist, and the acceptance of the 

system which is a measure of how long and how widely the system has been used.   

6.4  VisIOn: Interactive Visualization Ontology 

As stated earlier, the approach used to address the task of evaluating the effectiveness of 

software visualizations and systems starts with de-featuring them.  For this task, the isolation of 

features is necessary for creating a method for classifying the systems.  Attributes of the system 

and its capability of producing visualizations with specific features are identified as properties 

used to categorize the software visualization systems.  These attributes and features have been 

enumerated as classes and properties of a visualization ontology schema.  This ontology is 

interactive and available online through a tool called VisIOn (http://vision.cs.uga.edu). 

Following in the same naming spirit as OWL (Web Ontology Language), VisIOn 

(Interactive Visualization Ontology) is a web application designed to categorize and store 

information about software visualization systems, in a way that can be easily searched and used 

for comparison.  Information about each system can be entered in a detailed and impartial 

manner and as results of empirical studies continue to     

As we and others continue to conduct empirical studies to investigate the contributions of 

individual features to the overall effectiveness of software visualizations, then the data entered 

into VisIOn can easily be used to provide an objective rating for each system. 

http://vision.cs.uga.edu
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6.4.1 Who will benefit? 

The roles of the different people involved with an SV or SV system are an important 

consideration when creating this ontology.  The developer is the person who designs and 

implements the SV system.  The animator uses the system to create a visualization in hopes of 

conveying knowledge about the visualized program to the viewer who will watch and perhaps 

interact with the visualization and try to understand what the animator is attempting to portray.   

 

Figure 6.2: Software Visualization Users - A depiction of the roles of the people involved 

with an SV system or a visualization created using an SV system. 

 

 

As illustrated in Figure 6.2, the developer’s role is to design a system that gives the 

animator the tools to create an instance of a visualization with accompanying descriptions, 

interactions, and questions.  The animator then uses the system to attempt to pass her knowledge 

to the viewer.  VisIOn is intended to benefit people in each of these roles, as well as researchers, 

via its searching and comparing capabilities.  Even though the same individual may perform 

multiple roles, the distinction is useful throughout the process of classifying and evaluating SV 

systems. 

A developer in an environment such as academia, software design, or performance 

evaluation (purpose) decides what content is to be displayed and how an animator will be able to 
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use and customize the SV (specification method) to obtain the range of desired visualizations 

(scope). 

Despite the belief and desire for SVs to be useful pedagogical tools, the majority of 

professors of Computer Science courses do not use them, according to surveys by Naps et al. 

[55].  One common reason for this lack of use is the time required to find and/or create 

visualizations that will portray the examples and concepts of interest to the professor who, in this 

case, is playing the role of animator.  VisIOn not only stores information about SV systems 

based on what they show and the system requirements to execute them, but it also provides 

information about the effectiveness of the SV including data on ease-of-use and acceptance (how 

many other people have used it and for how long).  The animator can also find out what is 

required to make the system behave as she desires by viewing information stored under the 

specification method class.   Another concern of professors is the lack of substantial empirical 

evidence to prove that SV systems enhance the quality of learning.  Therefore, VisIOn allows its 

users to find systems that have been empirically evaluated, a list of the associated citation(s), and 

links to the papers where available. 

A viewer of an SV system is usually trying to understand some aspect of a program.  

These users would want to quickly find a visualization that shows what they need and is 

appropriate for their level of expertise. VisIOn provides this information in the content and 

effectiveness classes. 

Since VisIOn offers both a quick and an advanced search feature, a researcher who 

wants to find related systems and compare their functionalities can be very detailed in specifying 

what features they want to investigate or empirically evaluate.  Once he has retrieved this initial 

list of systems, he can explore others that have been deemed “similar”.   
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6.4.2 System Architecture 

VisIOn was implemented using the Apache Struts framework, which encourages 

application architectures based on the Model-View-Controller (MVC) Model 2 design pattern 

[2].  MVC Model 2 design uses both JavaServer Pages (JSP) and servlets and allows 

communication between the view (JSP) and the model (JavaBean) through the controller 

(servlets) (See Figure 6.3).   

The VisIOn model is stored in both a file and a relational database format and is accessed 

through JavaBeans.  The file was created using Protégé-2000 [57], an integrated software tool 

used to develop knowledge-based systems.  Protégé-2000 can create .owl files written in the 

Web Ontology Language (OWL), a standard format used for specifying an ontology schema.  

OWL is a vocabulary expressed using XML syntax that describes classes, their properties, and 

relationships between classes.  Since querying a file is typically not as efficient as querying a 

relational database, the data from the .owl file is parsed once and stored into a MySQL database 

where data can be efficiently and easily retrieved. 

The view is created using JSP pages that dynamically display content about the ontology 

schema and SV systems through the use of the JavaServer Pages Tag Library (JSTL) and a few 

Struts tag libraries.  The data retrieved from the database are stored as Java Beans that can be 

directly accessed using JSP or indirectly accessed through the controller. 

The controller consists of servlets that store and retrieve data, process user input, and 

determine flow-of-control.  Based on a client’s request, the controller forwards control to the 

appropriate view after supplying the necessary information to that JSP page.  The 

org.apache.struts.action.ActionMapping configuration file (struts-config.xml)  and classes that 

extend org.apache.struts.action.ActionForm and org.apache.struts.action.Action are considered 
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components of the controller because they provide interaction between the model and the view 

and specify the forwarding actions.  VisIOn uses ActionForms to store variables displayed and 

set via a JSP page.  These variables may represent data from the model, or they may be values 

used to determine how data needs to be processed or which view is to be shown next.  The 

Action classes contain the logic that uses these variables to create or retrieve a JavaBean and set 

the appropriate org.apache.struts.action.ActionForward.  The struts-config.xml file, which 

contains a list of the ActionMappings, is then consulted to determine the action or webpage to 

which control is to be forwarded. 

   

 

 

Figure 6.3: The VisIOn Architecture. 
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6.4.3 How to Use VisIOn 

VisIOn provides developers, researchers, educators, and learners the ability to retrieve 

information about SV systems meeting specific criteria, to get detailed information about a 

particular system of interest, to add a system to the database, and to provide feedback about 

VisIOn or any SV system currently classified in VisIOn.   Figure 6.4 is a screenshot of the 

homepage that displays a visualization of the SV ontology schema and a toolbar that allows 

access to the various VisIOn operations.  

 

Figure 6.4:  The VisIOn Homepage. 

 

The visualization on the homepage was created using TouchGraph [75], a set of 

interfaces for graph visualization that runs as an applet and requires an XML file as input.  The 

nodes of the graph are the classes and the edges represent the relationships between the classes.  

Since effectiveness is related to all other classes, it would be connected to each of them and cause 



94 

the display to be confusing, so currently, no edges are touching the effectiveness node.  Hovering 

the cursor over a node will cause a screen to pop up that shows all of the properties for that class. 

 

 

Figure 6.5:  The VisIOn Quick Search Page. 

 

The first operation on the toolbar is “Search Ontology”.  By clicking on this link, a user 

will be taken to a screen (see Figure 6.5) where he can search for systems that possess all of the 

selected characteristics of interest.  The possible values for each property are most often 

true/false but also include predefined lists and open text.  The “Keyword” field searches 

properties like the name of the SV system, developer, location, description, etc. that are not 

restricted to predefined values.  Based on user feedback, the initial search screen was reduced to 

a simple search that only displays the properties that are thought to be of higher interest.  For 

users who want to be very detailed in the type of SV systems they wish to retrieve, an advanced 

search is available by following the link at the bottom of the quick search screen.   
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Figure 6.6:  The VisIOn Advanced Search Page. 

 

The Advanced Search screen (see Figure 6.6) lists each class followed by all properties 

with predefined values.  The other properties are queried via the “Keyword” text field.  Both the 

quick and advanced search screens display true/false values in the form of a checkbox for the 

user to check if they want systems that contain that property.  Properties with predefined lists of 

values are shown in a drop-down menu for the user to select the one value of interest.  The 

search screens are initialized with an empty “Keyword” field, unchecked boxes, and “N/A” 

selected for drop-down menus and will not be used in the search unless the user enters or selects 

a value of interest.  After the user clicks on the “Find Systems” button, a list of system names 

meeting all of the search criteria is displayed.  Each name is a link to a page with a list of 

properties specific to that system (see Figure 6.7). 
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Figure 6.7:  The VisIOn System Properties Page. 

 

The system properties page can also be reached by clicking on the “View a System” link 

on the toolbar, selecting the system of interest from a drop-down menu, and clicking on the 

“View Properties-List” button.  Additionally, the properties and values of a system can be 

viewed on a page as a visualization that is identical to the SV ontology schema in Figure 6.4, but 

this time when the user hovers over a node, the pop-up screen will show properties for that class 

along with the specific values for each as they pertain to the selected system.  

A potential user of VisIOn expressed an interest in seeing a list of systems similar to the 

one currently displayed.  To provide users with such a listing, similarity between systems is 

currently computed using a naïve approach of giving each property a weight between 0 and 1 

where all weights sum to 1.  For each matching property value between two systems, the total 
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match score is increased by the weight of the matched property.  This approach will most likely 

improve to a collaborative filtering method in the future as we gather more user input and usage 

data. 

 

 

Figure 6.8:  The VisIOn Feedback Page. 

 

The page displaying the system properties also includes a second effectiveness class that 

consists of user input supplied on the “Feedback” page, Figure 6.8.  The clarity to user, 

accuracy, ease-of-use, and overall rating properties can currently be evaluated on a scale of 1 to 

7, with 7 being the best, and the average of each property is displayed along with the number of 

voters.  This type of rating or star system is common and helpful on websites that provide access 

to products.  
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Figure 6.9:  The VisIOn “Add a System” Page. 

The last function provided to users is the ability to “Add a System” to the VisIOn 

database (see Figure 6.9).  The SV system Name, Developer, Description, and the name of the 

person entering the system (Your Name) are mandatory fields and they, along with a minimum of 

any 4 other properties, must be entered before a system is accepted into the repository.  Upon 

insertion into the database, the information about the SV system is instantly available and similar 

systems are computed and stored.  The newly added systems will be verified regularly in order to 

maintain a level of quality that will be beneficial to our users.   

6.5 Vision for VisIOn 

We will continue to develop, refine, and promote VisIOn in hopes of others adding 

accurate information about software visualization systems so that our goal of making this data 
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easily accessible may be achieved.  We will frequently monitor the quality of information 

entered due to the unrestricted ability of users to add and rate systems.  We may have to allow 

this function on a more selective basis if users enter information other than in a good faith 

manner.  As we continue to categorize systems and more users provide feedback, we will 

possibly update classes, properties, and available functionality. 

Although a visualization can be classified using VisIOn, it is currently set up to house 

information about software visualization systems.  To categorize a particular visualization, 

consideration will need to be given as to how it will be connected to the system that was used to 

create it, if one was used.  Currently, any information about the visualization systems that is 

significant but not requested by one of the properties can be supplied in the description. 

We hope that the results of software visualization related studies will lead to more 

objective criteria for evaluating visualizations and systems and that we will be able to apply what 

is learned to other visualization domains.  If we find that specific features commonly increase the 

level and/or speed of understanding, then we can start to evaluate visualizations and systems in 

other fields and expand VisIOn to include information about them.  Please feel free to access 

VisIOn at http://vision.cs.uga.edu and enter data or provide feedback. 

 

http://vision.cs.uga.edu
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CHAPTER 7 

CONCLUSION 

7.1 Summative Analysis 

Chapters 4 and 5 describe a series of studies conducted to investigate the effects of 

several perceptual, attentional, and cognitive features commonly employed in software 

visualizations, specifically those used in educational settings by students learning about 

algorithms.  We started by describing two low-level, perceptual/attentional studies performed 

using context-free software packages, JND and VizEval.  The generic findings from these studies 

pertaining to bar height differences and the use of a flashing cue in detection and localization of 

changes can be applied within any visualization domain in which graphical objects are 

rectangular and change size.   

We integrated knowledge gained from these low-level studies into higher-level, domain-

specific studies in which we investigated the influence of different features on perception of an 

animation and overall comprehension of the depicted algorithm.  These higher-level studies 

investigated the impact of certain types of cueing, motion, and interactive questioning techniques 

on the effectiveness of AAs and AA systems.  Although participants in these studies were 

specifically targeted to have similar educational backgrounds, we are aware of their varying 

memory, reasoning, and spatial capabilities as well as their differing learning styles.  

Experiments involving human subjects, especially at this level of cognitive reasoning, inevitably 

are hindered by this obstacle, unlike studies in other areas that involve machines built to a 

standard specification or chemicals composed of precisely mixed elements.  Starting to identify 
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differences in performance and attention based on these individual differences will give 

researchers in the software visualization domain another perspective from which to design 

systems.   

7.2 Limitations 

Three possible limitations that we have identified with the AA studies are that: 

1)  Features are only tested on one algorithm, quicksort. Some of the features will 

likely have different results for algorithms with various levels of complexity,  

2)  The motivation for students to perform well is completely intrinsic because the 

results are anonymous and will not count towards a grade for a course, and 

3)  AA systems are typically intended to be used as an additional resource.  So, 

students may attend a lecture and then use or create an AA.  The format for our experiments 

involved students learning the algorithm solely through the use of the animation (not 

ethnographic).    

7.3 Conclusion and Future Work 

Well designed AAs and AA systems stand to offer great pedagogical benefits because 

they have the potential to enhance a student’s understanding with less time invested than 

traditional, non-interactive, static descriptions and depictions.  The fact that some studies have 

proven this to be true while others have not has motivated this research and the desire to find out 

“Why?”.  In this document, a methodology has been proposed that is intended to be useful in 

successfully designing and evaluating the effectiveness of AAs and AA systems.  This research 

has just begun to scratch the surface of this well acknowledged and studied problem.  Hopefully, 

the outcome of this and other related research will lead to the successful and consistent creation 

of SVs and SV systems that will enhance the computer science educational environment. 
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As we continue to identify perceptual, attentional, and cognitive factors of visualizations 

that may influence their effectiveness, we will perform empirical studies to validate (or disprove) 

our hypotheses.  Hopefully, our work in conjunction with that of others in our field will help to 

remove some of the subjectivity involved with evaluating the effectiveness of visualizations.  

Once effective AAs can be described and implemented, perhaps professors will be more 

accepting of them, incorporate them into computer science courses, and afford students the 

opportunity to benefit from them. 

The increase in the attendance at and number of software visualization related workshops 

indicates that this field has much potential for future research.  In these settings, I have found 

that other researchers are very interested in formally testing the usefulness of their tools, but are 

not sure how to proceed.  I believe that the software and evaluation process that I am describing 

in this work can serve as a framework for others to use or follow.  The algorithm animation 

community stands to greatly benefit from additional studies on the perceptual, attentional, and 

cognitive features of these visualizations.   

Also, we have started to screen students for individual differences in areas such as 

working memory, inductive reasoning, learning styles, viewing patterns, etc.  Future work in this 

area could involve creating intelligent software visualization systems that are capable of tailoring 

views and interaction based upon the type of user. 

During my doctoral research, I have also worked with a bioinformatics project where my 

contribution involved enhancing the usability of web sites and the visualizations used.  An 

interesting idea is to explore the possibility of extending our software visualization findings into 

the new and neglected area of bioinformatics visualization.  There appears to be a great need for 

an approach similar to the one that we have developed for systematically, quantitatively 
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designing and evaluating bioinformatics visualizations since effective ones will assist biologists 

in interpreting data that could lead to medical and other scientific breakthroughs. 
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CONSENT FORM 
 

 

 

I,       , agree to participate in a research study titled "The 

Importance of Pop-up Questioning Techniques in Comprehension of Program Visualizations" conducted by 

Philippa Rhodes from the Department of Computer Science at the University of Georgia (706-XXX-XXXX) 

under the direction of Dr. Eileen Kraemer, Department of Computer Science, University of Georgia (706-

XXX-XXXX).  I understand that my participation is voluntary.  I can stop taking part without giving any 

reason, and without penalty.  I can ask to have all of the information about me returned to me, removed from 

the research records, or destroyed.   

 

The reason for this study is to evaluate the importance of various attributes in algorithm animations. 

 

If I volunteer to take part in this study, I will be asked to do the following things: 

1) Read introductory material, including a short demo which will last approximately 15 minutes. 

2) Use the SSEA program to learn and answer questions about the quicksort algorithm which will take 

up to 45 minutes. 

 

I will learn how the quicksort algorithm works, when to use this sorting procedure, and how well this 

algorithm performs on various inputs.   

 

I will receive $10.00 at the completion of my participation of this study.  

 

No risks are expected. No discomforts or stresses are expected.  

 

No individually identifying information about me, or provided by me during the research, will be shared with 

others without my written permission, except if required by law. The results of this participation will be 

confidential.  

 

The researcher will answer any further questions about the research, now or during the course of the project, 

and can be reached by telephone at: 706-XXX-XXXX. 

 

I understand the procedures described above. My questions have been answered to my satisfaction, and I 

agree to participate in this study. I have been given a copy of this form. 

 

 

Philippa Rhodes               
Name of Researcher     Signature    Date 
Telephone:  706-XXX-XXXX  

Email:  rhodes@cs.uga.edu  

 

 

 

                

Name of Participant     Signature    Date 

 

 

 

 

Please sign both copies. You are to keep one and return one to the researcher. 

 
Additional questions or problems regarding your rights as a research participant should be addressed to The Chairperson, Institutional Review 

Board , University of Georgia, 612 Boyd Graduate Studies Research Center, Athens, Georgia 30602-7411; Telephone (706) XXX-XXXX; E-
Mail Address IRB@uga.edu 
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Instructions for this Algorithm Animation Study 
 

Before you begin 

� Please read and sign one consent form.  The other copy is for you to keep. 

� If you have any questions, please ask the researcher at this time. 

� We ask that you: 

o Please turn your mobile phone off or to a silent ring. 

o Please do not run any other computer programs during the experiment. 

o Do not write your name on this or any other sheet. 

 

What you will be doing 

You will view two algorithm animations and answer questions in a program called SSEA 

(System to Study Effectiveness of Animations).  The purpose of the first animation is to 

allow you to practice using the SSEA program. The purpose of the second animation is for 

you to learn about the quicksort algorithm.  For the quicksort portion of this study, you 

will be asked to: 

1. complete a questionnaire, 

2. complete a pre-test 

3. view the animation until you are comfortable with this quicksort algorithm 

4. complete a post-test 

5. complete a series of preference and abilities tests (e.g., acuity screening, color 

vision, spatial ability, etc).  

   

Also included with this handout are: 

- a SSEA Guide, “How to Use SSEA”, 

- scratch paper, and 

- a feedback form. 

 

Running the Demo 

The demo depicts an animation of a simple algorithm that finds the maximum value in an 

array.  You will be asked to run the animation on two data sets and to then answer 

questions about the algorithm.  

 

1. Double click on the “SSEA_Demo” icon on the computer’s desktop. 

2. Click on Begin Animation for “Demo1”  and watch the animation (Use � in Figure B 

of “How to Use SSEA”).  It will run to completion.  You may click the Begin 

Animation button again if you wish to see the animation again. 

3. Change input to “Demo2” (Use � in Figure B).  Select Yes when asked “Are you sure 

you wish to change the inputs?”.  Then follow steps 4 – 9 below. 
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4. Click on Begin Animation. An animation of the algorithm as it executes on a new 

data set will begin to play. 

5. Click on Pause ( � ) to pause the animation.  

6. Click the Step ( � ) button multiple times to advance the animation step-by-step.  

Stop at step 10. If necessary, press Begin Animation to restart the animation.   

7. Press Play ( � ) to return to continuous play mode.  

8. Move the “Step” slider ( � ) back to demo step 0.  Reply Yes when asked if you 

want to restart the animation at the selected step. 

9. Move the ”Speed” slider ( � ) to Faster. 

10. Now look at the question area in the lower left corner (Area 3 in Figure A).  Answer 

Question 1.  You may replay the animations to help you answer the questions. 

11. Select Question 2 by clicking on the “Question 2” label in the leftmost panel or 

using the Next button in the lower left corner. 

12. Select and then answer Question 3 and Question 4.  In addition to replaying the 

animations, you may also view the code panel on the right-hand side of the display 

(Area 2 in Figure A).   

13. You may go back and change answers to previous questions if desired.  Once you are 

done answering all the questions, click Submit. 

14. Close down the SSEA_DEMO windows. 

 

Do you have any questions?  Please ask a researcher. 
 

Running the Quicksort SSEA: 

1. Double click on the “SSEA” icon on the computer’s desktop. 

2. Use the animations and the various data sets, as well as the code display to answer 

all questions about this version of the quicksort algorithm. 

3. Feel free to pause, step, replay, and adjust the speed as necessary to help you 

answer the questions. 

4. When you are done, click Submit and close the SSEA windows. 

 

Before you leave, please give us any comments on the feedback form (attached). 

 

 

 

Thank you for your time! 
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SCRATCH PAPER 

(If you need additional sheets, please ask a researcher). 
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FEEDBACK FORM 

1. What feature(s) did you like best about the algorithm animation? Why? 

2. What feature(s) did you like least about the algorithm animation? Why? 

3. Did you find any questions, graphics, or other components to be useful?  If so, 

why? 

4. Did you find any questions, graphics, or other components to be confusing?  If 

so, why?  How would you change it so it is less confusing? 

5. Please give us any additional comments about the demo or quicksort animations.  

What would you definitely change?  What would you definitely keep the same? 

6. If you were required to answer questions during the animation, please provide 

feedback about them?  Did they help you understand the algorithm better?  

7. Please let us know if you have any other comments or questions. 
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APPENDIX B 

CODE FOR VERSION OF QUICKSORT USED IN STUDIES 
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public class Quicksort(){ 
    public static void main() 
    { 
        int[] arr; 
        quicksort(arr, 0, arr.length - 1);  
    } 
 
    private void quicksort(int[] array, int begin, int end) 
    { 
        if (end > begin) 
        { 
            // partition the subarray 
            int pivotIndex = partition(array, begin, end); 
 
            // now sort the lower partition 
            quicksort(array, begin, pivotIndex - 1); 
 
            // now sort the higher partition 
            quicksort(array, pivotIndex + 1, end); 
        } 
    } 
 
    private int partition(int[] array, int begin, int end) 
    { 
        int firstHigh = begin;  
        int pivot = array[end]; // set pivot  
 
        for (int findLow = begin; findLow < end; ++findLow)   
        { 
            if (array[findLow] <= pivot)// compare  
            { 
                swap(array, firstHigh, findLow); // swap  
                firstHigh++; 
            } 
        } 
        swap(array, firstHigh, pivot);//swap pivot  
        return firstHigh; 
    } 
 
    private void swap(int[] array, int i, int j)  
    { 
        int tmp = array[i]; 
        array[i] = array[j]; 
        array[j] = tmp; 
    } 
} 
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APPENDIX C 

SAMPLE PRE- AND POST-TESTS 
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Pre-test Questions for Quicksort Algorithm 

 
1) Which best describes how quicksort works? 

a) It partitions an array into two subarrays and uses the median value of 
the array as the pivot. 

b) For each element,x, in the array, move x to the index equal to the 
number of elements that are less than x. 

c) It partitions the array into two subarrays and sorts the subarrays 
independently. 

d) It swaps adjacent items that are out of order. 
Answer: c 
 

2) How is the pivot used? 
a) To identify the largest element of the array. 
b) To identify the smallest element of the array. 
c) To identify the median element of the array. 
d) To separate the elements of the array into two subarrays. 

Answer: d 
 

3) Given the sequence 7 8 6 2 1 9 4 3.  If 3 is chosen as the pivot, which of 
the following could be the new order after the first call to the partition 
function? 
a) 2 1 3 7 8 9 4 6 
b) 7 6 2 1 8 4 3 9 
c) 7 8 6 2 3 1 9 4 
d) 1 7 8 6 2 3 9 4 

Answer: a 
 

4) When does the worst-case time for quicksort occur for an array of n 
elements? 
a) When the pivot is always the largest or smallest element in the active 

partition. 
b) When the input size is a power of 2. 
c) When the partition splits the array into 2 subarrays of equal lengths. 
d) There is no predictor for worst-case time. 

Answer: a 
 

5) When does the best-case time for quicksort occur for an array of n 
elements? 
a) When the pivot is always the largest or smallest element in the active 

partition. 
b) When the input size is a power of 2. 
c) When the partition splits the array into 2 subarrays of equal lengths. 
d) There is no predictor for best-case time. 

Answer: c 
 

6) The quicksort algorithm can best be described as: 
a) selective 
b) recursive 
c) iterative 
d) abstract 

Answer: b 
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7) During a run of the partition function each number is compared to: 

a) its neighbor 
b) all other numbers 
c) itself 
d) the pivot 

Answer: d 
 

8) The outcome of partitioning is: 
a) to place all numbers in sorted order 
b) that no number in the lower partition is larger than any number in the 

higher partition 
c) to place half of the numbers into the left partition 
d) to place all numbers larger than pivot in sorted order 

Answer: b 
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Post-test Questions for Quicksort Algorithm 

 

**Please answer the following questions based on the version of the quicksort 

algorithm depicted in the animation.** 

  
1) Which best describes the correct order of events of the version of 

quicksort you just viewed. 
I.  Call quicksort on the higher partition. 
II.  Compare elements to the pivot. If it is less than or equal in value, 

then swap element into the lower section of the partition. 
III. Select a pivot. 
IV. Call quicksort on the lower partition. 
V. Swap the pivot into the position between the lower and higher 

partitions. 
a) I,  II,  III,  IV,  V 
b) III,  II,  V,  IV,  I 
c) III,  II,  I,  IV,  V 
d) II, III, IV, I, V 

Answer: b 
 

2) Which element is chosen as the pivot in the active partition? 
a) The leftmost element 
b) A Random element 
c) The middle element 
d) The rightmost element 

Answer: d 
 

3) When is the pivot swapped? 
a) When a value less than or equal to the pivot value is found. 
b) When a value greater than the pivot value is found. 
c) At the end of partitioning a subset of the array. 
d) None of the above 

Answer: c 
 

4) The pivot is swapped with ___________________.  
a) the first element in the lower partition. 
b) the last element in the lower partition. 
c) the first element in the higher partition. 
d) the last element in the higher partition. 

Answer: c 
 

5) The comparison of an element with the pivot is done in which method(s)? 
a) quicksort() 
b) partition() 
c) swap() 
d) a and b 

Answer: b 
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6) What two objects are being compared in the partitioning step? 
a) The element at 'firstHigh' and the element at 'pivot' 
b) The element at 'begin' and the element at 'pivot' 
c) The element at 'firstHigh' and the element at 'findLow' 
d) The element at 'findLow' and the element at 'pivot' 

Answer: d 
 

7) Swaps can occur between __________________. 
a) the element at 'firstHigh' and the element at 'findLow' 
b) the element at 'begin'+1 and the element at 'firstHigh' 
c) the element at 'firstHigh'+1 and the element at 'pivot' 
d) the element at 'findLow' and the element at 'firstHigh'+1 

Answer: a 
 

8) Assume that the array to be sorted initially contained the following 
values:    5 7 8 2 9 6.  Which of the following will be the higher 
partition after one invocation of quicksort? 
a) 7 9 8 
b) 6 7 9 8 
c) 7 8 9 
d) 6 7 8 9 

Answer: a 
 

9) Given the array 8 3 7 5 1 6 2 4.  Which of the following represents the 
contents of the new array after one invocation of quicksort? 
a) 1 2 3 4 6 8 5 7 
b) 4 3 2 1 5 6 7 8 
c) 4 3 7 5 1 6 2 8 
d) 3 1 2 4 8 6 7 5 

Answer: d 
 

10) Which best describes how quicksort works? 
a) It partitions an array into two subarrays and uses the median value of 

the array as the pivot. 
b) For each element,x, in the array, move x to the index equal to the 

number of elements that are less than x. 
c) It partitions the array into two subarrays and sorts the subarrays 

independently. 
d) It swaps adjacent items that are out of order. 

Answer: c 
 

11) How is the pivot used? 
a) To identify the largest element of the array. 
b) To identify the smallest element of the array. 
c) To identify the median element of the array. 
d) To separate the elements of the array into two subarrays. 

Answer: d 
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12) When does the worst-case time for quicksort occur for an array of n 
elements? 
a) When the pivot is always the largest or smallest element in the active 

partition. 
b) When the input size is a power of 2. 
c) When the partition splits the array into 2 subarrays of equal lengths. 
d) There is no predictor for worst-case time. 

Answer: a 
  

13) When does the best-case time for quicksort occur for an array of n 
elements? 
a) When the pivot is always the largest or smallest element in the active 

partition. 
b) When the input size is a power of 2. 
c) When the partition splits the array into 2 subarrays of equal lengths. 
d) There is no predictor for best-case time. 

Answer: c 
 

14) The quicksort algorithm can best be described as: 
a) selective 
b) recursive 
c) iterative 
d) abstract 

Answer: b 
 

15) During a run of the partition function each number is compared to: 
a) its neighbor 
b) the pivot 
c) all other numbers 
d) itself 

Answer: b 
 

16) The outcome of partitioning is: 
a) to place all numbers in sorted order 
b) that no number in the lower partition is larger than any number in the 

higher partition 
c) to place half of the numbers into the left partition 
d) to place all numbers larger than pivot in sorted order 

Answer: b
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APPENDIX D 

SAMPLE POP-UP AND TRADITIONAL QUESTIONS 
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“Pop-up” - Low Level Questions for Quicksort Algorithm  

 
1) What elements were just compared? 

a) 60 and 70 
b) 60 and 40 
c) 70 and 40 
d) 70 and 80 
 

2) What was the last comparison? 
a) Is 70 less than or equal to 20? 
b) Is 40 less than or equal to 70? 
c) Is 40 less than or equal to 20? 
d) Is 20 less than or equal to 40? 
 

3) What variables were compared? 
a) 'firstHigh' and 'findLow' 
b) 'findLow' and 'pivot' 
c) 'firstHigh' and 'pivot' 
d) 'begin' and 'end' 
 

4) What elements were just swapped? 
a) 20 and 10 
b) 70 and 40 
c) 20 and 70 
d) 10 and 40 
 

5) The swap() method was invoked on 70 and __. 
a) 60 
b) 70 
c) 80 
d) It was not invoked. 
 

6) What variables were swapped? 
a) 'firstHigh' and 'findLow' 
b) 'pivot' and 'firstHigh' 
c) 'begin' and 'findLow' 
d) 'findLow' and 'pivot' 
 

7) Which value will be the next pivot? 
a) 80 
b) 50 
c) 70 
d) 60 
 

8) Which of the following variables was pointing to a different object than 
the other three? 
a) 'begin' 
b) 'end' 
c) 'firstHigh' 
d) 'findLow' 
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“Pop-up” - High Level Questions for Quicksort Algorithm 

 
1) Why did 70 and 20 just swap? 

a) because the partition() method ended 
b) because 'findLow' > 'firstHigh' 
c) because 'findLow' <= 'firstHigh' 
d) because 'findLow' <= 'pivot' 

 
 
2) Why did 60 and 80 just swap? 

a) because the partition() method ended 
b) because 'findLow' > 'firstHigh' 
c) because 'findLow' <= 'firstHigh' 
d) because 'findLow' <= 'pivot' 

 
 
3) The pivot (20) was just swapped, when will  

a) it move again? 
b) at the end of quicksort() 
c) at the end of partition() 
d) never 
e) it cannot be determined 

 
 
4) All of the numbers to the left of 40 

a) are in the lower partition 
b) are in the higher partition 
c) are greater than the pivot 
d) are sorted 

 
 
5) Which number will be the pivot next?  

a) 30 
b) 40 
c) 80 
d) 60 

 
 
6) Why was the quicksort call "skipped" 

a) 'end' <= 'begin' 
b) 'end' > 'begin' 
c) the 'pivot' is out of range 
d) it was not skipped 
 

7) Which subarray of numbers will be sorted next? 
a) the higher partition 
b) the lower partition 
c) the entire array 
d) the faded portion  

 
 
8) Which variable will be the next to swap with the pivot 
 a) 'begin' 
 b) 'firstHigh' 
 c) 'findLow' 
 d)  both a) and c) 
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“Traditional” - Low Level Questions for Quicksort Algorithm  

 
1) Which number will be the first pivot for the following sequence:   
 2 7 1 4 6 3 5 

a) 2 
b) 4 
c) 5 
d) It cannot be determined because the pivot is randomly selected. 

Answer: c 

 
2) At the beginning of the partition() function, 'begin', 'firstHigh', and 

'findLow' are all set to 
a) the first element in the active partition 
b) the last element of the active partition 
c) the pivot 
d) they are set to different elements 

Answer: a 

 
3) At the end of the partition() function, pivot swaps with which variable? 

a) 'begin' 
b) 'end' 
c) 'firstHigh' 
d) 'findLow' 

Answer: c 

 
4) At the beginning of the partition() function, pivot and which variable 

represent the same object 
a) 'begin' 
b) 'end' 
c) 'firstHigh' 
d) 'findLow' 

Answer: b 

 
5) Other than at the end of partition(), objects are swapped when 

a) findLow is less than or equal to the pivot 
b) findLow is less than or equal to firstHigh 
c) findLow is greater than firstHigh 
d) end is greater than begin 

Answer: a 

 
6) The 'findLow' variable is compared to which variable? 

a) 'begin' 
b) 'end' 
c) 'firstHigh' 
d) 'pivot' 

Answer: d 

 
7) What is the comparison between 'findLow' and the other variable, x?   

a) Is 'findLow' less than x? 
b) Is 'findLow' less than or equal to x? 
c) Is 'findLow' greater than x? 
d) Is 'findLow' greater than or equal to x? 

Answer: b 
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8) At step 62 of the 'LargeRandom' data set, what items are swapped? 
a) 20 and 10 
b) 70 and 40 
c) 20 and 70 
d) 10 and 40 

Answer: c 
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“Traditional” - High Level Questions for Quicksort Algorithm 
 
1. What is the purpose of 'findLow'? 

a. to find the lowest value in the array 
b. to find values lower than the pivot 
c. to find the lowest value in the higher partition 
d. a and c 

Answer: b 
 

2. The variable 'firstHigh' 
a. points to the first object in the higher partition 
b. points to the last object in the lower partition 
c. swaps with the pivot 
d. a and c 

Answer: d 
 

3. When might an object appear to swap with itself? 
a. when 'findLow' = 'firstHigh' and 'findLow' <= 'pivot' 
b. when 'findLow' <= 'firstHigh' and 'findLow' <= 'pivot' 
c. when 'findLow' = 'firstHigh' and 'findLow' >= 'pivot' 
d. when 'findLow' >= 'firstHigh' and 'findLow' >= 'pivot' 

Answer: a 
 

4. The entire quicksort() function is only carried out when 
a.  'begin' is less than 'end' 
b.  'begin' equals 'end' 
c.  'begin' is greater than 'end' 
d. everytime 

Answer: a 
 

5. The pivot swaps 
a. with 'firstHigh' 
b. at the end of partition() 
c. neither a nor b 
d. both a and b 

Answer: d 
 

6. When does 'findLow' swap with 'firstHigh'? 
a. when 'findLow' is greater than the pivot 
b. when 'findLow' is less than or equal to the pivot 
c. when 'findLow' is greater than 'firstHigh' 
d. at the end of the partition() method 

Answer: b 
 

 

 



133 

7. The first call to quicksort operates over the entire array.  Which 
 subarray will be operated on next? 

a. higher partition 
b. lower partition 
c. all numbers again 
d. it cannot be determined 

Answer: b 
 

8. Once the pivot is swapped, when will it move again? 
a. at the end of quicksort() 
b. at the end of partition() 
c. never 
d. it cannot be determined 

Answer: c 
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APPENDIX E 

 

QUICK GLANCE OF ALGORITHM ANIMATION STUDIES BY FEATURE 
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Feature Work Done by Sample results 

Animation Display   

Code View 1. Saraiya et al., 2004  

 

 

 

 

 

 

2. Naps et al., 2002 

1. Code and guide versus data example 

“covering important cases might provide 

better conceptual understanding” (this is 

based on analysis of 1 conceptual 

question). Found code and guide doubled 

time, but no increase in learning. 

 

2. Suggestion (multiple views). 

Labels - on objects 1. Badre et al., 1992 

 

 

2. Lawrence, 1993 

1. Should display labels, based on 

exploratory study. 

 

2. Student preference, but no performance 

difference. 

Labels – textual 

description 

1. Rößling  et al., 2002 

 

2. Naps et al., 2002 

 

3. Badre et al., 1992 

 

 

4. Lawrence, 1993 

1. Suggestion 

 

2. Suggestion 

 

3. Should display labels, based on 

exploratory study. 

 

4. Textual and visual cues significantly 

outperformed unlabeled animations 

Auralization 1. Brown et al., 1991 1. Used sound to reinforce or replace 

graphics and signal conditions.  Informal 

evaluation - “sound will be a powerful 

technique for communicating 

information.”  

Graphical Object 1. Lawrence, 1993 1. Dots versus sticks made no 

performance difference; students preferred 

sticks. 

Object orientation 1. Lawrence, 1993 1. Vertical versus horizontal made no 

difference; students preferred vertical. 

Data Set Size 1. Lawrence, 1993 1. No difference. 

Color 1. Brown et al., 1991 

 

 

 

2. Lawrence, 1993 

1. Used color to show state, unite multiple 

views, highlight, emphasize patterns, 

show history; no empirical study 

 

2. Viewers of monochrome display 

significantly outperformed viewers of 

color displays. 

Visual Cues 1. Lawrence, 1993 1. Textual and visual cues significantly 

outperformed unlabeled animations. 
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Feature Work Done by Sample results 

Structural view of 

algorithm. 

 

1. Rößling  et al., 2002 1. Suggestion (should allow user to jump 

to any point of execution by clicking on 

the display). 

Algorithm Performance 1. Naps et al., 2002 1. Suggestion 

Execution History 1. Naps et al., 2002 1. Suggestion 

Interaction   

No Viewing   

 1. Byrne et al., 1999 

 

 

 

 

2. Grissom et al., 2003 

 

 

 

 

 

 

 

3. Fleischer et al., 2004 

 

 

4. Hansen et al., 2002 (3 

studies) 

 

 

 

 

 

5. Hansen et al., 2002 

1. Prediction plus animation significantly 

outperformed other three groups; 2x2 

animation versus text/static and passive 

versus prediction. 

 

2. No viewing versus Viewing versus 

Responding; found greater improvement 

between pre- and post-test for increasing 

levels of engagement.  Held at 3 

universities with 4 different professors. 

No viewing group had much higher pre-

test scores. 

 

3. No viewing versus AA that actively 

engages; no difference. 

 

4. Significant difference in 2 of 3 text 

versus full version of HalVis (animation, 

text, static images, audio narratives, 

interactive questions).  The 3
rd
 in which 

text was “carefully designed” showed no 

difference in learning. 

 

5. Significant difference for HalVis over 

lecture 
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Feature Work Done by Sample results 

Viewing   

Control Direction 1. Saraiya et al., 2004  

 

 

2. Rößling  et al., 2002 

 

3. Naps et al., 2002 

1. Providing step back feature did not 

improve performance. 

 

2. Suggestion (rewind). 

 

3. Suggestion (execution control). 

 

 

Control Speed 1. Saraiya et al., 2004  

 

 

 

2. Rößling  et al., 2002 

 

 

3. Naps et al., 2002 

1. Providing “absolute control (stepping) 

on the pace of the AV proved to make a 

significant difference”. 

 

2. Suggestion (view animation in smooth 

motion or discrete steps). 

 

3. Suggestion (execution control). 

 

 

Other 1. Lawrence et al., 1994 

 

 

 

2. Byrne et al., 1999 

 

 

 

 

3. Grissom et al., 2003  

 

 

 

 

 

 

 

4. Fleischer et al., 2004 

 

 

5. Hansen et al., 2002 

1. Lecture plus slide group slightly 

outperformed lecture plus animation 

group. 

 

2. Prediction plus animation 

outperformed other three groups; 2x2 

animation versus text/static and passive 

versus prediction. 

 

3. No viewing versus Viewing versus 

Responding found greater improvement 

between pre- and post-test for increasing 

levels of engagement.  Held at 3 

universities with 4 different professors. 

No viewing group had much higher pre-

test scores. 

 

4. No viewing versus AA that actively 

engages users; no difference. 

 

5. Significant difference for HalVis 

versus XTango + handout. 
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Feature Work Done by Sample results 

Responding   

Questions – Pop-up 

(Prediction, 

Responsive, “What-if”,  

High-level, Low-level, 

Feedback) 

1. Rößling  et al., 2002 

 

 

2. Naps et al., 2002 

 

 

3. Byrne et al., 1999 

 

 

 

 

4. Naps et al., 2000 

 

 

 

5. Jarc et al., 2000 

 

 

6. Grissom et al., 2003 

1. Suggestion – “stop-and-think” to 

answer next step of algorithm. 

 

2. Suggestion – dynamic, “pop quiz” 

questions; provide dynamic feedback. 

 

3. Prediction plus animation significantly 

outperformed other three groups; 2x2 

animation versus lecture and passive 

versus prediction. 

 

4. No control group; 5 participants had 

“stop-and-think” questions and performed 

moderately. 

 

5. Predictive group performed slightly 

worse than passive animation group 

 

6. No viewing versus Viewing versus 

Responding found greater improvement 

between pre- and post-test for increasing 

levels of engagement.  Held at 3 

universities with 4 different professors. 

No viewing group had much higher pre-

test scores. 

 

Changing   

Enter input set 

 

 

 

 

 

 

 

 

 

 

 

1. Saraiya et al., 2004 

 

 

 

 

 

 

2. Rößling  et al., 2002 

 

3. Naps et al., 2002 

 

4. Lawrence, 1993 

 

 

 

1. Participants who were given an 

example performed slightly better than 

those who gave their own input (no 

combination of both given and user input); 

significant improvement on procedural 

questions. 

 

2. Suggestion 

  

3. Suggestion 

 

4. Viewers who entered their own input 

set had significant improvement over 

passive viewers. 
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Feature Work Done by Sample results 

Enter input set (cont.) 5. Lawrence et al., 1994 5. Lecture plus lab – active group 

outperformed lecture plus slide (screen 

shots from animation) and lecture plus lab 

– passive. 

Constructing   

Direct Generation (map 

program to 

visualization) 

1. Naps et al., 2002 

 

 

2. Stasko, 1996 

 

 

 

3. Hundhausen et al., 

2000 

1. Suggestion (students should build own 

visualizations). 

 

2. Informal evaluation; students became 

competitive, had almost perfect scores on 

related questions on final, enjoyed class. 

 

3. No significant difference for AVs 

constructed in 2.5 hours. 

Hand Construction (art 

supplies or animation 

editor) 

1. Naps et al., 2002 

 

 

2. Hubscher-Young et al., 

2003 

1. Suggestion (students should build own 

visualizations). 

 

2. Significant improvement for students 

who created, shared, and evaluated an AV. 

   

Presenting   

 1. Hubscher-Young et al., 

2003 

1. Significant improvement for students 

who created, shared, and evaluated an AV. 

   

Usability / Other   

Ease of use   

Expected use 1. Stern et al., 2005 1. Participants did not use the system, 

AIA, as expected. 

Intended Level of User 1. Naps et al., 2002 1. Suggestion (Intended user level should 

be indicated). 

Window Management   

Make widely available 

(i.e. use Java for platform 

independency or applets 

for online availability) 

1. Rößling  et al., 2002 1. Suggestion. 

General purpose (show 

many different types of 

visualizations, but user 

only has to learn system 

once) 

1. Rößling  et al., 2002 1. Suggestion. 

Additional Handout 1. Lawrence, 1993 1. Animation vs. Handout first made no 

difference. 
 


