

SOFTWARE VISUALIZATION: USING PERCEPTUAL, ATTENTIONAL, AND

COGNITIVE CONCEPTS TO QUANTIFY QUALITY AND IMPROVE EFFECTIVENESS

by

PHILIPPA M. RHODES

(Under the Direction of Eileen Kraemer)

ABSTRACT

 Software visualization (SV) involves the use of the crafts of typography, graphic design,

animation, and cinematography with modern Human-Computer Interaction technology to

facilitate both the human understanding and effective use of computer software. Software

visualizations are often used to portray both concrete and abstract concepts and range from

depictions of source code to performance characteristics to the execution of an algorithm as a

discrete or continuous sequence of graphical images, or algorithm visualization. Numerous

algorithm visualizations have been developed for use in educational settings. However, studies

that were designed to demonstrate the pedagogic effectiveness of algorithm visualizations have

been markedly unsuccessful, in spite of high expectations. In response to these results, lists of

recommended features have been suggested to algorithm visualization system designers, but

most of these features have not been proven to be beneficial.

 The broad goal of this research is to provide an empirically-validated method for

designing and evaluating the effectiveness of dynamic visualizations. Our approach has been to

identify features of these visualizations and systems that may improve learning, to create

software that can isolate features of interest and aid in evaluating the usefulness of these features,

and to then use the software to conduct and analyze user studies.

This research:

i) assembles an initial listing of features of SVs and SV systems and introduces a

framework for testing the effectiveness of each,

ii) provides verified design guidelines for dynamic visualizations,

iii) applies concepts already researched and established in perceptual psychology and

cognitive psychology to the design of effective SVs,

iv) offers an explanation of the inevitable variability present in studies involving

human subjects through the investigation of the effects of individual differences

on comprehending SVs, and

v) objectively classifies SV systems and makes them widely and easily available in a

way never done before, with VisIOn, an Interactive Visualization Ontology.

INDEX WORDS: Software Visualization, Program Visualization, Algorithm Visualization,

Algorithm Animation, Cognitive, Human-Computer Interaction, Human

Factors, Usability, User Studies, Experimentation, Ontology

SOFTWARE VISUALIZATION: USING PERCEPTUAL, ATTENTIONAL, AND

COGNITIVE CONCEPTS TO QUANTIFY QUALITY AND IMPROVE EFFECTIVENESS

by

PHILIPPA M. RHODES

B.S., North Carolina Agricultural and Technical State University, 1997

M.Ed., The University of Georgia, 1998

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2007

© 2007

Philippa M. Rhodes

All Rights Reserved

SOFTWARE VISUALIZATION: USING PERCEPTUAL, ATTENTIONAL, AND

COGNITIVE CONCEPTS TO QUANTIFY QUALITY AND IMPROVE EFFECTIVENESS

by

PHILIPPA M. RHODES

Major Professor: Eileen Kraemer

Committee: Paul Schliekelman

Thiab Taha

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

August 2007

 iv

ACKNOWLEDGEMENTS

 I would like to thank my committee members, family, friends, fellow students and most

importantly God!

 Thank you to my major professor, Dr. Eileen Kraemer, for sharing her invaluable advice,

guidance, and wisdom and for providing both mental and physical nourishment throughout the

years. Dr. Elizabeth Davis, Dr. Thiab Taha, and Dr. Paul Schliekelman, I greatly appreciate you

spending time to meet with me to discuss this research and provide input from your respective

areas of expertise.

 I would like to thank the other graduate students from the VizEval lab and project whose

hard work continuously motivated me – Matt, Sujith, Bina, Ashley, Shradha, Manish, Shaohua,

and Ken. Thank you to the Computer Science Department’s staff, Jean Power, Elizabeth

Williams, and Claudia Sewell, for always making sure that proper documents and processes were

completed correctly and on time.

 None of this would have been possible without the love, support, encouragement, and

shared faith of my family. Mommy and Daddy – Thank you! Paula, Stefon, and Tiffany –

Thank you! The Shipman Family – thank you for your infinite prayers and strong commitment

to education.

 Thank you to my friends who were with me in person and in spirit during this journey.

Thank you for believing in me, understanding me, and helping me to maintain some sanity.

 v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS... iv

LIST OF TABLES... viii

LIST OF FIGURES ... ix

CHAPTER

1 INTRODUCTION ...1

1.1 The Problem ..1

1.2 Research Questions ...2

1.3 Methodology ...3

1.4 Contributions ...6

1.5 Overview ...8

2 REVIEW OF THE LITERATURE ...10

2.1 Algorithm Animation Background..10

2.2 Visualization and Psychology ...11

2.3 Studies of Individual Features ...13

2.4 Algorithm Animation System Design ...14

2.5 Summary ...20

3 FRAMEWORK AND METHODOLOGY..22

3.1 Introduction ...22

 vi

3.2 Just Noticeable Difference Software ...23

3.3 VizEval Suite...28

3.4 System to Study the Effectiveness of Animation..34

3.5 Conclusion...36

4 PERCEPTUAL AND ATTENTIONAL STUDIES ..38

4.1 Introduction ...38

4.2 Noticeable Difference Study ...39

4.3 Effect of Flash Cue on Detection and Localization ..41

4.4 Cueing and Motion in Algorithm Animation Comprehension..........................46

5 ATTENTIONAL AND COGNITIVE STUDIES..52

5.1 Introduction ...52

5.2 Interactive Questioning in Algorithm Animation Comprehension, Part I53

5.3 Interactive Questioning in Algorithm Animation Comprehension, Part II61

5.4 Eye-Tracking Study I: Correlation Between Attention, Comprehension, and

Individual Differences ...74

6 SOFTWARE VISUALIZATION ONTOLOGY...78

6.1 Introduction ...78

6.2 Background ...79

6.3 Software Visualization Ontology Schema ..83

6.4 VisIOn: Interactive Visualization Ontology..88

6.5 Vision for VisIOn..98

7 CONCLUSION..100

7.1 Summative Analysis..100

 vii

7.2 Limitations...101

7.3 Conclusion and Future Work ..101

REFERENCES ..104

APPENDICES ...112

A Sample Consent Form and Handouts...112

B Code for Version of Quicksort Used in Studies...119

C Sample Pre- and Post-Tests ...121

D Sample Pop-up and Traditional Questions ..127

E Quick Glance of Algorithm Animation Studies by Feature.......................................134

 viii

LIST OF TABLES

Page

Table 4.1: 2 x 2 Factorial Experiment Design ...47

Table 4.2: Averages for Pop-up Questions ..50

Table 4.3: Averages for Comprehension Questions ..51

Table 5.1: 2x3 Factorial Experiment Design ...54

Table 5.2: Average percentage correct per group on the "traditional" test questions....................57

Table 5.3: Average percentage correct per group on the "pop-up" questions58

Table 5.4: 2x3 Factorial Experiment Design ...62

Table 5.5: Pre-test scores ...67

Table 5.6: Post-test (subset) scores ..67

Table 5.7: Improvement as a difference between pre-test and a subset of post-test scores...........67

Table 5.8: Post-test scores for all questions...67

Table 5.9: Improvement and post-test scores by Learning Style...69

Table 5.10: Interactive question scores by Learning Style ..71

Table 5.11: Pearson Product-Moment Correlation, r, for All Tests ..73

 ix

LIST OF FIGURES

Page

Figure 1.1: Visual overview of our research procedures and contributions9

Figure 2.1: A representation of the “Learning Pyramid”...18

Figure 3.1: Screenshot of the set-up window of JND..24

Figure 3.2: A depiction of an overhead view of a participant during an experiment session........25

Figure 3.3: The color palette screen of JND..25

Figure 3.4: Prompt to guide viewer’s focus to the same location at the beginning of each trial...26

Figure 3.5: Sample display and question ...26

Figure 3.6: Sample logfile produced by one session of an experiment using JND27

Figure 3.7: The VizEval Architecture..29

Figure 3.8: Screenshots of TestCreator..31

Figure 3.9: Sample test file created by TestCreator and read by TestTaker..................................32

Figure 3.10: The TestTaker interface during a session..33

Figure 3.11: Sample log file created by TestTaker..33

Figure 3.12: Screenshot of SSEA ..35

Figure 4.1: The TestTaker interface during a session..43

Figure 4.2: Screenshot of the SSEA program with a pop-up question displayed..........................48

Figure 5.1: Screenshot of the SSEA program with a pop-up question displayed..........................55

Figure 5.2: Distribution of Learning Styles Scores ...69

Figure 5.3: SSEA – Eye-tracker Areas of Interest ...76

 x

Figure 6.1: The Software Visualization Ontology Schema ...84

Figure 6.2: Software Visualization Users ..89

Figure 6.3: The VisIOn Architecture ...92

Figure 6.4: The VisIOn Homepage..93

Figure 6.5: The VisIOn Quick Search Page...94

Figure 6.6: The VisIOn Advanced Search Page ..95

Figure 6.7: The VisIOn System Properties Page ...96

Figure 6.8: The VisIOn Feedback Page...97

Figure 6.9: The VisIOn “Add a System” Page ..98

1

CHAPTER 1

INTRODUCTION

The field of visualization has been described as a discipline concerned with the use of

graphical representations in the computing environment [69]. Software visualization (SV)

involves the “use of the crafts of typography, graphic design, animation, and cinematography

with modern HCI (Human Computer Interaction) technology to facilitate both the human

understanding and effective use of computer software” [60]. Software visualizations are often

used to portray both concrete and abstract concepts and range from depictions of source code to

performance characteristics to the “execution of an algorithm as a discrete or continuous

sequence of graphical images”, or algorithm visualization [27]. Algorithm animations (AAs) are

dynamic algorithm visualizations. Numerous algorithm animations have been developed for use

in educational settings and claims of the pedagogical benefits of these tools have been made

since they were first brought into existence decades ago [5, 9].

1.1 The Problem

Assumptions that visualizations are better than textual descriptions and that dynamic

displays are better than static displays have led some educators and researchers to believe that

students who use algorithm animations should understand concepts faster and more accurately

than those who use only textual and/or static depictions [13, 30]. These assumptions have been

questioned and tested by a number of researchers [13, 30, 38, 44, 45, 87]. Unfortunately, as

expressed in [36], the results of these studies and others have “yielded mixed results” and have

2

“fail(ed) to substantiate” the belief that these tools are better than alternate forms of learning.

Gurka and Citrin [28] state that these studies that were “designed to demonstrate the pedagogic

effectiveness of algorithm animation programs have been markedly unsuccessful, in spite of high

expectations.”

Developers often build AAs based on their own opinions and expectations of use rather

than on studies of student behavior [81]. Some of these developers mention the lack of a

rigorous, objective method for evaluating the effectiveness of their systems, but acknowledge

that creating such a method would be very difficult and complex [9, 60]. Lists of recommended

features have been suggested to AA system designers [55, 71], but most of these features have

not been proven to be beneficial. Few empirical studies have been conducted to attempt to gain

insight into the effect of specific animation features on learning an algorithm [44, 73], and there

has yet to be a comprehensive, empirically supported method proposed for designing algorithm

animations and systems and for evaluating their effectiveness.

1.2 Research Questions

The mixed results of the previously mentioned studies have shown that some versions of

software visualizations enhance learning, as indicated by students’ test scores, while other

studies have revealed that students using SV systems had no advantage over their counterparts

who learned via the more traditional methods of lecture and/or reading text with static images.

Why? Are the visualizations and systems appropriately designed? Were the color, shape, size,

and number of graphical objects selected to maximize the viewer’s “cognitive economy” [85]?

Can the user control the speed, granularity, or input set? These are the types of questions

investigated in the first portion of this research.

3

RESEARCH QUESTION: How do perceptual, attentional, and cognitive concepts

contribute to effective animation design?

Algorithm animations have been developed since the early 1980s and currently hundreds,

maybe thousands, exist. So, how does an instructor efficiently find and select an animation or

system that is relevant to a particular topic? Will that tool be beneficial to students who interact

with it? Can it be seamlessly integrated into the curriculum of a particular course? Was it

empirically evaluated? Is there any literature describing its architecture, capabilities, and

installation requirements? Answers to these questions are not readily available for most SV

systems, further contributing to the lack of success of these tools and the motivation behind the

other part of this research.

RESEARCH QUESTION: How can the effectiveness of software visualizations be

evaluated in an objective, systematic manner?

1.3 Methodology

The general problems that this research addresses are the design and evaluation of

effective dynamic visualizations. In particular, we focus on visualizations and visualization

systems designed for computer science education. Our approach has been to identify features of

these visualizations and systems that may improve learning, to create software that can isolate

features of interest and aid in the evaluation of the usefulness of these features, and to then use

the software to conduct and analyze user studies.

Appropriate graphical representations of concrete and abstract concepts and attributes

such as color, shading, dimension, size, shape, texture, and motion are some of the types of

characteristics considered when creating effective visualizations. Mackinlay [47] explains that

effectiveness should be determined by whether a graphical language takes full advantage of the

4

capabilities of the output medium and the human visual system. The effectiveness of a

visualization should also be evaluated based upon its purpose. For instance, viewers of scientific

displays are often trying to explore data to make inferences that could possibly lead to some type

of breakthrough, so evaluations should consist of a way to measure the visualization’s ability to

lead the scientist to such observations [72].

Information visualization (IV) is “the use of computer-supported, interactive, visual

representations of abstract data to amplify cognition” [14]. Therefore, effectiveness in the IV

domain may be based on the amount of time needed to interpret data represented by images. A

dynamic visualization used for pedagogical purposes, such as an algorithm animation, should be

evaluated based on its ability to accurately convey the intended concept to a student in a manner

that is intuitive and requires less effort than other approaches to conveying those same concepts.

A software visualization system is a web-based or stand-alone application used to

specify, execute, and control software visualizations. The definition of effectiveness of a

visualization system can also vary depending on the environment in which it is used. Software

systems in the bioinformatics and information visualization domains need to be capable of

displaying large amounts of data in a meaningful, scalable manner. In the software visualization

domain, we define effectiveness of a system to be how well and easily a system can be used by

the software visualization designer to communicate information to the software visualization

viewer. For a designer, an effective SV system would be one that allows her to efficiently specify

what and how information is to be displayed and manipulated. Speed control, zooming, and the

ability to input data are the types of system features that allow a viewer to interact with a

visualization and should also be considered when evaluating the effectiveness of an SV system.

5

Designing and evaluating algorithm animation systems are highly interrelated tasks.

They both involve “de-featuring” the visualizations or systems and then establishing the level of

usefulness of each feature. We have conducted experiments that isolate a feature and measure its

effect on the comprehension of an algorithm. These may be perceptual/attentional features (i.e.

color, motion, etc.) of the animation or attentional/cognitive features (i.e. various types of

interaction) offered by the software visualization system.

The results from these studies are then used to develop design guidelines for creating

more effective AAs and systems for use in educational settings. These same studies also assist in

determining to what extent each feature contributes to the viewer’s ability to perceive and

comprehend the depicted algorithm and can, in turn, assist in providing a validated method for

evaluating an entire visualization or system.

When creating dynamic visualization systems, one must consider both the design of the

animation and the functionality provided by the system to support user engagement. This

research investigates perceptual, attentional, and cognitive features through studies that focus on

low-level characteristics and types of interaction as well as their influence on overall algorithm

comprehension. Through collaboration with perceptual psychologists, software packages have

been developed [42, 65] that we are using to create, conduct, and analyze these experiments.

Evaluating the effectiveness of a software visualization system, including algorithm

animation systems, is currently a largely subjective and non-systematic process. Our approach

employed to address this problem was to first create a software visualization ontology schema

whose classes and properties consist of a reconciliation of existing taxonomies plus other

features. This ontology was then employed in an interactive online tool called VisIOn [67] that

allows anyone with Internet access to classify software visualization systems in a very detailed

6

and impartial manner. As we and others continue to conduct empirical studies that investigate

the contributions of individual features to the overall effectiveness of different types of software

visualization systems, the entry of the results of these studies into VisIOn can then be used to

provide an objective rating for each system.

Determining the pedagogical contribution and value of every feature is an enormous task

that would take years for one researcher or group to accurately accomplish, since software

visualizations contain hundreds of features that should be considered. Proper investigation will

require that each feature, as well as combinations of features, be implemented into a software

package and then studied with human subjects. In this research, we have started this process by

describing and implementing a framework that includes software packages, experimental

designs, techniques, and analysis, as well as examples of how to recognize the implications these

results may have in the design and evaluation of effective algorithm animations.

1.4 Contributions

This section describes my contributions to this overall research project and the

contribution of this research to the software visualization and computer science education

communities. The research discussed in this document is a component of a larger project
1
 that

involved other graduate students from The University of Georgia and Georgia Institute of

Technology (Georgia Tech). My involvement included:

i) Development of applications – Interactive Visualization Ontology (VisIOn) [67],

Just Noticeable Difference (JND), and several VizEval modules (FileCreator,

FolderFileChecker, TestFileSwitcher, and PreviewFrame) [65].

1
This material is based upon work supported by the National Science Foundation under Grant

No. IIS-0308063. Any opinions, findings and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the views of the National

Science Foundation (NSF).

7

ii) Extending and maintaining software packages - System to Study the Effectiveness

of Animation (SSEA) [42, 63] and the TestTaker module of VizEval [70].

iii) Experiment set-up, design, execution and analysis – Effect of flash cue on

detection and localization [19], Cueing and motion in AA comprehension [64],

Interactive questioning in AA comprehension, part I [66], Interactive questioning

in AA comprehension, part II, Eye-tracking study, part I [40].

iv) Supervising and assisting Master’s students on research ideas, software design

and implementation, and preparing for and conducting empirical studies –

Matthew Ross [70], Sujith Thomas [84], Bina Reed [63], Shradha Kaldate [40],

Manish Agarwal [1], and Joseph Hohenstern.

The confusion and frustration stemming from the mixed results of previous studies have

contributed to the sparse use of SVs in educational settings and have led some SV researchers to

shift focus to other areas. However, many computer scientists within and outside of the SV

community still believe that these tools, when designed properly, stand to greatly benefit those

who use them. This research:

i) initiates a comprehensive listing of features of AAs and AA systems and

introduces a framework for testing the effectiveness of each,

ii) takes advantage of the body of knowledge already established in perceptual

psychology and cognitive psychology,

iii) offers an explanation of the inevitable variability present in studies involving

human subjects through the investigation of the effects of individual differences

on comprehending AAs, and

8

iv) classifies and makes widely and easily available SV systems, in a way never done

before, with VisIOn.

Results of studies in this work have found that some perceptual/attentional features, such

as cueing, increase performance on some tasks (localization) while harming performance on

others (detection), and vice versa. We have also found that features such as motion, cueing, and

interactive questioning may enhance attention and perception, but this enhancement does not

necessarily translate into improved comprehension of an algorithm. These types of results aid in

informing the design and evaluation of effective SVs and SV tools.

1.5 Overview

Chapter 2 provides background information about algorithm animations, related

empirical studies, and psychology terms used to describe various AA features. Chapter 3

describes the purpose and architecture of the three software packages developed to create,

conduct, and analyze experiments, and Chapters 4 and 5 describe the design, procedure, and

results of the six studies conducted thus far. Chapter 6 explains the means by which we classify

and propose to objectively evaluate SV systems through the creation and use of VisIOn (An

Interactive Visualization Ontology). A summative analysis of the studies, a conclusion, and

ideas for future work are presented in Chapter 7. Figure 1.1 provides a visual overview of this

research.

9

Figure 1.1: Visual overview of our research procedures and contributions.

Framework and

Methodology

Related Work

Previou
s

Previous
Software

Previous
Taxonomie

s

Develop
Testing

Software

Conduct
and

Analyze

Classification
and

Evaluation

Design
Guidelines

Contributions

10

CHAPTER 2

REVIEW OF THE LITERATURE

2.1 Algorithm Animation Background

The video entitled “Sorting Out Sorting” created by Ron Baecker [4] in 1981 is usually

noted as the first algorithm animation. It was created to teach students the step-by-step

operations of three different algorithms as well as to demonstrate the run-time performance of

each. Shortly afterwards, others [10, 11, 76, 78] developed software systems to automate the

creation of algorithm animations with the capabilities of sound, color, multiple views and

multiple dimensions. More recent AA systems have been designed with the intention of students

using them to easily create their own animations [79].

In the early to mid 1990’s, some researchers began to test whether these animations

actually added the expected educational benefits for which they were designed. Some studies

found that students who used algorithm visualizations significantly outperformed those who used

an alternate method to learn the algorithm [13, 44] while other studies found no difference

between the performance of the two groups [26, 44]. The conflicting and unexpected results of

some of the initial studies sparked an interest in determining what factors contribute to the

effectiveness of an algorithm animation or system.

A number of papers have been published addressing the usefulness of AAs evaluated

through anecdotal [10, 79] and empirical studies [37, 39], as well as factors to consider when

designing an AA for pedagogical purposes [55, 71]. These studies have ranged from comparing

11

the use of an AA to a non-visualization method [3, 30], to having students build their own AA

[35, 79], to comparing features of one AA against those in another [44, 73]. Please see

Appendix E for a “Quick Glance of Algorithm Animation Studies by Feature”. My research

focuses on this last approach, comparing features of one algorithm animation to another, and

takes into account individual differences of participants in addition to findings and concepts from

perceptual and cognitive psychology. Little related work exists for this approach.

2.2 Visualization and Psychology

Designing and evaluating algorithm animations to make them more effective for users

fall within the human factors and human-computer interaction domains. Human factors

psychology is an “interdisciplinary field which discovers and applies information about human

behavior, abilities, limitations and other characteristics to the design and evaluation of products,

systems, jobs, tools, and environments for enhancing productive, safe, and comfortable human

use” [62]. It involves the application of perceptual and cognitive processes to improve the

usability of applications and the performance of their users. Human-Computer Interaction (HCI)

involves the study and practice of usability. It includes creating technology that “people will

want to use, will be able to use, and will find effective when used” [15]. Preece et al. [59]

believe that the main objective of HCI has been to “understand and represent how humans

interact with computers in terms of how knowledge is transmitted between the two.”

Consideration of perceptual, attentional, and cognitive concepts is important in the

development of effective visualizations. Cognitive psychology is the study of internal mental

processes such as problem solving, decision making, language, and short- and long-term memory

[24]. Knowledge gained through perception, reasoning, or intuition is cognition [20]. The AAs

and systems that we study were designed for users to gain knowledge about the depicted

12

algorithms. We describe cognitive features of AA systems, such as interactive questions, to be

those that require a user to solve problems or think about the implementation of the algorithm

she is viewing. Since knowledge can be gained through perception, we investigate features of

AAs that may affect how a viewer perceives the animation.

Perception is the process of acquiring, interpreting, and organizing sensory information

[24]. Factors that affect perceptual performance include arousal, fatigue, mental load, monotony,

boredom, sensory deprivation, sleep deprivation, anxiety, fear, isolation, and aging [48].

Currently, AAs are perceived using vision and some have tapped into the use of auditory senses.

Perceptual characteristics of AAs include components of the layout such as data set size and the

use of color and sound.

Attention is defined as the cognitive process whereby a person concentrates on some

features of the environment to the relative exclusion of others [24, 46]. “Learning is most

efficient when a person is paying attention” [50]. Attention can be allocated voluntarily or

involuntarily. As described by Prinzmetal et al. [61], voluntary attention, also referred to as

goal-directed or endogenous attention, occurs when observers “allocate attention to the spatial

location that may contain information that is important to immediate task goals”. Involuntary

attention, also referred to as stimulus-driven or exogenous attention, occurs when an observer’s

attention is captured by a stimulus event “even when the stimulus event is unrelated to the

current goal-directed activity”. Different types of cues, questions, and motion can be used within

algorithm animations to guide a viewer’s attention to important actions occurring on specific

portions of the screen.

Cognitive load theory addresses the limited capacity of the independent channels in the

human information-processing system [49, 58]. The theory is based on a cognitive design that

13

involves a limited working memory that interacts with a relatively unlimited long-term memory.

The theory explains how only a restricted amount of cognitive processing can occur in the

visual/spatial channel or the auditory/verbal channel at any given time.

Researchers in various fields have performed studies to focus on different factors that

they hypothesize will have an impact on the effectiveness of a visualization or visualization tool

used within their respective environments. In general, features pertaining to the design of the

display and to interaction with the tool have been evaluated [34, 44, 72], and an overlap exists in

the types of evaluations conducted. For example, the idea of creating appropriate visual

metaphors discussed by Rhyne et al. [68] for use in bioinformatics visualizations coincides with

the idea of increasing the use of the human visual system by using graphics that are easily

perceived [74]. Such graphical displays are believed to reduce the level of cognitive effort

needed to interpret the represented concept, thus creating a cognitive economy [85] in which the

visualization is easy to understand but not oversimplified [86].

2.3 Studies of Individual Features

When designing visualizations or visualization tools, “information needs to be presented

in a way that makes it unambiguous to perceive and understand” [59]. One challenge is to

identify perceptual factors of a visualization or visualization tool that could be used to help

reduce the viewer’s cognitive load and then to properly isolate, analyze, and apply results to a

“real-world” application. Studies on perceptual factors such as color, sound, and touch have

been successful in identifying proper usage in creating tools for specific domains [33, 34, 82].

For instance, color has been found to be most useful for identification tasks and as a form of

redundant coding [59].

14

Similar to research done by Healy et al. [33, 34] for information visualizations, our work

involves conducting low-level, perceptual studies and using the results to inform the design of

algorithm animations. However, our work differs in that we have taken our analysis a step

further to empirically evaluate the effectiveness of the individual features on the performance of

the higher-level, cognitive task of comprehending the algorithm.

The term “de-feature” is used by Morse et al. [51] to describe how they approached their

studies of visualizations used in the information retrieval domain. They point out that usability

studies tend to focus on visualization systems as a whole and not the visualization itself. They

were able to gain insight into the effect of various display techniques on a user’s ability to

accurately perform tasks and on the time to completion. For complex tasks, they also found a

correlation between participant preference and performance and felt that the “subjects like to use

things that make them successful”.

2.4 Algorithm Animation System Design

Röβling et al. [71] feel that effective learning from algorithm visualizations (AVs)

probably will not be achieved purely with “bigger and better graphics”, and they have proposed

nine pedagogical requirements for developing AVs that address features such as the architecture,

the display design, and the interaction provided to and encouraged of the user. Naps et al. [55]

provide a similar list of best practices for designing educational visualizations and argue that

“visualization technology, no matter how well it is designed, is of little educational value unless

it engages learners”. However, many of these suggestions have not been proven to be beneficial,

and in some cases empirical studies have produced results that contradict the usefulness of some

of these recommended features. For instance, the use of interactive questioning and multiple

views have been recommended by both groups, but findings have shown that these features

15

slightly harm performance [38, 66] and increase the time spent using the system without

increasing learning [73], respectively.

An agenda for evaluating graphical representations was described by Scaife and Rogers

in which consideration is given to external representations, internal representations, and the

interaction between the two [74]. They provide a survey of related studies and identify useful

findings but also point out assumptions and/or lack of proof of certain assertions made by other

researchers. Some of these most popular claims are:

► static visualizations are better than textual descriptions.

► animated visualizations are more effective than static ones.

► virtual reality is better than animation.

► three-dimensional diagrams are better than two-dimensional.

► solid modeling is better than wire-frame modeling.

► color is better in visualizations than black and white.

► interactive graphics are better than non-interactive graphics.

They state that these generalizations have been made without adequate proof of what is

cognitively gained by graphical representations that are more explicit, interactive, and dynamic.

Tudoreanu [85] explains the concept of cognitive economy as it pertains to the algorithm

animation domain. It “seeks to minimize the load of the cognitive system” by reducing the

complexity of a visualization while maximizing the amount of important information shown.

Through empirical studies, he identifies the management of a user’s cognitive load as being a

key factor in determining the effectiveness of a visualization. He states that visualization

environments that are too complex and increase the user’s cognitive load are no more beneficial

than viewing no visualization at all.

16

The design of an animation and proper interaction are key factors contributing to the

effectiveness of pedagogical tools, specifically algorithm animations. Features that can be

classified as either animation or interaction design have been evaluated, but in a somewhat

random or non-systematic manner. The remainder of this section discusses these studies as they

relate to design and interaction features of algorithm animations.

2.4.1 Animation Design

Components of an animation include graphical objects, color, sound, motion, textual

labels, captions, a code view, and visual cues. At times, these type of features, referred to as

“representational characteristics”[36], have been discredited as having little pedagogical benefit

[36, 55, 71] because only a few studies investigating these features have led to statistically

significant results [44, 73].

Lawrence studied user preferences and the effects of labels on objects, varying data set

sizes, and choice and orientation of graphical objects [44]. While she found the variations in

these attributes did not increase learning, the results have been useful in showing that these

features do not decrease learning and that viewers’ preferences do not necessarily make a

difference in algorithm comprehension [3, 44]. Meanwhile, other studies have shown that

features of the animation design contributed to a significant increase in learning. For instance,

allowing a user absolute control over the speed [73], including textual and visual cues [44], and

reducing the number of colors used in the display [44] have all been found to enhance the

pedagogical value of algorithm animations. The usefulness of these features was determined by

participants’ performance scores on assessments of their comprehension of the animated

algorithm presented during a session. Our research investigates the effect of these types of

features on comprehension as well as the viewer’s ability to perceive the animation.

17

2.4.2 Interaction Design

Grissom et al. [27] established an engagement taxonomy that categorizes six levels of

interaction of students with visualization tools. In order of increasing engagement, the categories

are:

1. No viewing,

2. Viewing,

3. Responding,

4. Changing,

5. Constructing, and

6. Presenting.

Even though the categories can overlap, the hypothesis is that the greater the level of

engagement, the greater the learning benefit. This taxonomy coincides with research published

in 1954 [18] that has since been described as the “Learning Pyramid” [56] represented in Figure

2.1.

The “Learning Pyramid” illustrates an increase in the retention of information as more

interactive learning methods are utilized. Similar to the learner engagement taxonomy, students

are believed to retain more knowledge as they perform tasks that more actively involve them in

the learning process. Our studies on interactive questioning techniques compare viewing to

responding as well as types of questions within the responding category. The studies discussed in

this section have investigated differences in performance in relation to the levels of this

taxonomy.

Several successful attempts have been made to show that students who actively interact

with a visualization technology enjoy an enhanced learning experience over those who only

18

attend a lecture [13, 27, 30] or read a textual description [30] with static images. However, no

significant difference in performance was found between the two groups in similar studies

conducted by the same researchers [30] when participants in the non-visualization group were

given a “carefully designed” handout with exercises.

Figure 2.1: A representation of the “Learning Pyramid” [56].

In some studies in which a performance increase was found, the specific contributing

factors could not be discerned. For example, a study investigating the effects of prediction and

animation on algorithm comprehension found that subjects who were asked to make predictions

while viewing an animation performed significantly better on post-tests than the other three

groups (prediction only, animation only, and neither). However, it was not clear whether

Lecture

Reading

Audio-Visual

Demonstration

Discussion Group

Practice by Doing

Teach Others / Immediate Use of Learning

19

prediction or animation alone were significant factors, or if it was only the combination of the

two that had a significant effect.

The goal of studies presented in [39] was to determine whether predictive interaction has

a positive impact on learning. After conducting two studies in which students interacted with the

Interactive Data Structure Visualizations (IDSV) courseware, Jarc et al. concluded that

predictive interaction was not beneficial in general and that it may be most useful for difficult

concepts and dynamic displays.

Hansen et al. [30] performed a series of experiments in which they compared the use of

their fully functional Hypermedia Algorithm Visualization (HalVis) system against text-only

learning, lecture, XTango (another visualization system) [77], and “reduced” versions of HalVis

in which some views or features were removed. Of their eight experiments, two are related to our

current research. One experiment involved participants passively viewing an animation

presented by XTango compared to those who were interactively taught the same algorithm using

HalVis. Even though the HalVis group significantly outperformed the XTango group on a post-

test, HalVis offers additional views (i.e. a conceptual view that shows a real-world analogy to the

algorithm) and features, such as probes, than those provided by the chosen XTango animation,

and none of these characteristics can be singled out as the reason for the better performance of

the HalVis group [30]. Therefore, other experiments were conducted in which a full-version

HalVis was compared to versions without certain views or features. As a result of these

experiments, they found that participants who were required to answer pop-up questions

performed better, though not significantly, than those who were not [30].

The recommendation to allow students to enter their own input set into an algorithm

animation [55, 71] falls under the “changing” category of the student engagement taxonomy

20

[27]. Lawrence et al. conducted two studies [44, 45] that found a significant improvement in

performance for students who entered data sets compared to those who did not. In contrast,

Saraiya et al. [73] found that students who entered their own data performed slightly worse than

those who were given good examples. In the Lawrence et al. studies, the participants who

entered their own data sets were exposed to the algorithm either through written text or lecture

before attempting to create examples, whereas it is not clear if the students in the last study were

given any introductory material about the algorithm and were likely to have entered random,

meaningless data sets.

Constructing an algorithm visualization, the fifth category in the student engagement

taxonomy, can be accomplished through hand construction or direct generation in which the

learner maps the algorithm to a visualization through some type of code augmentation or script.

In some studies, students who created algorithm animations were reported to have improved

performance [35] and to have found the course more enjoyable because it was more engaging

[79] while another study found no effect [36].

2.5 Summary

Hundreds of algorithm animations and systems exist including those that can run over the

internet [39], as a standalone application [79], or both [31]. This related work section has

highlighted key eras in the evolution of algorithm animations. When AAs were first brought into

existence in the early 1980’s [5], the main focus was on developing a visualization tool that

could dynamically show students the execution of an algorithm. In the early to mid 1990’s,

some researchers became concerned with classifying software visualizations and testing whether

they actually added the expected educational benefits for which they were designed. The varied

and unexpected outcomes of some of the initial studies [44] resulted in additional studies and

21

recommendations of factors believed to contribute to the effectiveness of an AA or AA system

[55, 73].

This research investigates the effectiveness of algorithm animations and systems from

both a design and an evaluation perspective. Assumptions about the usefulness of various

features and interaction have been turned into hypotheses and were empirically evaluated. Since

some AAs have proven to be effective educational tools while others have not, the

implementation of certain features within the various AAs must contribute to these differences in

effectiveness. Therefore, we compare AAs against one another by contrasting feature(s) between

the two and conducting user studies with student participants. Some of the variation found in

these studies on the effectiveness of AAs on comprehension may also be due to individual

differences amongst students. We have taken this into consideration and started collecting and

analyzing assessments designed to differentiate students based upon the type of learner they

identify themselves to be and scores on various ability tests. The results of these studies will aid

in designing effective algorithm animations and in objectively evaluating those that already exist.

22

CHAPTER 3

FRAMEWORK AND METHODOLOGY

3.1 Introduction

The approach undertaken in this work to design effective software visualizations bears

some similarity to research done in the information retrieval [51] and information visualization

[32] domains. Our method involves de-featuring visualizations and systems to first identify

individual characteristics that are commonly used in existing AAs or that were found to be of

interest. In our work, these features are investigated at a perceptual level, meaning they are

presented in a simple, context-free display in which studies are conducted on the viewer’s ability

to detect and localize changes. These features are then integrated back into an algorithm

animation and higher-level studies are performed to determine if the features found to enhance

perception will in turn enhance cognition or the viewer’s ability to comprehend the depicted

algorithm.

To accomplish these tasks, several software packages have been developed to automate

and simplify the creation, execution, and analysis of experiments designed to test features of

algorithm animations and systems. This chapter describes the overall purpose and architecture of

the software and provides an overview of how an experimenter may use the various graphical

user interfaces to accomplish their tasks. Specific scenarios of the usage of these software

packages are detailed in Chapters 4 and 5 with descriptions of how the software has been used to

create and conduct empirical studies.

23

3.2 Just Noticeable Difference (JND) Software

Just Noticeable Difference, JND, is a testing application developed to conduct two-

alternative, forced-choice, discrimination threshold experiments. Two-alternative, forced-choice

experiments require participants to select one of two pre-determined options even if they do not

believe either of them to be true. Discrimination threshold experiments ask participants “to tell

apart, or discriminate, two things that differ by only a slight increment” [43]. The results can

then be analyzed using Weber’s Law which states that the “smallest difference in a specified

modality of sensory input that is detectable by a human being” [24], or JND, is a constant ratio of

the change in a stimulus and the original stimulus [7]. For studies conducted with this software,

these terms mean that a viewer has to visually determine the taller of two bars and that the results

can then be used to calculate a (just) noticeable difference for bar heights.

The reason JND was developed was to conduct a preliminary study to determine the

minimum difference between heights of bars that can be detected at a 95% confidence level. In

the algorithm animations studied in this research, vertical rectangular “bars” are used to represent

data elements. The bar’s location indicates the index within an array and the height indicates the

value. To ensure that viewers are able to perceive the differences in values of elements depicted

by the bars, JND has been used to conduct an experiment that provides the minimum step size, or

difference between bar heights, for displays in our other studies.

At the beginning of each participant session, the administrator may enter or modify data

about the participant, the monitor, and the display (see Figure 3.1). The ability to specify the

variables displayed on this “Set Parameters” screen at runtime is provided for the perceptual

psychologists who design and conduct these low-level studies. The “Monitor Width” and the

“Distance from Screen” must be entered in inches. The “Display” of the bars may be a “Flash”,

24

shown for a specified amount of time and then hidden, or “Fixed”, shown until the participant

selects an answer. If “Flash” is chosen, then the administrator must enter the length of the flash

in milliseconds in the “Flash Time” textbox. The “Number of Trials” parameter will be the

number of displays and questions shown to the viewer.

Figure 3.1. Screenshot of the set-up window of JND. The experiment administrator

can overwrite the default values for each parameter.

All other parameters can be entered in “Pixels” or “Degrees”, whichever is selected by

changing the value of “Type”. The degrees are computed based on the monitor width and the

participant’s distance from the screen. The angle of view (see Figure 3.2) is calculated and then

the ratio of pixels per 1
o
 is used as a conversion factor. As the administrator toggles between the

“Pixels” and “Degrees” options, the values are automatically converted from one measurement

to the other.

25

Figure 3.2. A depiction of an overhead view of a participant during an experiment

session.

The “Select Color” button opens the screen shown in Figure 3.3 and allows the

administrator to select the desired color of the bars to be displayed. The values shown in Figures

3.1 and 3.3 are the default values that were researched and agreed upon by members of our

research group. The use of such default values reduces the time needed to set up each

experiment.

Figure 3.3. The color palette screen of JND. It is used to select the color of the bars.

The default value shown is green, Red / Green / Blue (RGB): 100 / 220 / 10

Participant

Monitor / Field of View

Angle of View

26

Once the “Start” button on the “Set Parameters” window is pressed, a small screen (see

Figure 3.4) appears requesting the participant to press any key to continue. The purpose of this

prompt is to guide the viewer’s focus to the same fixation point (the black dot) at the beginning

of each trial.

The viewer is then shown two vertical, rectangular bars, as illustrated in Figure 3.4, and

must decide which bar is taller. Depending upon the option selected by the experiment

administrator, the bars may stay on the screen or they may appear for a specified number of

milliseconds. Since the user must judge which of the bars is taller and then select either the left

or right bar, this is called a two-alternative forced-choice judgment.

Figure 3.4. Prompt to guide viewer’s focus to the same location at the beginning of each

trial.

27

Figure 3.5. Sample display and question.

After the participant has completed all trials, a logfile is written with information about

the session (see logfile__12.11.2006_13.35.58.txt in Figure 3.6). It is a simple text file, and its

name consists of the date (_mm.dd.yyyy) and time (_hh.mm.ss) the session began.

Figure 3.6. Sample logfile produced by one session of an experiment using JND.

The parameter values entered on the set-up screen are printed at the beginning of the file.

Then, for each trial, the heights of both the left and right bars, the difference between the two, the

Participant ID: 123 Number of Trials: 5
Type: Pixels (Degrees) Monitor Width: 15.5 Distance from Screen: 28.65
Step Size: 10 (0.21623713) Space Between: 48 (1.0379382) Space From Fix: 0 (0.0)
Display: Flash Flash Time: 250
Window Height: 768 (16.607012) Window Width: 1024 (22.142683) Bar Width: 16 (0.34597942)
Base Bar Height: 100 (2.1623714) Min Height: 50 (1.0811857) Max Height: 768 (3.243557)

H-l H-r Diff Resp Correct? Time
100 100 0 L Yes 5500
120 100 20 R No 10625
100 90 10 R No 6469
110 100 10 R No 2125
100 80 20 R No 1984
Number of trials completed: 5

28

user-entered response, the correctness of the response, and the response time are listed. The data

is entered in a tab-delimited format that can easily be copied into Microsoft Excel or read by a

statistical software package for analysis. The “Noticeable Difference Experiment”, described in

Section 4.2, was conducted using JND.

3.3 VizEval Package Suite

The VizEval Suite [65] is an environment designed to support experimentation with the

effect of various attributes of algorithm animation on the user’s ability to perceive and attend to

objects and events occurring in software visualizations. This is a software package that consists

of several components (see Figure 3.7): FileCreator, TestCreator [84], TestTaker [70], and

utility programs. Each component serves a role in simplifying the process of creating,

conducting, and analyzing studies of perceptual and attentional features of software

visualizations. The VizEval Suite allows the experiment administrator to develop an experiment

(including specification of all of the graphics, animations and questions), to deploy that

experiment, and to collect and organize the output. Automation is important because of the size

and complexity of these perceptual studies, which may consist of hundreds of trials and complex

orderings within a trial or across test participants.

29

Figure 3.7. The VizEval Architecture.

Each experiment consists of a number of blocks. Each block contains some number of

trials. In each trial, the participant views a short animation and is then asked a series of questions

about what she saw and understood.

The experiment administrator uses TestCreator to specify the components of the

experiment. For large experiments involving a substantial number of graphics and animation

files, the FileCreator module may be used to automate their generation. The TestTaker module

executes the experiments: displays visualizations, presents questions, and records user responses,

timing and other information in a log file.

SKA [29] is a combination of a visual data structure library, a visual data structure

diagram manipulation environment, and an algorithm animation system, all designed for use in

an instructional setting. In the context of the VizEval suite, SKA serves as the graphics and

animation engine.

Graphical objects and their animations are specified in graphics and animation files,

respectively. These are simple text files that are processed by SKA at run-time. While such files

FileCreator TestCreator TestTaker

Graphics &
Animation

Files

Test File

Log Files

Utility

Programs
SKA

Support Kit for
Animation

30

may be created manually using a text editor, it is desirable in the case of large experiments to use

FileCreator to automate this process. Researchers may allow the module to automatically

generate a full set of graphical objects of all set sizes and of randomized heights, or may specify

particular set sizes, heights, or other attributes. The administrator can also create animation files.

Either an individual file or a set of files can be generated, using either experimenter-specified or

random values.

TestCreator [84] facilitates the design and generation of experiment test files. It leads the

experiment designer step-by-step through the process of specifying each block, the trials within

each block, and the graphics, animations, and questions associated with each trial (see Figure

3.8). TestCreator features support for five different types of questions: mouse (requires user

interaction with a mouse), keyboard (requires interaction through the keyboard), multiple choice,

N-Point (e.g. Likert Scale), and Yes/No (True/False). Additional customized question types may

be created by extending the class “Question”.

The experiment file shown in Figure 3.9 is generated by TestCreator and contains all

information needed to run the experiment, including user instructions, questions, start method

(enter key, mouse click, space bar), attractor (countdown timer, etc.), graphics and animation

files to be used, as well as various timing and flow of control parameters.

31

Figure 3.8: Screen shots of TestCreator. The “Block” (top), “Trial” (bottom left),

and “Question” (bottom right) windows are each used to specify information about the

experiment.

32

Figure 3.9: Sample test file created by TestCreator and read by TestTaker.

TestTaker [70] is the execution environment for the experiments. It keeps track of the

user data, the date and time at which the experiment was conducted, and other metrics such as

height and width of the screen, distance of the eyes from the screen and directory into which the

log files are written. TestTaker uses SKA to display the graphical objects and to execute the

animation. Associated questions are then displayed. User responses and other needed

information are written into a log file.

Figure 3.10 depicts a sample user session. In this case, eight bars without labels are

shown. One or two bars have been cued (by flashing or changing color) and zero, one or two bars

have changed height. The users are then asked a series of questions to determine if they noticed

that something changed (detection) and can identify the object that changed (localization).

The sample log file in Figure 3.11 was created by TestTaker and displays all of the data

captured during a session in plain-text. The perceptual studies that have been conducted with

VizEval thus far have consisted of hundreds of trials for each participant. Although the log files

TRIAL_NUMBER
1
NUMBER_OF_QUESTIONS
5
INSTRUCTION
Trial 1
ATTRACTOR
Countdown
START_METHOD
Enter Key
GRAPHICS_FILE
4BarB.txt
ANIMATION_FILE
Four\cue1_ch0\03_XX_flash_XX_XX.anim
TRIAL_START_TEXT
Trial 1
SHOW_QUESTION
true
PRE_ANIM_POST_TIMER_DELAY
266
QUESTION_TYPE
YesNoQuestion
QUESTION
Did any of the bars change height?
 . . .

TEST_NAME
Pilot Test 2
GREETING_TEXT
Insert general experimental instructions here.
ENDING_TEXT
You have reached the end. Thank You!
NUMBER_OF_BLOCKS
1
CANVAS_WIDTH
980
CANVAS_HEIGHT
450
BLOCK_NUMBER
1
NUMBER_OF_TRIALS
288
BLOCK_START_TEXT
Begin Block One
BLOCK_END_TEXT
You have finished the first section.

33

can be read and manually analyzed, LogfileParser was created to automate this process, save

hours of time, and reduce the likelihood of errors.

Figure 3.10: The TestTaker interface during a session.

Figure 3.11: Sample log file created by TestTaker.

Test File: NSF_PILOT_TEST_HalfA.txt
User Name: pmr
User Distance: 3
Screen Width: 5
Screen Resolution: 5
Start Time: 13:25:0
Trial #: 1
Graphics File: C:\MyWork\Research\Projects\VizEval\TestFiles\Experiment1\4BarB.txt
Animation File:

C:\MyWork\Research\Projects\VizEval\TestFiles\Experiment1\Four\cue1_ch0\03_XX_flash_
XX_XX.anim

Question: Did any of the bars change height?
User Response: Yes
Correct Answer: No
Question: Please click on the bar most likely to have changed height.
Selected Bar: 3
Question: How confident are you that this bar actually changed height?
User Response: 7
Correct Answer:
Question: Please click on the bar second most likely to have changed height.
Selected Bar: 2
Question: How confident are you that this bar actually changed height?
User Response: 7

34

 Other utility programs (TestFileChecker, TestFileSwitcher, and FilePreview) also were

created to save time and reduce errors. Since the test file read by TestTaker can be edited,

graphics and animation file names can be changed, and directory structures can be altered,

TestFileChecker was created to verify that all of the files that were specified within the test file

exist at the given locations. For some studies, the administrator may want all participants to

view the same pairs of animations and graphics, but in a different order. Originally, this was

accomplished by the administrator either re-ordering the hundreds of files by cutting-and-pasting

their names into an existing test file or by creating new test files with TestCreator and re-

entering the hundreds of trials and questions. TestFileSwitcher will read in a test file, randomly

order the pairs of animation and graphics files, and print a new test file with the same

instructions and questions as the original test file. FilePreview allows the administrator to

quickly preview a graphics file alone or in combination with an animation without starting a

session of TestTaker.

VizEval Suite has been and is being used to assist researchers in conducting experiments

on attributes that may contribute to the effectiveness of software visualizations. Compared to

manual specification, VizEval provides a substantial time saving for the perceptual psychologists

who are using the software. Even though VizEval was created specifically for the types of tasks

described above and in Section 4.3, it is a general application that can support experiments using

other types of graphics, animations, and questions.

3.4 System to Study the Effectiveness of Animations (SSEA)

A System to Study the Effectiveness of Animations, SSEA, is a testing environment

designed to study the effectiveness of dynamic software visualizations [42, 63]. It was created as

a tool to investigate the effects of various design and interaction features of algorithm animations

35

on a viewer’s ability to perceive and comprehend a depicted algorithm. SSEA is capable of

running an animated graphical view (see Figure 3.12, AREA 2) simultaneously with an animated

textual view (see Figure 3.12, AREA 4) of an algorithm. The textual view is described as

animated because the line of the source code that is currently being executed and graphically

animated is highlighted. Users can select a data set, pause, rewind and control the speed of the

animation (see Figure 3.12, AREA 1).

Figure 3.12: Screenshot of SSEA.

An experiment can consist of questions asked via a pre-animation questionnaire or test, a

post-animation test, or during the animation with pop-up questions (see Figure 3.12, AREA 5)

and “traditional” questions (see Figure 3.12, AREA 3). Pop-up questions appear over the source

36

code, pause the animation, and require a viewer to answer it before the animation will proceed.

The experiment administrator can specify when a pop-up question appears by modifying the

source code that implements the algorithm. The text of the question is contained in an XML file.

The “traditional” questions are located at the bottom of the screen and can be answered at any

time and in any order. The viewer is free to use the animation and displayed source code to

assist in answering the questions.

Each action performed by users as well as their responses to questions are stored in an

XML log file. SSEA contains a utility program that parses the XML file and converts the data

into a tab delimited format for easier statistical analysis. Experiment administrators can modify

SSEA to display desired algorithms, colors, graphics and questions.

A full description of SSEA’s architecture and capabilities can be found in [42, 63]. Since

these publications, SSEA has been updated to administer pre- and post-tests and to play sound.

The SSEA log file parser has also been modified to accommodate these changes.

3.5 Conclusion

Before developing these applications, we explored other software used to conduct

perceptual and algorithm animation studies. The decision to create our own software packages

was reached because we found that existing packages did not provide the exact functionality we

desired and that we could control variables by have consistent interfaces for our various types of

studies.

Creating the software has allowed for low-level studies to be conducted using VizEval

and then, with the same look-and-feel, incorporate these perceptual/attentional features into an

algorithm animation in SSEA. These features are then investigated for their influence on the

overall comprehension of the presented algorithm. SSEA is additionally used to study

37

interaction and cognitive characteristics of algorithm animations and systems. Now that these

software packages have been developed and tested, our experiments can be carried out in a more

efficient manner.

38

CHAPTER 4

PERCEPTUAL AND ATTENTIONAL STUDIES

4.1 Introduction

The algorithm animations studied in this research were developed for pedagogical

purposes, meaning they were created for students to gain knowledge about the depicted

algorithms. Cognition is the mental process involved in gaining knowledge, including aspects

such as awareness, perception, reasoning, and judgment [20]. Therefore, viewers must be able to

perceive what is displayed in order to gain knowledge from it. Based on the cognitive load

theory [49, 58] and related work [32, 68, 74 85], visualizations that are easier to perceive are

capable of freeing some of an individual’s limited cognitive processing resources and can allow

space within the working memory for processing of other, more complicated tasks.

Attention is defined as the cognitive process whereby a person concentrates on some

features of the environment to the relative exclusion of others [46, 89]. “Learning is most

efficient when a person is paying attention” [50]. Again, these AAs have been developed for

educational environments, so maintaining or guiding a viewer’s attention to critical actions in the

animation can be vital to his comprehension of the algorithm. Features that are referred to as

perceptual and attentional tend to be low-level characteristics of the visualization or animation.

For instance, during a sorting algorithm, the use of color to represent objects that are sorted

versus those that are not sorted helps the viewer to quickly perceive that objects are grouped into

two types. The use of cues or certain motions may be effective in guiding a viewer’s attention to

specific steps.

39

Algorithm animations often use rectangular shaped bars or some type of object for which

the size indicates the value it represents (i.e. a taller bar represents a larger value). These bars

are often changed or moved to depict steps of the algorithm. The objects are sometimes labeled

with an alphanumeric value that is intended to add additional clarification to the user. Another

form of labels shown on the animation display are those used to provide textual descriptions of

the current stage or step of the algorithm. The placement and timing of these labels may have an

effect on the comprehension of the algorithm. The studies presented here address some of these

low-level features. We are designing and conducting experiments geared specifically towards

studying the impact of these individual attributes on algorithm comprehension. The results of

these studies will inform the design of effective algorithm animations.

Below is a listing of the perceptual and attentional experiments that have been conducted

and analyzed along with the hypothesis, a description of the design and method, and a summary

of the results.

4.2 Noticeable Difference Study

The purpose of this initial study was to determine a suitable difference in bar heights that

will be noticeable by most viewers. The graphical objects used in the algorithm animations in

this research are vertical, rectangular-shaped bars. Since the height of the bar represents its

value, we wanted to ensure that viewers would be able to perceive the differences in heights of

the bars and hence, the differences in the values the bars represent. By empirically determining

this value, other, higher-level features of algorithm animations can be compared, while

controlling for the effect of the magnitude of the change in bar height.

The question we sought to answer with this study was: What is a suitable difference in

bar heights that will be noticeable by most viewers?

40

4.2.1 Participants

Students enrolled in psychology courses at Georgia Tech participated with this study

during the Spring and Fall 2004 semesters. All participants had 20/20 vision after any necessary

refractive correction.

4.2.2 Design

This was a discrimination threshold experiment conducted to establish the difference in

bar heights to use in the graphical design of future studies. It is classified as a two-alternative,

forced-choice judgment because the participants had to select either the left or right bar as being

taller, even if the bars appeared to be the same height. The difference, or step size, was

determined for the worst-case, viewing bars in the periphery. Since algorithm animation viewers

have varying levels of spatial resolution (or ability to detect spatial differences), the step size was

selected so that all participants, including those with poorer spatial resolution, will be able to

easily perceive the differences between the heights of the bars. The minimum step size was

determined by participants perceptually distinguishing one bar height from another with at least

95% accuracy.

4.2.3 Materials

Dell Dimension desktop computers with Sony Trinitron 19” color monitors were used.

Participants interacted with the JND software package, which managed the graphics and

recorded participants’ responses. To ensure the individual bars were clearly visible, they were

approximately 0.75
o
 visual angle in width, colored green, and presented against a faint gray

background [19]. The bars ranged in height from a set minimum to a set maximum number of

pixels, in a constant increment of pixels.

41

4.2.4 Procedure

Using the JND software, participants viewed multiple trials. Each trial consisted of a pair

of bars displayed on the top portion of the screen and one question at the bottom asking the

participant to judge which bar was taller, the left or the right. The two bars were always a set

number of degrees or pixels apart, but their location on the screen varied from the center to the

far left or right periphery. Viewers clicked on the button “Left” or “Right” to indicate the bar

they judged to be taller, and the responses were stored in a tab-delimited log file.

4.2.5 Results

From a viewing distance of 28.5 inches and a display resolution of 1280 x 1024, analysis

of the results found 22 pixels to be a distinguishable difference between two bars even for

participants with poorer spatial resolution and for bars in the periphery. This result will aid in

building graphical displays that will allow an experimenter to control for a viewer’s ability to

perceive height changes and differences.

4.3 Effect of Flash Cue on Detection and Localization

This second experiment was designed to investigate the effect of a flash cue on a

viewer’s ability to detect and localize bars that changed height. Many existing algorithm

animations use some type of cueing in hopes of drawing the viewer’s attention to an action that

is occurring or about to occur. Also, animations often consist of objects resizing or changing

shape to indicate some other action or step of the algorithm. These cues and changes take place

in the midst of textual descriptions and often in conjunction with other windows with additional

views of the algorithm. Investigating whether the cues and changes are perceived as the

algorithm animation designer intended would be difficult to analyze within the context of a

complete algorithm animation. Therefore, VizEval was used to conduct this study because the

42

display looks similar to the algorithm animations portrayed in SSEA, but only the features of

interest (cues and height changes) are shown to the viewer. The questions asked are specific to

determining the viewer’s ability to perceive the actions taking place.

The question we sought to answer with this study was: Does the use of a “flash” cue aid

in the detection and localization of critical changes?

4.3.1 Participants

Thirty-six undergraduate students at Georgia Tech participated with this study during the

Spring and Fall 2005 semesters. All participants had 20/20 vision after any necessary refractive

correction, and all received extra credit that could be allocated towards any psychology course in

which they were enrolled during that semester.

4.3.2 Design

This study investigated 4 within-subject variables: labels, set-size, number of bars cued,

and number of bars changed. Each participant viewed 576 trials that were divided into 2 blocks

of 288 each. One block of trials displayed an alphabetical label placed underneath each bar and,

as shown in Figure 4.1, one block did not display labels. The other 3 variables were investigated

within each block. The display set-size varied to show 4, 8, or 16 bars. During each trial, either

1 or 2 bars were cued (flashed) followed by 0, 1, or 2 bars increasing or decreasing in height by

22 pixels.

4.3.3 Materials

Participants interacted with the TestTaker module (see Figure 4.1 below) of the VizEval

Suite, which managed the graphics and animations and recorded participants’ responses. Dell

Dimension desktop computers with Sony Trinitron 19” color monitors, 1280 x 1024 resolution,

were used.

43

Figure 4.1: The TestTaker interface during a session.

To ensure the individual bars were clearly visible, they were approximately 0.75
o
 visual

angle in width, colored green, and presented against a faint gray background. The bar heights

represent the values of data elements in an array. The bars varied in height from 44 to 374

pixels, in increments of 22 pixels. A preliminary study (described in Section 4.2) showed that an

increment of 22 pixels was clearly detectable, even in the far peripheral portion of the screen and

for participants with poorer spatial resolution.

4.3.4 Procedure

Students volunteered to participate in this study through an online system. Sessions

consisted of one or two students who signed consent forms, read introductory material and had

their visual acuity tested before beginning the study. Each participant then used the TestTaker

module to complete two blocks of trials, one with labels and one without, and the order of the

blocks was balanced across participants. The other three variables (set-size, number of bars

cued, and number of bars changed) were randomly varied within each block.

Each trial began with a countdown displayed as a fixation point at the top center of the

display window. The countdown began after the user pressed the spacebar and when it ended

44

there was a short pause (a random number of milliseconds) before the start of the animation.

Each of the 576 trials consisted of a brief animation followed by five questions. Animations

showed either one or two bars flash twice (hide/show for 100 milliseconds, two times), and then

zero, one, or two bars were randomly increased or decreased in height by 22 pixels. In trials

where two bars were either cued or changed height, the bars were displayed on opposite sides of

the screen. This was done to encourage participants to simultaneously monitor both sides of the

display.

At the end of each animation, participants answered the following five questions by

responding with the mouse:

1. Did any of the bars change height? (Yes or No)

2. Please click on the bar most likely to have changed height.

3. How confident are you that this bar actually changed height? (1 = least …7 =

most confident)

4. Please click on the bar second most likely to have changed height.

5. How confident are you that this bar actually changed height? (1 = least … 7 =

most confident)

4.3.5 Results and Analysis

The results for detection and localization of changes in bar height differed.

Perceptual/attentional characteristics that helped detection hurt localization, and vice versa.

First, detection was significantly better when two bars simultaneously changed height than if

only one changed (F(1,33)=62.96, p<0.001); conversely, localization performance was worse

when two bars changed height (F(1,33)=89.18, p<0.001). One possible cause of this result is

that two bars changing height doubles the viewer’s chances of detecting a change but also

45

doubles the number of locations that must be stored in memory. The location of the second bar

is fading from memory while the participant answers questions about the location and confidence

level associated with the first bar.

Second, localization performance suffered, as expected, from the set-size effect.

Meaning, participants’ ability to locate the correct bar that changed height decreased as the

number of bars increased from 4 to 8 to 16. However, detection performance was worse for

smaller set sizes than larger sets when the bars were located in the periphery and was not

affected by set-size effect when the bar locations were random.

The use of labels was a third characteristic that produced differing performance levels for

detection and localization activities. While labels significantly improved localization

performance (F(1,33)=7.88, p<0.008), they slightly harmed detection performance. Labels were

especially helpful in localizing bars when either two simultaneous changes in bar heights

occurred or when 8 or 16 bars were displayed. The labels provided additional cues that helped to

retain information about critical bar locations in working memory while they responded to other

questions during each trial. The slightly poorer detection performance on trials with labels may

have been because the labels provided no critical information for detection, yet doubled the

number of objects on the screen and added clutter to the display.

Our results show that some perceptual/attentional characteristics of the animation display

may help processing for one type of task, but harm another. Thus, we must systematically

consider both the users’ perceptual and attentional capabilities as well as the demands of the

specific tasks involved in apprehending and comprehending algorithm animations.

46

4.4 Cueing and Motion in Algorithm Animation Comprehension

Analysis of the flash cue study described in section 4.3 provided insight into the

usefulness of a flash cue in detecting and localizing changes on a perceptual and attentional

level. This third experiment integrates the flash cue into an algorithm animation and investigates

its effect on the comprehension of the depicted algorithm. With this study we were able to

investigate if using a flash cue to indicate that two bars were being compared helped the viewer

perceive the comparison and, further, if the ability to notice the comparison increased the overall

understanding of the algorithm. We also tested a second factor, the type of motion used to

illustrate an exchange of values within an array, and again, viewers were tested on their ability to

notice this change and its effect on the comprehension of the algorithm.

The question we sought to answer with this study was: Does the use of exchange motion

and comparison cueing aid in the comprehension of algorithm animations?

4.4.1 Participants

Students were recruited from various undergraduate-level computer science courses at

The University of Georgia during the Fall 2005 and Spring 2006 semesters. Fifty-nine

volunteers came into our research lab and spent approximately one hour viewing animations and

answering questions. Each participant received a five-dollar cash stipend at the completion of

the experiment.

4.4.2 Design

Quicksort is a divide-and-conquer algorithm in which array elements are compared to a

“pivot” value and then placed into a “lower” (value <= pivot) or “higher” (value > pivot)

partition based on the comparison. This study concurrently investigated two factors, cueing and

exchange motion, each with two levels. For cueing, the “Flash” group was presented with pairs

47

of bars that flashed three times when they were compared and the bars in the display for the

“None” group did not flash when values were compared. For both groups, arrows pointed to the

2 bars being compared. For motion, one group (Move) saw the bars swap positions using an arc-

shaped path. The other motion (Grow) showed the bars stay in their positions, but grow or

shrink to the size of the other bar.

Table 4.1: 2 x 2 Factorial Experiment Design - Number of participants per group.

 Move Grow

Flash 14 16

None 12 17

To conduct this study, four animations of the quicksort algorithm were created and

participants were randomly assigned to one of the four groups (Move/Flash, Move/None,

Grow/Flash, Grow/None).

4.4.3 Materials

Experiments were conducted through the SSEA environment. Each participant was given

a packet that consisted of a consent form, an instruction sheet, a SSEA “cheat sheet”, scratch

paper, and a feedback form. Samples of these materials are in Appendix A. The instruction

sheet provided an overview of what was expected of each participant during the experiment and

step-by-step instructions of how to use SSEA for the practice exercise. The SSEA “cheat sheet”

shows a screen shot of SSEA (see Figure 4.2) along with an explanation of each of the available

views. Studies were conducted on Dell Dimension desktop computers with high-resolution 17-

inch LCD flat-panel color monitors.

48

4.4.4 Procedure

Upon arrival to the lab, each participant was given a packet and a brief verbal description

of what it contained. Students were randomly assigned to the various groups and were not aware

that they were viewing different versions of the animation. They each ran the “SSEA_Demo” of

an algorithm that finds the maximum value of the input set. Just as in the actual experiment, the

demo contained an animated and pseudocode view of the algorithm and the participants were

required to answer one pop-up question and four “traditional” test questions located at the

bottom of the screen (see Figure 4.2). The users were instructed to explore the interactive

facilities of SSEA with specific, written steps of how to play, pause, or step through the

algorithm, answer questions, etc.

Figure 4.2. Screenshot of the SSEA program with a pop-up question displayed.

After students were comfortable with the system, they ended the demo and began the

portion of the study that we used for analysis. The first screen presented was a questionnaire in

which students indicated their gender, classification, and every undergraduate computer science

49

course taken in the past or in which they were currently enrolled. Students then proceeded to

view an implementation of the quicksort algorithm. We chose to use the quicksort algorithm

because of its complex nature, making it a challenging algorithm to understand and follow.

The participants viewed their respective animation and all answered the same fifteen

“traditional” test questions at their own pace. All questions were multiple-choice and reflected a

range of concepts related to comprehension of the quicksort algorithm. These questions are

similar to those on the post-test in Appendix C. The students had access to these questions at all

times, and they were allowed to use the animation or code to aid in their responses. Since all

interaction data is captured, we may eventually be able to find usage trends that may provide

insight for future studies.

Once students completed and submitted the traditional test questions, they were given the

opportunity to comment on the animations they viewed, the SSEA system, or give any general

feedback, through a paper survey form. After feedback forms were collected, students received

payment for their participation.

4.4.5 Results and Analysis

Questions about perception, attention, and comprehension were investigated with this

study. To analyze the results, we used the SAS statistical software package to perform one-

factor and two-factor ANOVA analyses. Statistical significance at the α = 0.05 level was

employed.

Perception and Attention

The algorithm animation was periodically paused for users to answer pop-up questions.

Each participant was required to answer the same set of eight pop-up questions that were

50

presented immediately following comparison or exchange actions. Four questions were specific

to the comparison action:

1 - 2. What elements were just compared? (Asked at two different steps.)

3. What was the last comparison?

4. What variables were compared?

The other four were specific to the swapping action and the two sets of questions were

intermixed:

1 - 2. What elements were just swapped? (Asked at two different steps.)

3. What element was just swapped with 70?

4. What variables were swapped?

Table 4.2: Averages for Pop-up Questions

 Move Grow AVG

Flash 72.9 % 71.6% 72.2 %

None 62.3 % 58.4 % 60.0 %

AVG 68.0 % 64.8 %

Table 4.2 shows the average scores, by group, for all eight pop-up questions. Participants

in the cueing (Flash) group significantly outperformed the no-cueing (None) group on the pop-up

questions overall, F(1,57)=4.44, p < 0.04, as well as the comparison specific questions,

F(1,57)=10.39, p< 0.002. The move group performed slightly better than the grow group

overall, and significantly better on the swapping specific questions, F(1,57)=5.74, p < 0.02.

Comprehension

Comprehension was measured based on a participant’s performance on the “traditional”

questions. These questions were designed to cover the first three levels of Bloom’s Taxonomy:

Knowledge, Comprehension, and Application [89]. Analysis of overall performance of the four

51

animation groups on the traditional questions as well as the individual levels yielded results that

were not significant.

Table 4.3: Averages for Comprehension Questions

 Move Grow AVG

Flash 61.6 % 61.6% 61.6 %

None 59.1 % 60.4 % 59.9 %

AVG 60.4 % 61.0 %

In conclusion, participants who viewed the flash cue and participants who viewed the arc-

shaped motion performed significantly better on the perceptual and attentional questions.

However, this benefit did not appear to translate into a higher comprehension of the algorithm.

The use of labels and color provided redundant cues to the actions highlighted by flashing and

motion, and apparently conveyed adequate information to the viewer. Even though the features

investigated in this study did not increase (nor did it decrease) comprehension, participants liked

the “blinking” comparisons and animated swaps.

52

CHAPTER 5

ATTENTIONAL AND COGNITIVE STUDIES

5.1 Introduction

As described earlier, Naps et al. [27] have identified six levels of student engagement that

describe various levels of interaction with a visualization tool. In order of increasing

engagement, the categories are no viewing, viewing, responding, changing, constructing, and

presenting. The types of interaction design addressed by the following studies pertain to the

second and third levels of this taxonomy: viewing and responding.

Dynamic questions have been implemented into well-published algorithm animation

systems [53, 76, 30] and given as a recommended feature for such pedagogical tools [71, 55].

Several studies were conducted that partially investigate the use of dynamic questions by only

considering one aspect, such as prediction [39], or the details were not provided [30].

Interactive questioning techniques can vary based on when and how questions are asked

as well as what is asked. Questions can be in the form of a pop-up that stops the animation and

forces the user to respond or of what we call “traditional”, worksheet-style questions that can be

answered at any time with the assistance of the animation or code. Questions may require the

user to predict what is about to happen or to tell what they just saw or interpreted. The questions

may be low-level, asking about actions of the animation, and affect where the viewer places her

attention. Alternatively, the questions may be high-level and require the user to think about the

algorithm. We have investigated interactive questions by conducting a series of studies to

address these different techniques. We have also begun to explore variations in performance

53

inevitably present in studies involving human subjects by analyzing the effects of individual

differences and attention (or visual focus as detected by eye-tracking equipment) on algorithm

comprehension.

5.2 Interactive Questioning in Algorithm Animation Comprehension, Part I

Our cueing and motion study described in Section 4.2 tested whether a specific cueing or

swapping technique increases a user’s ability to notice changes occurring at each step of an

algorithm during execution and if greater ability to notice these changes enhances the overall

comprehension of the algorithm [42]. During the design phase of the previous experiment, we

decided to add pop-up questions as part of the animation of the algorithm. The pop-ups

immediately followed one of the comparing or exchanging actions and were intended to help

determine whether these techniques increased a student’s ability to notice the actions taking

place during the animation. After adding the pop-up questions and running pilot tests, we felt

that the questions forced us to pay better attention to the animation. Analysis of the results of the

cueing and motion experiment found a correlation between performance on the pop-up questions

and regular test questions. Therefore, we decided to follow up with this study on interactive

questioning techniques.

The question we sought to answer with this study was: Does the use of interactive

questioning aid in the comprehension of algorithm animations? If so, what types and how?

5.2.1 Participants

Students enrolled in various computer science undergraduate courses were recruited to

come into our research lab and spend approximately one hour viewing animations and answering

questions. Thirty-four undergraduate students at the University of Georgia participated in this

54

study during the Spring and Fall 2006 semesters. Each participant received a ten-dollar cash

stipend at the completion of the experiment.

5.2.2 Design

The purpose of this study was to explore more than just the difference in performance

between viewers who interact with the system via pop-up questions and those who do not. We

also wanted to determine if providing immediate feedback to the pop-up questions as well as the

type of question asked have a significant impact on the performance results. The types of pop-up

questions were predictive (What will be the next step?) or responsive (What did you just see?).

As shown in Table 5.1, our experiment design consisted of 6 groups. Even though the no pop-up

group for both predictive and responsive are the same, we included participants in both of these

categories for analysis purposes.

Table 5.1: 2x3 Factorial Experiment Design - Number of Participants Per Group.

No

Pop-up

Without

Feedback

With

Feedback

Predictive 6 6 5

Responsive 5 6 6

Based on previous studies and intuition, we believed that the participants who were asked

to predict the next step of the algorithm through a pop-up question and those who were provided

the correct answers to their pop-up questions would perform better on the traditional test

questions than participants in the other groups.

5.2.3 Materials

Experiments were conducted through the SSEA environment. Each participant was given

a packet that consisted of a consent form, an instruction sheet, a SSEA “cheat sheet”, scratch

paper, and a feedback form. A sample of these materials can be found in Appendix A. The

55

instruction sheet provided an overview of what was expected of each participant during the

experiment and step-by-step instructions of how to use SSEA for the practice exercise. The

SSEA “cheat sheet” shows a screen shot of SSEA (see Figure 5.1) along with an explanation of

each of the available views.

Figure 5.1. Screen shot of the SSEA program with a pop-up question displayed.

Studies were conducted on Dell Dimension desktop computers with high-resolution 17-

inch LCD flat-panel color monitors.

5.2.4 Procedure

Upon arrival to the lab, each participant was given a packet and a brief verbal description

of what it contained. Students were randomly assigned to the various groups and were not aware

that they were viewing different versions of the animation. They each ran the “SSEA_Demo”

of an algorithm that finds the maximum value of the input set. Just as in the actual experiment,

the demo contained an animated and pseudocode view of the algorithm and the participants were

required to answer and submit the test questions located at the bottom of the screen (see Figure

56

5.1). The users were instructed to explore the interactive facilities of SSEA with specific, written

steps of how to play, pause, or step through the algorithm, answer questions, etc. The demo did

not contain pop-up questions of any form.

After students were comfortable with the system, they ended the demo and began the

portion of the study that we used for analysis. The first screen presented was a questionnaire in

which students indicated their gender, classification, and all undergraduate computer science

courses taken. Students then proceeded to view an implementation of the quicksort algorithm.

We chose to use the quicksort algorithm because of its complex nature, making it a challenging

algorithm to understand and follow.

The participants viewed the animation and answered fifteen “traditional” test questions at

their own pace. These questions were accessible by the students at all times, and they were

allowed to use the animation or code to aid in their responses. Since all interaction data (i.e.

changes to speed, replays, changing between input sets, selecting a question, etc.) is captured, we

hope to eventually be able to identify usage trends that may provide insight for future studies.

The animation for participants in the no pop-up group was never automatically paused

and users were not required to interact with the AA system. Students in the other groups were

required to answer either eight predictive or eight responsive pop-up questions. Half of the

participants in each group were provided feedback in the form of the correct choice and a brief

description.

Once students completed and submitted the traditional test questions, they were given the

opportunity to comment on the animations they viewed, the SSEA system, or give any general

feedback, through a paper survey form. After feedback forms were collected, students received

payment for their participation.

57

5.2.5 Results

Several questions were addressed with this study and to analyze the results, we used the

SAS statistical software package to perform one and two factor ANOVA analyses. Statistical

significance at the α = 0.05 level was employed.

Pop-up versus No pop-up

Does the type of interaction required through the use of pop-up questions enhance overall

comprehension of an algorithm? Similar to the results by Jarc et al. [39], we found that

interactive questioning lessened performance, but not significantly (F(1,27)=1.49, p= 0.233).

The no pop-up group had an average score of 76.4% while the pop-up groups had a combined

average of 67.2%.

The no pop-up group scores appear to have been tainted by four participants in that group

who completed the experiment during a single session. They spent on average 13.6 minutes

viewing the animation and answering the test questions while the average for all participants in

all groups (including these four) was 30.7 minutes. Using the Pearson Product-Moment

Correlation Coefficient, we found a linear relationship (r = 0.7266) between time spent and

performance for the no pop-up group.

Table 5.2: Average percentage correct per group on the "traditional" test questions.

 No Pop-up
No

Feedback

With

Feedback

Average

(Exludes

“No Pop-up”)

Predictive 77.8% 70.0% 65.3% 67.9%

Responsive 74.7% 64.4% 68.9% 66.7%

Average 76.4% 67.2% 67.3%

58

Table 5.3. Average percentage correct per group on the "pop-up" questions.

No

Feedback

With

Feedback
AVG

Predictive 43.8% 65.0% 53.4%

Responsive 77.5% 93.8% 86.4%

AVG 59.1% 80.7%

Predictive versus Responsive

Does requiring a student to predict the next step of an algorithm during execution

enhance overall comprehension of an algorithm? According to the results in Table 5.2, there is

not much difference in scores for students who answer pop-up questions that require them to

select the next action versus those who respond about the previous step.

The difference in performance on the pop-up questions shown in Table 5.3 are

statistically significant (F(1,18)=15.22, p=0.0013) but this is expected since predicting what is

about to happen requires some level of understanding of the algorithm as opposed to identifying

the action that just took place.

Feedback versus No Feedback

Does providing students with immediate feedback in the form of the correct answer and

brief description enhance overall comprehension of an algorithm? As shown in Table 5.2,

students who received feedback performed better on the regular test questions than those who

were only shown the pop-up question, but again the difference was not significant (F(1,18)=0.65,

p=0.4336). However, providing feedback to the pop-up questions significantly improved scores

on the pop-up questions themselves (F(1,18=6.29), p=0.0233).

59

Use of Color

Our last two experiments were run during the 2005 – 2006 school year and both used the

SSEA program to show the same quicksort implementation to participants who were allowed to

volunteer for only one of the studies. Due to the high similarity between the materials and

procedures of the two experiments, we were able to make comparisons between specific groups

from the different studies.

In the animation, color is used to indicate the current status (sorted, active/inactive,

lower/upper partition) of a bar, or array element, as the algorithm executes. For this experiment,

we reduced the number of colors used in the animation from six to three and used fading to

create an appearance similar to that of using additional colors.

Answering the same fifteen test questions, the responsive-with-feedback group of this

study who viewed the quicksort animation with three colors had an average score of 76% while

the comparable group from the cueing and motion experiment who viewed an animation with six

colors averaged 61.9%. This difference is nearly significant (F(1,17)=3.59, p=0.0754).

User Feedback

Several students commented that the use of colors for grouping partitions was helpful as

well as the “blinking comparisons” that we define as cueing. Most of them stated that they really

liked the synchronized pseudocode view even though a few followed up by saying that “there

was too much to take in at once” or “stimulation overload”. Many students also found the speed

control, and step and replay functions to be very useful. A few would like more details in the

captions explaining the steps while others thought that the captions were distracting.

60

5.2.6 Analysis and Conclusion

In general, conducting empirical studies of this sort in which students are recruited on a

voluntary basis and asked to perform their best on a task that will not count towards a grade will

involve outlier scores that contribute to a higher standard deviation and cause the results to not

be statistically significant. Even with this factor in mind, the data from this experiment still

helps to strengthen previous findings and opens new areas of interest.

As stated earlier, very few experiments have been conducted that focus strictly on the

influence of pop-up questions on the comprehension of algorithms. Our results support the

findings of [39] in that interactive prediction does not help, and actually lessens, the overall

performance on test questions. Jarc et al. attributed the decrease in performance to weaker

students treating the interaction as a guessing game, but we believe that the difference may be

more related to the user having the opportunity to see the uninterrupted high-level execution of

the algorithm without being required to focus on low-level, procedural actions. We investigated

this hypothesis in the two experiments discussed in the following sections. First, Section 5.3

describes a study in which we examined performance differences based on question complexity

(high- or low-level) and how/when questions were asked and answered (at specific steps via pop-

ups or at anytime via traditional questions). Next, we used eye-tracking equipment to capture

and explore a user’s attention based on visual focal points and describe the results of this data as

well as its correlation to performance and individual differences.

If an AA developer chooses to use some type of interactive questioning technique, she

may use either predictive or responsive questions since the performance on comprehension

questions was nearly the same. However, providing immediate feedback to those questions does

appear to be a useful practice.

61

Using fewer colors requires the user to think less about what each color means and

permits the user to focus more on the animation. Hence, a cognitive economy is created that

increases learning by minimizing a viewer’s mental load while maximizing the amount of

information shown [85].

Many users stated that they found the highlighting of the pseudocode in synchronization

with the animation to be helpful. We are interested in finding out how much and in what order

students focus on the multiple views of the algorithm, another topic investigated through the use

of an eye-tracking device and discussed in section 5.4.

 5.3 Interactive Questioning in Algorithm Animation Comprehension, Part II

For the first interactive questioning experiment, we expected the group of students with

the dynamic questions to perform better on the comprehension questions, but since they

performed worse, we investigated this phenomenon further. One possible explanation for the

poorer performance of the group with pop-up questions is that the low-level questions that were

asked may have caused the participants to focus on the actions of the animation and not the

overall execution of the algorithm. This possibility is explored in this study by asking

participants questions with different levels of complexity.

This second interactive questioning study separates traditional questions from pop-up

questions. Traditional questions can be considered interactive because the viewer is able to use

the animation and code to answer the questions. All of the pop-up questions used in this study

were responsive with feedback since the first interactive study (see Section 5.2) found no

difference in comprehension performance for the various groups. For each set of interactive

questions, one group of participants was asked low-, procedural-level questions and the other

high-, comprehension-level questions. The control group did not receive any questions during

62

the execution of the algorithm. In addition to viewing the animation, all participants completed a

pre-test, a questionnaire, a post-test, and a series of individual preferences and abilities tests.

The questions we sought to answer with this study were: Does the use of interactive

questioning aid in the comprehension of algorithm animations? If so, what types and how?

5.3.1 Participants

Forty-four students enrolled in CS 1331, Introduction to Object-Oriented Programming,

offered at Georgia Tech during the Fall 2006 semester participated in this study. Each

participant received extra credit in that course and a five-dollar stipend. As an alternative,

students who wished to earn extra credit without participating in the study could prepare a

presentation containing an overview of the Mergesort algorithm, step-by-step implementation

details, an analysis of runtime, and a comparison to other algorithms.

5.3.2 Design

As shown in Table 5.4, our experimental design consisted of two factors: level of

question complexity and the method by which the questions were asked during the animation.

We divided questions into two levels of complexity, low or high. The low-level questions

simply required the user to read or recall information presented on the screen. Correctly

responding to the high-level questions required understanding of the algorithm or functions

executing within the algorithm.

Table 5.4: 2x3 Factorial Experiment Design - Number of participants per group.

 No

Questions
Traditional Pop-up

Low 8 7 8

High 7 7 7

Even though the No Questions group for both Low and High are the same, we included

participants in both of these categories for analysis purposes.

63

Some participants were not required to answer questions during the animation (“No

Questions”). Those who were required to interact with the AA were presented with questions

either in the form of pop-ups or an onscreen worksheet (“Tradional”). The traditional questions

asked for details about the algorithm and were always available at the bottom of the screen. The

pop-up questions paused the animation at a particular step and required the user to respond

before proceeding with the animation.

For this study we collected data pertaining to individual differences between the learners

and have begun to investigate whether algorithm animations may be better suited for students

with certain learning preferences or with particular inductive, spatial, or memory capabilities.

5.3.3 Materials

The materials used for this study were the same as those for the first interactive

questioning study described in Section 5.2 plus a pre-test (see Appendix B) and a battery of

individual assessment tests. The names, descriptions, and purposes for each of these tests are as

follows:

Surface Development (VZ-3) [23]

The Surface Development assessment tests a participant’s spatial ability by requiring him

to envision manipulating a three-dimensional object and to answer questions about the finished

object. The test used in this study specifically asked the participants to imagine folding a piece

of paper into an object/cube and then match the edges of the flat piece of paper with the edges of

the object.

Figure Classification (I-3) [23]

The Figure Classification assessment tests an individual’s inductive reasoning

capabilities. Participants were given a handout that contained several sets of figures in which

64

they had to recognize similarities and differences. Each problem contained 2 or 3 groups of

figures with 3 items each. The participant had to determine features that were similar amongst

figures within each group and different from the other groups and then classify ungrouped

figures based on their findings.

Backward Digit Span (Working Memory)

The Backward Digit Span assessment was used to measure each participant’s working

memory. The facilitator reads a series of 2 to 8 numbers aloud to the participant who then writes

the numbers in backwards order after the facilitator finishes saying all 2 to 8 numbers of that

series. For example, the facilitator says 5 2 8, and the participant is expected to write 8 2 5, then

the facilitator says 9 3 1 5 7 4 3 and the participant attempts to write 3 4 7 5 1 3 9.

Learning Styles Inventory

A learning styles inventory described in [25] and available at

http://www.engr.ncsu.edu/learningstyles/ilsweb.html categorizes students into groups along 4

different dimensions: Visual-Verbal, Reflective-Active, Intuitive-Sensory, and Global-

Sequential. Participants answer 44 two-choice questions, 11 from each of the 4 groups, and are

classified accordingly. For instance, if a participant selects all visual responses for the 11

questions in the Visual-Verbal category, then he will be self-classified as strongly visual.

However, if another participant answers 5 verbal and 6 visual, then the difference of 1 would

result in him being classified as a visual learner, but not having a high preference for either.

Visual Acuity

The computerized Vision Acuity test is a quick way to determine if a viewer is visually

impaired. We want to eliminate this as a factor that could influence performance on the various

test, especially the algorithm animation comprehension test. To complete this test, each

http://www.engr.ncsu.edu/learningstyles/ilsweb.html

65

participant sits a specified distance from the computer monitor and reads aloud the characters

shown on a chart on the screen.

Color Perception Deficiency Screening

Deficiencies in color perception were screened using Ishihara Plates.

5.3.4 Procedure

The procedure for this experiment was basically the same as the first interactive

questioning study. This one also included written tests for the surface development, figure

classification, and backward digit span assessments. The overall flow for each participant was to

sign a copy of the consent form, take a timed, written surface development and figure

classification tests.

Students were then able to work at their own pace on the computerized portion of the

study in which they completed the SSEA demo, questionnaire, pre-test, algorithm animation,

post-test, and learning styles assessment. As each one finished, the backward digit span, visual

acuity, and color perception deficiency tests were administered on a one-by-one basis.

5.3.5 Results and Analysis

Algorithm comprehension was measured by performance on pre- and post-tests; a subset

of the questions in the post-test were asked as the pre-test. The difference between each

participant’s score on that subset of post-test questions and the pre-test was recorded as

performance improvement.

Performance by Question Type and Level

Tables 5.5 – 5.8 show test and improvement scores by group. The values displayed in the

fifth column of each table are the average scores for the groups who were asked low- or high-

level, pop-up or traditional questions.

66

Even though the students were randomly assigned into one of the six groups, the pre-test

scores indicate a nearly significant difference, (F(1,38)=3.4902, p=0.06946), in previous

knowledge about the quicksort algorithm between the low-level (average score of 44.17%) and

high-level (60.71%) groups. Also, the no questions group (59.17%) scored moderately higher

than the pop-up group (49.17%). The group types had no effect on the pre-test scores since the

users had not viewed any versions of the animation. This improbable circumstance of random

assignment yielding groups with nearly significant differences in prior knowledge impedes the

analysis of performance based on group type. However, some inferences can be drawn, and

fortunately, other data was gathered about participants’ individual abilities.

Though large differences exist between the pre-test scores of some groups, most of these

differences have been eliminated by the post-test (see Table 5.6). This trend is especially

noticeable within the “Traditional Only” group. Pre-test scores differed by 17.86% whereas the

post-test scores on those same questions differed by only 1.79%, a 32.14% improvement for the

students who answered low-level questions versus only a 16.07% increase for those who

answered high-level traditional questions. A one-tailed t-test produced a p-value of 0.164638.

Another observation deals with the “Pop-up Only” group. Pre-test scores show that the

students in the “High” group (42.19%) had more prior knowledge of the algorithm than those in

the “Low” group (57.14%) with almost a +15% advantage and less room for improvement.

However, their scores improved by 28.57% while the “Low” group only improved by 23.44%,

meaning that high-level pop-up questions appear to be advantageous in increasing algorithm

comprehension, though not significant.

67

Table 5.5: Pre-test scores. Random assignment generated “High” versus “Low” groups with

nearly significant differences in prior knowledge of the algorithm. (F(1,38)=3.4902, p=0.06946).

 No

 Questions

Pop-up

 Only

Traditional

 Only

AVG
(Excludes “No

Questions”)

Low 55.36% 42.19% 46.43% 44.17%

High 62.50% 57.14% 64.29% 60.71%

AVG 59.17% 49.17% 55.36%

Table 5.6: Post-test (subset) scores. These are average scores on the subset of post-test

questions that were presented as the pre-test. Notice the “Low-Traditional Only” scores are now

only 1.79% less than the “High-Traditional Only”

 No

 Questions

Pop-up

 Only

Traditional

 Only

AVG
(Excludes “No

Questions”)

Low 76.79% 65.63% 78.57% 71.67%

High 79.69% 85.71% 80.36% 83.04%

AVG 78.33% 75.00% 79.46%

Table 5.7: Improvement as a difference between pre-test and a subset of post-test scores. A

one-tailed t-test of the difference between the “Traditional Only” “Low” versus “High” groups

produced a p-value of 0.164638.

 No

 Questions

Pop-up

 Only

Traditional

 Only

AVG
(Excludes “No

Questions”)

Low 21.43% 23.44 % 32.14 % 27.50 %

High 17.19% 28.57 % 16.07 % 22.32 %

AVG 19.17% 25.83 % 24.11 %

Table 5.8: Post-test scores for all questions. No statistically significant differences.

 No

 Questions

Pop-up

 Only

Traditional

 Only

AVG
(Excludes “No

Questions”)

Low 70.54% 67.97% 70.54% 69.17%

High 71.09% 80.36% 74.11% 77.23%

AVG 70.83% 73.75% 72.32%

68

The Pearson Product-Moment Correlation Coefficient, r, is a measure of the tendency of

a pair of variables to increase or decrease together [89]. The value range of r is between -1.0 and

+1.0 with |r| values close to 1.0 considered a strong correlation and values close to 0.0 to be

weak. Table 5.11 shows r between each pair of tests. A fairly strong positive correlation was

found between traditional and post-test performances (r = 0.746192) and a moderate linear

relationship between scores on the pop-up questions and post-tests (r = 0.440713). So, students

who performed better on the interactive questions tended to also perform better on the post-test.

Learning Styles

As described earlier, the learning styles assessment consists of 44 two-choice questions,

11 for each of the 4 categories (Visual-Verbal, Reflective-Active, Intuitive-Sensory, and Global-

Sequential). To understand how the values were computed, imagine the scores for each category

as a number line [-11, 11]. Starting at 0, each response moves the participant one score to the

left or right. If a participant responds in one “direction” for all 11 questions for one category,

then his score will be either +/- 11. If he answers 5 in one direction and 6 in the other, his score

will be +/- 1, and he will be classified accordingly. There is no significance to which level of a

category is + or -; this signage was used only for grading, plotting, and comparison purposes.

The chart in Figure 5.2 displays the distribution of scores on the learning styles assessment in

which negative scores are for Reflective, Intuitive, Verbal, and Global learners and the positive

scores are for Active, Sensory, Visual, and Sequential.

Table 5.9 shows the number of participants, improvement, and post-test scores per

learning styles category. Students are almost evenly balanced (20 to 24) in the active/reflective

and sequential/global groups. Post-test scores are essentially the same for all groups when

viewed as a whole, but further dividing the groups into levels based on their scores [±1, ±11]

69

within each category yields differences. Specifically, the 9 students in the lower end of the

sensory group (scores of +1 or +3) had a significant improvement in comparison to the 10 in the

lower end of the intuitive group (scores of -1 or -3), P(T<=t) =0.036583. This implies that AAs

may be better suited for intuitive learners who are good at grasping new concepts and prefer to

learn by discovering [25].

Table 5.9: Improvement and post-test scores by Learning Style. Indentation and shading are

used to group the pairs of learning styles per category.

LS - Group Count Improve-ment Post-All

Reflective 24 25.52% 73.96%

Active 20 20.00% 70.31%

Intuitive 27 20.37% 72.69%

Sensory 17 27.21% 71.69%

Verbal 8 15.63% 73.44%

Visual 36 24.65% 72.05%

Global 24 21.88% 72.40%

Sequential 20 24.38% 72.19%

Learning Styles

0

2

4

6

8

10

12

14

16

Score

#
 o

f
S

tu
d

e
n

ts Ref->Act

Int->Sns

Ver->Vis

Glo->Seq

Ref->Act 0 2 6 5 5 6 7 3 4 5 0 1

Int->Sns 2 2 6 7 5 5 6 3 6 1 1 0

Ver->Vis 1 0 1 0 1 5 4 5 4 14 4 5

Glo->Seq 0 1 2 6 7 8 7 5 8 0 0 0

-11 -9 -7 -5 -3 -1 1 3 5 7 9 11

Figure 5.2: Distribution of Learning Styles Scores.

Reflective

Intuitive

Verbal

Global

Active

Sensory

Visual

Sequential

70

A majority of participants were classified as being more visual learners (36) than verbal

(8), and achieved a considerably higher level of improvement between pre- and post-test scores,

though not significant (P(T<=t) = 0.180749). On average, the visual learners improved by

24.65% while the verbal learners only improved by 15.63%

Differences in performance per learning style were much more evident for the interactive

questions themselves. Table 5.10 summarizes the count, the score, and select p-values for the

pop-up questions and the traditional questions by complexity level. P-values are shown only for

pairs of low or high scores for a particular learning style’s category in which scores differed by a

substantial amount and multiple students were classified. For instance, 8 students were in the

popup-low group, and for the intuitive/sensory category, 6 students were classified as intuitive

while 2 were sensory. The average scores shown in the Score Low column were 85.42% and

100% respectively, and the difference was nearly significant with a p-value of 0.08124 shown in

the P-Value Low column.

The intuitive learners outperformed the sensory learners on the low-level traditional

questions with a score of 96.88% to 62.50% and a p-value of 0.0134. A similar trend was found

for the high-level pop-up questions with scores of 87.50% to 70.83% and a p-value of 0.0955.

However, the sensory group, who pay attention to detail and are “good at memorizing facts”

[25], performed better on the low-level pop-up questions that asked for information about what

was just shown. The step-by-step nature of algorithms and hence the animation may contribute

to the higher performance on the traditional questions for the sequential learners (85.00%) over

the global group (70.83%), p = 0.1714.

The observed differences in traditional test scores shown in Table 5.10 account for the

low to moderate correlations between performance on traditional questions and each of the

71

learning styles. These correlation values range from 0.2062 to 0.3472, irrespective of positive or

negative. Another moderate correlation was found between learning styles, Sensory-Intuitive

and Sequential-Global (r = 0.4052). This means that students who are sequential learners have a

slight tendency to also be sensory learners, and the same for intuitive and global.

Table 5.10: Interactive question scores by Learning Style. A summary of performance

differences between learning styles within a low or high level interactive questioning group.

POP-UP SCORES

LS –
Group

Count
Low

Count
High

Score
Low

Score
High Avg

P-Value
Low

P-Value
High

P-Value
Avg

Reflective 3 5 91.67% 80.00% 84.38%

Active 5 2 87.50% 81.25% 85.71%

Intuitive 6 4 85.42% 87.50% 86.25%

Sensory 2 3 100.00% 70.83% 82.50%
0.08124477 0.09548615

Verbal N/A 1 N/A 62.50% 62.50%

Visual 8 6 89.06% 83.33% 86.61%

Global 5 3 92.50% 79.17% 87.50%

Sequential 3 4 83.33% 81.25% 82.14%
0.17452585

TRADITIONAL - SCORES

Reflective 6 2 79.17% 75.00% 78.13%

Active 1 5 100.00% 67.50% 72.92%

Intuitive 4 5 96.88% 67.50% 80.56%

Sensory 3 2 62.50% 75.00% 67.50%

0.01344336 0.39278227 0.19174695

Verbal 1 2 100.00% 93.75% 95.83%

Visual 6 5 79.17% 60.00% 70.45%
0.08934513 0.0671377

Global 5 4 80.00% 59.38% 70.83%

Sequential 2 3 87.50% 83.33% 85.00%
0.15815798 0.17143403

Other Individual Differences

The other tests of individual differences were surface development, figure classification,

and backward digit span used to classify participants’ capabilities in spatial visualization,

inductive reasoning, and working memory. Some noticeable observations from these tests were

a few moderate correlations with other performance metrics. For instance, participants with

72

higher spatial capabilities were likely to be more global learners and also had higher inductive

reasoning scores (r = 0.448) and post-test scores (r = 0.342). Additionally, students with higher

inductive reasoning skills tended to have higher scores on the traditional test questions.

User Feedback

Students again expressed that they liked the step-by-step code highlighting and the speed

control and rewind functionalities. When asked for specific opinions about the use of interactive

questions, most students preferred the questions because they made them more comfortable,

“focus” on the animation, and clarified what was happening. One found the questions to be

“annoying” and another found them helpful, but felt they “tended to interrupt (his) learning”. A

few students recommended adding sound in the form of a verbal description so that their visual

focus could be more on the animation and not split between the animation and captions. SSEA

has already been extended to play sound, and an initial study is being prepared.

7
3

T
a
b
le
 5
.1
1
:
P
ea
rs
o
n
 P
r
o
d
u
ct
-M

o
m
en
t
C
o
rr
el
a
ti
o
n
,
r,
 f
o
r
A
ll
 T
es
ts
.
T
h
e
v
al
u
e
ra
n
g
e
o
f

r
is
 b
et
w
ee
n
 -
1
.0
 a
n
d
 +
1
.0
 w
it
h
 |r
|

v
al
u
es
 c
lo
se
 t
o
 1
.0
 (
re
d
 a
n
d
 b
o
ld
)
co
n
si
d
er
ed
 a
 s
tr
o
n
g
 c
o
rr
el
at
io
n
,
v
al
u
es
 c
lo
se
 t
o
 0
.0
 (
fa
in
t
g
re
en
)
to
 b
e
w
ea
k
,
an
d
 v
al
u
es
 i
n
 m
id
ra
n
g
e

(y
el
lo
w
 a
n
d
 b
o
ld
)
to
 b
e
m
o
d
er
at
e.

S

u
rf

.
D

e
v

F
ig

.
C

la
s
s
.

B
w

rd

D
ig

it

P
re

-
T

e
s
t

Im
p
r-

D
if
f

Im
p
r-

R
a
ti
o

P
o
s
t-

T
e
s
t

(A
L
L
)

P
o
s
t

(P
re

-
s
u
b
s
e
t)

P

o
p
-

U
p

T
ra

d

L
S

A

c
t/
R

e
f

L
S

S

N
S

/I
n
t

L
S

V
is

/V
rb

L
S

S
e
q
/G

lo

S
u
rf

.
D

e
v

1
.0

0
0

0
.4

4
8

-0
.0

4
3

0
.2

6
1

-0
.0

4
4

0
.0

6
4

0
.3

4
2

0
.2

4
2

-0
.0

6
2

-0
.1

7
6

0
.0

4
1

-0
.1

6
1

0
.1

0
9

-0
.3

0
1

F
ig

.

C
la

s
s
.

1
.0

0
0

0
.2

2
8

-0
.0

7
5

0
.1

8
7

-0
.2

3
2

0
.2

4
1

0
.1

4
1

0
.2

6
8

0
.3

2
8

0
.1

1
2

-0
.1

4
6

0
.1

8
1

-0
.0

4
8

B
w

rd

D
ig

it

1
.0

0
0

-0
.0

9
1

-0
.0

4
6

0
.0

6
3

-0
.0

3
6

-0
.1

6
0

0
.0

8
0

-0
.1

9
7

-0
.0

3
7

-0
.0

0
5

-0
.0

9
1

0
.1

7
3

P
re

-
T

e
s
t

1
.0

0
0

-0
.6

4
0

0
.8

1
5

0
.2

4
8

0
.3

6
5

-0
.0

6
5

-0
.1

3
2

0
.0

3
6

-0
.0

5
0

-0
.2

6
3

-0
.2

3
9

Im
p
r-

D

if
f

1
.0

0
0

-0
.7

7
9

0
.4

4
3

0
.4

8
2

0
.1

2
3

0
.4

5
9

-0
.0

4
3

-0
.0

3
9

0
.1

5
1

0
.0

5
4

Im
p
r-

R

a
ti
o

1
.0

0
0

-0
.0

8
5

-0
.0

1
5

0
.0

2
7

-0
.4

4
5

-0
.0

7
0

0
.0

8
5

-0
.2

0
6

-0
.1

9
1

P
o
s
t-

T
e
s
t

(A
L
L
)

1
.0

0
0

0
.8

1
9

0
.4

4
1

0
.7

4
6

-0
.1

7
6

-0
.1

1
7

-0
.0

9
2

-0
.1

2
8

P
o
s
t(

P
re

-
s
u
b
s
e
t)

1
.0

0
0

0
.0

6
2

0
.5

8
2

-0
.0

1
1

-0
.1

0
4

-0
.1

1
7

-0
.2

0
7

P

o
p
-U

p

1
.0

0
0

N
/A

0
.0

3
0

-0
.0

4
6

0
.2

0
0

-0
.2

3
7

T

ra
d
it
io

n
a
l

1
.0

0
0

-0
.2

3
9

-0
.3

4
7

-0
.2

9
4

0
.2

0
6

L
S

A

c
t/
R

e
f

1
.0

0
0

-0
.1

5
6

0
.2

3
6

-0
.2

4
4

L
S

S

N
S

/I
n
t

1
.0

0
0

0
.0

7
8

0
.4

0
5

L
S

V
is

/V
rb

1
.0

0
0

-0
.2

9
9

L
S

S
e
q
/G

lo

1
.0

0
0

74

5.4 Eye-Tracking Study I: Correlation Between Attention, Comprehension, and

Individual Differences

Results from our first interactive questioning study showed that students who actively

engaged with the animation via responding to pop-up questions had lower test scores. One

possible reason for this outcome could be that the pop-up questions encouraged students to focus

on specific actions of the animation and not comprehend the overall implementation of the

depicted algorithm.

One goal of this first eye-tracking study is to determine if a relationship exists between

the type of interactive questions asked and where the viewer places visual focus. Specifically, if

the viewer is required to answer low-level questions, will she shift her attention mostly to low-

level features such as object labels? If interactive questions are asked, will the viewer focus on

regions of the animation in a different way than if no questions are asked? As in the second

interactive questioning study, we administered assessments to differentiate students based on

preferred learning styles and abilities such as inductive reasoning, working memory, spatial

visualization, and fluid intelligence.

The questions we sought to answer with this study were: Does the type of interaction or

task required of a user affect which views and features are attended to and the time spent

attending those views and features? Is there a correlation between comprehension and gaze

patterns? Between gaze patterns and individual preferences and differences?

This section provides an overview and summary of our first eye-tracking study. A

complete description of the participants, design, procedure and materials can be found in [40].

5.4.2 Overview

Data from nine undergraduate, computer science students at The University of Georgia

was analyzed for this study. All participants were enrolled in the CSCI 4800/6800 Human-

75

Computer Interaction course during the Spring 2007 semester and received credit in that course

for participation in the study. Students were randomly assigned into two groups. Using SSEA,

one group of five students interactively viewed an implementation of the quicksort algorithm

with pop-up questions, and the other group of four viewed a version of the algorithm without

pop-up questions. The data collected included written and computer-based tests designed to

assess algorithm comprehension and individual differences. Each participant’s eye-movement

was captured using the ASL Eye-Trac6000 eye tracking system.

5.4.3 Results and Analysis

Pop-up versus No-pop-up

Algorithm comprehension was measured by performance on pre- and post-tests. A

subset of the questions in the post-test was presented to the students as the pre-test. The

difference between each participant’s score on that subset of post-test questions and the pre-test

was recorded as performance improvement. Reinforcing the trend detected in the first interactive

questioning study, performance improvement was greater (15.63% versus 5.00%) for students in

the no-pop-up group, who viewed an uninterrupted animation of the quicksort algorithm.

As shown in Figure 5.2, the SSEA screen was divided into five areas of interest (AOI):

control, animation, caption, post-test, and code. We analyzed the periods of time spent viewing

each AOI, or fixation duration, and the order in which they were viewed, or gaze pattern.

During the learning phase, all participants spent the majority of their time watching the

animation (average of 48.68% of fixation time), followed by the caption area (24.00%), then the

code (14.33%), and the other 13.00% of time was split between viewing the controls or the

question areas. The differences between the pop-up and no-pop-up groups in time spent viewing

the various AOIs was not statistically significant.

76

Figure 5.2: SSEA – Eye-tracker Areas of Interest

Another finding was that students frequently switched attention back and forth between

the animation and the caption areas with switches between the animation and code being the next

most frequent pattern. This means that students are taking advantage of the additional, verbal

descriptions when the animation alone may not be sufficient. Again, the differences in switching

patterns between the two groups was not significant and implies that the use of pop-up questions

does not overall influence which views and features are attended to and the time spent attending

those views and features. However, a closer examination of the data does show increases in

attention to certain AOIs immediately following pop-up questions in which the answers can be

found in those AOIs where attention was shifted. This means that pop-up questions can be used

to temporarily guide a viewer’s attention to specific actions or AOIs but that they may not have

an effect on the overall viewing behavior.

Individual Differences and Viewing Patterns

Several strong correlations were discovered between learning styles and fixation

77

durations. We found that students who self-identified themselves as reflective learners spent

more time viewing captions (correlation score of 0.82) while more active learners spent less time

(-0.94). Moderate correlations between reflective learners and time spent viewing code (-0.6)

and between active learners and time spent viewing code (0.55) and the animation (0.47) indicate

that reflective learners, who prefer learning by thinking, used captions to comprehend the

algorithm while the active learners, who prefer to learn by doing, viewing the animated graphics

and code. Students who were categorized as sequential (step-by-step) learners preferred to view

the source code (0.801) while the global (big view) learners spent more time viewing the

animation (0.858).

Viewing Behavior Model Graph (VBMG) Clustering

Viewing Behavior Model Graph (VBMG) Markov model based clustering [1] was used

to group participants based on their viewing behaviors. VBMG produced three clusters in which

an apparent difference in viewing patterns for code and captions was observed while not much

difference was found in the viewing patterns of the animation. Results of this clustering showed

that viewers who preferred to view code over caption had stronger spatial visualization abilities

and those who preferred to view caption over code performed better on the reading span and

inference tests.

The results of this initial eye-tracking study have begun to provide insight into the role

that individual preferences and abilities may impact performance and algorithm animation

design. Developers of AAs should not only consider the type of technology available when

creating a visualization, but should also consider the desired goal of the system, and variations in

the users’ learning styles and other abilities.

78

CHAPTER 6

SOFTWARE VISUALIZATION ONTOLOGY

6.1 Introduction

The second major area of this research addresses evaluating the effectiveness of a

software visualization system which is currently a subjective process. Opinions of the usefulness

of a system may be influenced by factors such as who or where it was developed or the number

and types of displays available. A system may be deemed effective because students who used it

performed better on some type of test than a group of students who were given an alternative,

supposedly comparable method of learning the same material.

The ultimate goal of this portion of our research is to provide an objective rating method

that can be used to score a software visualization or system based on specific, empirically

supported criteria. The higher the score, the more effective, and thus, the faster and more in-

depth a user will understand the intended concept. Adequately determining the pedagogical

significance of every feature would require years of research by an individual or a group. Proper

investigation will require that each of hundreds of features, as well as combinations of features,

be isolated in a customized software visualization and then studied with human subjects. The

results of these experiments can then be used to give each feature a value that will in turn

contribute to the score for the visualization or system of which it is included.

This research has started to scratch the surface of this enormous task by using the results

of our studies to categorize a feature as helpful or not. As more studies are conducted, the extent

to which each of the features contribute to the overall effectiveness of a system will become

79

more clear and hence provide a numerical value that is a weight of the level of usefulness of

these features.

6.2 Background

An objective method for evaluating algorithm animations and the systems that support

their creation and execution should involve de-featuring, classifying, and then scoring based on

empirically determined weights of the usefulness of specific features. These weights can be used

to rate an algorithm animation based on whether it properly implements the assessed features and

to rate an algorithm animation system based on whether it is capable of producing the features.

This section includes a summary of projects geared towards evaluating or storing information

about algorithm visualizations or systems followed by descriptions of a visualization ontology

schema and related software visualization taxonomies.

Visualizations and visualization software resources are plentiful and are often found as a

list on an individual’s or research group’s website. Borner and Zhou [6] present a survey of

available Information Visualization repositories and resources that include information about

some SV systems. Several organizations have developed websites that contain information

about SVs as a minor part of an extensive educational resource for computer science and

mathematics such as the Computer Science Teaching Center [16], the Math Archives[83], and

Netlib [88].

The need for and difficulty of composing an objective evaluation process for algorithm

animations has been acknowledged [9, 60] and plans have been made and partially implemented

to evaluate, classify, and/or store information about algorithm animations and algorithm

animation systems [12, 55]. The Complete Collection of Algorithm Animations (CCAA) [12]

80

and Algorithm Animation Repository (AAR) [55] are two examples such algorithm animation

repository projects.

CCAA provides an extensive listing of algorithm animations that can be run over the

internet as well as brief descriptions and links to each. *Note: This website,

http://www.cs.hope.edu/~alganim/ccaa/, was available through 2006, but has been moved to a

different server and will be re-instated (January 22, 2007 - personal communication). The

requirement that AAs listed on this site must be capable of running over the internet does not

allow for the inclusion of stand-alone AA systems. The website grouped AAs by the type of

algorithm executed, and users were required to browse through the lists in order to find desired

animations.

Eight attendees of the 2001 Dagstuhl Seminar on Software Visualization (Seminar No.

01211, May 20-25, 2001) formed a group to build an Algorithm Animation Repository that

would serve as a means for algorithm animation developers to “publish” their work [17]. They

explain that developers, especially of small-scale systems, are not rewarded for their efforts due

to the lack of availability to the general public if the system is not documented in a published

paper. In hopes of raising the level of acceptance of algorithm animation software, they planned

to have a Board of Editors who would referee and rank entries made into the repository.

However, the URL [54] given as the location of the AAR indicates that their work has since

shifted to improving the educational impact of algorithm visualizations.

Participants in a workshop held at the UK National e-Science Centre in April 2004

discussed the need for an ontology for visualization [8, 21]. Examination of their proposed

categories (task and use, representation, process, and data) indicates that we could easily

incorporate their high-level categories into our schema and position our SV classes as subclasses

http://www.cs.hope.edu/~alganim/ccaa/

81

to their categories. In 2005, they followed up with an article [22] indicating the motivation for

“seeking a more rigorous foundation for visualization” includes collaboration, composition,

preservation (curation), and education. They explain that meanings/language within a

community can be expressed in different ways: terminology (definitions); taxonomy (definitions

plus structure); and ontology (meanings, plus relationships that are machine processable).

The software visualization portion of our visualization ontology schema emerged from

the reconciliation of six of the most referenced taxonomies in the SV domain. Below is a

summary of each of these six, in chronological order.

Myers [52] discusses the six combinations created by pairing the components of 2 axes –

what is shown (code, data, or algorithm) and how it’s shown (static or dynamic). For example, a

static display of an algorithm may consist of snapshots depicting different stages of execution

while a dynamic display would show the algorithm completing in a smooth, continuous motion.

Brown [9] examines the nature of algorithm animation displays. He uses the terms

content as a category to describe the level of complexity of what is displayed, persistence to

explain how much history of the data is shown, and transformation to represent how changes to

data are shown. He also discusses whether views can be used in different situations and termed

this category reuse of views.

Roman and Cox [69] developed a taxonomy that consists of scope, abstraction,

specification method, interface, and presentation. The aspect of the program being visualized is

the domain or scope of the system. Similar to Brown’s content, abstraction describes the level

of complexity involved in creating a display, which can consist of simple, direct representations

through more abstract, synthesized representations and is set by a user via the specification

82

method. The viewer is impacted by the last two categories in that the interface is how they will

interact with the system and the presentation is what they will see.

Price et al. [60] define six major categories: scope, content, form, method, interaction,

and effectiveness. Their use of scope is different from that of Roman and Cox [69] in that it

refers to the range of programs that the SV system can take as input rather than the aspect of the

program being displayed, which Price et al. describe as content. The general appearance and how

a user instructs the system are classified by form and interaction, respectively. Method is how

the animator must specify the desired display, and the effectiveness of a system is rated based on

how well it communicates information to the viewer. They qualitatively rank the effectiveness of

a system based on its purpose, appropriateness and clarity, empirical evaluation, and production

use.

The tasks encountered during the development of a visualization of a parallel system

were addressed by Stasko and Kraemer [41]. The focus is on parallel debuggers, performance

evaluation systems, and program visualization systems. Development is broken into three

stages: data collection, data analysis, and display. First, data collection is accomplished by a

form of software or hardware instrumentation. Then the data analysis stage involves

calculations, ordering of events, and inferences about higher-level events based on the low-level

data collected, which may be kept in short-term or long-term storage. Displays can use graphs,

nodes, coloring schemes, and layouts to show communication between processors, the order of

execution of events, or other features of a program.

Stasko and Patterson [80] focus on graphical views of computer programs. Their

taxonomy describes the level of each of four dimensions: aspect, abstractness, animation, and

automation. As [52, 60, 69] have also categorized, aspect is the part of the program that is being

83

displayed. Abstractness, similar to [69]’s abstraction, describes the level of customization of the

visualization to the data being shown, and automation deals with the amount of input expected

by the animator to create the visualization.

While researching how others have classified SV systems, we found many discrepancies

in definitions and use of terminology. For instance, categories in various taxonomies have the

same name but describe different aspects of a system, and even though most of the related

taxonomies were created for program visualizations, the use of the term “program visualization”

itself in certain contexts is described as “ambiguous” by Price et al. [60]. Therefore, we have

reconciled the taxonomies described above into the SV portion of our Visualization Ontology.

The benefit of using an ontology, rather than a taxonomy, is that we can show the relationships

between the terms and concepts used by others in the field as well as the relationships between

the different stages of the development of the system, the components of the system, and the

usage of it.

6.3 Software Visualization Ontology Schema

The classes and properties of the visualization ontology schema consist of a

reconciliation of existing taxonomies [9, 41, 52, 60, 69, 80] and additional features. Generally,

the term “taxonomy” refers to a hierarchical structure [24] that represents “is a” relationships

between levels. We have chosen to create an ontology because it permits us to specify the

relationships between the categories and common terms, allows us to better show the stages of

the development, animation, and viewing processes, which tend to be cyclic, and because an

ontology permits the schema to grow in any direction. Ontologies are specified by a schema for

a domain, in our case SV, and instances representing real world objects. The schema consists of

classes with attributes and relationships to other classes.

84

Figure 6.1: The Software Visualization Ontology Schema

Below are the classes of the software visualization portion of what will be an overall

visualization ontology.

Software Visualization System

A software visualization system is used to create, modify, display, and interact with a

software visualization. This class consists of attributes such as name, description, developer, url,

institution, etc. that describe the background information of the system.

User

The animator and viewer, discussed above, are the users of the system. Both can be

ranked as a novice, an intermediate, or an expert user.

Purpose

The reason for which an SV has been developed and the environment in which it is to be

used helps to describe the purpose of an SV system. Some of the purposes that we have

Specification

Method

Effectiveness

Abstraction

Presentation

Data Collection

Data Analysis
Content

Scope

User

Purpose

Visualization

System

Interaction

Viewer Animator

85

identified are for use in education, performance evaluation, debugging, testing, problem solving,

software design, documentation, and empirical studies.

Content

This category classifies a system based on what it displays. A system may be designed to

show code, data, algorithm or state of execution.

Scope

The scope of a software visualization system encompasses the range of programs that are

viewable by the system as well as its portability. A system with a fixed scope can only show the

visualizations created by the developer. A system with a scope that is not fixed provides more

flexibility to the user.

Specification Method

As seen in Figure 6.1, specification method is directly related to the remaining classes. If

the animator has control over the data that is collected or how it is analyzed and portrayed, then

the specification method is the way in which she must modify the system to accomplish any one

of these tasks. For example, a system may have a drag-and-drop style graphical user interface

available for the animator to specify the type and location of graphics, or the animator may have

to augment the source code to achieve the desired display.

Data Collection

This class addresses the questions of when, what, and how data is collected. If data is

gathered, it could be collected at compile-time, run-time, or both. It might involve the collection

of symbol table information, counts of low-level events, or the generation of higher-level

“interesting events” through source code annotation. Event-based data collection stores data

86

when an action by the user or another application occurs, whereas state-based data is collected as

the status of a process changes.

Data Analysis

Once data is collected, some analysis may need to be done to obtain information of

interest. If so, those calculations or transformations will take place during this stage. A very

basic example would be determining the running time of a program. The data collected is

usually the start-time and the stop-time, and a simple subtraction will compute the execution

time.

Abstraction

Before data of interest are displayed, some systems allow the animator the capability to

tailor the graphics to be specific to the data it represents. Visualizations that are very customized

to the information it symbolizes are more abstract and may require more effort from the animator

to specify than a generic display that the SV system can create automatically. Graphics are

considered direct representations of data if they are nonspecific and there is a direct mapping

from the graphic back to the data. Synthesized representations are created by the animator and

attempt to depict his mental image of how the data should be displayed.

Presentation

Both hardware and software components are included in presentation. The display

medium and use of audio could be supported by a color monitor and stereo speakers,

respectively. Aspects of presentation controlled by the software include the use of color,

dimension, and animation and the ability to show multiple views executing simultaneously.

87

Interaction

The interaction category describes the various ways that a viewer can interact with and

control a visualization. The ability to zoom, control the speed and direction, and input data sets

are common methods of interaction allowed to the viewer. This class also addresses how the

viewer interacts (i.e. via a graphical interface or command line) with the system. Additionally,

we have included a taxonomy created by Grissom et al. [27] that specifically addresses the

viewer’s level of interaction; the stages in increasing level of engagement are no viewing,

viewing, responding, changing, constructing, and presenting.

Effectiveness

Effectiveness is arguably the most important class to users because they can utilize the

ratings to decide if the system is worth investing the time needed to access and operate it.

Developers may also find the effectiveness rating to be important. During the design phase,

knowledge of some of the factors that influence the effectiveness of a system can help them to

make better-informed decisions about what tools to use and how to use them. If the evaluation is

of the developer’s own system, the ratings can provide feedback on what others feel they did

well or need to improve upon.

To ensure consistent ratings of the various systems, one person or a trained group could

be responsible for using, evaluating and classifying each system. Since such a responsibility

would require a tremendous amount of time and commitment, we are attempting to limit the

subjectivity that can exist in rating systems by providing attributes that are clearly identifiable.

The type for most of the properties is Boolean while other properties have fixed values that can

be selected from a drop down list.

88

Our goal is to eventually be able to use basic characteristics of SVs and SV systems to

compute an overall effectiveness rating. In the meantime, we will rely heavily on users’

opinions and allow them to provide feedback about a system by rating the ease-of-use, the clarity

to the user, the accuracy, and the overall rating. Two additional effectiveness properties that we

currently include are the results of empirical studies, if they exist, and the acceptance of the

system which is a measure of how long and how widely the system has been used.

6.4 VisIOn: Interactive Visualization Ontology

As stated earlier, the approach used to address the task of evaluating the effectiveness of

software visualizations and systems starts with de-featuring them. For this task, the isolation of

features is necessary for creating a method for classifying the systems. Attributes of the system

and its capability of producing visualizations with specific features are identified as properties

used to categorize the software visualization systems. These attributes and features have been

enumerated as classes and properties of a visualization ontology schema. This ontology is

interactive and available online through a tool called VisIOn (http://vision.cs.uga.edu).

Following in the same naming spirit as OWL (Web Ontology Language), VisIOn

(Interactive Visualization Ontology) is a web application designed to categorize and store

information about software visualization systems, in a way that can be easily searched and used

for comparison. Information about each system can be entered in a detailed and impartial

manner and as results of empirical studies continue to

As we and others continue to conduct empirical studies to investigate the contributions of

individual features to the overall effectiveness of software visualizations, then the data entered

into VisIOn can easily be used to provide an objective rating for each system.

http://vision.cs.uga.edu

89

6.4.1 Who will benefit?

The roles of the different people involved with an SV or SV system are an important

consideration when creating this ontology. The developer is the person who designs and

implements the SV system. The animator uses the system to create a visualization in hopes of

conveying knowledge about the visualized program to the viewer who will watch and perhaps

interact with the visualization and try to understand what the animator is attempting to portray.

Figure 6.2: Software Visualization Users - A depiction of the roles of the people involved

with an SV system or a visualization created using an SV system.

As illustrated in Figure 6.2, the developer’s role is to design a system that gives the

animator the tools to create an instance of a visualization with accompanying descriptions,

interactions, and questions. The animator then uses the system to attempt to pass her knowledge

to the viewer. VisIOn is intended to benefit people in each of these roles, as well as researchers,

via its searching and comparing capabilities. Even though the same individual may perform

multiple roles, the distinction is useful throughout the process of classifying and evaluating SV

systems.

A developer in an environment such as academia, software design, or performance

evaluation (purpose) decides what content is to be displayed and how an animator will be able to

90

use and customize the SV (specification method) to obtain the range of desired visualizations

(scope).

Despite the belief and desire for SVs to be useful pedagogical tools, the majority of

professors of Computer Science courses do not use them, according to surveys by Naps et al.

[55]. One common reason for this lack of use is the time required to find and/or create

visualizations that will portray the examples and concepts of interest to the professor who, in this

case, is playing the role of animator. VisIOn not only stores information about SV systems

based on what they show and the system requirements to execute them, but it also provides

information about the effectiveness of the SV including data on ease-of-use and acceptance (how

many other people have used it and for how long). The animator can also find out what is

required to make the system behave as she desires by viewing information stored under the

specification method class. Another concern of professors is the lack of substantial empirical

evidence to prove that SV systems enhance the quality of learning. Therefore, VisIOn allows its

users to find systems that have been empirically evaluated, a list of the associated citation(s), and

links to the papers where available.

A viewer of an SV system is usually trying to understand some aspect of a program.

These users would want to quickly find a visualization that shows what they need and is

appropriate for their level of expertise. VisIOn provides this information in the content and

effectiveness classes.

Since VisIOn offers both a quick and an advanced search feature, a researcher who

wants to find related systems and compare their functionalities can be very detailed in specifying

what features they want to investigate or empirically evaluate. Once he has retrieved this initial

list of systems, he can explore others that have been deemed “similar”.

91

6.4.2 System Architecture

VisIOn was implemented using the Apache Struts framework, which encourages

application architectures based on the Model-View-Controller (MVC) Model 2 design pattern

[2]. MVC Model 2 design uses both JavaServer Pages (JSP) and servlets and allows

communication between the view (JSP) and the model (JavaBean) through the controller

(servlets) (See Figure 6.3).

The VisIOn model is stored in both a file and a relational database format and is accessed

through JavaBeans. The file was created using Protégé-2000 [57], an integrated software tool

used to develop knowledge-based systems. Protégé-2000 can create .owl files written in the

Web Ontology Language (OWL), a standard format used for specifying an ontology schema.

OWL is a vocabulary expressed using XML syntax that describes classes, their properties, and

relationships between classes. Since querying a file is typically not as efficient as querying a

relational database, the data from the .owl file is parsed once and stored into a MySQL database

where data can be efficiently and easily retrieved.

The view is created using JSP pages that dynamically display content about the ontology

schema and SV systems through the use of the JavaServer Pages Tag Library (JSTL) and a few

Struts tag libraries. The data retrieved from the database are stored as Java Beans that can be

directly accessed using JSP or indirectly accessed through the controller.

The controller consists of servlets that store and retrieve data, process user input, and

determine flow-of-control. Based on a client’s request, the controller forwards control to the

appropriate view after supplying the necessary information to that JSP page. The

org.apache.struts.action.ActionMapping configuration file (struts-config.xml) and classes that

extend org.apache.struts.action.ActionForm and org.apache.struts.action.Action are considered

92

components of the controller because they provide interaction between the model and the view

and specify the forwarding actions. VisIOn uses ActionForms to store variables displayed and

set via a JSP page. These variables may represent data from the model, or they may be values

used to determine how data needs to be processed or which view is to be shown next. The

Action classes contain the logic that uses these variables to create or retrieve a JavaBean and set

the appropriate org.apache.struts.action.ActionForward. The struts-config.xml file, which

contains a list of the ActionMappings, is then consulted to determine the action or webpage to

which control is to be forwarded.

Figure 6.3: The VisIOn Architecture.

Browser

Controller

View

Client

Server

JSP

Database

MySQL

OWL

File

JavaBean Model

Action

Servlet

Action

Form

Action

struts-

config.

xml

93

6.4.3 How to Use VisIOn

VisIOn provides developers, researchers, educators, and learners the ability to retrieve

information about SV systems meeting specific criteria, to get detailed information about a

particular system of interest, to add a system to the database, and to provide feedback about

VisIOn or any SV system currently classified in VisIOn. Figure 6.4 is a screenshot of the

homepage that displays a visualization of the SV ontology schema and a toolbar that allows

access to the various VisIOn operations.

Figure 6.4: The VisIOn Homepage.

The visualization on the homepage was created using TouchGraph [75], a set of

interfaces for graph visualization that runs as an applet and requires an XML file as input. The

nodes of the graph are the classes and the edges represent the relationships between the classes.

Since effectiveness is related to all other classes, it would be connected to each of them and cause

94

the display to be confusing, so currently, no edges are touching the effectiveness node. Hovering

the cursor over a node will cause a screen to pop up that shows all of the properties for that class.

Figure 6.5: The VisIOn Quick Search Page.

The first operation on the toolbar is “Search Ontology”. By clicking on this link, a user

will be taken to a screen (see Figure 6.5) where he can search for systems that possess all of the

selected characteristics of interest. The possible values for each property are most often

true/false but also include predefined lists and open text. The “Keyword” field searches

properties like the name of the SV system, developer, location, description, etc. that are not

restricted to predefined values. Based on user feedback, the initial search screen was reduced to

a simple search that only displays the properties that are thought to be of higher interest. For

users who want to be very detailed in the type of SV systems they wish to retrieve, an advanced

search is available by following the link at the bottom of the quick search screen.

95

Figure 6.6: The VisIOn Advanced Search Page.

The Advanced Search screen (see Figure 6.6) lists each class followed by all properties

with predefined values. The other properties are queried via the “Keyword” text field. Both the

quick and advanced search screens display true/false values in the form of a checkbox for the

user to check if they want systems that contain that property. Properties with predefined lists of

values are shown in a drop-down menu for the user to select the one value of interest. The

search screens are initialized with an empty “Keyword” field, unchecked boxes, and “N/A”

selected for drop-down menus and will not be used in the search unless the user enters or selects

a value of interest. After the user clicks on the “Find Systems” button, a list of system names

meeting all of the search criteria is displayed. Each name is a link to a page with a list of

properties specific to that system (see Figure 6.7).

96

Figure 6.7: The VisIOn System Properties Page.

The system properties page can also be reached by clicking on the “View a System” link

on the toolbar, selecting the system of interest from a drop-down menu, and clicking on the

“View Properties-List” button. Additionally, the properties and values of a system can be

viewed on a page as a visualization that is identical to the SV ontology schema in Figure 6.4, but

this time when the user hovers over a node, the pop-up screen will show properties for that class

along with the specific values for each as they pertain to the selected system.

A potential user of VisIOn expressed an interest in seeing a list of systems similar to the

one currently displayed. To provide users with such a listing, similarity between systems is

currently computed using a naïve approach of giving each property a weight between 0 and 1

where all weights sum to 1. For each matching property value between two systems, the total

97

match score is increased by the weight of the matched property. This approach will most likely

improve to a collaborative filtering method in the future as we gather more user input and usage

data.

Figure 6.8: The VisIOn Feedback Page.

The page displaying the system properties also includes a second effectiveness class that

consists of user input supplied on the “Feedback” page, Figure 6.8. The clarity to user,

accuracy, ease-of-use, and overall rating properties can currently be evaluated on a scale of 1 to

7, with 7 being the best, and the average of each property is displayed along with the number of

voters. This type of rating or star system is common and helpful on websites that provide access

to products.

98

Figure 6.9: The VisIOn “Add a System” Page.

The last function provided to users is the ability to “Add a System” to the VisIOn

database (see Figure 6.9). The SV system Name, Developer, Description, and the name of the

person entering the system (Your Name) are mandatory fields and they, along with a minimum of

any 4 other properties, must be entered before a system is accepted into the repository. Upon

insertion into the database, the information about the SV system is instantly available and similar

systems are computed and stored. The newly added systems will be verified regularly in order to

maintain a level of quality that will be beneficial to our users.

6.5 Vision for VisIOn

We will continue to develop, refine, and promote VisIOn in hopes of others adding

accurate information about software visualization systems so that our goal of making this data

99

easily accessible may be achieved. We will frequently monitor the quality of information

entered due to the unrestricted ability of users to add and rate systems. We may have to allow

this function on a more selective basis if users enter information other than in a good faith

manner. As we continue to categorize systems and more users provide feedback, we will

possibly update classes, properties, and available functionality.

Although a visualization can be classified using VisIOn, it is currently set up to house

information about software visualization systems. To categorize a particular visualization,

consideration will need to be given as to how it will be connected to the system that was used to

create it, if one was used. Currently, any information about the visualization systems that is

significant but not requested by one of the properties can be supplied in the description.

We hope that the results of software visualization related studies will lead to more

objective criteria for evaluating visualizations and systems and that we will be able to apply what

is learned to other visualization domains. If we find that specific features commonly increase the

level and/or speed of understanding, then we can start to evaluate visualizations and systems in

other fields and expand VisIOn to include information about them. Please feel free to access

VisIOn at http://vision.cs.uga.edu and enter data or provide feedback.

http://vision.cs.uga.edu

100

CHAPTER 7

CONCLUSION

7.1 Summative Analysis

Chapters 4 and 5 describe a series of studies conducted to investigate the effects of

several perceptual, attentional, and cognitive features commonly employed in software

visualizations, specifically those used in educational settings by students learning about

algorithms. We started by describing two low-level, perceptual/attentional studies performed

using context-free software packages, JND and VizEval. The generic findings from these studies

pertaining to bar height differences and the use of a flashing cue in detection and localization of

changes can be applied within any visualization domain in which graphical objects are

rectangular and change size.

We integrated knowledge gained from these low-level studies into higher-level, domain-

specific studies in which we investigated the influence of different features on perception of an

animation and overall comprehension of the depicted algorithm. These higher-level studies

investigated the impact of certain types of cueing, motion, and interactive questioning techniques

on the effectiveness of AAs and AA systems. Although participants in these studies were

specifically targeted to have similar educational backgrounds, we are aware of their varying

memory, reasoning, and spatial capabilities as well as their differing learning styles.

Experiments involving human subjects, especially at this level of cognitive reasoning, inevitably

are hindered by this obstacle, unlike studies in other areas that involve machines built to a

standard specification or chemicals composed of precisely mixed elements. Starting to identify

101

differences in performance and attention based on these individual differences will give

researchers in the software visualization domain another perspective from which to design

systems.

7.2 Limitations

Three possible limitations that we have identified with the AA studies are that:

1) Features are only tested on one algorithm, quicksort. Some of the features will

likely have different results for algorithms with various levels of complexity,

2) The motivation for students to perform well is completely intrinsic because the

results are anonymous and will not count towards a grade for a course, and

3) AA systems are typically intended to be used as an additional resource. So,

students may attend a lecture and then use or create an AA. The format for our experiments

involved students learning the algorithm solely through the use of the animation (not

ethnographic).

7.3 Conclusion and Future Work

Well designed AAs and AA systems stand to offer great pedagogical benefits because

they have the potential to enhance a student’s understanding with less time invested than

traditional, non-interactive, static descriptions and depictions. The fact that some studies have

proven this to be true while others have not has motivated this research and the desire to find out

“Why?”. In this document, a methodology has been proposed that is intended to be useful in

successfully designing and evaluating the effectiveness of AAs and AA systems. This research

has just begun to scratch the surface of this well acknowledged and studied problem. Hopefully,

the outcome of this and other related research will lead to the successful and consistent creation

of SVs and SV systems that will enhance the computer science educational environment.

102

As we continue to identify perceptual, attentional, and cognitive factors of visualizations

that may influence their effectiveness, we will perform empirical studies to validate (or disprove)

our hypotheses. Hopefully, our work in conjunction with that of others in our field will help to

remove some of the subjectivity involved with evaluating the effectiveness of visualizations.

Once effective AAs can be described and implemented, perhaps professors will be more

accepting of them, incorporate them into computer science courses, and afford students the

opportunity to benefit from them.

The increase in the attendance at and number of software visualization related workshops

indicates that this field has much potential for future research. In these settings, I have found

that other researchers are very interested in formally testing the usefulness of their tools, but are

not sure how to proceed. I believe that the software and evaluation process that I am describing

in this work can serve as a framework for others to use or follow. The algorithm animation

community stands to greatly benefit from additional studies on the perceptual, attentional, and

cognitive features of these visualizations.

Also, we have started to screen students for individual differences in areas such as

working memory, inductive reasoning, learning styles, viewing patterns, etc. Future work in this

area could involve creating intelligent software visualization systems that are capable of tailoring

views and interaction based upon the type of user.

During my doctoral research, I have also worked with a bioinformatics project where my

contribution involved enhancing the usability of web sites and the visualizations used. An

interesting idea is to explore the possibility of extending our software visualization findings into

the new and neglected area of bioinformatics visualization. There appears to be a great need for

an approach similar to the one that we have developed for systematically, quantitatively

103

designing and evaluating bioinformatics visualizations since effective ones will assist biologists

in interpreting data that could lead to medical and other scientific breakthroughs.

104

REFERENCES

[1] M. Agarwal. Viewing Behavior Model Graphs (VBMG) for Characterizing User Viewing

Behavior in Program Visualizations. Unpublished MS Thesis, The University of Georgia,

Athens, GA, 2007

[2] Apache Struts [Online]. Available at <http://struts.apache.org/>.

[3] A. Badre, M. Beranek, J. M. Morris, and J. Stasko. Assessing Program Visualization

Systems as Instructional Aids. In: Proceedings of Computer Assisted Learning, ICCAL

'92, Wolfville, Nova Scotia, Canada, 1992.

[4] R. Baecker. Sorting out Sorting, 30 minute color/sound film, University of Toronto.

Distributed by Morgan Kaufmann, San Francisco. 1981.

[5] R. Baecker. Sorting out sorting: A case study of software visualization for teaching

computer science. Chapter in: Software Visualization: Programming as a Multimedia

Experience, edited by J. D. M. Brown, B. Price, and J. Stasko, Cambridge, MA: The MIT

Press, pp. 369-381, 1998.

[6] K. Borner and Y. Zhou. A Software Repository for Education and Research in

Information Visualization. In: Proceedings of Fifth International Conference on

Information Visualisation (IV '01), London, England, p. 257, 2001.

[7] Encyclopaedia Britannica Online [Online]. Available at <http://www.britannica.com/>.

[8] K. W. Brodlie, D. A. Duce, D. J. Duke, and et al. Visualization Ontologies: Report of a

Workshop held at the National e-Science Centre. Technical Report, e-Science Institute,

Edinburgh, Scotland, 2004.

[9] M. H. Brown. Perspectives on algorithm animation. In: Proceedings of ACM SIGCHI '88

Conference on Human Factors in Computing Systems, Washington, DC, pp. 33-38, 1988.

[10] M. H. Brown and J. Hershberger. Color and Sound in Algorithm Animation. j-

COMPUTER vol. 25, pp. 52-63, 1991.

[11] M. H. Brown and S. Robert. A system for algorithm animation. ACM Computer

Graphics, vol. 18, pp. 177-186, 1984.

[12] Complete Collection of Algorithm Animations [Online]. Available at

<http://www.cs.hope.edu/~alganim/ccaa/>.

http://struts.apache.org/
http://www.britannica.com/
http://www.cs.hope.edu/~alganim/ccaa/

105

[13] M. D. Byrne, R. Catrambone, and J. T. Stasko. Evaluating animations as student aids in

learning computer algorithms. Computers & Education vol. 33, pp. 253-278, 1999.

[14] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in Information Visualization:

Using Vision to Think. San Francisco, CA, 1999.

[15] J. Carroll. Human-Computer Interaction in the New Millennium: Addison Wesley Pub Co

Inc, 2001.

[16] Computer Science Teaching Center [Online]. Available at

<http://www.cstc.org/index.html>.

[17] P. Crescenzi, N. Faltin, R. Fleischer, C. Hundhausen, S. Näher, G. Rößling, J. Stasko, and

E. Sutinen. The Algorithm Animation Repository. In: Proceedings of Second

International Program Visualization Workshop, HornstrupCentret, Denmark pp. 14-16,

2002.

[18] E. Dale. Audio-Visual Methods in Teaching. New York, NY: Dryden Press, 1954.

[19] E. T. Davis, K. Hailston, E. Kraemer, A. Hamilton-Taylor, P. Rhodes, C. Papadimitiou,

and B. Garcia. Examining Perceptual Processing of Program Visualization Displays to

Enhance Effectiveness. In: Proceedings of Human Factors and Ergonomics Society

(HFES), 2006.

[20] American Heritage Dictionary [Online]. Available at

<http://education.yahoo.com/reference/dictionary/>.

[21] D. J. Duke, K. W. Brodlie, and D. A. Duce. Building an Ontology of Visualization. in

Proceedings of the Conference on Visualization '04: IEEE Computer Society, 2004.

[22] D. J. Duke, K. W. Brodlie, D. A. Duce, and I. Herman. Do You See What I Mean? IEEE

Computer Graphics and Applications vol. 25, pp. 6 - 9, 2005.

[23] R. B. Ekstrom, J. W. French, H. H. Harman, and D. Derman. The Kit of Factor-

Referenced Cognitive Tests. Princeton, NJ: Educational Testing Service (ETS), 1976.

[24] WIKIPEDIA: The Free Encyclopedia, Definition of "Taxonomy" [Online]. Available at

<http://en.wikipedia.org/wiki/Taxonomy>.

[25] R. M. Felder and L. K. Silverman. Learning and Teaching Styles in Engineering

Education. Journal of Engineering Education, vol. 78, pp. 674-681, 1988.

[26] R. Fleischer. COMP272: Theory of Computing - A study on the learning effectiveness of

visualizations. In: Proceedings of Second Teaching and Learning Symposium - Teaching

Innovations: Continuous Learning and Improvement, Hong Kong, 2004.

http://www.cstc.org/index.html
http://education.yahoo.com/reference/dictionary/
http://en.wikipedia.org/wiki/Taxonomy

106

[27] S. Grissom, M. F. McNally, and T. Naps. Algorithm visualization in CS education:

comparing levels of student engagement. In: Proceedings of the 2003 ACM symposium

on Software visualization, San Diego, California: ACM Press, 2003.

[28] J. S. Gurka and W. Citrin. Testing effectiveness of algorithm animation. In: Proceedings

of IEEE Symposium on Visual Languages, Los Alamitos, CA, pp. 182-189, 1996.

[29] A. G. Hamilton-Taylor and E. Kraemer. SKA: Supporting Algorithm and Data Structure

Discussion. In: Proceedings of 33rd SIGCSE Technical Symposium on Computer Science

Education (SIGCSE '02), Cincinnati, Kentucky, pp. 58-62, 2002.

[30] S. Hansen, N. H. Narayanan, and M. Hegarty. Designing educationally effective

algorithm visualizations. Journal Of Visual Languages And Computing, vol. 13, pp. 291-

317, 2002.

[31] A. Hausner and D. P. Dobkin. GAWAIN: Visualizing Geometric Algorithms with Web-

based Animation. In Proceedings of the fourteenth annual symposium on Computational

geometry, Minneapolis, Minnesota, United States: ACM Press, 1998.

[32] C. G. Healy. Building a Perceptual Visualization Architecture. Behaviour and

Information Technology, vol. 19, pp. 349-366, 2000.

[33] C. G. Healy. On the Use of Perceptual Cues and Data Mining for Effective Visualization

of Scientific Datasets. In: Proceedings of Graphics Interface, Vancouver, Canada, pp.

177-184, 1998.

[34] C. G. Healy and J. T. Enns. Large Datasets at a Glance: Combining Textures and Colors

in Scientific Visualization. IEEE Transactions on Visualization and Computer Graphics,

vol. 5, 1999.

[35] T. Hübscher-Younger and N. H. Narayanan. Dancing Hamsters and Marble Statues:

Characterizing Student Visualizations of Algorithms. In: Proceedings of ACM

Symposium on Software Visualization, 2003.

[36] C. D. Hundhausen and S. A. Douglas. Using visualizations to learn algorithms: Should

students construct their own, or view an expert's?. In: Proceedings of IEEE International

Symposium on Visual Languages, pp. 21-28, 2000.

[37] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko. A Meta-Study of Algorithm

Visualization Effectiveness. Journal Of Visual Languages And Computing, vol. 13, pp.

259-290, 2002.

107

[38] D. Jarc, M. Feldman, and R. Heller. Assessing the benefits of interactive prediction using

Web-based algorithm animation courseware. In Proceedings of the thirty-first SIGCSE

technical symposium on Computer science education, Austin, Texas, United States: ACM

Press, 2000.

[39] D. J. Jarc and M. B. Feldman. An Empirical Study of Web-based Algorithm Animation

Courseware in an Ada Data Structure Course. In: Proceedings of ACM SIGAda

international conference on Ada Washington, DC, 1998.

[40] S. Kaldate. Analysis of Viewing Behavior of Program Visualization and Interaction with

Individual Differences. Unpublished MS Thesis, The University of Georgia, Athens, GA,

2007

[41] E. Kraemer and J. T. Stasko. The Visualization of Parallel Systems: An Overview.

Journal of Parallel and Distributed Computing, vol. 18, pp. 105-117, 1993.

[42] E. T. Kraemer, B. Reed, P. Rhodes, and A. Taylor. SSEA: A System for Studying the

Effectiveness of Animations. In: Proceedings of Fourth Program Visualization Workshop

(PVW2006), University of Florence, Italy, 2006.

[43] Weber’s Law and Fechner’s Law (class handout) [Online]. Available at

<http://www.cns.nyu.edu/~msl/courses/0044/handouts/Weber.pdf>.

[44] A. Lawrence. Empirical studies of the value of algorithm animation in algorithm

understanding. Unpublished PhD Dissertation, Georgia Institute of Technology, Atlanta,

GA, 1993

[45] A. L. Lawrence, A. N. Badre, and J. T. Stasko. Empirically Evaluating the use of

Animations to Teach Algorithms. In: Proceedings of IEEE Symposium on Visual

Languages pp. 48-54, 1994.

[46] LookWAYup [Online]. Available at <http://lookwayup.com/free/>.

[47] J. D. MacKinlay. Automating the design of graphical presentation of relational

information. ACM Transaction on Graphics, vol. 5, pp. 110-141, 1986.

[48] Human Factors [Online]. Available at

<http://www.sis.pitt.edu/~mariah/spring2002/is1052/human_factors.htm>.

[49] R. E. Mayer and R. Moreno. Nine Ways to Reduce Cognitive Load in Multimedia

Learning. EDUCATIONAL PSYCHOLOGIST, vol. 38, pp. 43 - 52, 2003.

[50] MedTerms Medical Dictionary [Online]. Available at

<http://www.medterms.com/script/main/hp.asp>.

http://www.cns.nyu.edu/~msl/courses/0044/handouts/Weber.pdf
http://lookwayup.com/free/
http://www.sis.pitt.edu/~mariah/spring2002/is1052/human_factors.htm
http://www.medterms.com/script/main/hp.asp

108

[51] E. Morse, M. Lewis, and K. A. Olsen. Evaluating Visualizations: Using a Taxonomic

Guide. International Journal of Human Computer Systems, vol. 53, pp. 637-662, 2000.

[52] B. A. Myers. Taxonomies of Visual Programming and Program Visualization. Journal of

Visual Languages and Computing, vol. 1, pp. 97-123, 1990.

[53] T. Naps, J. Eagan, and L. Norton. JHAVE: An Environment to Actively Engage Students

in Web-Based Algorithm Visualization. In: Proceedings of Symposium on Computer

Science Education (SIGCSE 2000), Austin, TX, pp. 109-113, 2000.

[54] Improving the Educational Impact of Algorithm Visualization [Online]. Available at

<http://www.algoanim.net/>.

[55] T. L. Naps, G. Rößling , V. Almstrum, W. Dann, R. Fleischer, C. Hundhausen, A.

Korhonen, L. Malmi, M. McNally, S. Rodger, and V. J. Angel, Iturbide. Exploring the

role of visualization and engagement in computer science education. In Working group

reports from ITiCSE on Innovation and technology in computer science education,

Aarhus, Denmark: ACM Press, 2002.

[56] National Training Laboratories in Bethel, Maine [Online]. Available at <

http://www.ntl.org >.

[57] N. F. Noy, R. W. Fergerson, and M. A. Musen. The knowledge model of Protege-2000:

Combining interoperability and flexibility. In: Proceedings of 2nd International

Conference on Knowledge Engineering and Knowledge Management (EKAW 2000),

Juan-les-Pins, France, 2000.

[58] F. Paas, J. E. Tuovinen, H. Tabbers, and P. W. M. V. Gerven. Cognitive load

measurement as a means to advance cognitive load theory. EDUCATIONAL

PSYCHOLOGIST, vol. 38, pp. 63 - 71, 2003.

[59] J. Preece, Y. Rogers, and e. a. Helen Sharp. Human-Computer Interaction. Reading, MA:

Addison-Wesley, 1994.

[60] B. A. Price, R. M. Baecker, and I. S. Small. A Principled Taxonomy of Software

Visualization. Journal of Visual Languages and Computing, vol. 4, pp. 211-266, 1993.

[61] W. Prinzmetal, A. Zvinyatskovskiy, and L. Dilem. Voluntary and Involuntary Attention

Have Different Consequences: The Effect of Perceptual Difficulty. Submitted for

publication.

[62] Dept. of Psychology, Wright State University [Online]. Available at

<http://www.psych.wright.edu/HFHOME.HTM>.

http://www.algoanim.net/
http://www.ntl.org
http://www.psych.wright.edu/HFHOME.HTM

109

[63] B. Reed. Investigating Characteristics of Effective Program Visualizations: A Testing

Environment and the Effect of Cueing and Swapping Techniques in Algorithm

Animations. Unpublished MS Thesis, University of Georgia, Athens, GA, 2006

[64] B. Reed, P. Rhodes, E. Kraemer, A. Hamilton-Taylor, E. T. Davis, and K. Hailston. The

Effect of Comparison Cueing and Exchange Motion on Comprehension of Program

Visualizations. In: Proceedings of ACM Symposium on Software Visualization 2006

(SOFTVIS'06), Brighton, UK, 2006.

[65] P. Rhodes, E. Kraemer, A. Hamilton-Taylor, S. Thomas, M. Ross, E. Davis, K. Hailston,

and K. Main. VizEval: An Experimental System for the Study of Program Visualization

Quality. In: Proceedings of IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC) 2006, Brighton, UK, 2006.

[66] P. Rhodes, E. Kraemer, and B. Reed. The Importance of Interactive Questioning

Techniques in the Comprehension of Software Visualizations. In: Proceedings of ACM

Symposium on Software Visualization 2006 (SOFTVIS'06), Brighton, UK, 2006.

[67] P. Rhodes, E. Kraemer, and B. Reed. VisIOn: An Interactive Visualization Ontology. In:

Proceedings of 44th ACM Southeast Conference (ACM SE ’06), Melbourne, FL, 2006.

[68] T.-M. Rhyne, T. H. D. Jr., G. Calapristi, C. North, and D. Gresh. Evolving Visual

Metaphors and Dynamic Tools for Bioinformatics Visualization. In: Proceedings of IEEE

Visualization, Boston, MA, 2002.

[69] G. C. Roman and K. C. Cox. A Taxonomy of Program Visualization Systems. IEEE

Computer, vol. 26, pp. 11-24, 1993.

[70] M. Ross. A testing environment for the evaluation of program visualization quality.

Unpublished MS Thesis, The University of Georgia, Athens, GA, 2004

[71] G. Rößling and T. L. Naps. A Testbed for Pedagogical Requirements in Algorithm

Visualizations. In: Proceedings of 7th Annual ACM SIGCSE/SIGCUE Conference on

Innovation and Technology in Computer Science Education (ITiCSE 2002), Arhus,

Denmark, 2002.

[72] P. Saraiya, C. North, and K. Duca. Visualizing biological pathways: requirements

analysis, systems evaluation and research agenda. Information Visualization, vol. 4, pp.

191-205, 2005.

[73] P. Saraiya, C. A. Shaffer, D. S. McCrickard, and C. North. Effective Features of

Algorithm Visualizations. In: Proceedings of 2004 ACM Technical Symposium on

Computer Science Education (SIGCSE), Norfolk, VA, 2004.

110

[74] M. Scaife and Y. Rogers. External Cognition: How Do Graphical Representations

Work?. International Journal of Human-Computer Studies, vol. 45, pp. 185-213, 1996.

[75] TouchGraph LLC [Online]. Available at <http://www.touchgraph.com/index.html>.

[76] J. Stasko. POLKA animation designer's package. Technical Report, Georgia Institute of

Technology, Atlanta, GA, 1995.

[77] J. T. Stasko. Animating algorithms with XTANGO. SIGACT News, vol. 23, pp. 67-71,

1992.

[78] J. T. Stasko. TANGO: A framework and system for algorithm animation. IEEE

Computer, vol. 23, pp. 27-39, 1990.

[79] J. T. Stasko. Using Student-Built Animations As Learning Aids. In: Proceedings of the

ACM Technical Symposium on Computer Science Education, pp. 25-29, 1997.

[80] J. T. Stasko and C. Patterson. Understanding and Characterizing Program Visualization

Systems. In: Proceedings of IEEE Symposium on Visual Languages, pp. 3-10, 1992.

[81] L. Stern, S. Markham, and R. Hanewald. You can lead a horse to water: how students

really use pedagogical software. In Proceedings of the 10th annual SIGCSE conference

on Innovation and technology in computer science education, Caparica, Portugal: ACM

Press, 2005.

[82] B. M. Sullivan, C. Ware, and M. Plumlee. Linking audio and visual information while

navigating in a virtual reality kiosk display. Journal of Educational Multimedia and

Hypermedia, in press.

[83] Math Archives [Online]. Available at <http://archives.math.utk.edu/>.

[84] S. Thomas. An experiment designer tool for evaluation of program visualization quality.

Unpublished MS Thesis, The University of Georgia, Athens, GA, 2004

[85] M. E. Tudoreanu. Designing Effective Program Visualization Tools for Reducing User's

Cognitive Effort. In: Proceedings of ACM Symposium on Software Visualization

SOFTVIS ’03, San Diego, CA, 2003.

[86] R. e. a. Turner. Visualization Challenges for a New Cyberpharmaceutical Computing

Paradigm. In: Proceedings of IEEE 2001 Symposium on Parallel and Large-Data

Visualization and Graphics, pp. 7-18, 2001.

[87] B. Tversky. Animation: Can it Facilitate?. International Journal of Human-Computer

Studies, vol. 57, pp. 247-262, 2002.

[88] Netlib Repository at UTK and ORNL [Online]. Available at <http://www.netlib.org>.

http://www.touchgraph.com/index.html
http://archives.math.utk.edu/
http://www.netlib.org

111

[89] WIKIPEDIA: The Free Encyclopedia [Online]. Available at

<http://en.wikipedia.org/wiki/Taxonomy>.

http://en.wikipedia.org/wiki/Taxonomy

112

APPENDIX A

SAMPLE CONSENT FORM AND HANDOUT

113

CONSENT FORM

I, , agree to participate in a research study titled "The

Importance of Pop-up Questioning Techniques in Comprehension of Program Visualizations" conducted by

Philippa Rhodes from the Department of Computer Science at the University of Georgia (706-XXX-XXXX)

under the direction of Dr. Eileen Kraemer, Department of Computer Science, University of Georgia (706-

XXX-XXXX). I understand that my participation is voluntary. I can stop taking part without giving any

reason, and without penalty. I can ask to have all of the information about me returned to me, removed from

the research records, or destroyed.

The reason for this study is to evaluate the importance of various attributes in algorithm animations.

If I volunteer to take part in this study, I will be asked to do the following things:

1) Read introductory material, including a short demo which will last approximately 15 minutes.

2) Use the SSEA program to learn and answer questions about the quicksort algorithm which will take

up to 45 minutes.

I will learn how the quicksort algorithm works, when to use this sorting procedure, and how well this

algorithm performs on various inputs.

I will receive $10.00 at the completion of my participation of this study.

No risks are expected. No discomforts or stresses are expected.

No individually identifying information about me, or provided by me during the research, will be shared with

others without my written permission, except if required by law. The results of this participation will be

confidential.

The researcher will answer any further questions about the research, now or during the course of the project,

and can be reached by telephone at: 706-XXX-XXXX.

I understand the procedures described above. My questions have been answered to my satisfaction, and I

agree to participate in this study. I have been given a copy of this form.

Philippa Rhodes
Name of Researcher Signature Date
Telephone: 706-XXX-XXXX

Email: rhodes@cs.uga.edu

Name of Participant Signature Date

Please sign both copies. You are to keep one and return one to the researcher.

Additional questions or problems regarding your rights as a research participant should be addressed to The Chairperson, Institutional Review

Board , University of Georgia, 612 Boyd Graduate Studies Research Center, Athens, Georgia 30602-7411; Telephone (706) XXX-XXXX; E-
Mail Address IRB@uga.edu

114

Instructions for this Algorithm Animation Study

Before you begin

� Please read and sign one consent form. The other copy is for you to keep.

� If you have any questions, please ask the researcher at this time.

� We ask that you:

o Please turn your mobile phone off or to a silent ring.

o Please do not run any other computer programs during the experiment.

o Do not write your name on this or any other sheet.

What you will be doing

You will view two algorithm animations and answer questions in a program called SSEA

(System to Study Effectiveness of Animations). The purpose of the first animation is to

allow you to practice using the SSEA program. The purpose of the second animation is for

you to learn about the quicksort algorithm. For the quicksort portion of this study, you

will be asked to:

1. complete a questionnaire,

2. complete a pre-test

3. view the animation until you are comfortable with this quicksort algorithm

4. complete a post-test

5. complete a series of preference and abilities tests (e.g., acuity screening, color

vision, spatial ability, etc).

Also included with this handout are:

- a SSEA Guide, “How to Use SSEA”,

- scratch paper, and

- a feedback form.

Running the Demo

The demo depicts an animation of a simple algorithm that finds the maximum value in an

array. You will be asked to run the animation on two data sets and to then answer

questions about the algorithm.

1. Double click on the “SSEA_Demo” icon on the computer’s desktop.

2. Click on Begin Animation for “Demo1” and watch the animation (Use � in Figure B

of “How to Use SSEA”). It will run to completion. You may click the Begin

Animation button again if you wish to see the animation again.

3. Change input to “Demo2” (Use � in Figure B). Select Yes when asked “Are you sure

you wish to change the inputs?”. Then follow steps 4 – 9 below.

115

4. Click on Begin Animation. An animation of the algorithm as it executes on a new

data set will begin to play.

5. Click on Pause (�) to pause the animation.

6. Click the Step (�) button multiple times to advance the animation step-by-step.

Stop at step 10. If necessary, press Begin Animation to restart the animation.

7. Press Play (�) to return to continuous play mode.

8. Move the “Step” slider (�) back to demo step 0. Reply Yes when asked if you

want to restart the animation at the selected step.

9. Move the ”Speed” slider (�) to Faster.

10. Now look at the question area in the lower left corner (Area 3 in Figure A). Answer

Question 1. You may replay the animations to help you answer the questions.

11. Select Question 2 by clicking on the “Question 2” label in the leftmost panel or

using the Next button in the lower left corner.

12. Select and then answer Question 3 and Question 4. In addition to replaying the

animations, you may also view the code panel on the right-hand side of the display

(Area 2 in Figure A).

13. You may go back and change answers to previous questions if desired. Once you are

done answering all the questions, click Submit.

14. Close down the SSEA_DEMO windows.

Do you have any questions? Please ask a researcher.

Running the Quicksort SSEA:

1. Double click on the “SSEA” icon on the computer’s desktop.

2. Use the animations and the various data sets, as well as the code display to answer

all questions about this version of the quicksort algorithm.

3. Feel free to pause, step, replay, and adjust the speed as necessary to help you

answer the questions.

4. When you are done, click Submit and close the SSEA windows.

Before you leave, please give us any comments on the feedback form (attached).

Thank you for your time!

116

117

SCRATCH PAPER

(If you need additional sheets, please ask a researcher).

118

FEEDBACK FORM

1. What feature(s) did you like best about the algorithm animation? Why?

2. What feature(s) did you like least about the algorithm animation? Why?

3. Did you find any questions, graphics, or other components to be useful? If so,

why?

4. Did you find any questions, graphics, or other components to be confusing? If

so, why? How would you change it so it is less confusing?

5. Please give us any additional comments about the demo or quicksort animations.

What would you definitely change? What would you definitely keep the same?

6. If you were required to answer questions during the animation, please provide

feedback about them? Did they help you understand the algorithm better?

7. Please let us know if you have any other comments or questions.

119

APPENDIX B

CODE FOR VERSION OF QUICKSORT USED IN STUDIES

120

public class Quicksort(){
 public static void main()
 {
 int[] arr;
 quicksort(arr, 0, arr.length - 1);
 }

 private void quicksort(int[] array, int begin, int end)
 {
 if (end > begin)
 {
 // partition the subarray
 int pivotIndex = partition(array, begin, end);

 // now sort the lower partition
 quicksort(array, begin, pivotIndex - 1);

 // now sort the higher partition
 quicksort(array, pivotIndex + 1, end);
 }
 }

 private int partition(int[] array, int begin, int end)
 {
 int firstHigh = begin;
 int pivot = array[end]; // set pivot

 for (int findLow = begin; findLow < end; ++findLow)
 {
 if (array[findLow] <= pivot)// compare
 {
 swap(array, firstHigh, findLow); // swap
 firstHigh++;
 }
 }
 swap(array, firstHigh, pivot);//swap pivot
 return firstHigh;
 }

 private void swap(int[] array, int i, int j)
 {
 int tmp = array[i];
 array[i] = array[j];
 array[j] = tmp;
 }
}

121

APPENDIX C

SAMPLE PRE- AND POST-TESTS

122

Pre-test Questions for Quicksort Algorithm

1) Which best describes how quicksort works?

a) It partitions an array into two subarrays and uses the median value of
the array as the pivot.

b) For each element,x, in the array, move x to the index equal to the
number of elements that are less than x.

c) It partitions the array into two subarrays and sorts the subarrays
independently.

d) It swaps adjacent items that are out of order.
Answer: c

2) How is the pivot used?
a) To identify the largest element of the array.
b) To identify the smallest element of the array.
c) To identify the median element of the array.
d) To separate the elements of the array into two subarrays.

Answer: d

3) Given the sequence 7 8 6 2 1 9 4 3. If 3 is chosen as the pivot, which of
the following could be the new order after the first call to the partition
function?
a) 2 1 3 7 8 9 4 6
b) 7 6 2 1 8 4 3 9
c) 7 8 6 2 3 1 9 4
d) 1 7 8 6 2 3 9 4

Answer: a

4) When does the worst-case time for quicksort occur for an array of n
elements?
a) When the pivot is always the largest or smallest element in the active

partition.
b) When the input size is a power of 2.
c) When the partition splits the array into 2 subarrays of equal lengths.
d) There is no predictor for worst-case time.

Answer: a

5) When does the best-case time for quicksort occur for an array of n
elements?
a) When the pivot is always the largest or smallest element in the active

partition.
b) When the input size is a power of 2.
c) When the partition splits the array into 2 subarrays of equal lengths.
d) There is no predictor for best-case time.

Answer: c

6) The quicksort algorithm can best be described as:
a) selective
b) recursive
c) iterative
d) abstract

Answer: b

123

7) During a run of the partition function each number is compared to:

a) its neighbor
b) all other numbers
c) itself
d) the pivot

Answer: d

8) The outcome of partitioning is:
a) to place all numbers in sorted order
b) that no number in the lower partition is larger than any number in the

higher partition
c) to place half of the numbers into the left partition
d) to place all numbers larger than pivot in sorted order

Answer: b

124

Post-test Questions for Quicksort Algorithm

**Please answer the following questions based on the version of the quicksort

algorithm depicted in the animation.**

1) Which best describes the correct order of events of the version of

quicksort you just viewed.
I. Call quicksort on the higher partition.
II. Compare elements to the pivot. If it is less than or equal in value,

then swap element into the lower section of the partition.
III. Select a pivot.
IV. Call quicksort on the lower partition.
V. Swap the pivot into the position between the lower and higher

partitions.
a) I, II, III, IV, V
b) III, II, V, IV, I
c) III, II, I, IV, V
d) II, III, IV, I, V

Answer: b

2) Which element is chosen as the pivot in the active partition?
a) The leftmost element
b) A Random element
c) The middle element
d) The rightmost element

Answer: d

3) When is the pivot swapped?
a) When a value less than or equal to the pivot value is found.
b) When a value greater than the pivot value is found.
c) At the end of partitioning a subset of the array.
d) None of the above

Answer: c

4) The pivot is swapped with ___________________.
a) the first element in the lower partition.
b) the last element in the lower partition.
c) the first element in the higher partition.
d) the last element in the higher partition.

Answer: c

5) The comparison of an element with the pivot is done in which method(s)?
a) quicksort()
b) partition()
c) swap()
d) a and b

Answer: b

125

6) What two objects are being compared in the partitioning step?
a) The element at 'firstHigh' and the element at 'pivot'
b) The element at 'begin' and the element at 'pivot'
c) The element at 'firstHigh' and the element at 'findLow'
d) The element at 'findLow' and the element at 'pivot'

Answer: d

7) Swaps can occur between __________________.
a) the element at 'firstHigh' and the element at 'findLow'
b) the element at 'begin'+1 and the element at 'firstHigh'
c) the element at 'firstHigh'+1 and the element at 'pivot'
d) the element at 'findLow' and the element at 'firstHigh'+1

Answer: a

8) Assume that the array to be sorted initially contained the following
values: 5 7 8 2 9 6. Which of the following will be the higher
partition after one invocation of quicksort?
a) 7 9 8
b) 6 7 9 8
c) 7 8 9
d) 6 7 8 9

Answer: a

9) Given the array 8 3 7 5 1 6 2 4. Which of the following represents the
contents of the new array after one invocation of quicksort?
a) 1 2 3 4 6 8 5 7
b) 4 3 2 1 5 6 7 8
c) 4 3 7 5 1 6 2 8
d) 3 1 2 4 8 6 7 5

Answer: d

10) Which best describes how quicksort works?
a) It partitions an array into two subarrays and uses the median value of

the array as the pivot.
b) For each element,x, in the array, move x to the index equal to the

number of elements that are less than x.
c) It partitions the array into two subarrays and sorts the subarrays

independently.
d) It swaps adjacent items that are out of order.

Answer: c

11) How is the pivot used?
a) To identify the largest element of the array.
b) To identify the smallest element of the array.
c) To identify the median element of the array.
d) To separate the elements of the array into two subarrays.

Answer: d

126

12) When does the worst-case time for quicksort occur for an array of n
elements?
a) When the pivot is always the largest or smallest element in the active

partition.
b) When the input size is a power of 2.
c) When the partition splits the array into 2 subarrays of equal lengths.
d) There is no predictor for worst-case time.

Answer: a

13) When does the best-case time for quicksort occur for an array of n
elements?
a) When the pivot is always the largest or smallest element in the active

partition.
b) When the input size is a power of 2.
c) When the partition splits the array into 2 subarrays of equal lengths.
d) There is no predictor for best-case time.

Answer: c

14) The quicksort algorithm can best be described as:
a) selective
b) recursive
c) iterative
d) abstract

Answer: b

15) During a run of the partition function each number is compared to:
a) its neighbor
b) the pivot
c) all other numbers
d) itself

Answer: b

16) The outcome of partitioning is:
a) to place all numbers in sorted order
b) that no number in the lower partition is larger than any number in the

higher partition
c) to place half of the numbers into the left partition
d) to place all numbers larger than pivot in sorted order

Answer: b

127

APPENDIX D

SAMPLE POP-UP AND TRADITIONAL QUESTIONS

128

“Pop-up” - Low Level Questions for Quicksort Algorithm

1) What elements were just compared?

a) 60 and 70
b) 60 and 40
c) 70 and 40
d) 70 and 80

2) What was the last comparison?
a) Is 70 less than or equal to 20?
b) Is 40 less than or equal to 70?
c) Is 40 less than or equal to 20?
d) Is 20 less than or equal to 40?

3) What variables were compared?
a) 'firstHigh' and 'findLow'
b) 'findLow' and 'pivot'
c) 'firstHigh' and 'pivot'
d) 'begin' and 'end'

4) What elements were just swapped?
a) 20 and 10
b) 70 and 40
c) 20 and 70
d) 10 and 40

5) The swap() method was invoked on 70 and __.
a) 60
b) 70
c) 80
d) It was not invoked.

6) What variables were swapped?
a) 'firstHigh' and 'findLow'
b) 'pivot' and 'firstHigh'
c) 'begin' and 'findLow'
d) 'findLow' and 'pivot'

7) Which value will be the next pivot?
a) 80
b) 50
c) 70
d) 60

8) Which of the following variables was pointing to a different object than
the other three?
a) 'begin'
b) 'end'
c) 'firstHigh'
d) 'findLow'

129

“Pop-up” - High Level Questions for Quicksort Algorithm

1) Why did 70 and 20 just swap?

a) because the partition() method ended
b) because 'findLow' > 'firstHigh'
c) because 'findLow' <= 'firstHigh'
d) because 'findLow' <= 'pivot'

2) Why did 60 and 80 just swap?

a) because the partition() method ended
b) because 'findLow' > 'firstHigh'
c) because 'findLow' <= 'firstHigh'
d) because 'findLow' <= 'pivot'

3) The pivot (20) was just swapped, when will

a) it move again?
b) at the end of quicksort()
c) at the end of partition()
d) never
e) it cannot be determined

4) All of the numbers to the left of 40

a) are in the lower partition
b) are in the higher partition
c) are greater than the pivot
d) are sorted

5) Which number will be the pivot next?

a) 30
b) 40
c) 80
d) 60

6) Why was the quicksort call "skipped"

a) 'end' <= 'begin'
b) 'end' > 'begin'
c) the 'pivot' is out of range
d) it was not skipped

7) Which subarray of numbers will be sorted next?
a) the higher partition
b) the lower partition
c) the entire array
d) the faded portion

8) Which variable will be the next to swap with the pivot
 a) 'begin'
 b) 'firstHigh'
 c) 'findLow'
 d) both a) and c)

130

“Traditional” - Low Level Questions for Quicksort Algorithm

1) Which number will be the first pivot for the following sequence:
 2 7 1 4 6 3 5

a) 2
b) 4
c) 5
d) It cannot be determined because the pivot is randomly selected.

Answer: c

2) At the beginning of the partition() function, 'begin', 'firstHigh', and

'findLow' are all set to
a) the first element in the active partition
b) the last element of the active partition
c) the pivot
d) they are set to different elements

Answer: a

3) At the end of the partition() function, pivot swaps with which variable?

a) 'begin'
b) 'end'
c) 'firstHigh'
d) 'findLow'

Answer: c

4) At the beginning of the partition() function, pivot and which variable

represent the same object
a) 'begin'
b) 'end'
c) 'firstHigh'
d) 'findLow'

Answer: b

5) Other than at the end of partition(), objects are swapped when

a) findLow is less than or equal to the pivot
b) findLow is less than or equal to firstHigh
c) findLow is greater than firstHigh
d) end is greater than begin

Answer: a

6) The 'findLow' variable is compared to which variable?

a) 'begin'
b) 'end'
c) 'firstHigh'
d) 'pivot'

Answer: d

7) What is the comparison between 'findLow' and the other variable, x?

a) Is 'findLow' less than x?
b) Is 'findLow' less than or equal to x?
c) Is 'findLow' greater than x?
d) Is 'findLow' greater than or equal to x?

Answer: b

131

8) At step 62 of the 'LargeRandom' data set, what items are swapped?
a) 20 and 10
b) 70 and 40
c) 20 and 70
d) 10 and 40

Answer: c

132

“Traditional” - High Level Questions for Quicksort Algorithm

1. What is the purpose of 'findLow'?

a. to find the lowest value in the array
b. to find values lower than the pivot
c. to find the lowest value in the higher partition
d. a and c

Answer: b

2. The variable 'firstHigh'
a. points to the first object in the higher partition
b. points to the last object in the lower partition
c. swaps with the pivot
d. a and c

Answer: d

3. When might an object appear to swap with itself?
a. when 'findLow' = 'firstHigh' and 'findLow' <= 'pivot'
b. when 'findLow' <= 'firstHigh' and 'findLow' <= 'pivot'
c. when 'findLow' = 'firstHigh' and 'findLow' >= 'pivot'
d. when 'findLow' >= 'firstHigh' and 'findLow' >= 'pivot'

Answer: a

4. The entire quicksort() function is only carried out when
a. 'begin' is less than 'end'
b. 'begin' equals 'end'
c. 'begin' is greater than 'end'
d. everytime

Answer: a

5. The pivot swaps
a. with 'firstHigh'
b. at the end of partition()
c. neither a nor b
d. both a and b

Answer: d

6. When does 'findLow' swap with 'firstHigh'?
a. when 'findLow' is greater than the pivot
b. when 'findLow' is less than or equal to the pivot
c. when 'findLow' is greater than 'firstHigh'
d. at the end of the partition() method

Answer: b

133

7. The first call to quicksort operates over the entire array. Which
 subarray will be operated on next?

a. higher partition
b. lower partition
c. all numbers again
d. it cannot be determined

Answer: b

8. Once the pivot is swapped, when will it move again?
a. at the end of quicksort()
b. at the end of partition()
c. never
d. it cannot be determined

Answer: c

134

APPENDIX E

QUICK GLANCE OF ALGORITHM ANIMATION STUDIES BY FEATURE

135

Feature Work Done by Sample results

Animation Display

Code View 1. Saraiya et al., 2004

2. Naps et al., 2002

1. Code and guide versus data example

“covering important cases might provide

better conceptual understanding” (this is

based on analysis of 1 conceptual

question). Found code and guide doubled

time, but no increase in learning.

2. Suggestion (multiple views).

Labels - on objects 1. Badre et al., 1992

2. Lawrence, 1993

1. Should display labels, based on

exploratory study.

2. Student preference, but no performance

difference.

Labels – textual

description

1. Rößling et al., 2002

2. Naps et al., 2002

3. Badre et al., 1992

4. Lawrence, 1993

1. Suggestion

2. Suggestion

3. Should display labels, based on

exploratory study.

4. Textual and visual cues significantly

outperformed unlabeled animations

Auralization 1. Brown et al., 1991 1. Used sound to reinforce or replace

graphics and signal conditions. Informal

evaluation - “sound will be a powerful

technique for communicating

information.”

Graphical Object 1. Lawrence, 1993 1. Dots versus sticks made no

performance difference; students preferred

sticks.

Object orientation 1. Lawrence, 1993 1. Vertical versus horizontal made no

difference; students preferred vertical.

Data Set Size 1. Lawrence, 1993 1. No difference.

Color 1. Brown et al., 1991

2. Lawrence, 1993

1. Used color to show state, unite multiple

views, highlight, emphasize patterns,

show history; no empirical study

2. Viewers of monochrome display

significantly outperformed viewers of

color displays.

Visual Cues 1. Lawrence, 1993 1. Textual and visual cues significantly

outperformed unlabeled animations.

136

Feature Work Done by Sample results

Structural view of

algorithm.

1. Rößling et al., 2002 1. Suggestion (should allow user to jump

to any point of execution by clicking on

the display).

Algorithm Performance 1. Naps et al., 2002 1. Suggestion

Execution History 1. Naps et al., 2002 1. Suggestion

Interaction

No Viewing

 1. Byrne et al., 1999

2. Grissom et al., 2003

3. Fleischer et al., 2004

4. Hansen et al., 2002 (3

studies)

5. Hansen et al., 2002

1. Prediction plus animation significantly

outperformed other three groups; 2x2

animation versus text/static and passive

versus prediction.

2. No viewing versus Viewing versus

Responding; found greater improvement

between pre- and post-test for increasing

levels of engagement. Held at 3

universities with 4 different professors.

No viewing group had much higher pre-

test scores.

3. No viewing versus AA that actively

engages; no difference.

4. Significant difference in 2 of 3 text

versus full version of HalVis (animation,

text, static images, audio narratives,

interactive questions). The 3
rd
 in which

text was “carefully designed” showed no

difference in learning.

5. Significant difference for HalVis over

lecture

137

Feature Work Done by Sample results

Viewing

Control Direction 1. Saraiya et al., 2004

2. Rößling et al., 2002

3. Naps et al., 2002

1. Providing step back feature did not

improve performance.

2. Suggestion (rewind).

3. Suggestion (execution control).

Control Speed 1. Saraiya et al., 2004

2. Rößling et al., 2002

3. Naps et al., 2002

1. Providing “absolute control (stepping)

on the pace of the AV proved to make a

significant difference”.

2. Suggestion (view animation in smooth

motion or discrete steps).

3. Suggestion (execution control).

Other 1. Lawrence et al., 1994

2. Byrne et al., 1999

3. Grissom et al., 2003

4. Fleischer et al., 2004

5. Hansen et al., 2002

1. Lecture plus slide group slightly

outperformed lecture plus animation

group.

2. Prediction plus animation

outperformed other three groups; 2x2

animation versus text/static and passive

versus prediction.

3. No viewing versus Viewing versus

Responding found greater improvement

between pre- and post-test for increasing

levels of engagement. Held at 3

universities with 4 different professors.

No viewing group had much higher pre-

test scores.

4. No viewing versus AA that actively

engages users; no difference.

5. Significant difference for HalVis

versus XTango + handout.

138

Feature Work Done by Sample results

Responding

Questions – Pop-up

(Prediction,

Responsive, “What-if”,

High-level, Low-level,

Feedback)

1. Rößling et al., 2002

2. Naps et al., 2002

3. Byrne et al., 1999

4. Naps et al., 2000

5. Jarc et al., 2000

6. Grissom et al., 2003

1. Suggestion – “stop-and-think” to

answer next step of algorithm.

2. Suggestion – dynamic, “pop quiz”

questions; provide dynamic feedback.

3. Prediction plus animation significantly

outperformed other three groups; 2x2

animation versus lecture and passive

versus prediction.

4. No control group; 5 participants had

“stop-and-think” questions and performed

moderately.

5. Predictive group performed slightly

worse than passive animation group

6. No viewing versus Viewing versus

Responding found greater improvement

between pre- and post-test for increasing

levels of engagement. Held at 3

universities with 4 different professors.

No viewing group had much higher pre-

test scores.

Changing

Enter input set

1. Saraiya et al., 2004

2. Rößling et al., 2002

3. Naps et al., 2002

4. Lawrence, 1993

1. Participants who were given an

example performed slightly better than

those who gave their own input (no

combination of both given and user input);

significant improvement on procedural

questions.

2. Suggestion

3. Suggestion

4. Viewers who entered their own input

set had significant improvement over

passive viewers.

139

Feature Work Done by Sample results

Enter input set (cont.) 5. Lawrence et al., 1994 5. Lecture plus lab – active group

outperformed lecture plus slide (screen

shots from animation) and lecture plus lab

– passive.

Constructing

Direct Generation (map

program to

visualization)

1. Naps et al., 2002

2. Stasko, 1996

3. Hundhausen et al.,

2000

1. Suggestion (students should build own

visualizations).

2. Informal evaluation; students became

competitive, had almost perfect scores on

related questions on final, enjoyed class.

3. No significant difference for AVs

constructed in 2.5 hours.

Hand Construction (art

supplies or animation

editor)

1. Naps et al., 2002

2. Hubscher-Young et al.,

2003

1. Suggestion (students should build own

visualizations).

2. Significant improvement for students

who created, shared, and evaluated an AV.

Presenting

 1. Hubscher-Young et al.,

2003

1. Significant improvement for students

who created, shared, and evaluated an AV.

Usability / Other

Ease of use

Expected use 1. Stern et al., 2005 1. Participants did not use the system,

AIA, as expected.

Intended Level of User 1. Naps et al., 2002 1. Suggestion (Intended user level should

be indicated).

Window Management

Make widely available

(i.e. use Java for platform

independency or applets

for online availability)

1. Rößling et al., 2002 1. Suggestion.

General purpose (show

many different types of

visualizations, but user

only has to learn system

once)

1. Rößling et al., 2002 1. Suggestion.

Additional Handout 1. Lawrence, 1993 1. Animation vs. Handout first made no

difference.

