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Abstract

Timberland investment performance depends on internal and external factors. Forestland

owners can control the establishment location, the level of genetically improved seedlings,

and management regimes that maximize the timber production profitability. Therefore, ana-

lyzing forest growth and yield factors, silvicultural responses (and potentially genetic gains of

yield), and measures of the amount of merchantable volume is essential for forestland owner

decision making. However, the effect of external economic factors such as the global market,

interest rates, and macroeconomic stability may affect timberland investment returns as well.

Thus, understanding the effect of the economy on timberland investments is also crucial. For

instance, analyzing how the current economic outlook affects timber cutting contracts based

on option pricing gives insight into the financial performance of timberland investments.

Although the problem and justification addressed in this dissertation is globally applicable,

we focused on loblolly pine in the southeastern United States because the combination of

the species and region represents the most relevant timberland investment in the world. The

general objective of this research was to determine the chief drivers of loblolly pine timber

production, and to assess for the effect of the present external economic context on the tim-

berland investments in the southeastern U.S. Regarding timber production drivers, the effect



of the physiographic region, level of genetic improvement, level of management regime, stand

density, and proportion of sawtimber were evaluated. Timber prices, timber price volatility,

and interest rates were utilized to understand the effect of the current economic context on

the estimated value of timber cutting contracts. In brief, this investigation gives insight to

private and public forestland owners, forest products companies, timber investment manage-

ment organizations (TIMOs) and real estate investment trusts (REITs) to make informed

decisions on timber production and timberland investments in the southeastern U.S.

Index words: Forest growth and yield, silvicultural responses, timber product classes,
long-term timber cutting contracts, option pricing.
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Chapter 1

Introduction and literature review

1.1 Introduction

Timber production and timberland investment profitability relies on internal and external

factors. Internal factors are the technical and financial decisions that a landowner can make

to maximize forest production, such as species and genetic improvement selection, location

of the forest stands, and management regimes. On the other hand, economic external factors

include the influence of the global market, domestic and foreign interest rates, and macroe-

conomic stability. Although the exogenous factors are important to evaluate in the potential

success of forest investments, their associated risks cannot be effectively managed, unlike

internal factors, which are under the control of the landowner.

Loblolly pine is the most commercially important forest species in the southeastern U.S.

Loblolly pine planted area in this region consists of 14.4 million hectares, of which 80%

are planted with half-siblings or open-pollinated families, 18% are planted with mass con-

trol pollinated or full-siblings families, and 1% are planted with clones. These genetically

improved loblolly pine families are planted across 13 states and 4 physiographic regions with

contrasting environmental conditions. A wide array of silvicultural practices are applied in

conjunction with the genetic improvements, from low levels of inputs to very intensive forest

management composed of bedding, fertilization, competing vegetation control, and thinning.

Since most existing forest growth and yield models estimate total volume or biomass, propor-

tions of the commercial timber product classes, i.e., sawtimber, chip-n-saw, and pulpwood,

are required to accurately calculate timber values. The analysis of the forest growth and yield

1
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and measures to estimate volume merchantability as part of the internal forest production

factors give insight into the potential financial performance of timberland investments.

Although external factors are beyond the control of the forest landowner, the effect

of the economic outlook on timberland investments can be evaluated. Thus, the current

forest business environment, characterized by relatively low timber prices, low timber price

volatility, and low interest rates, contrasts with the past 30-years conditions. This research

addressed the problem of the long-term timber cutting contracts by updating the primer

valuation framework using call options. Results of this research would be valuable for private

and public forestland owners, forest products companies, timber investment management

organizations (TIMOs), and real estate investment trusts (REITs) that look for strategic

information to maximize returns and minimize risks.

1.2 Literature review

Forest growth can be thought of as the outcome of two opposing factors, the unlimited trend

of growth or biotic potential, and the growth constraints imposed by the environment (Zeide,

1993). As an expansion of this conceptualization, along with the stand age, there are three

well-known factors related to forest growth: i) site quality or productive potential; ii) the

stand’s intrinsic characteristics, such as density and genetics; and iii) silvicultural treatments

(Clutter et al., 1992).

Productive potential was the main topic in forestry research four decades ago. However,

expected increases in per unit area production of 50-year pine improvement programs are

gaining attention (Roth et al., 2007). The current volume gains of the second generation

of genetically improved loblolly pine compared to unimproved planting stock range from

10-30% (Allen et al., 2005), which can be doubled if improvements in stem form and disease

resistance are added (McKeand et al., 2006a). Likewise, there are contrasting findings about

the interaction of genotype and environment (G x E) (Roth et al., 2007; McKeand et al.,
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2006b; Smith et al., 2014), which suggests uneven genetic responses across the southeastern

U.S.

Intensive forest management has also contributed to increase timber productivity in the

southeastern U.S. A wide range of silvicultural treatments such as mechanical site prepara-

tion, competing vegetation control, fertilization, and irrigation has been applied to maximize

timber production (Allen et al., 2005). These silvicultural practices, in conjunction with stand

age and density, result in a general expression of forest yield (Clutter et al., 1992). Volume

gains due to intensive forest management can be derived from forest yield models by isolating

the effect of remaining variables.

Forest yield estimation should be adjusted to take into account the portion of timber

that can be sold. Frequencies of the number of trees per diameter classes are determined

using probability distribution functions and taper equations to estimate proportions of mer-

chantable volume per product class. These probability distribution functions, and models to

estimate proportions for product classes, have been estimated as a function of age, height,

density (Strub et al., 1986), and thinning (Burkhart, Bredenkamp, 1989). Moreover, propor-

tions for product classes can include measurements of stem quality such as fork, broken top,

sweep, and diseased trees (Choi et al., 2008; Buford, Burkhart, 1987).

Timberland financial performance depends greatly on external economic factors, which

are beyond the control of the landowner (Reeves, Haight, 2000; Wan et al., 2013; Gao,

Mei, 2013). Understanding the economic context is particularly important for timberland

investments because returns are reaped many years after establishing a forest plantation

(Ashton et al., 2001; Hildebrandt, Knoke, 2011). Thus, the effects of timber prices, timber

price volatility, and interest rates on timberland investment performance represent obligated

topics to be investigated.
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1.3 Rationale and significance

The ultimate goal of biometrics, from the timber management perspective, is an accurate

estimation of the merchantable volume. This is a vital input for forest financial return calcu-

lations. Moreover, profitability analyses are performed considering growth factors as fixed in

spite of their variability. In this sense, thorough timber management analyses should consider

the inherent uncertainty nature of volume yield, silvicultural responses and genetic gains,

and timber product class distribution.

Mixed effects models contribute to understand the effect of forest growth drivers on yield

at stand and landscape levels. As mentioned, there are three factors related to forest growth

that should be included in the forest growth and yield model: site quality, intrinsic stand

characteristics (seed source genetics and density), and management. Since forest growth of

loblolly pine is different across physiographic regions of the southern U.S., a factor is required

that takes into account such variability in forest yield model. There are also three broad

genetically improved entries, i.e., open pollinated, mass control pollinated, and clones, and a

continuum of management regimes, which should be considered in the estimation of loblolly

pine growth and yield. In particular, silvicultural responses can be evaluated by taking the

partial derivatives of the estimated mixed effects models with respect to the associated levels

of management.

The determination of the proportion of timber products as a function of diameter, form,

and stem quality assessment may differ across stands. The environment and management

regimes may have an effect on the proportions of timber product classes. Hence, the tree

diameter, location and the intensity level of management applied are the inputs to estimate

volume merchantability.

Finally, the evaluation of the effect of the economic external factors on the timberland

investment profitability may be informative for forestland owners, TIMOs, and REITs in the

southeastern U.S. For instance, a research is needed to assess for the effect of the current risk-
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free rates of return, timber prices, and timber price volatility on the option pricing valuation

of timber contracts.

1.4 Goals, objectives and hypotheses

1.4.1 General goal

To determine the chief drivers of loblolly pine timber production, and to assess for the effect

of external economic context on the timberland investments in the southeastern U.S.

1.4.2 Specific objectives and hypotheses

1. To evaluate the difference in forest productivity among levels of genetically improved

loblolly pine (half-sib, full-sib, clones), physiographic regions (Lower Coastal Plain,

Upper Coastal Plain, Piedmont), intensity level of forest management (low, moderate

and high), and stand density in the southeastern US.

Hypothesis: No differences in loblolly pine performance will be present among the levels

of factors evaluated.

Methodological objective: A comprehensive evaluation of the forest growth drivers was

conducted by searching for relevant research papers in the southeastern U.S. and sta-

tistically synthesized them using meta-regression.

2. To determine silvicultural responses in yield of loblolly pine in the southeastern U.S.

Hypothesis: No differences between the levels of the management intensity will be

present.

Methodological objective: The contribution of silviculture to loblolly pine growth and

yield was determined by partially differentiating the estimated meta-regression model

obtained in objective one with respect to the moderate and high levels of management

regimes.
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3. To estimate the proportion of sawtimber at year 18 as a function of the location (as a

proxy of the environmental factor), intensity of forest management, planting density,

and size (DBH) in the southeastern U.S.

Hypothesis: The proportion of trees with sawtimber potential at year 18 will not differ

among locations,levels of management regimes, planting density, and DBH.

Methodological objective: Theoretical Bayesian frameworks for binomial, hierarchical,

and logit models were proposed and utilized to estimate the proportion of trees with

sawtimber potential at year 18 as a function of locations, management intensity,

planting density, and tree size.

4. To determine the potential effect of external economic factors on timberland investment

returns in the southeastern U.S.

Hypothesis: The external economic context does not affect timberland investments.

Methodological objective: This objective was addressed by updating the primer long-

term timber cutting contract framework by Shaffer Jr. (1984). The value of call options

was estimated using the Black-Scholes (European) and binomial models (American and

European). The required timber price volatility for this valuation was estimated from

GARCH models.



Chapter 2

Growth and yield drivers of loblolly pine in the southeastern U.S.: A

meta-analysis 1

1Restrepo, H.I, B.P. Bullock, C.R. Montes. 2019. Growth and yield drivers of loblolly pine in
the southeastern U.S.: A meta-analysis. Accepted by Forest Ecology and Management. Reprinted
here with permission of publisher.
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Abstract

An abundant amount of information has been accumulated over the past century on loblolly

pine. However, few studies have been aimed at assembling this information. Three pos-

sible approaches can be used to synthesize available information on loblolly pine: a review

paper in the form of a narrative discussion, systematic review compiling data in tables, and

meta-analysis to statistically summarize data. The purpose of this research is to statistically

synthesize suitable loblolly pine yield data in the southeastern United States using meta-

analysis. There were 18 studies selected out of approximately 500 peer-reviewed papers, and

three high-quality studies (one conference proceedings, one M.S. thesis, and one Ph.D. dis-

sertation) evaluated, from which a database was compiled. Since forest growth has several

drivers (i.e., age, site quality, genetics, density, and management) the use of meta-regression,

a meta-analysis technique to account for variability associated with covariates, was used.

Thus, meta-regression linear mixed effects yield models using the log-transformed Schu-

macher form, at the whole-stand level, were estimated as a function of the mentioned forest

growth factors for diameter at breast height (DBH), height (Ht), basal area (BA), and

volume (V). Overall, the estimated models suggest that these forest growth factors success-

fully explain yield variability. The Raudenbush’s pseudo-R2, which measures the amount of

variation explained by the covariates, were 97, 94, 97, and 91%, for DBH, Ht, BA, and V

models, respectively. However, the 95% confidence intervals (CI) of yield curves associated

with some growth factor levels overlapped their corresponding reference level, suggesting no

statistical differences at certain ages. In this sense, the CI’s width is driven mainly by the

number of studies, and their number of replicates, available for factor levels. Thus, the lack

of information of factor levels, and their combinations, was identified and suggested to be

investigated in future research in order to achieve narrower CIs. Meta-analysis and meta-

regression are promising techniques to be applied in forestry research to give insight into the

effect of growth factors on forest yield.
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2.1 Introduction

Loblolly pine plantations occupy an area of 14.4 million of hectares across the southeastern

United States (South, Harper, 2016), having a continuum of silvicultural regimes from low

(operational) to high (intensive forest management) levels of inputs such as mechanical

site preparation, chemical vegetation control, fertilization, and thinning (Allen et al., 2005).

Current typical intensive forest management practices include establishment with genetically

improved seedlings (McKeand et al., 2003, 2006a; McKeand, 2015). These forest management

practices, in addition to stand age, density, and environmental conditions (site quality and

productive potential) allow for an extensive expression of forest growth (Clutter et al., 1992).

Forest growth factors for loblolly pine, along with other relevant ecological and physio-

logical species features, have been researched for a century (Wakeley, 1969). A search on the

Web of Science database returned 2,700 papers with a title containing loblolly pine or Pinus

taeda with a 5-year publication rate of 70 papers per year. Despite such a large amount

of information related to loblolly pine, few studies have compiled and synthesized findings

(Jokela et al., 2004; Thomas et al., 2017; Zhao et al., 2016), probably because raw data and

summary statistics suitable for meta-analysis are rarely available in forestry research, if at

all.

The abundant amount of information on loblolly pine growth and yield can be synthesized

using meta-analysis, a statistical technique that allows for summarizing data to get parameter

estimates related to a phenomenon, hypothesis or research question. The term meta-analysis

was coined by Glass (1976) as the statistical analysis of a large collection of results from

individual studies for integrating the findings as a rigorous alternative to the traditional

narrative discussion. Meta-analyses are common in medicine, social sciences and education,

but seldom published in natural resources, ecology and forestry. The earliest applications

of combining results made by Fisher, Cochran, and Pearson in the 1930’s came from the

agricultural sciences (Petitti, 2000).
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Meta-regression is a meta-analysis technique that accounts for variability in the response

variable due to differences in the levels of covariates through the fixed effects (Hedges, Olkin,

1985; Hedges, Vevea, 1998). Usually, random effects are also needed to account for the

heterogeneity between studies, which in conjunction with the fixed effects configures a mixed

effects model (Borenstein et al., 2010; Hedges, Olkin, 1985; Hedges, Vevea, 1998).

The aim of this paper was to identify the relevant drivers and their contributions to

loblolly pine growth and yield in the southeastern United States using meta-regression.

Therefore, covariates into forest growth factors and associated to forest yield variability

(i.e. age, site quality accounting for the environmental effect, management, and stand char-

acteristics such as genetics and density) were considered. This analysis is based on the use of

spatially explicit mixed effects forest growth and yield models, at the whole-stand level, for

diameter at breast height, total height, basal area, and total volume. A priori assumptions

were not made about taper, height-diameter relationships, allometry, biomass partitioning,

or performance of loblolly pine across physiographic regions or due to soil characteristics,

management level, or level of genetic improvement. For that reason, we believe that site

index is not uniformly scaled to be included in the models as an explanatory variable. Some

missing covariates and yield data were imputed and estimated to increase the number of

studies to be included in the meta-regression.

2.2 Methods

2.2.1 Data

Approximately 500 research articles directly related to loblolly pine growth and yield in

the southeastern United States were obtained from public databases (i.e. Web of Science

and Google Scholar). The inclusion/exclusion criterion was defined as a research paper or

study that presents the yield mean, number of replicates (plots), and standard deviation

or standard error of the treatments, at the whole-stand level, for diameter at breast height

(DBH, cm), total height (Ht, m), basal area (BA, m2ha−1), and total volume (V, m3ha−1).
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We did not rely on existing models to estimate total height, basal area or volume because

those may confound the statistical relationship between forest yield and its drivers. However,

some key and high-quality studies may present the required information but not in the form

to be directly used in the meta-analysis. Thus, some expected DBH means (4 out of 105) and

expected BA values (35 out of 176) were estimated. Expected mean DBH were estimated

from histograms of DBH calculating weighted averages and multiplying the diameter classes

by their relative frequencies. Likewise, expected BA values were estimated using the mean of

DBH, the standard deviation of DBH, and the stand density as inputs, and taking advantage

of the mathematical statistical relationship between DBH and BA via the quadratic mean

diameter (Curtis, Marshall, 2000). A brief proof is provided as follows.

Let d1, d2, ..., dn be independent and identically distributed random variables associated

with individual tree diameters (cm) in a stand with a known number of trees per hectare

(TPH), n. An assumption of the probability distribution is not required to get the expected

BA, but let µd and σ2
d be its mean and variance, respectively. The basal area of a tree (m2)

is:

ba = π

(
d

200

)2

(2.1)

with expected value:

E[ba] =
(

π
40000

)
E[d2] (2.2)

where E[d2] is the expected value of the quadratic mean diameter, which corresponds to the

second moment of the distribution of DBH (Curtis, Marshall, 2000; Wackerly et al., 2008):

E[d2] = Var[d] + E[d]2 = σ̂2
d + µ̂2

d (2.3)

where σ̂2
d, and µ̂2

d are the reported mean and standard deviation in the original study, param-

eter estimates of σ2
d, and µ2

d. Whereby,

E[ba] =
(

π
40000

)
(σ̂2

d + µ̂2
d) (2.4)

Since:

BA =
n∑
i=1

E[bai] (2.5)
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where bai is the basal area of the ith tree. Then:

B̂A = nE[ba] (2.6)

where B̂A is an unbiased estimator of the BA (m2ha−1). Similar mathematical statistics

procedures were derived to estimate asymptotic standard deviations of the 4 and 35 missing

DBH and BA values, respectively. However, a method to impute sample standard deviation

when missing from the research study to use the cumulative maximum recorded standard

deviation over age criterion was applied. This imputing criterion can be mathematically

expressed as:

SA = max
S

{
A⋃
a=1

Sa

}
(2.7)

where SA is the imputed sample standard deviation corresponding to the stand age A (years),

Sa = {S ∈ Ta : Ta is the set of recorded stardard deviations of treatments at age a} with S

the recorded sample standard deviation, and
{⋃A

a=1 Sa

}
is the resulting set of the union of

all recorded sample standard deviations from the age one up to stand age A (years). These

procedures were needed since no raw data were available to calculate the mean and standard

deviation of DBH and BA, and were justified to increase the number of relevant studies and

treatments included in the meta-regression models.

Likewise, studies to be included in the meta-regression should clearly state the study site

or location, area of measurement plots, management (e.g., types of silvicultural treatments,

and their frequency and age of applications), stand age, genetics, and current stand density

(or planting density and survival rate). If thinning was not mentioned as a treatment or

feature of the stand, the plots were assumed to be non-thinned. Some stand densities (N2)

were also estimated using a survival equation as a function of the age and planting density

(N1) (Rose et al., 2002):

N̂2 = 2.5 + (N1 − 2.5)(1 + 0.68A)1.46(1 + A)−1.35 exp[−5.9× 10−4A2] (2.8)
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This equation was used for taking into account the effect of mortality in yield curves.

Along with the continuous covariates, age (A, years) and stand density (Den, TPH), forest

growth factors were specifically categorized as:

• Levels of genetic improvement (Gen)

– Unimproved or unknown (UU)

– Half-sibling or open pollinated (HS)

– Full-sibling or mass control pollinated (FS)

– Clone (C)

• Levels of management regimes (Mgmt)

– Low (L): basic level of inputs with one or two silvicultural practices at establish-

ment

– Moderate (M): Mgmt(L) + moderate amount of inputs at early ages or midrota-

tion practices

– High (H): either considerable amount of inputs in quantity and frequency

throughout the rotation or Mgmt(L) + moderate amount of inputs at early

ages and midrotation practices

• Physiographic regions (Reg)

– Piedmont (P)

– Upper coastal plain (UCP)

– Upper coastal plain or piedmont (UCPP); combined term used when the research

study did not discern between UCP and P

– Lower coastal plain (LCP)



15

All this information was tabulated in a database, which also includes (if provided), cli-

matic description of the location, site index (m, base age 25 years), references of previous or

related studies, and relevant remarks from the study. Since studies typically have more than

one treatment applied, the basic unit of analysis was treatment within study (e.g. where

all replications of a specific combo from a research study would make up one record in the

meta-regression database) representing a combination of the previously mentioned factors.

Some repeated measures were included in the dataset and treated as independent observa-

tions since the model parameter estimates are assumed to be unbiased and unaffected by the

misspecification of the error structure (Rencher, Schaalje, 2008).

2.2.2 Meta-regression model

The mixed-effects meta-regression model accounts for variation in the response variable as

a function of covariates and studies through fixed and random effects, respectively. Let the

mixed effects model be (Schwarzer et al., 2015; Viechtbauer, 2010):

yi = θ + ui + εi (2.9)

ui ∼ N (0, τ 2); εi ∼ N (0, σ2
i ); cov(εi, ui) = 0

where yi is the observed mean associated with treatment i, θ represents the fixed effect term;

ui represents the random effects term, assumed normally distributed with mean zero and

variance τ 2; and εi represents the error term, assumed normally distributed with mean zero

and variance σ2
i and independent of the random effects. Parameter θ is assumed to be a

function of covariates:

θ = Xβ (2.10)

where X is the matrix of covariates and β is a vector of parameters associated with the

covariates.
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2.2.3 Forest yield model

The Schumacher model (Schumacher, 1939) was considered suitable to estimate forest yield

models using a logarithmic transformation on the dependent variable and the inverse of the

age. In the Schumacher model, the intercept works as an asymptote and the slope repre-

sents the growth rate of accumulation process. The raw data were not available to get the

parameter estimates from the logarithm of individual values. Thus, the mean and standard

deviation of the dependent variable were transformed as (Thomopoulos, 2013):

y∗i = ln(y2
i )− 1

2
ln(S2

i + y2
i ) (2.11)

S∗i =

√
ln

(
1 +

s2
i

y2
i

)
(2.12)

The linear mixed effects Schumacher model is then:

y∗i = θ∗ + u∗i + ε∗i (2.13)

u∗i ∼ N (0, τ ∗2); ε∗i ∼ N (0, σ∗2i ); cov(ε∗i , u
∗
i ) = 0

where the star (*) denotes the log-transformation on the dependent variable.

2.2.4 Model estimation

Meta-regression linear mixed effects models were estimated using the metafor package (R

Development Core Team, 2018; Viechtbauer, 2010). The parameter τ ∗2 was estimated using

maximum likelihood, and the parameter θ∗ was estimated using weighted least squares, with

weights as (Viechtbauer, 2010):

w∗i =
1

S∗2i + τ̂ ∗2
(2.14)

where w∗i is the weight for the ith treatment, S∗2i is the sample variance of the ith treatment,

and τ̂ ∗2 is the maximum likelihood estimator of τ ∗2, all terms in logarithmic units. Let the

fixed effect of the reduced log-transformed Schumacher model, named as M0, be:

θ̂∗ = α̂∗0 +
β̂∗0
A

(2.15)
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where θ̂∗ is an estimator, in logarithmic units, of the fixed effect θ∗ for each of the primary

yield variables, i.e. DBH (cm), Ht (m), BA (m2ha−1), and V (m3ha−1) as a function of

the stand age (years); and α̂∗0, β̂∗0 are parameter estimates related to the asymptote and

growth rate, respectively. Then, nested models were estimated adding one factor, i.e. genetics,

physiographic region and management, and a continuous variable (density) at a time using

simple effects and their interaction with the inverse of age. The full model, termed as MI,

was estimated as:

θ̂∗jkl = α̂∗0 + α̂∗1j + α̂∗2k + α̂∗3l + α̂∗4(Den) +
1

A

(
β̂∗0 + β̂∗1j + β̂∗2k + β̂∗3l + β̂∗4(Den)

)
(2.16)

j = 1, 2, 3; k = 1, 2; l = 1, 2, 3

where θ̂∗jkl is the estimate of the fixed effect, in logarithmic units, of the jth level of genetic

improvement under the kth level of management regime in the lth physiographic region; α̂∗0

represents the reference level of the asymptote estimate of unimproved genetics (Gen(UU)),

under the low management regime (Mgmt(L)), planted in the upper coastal plain or piedmont

(combined term) physiographic region (Reg(UCPP)), and with a density of 300 TPH (the

minimum stand density reported for the oldest stand included in the meta-regression model

that corresponds to a very common final harvest target in the southeastern U.S.); α̂∗1j is

the parameter estimate of the jth level of genetic improvement (when Gen(HS), Gen(FS),

or Gen(C), j equals 1, 2, or 3, respectively); α̂∗2k is the parameter estimate of the kth level

of management regime (when Mgmt(M), or Mgmt(H), k equals 1, or 2, respectively); α̂∗3l

is the parameter estimate of the lth physiographic region (when Reg(UCP), Reg(P), or

Reg(LCP), l equals 1, 2, or 3); and α̂∗4 is the parameter estimate associated with the stand

density in excess of 300 TPH. The overall slope (β̂∗0) has the same interpretation as the

overall asymptote term regarding the basic levels of the factors. Parameter estimates for β∗1j,

β∗2k, β
∗
3l, and β∗4 represent the marginal contribution to the growth rate in the form of the

interaction between each factor and age.
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The statistical contribution of covariates in the explanation of the variability was tested

using the likelihood ratio test (LRT) (Rencher, Schaalje, 2008; Wackerly et al., 2008):

LRT =

max
{(β∗,τ2∗)∈ω}

L(β∗, τ 2∗|y∗)

max
{(β∗,τ2∗)∈Ω}

L(β∗, τ 2∗|y∗)
(2.17)

where β∗ represents the vector of parameters of the asymptote and growth rate in loga-

rithmic units (α∗’s, and β∗’s), ω and Ω represent the parameter space of the reduced and full

models, respectively, and L(β∗, τ 2∗|y∗) represents the likelihood function. For a large number

of observations, −2 ln(LRT ) has approximately a χ2 distribution with degrees of freedom

equal to the difference of degrees of freedom of both models and rejection region defined

as RR : {−2 ln(LRT ) > −2 ln(c) = c∗}. The goal of the LRT is to analyze the trade-off

between the marginal increment in the explanation of variance in the model and the number

of degrees of freedom spent to explain that additional amount of variance.

This variable selection process was conducted forward from the M0 model to the MI full

model and backward from the MI model to the final parsimonious model, named MII. In

the forward selection, the contribution of each factor (or continuous variable) was tested

(p-value<0.05) until the MI model was achieved. Then, in the backward elimination process,

non-significant variables or factor levels were removed in turn. This process began collapsing

non-significant interaction factor levels to the reference level of the slope (β̂∗0), one at a time.

Then, any non-significant variable or factor level was dropped from the asymptote term if

its counterpart in the slope was deleted in the previous step. This procedure is in accordance

with the principle of hierarchy, which states that variables should be present as a simple

effect term to be considered for an additional term as an interaction (Kutner et al., 2005).

2.2.5 Fit evaluation and diagnostics

Parameter estimate τ ∗2 accounts for the variability among the treatments included in the

meta-regression. The null hypothesis of heterogeneity of treatments τ ∗2 = 0 can be tested
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using Cochran’s Q-test, with the following statistic (Schwarzer et al., 2015):

Q∗ =
T∑
i=1

w∗i

(
θ̂∗i −

∑T
i=1 w

∗
i θ̂
∗
i∑T

i=1w
∗
i

)
Ho∼ χ2

(T−1) (2.18)

where T is the number or treatments. To assess the amount of variance explained in the

parsimoniuos (MII) model, the Raudenbush‘s pseudo R2 was calculated, that represents the

amount of variance explained by the mixed models compared to the random effects only

(Schwarzer et al., 2015):

R∗2pseudo =
τ ∗2R − τ ∗2M
τ ∗2R

(2.19)

where τ ∗2R is an estimator of the between-study variance of the random effects model and τ ∗2M

is an estimator of the between-study variance of the mixed effects model.

Likewise, multicollinearity was assessed using the mean variance inflation factor, V IF ,

and compared to the threshold of 10, which indicates moderate multicollinearity (Kutner

et al., 2005):

V IF =
trace(r−1

X )

p
(2.20)

where r−1
X is the inverse of the correlation matrix of the design matrix X, excluding the

corresponding column of the intercept, and p is the number of parameter estimates excluding

α̂∗0. The bias induced by the logarithmic transformation was calculated using Snowdon’s γ

(Snowdon, 1991):

γ =

∑T
i=1 yi∑T
i=1 ŷi

(2.21)

where yi and ŷi are the observed and estimated yield, in the original scale, for DBH, Ht, BA,

and V in the ith treatment.

Moreover, studentized residual plots, Q-Q plots, funnel graphs (assessing the publication

bias in meta-analysis), and Cook’s distance plots were evaluated for additional fit diagnos-

tics. Hence, Cook’s distances larger than the 30th or 50th percentile of the F(p,T−p), were

considered to have, respectively, moderate and high influential effects (Kutner et al., 2005).
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Table 2.1: Number of treatments, number of measurement plots, and the summed total area
of measurement plots over the selected research studies in the meta-regression of loblolly
pine growth and yield in the southeastern United States.

No. treatments (T) No. plots Area (ha)
DBH 105 1288 79
Ht 97 1344 81
BA 176 1476 70
V 111 1012 86

2.3 Results

2.3.1 Selected studies

Based on the selection criterion outlined above, 21 studies were included in the meta-analysis:

18 peer-reviewed scientific papers, one proceedings paper, one Ph.D. dissertation and one

master of science thesis. Included studies constitute a representative sample size of loblolly

pine yield (Table 2.1) over a wide range of environmental conditions of more than 41 counties

located in 10 states across the southeastern United States (Figure 2.1). Additional informa-

tion about included studies, their locations and characteristics are presented in Table 2.2.

The number of studies containing clonal information for BA, and full-sibling and clonal infor-

mation for V was considered insufficient to be included. The cut-off did not correspond to a

certain preestablished threshold of the amount of data to be included in the meta-regression

models. It was assessed in the first stages of the modeling process when the statistical pro-

cedures and their algorithms in R were unable to estimate some of parameter estimates for

levels of genetic improvement. Therefore, these genetic improvement levels were omitted in

the BA and V models.
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Figure 2.1: Southeastern United States counties in which studies have been conducted that
were utilized in this research.
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Table 2.2: Summary of studies selected to include in the meta-regression of loblolly pine

growth and yield in the southeastern United States.

Study Location A (years) Gen Mgmt Reg Den (TPH) Variables

Akers et al. (2013)

Burke, GA

13 HS M UCPP 707-3410 DBH, Ht, BA, VHancock, GA

Jasper, GA

Albaugh et al. (2003)

Coosa, AL 12 HS L UCP 1581 Ht, BA

Durham, NC 14 HS L UCP 1212 Ht, BA

Tallapoosa, AL 10 HS L P 1584 Ht, BA

Halifax, NC 12 HS L LCP 640 Ht, BA

Webster, GA 12 HS L UCP 1985 Ht, BA

Bibb, AL 18 HS L UCP 538 Ht, BA

Chester, SC 22 HS L UCP 498 Ht, BA

Stewart, GA 14 HS L UCP 1508 Ht, BA

Albaugh et al. (2004) Scotland, NC 7-16 UU L-M UCP 1105-1200 BA

Amateis et al. (2004) VA and NC 19 HS L UCPP 1660 DBH, Ht

Antony et al. (2011)

Bryan, GA 15 HS L LCP 987a DBH, Ht

Decatur, GA 15 HS L UCP 940a DBH, Ht

Amite, MS 15 HS L UCP 940a DBH, Ht

Escambia, AL 15 HS L UCP 940a DBH, Ht

Saint Helena, LA 15 HS L UCP 940a DBH, Ht

La Salle, LA 15 HS L UCP 940a DBH, Ht

Elmore, AL 15 HS L UCP 940a DBH, Ht

Tallapoosa, AL 15 HS L P 940a DBH, Ht

Jasper, GA 15 HS L P 940a DBH, Ht

Appomattox, VA 15 HS L P 940a DBH, Ht

Bienville, LA 15 HS L UCP 1086a DBH, Ht

Bradley, AR 15 HS L UCP 940a DBH, Ht

Hardin, TN 15 HS L UCP 940a DBH, Ht

Aspinwall et al. (2011) Onslow, NC 2,3 UU-FS M LCP 420-1023 BA, V

Borders and Bailey (2001)

Ware, GA 12 HS L - H LCP 1414-1661 BA, V

Tift, GA 11 HS L - H UCP 741-1532 BA, V

Putnam, GA 11 HS L - H P 1354-1582 BA, V

Clarke, GA 10 HS L - H P 1117-1473 BA, V

Borders et al. (2004) Ware, GA 15 HS L-H LCP 1250-1650 DBH, BAc

Clark (2013) Taliaferro, GA 6 HS L-M P 1533 DBH, Ht, BA, V

Colbert et al. (1990) Alachua, FL 4 HS L-H LCP 1440-1479 DBH, Ht, BAc, V

Cumbie et al. (2011)
Monroe, AL 10 C L UCP 801a Ht

Nassau, FL 9 C L LCP 807a Ht

Jones et al. (2010)

George, MS

3-5 HS L-H LCP 1187-1207 DBH, Ht, BAcLamar, MS

Perry, MS

Land et al. (2004) Winston, MS 5-17 HS L UCP 796-4048 DBH, Ht, V

McCrady and Jokela (1996) Berkeley, SC 3,4 HS L LCP 2687 DBH, Ht, V

Pile et al. (2016) Berkeley, SC 9 C L LCP 910-1222 DBH

Roth et al. (2007)
Baker, FL

2-5 FS M, H LCP 1227-2990 DBH, Ht, BAc

Camden, GA

Sayer et al. (2004) Rapides, LA 17 UU L, M UCP 1059-2457 DBHb

Sharma et al. (2002) VA and NC 5-16 HS L UCPP 1938-2173 DBH, Ht

Smith et al. (2014) Scotland, NC 14 HS L, H UCP 2399-2867 DBH, Ht, BA, V

Smith (2010) Scotland, NC 6 HS L, H UCP 2775-2883 DBH, Ht, BA, V

Williams and Farrish (2000) North-central LA 25-30 UU L UCP 316-319 DBH, Ht, BA, V
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Annotations for Table 2.2: A: Age in years, Gen: UU: unimproved, HS: half-sibling, FS:

full-sibling, C: clone; Reg : physiographic region, UCP: Upper Coastal Plain, P: Piedmont

UCPP: Upper Coastal Plain-Piedmont, LCP: Lower Coastal Plain; Mgmt : management, L,

M, H: low, moderate and high, respectively; Den: density, TPH: trees per hectare; DBH:

diameter at breast height (cm); Ht: total height (m); BA: basal area (m2ha−1); V: volume

(m3ha−1).

a Imputed (Rose et al., 2002)

b estimated DBH from histogram of frequencies

c estimated BA from DBH

The imputation of the standard deviation is presented in Figure 2.2. This procedure

allowed for the inclusion of studies that present only the mean of the yield variables and the

number of plots measured, along with the associated covariates. In total, 25% of the standard

deviations were imputed. We determined this was justified for the purpose of increasing the

number of high-quality research studies to be included in the meta-regression.
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Figure 2.2: Cumulative maximum recorded standard deviation over age criterion for DBH
(A), Ht (B), BA (C) and V (D). The number below the imputed standard deviation corre-
sponds to the number of observations (combination of treatments) imputed. The solid line
corresponds to smooth spline.

2.3.2 Variable selection and final parsimonious models

Full (MI) models for DBH, Ht, BA and V were fitted adding one factor in turn. Interme-

diate models from reduced (M0) to full (MI) models, including one growth factor at a time,
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had highly significant LRT (p-value<0.0001), except the V model including genetic improve-

ment (only Gen(HS)) (p-value=0.2). Then, the parsimonious (MII) models were estimated

excluding non-significant factor levels by collapsing those into the corresponding factor ref-

erence level. Most of the parameter estimates in the parsimonious (MII) models for DBH,

Ht, BA, and V were highly significant (p-value<0.01 to <0.0001) (Table 3). However, two

parameter estimates in the model for Ht, and two parameter estimates in the model for BA

were statistically significant (p-value<0.05) (Table 3). The final estimated model for V is

a function of the management and physiographic region, since genetics was dropped in the

forward selection and density was dropped in the backward selection.

2.3.3 Fit evaluation and diagnostics

The variance associated with the random effects in the four parsimonious (MII) models

were statistically significant (τ ∗2 6= 0, Q’s p-value<0.0001) (Table 2.4). Therefore, the mixed

effects model, with the random effects accounting for heterogeneity between treatments,

seems reasonable for this meta-regression. The F statistic suggests that covariates in all

models explained the variability of the yield (p-value<0.0001); in other words, by including

the covariates, a significant statistical reduction in the sum squares of error was achieved

(Table 2.4). Likewise, the Raudenbush’s pseudo-R2 ranged from 88 to 97% (Table 2.4).

The risk of multicollinearity can be considered relatively small for DBH, Ht, and BA

(V IF <10), and moderate for V (V IF ≈ 10) (Table 2.4). The bias induced by the log-

arithmic transformation was negligible in all models (γ ≈ 1) (Table 2.4). All estimated

models approximately met the assumptions of constant variance and normality (Figure 2.3).

Moreover, Cook’s distance and funnel plots were evaluated. Few outliers were detected, and

evidence of publication bias was not found (figures not shown).
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Table 2.3: Parameter estimates of the parsimonious (MII) Schumacher models (logarithmic
units) of loblolly pine for DBH, Ht, BA and V in the southeastern United States using
meta-regression.

Variable Estimate Standard error t value p-value CI LB CI UB
DBH
Intercept 3.58 0.052 68.912 <0.0001 3.477 3.683
Gen(FS) 0.217 0.054 4.05 <0.0001 0.111 0.323
Gen(C) 0.214 0.056 3.814 <0.0001 0.103 0.326
Mgmt(M) 0.149 0.035 4.305 <0.0001 0.08 0.218
Mgmt(H) 0.295 0.041 7.29 <0.0001 0.215 0.375
Reg(LCP) -0.199 0.061 -3.291 0.001 -0.319 -0.079
Den -2.9×10−4 3.0×10−5 -9.66 <0.0001 -3.5×10−4 -2.3×10−4

A−1 -7.36 0.453 -16.238 <0.0001 -8.259 -6.46
Reg(LCP) × A−1 1.702 0.443 3.84 <0.0001 0.822 2.582
Den × A−1 6.4×10−4 1.4×10−4 4.464 <0.0001 3.5×10−4 9.2×10−4

Ht
Intercept 3.41 0.061 56.259 <0.0001 3.289 3.53
Gen(FS) 0.192 0.072 2.675 0.009 0.049 0.334
Gen(C) 0.278 0.118 2.349 0.021 0.043 0.512
Mgmt(M) 0.163 0.048 3.377 0.001 0.067 0.259
Mgmt(H) 0.211 0.058 3.668 <0.0001 0.097 0.326
Reg(LCP) -0.706 0.095 -7.466 <0.0001 -0.893 -0.518
Den -1.6×10−4 3.8×10−5 -4.165 <0.0001 -2.3×10−4 -8.2×10−5

A−1 -9.615 0.568 -16.917 <0.0001 -10.745 -8.485
Reg(LCP) × A−1 4.828 0.581 8.31 <0.0001 3.673 5.983
Den × A−1 4.8×10−4 1.9×10−4 2.586 0.011 1.1×10−4 8.6×10−4

BA
Intercept 3.513 0.116 30.376 <0.0001 3.285 3.742
Gen(HS) 0.305 0.08 3.805 0.0002 0.147 0.463
Gen(FS) 0.439 0.113 3.873 0.0002 0.215 0.663
Mgmt(M) 0.386 0.062 6.19 <0.0001 0.263 0.51
Mgmt(H) 0.479 0.128 3.757 0.0002 0.227 0.731
Reg(UCP) 0.736 0.145 5.059 <0.0001 0.448 1.023
Den 1.8×10−4 7.1×10−5 2.493 0.0137 3.7×10−5 3.2×10−4

A−1 -11.154 0.342 -32.597 <0.0001 -11.83 -10.478
Mgmt(H) × A−1 1.328 0.599 2.218 0.0281 0.145 0.251
Reg(UCP) × A−1 -11.56 1.28 -9.037 <0.0001 -14.087 -9.033
Den × A−1 1.0×10−3 2.7×10−4 3.846 0.0002 5.0×10−4 1.6×10−3

V
Intercept 6.634 0.185 35.926 <0.0001 6.266 7.001
Mgmt(M) 0.378 0.142 2.664 0.0093 0.096 0.661
Mgmt(H) 0.731 0.164 4.45 <0.0001 0.404 1.058
Reg(LCP) -1.004 0.263 -3.825 0.0003 -1.527 -0.482
A−1 -19.053 1.549 -12.303 <0.0001 -22.135 -15.972
Reg(LCP) × A−1 9.351 1.706 5.481 <0.0001 5.956 12.745
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Table 2.4: Fit evaluation of the MII Schumacher model (logarithmic units) of loblolly pine
for DBH, Ht, BA and V in the southeastern United States using meta-regression.

Statistic DBH Ht BA V
Q∗ 11270 6643 19404 12093

(<0.0001) (<0.0001) (<0.0001) (<0.0001)
τ̂ ∗2 0.01 0.021 0.075 0.202
τ̂ ∗ 0.101 0.145 0.274 0.449
F 194 130 430 141

(<0.0001) (<0.0001) (<0.0001) (<0.0001)
R∗2pseudo 96.61 94 96.93 90.76

V IF 7.018 7.545 4.594 10.49
γ 1.011 1.005 1.009 1.08

Annotations for Table 2.3: A: Age (years); Gen(HS): half-sibling, Gen(FS): full-sibling,

Gen(C): clone; Mgmt(M): moderate management; Mgmt(H): high management; Reg(UCP):

upper coastal plain, Reg(LCP): lower coastal plain, CI: 95 % confidence interval; CI LB:

95% CI lower bound, CI UB: 95% CI upper bound.

Annotations for Table 2.4: Q∗ is the test for residual heterogeneity; τ̂ ∗2 is the residual het-

erogeneity; τ̂ ∗ is the squared root of τ̂ ∗2; F is the test of statistical significance of covariates;

R∗2pseudo is the Raudenbush’s pseudo-R2; V IF is the mean variance inflation factor; and γ is

the bias due to the logarithmic transformation. Values in parentheses represent the p-value

of the test.



28

Figure 2.3: Standardized residuals of the meta-regression parsimonious (MII) Schumacher
models for loblolly pine in the southeastern United States. (A) diameter at breast height
(DBH), (B) total height (Ht), (C) basal area (BA), and (D) total volume (V)

2.3.4 Yield curves

Overall, more advanced genetics (i.e. Gen(FS) and Gen(C)), and higher management levels

resulted in higher expected mean yields. Yield curves are presented by forest growth factors

in Figures 2.4 to 2.7. The Upper Coastal Plain and Piedmont regions had higher expected

mean yields than the Lower Coastal Plain. Moreover, the higher the density, the lower the

expected mean of DBH, and Ht; and the higher the BA. Despite the statistical significance

of the parameter estimates in the models, some of the 95% confidence intervals (CI) of the

curves drawn for each of the growth factors suggest no statistical difference with respect



29

to their reference levels (Gen(UU), Mgmt(L), Reg(UCPP), and Den was estimated utilizing

Equation 2.8 as a function of planting density, assumed equal to 1500 TPH, and stand age)

(Figures 2.4 to 2.7). In these figures, the only cross factor is stand density to account for the

mortality effect.

For DBH (Figure 2.4), Gen(HS) was collapsed into the reference level, Gen(UU), due to

its parameter estimate being non-significant (p-value>0.05), the 95% CI of advanced genetics

(Gen(FS) and Gen(C)) did not overlap the 95% CI of the corresponding reference level

(Gen(UU-HS)) but the 95% CI of Gen(FS) and Gen(C) are virtually identical overlapping

each other; therefore, the performance of these two genetic entries is very similar over time.

The 95% CI of Mgmt(M) just overlapped the 95% CI of the reference level (Mgmt(L)) after

age 25 years, and the 95% CI of Mgmt(H) overlapped the 95% CI of Mgmt(M). The 95%

CI of the significant level of physiographic region, Reg(LCP), overlapped the corresponding

reference level (Reg(UCPP)). The yield curve for Reg(LCP) was truncated at 15 years to

reflect the maximum age data available for the region.

For Ht (Figure 2.5), Gen(HS) was collapsed into the reference level Gen(UU) due to its

parameter estimate being non-significant (p-value>0.05), the 95% CI of advanced genetics

(Gen(FS) and Gen(C)) overlapped the reference level (Gen(UU-HS)), and the 95% CI of

Gen(C) overlapped the 95% CI of Gen(FS). The moderate and high management levels

(Mgmt(M) and Mgmt(H)) overlapped the reference level Mgmt(L) and the 95% CI of

Mgmt(H) overlapped the 95% CI of Mgmt(M). The 95% CI of Reg(LCP) overlapped the

reference level Reg(UCPP) between ages 5 and 8 years, and exhibited a different trend com-

pared to the reference level Reg(UCPP) (Figure 2.5C). The yield curve for Reg(LCP) was

truncated at 15 years to reflect the maximum age data available for the region.

For BA (Figure 2.6), the 95% CI of Gen(FS) and Gen(HS) overlapped the reference level

after age 20 years, and the 95% CI of Gen(FS) overlapped the 95% CI of Gen(HS). The

95% CI of Mgmt(M) and Mgmt(H) did not overlap the reference level, but the 95% CI of

Mgmt(H) overlapped the 95% CI of Mgmt(M). Reg(LCP) was collapsed into the reference
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level Gen(UCPP) due to its parameter estimate being non-significant (p-value>0.05), and

the 95% CI of Reg(UCP) overlapped its reference level all the way between 10 and 30 years,

but having different trends.

For V (Figure 2.7), the 95% CI of Mgmt(M) overlapped the reference level Mgmt(L) and

the 95% CI of Mgmt(H) overlapped the 95% CI of Mgmt(M). The 95% CI of Reg(LCP)

overlapped the reference level Reg(UCPP) between ages 6 and 24 years, but having different

trajectories. The yield curve for Reg(LCP) was truncated at 12 years to reflect the maximum

age data available for the region.
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Figure 2.4: Mean and 95% confidence interval (CI, shaded region) for average diameter at
breast height (DBH, cm) of loblolly pine with planted density equal to 1500 TPH (for A, B,
and C) in the southeastern United States over age by (A) Genetics, UU: unimproved, HS:
half-sibling, FS: full-sibling, C: clone; (B) Management, L, M, H: low, moderate and high,
respectively; (C) Physiographic region, UCPP: Upper Coastal Plain-Piedmont, LCP: Lower
Coastal Plain; (D) contour plot of DBH as function of age (years) and density (trees per
hectare). Note that in (A) Gen(HS) was collapsed into the reference level, Gen(UU), due to
non-significance (p-value<0.05) of its parameter estimate, the 95% CI Gen(FS) and Gen(C)
completely overlapped; and in (C) the curve of Reg(LCP) was truncated at age 15. Since the
model includes stand density, the mortality effect in (A), (B), and (C) was accounted for by
Equation 2.8.
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Figure 2.5: Mean and 95% confidence interval (shaded region) for average total height (Ht, m)
of loblolly pine in the southeastern United States over age by (A) Genetics, UU: unimproved,
HS: half-sibling, FS: full-sibling, C: clonal; (B) Management, L, M, H: low, moderate and
high, respectively; (C) Physiographic region, UCPP: Upper Coastal Plain-Piedmont, LCP:
Lower Coastal Plain; (D) contour plot of Ht as function of age (years) and density (trees per
hectare). Note that in (A) Gen(HS) was collapsed into the reference level, Gen(UU), due to
non-significance (p-value<0.05) of its parameter estimate; and in (C) the curve of Reg(LCP)
was truncated at age 15. Since the model includes stand density, the mortality effect in (A),
(B), and (C) was accounted for by Equation 2.8.
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Figure 2.6: Mean and 95% confidence interval (shaded region) for basal area per hectare (BA,
m2ha−1) of loblolly pine in the southeastern United States over age by (A) Genetics, UU:
unimproved, HS: half-sibling, FS: full-sibling, clone was not considered; (B) Management, L,
M, H: low, moderate and high, respectively; (C) Physiographic region, UCPP: Upper Coastal
Plain-Piedmont, LCP: Lower Coastal Plain, UCP: Upper Coastal Plain; (D) contour plot of
BA as function of age (years) and density (trees per hectare). Note that in (C) Reg(LCP)
was collapsed into the reference level Reg(UCPP) due to non-significance (p-value<0.05) of
its parameter estimate. Since the model includes stand density, the mortality effect in (A),
(B), and (C) was accounted for by Equation 2.8.
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Figure 2.7: Mean and 95% confidence interval (shaded region) for volume per hectare (V,
m3ha−1) of loblolly pine in the southeastern United States over age by (A) Management, L,
M, H: low, moderate and high, respectively; (B) Physiographic region, UCPP: Upper Coastal
Plain-Piedmont, LCP: Lower Coastal Plain. Note that in (B) the curve of Reg(LCP) was
truncated at age 12.

2.3.5 Knowledge gaps

Width differences in the 95% confidence intervals between factor levels in the estimated

curves suggests a lack of information for specific treatments or combinations of factor levels

of available and selected research studies. Diagonal elements of the panels in Figure 2.8

(A to D) show frequency histograms of treatments by factor levels for the four response

variables. Hence, most of the available data are for Gen(HS) (69%); whereas Gen(UU)

(12%), Gen(FS) (13%), and Gen(C) (6%) were less well represented. Most of the advanced

genetics (Gen(FS) and Gen(C)) information is related with DBH and Ht; whereas there

is lack of studies presenting the effect of advanced genetics on the stand level basal area

and volume. On the other hand, most of the treatments for DBH and Ht were for Mgmt(L)

(62%), with low proportions of studies in Mgmt(M) (23%), and Mgmt(H) (15%); for BA

and V, Mgmt(L) (45%) and Mgmt(M) (44%) were almost equally represented with a low

proportion of Mgmt(H) (11%). In the same sense, most of the studies were conducted in
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Reg(LCP) (45%) followed by Reg(UCP) (35%) with some studies in Reg(UCPP) (11%) and

Reg(P) (9%).

Figure 2.8: Frequency histogram of treatments by factor levels (diagonal panels) and com-
binations of factors levels (off-diagonal panels) for the response variables diameter at breast
height (A), total height (B), basal area (C), and volume (D).

The off-diagonal elements of the panels in Figure 2.8 (A to D) present frequency his-

tograms by combinations of factor levels, information that can be utilized to prioritize the

allocation of resources to research a specific combination of treatments for which there is

a lack of information. Thus, for example, no treatment considers the combination Gen(C),
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and Mgmt(M) or Mgmt(H). Since the only combination of Gen(FS) is with Reg(LCP), there

is a lack of evidence on the performance of this level of genetic improvement in the other

physiographic regions.

2.4 Discussion

The cornerstone of forestry research has been experimental designs to address specific forest

growth factors and interactions. Thus, most of the loblolly pine growth and yield models may

be locally restricted and density and genetic composition dependent based on the experi-

mental designs used for the data to build the models. An ideal generalization using the tradi-

tional experimental-modeling approach would require such an investigational base, covering

a broad range of ages, environmental conditions, management practices, and levels of genetic

improvement. The amount of resources involved in such an experimental design would make

the research technically challenging and economically unfeasible. The noted shortcoming of

not having a large experimental base can be overcome with conclusions drawn out from a

large collection of studies using meta-regression.

Mixed effects models are the most suitable approach to estimate a meta-regression of

loblolly pine yield in the southeastern United States. The fixed component addresses the

overall response driven by covariates, and the random term contributes to explaining the

variability between the treatments (studies) (Borenstein et al., 2010). Moreover, selected

studies constitute a random sample of the population of all existing studies and even those

that will be conducted in the future (Viechtbauer, 2010), suggesting that the number of

included treatments suffices to draw an overall conclusion about loblolly pine growth and

yield in the southeastern United States. The low to medium values of the variance inflation

factors suggests a relative independence between (among) the forest yield factors in the

explanation of variability. Hence, the relative independence of factors may indicate that the

yield mean can be estimated even if a particular combination of factor levels was not included

in this meta-regression (e.g. Gen(FS) in Reg(UCP)).
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Even though knowledge gaps may not affect point yield estimates, they impact yield

confidence intervals. The width of a CI is mainly dependent on the number of available and

selected studies, and treatments. In this sense, imputing missing standard deviation and

stand density values, and estimating DBH means and BA values were justified to increase

the number of treatments to be included in the meta-regression models. We propose novel

methods to retrieve yield estimates by using mathematical statistical transformations and

imputations. More precise yield estimates can be achieved by increasing the number of studies

and treatments, especially in the factor levels under-represented in this current research.

This represents a good opportunity for researchers, universities, forest research cooperatives,

private companies and policy makers to initiate investigations in these areas of knowledge

gaps.

To the best of our knowledge, this is the first time that the method of imputing stan-

dard deviation by utilizing the cumulative maximum recorded standard deviation over age

criterion is used in a meta-analysis. We believe the method of imputing standard deviation

over age is required given the heteroscedastic nature of forest yield data. Little statistical

research has been done imputing standard deviations when researchers of the original studies

to be used in a meta-analysis failed to report those values. The existing literature suggests

that it is safe imputing standard deviation when missing in studies (Furukawa et al., 2006).

Furthermore, a meta-analysis in education reported a rate of up to 80% of imputed standard

deviations based on local and regional studies (Borman et al., 2003).

The chief use of standard deviations in a meta-analysis is to weight the mean of a treat-

ment or study. Thus, by assigning the cumulative maximum recorded standard deviation over

age to a study for which its standard deviation is missing, we conservatively gave the same

credibility as the more variable (less reliable) studies. We think the trade-off of imputing

missing standard deviations is positive. The potential negative impact of applying the impu-

tation method on the meta-regression model performance is negligible, but including one
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additional treatment combination is worthy, especially for those combinations that have few

data points.

Forest growth factors that were included as simple terms in the asymptote, or as inter-

action terms with age in the growth rate, explained the variability of loblolly pine yield in

the southeastern United States. Improved genetic categories had higher asymptotes (timber

production potential) than unimproved categories in the models for DBH, Ht and BA. Based

on the 95% CI of yield curves, the performance of Gen(FS) and Gen(C) were statistically

different compared with the performance of Gen(UU-HS) (collapsed factor level) for DBH;

and between Gen(FS) and Gen(HS) compared with Gen(UU) for BA (at least until age 20

years). However, the 95% CI of advanced genetics (Gen(FS) and Gen(C)) and the 95% CI of

the reference level were not statistical different for Ht. Genetic background (only Gen(HS))

was not a significant factor for V, which is contrary to the reported volume gains of genet-

ically improved loblolly pine over unimproved planting stock (Allen et al., 2005; McKeand

et al., 2006a).

Moderate and high levels of management were statistically significant in estimated

models, having a positive effect on the asymptote and on the growth rate (only for BA).

This is in accordance with previous findings indicating that silvicultural practices such as

mechanical site preparation, vegetation control, fertilization and irrigation enhance timber

production (Allen et al., 2005). Based on the 95% CI of the V curves, the high level of

management (Mgmt(H)) showed a statistically difference over time compared to the low

level of management (Mgmt(L)). However, the 95% CI of moderate level of management

(Mgmt(M)) overlapped the reference level, suggesting that there is no statistical difference

over time.

Clearly, the performance of loblolly pine is not the same across the southeastern United

States. Estimated models showed statistical differences in the performance of loblolly pine

associated with the environmental effect or site quality factors (climate, topography, and

soil) accounted for in general by the physiographic region. Most of the existing forest yield
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models for loblolly pine in the southeastern United States do not include physiographic

region as a covariate. Therefore, the statistical significance of this important driver on forest

yield models cannot be directly tested. In that sense, all estimated models in this research

include physiographic region as significant factor (p-value<0.05). Statistical differences in

the performance of loblolly pine over time by physiographic region were found for Ht. The

95% CI of Ht over time in Reg(LCP) was different from the reference level (Reg(UCPP)),

which suggests that trees in the Lower Coastal Plain region are shorter than those in the

Upper Coastal Plain or Piedmont regions (combined term). A similar pattern regarding

physiographic region is noted for V, with stands in the Lower Coastal Plain having a lower

volume asymptote (production potential) than stands in the Upper Coastal Plain Piedmont

region.

Stands in the Lower Coastal Plain exhibited the lowest forest yield (DBH, Ht, BA, and

V) of the considered physiographic regions. Since the estimated models can isolate the effect

of forest growth factors, it was possible to tease apart the effect of Reg(LCP) from the man-

agement factor. In the Lower Coastal Plain, bedding, herbicide application, and fertilization

have traditionally been mandatory silviculture practices because of the high water table, the

presence of competing vegetation and nutrient deficiencies, which corresponds to Mgmt(M)

in our definition of management. Although it is well-known that poor sites under moderate

or high management would have higher marginal yield responses than good sites, it is pos-

sible that the perception of the yield responses in the Lower Coastal Plain are the product of

environment and management interaction. To clarify the trends based on our meta-regression

models, we truncated the curves associated with D, H, and V for the Reg(LCP) to reflect

the age range of data used in estimation. In contrast, we consider that there is no such a

lack of information for BA because Reg(LCP) was collapsed into the Reg(UCPP) that has

older stands represented in the dataset.

Stand density was the last factor considered in the estimated models, statistically sig-

nificant in the DBH, Ht and BA models, but not significant for the V model. Density has
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a direct effect on DBH and BA, the higher the number of trees, the lower the mean DBH

and the higher the BA. However, height has historically been assumed to be independent of

density (Clutter et al., 1992), but evidence about the interaction between density and height

in loblolly pine stands in the southern United States has been well documented (Antón-

Fernández et al., 2011; Henskens et al., 2001; Land et al., 2004; MacFarlane et al., 2000).

Although basal area increases as stand density increases, total height decreases as stand

density increases since the Den parameter estimate in the Ht model has a negative sign.

Volume is a function of random variables (form factor, height and basal area). In this simple

volume expression, the inverse relationship between stand density and height may negate the

positive relationship between basal area and stand density. However, it is difficult to foresee

the result of the product of these three random variables without a thorough mathematical

proof, which is outside of the scope of this research. Pienaar, Turnbull (1973) did not note

any relationship between the asymptote of volume yield and the number of trees per unit

area over a wide range of densities.

The purpose of this paper was to give insight into the factors impacting forest growth

for loblolly pine while trying to keep the estimated models simple. However, there are some

alternative procedures and covariate selection that may improve yield estimation and pre-

diction ability. Although registered from studies when available, more precise data about

the levels of genetic improvement (i.e. breeding generation or specific family), silvicultural

practices (i.e. mechanical site preparation, fertilization, and vegetation control), and envi-

ronmental conditions (temperature, precipitation, soil series, and CRIFF soil classification)

were not used.

In that sense, physiographic region has traditionally been used to represent the envi-

ronmental component in the yield models. However, other variables like water deficit and

excess indices, soil physical or chemical properties, depth to the water table and restrictive

layers, may explain additional variability. On the other hand, all silvicultural treatments

were implicitly included in the management factor. Although it would be more accurate to
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consider each of the silvicultural treatments independently in addition to other factors, the

resulting model will not be parsimonious as intended. In that regard, the level of applica-

tion (e.g. amount of fertilizer), timing (age of application), and year of response (years after

treatment), could be considered, but it would add more complexity to the model.

To the best of our knowledge, this is the first attempt to use meta-regression to estimate

forest yield. Meta-regression seems to be a very promising technique to analyze forest growth

and yield, a multifactorial phenomenon that requires advanced methods to strengthen find-

ings and conclusions. Applications of this statistical method should contribute to obtaining

more reliable estimates of forest yield and timber production; to elicit Bayesian priors for

forest yield models; to implement accurate estimations for forestry planning; to measure,

manage and reduce the uncertainties associated with yield; and to enhance financial and risk

analyses of timberland investments. However, more steps will be taken in future works to

improve the estimation and prediction ability of models: increasing the number of selected

studies, trying different factors or covariates arrangements, assessing the effect of subfactors

(e.g. water deficit and soil classes within environment; mechanical site preparation, fertil-

ization, and vegetation control within management; and family generation within genetics),

evaluating the effect of standard deviation imputation methods comparing the criterion used

in this research and the expected value of the standard deviation, modeling yield and growth

with nonlinear procedures, and including factor and variable interactions (e.g. genetics and

environment, environment and management, and genetics and management).
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Chapter 3

Contribution of silviculture to loblolly pine growth and yield in the

southeastern United States: A meta-analysis1

1Restrepo, H.I, B.P. Bullock, C.R. Montes. 2018. Contribution of silviculture to loblolly pine
growth and yield in the southeastern United States: A meta-analysis. Accepted by Proceedings of
the 19th biennial southern silvicultural research conference. e-Gen. Tech. Rep. SRS-234. Reprinted
here with permission of publisher.
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Abstract

There has been an increase in loblolly pine production driven by forest management practices

like intensive silviculture and improved genetics. Some reported yield gains have been mod-

eled using meta-regression mixed effects models accounting for the potential contribution

of the four factors related to forest growth: age, site quality (environment), establishment

culture and management, and stand intrinsic characteristics (genetics and initial planting

density). The aim of this research was to describe a methodology that allows for the deriva-

tion of response equations from yield models for diameter at breast height, stand average

height, basal area, and total volume in the Southeastern United States. When compared to

low-level silviculture, moderate and intensive silviculture show volume gains at age 20 of

221 and 314 m3/ha, respectively. Likewise, moderate and intensive management consistently

performed better over time as compared to low management for all response variables. These

management response curves and their associated mathematical expressions can be used to

perform financial marginal analyses to improve forest land decision making.

Key words: Pinus taeda L., Schumacher model, silvicultural responses, volume gain.
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3.1 Introduction

Loblolly pine (Pinus taeda L.) is the most commercially important forest species in South-

eastern United States. The timber production in this region has been enhanced using geneti-

cally improved seedlings and a wide range of silvicultural treatments such as mechanical site

preparation, vegetation control, fertilization, and irrigation (Allen et al., 2005). These inten-

sive forest management practices, in conjunction with other key factors like initial planting

density, stand age, and environmental conditions, result in the expression of forest yield

(Clutter et al., 1992). Hence, volume gains resulting from intensive management practices

can be analyzed by isolating the effect of age, environment, and density using growth and

yield models. However, most of the existing models account only for one of the forest growth

factors, either management, genetics, or environment. Thus, most of the research on the

effect of intensive silviculture on loblolly pine growth and yield is locally restricted and/or

density- and genetic composition-dependent. Therefore, those conclusions cannot be easily

generalized.

An ideal response generalization would require a large experimental base, covering a

wide range of ages, environmental conditions, management practices, and genotypes. The

amount of resources involved in such an experimental base may make this kind of research

technically challenging and economically unfeasible. In other research areas (like medicine),

scientists have overcome the problem of not having a large experimental base with conclusions

drawn out of a large collection of independent studies using meta-analysis. Meta-analysis is

a statistical technique utilized to compile information for the purpose of integrating the

findings as a rigorous alternative to the traditional narrative discussion (Schwarzer et al.,

2015).

There is a meta-analysis on forest yield of loblolly pine in the Southeastern United States

that accounts for all growth factors (Restrepo et al., 2019), i.e., effect of age, environment

(through physiographic region), genetics, density, and management as explanatory variables

for diameter at breast height (DBH), average height (Ht), basal area (BA), and total volume
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(V). Therefore, these yield models can be used to derive silvicultural responses isolating the

effect of the remaining factors, which is the purpose of this paper.

3.2 Methods

3.2.1 Four-factor forest yield models

The mean, standard deviation, and number of observations of the response for DBH, Ht, BA,

and V were extracted from 21 studies selected out of 500 studies in the Southeastern United

States in a meta-analysis framework (Restrepo et al., 2019). Included studies constitute a

representative sample size of loblolly pine yield (Table 3.1) over a wide range of environmental

conditions from 44 counties located in 10 States across the Southeastern United States

(Figure 3.1). The model is termed a four-factor model because it considers covariates from

the four factors of forest growth:

• Age: age of the stand in years

• Genetics: genetically improved categories of loblolly pine [unimproved or unknown

(UU), half-sibling (HS), full-sibling (FS), and clone (C)]

• Mgmt: management intensity [low (L), moderate (M), and high (H) in quantity and

frequency of inputs and applications]

• Region: physiographic regions [Upper Coastal Plain and Piedmont together (UCPP),

Upper Coastal Plain (UCP), Piedmont (P), and Lower Coastal Plain (LCP)]

• Density: surviving density in stems/ha
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Table 3.1: Number of treatments, number of measurement plots, and the summed total area
of measurement plots over the selected research studies in the meta-regression of loblolly
pine growth and yield in the southeastern United States.

Response variable No. treatments No. plots Area (ha)
DBH 105 1288 79
Ht 97 1344 81
BA 176 1476 70
V 111 1012 86

Figure 3.1: Southeastern United States counties in which studies have been conducted that
were utilized in this research.

Forest yield models correspond to the log-transformed Schumacher model (Schumacher,

1939) estimated using linear mixed effects models (Restrepo et al., 2019) (Table 3.2):

yi = θ + ui + εi (3.1)

ui ∼ N (0, τ 2); εi ∼ N (0, σ2
i ); cov(εi, ui) = 0

where:

θ= the fixed effects term
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Table 3.2: Summary of the preliminary loblolly pine yield models for the Southeastern
United States using meta-regression (Restrepo et al., 2019). Significance codes: *** = p-
value<0.0001; ** = p-value<0.001; * = p-value<0.01; . = p-value<0.05; blank = p-value<0.1.

Source
Estimates (log) and significance level

DBH Ht BA V
Intercept 3.67 *** 3.46 *** 3.48 *** 5.67 ***
Genetics(HS) 0.29 ***
Genetics(FS) 0.22 *** 0.19 *** 0.42 ***
Genetics(C) 0.21 ** 0.28 *
Mgmt(M) 0.15 *** 0.16 ** 0.39 *** 0.67 ***
Mgmt(H) 0.29 *** 0.21 *** 0.49 *** 0.82 ***
PhyRegion(UCP) 0.72 ***
PhyRegion(LCP) -0.2 *** -0.71 ***
Density -3×10-4 *** -1.6×10-4 *** -1.7×10-4 *
1/Age -7.36 *** -9.62 *** -11.53 *** -10.73 ***
Genetics(HS)×1/Age
Mgmt(H)×1/Age 1.31 ***
Region(UCP)×1/Age -11.52 ***
Region(LCP)×1/Age 1.7 *** 4.83 ***
Density×1/Age 6.4×10-4 *** 4.8×10-4 * 1.1×10-3 ***

ui = the random effects term assumed normally distributed with zero mean and variance τ 2

εi = the error term assumed normally distributed with zero mean and variance σ2
i and

independent to random effects

An estimator for θ is:

θ̂∗jkl = α̂0 + α̂1j(Genetics) + α̂2k(Mgmt) + α̂3l(Region) + α̂4(Density)

+
1

A

(
β̂0 + β̂1j(Genetics) + β̂2k(Mgmt) + β̂3l(Region) + β̂4(Density)

)
j = 1, 2, 3; k = 1, 2; l = 1, 2, 3

(3.2)

where:

θ̂∗jkl = an estimator of the fixed effects of DBH, Ht, BA, or V in logarithmic units of the

genetics j (HS=1, FS=2, C=3) with management regime k (M=1, H=2) in the physiographic

region l (UCP=1, P=2, LCP=3)
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α (asymptote) = parameter estimate

β (slope) = parameter estimate

Yield model for V did not consider the effect of Genetics(FS) and Genetics(C) due to the

lack of observations of those levels of genetics.

3.2.2 Silvicultural responses

Responses for DBH, Ht, BA, and V associated with moderate and high levels of management

were derived from the yield model with respect to the low level of management:

∂θ̂jkl
∂Mgmt(M)

=

(
α̂21 +

β̂21

Age

)
θ̂

∂θ̂jkl
∂Mgmt(H)

=

(
α̂22 +

β̂22

Age

)
θ̂

(3.3)

These partial derivatives with respect to the low level of management were fixed to HS

and UCPP levels of genetics and physiographic region, respectively, and the surviving density

based on an arbitrary planting density of 1,500 trees/ha was estimated using the following

equation (Rose et al., 2002):

D̂en = 2.5 + (1500− 2.5)(1 + 0.68A)1.46(1 + A)−1.35 exp[−5.9× 10−4A2] (3.4)

3.3 Results and discussion

Responses for DBH, BA, Ht, and V were consistently ranked over time from Mgmt(M) to

Mgmt(H) (Figure 3.2). Thus, at age 20 Mgmt(M) added 3.6 cm, 3.3 m, 16 m2/ha, and 221

m3/ha of DBH, Ht, BA, and V, respectively, with respect to Mgmt(L); whereas, at the

same age, Mgmt(H) added 8.3 cm, 4.5 m, 27 m2/ha, and 314 m3/ha to the corresponding

variables with respect to Mgmt(L). Basal area response curves are flat up to age 5 when

response curves started exhibiting a linear-looking trend up to age 20. Partial derivatives of

the yield models with respect to Mgmt(M) and Mgmt(H) are:
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∂DBH

∂Mgmt(M)
=0.15 exp

(
3.67 + 0.15− 3× 10−4Density +

1

Age
(−7.36 + 6.4× 10−4Density)

)
∂DBH

∂Mgmt(H)
=0.29 exp

(
3.67 + 0.29− 3× 10−4Density +

1

Age
(−7.36 + 6.4× 10−4Density)

)
∂Ht

∂Mgmt(M)
=0.16 exp

(
3.67 + 0.16− 1.6× 10−4Density +

1

Age
(−9.62 + 4.8× 10−4Density)

)
∂Ht

∂Mgmt(H)
=0.21 exp

(
3.67 + 0.21− 1.6× 10−4Density +

1

Age
(−9.62 + 4.8× 10−4Density)

)
∂BA

∂Mgmt(M)
=0.39 exp(3.48 + 0.29 + 0.39 + 0.72− 1.7× 10−4Density)

× exp

(
1

Age
(−11.53− 11.52 + 1.1× 10−3Density)

)
∂BA

∂Mgmt(H)
=

(
0.49 +

1.31

Age

)
exp(3.48 + 0.29 + 0.49 + 0.72− 1.7× 10−4Density)

× exp

(
1

Age
(−11.53− 11.52 + 1.1× 10−3Density)

)
∂V

∂Mgmt(M)
=0.67 exp

(
5.67 + 0.67 +

1

Age
(−10.73)

)
∂V

∂Mgmt(H)
=0.82 exp

(
5.67 + 0.82 +

1

Age
(−10.73)

)
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Figure 3.2: Loblolly pine silvicultural responses relative to low level of management
[Mgmt(L)] in the Southeastern United States for diameter at breast height (DBH), total
height (Ht), basal area (BA), and volume (V) keeping the genetics fixed as half-siblings
planted and the physiographic region as Upper Coastal Plain Piedmont. Dashed line rep-
resents the response of moderate management [Mgmt(M)], and dotted line represents the
response of high management [Mgmt(H)]. Solid, dashed and dotted lines represent Mgmt(L),
Mgmt(M), and Mgmt(H).

Overall, these responses are consistent with the expected management outcomes. In gen-

eral, the higher the inputs and the frequency of the applications, the higher the resulting

stand growth and yield (Albaugh et al., 2004; Aspinwall et al., 2011; Borders et al., 2004;

Roth et al., 2007). Moreover, Mgmt(M) and Mgmt(H) are additive terms to a basic yield
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curve [Mgmt(L)], in a similar way that Pienaar, Rheney (1995) modeled silvicultural treat-

ments.

High levels of inputs in quantity and frequency may adjust to asymptotic response curves,

whereas low levels of management exhibit parabolic-looking curves (Snowdon, 2002). Thus,

there is a possibility that high-order terms of Mgmt or interactions such as Mgmt x Genetics

and/or Mgmt x Region were missing in the yield models. The use of first-order terms in

the model, as a way to simplify the number of inputs, may cause the management response

curves for moderate management to not exhibit a parabolic form and rather attain a peak

and then decrease. Despite this mathematical limitation, these management responses give

insight into the size of the effect of the three simple levels of management considered here.

Hence, economic tradeoffs of operational and intensive forest management can be analyzed.

Likewise, since yield models account for the effect of genetics, environment, and density, the

model and their derived responses can be also utilized to analyze the effect of a combination

of factors.

3.4 Conslusions

Forest growth factors have successfully explained loblolly pine yield (Restrepo et al., 2019). In

those models, moderate and high levels of management were statistically different (superior)

to the low level of management. Using this information, partial derivatives were taken to

analyze silvicultural response equations. Volume at age 20 for moderate and high levels of

management can be as much as 221 and 314 m3/ha higher, respectively, as compared to the

low level of management. Hence, yield models that consider the four factors of growth can be

used to derive silvicultural responses isolating the effect of genetics, environment, and density.

The same framework can be applied to determine a potential volume increase associated

with genetically improved seedlings and differences in yield associated to the environment

(physiographic region). This model could be used to perform a financial marginal analysis,
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characterizing the cost associated with the levels of management regimes and determining

the profitability associated with each level.



Chapter 4

Loblolly pine sawtimber potential in the Lower Coastal Plain of the

southeastern U.S.: A Bayesian approach 1

1Restrepo, H.I, B.P. Bullock, N. Lazar. To be submitted to Forest Science.
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Abstract

The stand timber value is a function of the merchantable volume and timber price. Finding

the proportions of timber in each of the commercial pine product classes (i.e., sawtimber,

chip-n-saw, and pulpwood) is a key component in calculating the stand timber value. These

proportions can weigh either the total volume or timber prices to obtain the merchantable

volume or blended price, respectively. The product class distribution is often reduced to

a binary response variable focusing the attention on sawtimber, the timber class with the

current highest price. Three theoretical Bayesian frameworks were proposed to estimate the

proportion of trees with sawtimber potential: binomial, hierarchical and logit models. Data

from a designed research trial evaluating the effect of stand density and management on

stand dynamics of loblolly pine in the southeastern U.S. were used to estimate the propor-

tion of trees with sawtimber potential. The dataset includes stem quality assessments, which

contribute to a more realistic estimation of the sawtimber proportion. Although this analysis

corresponds to a snapshot of the sawtimber proportion at year 18 (most recent remeasure-

ment), it gives insight into the sawtimber potential at the rotation age. Furthermore, timber

product class proportions can be used to optimize financial returns by performing marginal

analysis to evaluate the effect of silvicultural practices.

Key words: Timber product class proportions, Bayesian models, Sawtimber potential.
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4.1 Introduction

Two main forest growth and yield modeling approaches are usually utilized in the south-

eastern U.S.: size-class, and whole-stand models (Burkhart et al., 2018). Size-class models

recognize the stand structure and growth dynamics based on diameter at breast height

(DBH) classes (Poudel, Cao, 2013). Such a disaggregation of stand characteristics and struc-

ture by diameter classes in the size-class cohort model of the stand-table projection method

allows for quantifying the volume in each of the most common commercial timber product

classes, i.e., sawtimber, chip-n-saw, and pulpwood (Burkhart, 1979). Conversely, whole-stand

models, which corresponds to most of the existing forest growth and yield models for loblolly

pine, allow for estimating total volume or biomass at given age as a function of site index

and stand characteristics (Burkhart et al., 2018). Whole-stand models make the differentia-

tion of volume into the commercial timber classes somewhat cumbersome. This problem has

been traditionally addressed by finding the proportions to weigh the total volume, and hence

calculating the merchantable volume in each of the timber product classes. Likewise, these

proportions can be used to calculate the blended timber price (Klemperer, 2003), resulting

in a simplification of financial calculations.

One of the first attempts calculated the individual-tree probability of merchantability

in old-field loblolly pine plantations as a function of DBH (Strub et al., 1986). Burkhart,

Bredenkamp (1989) estimated the proportion of trees in pulpwood, sawtimber, and peelers

by DBH classes using an extension of Strub et al. (1986) modeling approach. Teeter, Zhou

(1998) estimated multinomial models to predict timber product proportions to distribute

per-acre total volume within four categories, i.e., softwood pulpwood, softwood sawtimber,

hardwood pulpwood, and hardwood sawtimber as a function of DBH and volume. Likewise,

stem quality assessments such as fork, broken top, sweep, and disease incidence may improve

estimation of the timber product class proportions (Choi et al., 2008; Buford, Burkhart,

1987).
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Most monetary value of timber in intensive managed pine plantations in the southeastern

United States corresponds to solid wood, the aggregation of sawtimber and chip-n-saw classes

(Amateis, Burkhart, 2005). Forestland owners put considerable effort and invest a relative

large amount of money to increase the proportion of solid wood in the stand volume as

a strategy to maximize financial returns. Moreover, since collecting data for all mentioned

commercial timber product classes is expensive, stem quality assessments have primarily been

focused on sawtimber, the most valuable commercial timber product class in the southeastern

U.S. Such an assessment of the proportion of sawtimber, and hence its complement, non-

sawtimber, configures a binary response variable.

The binomial response model typifies the statistical approach to estimate the proportion

of sawtimber. In an extension of the binomial model, theoretical probabilities are expressed

as a function of covariates, mathematical setting that corresponds to hierarchical and logit

models (McCulloch, Searle, 2001; Demidenko, 2013). In all these model types, the Bayesian

approach has proven to be more intuitive, flexible, and powerful over the Frequentist coun-

terpart (Gelman et al., 2013).

The objective of this paper was to propose a Bayesian theoretical framework for the bino-

mial, hierarchical and logit models for estimating the proportion of trees with sawtimber

potential. As a motivation to the problem of estimating proportions, the first approach

presents a simple analysis without considering the effect of covariates. The Bayesian hier-

archical model formulation considers the effect of factors on the proportion of trees with

sawtimber potential: i) environment conditions accounted by the location effect, ii) the inten-

sity of management practices (i.e. operational, and intensive), iii) planting density (trees per

acre), iv) thinning, and v) the size of the tree (diameter at breast height, DBH, in inches).

Finally, a Bayesian, and a brief comparison to the Frequentist approach, logit model scheme is

presented to provide an estimation/prediction tool of the proportion of trees with sawtimber

potential as a function of management and tree size. These mathematical formulations were

applied to provide insight into the proportion of loblolly pine (Pinus taeda L.) trees with
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sawtimber potential in the southeastern U.S. We focused on just one genetically improved

seedling type, the open pollinated family 7-56, a commonly planted well-tested half-sibling

family in the southeastern U.S. We considered the last-available-measurement data subset

for both unthinned and thinned plots because thinning is typically an obligated silvicultural

practice for pine plantations with a sawtimber objective, and year 18 data, represents a good

proxy of the pine sawtimber potential at the rotation age.

4.2 Estimation framework

4.2.1 Simple approach

Let y be the number of trees with sawtimber potential out of total number of trees, n.

Consider the prior, likelihood and posterior distribution taking advantage of the conjugacy:

Jeffreys prior

θ ∼ Beta(1
2
, 1

2
)

p(θ) ∝ θ1/2(1− θ)1/2

(4.1)

Likelihood

y|θ ∼ Binomial(n, θ)

p(y|θ) ∝ θy(1− θ)n−y
(4.2)

Posterior

p(θ|y) ∝ p(θ)p(y|θ) = θy+1/2(1− θ)n−y+1/2

θ|y ∼ Beta(y + 3/2 , n− y + 3/2)

(4.3)

4.2.2 Hierarchical model

Let yi be the number of trees with sawtimber potential in the ith location out of the number

trees in the ith location, ni. Consider the prior, hyperprior, and posterior distribution taking
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advantage of the conjugacy:

yi|θi ∼ Binomial(ni, θi)

p(yi|θi) ∝ θyii (1− θi)ni−yi
(4.4)

with prior

θi ∼ Beta(α, β) (4.5)

and hyperparameters

ω =
α− 1

α + β − 2

κ = α + β

(4.6)

therefore,

α = ω(κ− 2) + 1

β = (1− ω)(κ− 2) + 1

(4.7)

Hence, the prior can be rewritten as:

θi ∼ Beta (ω(κ− 2) + 1 , (1− ω)(κ− 2) + 1) (4.8)

An hypterprior can be:

ω ∼ Beta(α, β)

p(ω) =
Γ(αω + βω)

Γ(αω)Γ(βω)
ωαω−1(1− ω)βω−1

κ ∼ Gamma(ακ, βκ)

p(κ) =
βακκ

Γ(ακ)
κακ−1 exp(−βκκ)

(4.9)

With ω, and κ assumed independent. The joint posterior distribution is:

p(θ, ω, κ|y) ∝ p(ω, κ)p(θ|, ω, κ)p(y|θ, ω, κ) (4.10)

with

p(ω, κ) =

(
Γ(αω + βω)

Γ(αω)Γ(βω)
ωαω−1(1− ω)βω−1

)(
βακκ

Γ(ακ)
κακ−1 exp(−βκκ)

)
p(θ|ω, κ) =

M∏
i=1

Γ(κ)

Γ(ω(κ− 2) + 1)Γ((1− ω)(κ− 2) + 1)
θ
ω(κ−2)
i (1− θi)(1−ω)(κ−2)

p(y|θ, ω, κ) =
M∏
i=1

(
ni
yi

)
θyi(1− θi)ni−yi

(4.11)
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Thus, the posterior is:

p(θ, ω, κ|y) ∝
(
ωαω−1(1− ω)βω−1κακ−1 exp(−βκκ)

)
×

(
M∏
i=1

Γ(κ)

Γ(ω(κ− 2) + 1)Γ((1− ω)(κ− 2) + 1)
θ
ω(κ−2)+yi
i (1− θi)(1−ω)(κ−2)+ni−yi

)
(4.12)

where θ = (θ1, θ2, ..., θM), the vector of θ’s, and y = (y1, y2, ...yM), the vector of the number

of trees with sawtimber potential in each of the M groups.

4.2.3 Bayesian logit model

Consider a sample of n trees, and let yi be the binary response with yi
iid∼ Bernoulli(θ),

where iid denotes independent and identically distributed, and Bernoulli(θ) is the Bernoulli

distribution with mean θ (Wackerly et al., 2008). Thus, yi takes the value of one if the ith

tree has been assessed to have sawtimber potential or the value zero otherwise:

P (yi = 1) = θ

P (yi = 0) = 1− θ

Therefore, E(yi) = 1(θ) + 0(1 − θ) = θ, and Var(yi) = θ(1 − θ) (Wackerly et al., 2008).

Incidentally, moments of all orders are equal to θ (McCullagh, Nelder, 1989). Because it

is reasonable to think that there is a considerable variation among trees, an expansion of

this model, called saturated model, allows for yi
id∼ Bernoulli(θi). Such a variation can

be accounted by covariates. For the sake of simplicity just one arbitrary tree variable, x,

accounts by for the variation in the model:

yi = β0 + β1xi + εi, yi = 0, 1

where β’s represent unknown parameters to be estimated and εi is the error term. The

expected response E(yi) has a special meaning in this case. Since E(εi) = 0 (Kutner et al.,

2005):

E(yi) = β0 + β1xi = θi
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The principal objective of estimating this model is to investigate the relationship between

the response probability and the covariate (McCullagh, Nelder, 1989). Binary response vari-

ables, however, poses serious problems in comparison to the linear model (Kutner et al.,

2005):

• Nonnormal error terms: because yi can be only one or zero, each error term εi =

yi− (β0 +β1xi) can be either εi = 1− (β0 +β1xi) or εi = −(β0 +β1xi), which certainly

does not follows the normal distribution.

• Nonconstant error variance: since Var(εi) = Var(yi− θi) = Var(yi), because θi is a fixed

unknown parameter, therefore:

Var(εi) = θi(1− θi)

= E(yi)(1− E(yi))

= (β0 + β1xi)(1− β0 + β1xi)

which depends on the level of x. Therefore, the variance is not constant.

• Constraints on response function: because the response function represents the proba-

bility of a event, the domain of the mean responses is constrained to 0 ≤ E(yi) = θi ≤ 1.

Unless restrictions are imposed on β’s in the general linear model, we have −∞ ≤ yi ≤ ∞.

Thus, expressing θ as a linear combination of the covariates would be inconsistent with the

laws of probability. An effective way of solve this problem is the use of transformation that

maps the unit interval onto the whole real line (−∞,∞) (McCullagh, Nelder, 1989). Thus,

four transformations to estimate generalized linear models (GLM) have been proposed for

modeling binary responses (McCullagh, Nelder, 1989):

• The logit or logistic mean response function: f(θ) = ln(θ/(1 + θ))

• The probit mean response or inverse normal function: f(θ) = Φ−1(θ)
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• The complementary log-log response function: f(θ) = ln(− ln(1− θ))

• The log-log function: f(θ) = − ln(− ln(θ))

Although the behaviors of the logit and probit are very similar (almost linearly related in

the range (0.1, 0.9), we focus mostly with the logit because its simpler theoretical properties

and interpretation as the natural logarithm of the odds ratio (ln[θi/(1 − θi)]) (McCullagh,

Nelder, 1989). The logit function assumes that errors follow the logistic distribution with

probability distribution function (PDF) and cumulative distribution function (CDF) (Kutner

et al., 2005):

f(y) =
exp(y)

[1 + exp(y)]2

F (y) =
exp(y)

1 + exp(y)

Therefore, the logistic mean response function is then:

P (yi = 1) = θi = F (β0 + β1x1)

=
exp(β0 + β1xi)

1 + exp(β0 + β1xi)

= [1 + exp(−β0 − β1xi)]
−1

Applying the inverse of the cumulative distribution function we obtain the logit trans-

formation:

F−1(θi) = ln

(
θi

1− θi

)
= logit(θi) (4.13)

= β0 + β1xi (4.14)

Note that the right hand side of the equation has a linear form, allowing for a linear

estimation of the parameters. Several characteristics can be noticed about the logistic mean

response function (Kutner et al., 2005): i) is bounded between zero and one; ii) the higher

the parameter β1, the higher the slope of the curve; iii) the function is monotonic increasing

(decreasing) when the sign of β1 is positive (negative); iv) the value of β0 shifts the curve
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horizontally; v) it is symmetric, meaning that it would be the same to use the response

variable yi or an arbitrary variable wi = 1− yi, in which case the signs of coefficients will be

reversed.

Consider now the model with an additional covariate and the three different forms to

present the model:

logit(θi) = β0 + β1xi1 + β2xi2 (4.15)

θi
1 + θi

= exp(β0 + β1xi1 + β2xi2) (4.16)

θi =
exp(β0 + β1xi1 + β2xi2)

1 + exp(β0 + β1xi1 + β2xi2)
(4.17)

The interpretation of the magnitude of the effects in Equations (4.15 - 4.17) differs.

Assume that all β’s are positive. In Equations (4.15) and (4.16), the logit of θ and odds

increase (decrease) β1 and exp(β1) units, respectively, with one unit of increase (decrease)

of x1. An interesting feature of Equations (4.15) and (4.16) is that the effect of the variables

can be assessed independently if the other variable, x2, is held fixed. The interpretation of

parameters in Equation (4.17), however, is more complicated because the effect of a unit

change in x1 depends on the values of both x1 and x2, δθi
δx1

= θi(1−θi)β1 (McCullagh, Nelder,

1989).

An expansion of the model with k covariates, xi = (1, xi1, xi2, ..., xik) and k+1 parameters,

β> = (β0, β1, β2, ..., βk), can be mathematically expressed as follows (Rencher, Schaalje, 2008;

Zhang et al., 2011; McCullagh, Nelder, 1989):

yi|xi
id∼ Bernoulli(θi), θi = E(yi|xi), logit(θi) = xiβ, i = 1, 2, ..., n (4.18)

4.3 Case study

4.3.1 Experimental design description and data used

The Plantation Management Research Cooperative (PMRC) at the University of Georgia,

Athens, GA, established 17 study sites in the Lower Coastal Plain (LCP) of Georgia, Florida,



64

and South Carolina during the 1995/96 dormant season to test the effect of planting den-

sity and management intensity on loblolly pine growth and yield (Harrison, Kane, 2008).

Planting density in all study sites were 300, 600, 900, 1200, 1500, and 1800 trees per acre

(TPA); whereas the two management intensity treatments were operational and intensive.

A complete description of the cultural treatments applied is presented in Appendix A. All

installations were planted with loblolly pine first generation, open-pollinated family 7-56, an

especially fast grower. At the time of year 18 measurement of the Coastal Plain Culture /

Density study, 13 installations remained (Zhao et al., 2014) (Figure 4.1). At year 12, 600,

900, and 1200 TPA plots in four installations (7, 8, 12, and 13) were thinned to the current

TPA on their 300-TPA counterparts. A third row thinning with low thinning on leave rows

was implemented.

Figure 4.1: Locations of the remained Coastal Plain Culture / Density study sites at year
18.

The experimental design corresponds to a split-split plot design. The first level is the soil

CRIFF classes (e.g. A, B1, B2, C, D, E, F, G) (Jokela, Long, 2012). The second level is the

installation, in which plots were split for management intensity, and then the six planting
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densities were randomly established within each of the management plots (Harrison, Shiver,

1999). Forest measurements were taken at years 2, 4, 6, 8, 10, 12, 15, and 18. At each

measurement, all 4.5-ft tall or taller trees were measured for diameter at breast height (DBH),

and after the fourth growing season, total heights (Ht) were measured or estimated with

site-specific height-diameter allometric models. In addition to DBH and Ht measurements,

assessments of the tree crown class, forest health (rust infection and moth), defects, and

stem quality (in terms of sawtimber potential) were made. Specifically, the field sawtimber

potential assessments were made using the following codes:

• No defects, good sawtimber potential (sawtimber)

• Sawtimber reject for stem fork in first log (non-sawtimber code 1)

• Reject for crook or sweep (non-sawtimber code 2)

• Reject for Cronartium in first log (non-sawtimber code 3)

• Ugly tree (non-sawtimber code 4)

4.3.2 Simple approach

As a first step, the overall proportion of the trees with sawtimber potential was estimated.

Based on the number of trees with sawtimber potential (y = 4,829) and the total number

of trees in the dataset (n = 10,219), the posterior distribution of θ is Beta(4830.5,5391.5),

with mean (µθ), mode (µ̃θ), and variance (σ2
θ):

µθ =
y + 3/2

n+ 3
=

4830.5

10222
= 0.4726

µ̃θ =
y + 1/2

n+ 1
=

4829.5

10222
= 0.4726

σ2
θ =

(y + 3/2)(n− y + 3/2)

(n+ 3)2(n+ 4)
=

(4830.5)(5391.5)

(102222)(10223)
= 2.438× 10−5

(4.19)

Overall, 47% of the trees had sawtimber potential. The 95% highest posterior density

credible interval is (0.463,0.482) (Figure 4.2).
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Figure 4.2: Posterior distribution of the proportion of loblolly pine trees with sawtimber
potential in the southeastern United States. Dashed lines represent the lower and upper
bound of the 95% highest posterior density region of its credible interval.

4.3.3 Hierarchical models

Four hierarchical models were evaluated to assess for the effect of factors on the sawtimber

potential:

• Location or installation, accounting for the environmental effect, M=13

• Management, i.e., operational (O), and intensive (I), M=2

• Planting density, i.e., 300, 600, 900, 1200, 1500, and 1800 trees per acre, M=6

• Thinning, i.e., unthinned and thinned stands, M=2

• Discretized DBH from 1 to 17 inches, M=17
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Table 4.1: Posterior distribution of the proportion of loblolly pine trees with sawtimber
potential in 13 locations across the Lower Coastal Plain U.S. LB and UB are the lower and
upper bounds, respectively, of the 95% credible interval.

Location Observed proportion Posterior E(θi|yi) LB (2.5%) UB (97.5%)
1 0.472 0.472 0.436 0.508
4 0.559 0.559 0.528 0.59
6 0.463 0.463 0.43 0.497
7 0.396 0.396 0.354 0.439
8 0.35 0.35 0.316 0.385
9 0.326 0.326 0.291 0.363
11 0.516 0.516 0.485 0.547
12 0.486 0.485 0.448 0.523
13 0.479 0.479 0.439 0.52
14 0.525 0.525 0.489 0.562
15 0.374 0.374 0.343 0.406
16 0.586 0.586 0.555 0.617
17 0.508 0.508 0.475 0.541

Location

Since the likelihood overwhelmed the hyperprior, there was no effect of the selection of hyper-

parameters on the posterior distribution (Table 4.1). In Table 4.1, the observed proportion

of trees with sawtimber potential for each of the locations is exactly the same that the cor-

responding posterior expected value of θ. Locations 4, and 16 had the highest proportions

of sawtimber potential, whereas locations 8, and 9 had the lowest proportions of sawtimber

potential (Figure 4.3, Table 4.1). Table 4.1 can be used to test for statistical differences

between pairs of locations. If their 95% credible intervals did not overlap, we can conclude

that the sawtimber proportions of them were statistically different. For instance, sawtimber

potential of locations 4 and 16 were not statistically different; whereas the sawtimber poten-

tial of locations 4 and 8 were statistically different.
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Figure 4.3: Posterior distribution of the proportion of loblolly pine trees with sawtimber
potential across 13 locations in the southeastern United States.

Management

Management regimes have an effect on the sawtimber potential of loblolly pine, being the

operational level superior over the intensive management regime. Since the 95% credible

interval of the two management levels did not overlap, we can conclude that there was an

statistical difference between them (Table 4.2, Figure 4.4).

Table 4.2: Posterior distribution of the proportion of loblolly pine trees with sawtimber
potential under the management regimes operational and intensive in the Lower Coastal
Plain U.S. LB and UB are the lower and upper bounds, respectively, of the 95% credible
interval.

Management Observed proportion Posterior E(θi|yi) LB (2.5%) UB (97.5%)
Intensive (I) 0.403 0.403 0.388 0.418
Operational (O) 0.524 0.524 0.511 0.537
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Figure 4.4: Posterior distribution of the proportion of loblolly pine trees with sawtimber
potential by the management regimes operational (O), and Intensive (I) in the Lower Coastal
Plain U.S.

Planting density

The lowest and highest sawtimber potential were for planting densities 600 and 900 TPA,

respectively. Planting density, however, did not have an effect on the proportion of trees

with sawtimber potential since the 95% credible intervals of the all six planting densities

overlapped (Table 4.3, Figure 4.5).
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Table 4.3: Posterior distribution of the proportion of loblolly pine trees with sawtimber
potential by six planting densities in the Lower Coastal Plain U.S. LB and UB are the lower
and upper bounds, respectively, of the 95% credible interval.

(trees per acre) Observed proportion Posterior E(θi|yi) LB (2.5%) UB (97.5%)
300 0.477 0.477 0.453 0.501
600 0.46 0.46 0.432 0.487
900 0.484 0.484 0.458 0.51
1200 0.478 0.478 0.453 0.503
1500 0.472 0.472 0.451 0.493
1800 0.466 0.466 0.446 0.487

Figure 4.5: Posterior distribution of the proportion of loblolly pine trees with sawtimber
potential by six planting densities in the Lower Coastal Plain U.S.
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Thinning

There was no statistical difference in the posterior distribution of the proportion of loblolly

pine trees with sawtimber potential at year 18 as a response of thinning applied at year

12 (Table 4.4). However, the uncertainty of the proportion was higher for thinned stands

(Figure 4.6).

Table 4.4: Posterior distribution of the proportion of loblolly pine trees with sawtimber
potential at year 18 as a response of thinning applied at year 12 in the Lower Coastal Plain
U.S. LB and UB are the lower and upper bounds, respectively, of the 95% credible interval.

Management Observed proportion Posterior E(θi|yi) LB (2.5%) UB (97.5%)
Unthinned 0.472 0.472 0.462 0.482
Thinned 0.484 0.484 0.447 0.522

Figure 4.6: Posterior distribution of the proportion of loblolly pine trees with sawtimber
potential at year 18 as a response of thinning applied at year 12 in the Lower Coastal Plain
U.S.
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DBH

The minimum and maximum sawtimber potential were for DBH classes 2 and 14 inches,

respectively (Figure 4.7). Overall, the size of the trees had an effect on the proportion

of sawtimber potential. There were statistical differences among some DBH classes. For

instance, DBH class four inches was statistically different from DBH class seven inches,

because their 95% credible intervals did not overlap (Table 4.5). Extreme DBH classes (lowest

and highest) had wider 95% credible intervals and whiskers than intermediate DBH classes

(Table 4.5, Figure 4.7), because the number of trees in the extreme DBH classes was relatively

small (Figure 4.8). In other words, the lower the number of trees in a DBH class, the higher

is the uncertainty of the proportion of sawtimber potential.

Table 4.5: Posterior distribution of the proportion of loloblly pine trees with sawtimber
potential by 17 one-inch DBH classes in the Lower Coastal Plain U.S. LB and UB are the
lower and upper bounds, respectively, of the 95% credible interval.

DBH (inches) Observed proportion Posterior E(θi|yi) LB (2.5%) UB (97.5%)
1 0.4 0.415 0.069 0.812
2 0.292 0.295 0.191 0.411
3 0.394 0.394 0.342 0.447
4 0.414 0.414 0.381 0.448
5 0.417 0.418 0.392 0.443
6 0.458 0.458 0.434 0.482
7 0.476 0.476 0.452 0.5
8 0.499 0.499 0.473 0.525
9 0.508 0.508 0.478 0.538
10 0.535 0.535 0.5 0.569
11 0.52 0.52 0.476 0.563
12 0.515 0.515 0.456 0.574
13 0.573 0.572 0.482 0.659
14 0.667 0.663 0.521 0.792
15 0.6 0.594 0.348 0.818
16 0.6 0.586 0.186 0.93
17 0.5 0.499 0.008 0.992
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Figure 4.7: Posterior distribution of the proportion of loblolly pine trees with sawtimber
potential by 17 one-inch classes of diameter at breast height (DBH) in the Lower Coastal
Plain U.S.
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Figure 4.8: Histogram of frequencies of loblolly pine trees with sawtimber potential, and
non-sawtimber potential, for the 17 one-inch classes of diameter at breast height (DBH) in
the Lower Coastal Plain U.S.

4.3.4 Bayesian logit model

A Bayesian logit model for the proportion of loblolly pine trees with sawtimber potential as a

function of management and DBH was estimated (Table 4.6). As mentioned, intensive forest

management reduces the proportion of sawtimber potential whereas the higher the DBH,

the higher the proportion of sawtimber potential. The trace plots and posterior distribution

for each of the parameter estimated are shown in Figure 4.9. A logit Frequentist model was

also estimate to compare it with the Bayesian logit model. The parameter estimates and

their standard errors were virtually the same (Tables 4.6 and 4.7).
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Table 4.6: Bayesian logit model to estimate the proportion of loblolly pine trees with saw-
timber potential as a function of the management regime intensive (beta1) and diameter at
breast height (DBH, beta2) in the Lower Coastal Plain U.S. SD is standard deviation, SE is
standard error, and TS is time series.

Par.
Empirical mean and standard deviation Quantiles
Mean SD Naive SE TS SE 2.50% 25% 50% 75% 97.50%

β0 -0.662 0.069 2.18×10−4 0.0013 -0.797 -0.708 -0.662 -0.616 -0.526
β1 -0.604 0.042 1.33×10−4 0.0003 -0.687 -0.632 -0.604 -0.575 -0.521
β2 0.106 0.009 2.81×10−5 0.0002 0.088 0.100 0.106 0.112 0.123

Figure 4.9: Trace plots and density plots of the Bayesian logit parameter estimates of the
proportion of loblolly pine trees with sawtimber potential in the Lower Coastal Plain U.S.
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Table 4.7: Frequentist logit model to estimate the proportion of loblolly pine trees with
sawtimber potential as a function of the management regime intensive and diameter at
breast height (DBH) in the Lower Coastal Plain U.S.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.661 0.068 -9.653 <0.0001
Intensive management -0.603 0.042 -14.355 <0.0001
DBH 0.105 0.009 11.929 <0.0001

4.4 Discussion

A general Bayesian framework for theoretical probabilities was proposed and applied to

estimate the proportion of loblolly pine trees with sawtimber potential in the Lower Coastal

Plain U.S. Three mathematical approaches were presented: binomial, hierarchical and logit

models. The binomial model results suggest that the overall sawtimber potential was almost

a half of the stand timber volume, which positively contributes with the financial success

of the timber production. This positive financial performance is due to the relative high

price of sawtimber compared to chip-n-saw and pulpwood prices. However, a much better

estimation of the proportion of sawtimber should consider factors like the environmental

effect, management, planting density, thinning and tree size (DBH).

The effect of location on the proportion of trees with sawtimber potential may be due

to contrasting environmental conditions. Site index, as the typical metric to assess for the

environmental effect on forest productivity, is not a good descriptor of the timber product

class distribution and timber merchantability potential (Burkhart, Bredenkamp, 1989). Con-

versely, stem form has been linked with soil properties. Deficiencies and excesses of macro,

secondary, and micro nutrients may induce an expression of bad tree form; therefore affecting

the tree sawtimber potential and stand timber value (Espinoza et al., 2012; Lehto et al.,

2010). For instance, pines on slightly boron-deficient soils may have a thick stem base, and

a low branch and needle mass to stem ratio; whereas a dramatic deficiency in boron results
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in the loss of the apical dominance (Lehto et al., 2010), which has serious consequences on

stem quality and form.

The intensive management regime practiced on the locations in this research corresponds

to a very high level of inputs (Appendix A). Thus, a high nitrogen to calcium ratio in

soils, may result in a stem sinuosity of loblolly pine trees (Espinoza et al., 2012), affecting

the sawtimber potential and stand timber value. This result has direct implications for the

forestland owner. The effect of intensive management on tree form (sawtimber potential)

(Green et al., 2018), may negate volume gains from silvicultural practices (Restrepo et al.,

2018). Hence, forestland owners should evaluate the overall effect of intensive management

on the stand timber value (Green et al., 2018).

Planting density did not affect the proportion of trees with sawtimber potential, which

is consistent with results previously reported (Green et al., 2018; Burkhart, Bredenkamp,

1989). Although trees in high density stands have small branches (Borders, Volfovicz, 2010),

which may increase the tree sawtimber potential, the effect of high stand density on tree

size (Restrepo et al., 2019) may diminish the stand timber value. Unthinned and thinned

stands presented similar sawtimber potential at year 18. This finding is consistent with

results previously reported (Burkhart, Bredenkamp, 1989). The relative high uncertainty in

the sawtimber proportion for thinned stands was due to the small sample size of thinned

stands in comparison with unthinned stands.

Regarding size (DBH), one can expect that the higher the diameter, the higher the

tree sawtimber potential. This result is consistent with the literature evaluating the effect

of DBH on tree merchantability, and sawtimber proportion (Strub et al., 1986; Burkhart,

Bredenkamp, 1989; Teeter, Zhou, 1998). However, other measures of tree size, like total

height, may not explain volume merchantability (Burkhart, Bredenkamp, 1989). Realistically,

only the trees with DBH greater to 11.6 inches would be in the sawtimber category at the

rotation age. For that reason, although the stem quality and form may be good, small

trees would be in the non-sawtimber category. Therefore, the total realized proportion of
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sawtimber trees may be lower than estimated in the analysis over the diameter distribution

(Figure 4.7).

Estimated logit models can be used to estimate/predict the proportion of loblolly pine

trees with sawtimber potential at year 18 as a function of the management intensity and

DBH. The intensive management term corresponds to a bump down effect in the intercept,

whereas the DBH term works as a slope in the model. The results from the logit models

were consistent with the corresponding findings from the hierarchical models. Non informa-

tive priors were used in all Bayesian models. That is the reason why no differences were found

between logit Bayesian and Frequentist models. Future work can elicit and utilize informative

priors in the three Bayesian models explored in this research. Moreover, the model evalu-

ated can be extended to a multinomial model considering the three pine commercial timber

product classes.



Chapter 5

Long-term timber cutting contracts in the southeastern U.S.: Updating

the primer valuation framework 1

1Restrepo, H.I, R.B. Mei, B.P. Bullock. To be submitted to Forest Science.
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Abstract

U.S. timberland ownership has drastically changed in the last decades, mainly driven by

the divestitures of vertically integrated forest product companies. With the divestiture of

land, forest product companies have exposed themselves to raw material risk. This risk is

usually hedged by contractual options like long-term cutting contracts (LTTCs), which have

been believed to represent a valuable asset for timber industry firms. However, since the mid

1980s, the methods, value, and implications of the LTTCs in the southeastern U.S. have not

been updated. The forest business market as compared to the 1980s has changed in terms of

timber prices, risk-free interest rates, and corporate risk-adjusted discount rates. The overall

objective of this paper was to update the option pricing valuation framework for LTTCs

proposed by Robert Shaffer Jr. in 1984. The estimation of volatility and use of information

from the current financial/economic conditions was crucial to accomplishing the goal. In

particular, the conditional volatility estimated from GARCH models was input into the

Black-Scholes and binomial models (European and American) to estimate the value the call

option of one LTTC. Contrary to Shaffer’s result, our analysis suggests that LTTCs may not

be profitable for forest product firms. This is primarily because timber price volatilities and

the risk-free interest rate are relatively small. Thus, well-functioning wood markets not only

preclude owning land by forest firms but also may diminish the value of LTTCs. Likewise,

this result implies that forest companies will probably rely more on the open market and

less on this type of legal agreement.

Key words: Timber market, Call options, Black-Scholes, Binomial model, GARCH, Con-

ditional volatility.
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5.1 Introduction

Timberland ownership in the United States has changed substantially in the past several

decades (Yao et al., 2014). More than 50% of the forestland in the United States (70%

in the South) shifted ownership in the period of 1980-2005. This was mainly driven by

divestitures of vertically integrated forest product companies (VIFPCs), and acquisitions

by timber investment management organizations (TIMOs) and real estate investment trusts

(REITs) (Waggle, Johnson, 2009; Mei et al., 2013). Literature lists a wide array of motives for

this land title transition from the TIMO, REIT, and VIFPC perspective. TIMOs and REITs’

land acquisitions were motivated by favorable tax treatment and portfolio diversification

goals (Lönnstedt, Sedjo, 2012). This diversification strategy includes timberlands, an asset

characterized by favorable returns, low risk, and inflation hedge (Sun, Zhang, 2001; Switzer,

2006). On the other hand, VIFPCs’ divestments were driven by a weak financial performance,

accounting and tax disadvantages for owning land, land price appreciation, intensive forest

management2, the economics of specialization, and high carrying costs of land and forest

management (Lönnstedt, Sedjo, 2012; Zhang et al., 2012).

Although all VIFPCs’ reasons for divestiture deserve scrutiny, this research focuses on

the two latter causes. In these scenarios, sufficient raw material in the open market and

high property taxes motivated VIFPCs’ divestitures (Lönnstedt, Sedjo, 2012). As VIFPCs

rely less on their raw material and more on procured timber, they exposed themselves to

a variety of risks. These risks have traditionally been hedged by contractual options, a

rather common practice in forestry (Phelps, McCurdy, 1997; Zinkhan, 1991). These include

long-term cutting contracts, buyout options in landowner assistance programs, options to

buy timberland properties, and development rights sold by timberland owners to developers

(Zinkhan, Cubbage, 2003). Of particular interest are the long-term timber contracts (LTTCs)

that assure the required raw material and manage price volatility due to inter-annual and

economic-cycle price fluctuations (Mei et al., 2013).

2higher per unit area timber production, which makes some land idle for VIFPCs.
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The LTTCs have represented an essential asset for timber industry firms to cover their

raw material risk. Shaffer Jr. (1984) presented a thorough valuation framework for LTTCs

using the Black-Scholes model (Black, Scholes, 1973). Since the Shaffer’s seminal work, the

methods, value, and implications of engaging in LTTCs in the southeastern U.S. have not

been updated. There is a new context for forest business compared to what it was in the

mid 1980s in terms of timber prices (market), risk-free interest rates (economic context),

and corporate risk-adjusted discount rates (cost of capital as a consequence of the current

business environment) (Switzer, 2006; Yao, Mei, 2015; Mei et al., 2013). Likewise, statistical

techniques to analyze time series, the sophistication of financial analyses, the post-recession

economic outlook, and computational tools to accomplish solutions for complex problems

have considerably evolved in the last 30 years (Yao, Mei, 2015). Therefore, we are convinced

that updating Shaffer’s framework would be highly beneficial and informative.

The stochastic properties of timber prices have been a great concern for timberland

investors (Mei et al., 2010). Average timberland returns dropped from 14.3% (1982-1997) to

6.9% (1995-2010) as a result of declining timber prices (Mei et al., 2013). Timber prices in the

southeastern U.S., categorized by the traditional commercial classes, i.e., sawtimber, chip-

n-saw, pulpwood, have systematically been recorded since the late 1970s (Norris Fundation,

2018). Timber prices, and especially their corresponding logarithmic returns, behave like

a financial time series (Zinkhan, Cubbage, 2003), characterized by time-varying volatility

(Andersen et al., 2009).

There is no consensus in the forest finance literature whether the timber prices follow a

geometric Brownian motion (GBM) or the mean reversion (MR) model (Chaudhari et al.,

2016). Haight, Holmes (1991) suggested that quarterly timber prices follow a GBM, whereas

monthly prices are MR. Likewise, the relative short sample period of the available time

series from Timber-Mart South (TMS) does not provide enough evidence to conclude if

timber prices are random or mean-reverting (Mei et al., 2010). The assumption of the nature
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of timber prices implies different risks and valuations of timberland business (Mei et al.,

2013).

Conversely, the time-varying volatility feature refers to the fact that small (large) values

are followed by small (large) values (Andersen et al., 2009). Moreover, volatility evolves con-

tinuously over time exhibiting clusters, within certain fix range, but unevenly leveraging the

effect of positive and negative news on the prices (Tsay, 2010). Mentioned volatility fea-

tures of the financial/economic time series have been extensively studied. There are several

proxy volatilities such as absolute returns, squared returns, and stochastic volatility, but

GARCH-type volatility is by far the most popular (Hwang, Valls, 2006). Engle (1982) pro-

posed a theoretical framework to model the volatility named the autoregressive conditional

heteroskedastic (ARCH) model. Bollerslev (1986) expanded the method to be more flexible

and posses better mathematical properties, the so-called generalized ARCH (GARCH). This

model has been applied to analyze volatility of returns of timberland investments and timber

prices (Sun, 2013; Mei et al., 2010; Sun et al., 2013; Clements et al., 2017).

The overall objective of this paper was to update Shaffer’s option pricing framework

for LTTCs in the southeastern U.S. Volatility and information from the current finan-

cial/economic conditions were input into the Black-Scholes and binomial models to estimate

the value call options for one LTTC. To assess for the effect of volatility on the valuation,

three volatility measures were used to replicate Shaffer’s LTTC: i) implied volatility or whole-

sample-long standard deviation, ii) the conditional volatility estimated from an ARMA(p,q)

- GARCH(1,1) model combination, and iii) the quasi-conditional volatility estimated from

the moving window standard deviation.

5.2 Methods

5.2.1 Data

TMS is a non-profit organization that compiles and publishes quarterly prices of the three

major commercial timber products (sawtimber, chip-n-saw, and pulpwood) for the south-



84

eastern United States (Norris Fundation, 2018). The timber price database is grouped into 22

regions, coded by the two-letter U.S. Postal Service state abbreviation and number assigned

by TMS. For this research, a dataset of timber prices for sawtimber and pulpwood from

1977Q1 to 2018Q4 in the Georgia region two (GA2), Lower Coastal Plain, was obtained.

In finance, it is common to conduct the analysis of the log-returns instead of using the raw

prices. Thus, the log-returns were calculated as (Tsay, 2010):

rt = ln

(
Pt
Pt−1

)
= ln(Pt)− ln(Pt−1) (5.1)

where rt is the natural logarithm of the return at time t, Pt is the timber price at time t,

and Pt−1 is the price at time t − 1. Hereafter, whenever returns are mentioned, they are

considered log-returns, unless otherwise indicated.

5.2.2 Volatility measures and their estimation

Three methods were used to estimate the volatility of returns: the implied volatility esti-

mated from the standard deviation (SD) of the time series, the conditional volatility (CSD)

estimated from ARCH/GARCH models, and the quasi-conditional volatility estimated from

moving window SD (QSD). SD is estimated by the sample standard deviation:

SD =

√√√√ 1

T − 1

T∑
t=1

(rt − r̄)2 (5.2)

where SD is the sample standard deviation, T is the total number of data, rt is the return

at time t, and r̄ is the mean of the returns.

To mathematically formalize the ARCH/GARCH models, consider the conditional expec-

tation and variance of the returns (Tsay, 2010):

µt(rt) = E(rt|Ft−1) (5.3)

σ2
t (rt) = Var(rt|Ft−1) (5.4)

= E[(rt − µt(rt))2|Ft−1] (5.5)
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where µt(rt), or just µt, is the conditional expectation of rt given Ft−1; σ2
t (rt), or just σ2

t , is

the conditional variance of rt given Ft−1; and Ft−1 denotes the information set available at

time t− 1.

The time series of the returns is usually modeled using an ARMA(p,q) model, denoted

the mean equation, estimated as (Tsay, 2010):

rt = µt + at (5.6)

µt =

p∑
i=1

φiyt−i −
q∑
i=1

θiat−i (5.7)

yt = rt − φ0 (5.8)

where at is the shock or innovation, usually assumed N (0, σ2
a).

The volatility, on the other hand, can be modeled using a function to describe the con-

ditional variance as follows:

σ2
t (rt) = Var(rt|Ft−1) (5.9)

= Var(at|Ft−1) (5.10)

An estimation framework for the conditional volatility was first proposed by Engle in

1982, who called it as autoregressive conditional heteroscedastic (ARCH) model (Engle,

1982). In the ARCH model, the shock, at, is serially uncorrelated but serially dependent.

If the values are truly independent, then nonlinear instantaneous transformations (such as

taking logarithms, absolute values, or squaring) preserve independence. However, the same

is not valid for correlation, as correlation is a measure of linear dependence. If the returns

are independent and identically distributed (i.i.d.), then so are the absolute returns (Cryer,

Chan, 2008). The dependence is described by a simple quadratic function of its lagged values

(Tsay, 2010):

at = σtεt (5.11)

σ2
t = α0 + α1a

2
t−1 + · · ·+ αma

2
t−m (5.12)
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where εt is a sequence of i.i.d. random variables with mean zero and variance one, usually

assumed standard normal or standardized t-Student distribution. The coefficients must sat-

isfy some regularity conditions to ensure that the unconditional variance of rt is finite, i.e.,

α0 > 0, and αi ≥ 0 for i > 0.

An extension of the ARCH model, so-called generalized autoregressive conditional het-

eroskedasticity (GARCH) was proposed by Bollerslev in 1986 (Bollerslev, 1986):

at = σtεt (5.13)

σ2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j (5.14)

All the ARCH conditions apply to this model, in addition to βj ≥ 0; αi = 0 for

i > m, and βj = 0 for j > s; and
∑max(m,s)

i=1 (αi + βi) < 1 (Tsay, 2010). With these con-

ditions, the unconditional variance of at is finite and the conditional variance σ2 evolves

over time. The GARCH(m,s) process is weakly stationary if and only if the persistence,

P =
∑m

i=1 αi +
∑s

j=1 βj, is less than unity (Teräsvirta, 2009). The stationary GARCH

model has been slightly modified using the variance targeting method (Engle, Mezrich,

1996; Vaynman, Beare, 2014). With this approach, the condition that α0 > 0 is relaxed

and this parameter is derived from the persistence rather than simultaneously estimated, as

(Ghalanos, 2017):

α̂0 = σ̃2(1− P̂ ) (5.15)

where α̂0 is an estimator for α0, σ̃2 is the unconditional variance of the squared residuals of

the model (E(ε2
t )), and P̂ is an estimator of the persistence.

In an attempt to provide a simple approach for the estimation of the volatility over time,

the quasi-conditional volatility (QSD) or moving window standard deviation, is proposed:

QSDt(w) =

√√√√ 1

w − 1

w∑
i=t−w+1

(ri − r̄t(w))2 (5.16)

where QSDt(w), or just QSD, is the standard deviation at time t with a moving window

w, and r̄t(w) is the mean of returns at time t with moving window w. This measure of
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volatility copes with the weaknesses of the implied volatility, resembling the GARCH effect,

but without the mathematical complexity of the GARCH models. A time-frame evaluation is

required to obtain a meaningful QSD. Therefore, an array of windows from 4 to 40 quarters

(one to ten years) was evaluated. The window, w, that maximizes the correlation between

the QSD and CSD was chosen for the estimation of QSD.

5.2.3 Testing for autocorrelation and ARCH/GARCH effects

Consider the null hypothesis, H0: ρ1 = · · · = ρi = · · · = ρk = 0, against the alternative

hypothesis, Ha: ρi 6= 0 for some i ∈ {1, ..., i, ..., k}, with ρi indicating the lag-i autocorrelation

(Tsay, 2010). Thus, the significance of the autocorrelation may be tested using the Ljung-Box

or modified Q-statistic (Tsay, 2010):

Q(k) = T (T + 2)
k∑
i=1

ρ̂2
i

T − i
Ho∼ χ2

(k) (5.17)

where T is the length of the time series, and ρ̂i is the lag-i autocorrelation, and k is the order

of the autocorrelation evaluated.

The test can be applied to the log-returns to identify if the time series is MR. Thus,

insufficient evidence to reject the null hypothesis that the autocorrelations of log-returns

are not different from zero would imply that the returns are MR. Likewise, the Ljung-Box

statistic will have a chi-square distribution with k degrees of freedom under the assumption

of no ARCH effect (Cryer, Chan, 2008). Thus, rejecting the null hypothesis that the auto-

correlation of squared and absolute log-returns are statistically different from zero suggests

the existence of the ARCH/GARCH effect (Zivot, 2009).

5.2.4 GARCH model building and estimation

There are several packages and functions to estimate GARCH models in R (R Development

Core Team, 2018). However, one of the most widely used, stable and versatile packages is

rugarch (Charles, Darné, 2019). The rugarch package (Ghalanos, 2017) jointly estimates an
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ARMA(p,q) for the mean equation and a GARCH(m,s) for the conditional volatility. We

selected the omnibus GARCH model, GARCH(1,1), which fits well to financial time series

(Zivot, 2009). Thus, the only question is the order of the ARMA(p,q) that results in the

best model. Therefore, all the combinations of ARMA models, orders p = q = 0, 1, 2, 3, 4, 5,

e.g., (0,0), (1,0),..., (5,5), were tested in conjunction with the GARCH(1,1). A function to

automate this estimation was written in R that prints the Bayesian Information Criterion

(BIC) to identify the best combination of ARMA(p,q) and GARCH(1,1). The BIC was

chosen as the primary criterion over the Akaike Information Criterion (AIC) and the log-

likelihood (logLik) function because it is more suitable for small sample size datasets and

takes into account the number of parameters, respectively. The models with the lowest BIC

were selected to check for AIC, parameter estimate significance, and algorithm convergence

issues. Likewise, the behavior of residuals such as QQ-plot (normality or t-Student) and

empirical density of standardized residuals, and ACF of standardized residuals and squared

standardized residuals were evaluated3.

5.2.5 Option pricing models

An option is defined as the right, but not the obligation, to buy (sell) a given quantity of

an asset on (before) a given date, at an agreed upon price today. Of particular interest to

forest firms is the call option, which gives the right, but not the obligation, to buy a certain

amount of timber from the forestland owner at a given date (or before in the case of American

options) at the timber price agreed in the contract (Zinkhan, 1991). Both the forest firm and

the landowner are liable for specific terms in the legal agreement.

Two models are usually used to estimate the value of options: the Black-Scholes and

binomial. Black, Scholes (1973) were the first to propose a general equilibrium solution for

the pricing of an option, as a risk-free portfolio hedge. The equilibrium value of a call option

(V0), the price at which it would trade in a perfectly efficient market, is mathematically

3for more detail about these diagnostics see Ghalanos (2017).
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expressed as (Shaffer Jr., 1984):

V0 = VAΦ(d1)− EΦ(d2)e−rt (5.18)

where VA is the current market price of the asset, E is the exercise price of the option, r is the

annual continuously compounded risk-free rate of return, t is the length of the time (years)

to the expiration of the option, and Φ is the Standard Normal cumulative distribution for

d1 and d2, which are calculated as:

d1 = ln(VA/E)+rt

σ
√
t

+ 1
2
σ
√
t (5.19)

d2 = d1 − σ
√
t (5.20)

where σ is the annualized volatility of the asset price.

The decision rule is that the annual value of the option (V0) must exceed the contract’s

administrative yearly (or per period) cost (C) to be profitable for the forest firm. Therefore,

a simple comparison between V0 and C is often enough. When (V0−C) > 0 there is a profit

for the forest firm, loss otherwise. However, when the contract is split into different periods

or split by other criteria, the corresponding present value of V0, PV0, can be compared with

the corresponding present value of C, PVc, of all contract sections, all discounted at the

firm’s risk-adjusted rate (ra) over n periods. In this case, PV0, PVc, and the net present

value (NPV) of the contract are:

PV0 = V0

[
1−(1+ra)−n

ra

]
(5.21)

PVc = C
[

1−(1+ra)−n

ra

]
(5.22)

NPV = PV0 − PVc (5.23)

If the NPV is positive, the call option is profitable for the forest firm. A similar rationale

is behind the binomial OPM (Rendleman Jr., Bartter, 1979). The binomial is a simple two-

step OPM that allows for option pricing in a straightforward way. The payoff of a one-period

call option can be expressed as:

Ct = (St −K) = max{0, St −K} (5.24)
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where Ct is the payoff of a call option at time t, St is the stock price or asset price at time

t, and K is the strike price of the call option. Let’s consider St with the following piecewise

distribution:

St =

 St1 w.p. π

St2 w.p. (1− π)
(5.25)

The best approximation for St1 and St2 is that they are based on the stock price (asset

price) at time zero as Sti = S0e
rt. Hence, the expected value of St is:

E[St] = E[πST1 + (1− π)ST2 ] (5.26)

= E[π(S0e
rT ) + (1− π)(S0e

rT )] (5.27)

= S0e
rT (5.28)

Therefore, under the assumption of no arbitrage opportunity:

E[ST ]−K = S0e
rT −K (5.29)

=⇒ K = S0e
rT (5.30)

The rationale behind this is that an individual has the opportunity to invest the money

quantity S0 at the risk-free interest rate r and receive after time t the same amount of money

plus its corresponding interests. Both OPMs were estimated using DerivaGem - Version 2.01

(Hull, 2017) with four nodes for the binomial model.

5.2.6 Contract one summary (Shaffer Jr., 1984)

The LTTC under analysis corresponds to contract one presented by Shaffer Jr. (1984). All

the details can be found in the original paper. However, some features are worth mentioning.

The timber volume presented in Shaffer’s contract one is in MBF and cords, but current

timber prices are in dollars per ton ($/ton). Therefore, we used conversion factors from

MBF to tons and cords to tons as 7.7 tons/MBF and 2.6 tons/cord, respectively (Dicke,

Parker, 2016). The time horizon of the contract was 25 years, split into two periods, 1-

14 and 15-25 years, depending on the potential harvest volume. As was structured in the
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original contract, the unit time of analysis is a semester. Thus, there were 28 periods for

the first part of the contract and 22 periods for the second part of the contract. The annual

risk-free rate of return and the firm’s risk-adjusted discount rate by that time were 11.8

and 7 %, respectively. The total annual cost of administering the provisions of the contract,

i.e., salaries, employee benefits, transportation, supplies, and office expenses, was $64,800.

Hence, the six-month-period cost was C = $32, 400. This value was chosen as the threshold

to compare the value obtained from Black-Scholes and bionomial models to determine the

profitability of the LTTC.

5.3 Results

5.3.1 Exploratory analysis, autocorrelation, and ARCH/GARCH effects

Sawtimber prices experienced a sinuous increasing trend from 1977Q1 to 1998Q2, where they

reached their maximum at $54.87/ton. They then stayed around the mean of $47/ton until

2007Q1, when they began to steadily decline to a value of $24.55/ton in 2012Q24. Since then,

the price has stayed relatively constant centered around a mean of $28/ton (Figure 5.1 A).

Although the trend for pulpwood prices was similar to that of sawtimber during the period

1977Q1-1998Q2, reaching the maximum at $21.13/ton, the overall variability was much

higher. There was depreciation in pulpwood prices in the period 1998Q2-2003Q1, attaining

a value at $5.83/ton5. Since this time, pulpwood prices have increased and reached the

current short-term mean around $14/ton (Figure 5.1B). No further analysis was performed

on timber prices given their non-stationary nature. Instead, the log-returns were studied.

4The ratio of this value to the all time lowest value, which was the first data collected in 1977Q1,
was $24.55/ton

$14.67/ton = 1.673.
5The ratio with the all time lowest value, which was the price in 1977Q1, was $5.83/ton

$5.72/ton = 1.019.
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Figure 5.1: Quarterly timber prices (1977Q1 - 2018Q4, A & B), and log-returns (1977Q2 -
2018Q4, C & D) for sawtimber (left) and pulpwood (right) in the TMS Georgia region two
(GA2), U.S.

Three periods can be identified for sawtimber returns (Figure 5.1C): i) a high variability

at the beginning of the time series (1977Q2) with a gradual reduction up to 1992Q1; ii) a

sudden increase in the variability led to the lowest value of -26.8% in 1993Q3 and again,
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a reduction of the variability until 2001Q1; and iii) a relative stabilization of returns from

2001Q1 to 2018Q4. For pulpwood, the pattern of variability can be described in three periods

as well (Figure 5.1D): i) a period of mild variability with two noteworthy high positive returns

in 1980Q3 (21.3%), and 1989Q1 (28.5%), but without much change on the negative side of

the returns; ii) from 1990Q3, a return equal to -25.0% marked the beginning of a highly

variable period in which the all time lowest value at -31.8% was recorded in 1998Q2; and iii)

the third and last period started in 2001Q3, characterized by a relative constant variation.

Incidentally, the absolute value of the lowest return in both sawtimber and pulpwood, i.e.,

26.8 and 31.8%, exceeded their maximum positive values, 24.9 and 28.5%, respectively. This

finding suggests an asymmetry in the distribution of the returns. Described periods can be

identified in squared and absolute log-returns as well (Figure 5.2).

Sawtimber and pulpwood mean returns were not statistically different from zero (p-

value>0.05) (Table 5.1). The distributional properties of the returns support the mentioned

asymmetry and suggest deviations from the normality, being negatively skewed, heavy-tailed

(positive excess of kurtosis), and with a large Jarque-Bera statistic (p-value<0.05) (Table

5.1). The hypothesis of equal variances of the log-returns between sawtimber and pulpwood

was rejected (p-value<0.05), suggesting that their variances were statistically different.

The sample autocorrelation (ACF) and partial autocorrelation (PACF) for sawtimber

returns present one significant spike at lag eight (Figure 5.2). A clear ARMA model cannot be

inferred from the ACF/PACF pattern, but because the significant lag is far away, the overall

autocorrelation may be negligible (p-value>0.05) (Table 5.2). For the pulpwood returns, the

ACF spikes at lags 2, 4, 8, 12, 18, 19, and 20; whereas the PACF spikes at lags 2, 8, and

18. The ACF pattern and the spike of the second PACF lag suggests a possible best fit with

MA(2) or ARMA(p,2) models.
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Figure 5.2: Autocorrelation function (ACF, A & B), and partial autocorrelation function
(PACF, C & D) of the log-returns for sawtimber (left) and pulpwood (right) in the TMS
Georgia region two (GA2), U.S.

Special attention, however, must be paid to the squared and absolute returns to achieve

a meaningful model that considers volatility. Squared and absolute returns indicate some

persistence, suggesting a possible ARCH effect (Figure 5.3, Table 5.2). In particular, squared
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Table 5.1: Summary statistics of the log-returns for sawtimber and pulpwood in the TMS
Georgia region two (GA2), U.S.

Sawtimber Pulpwood
N 167 167
Mean (%) 0.37 0.54
t-Statistic 0.627 (0.532) 0.698 (0.486)
SD (quarterly,%) 7.6 10.0
Skewness -0.029 -0.532
Excess kurtosis 1.263 1.390
Jarque-Bera test 11.117 (0.004) 21.313 (<0.001)

and absolute returns show evidence of volatility clustering. There is a direct relationship

between returns and volatility: the higher the return, the higher the volatility. The ACF of

the squared returns presents some conspicuous spikes at lags 2, 8, 10 and 19 for sawtimber

(Figure 5.4A), and lags 4 and 8 for pulpwood (Figure 5.4B). The ACF of the absolute returns

spikes at lags 2, 7, 10, 19, and 21 for sawtimber (Figure 5.4C); whereas no evident spikes

were present for pulpwood (Figure 5.4D). Similarly, the PACF of squared returns shows high

significant values at lags 2 and 19 for sawtimber (Figure 5.5A), and 4 and 8 for pulpwood

(Figure 5.5B). The PACF for absolute returns spikes at lags 2, 7 and 19 for sawtimber (Figure

5.5C) and 16 for pulpwood (Figure 5.5D).



96

Figure 5.3: Quarterly (1977Q2 - 2018Q4) squared returns (A & B) and absolute value of the
returns (C & D) of sawtimber (left) and pulpwood (right) in the TMS Georgia region two,
U.S.
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Figure 5.4: Sample autocorrelation function (ACF) of the squared (A & B) and absolute (C
& D) log-returns of sawtimber (left) and pulpwood (right) in the TMS Georgia region two,
U.S.
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Figure 5.5: Sample partial autocorrelation function (PACF) of the squared (A & B) and
absolute (C & D) log-returns of sawtimber (left) and pulpwood (right) in the TMS Georgia
region two, U.S.
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Table 5.2: Ljung-Box test (p-value) for the log-returns, squared log-returns and absolute
log-returns of sawtimber and pulpwood in the TMS Georgia region two, U.S.

Lag
Sawtimber Pulpwood

rt r2
t |rt| rt r2

t |rt|
1 0.179 0.203 0.052 0.266 0.334 0.068
2 0.174 0.008 0.002 0.017 0.533 0.119
3 0.290 0.013 0.001 0.026 0.726 0.206
4 0.428 0.029 0.003 0.009 0.007 0.06
5 0.231 0.019 0.002 0.018 0.015 0.093
6 0.289 0.014 0.002 0.025 0.019 0.076
7 0.170 0.010 < 0.001 0.041 0.019 0.041
8 0.059 0.003 < 0.001 0.012 0.001 0.014
9 0.067 0.005 < 0.001 0.016 0.001 0.008
10 0.089 0.001 < 0.001 0.017 0.002 0.013
11 0.127 0.002 < 0.001 0.017 0.002 0.011
12 0.163 0.001 < 0.001 0.007 0.002 0.016
13 0.208 0.002 < 0.001 0.007 0.003 0.022
14 0.266 0.004 < 0.001 0.008 0.004 0.033
15 0.327 0.005 < 0.001 0.006 0.004 0.021
16 0.362 0.008 < 0.001 0.009 0.004 0.018
17 0.358 0.010 < 0.001 0.011 0.007 0.015
18 0.387 0.015 < 0.001 0.001 0.010 0.019
19 0.443 0.006 < 0.001 < 0.001 0.007 0.021
20 0.379 0.003 < 0.001 < 0.001 0.010 0.022

5.3.2 GARCH models

Because the ARCH/GARCH effects were detected for both sawtimber and pulpwood,

the GARCH model was considered the appropriate statistical technique to estimate their

volatility. In total 576 models were estimated to select the best combination of ARMA(p,q),

GARCH(1,1), probability distribution, and variance targeting approach (Table B.1).

The best model without statistical issues for sawtimber (BIC and AIC equal to -2.443

and -2.611, respectively) was the combination of ARMA(4,3) without intercept, GARCH(1,1)

assuming normal errors, and the utilization of the variance targeting approach (Appendix
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B). All parameter estimates were very highly statistically significant (p-value<0.001) (Table

5.4). The estimated persistence was 0.972. The distributional properties of the standardized

residuals were satisfactory, and the ACF of both the standardized and squared standard-

ized residuals shows no remaining autocorrelation (Figure 5.6). The Ljung-Box test con-

firms the ACF result for the standardized and squared standardized residuals (p-value>0.05)

(Appendix C), suggesting that the residuals are white noise without dependence. Therefore,

the ARCH/GARCH effect was taken into account in the model.

Table 5.3: Best combination of ARMA(p,q) with and without intercept, and GARCH(1,1)
assuming normal and t-Student errors with and without variance targeting (VT) for saw-
timber in the TMS Georgia region two, U.S. µ indicates if the intercept was included in the
ARMA model.

ARMA(p,q)
Distribution VT BIC AIC

Statistical issues
Par. Significance ACF Ljung-Box

p q µ ARMA GARCH rt r2
t rt r2

t

4 3 yes Normal yes -2.461 -2.648 x x
2 3 no Normal yes -2.448 -2.578 x x
4 3 no Normal yes -2.443 -2.611
3 2 no Normal no -2.443 -2.592 x
3 2 no Normal yes -2.436 -2.566 x
2 3 no t-Student yes -2.428 -2.577 x x
2 3 no Normal no -2.420 -2.569 x x x
2 3 yes Normal yes -2.418 -2.567 x x
0 0 no Normal yes -2.415 -2.453 x x
5 5 no Normal yes -2.413 -2.638
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Figure 5.6: Diagnostics for the model ARMA(4,3) without intercept, and GARCH(1,1)
assuming normal errors with variance targeting for sawtimber log-returns in the TMS Georgia
region two, U.S.

The best model without statistical issues for pulpwood (BIC and AIC equal to -1.730 and

-1.861, respectively) was the combination of ARMA(2,2) without intercept and GARCH(1,1)

assuming t-Student errors with variance targeting (Table 5.5). All parameter estimates
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Table 5.4: Parameter estimates for the combination of ARMA(4,3) without intercept, and
GARCH(1,1) assuming normal errors with variance targeting for sawtimber log-returns in
the TMS Georgia region two, U.S.

Estimate Std. Error t value Pr(>|t|)
φ1 -0.736 0.000 -4131.314 < 0.001
φ2 0.662 0.000 3843.680 < 0.001
φ3 1.066 0.000 4051.868 < 0.001
φ4 0.165 0.000 3073.425 < 0.001
θ1 0.722 0.000 3977.350 < 0.001
θ1 -0.826 0.000 -3786.474 < 0.001
θ1 -1.152 0.000 -3830.266 < 0.001
α1 0.144 0.042 3.439 0.001
β1 0.828 0.052 15.890 < 0.001
α0 1.3×10−4 NA NA NA

were very highly statistically significant (p-value<0.001) or highly statistically significant

(p-value<0.01), except for the ARCH parameter, α1, (p-value=0.06) (Table 5.6). The esti-

mated persistence was 0.938. The distributional properties of the standardized residuals were

satisfactory, and the ACF of both the standardized and squared standardized residuals iden-

tify one correlation that do not seriously affect the overall autocorrelation (Figure 5.7). This

is confirmed by the Ljung-Box test (p-value>0.05) (Appendix C). Residuals are white noise

without dependence; therefore the ARCH effect was taken into account.
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Figure 5.7: Diagnostics for the model ARMA(2,2) without intercept, and GARCH(1,1)
assuming t-Student errors with variance targeting for pulpwood log-returns in the TMS
Georgia region two, U.S.
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Table 5.5: Best combination of ARMA(p,q) with and without intercept, and GARCH(1,1)
assuming normal and t-Student errors with and without variance targeting (VT) for pulp-
wood in the TMS Georgia region two, U.S. µ indicates if the intercept was included in the
ARMA model.

ARMA(p,q)
Distribution VT BIC AIC

Statistical issues
Par. Significance ACF Ljung-Box

p q µ ARMA GARCH rt r2
t rt r2

t

0 0 no t-Student yes -1.765 -1.821 x x x
0 0 no Normal yes -1.755 -1.793 x x x
0 1 no t-Student yes -1.743 -1.817 x x x x
2 0 no Normal yes -1.742 -1.817 x x x
0 1 no Normal yes -1.740 -1.796 x x x x
1 0 no t-Student yes -1.740 -1.814 x x x x
0 2 no Normal yes -1.737 -1.811 x x
0 0 no t-Student no -1.736 -1.811 x x x x
2 0 no t-Student yes -1.734 -1.828 x x
0 0 yes Normal yes -1.732 -1.788 x x x
0 2 no t-Student yes -1.731 -1.824 x x
2 2 no t-Student yes -1.730 -1.861

5.3.3 Annualized volatility

The first measure of volatility considered was the historical or implied volatility (SD), esti-

mated by Equation (5.2) and presented in Table 5.1 at the value of 7.6 and 10.0% for

quarterly log-returns of sawtimber and pulpwood, respectively. The corresponding factor in

calculating the annualized volatility is
√

4 = 2. Therefore, the annualized implied volatility

was 15.2, and 20.0% for sawtimber and pulpwood, respectively.

The implied volatility presupposes a constant variance over time, a hypothesis that was

already rejected. Therefore, a more meaningful approach to estimate the volatility of log-

returns for sawtimber and pulpwood is the GARCH model. The mean of the annualized

predicted volatility of the four quarters ahead (2019Q1-2019Q4) was 7.7% and 18.6% for

sawtimber and pulpwood, respectively.
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Table 5.6: Parameter estimates for the combination of ARMA(2,2) without intercept, and
GARCH(1,1) assuming t-Student errors with variance targeting for pulpwood log-returns in
the TMS Georgia region two, U.S.

Estimate Std. Error t value Pr(>|t|)
φ1 0.037 0.012 2.966 0.003
φ2 -0.986 0.004 -248.807 < 0.001
θ1 -0.068 0.009 -7.836 < 0.001
θ2 1.011 0.005 187.057 < 0.001
α1 0.075 0.041 1.830 0.067
β1 0.863 0.076 11.397 < 0.001

shape 5.243 1.769 2.963 0.003
α0 5.7×10−4 NA NA NA

Figure 5.8: Conditional volatility (CSD) from estimated GARCH models of the log-returns
of sawtimber (A), and pulpwood (B) in the TMS Georgia region two, U.S.

An intermediate alternative between the implied volatility approach and GARCH models

was estimated (Equation 5.16), which captures the temporal changes of volatility within a

specific time frame (Figure 5.9). The window at 12 quarters, equivalent to three years, max-
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imized the correlation between the estimations of the QSD and the conditional volatility

from the GARCH model at 93% for both sawtimber and pulpwood. The mean of the annu-

alized volatility of the last 12 quarters (2016Q1-2018Q4) from QSD was 8.6% and 20.0% for

sawtimber and pulpwood, respectively. The trends of the QSD and CSD can both be split

into the same periods as the log-return’s volatility, as described in §5.3.1. There are no clear

differences between CSD and QSD for both sawtimber and pulpwood log-returns given that

their boxes and whiskers overlapped (Figure 5.10). However, QSD has more variability than

CSD.

Figure 5.9: Quasi-conditional volatility or moving window standard deviation (QSDt(12),
window = 12 quarters) of the log-returns for Sawtimber (A), and pulpwood (B) in the TMS
Georgia region two, U.S.
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Figure 5.10: Comparison of the conditional volatility (CSD) and quasi-conditional volatility
(QSDt(12), window = 12 quarters) of the log-returns for Sawtimber (A), and pulpwood (B)
in the TMS Georgia region two, U.S.

5.3.4 Option princing of the LTTC

The inputs for the option pricing valuation are presented in Table 5.7. Timber volumes

correspond to the conversion from MBF and cords to tons. Timber prices for sawtimber and

pulpwood were from the last quarter of 2018 (latest available data). The timber value is

the product of the timber volume and timber price and corresponds to strike and exercise

price. The risk-free interest rate is the rate for U.S. Treasury Bonds with maturity at 10

years. Annualized volatility corresponds to each of the values for implied volatility (SD),

conditional volatility (CSD) and quasi-conditional volatility (QSD). The risk-adjusted rate

is the current appropriate firm’s discount rate.

Results suggest that long-term timber contracts may not be profitable for forest product

firms (Table 5.8). Most six-month equilibrium values of the call option (the sum of V0 for

sawtimer and pulpwood) per period were less than the threshold of the six-month cost of

administering the provisions of the contract (C = $32, 400) by OPMs and volatility type.
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Table 5.7: Summary of annualized value of the inputs for the option pricing model (OPM).

Shaffer Jr. (1984) Update or conversion
Sawtimber Pulpwood Sawtimber Pulpwood

Timber volume
4,060 MBF 9,000 cords 31,262 tons 23,400 tons
5,074 MBF 11,250 cords 39,070 tons 29,250 tons

Timber price $180.0/MBF $10.0/cord $27.16/ton $14.15/ton

Timber value
$730,800 $90,000 $849,076 $331,110
$913,320 $112,500 $1,061,136 $413,888

Risk-free interest rate 11.8% 2.5%

Annualized volatility 22.5% 22.6%
SD=15.2% SD=20.0%
CSD=7.7% CSD=18.6%
QSD=8.6% QSD=20.0%

Risk-adjusted discount rate 7.0% 4.0%
Costs ($) 64,800 64,800

No further analysis is required because the costs exceed the revenues. The six-month equi-

librium value of the call option calculated with the implied volatility for the first period

using both OPMs was higher than the threshold. In this case, the calculation of the NPV

is required to evaluate the entire contract horizon (25 years). For both OPMs, the present

value of the administering costs was PV c=$1,018,125 (present value of the six-month pay-

ments of $32,400 discounted at 2% per semester). For the Black-Scholes model with SD,

PV0=$1,058,786, resulting in a positive NPV equal to $40,661. Conversely, for the binomial

model with SD, PV0=$1,002,718 resulting in a negative NPV equal to -$15,407. Differ-

ences were found between the value of the call option estimated with the Black-Scholes and

binomial models. Nevertheless, the binomial American and binomial European were equal.

Therefore, there is no early exercise premium for the call option.

To identify the combination of a pair of input variables that make a LTTC beneficial,

the value of the call option was plotted (V0), compared against the six-month administrative

contract cost (C = $32, 400), resulting in regions of loss (C > V0) and profit (V0 > C) (Figure

5.11). Volatility against the risk-free interest rate generates a parabolic threshold curve of
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the value of the call option for the LTTC (Figure 5.11 A). However, the timber value against

the risk-free interest rate (Figure 5.11 B) and the timber value against volatility (Figure 5.11

C) yield a negative exponential threshold curve.

Table 5.8: Six-month equilibrium value of the call options (V0) for sawtimber, pulpwood,
and total (sawtimber + pulpwood). The option pricing models (OPMs) were Black-Scholes
and binomial (American = European, no early exercise premium). The two periods of the
contract were 1-14 and 15-25 years. The three volatility measures were implied volatility
(SD), conditional volatility (CSD), and quasi-conditional volatility (QSD).

OPM Period Volatility type Sawtimber ($) Pulpwood ($) Total ($)

Black-Sholes

1-14 years
SD 20,841 10,339 31,180
CSD 12,040 9,694 21,734
QSD 13,086 10,339 23,425

15-25 years
SD 26,046 12,924 38,970
CSD 15,047 12,117 27,164
QSD 16,354 12,924 29,278

Binomial

1-14 years
SD 19,748 9,780 29,529
CSD 11,476 9,174 20,650
QSD 12,459 9,780 22,240

15-25 years
SD 24,680 12,225 36,906
CSD 14,343 11,467 25,810
QSD 15,571 12,225 27,797
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Figure 5.11: Regions of loss and profit as the result of the comparison between the six-
month value of a call option (sum of V0 for sawtimber and pulpwood) and the six-month
administrative cost (C =$32,400) by the pairs of the input variables in the Black-Scholes
model. The threshold of C =$32,400 defines the break even line. Volatility vs. the risk-free
interest rate with fixed timber value at $800k (A), the timber value vs. the risk-free interest
rate with fixed volatility at 12% (B), and the timber value vs. volatility with fixed risk-free
interest rate at 2.5% (C).



111

5.4 Discussion

The timberland investment environment has drastically changed in the past 30 years. Timber

prices, volatility, and interest rates are all significantly different from when they were first

examined as part of the LTTC framework by Shaffer Jr. (1984) (Mei et al., 2013). We

analyzed the effect of the estimation of the current volatility on the value of the LTTC under

present timber prices and interest rates. Based on the existing conditions, the analyzed LTTC

is not profitable for forest product firms, mainly because volatility and the risk-free interest

rate are relatively small. Indeed, the equilibrium value of the call option was less than the

non-updated cost from 1984. Certainly, the cost of administrating a contract is greater than

what it was 30 years ago (Callaghan et al., 2018).

The theory of the OPM dictates that the value of a call option increases (decreases) as

the current market value (in this case the market value equals the strike price) increases

(decreases), as volatility increases (decreases), and as the risk-free interest rate increases

(decreases) (Zinkhan, 1991). However, the effect of the combination of a pair of variables

on the value of the option is often unclear. We depicted such a relationship and showed the

levels of volatility, risk-free interest rate, and timber value that would make the analyzed

LTTC contract profitable.

A visual inspection of the timber prices and log-returns suggests marked differences in

the sawtimber and pulpwood returns. Three different trends of prices and returns were iden-

tified for sawtimber and pulpwood. However, the time series changed at various times for

sawtimber and pulpwood. Similarly, the post-recession behavior was very different for saw-

timber and pulpwood. Sawtimber prices fell 50% while pulpwood prices appreciated 140%.

Also, the variability of sawtimber at the beginning of the time series was relatively high

and slowly decreased, while the variability of pulpwood was relatively constant with more

positive returns than negative ones. However, at the end of the available time series, the

variability for sawtimber was relatively lower than the variability of pulpwood.
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The mean of the log-returns for both sawtimber and pulpwood was not statistically sig-

nificantly different from zero. Mean reverting to zero returns are expected based on the

efficient-market hypothesis (Cryer, Chan, 2008). This is the case of timberland investments

and financial instruments with timber as the underlying asset, which mimic the financial

market behavior (Zinkhan, Cubbage, 2003). As wood markets become more perfectly func-

tioning, one of the principal reasons for holding timberlands disappears (Lönnstedt, Sedjo,

2012; Yao et al., 2014). Indeed, given the level of timber prices and timberland returns, new

timberland investments are not optimal (Mei, Clutter, 2015). This helps to explain the trend

of large scale divestitures in the past three decades. Under this premise, well-functioning

wood markets will almost certainly provide raw material at a reasonable-competitive market

price (Lönnstedt, Sedjo, 2012). Therefore, the contemporary wood market conditions and

economic outlook not only preclude owning land but also may make LTTCs unprofitable for

forest firms.

Often, data from time series of the log-returns are uncorrelated. In that case, the time

series seems like white noise, from which one might incorrectly conclude that no further

analysis is required (Andersen et al., 2009). However, the sample autocorrelation of both the

squared and absolute value of log-returns does not vanish even for large lags, making evident

that there is serial dependence beyond serial correlation (Andersen et al., 2009).

The implied volatility was larger than the conditional and quasi-conditional volatilities.

Evidence supports this finding (Tsay, 2010). The higher value of the implied volatility may

mislead to a conclusion that the contract is profitable when it is not. When the implied

volatility was used into the Black-Scholes model, it resulted in a positive NPV of the

LTTC. For that reason it is highly recommended to use the conditional volatility estimated

using GARCH models or a similar estimation method that accounts for the conditional het-

eroscedasticity of the returns. Moreover, since the ARCH/GARCH effect was identified in

both sawtimber and pulpwood, there is a high-order serially dependence or volatility clus-

tering (Cryer, Chan, 2008). Volatility clustering also suggests that the returns may not be
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independent and identically distributed (Cryer, Chan, 2008). An intricate relationship exists

between the mean of the log-returns and the volatility; high risk is often expected to lead

to high returns (Zivot, 2009). Therefore, we consider that the conditional volatility (CSD)

estimated using the GARCH model is the best estimation of volatility, since it takes into

account its temporal relationship with the returns.

The quasi-conditional volatility approach was also proposed. This measure is useful for

practitioners and forest companies that want a rule of thumb for timber return volatility.

At first glance, the estimation of QSD seems like a very empirical measure of volatility.

However, QSD has a fundamental explanation in the sense that it may reflect the effect of

business cycles. Although timberland investments, as a whole, are thought uncorrelated with

the business cycles (Waggle, Johnson, 2009), returns of timber products reflect the changes

in the demand for goods and services in an economy (Yao, Mei, 2015). Thus, for the two ana-

lyzed time series, the current volatility is a result of the last three years’ economic/financial

performance of the wood market. Specifically, sawtimber CSD mirrored the business cycle

trend6.

A thorough exploration for the best combination of ARMA(p,q) and GARCH(1,1) setting

was performed. The best model for sawtimber was an ARMA(4,3) without intercept and

GARCH(1,1) assuming normal errors, and utilizing the variance targeting approach. The

best model for pulpwood was an ARMA(2,2) without intercept and GARCH(1,1) assuming

t-Student errors, and utilizing the variance targeting approach. The differences in the model

orders and distributional properties confirm that returns of sawtimber and pulpwood behave

differently. The time series of log-returns were modeled to simultaneously account for the

mean equation and volatility. The mean of returns was modeled instead to assuming MR or

GBM behavior. The time series of sawtimber returns was stationary in the mean suggesting

that the log-returns are MR; whereas the corresponding for pulpwood was not true. This

is important because the nature of timber prices implies different risks and valuations of

6Business cycles are depicted in Galvão (2002)
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timberland investments (Mei et al., 2013). Evidence suggests that MR returns are less volatile

than returns from random timber prices (Mei et al., 2013), in accordance with what we found.

Moreover, the ACF of pulpwood returns showed a clear annual (four quarters) seasonal

component in the time series; whereas the seasonality is not present in the sawtimber returns.

Given the small sample size of the time series of sawtimber and pulpwood, GARCH

parameter estimates might be biased (Iglesias, Phillips, 2011; Hwang, Valls, 2006). However,

the relative high persistence in the estimated models, especially for sawtimber, suggests that

the possibility of bias is relatively low (Hwang, Valls, 2006). Evaluating the bias in the

GARCH parameter estimates associated with small sample size needs to be undertaken in

future work. Likewise, the seasonal component in the pulpwood returns suggests the existence

of a SARIMA4 process, an interesting time series feature to be analyzed. Moreover, although

the existence of significant intervention has not been found for sawtimber log-returns (Mei

et al., 2010), future work should address the effect of the 2008 recession on returns and

volatilities of timber prices.

5.4.1 Conclusions

Well-functioning wood markets not only preclude owning land by forest firms, but also

may diminish the value of LTTCs. The reduction in value of LTTCs is a result of the cur-

rent low, risk-free interest rate and low volatility. The effect of three measures of volatility

(sample standard deviation, GARCH volatility, and moving average standard deviation)

were evaluated on the option pricing value of the LTTC. The best combination of the order

for ARMA(p,q) with GARCH(1,1) was ARMA(4,3) and ARMA(2,2), identified for saw-

timber and pulpwood returns, respectively. Quasi-conditional volatility depicted a similar

trend to that which the conditional volatility estimated from GARCH models. Thus, given

its simplicity, quasi-conditional volatility may be put into the option pricing models as an

alternative to the GARCH-type volatility.



Chapter 6

Discussion and conclusions

Both internal and external factors influence financial timberland investment performance.

The landowner has control on internal factors, such as species and genetic improvement

selection, location of the forest plantation stands, and management regimes. Analyzing forest

growth drivers, optimizing silvicultural practices to cost-effectively increase productivity,

and determining the timber product class distribution are ways to increase profitability

of timber production and manage associated risks of timberland investments. Conversely,

external economic factors, e.g., global markets, interest rates, macroeconomic stability, may

greatly influence the financial performance of timber production and timberland investments.

Understanding the effect of these economic exogenous factors in the current forest business

environment has also the most relevant importance.

Meta-analysis showed to be applicable to statistically combine, compile, and synthesize a

large amount of information from research studies to analyze forest growth drivers. Such an

intended investigation to determine the magnitude of effect of relevant forest growth factors

on forest yield would require a massive experimental design. This type of research would be

prohibitively expensive and technically unfeasible given the amount of resources involved.

Mixed effects meta-regression models for diameter at breast height (DBH), total height

(Ht), basal area (BA), and volume (V) were estimated for loblolly pine (Pinus taeda L.) in

the southeastern U.S. Both the fixed and random effects related with covariates and study

identifiers (an arbitrary code), respectively, contribute to the explanation of forest yield

variability. Overall, the level of genetic improvement, i.e., half-siblings, full-siblings, and

clones; the US Southeastern physiographic region, i.e., Lower Coastal Plain, Upper Coastal

115
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Plain, and Piedmont; the level of management regime, i.e., low, moderate, and high; and the

stand density; successfully explain forest yield. The 95% confidence intervals over time were

depicted for the levels within each of the forest growth factors to infer statistical differences

among them. Likewise, given the relative orthogonality of the covariates in the estimated

models, we can isolate the effect of each of the factors on forest growth and yield.

One of the main contributions of the meta-analysis conducted was an approach to

impute standard deviations when missing in research studies. Thus, the cumulative max-

imum recorded standard deviation to account for the heteroscedastic nature of the forest

yield variables was proposed. Moreover, knowledge gaps on forest growth factors were iden-

tified. These are associated with the lack of research studies to explain the effect of a single

or a combination of drivers on loblolly pine growth and yield in the southeastern U.S.

Estimated models were utilized to determine the contribution of silviculture to forest

yield of loblolly pine in the southeastern U.S. The effect of silvicultural practices on forest

yield can be determined by taking partial derivatives of the meta-regression models for DBH,

Ht, BA, and V with respect to the parameter estimates of moderate and high management

regimes. The equations obtained represent the silvicultural response of applying moderate

or high management regimes in comparison to the low management regime, which serves

as the reference level. The responses can be utilized to conduct financial marginal analysis

in determining the profitability of a level of management regime. The same approach of

partial derivatives can be applied to determine the genetic gain or differences between pairs

of physiographic regions (environmental effect) on forest growth and yield, and in conducting

financial marginal analyses on these factors.

Finding the stand sawtimber (most valueble timber class) proportion is vital in calcu-

lating the stand timber value. The sawtimber proportion can weight either the total volume

or timber prices to obtain the merchantable volume or the blended price, respectively. Three

Bayesian approaches were proposed, described and applied in determining the proportion of

loblolly pine trees with sawtimber potential in the southeastern U.S.: binomial, hierarchical
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and logit models. Overall, the sawtimber potential was almost a half of the stand timber

volume. The tree size had a positive effect on the sawtimber potential, whereas the inten-

sive management regime reduced the proportion of trees with sawtimber potential. Hence,

although intensive management increases forest yield, forestland owners should consider the

overall effect of silvicultural practices on the stand timber value. There were found some

differences among locations (environmental effect), whereas the effect of planting density on

sawtimber potential was negligible.

The economic context, or external factor, may considerably affect the timber produc-

tion performance and timberland investment risks. In this sense, timber prices has been a

great concern for timberland investors. The contemporary economic context considering the

current forest business environment, timber markets, timber prices, timber price volatility,

and rates of return was analyzed by updating the primer long-term timber cutting contract

(LTTC) framework in the southeastern U.S. (Shaffer Jr., 1984). Modern Well-functioning

wood markets not only preclude owning land by forest firms, but also may diminish the

value of LTTCs. The reduction in value of LTTCs is a result of the current combination of

low risk-free interest rate and low volatility.
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Charles Amélie, Darné Olivier. The accuracy of asymmetric GARCH model estima-

tion // International Economics, https:/doi.org/10.1016/j.inteco.2018.11.001. 2019. In

press, November.

Chaudhari U K, Kane M B, Wetzstein M E. The key literature of, and trends in,

forestry investment decisions using real options analysis // International Forestry

Review. 2016. 18, 2. 146–160.

Choi Jungkee, Burkhart Harold E., Amateis Ralph L. Modeling trends in stem quality

characteristics of loblolly pine trees in unthinned plantations // Canadian Journal of

Forest Research. 2008. 38, 6. 1446–1457.

Clements Sherwood, Tidwell Alan, Jin Changha. Futures markets and real estate public

equity: Connectivity of lumber futures and Timber REITs // Journal of Forest Eco-

nomics. 2017. 28. 70–79.

Clutter Jerome L, Fortson James C, Pienaar Leon V, Brister Graham H, Bailey

Robert L. Timber management: a quantitative approach. New York, NY, USA: John

Wiley & Sons, Inc., 1992. Reprint. 333.

Cryer Jonathan D., Chan Kung-Sik. Time series analysis with applications in R. New

York, NY, USA: Springer, 2008. 2nd. 491.

Curtis R P, Marshall D D. Why quadratic mean diameter? // Western Journal of

Applied Forestry. 2000. 15, 360. 137–139.

Demidenko Eugene. Mixed models: Theory and applications with R. Hoboken, New

Jersey: John Wiley & Sons, Inc., 2013. Second. 717.



121

Dicke Stephen G., Parker Robert C. Pine timber volume-to-weight conversions. 2016.

1–4.

Engle Robert F. Autoregressive conditional heteroscedasticity with estimates of the

variance of United Kingdom inflation // Econometrica. 1982. 50, 4. 987–1007.

Engle Robert F., Mezrich J. GARCH for groups // Risk1. 1996. 8. 36–40.

Espinoza J. A., Allen H. L., McKeand S. E., Dougherty P. M. Stem sinuosity in

loblolly pine with nitrogen and calcium additions // Forest Ecology and Management.

2012. 265. 55–61.

Furukawa Toshi A., Barbui Corrado, Cipriani Andrea, Brambilla Paolo, Watanabe

Norio. Imputing missing standard deviations in meta-analyses can provide accurate

results // Journal of Clinical Epidemiology. 2006. 59, 1. 7–10.

Galvão Ana Beatriz. Can non-linear time series models generate US business cycle

asymmetric shape? // Economics Letters. 2002. 77, 2. 187–194.

Gao Lei, Mei Bin. Investor attention and abnormal performance of timberland invest-

ments in the United States // Forest Policy and Economics. 2013. 28, February. 60–65.

Gelman Andrew, Carlin John B., Stern Hal S., Dunson David B., Vehtari Aki, Rubin

Donald B. Bayesian data analysis. Boca Raton, FL: CRC Press, Taylor & Francis

Group LLC, 2013. 3rd. 667.

Ghalanos Alexios. Introduction to the rugarch package. 2017. 1–50.

Glass G. Primary, secondary, and meta-analysis of research // Educational Researcher.

1976. 5, 10. 3–8.

Green P. Corey, Bullock Bronson P., Kane Michael B. Culture and density effects on

tree quality in midrotation non-thinned loblolly pine plantations // Forests. 2018. 9,

2. 1–16.



122

Haight Robert G, Holmes Thomas P. Stochastic price models and optimal tree cutting:

Results for loblolly pine // Natural Resource Modeling. 1991. 5, 4. 423–443.

Harrison W.M., Kane Michael B. PMRC coastal plain culture / density study: age 12

analysis. PMRC Technical Report 2008 - 1. Athens, GA, 2008. 74.

Harrison W.M., Shiver D.B. PMRC culture / density study: age 2 analysis. PMRC

Technical Report 1999 - 2. Athens, GA, 1999. 24.

Hedges L.V., Olkin Ingram. Statistical methods for meta-analysis. Orlando, FL: Aca-

demic Press, Inc., 1985. 369.

Hedges L.V., Vevea J L. Fixed- and random-effects models in meta-analysis // Psy-

chological Methods. 1998. 3, 4. 486–504.

Henskens F L, Battaglia M, Cherry M L, Beadle C L. Physiological basis of spacing

effects on tree growth and form in Eucalyptus globulus // Trees-Structure and Func-

tion. 2001. 15, 6. 365–377.

Hildebrandt Patrick, Knoke Thomas. Investment decisions under uncertainty-A

methodological review on forest science studies // Forest Policy and Economics. 2011.

13. 1–15.

Hull John C. DerivaGem: Fundamentals of futures and option markets. Boston, 2017.

598.

Hwang Soosung, Valls Pedro L. Small sample properties of GARCH estimates and

persistence // The European Journal of Finance. 2006. 12, 6-7. 473–494.

Iglesias Emma M., Phillips Garry D.A. Small sample estimation bias in garch models

with any number of exogenous variables in the mean equation // Econometric Reviews.

2011. 30, 3. 303–336.



123

Jokela Eric J., Dougherty Philip M., Martin Timothy A. Production dynamics of

intensively managed loblolly pine stands in the southern United States: A synthesis

of seven long-term experiments // Forest Ecology and Management. 2004. 192, 1.

117–130.

Using Soils to Guide Fertilizer Recommendations for Major Land Areas and CRIFF

Soil. // . 2012. 1–12.

Klemperer W David. Forest resource economics and finance. 2003.

Kutner Michael H, Nachtsheim Christopher J, Neter John, Li William. Applied linear

statistical models. 2005. 5th. 1396.

Land S B Jr., Roberts S D, Duzan H Jr. Genetic and spacing effects on loblolly

pine plantation development through age 17 // 12th Biennial Southern Silvicultural

Research Conference. Gen. Tech. Rep. SRS-71. 594p. Asheville, NC: U.S. Department

of Agriculture, Forest Service, Southern Research Station, 2004. 413–419.

Lehto Tarja, Ruuhola Teija, Dell Bernard. Boron in forest trees and forest ecosystems

// Forest Ecology and Management. 2010. 260, 12. 2053–2069.
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Appendix A

Detail of installation plots

Site preparation and subsequent silvicultural treatments represent two levels of management

intensity; operational and intensive culture. The operational treatment consisted of bedding

in the spring followed by a fall herbicide treatment. The herbicide treatment consisted of

12 oz. Arsenal plus 1 qt. Garlon 4 per acre if competition was waxy-leafed species or 12 oz.

Arsenal plus 1 qt. Accord per acre if the competition consisted mainly of grass. Herbicide

was applied in a five-foot band over the rows. At planting, 500 lbs. of 10-10-10 fertilizer was

applied. The intensive cultural treatment consisted of bedding in the spring followed by a fall

herbicide application. The herbicide treatment was a broadcast application of 16 oz. Arsenal,

2 qts. Garlon 4 and 2 qts. Accord per acre. At planting, 500 lbs. of 10-10-10 fertilizer was

applied. Fertilizer treatments, including the addition of micro nutrients, will be repeated at

least every three years. Beginning in the spring of the first growing season (1996), the plots

were sprayed with 4 oz. Oust per acre along with directed sprays to keep the plots free of

competing vegetation. Insecticides designed to control tip moths were applied as often as

necessary to maintain tip moth control through the first two growing seasons.
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Appendix B

Model building for the GARCH models
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Table B.1: Bayesian Information Criterion (BIC) of the combination of ARMA(p,q) and

GARCH(1,1).

ARMA(p,q)
Sawtimber Pulpwood

Normal t-Student Normal t-Student

p q Mean VT NVT VT NVT VT NVT VT NVT

0 0 0 -2.415 -2.385 -2.405 -2.375 -1.755 -1.725 -1.765 -1.736

1 0 0 -2.389 -2.359 -2.38 -2.35 -1.734 -1.703 -1.74 -1.711

2 0 0 -2.362 -2.331 -2.347 -2.317 -1.742 -1.712 -1.734 -1.705

3 0 0 -2.336 -2.306 -2.321 -2.291 -1.718 -1.687 -1.706 -1.676

4 0 0 -2.306 -2.276 -2.29 -2.26 -1.699 -1.669 -1.686 -1.656

5 0 0 -2.287 -2.257 -2.268 -2.239 -1.667 -1.636 -1.654 -1.624

0 1 0 -2.39 -2.36 -2.381 -2.35 -1.74 -1.71 -1.742 -1.713

1 1 0 -2.364 -2.334 -2.351 -2.32 -1.723 -1.693 -1.721 -1.691

2 1 0 -2.332 -2.302 -2.319 -2.289 -1.715 -1.684 -1.705 -1.675

3 1 0 -2.308 -2.278 -2.291 -2.261 -1.695 -1.665 -1.683 -1.654

4 1 0 -2.281 -2.252 -2.261 -2.23 -1.677 -1.646 -1.655 -1.626

5 1 0 -2.257 -2.227 -2.238 -2.209 -1.643 -1.612 -1.628 -1.598

0 2 0 -2.361 -2.331 -2.347 -2.317 -1.737 -1.706 -1.731 -1.701

1 2 0 -2.332 -2.301 -2.317 -2.287 -1.706 -1.675 -1.7 -1.67

2 2 0 -2.324 -2.295 -2.312 -2.283 -1.709 -1.678 -1.73 -1.702

3 2 0 -2.441 -2.394 -2.387 -2.277 -1.689 -1.658 -1.705 -1.676

4 2 0 -2.279 -2.247 -2.268 -2.238 -1.65 -1.619 -1.635 -1.606

5 2 0 -2.245 -2.218 -2.239 -2.207 -1.615 -1.585 -1.6 -1.571

0 3 0 -2.335 -2.305 -2.322 -2.291 -1.705 -1.674 -1.699 -1.67

1 3 0 -2.305 -2.275 -2.291 -2.261 -1.682 -1.651 -1.676 -1.646

2 3 0 -2.446 -2.42 -2.431 -2.281 -1.691 -1.661 -1.715 -1.643
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Table B.1 continued from previous page

ARMA(p,q)
Sawtimber Pulpwood

Normal t-Student Normal t-Student

p q Mean VT NVT VT NVT VT NVT VT NVT

3 3 0 -2.312 -2.325 -2.277 -2.233 -1.663 -1.633 -1.688 -1.659

4 3 0 -2.399 -2.389 -2.276 -2.363 -1.628 -1.602 -1.667 -1.582

5 3 0 -2.219 -2.194 -2.319 -2.177 -1.586 -1.574 -1.717 -1.712

0 4 0 -2.308 -2.278 -2.293 -2.263 -1.699 -1.669 -1.686 -1.656

1 4 0 -2.28 -2.25 -2.265 -2.235 -1.677 -1.647 -1.664 -1.634

2 4 0 -2.271 -2.243 -2.26 -2.23 -1.663 -1.632 -1.692 -1.662

3 4 0 -2.275 -2.323 -2.314 -2.199 -1.632 -1.602 -1.662 -1.633

4 4 0 -2.25 -2.199 -2.22 -2.187 -1.625 -1.564 -1.675 -1.598

5 4 0 -2.19 -2.165 -2.319 -2.284 -1.582 -1.554 -1.562 -1.533

0 5 0 -2.293 -2.264 -2.277 -2.247 -1.669 -1.639 -1.655 -1.625

1 5 0 -2.263 -2.233 -2.246 -2.216 -1.651 -1.621 -1.625 -1.596

2 5 0 -2.248 -2.22 -2.231 -2.204 -1.632 -1.602 -1.661 -1.632

3 5 0 -2.217 -2.193 -2.205 -2.175 -1.633 -1.575 -1.637 -1.608

4 5 0 -2.189 -2.159 -2.175 -2.146 -1.595 -1.542 -1.626 -1.53

5 5 0 -2.406 -2.174 -2.154 -2.125 -1.565 -1.577 -1.726 -1.573

0 0 1 -2.386 -2.356 -2.376 -2.346 -1.732 -1.701 -1.751 -1.724

1 0 1 -2.36 -2.33 -2.351 -2.321 -1.713 -1.682 -1.727 -1.7

2 0 1 -2.332 -2.302 -2.318 -2.288 -1.726 -1.695 -1.722 -1.693

3 0 1 -2.306 -2.276 -2.292 -2.262 -1.703 -1.672 -1.695 -1.666

4 0 1 -2.276 -2.247 -2.261 -2.231 -1.681 -1.65 -1.67 -1.641

5 0 1 -2.257 -2.228 -2.239 -2.21 -1.648 -1.617 -1.637 -1.608

0 1 1 -2.361 -2.331 -2.351 -2.321 -1.722 -1.691 -1.73 -1.703

1 1 1 -2.335 -2.304 -2.321 -2.291 -1.707 -1.677 -1.711 -1.683
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Table B.1 continued from previous page

ARMA(p,q)
Sawtimber Pulpwood

Normal t-Student Normal t-Student

p q Mean VT NVT VT NVT VT NVT VT NVT

2 1 1 -2.302 -2.272 -2.29 -2.259 -1.7 -1.669 -1.694 -1.665

3 1 1 -2.279 -2.249 -2.262 -2.232 -1.679 -1.649 -1.67 -1.642

4 1 1 -2.252 -2.222 -2.232 -2.201 -1.65 -1.62 -1.64 -1.611

5 1 1 -2.227 -2.198 -2.209 -2.18 -1.62 -1.59 -1.607 -1.578

0 2 1 -2.332 -2.301 -2.317 -2.287 -1.721 -1.691 -1.72 -1.692

1 2 1 -2.302 -2.271 -2.288 -2.258 -1.691 -1.66 -1.69 -1.661

2 2 1 -2.294 -2.265 -2.282 -2.253 -1.676 -1.646 -1.668 -1.639

3 2 1 -2.293 -2.386 -2.367 -2.247 -1.667 -1.637 -1.654 -1.624

4 2 1 -2.249 -2.248 -2.239 -2.209 -1.642 -1.612 -1.627 -1.742

5 2 1 -2.215 -2.189 -2.209 -2.179 -1.592 -1.562 -1.58 -1.551

0 3 1 -2.305 -2.275 -2.292 -2.262 -1.689 -1.659 -1.689 -1.66

1 3 1 -2.275 -2.245 -2.262 -2.232 -1.666 -1.636 -1.665 -1.637

2 3 1 -2.415 -2.389 -2.403 -2.38 -1.671 -1.64 -1.696 -1.626

3 3 1 -2.282 -2.291 -2.319 -2.29 -1.644 -1.613 -1.671 -1.643

4 3 1 -2.428 -2.242 -2.318 -2.217 -1.614 -1.68 -1.696 -1.7

5 3 1 -2.189 -2.164 -2.275 -2.147 -1.562 -1.646 -1.708 -1.682

0 4 1 -2.278 -2.248 -2.264 -2.234 -1.681 -1.651 -1.67 -1.641

1 4 1 -2.25 -2.22 -2.236 -2.206 -1.655 -1.624 -1.645 -1.616

2 4 1 -2.241 -2.214 -2.231 -2.201 -1.643 -1.613 -1.675 -1.647

3 4 1 -2.297 -2.278 -2.281 -2.194 -1.613 -1.582 -1.644 -1.616

4 4 1 -2.231 NA -2.24 -2.21 -1.583 -1.552 -1.676 -1.643

5 4 1 -2.161 -2.135 -2.286 -2.25 -1.665 -1.526 -1.656 -1.63

0 5 1 -2.264 -2.234 -2.248 -2.218 -1.65 -1.62 -1.638 -1.61
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Table B.1 continued from previous page

ARMA(p,q)
Sawtimber Pulpwood

Normal t-Student Normal t-Student

p q Mean VT NVT VT NVT VT NVT VT NVT

1 5 1 -2.234 -2.204 -2.217 -2.187 -1.628 -1.589 -1.609 -1.581

2 5 1 -2.218 -2.19 -2.204 -2.174 -1.635 -1.582 -1.645 -1.617

3 5 1 -2.187 -2.164 -2.176 -2.146 -1.612 -1.582 -1.619 -1.591

4 5 1 -2.159 -2.129 -2.209 -2.128 -1.57 -1.538 -1.605 -1.576

5 5 1 -2.293 -2.105 -2.391 -2.096 -1.659 -1.625 -1.58 -1.552
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MODEL FOR SAWTIMBER

*---------------------------------*

* GARCH Model Fit *

*---------------------------------*

Conditional Variance Dynamics

-----------------------------------

GARCH Model : sGARCH(1,1)

Mean Model : ARFIMA(4,0,3)

Distribution : norm

Optimal Parameters

------------------------------------

Estimate Std. Error t value Pr(>|t|)

ar1 -0.735872 0.000178 -4131.314 0.000000

ar2 0.661796 0.000172 3843.680 0.000000

ar3 1.066014 0.000263 4051.868 0.000000

ar4 0.164937 0.000054 3073.425 0.000000

ma1 0.722292 0.000182 3977.350 0.000000

ma2 -0.825891 0.000218 -3786.474 0.000000

ma3 -1.152035 0.000301 -3830.266 0.000000

alpha1 0.144261 0.041948 3.439 0.000584

beta1 0.827833 0.052097 15.890 0.000000

omega 0.000129 NA NA NA

Robust Standard Errors:

Estimate Std. Error t value Pr(>|t|)

ar1 -0.735872 0.000243 -3029.36754 0.00000

ar2 0.661796 0.001527 433.35651 0.00000

ar3 1.066014 0.001054 1010.92737 0.00000

ar4 0.164937 0.000873 188.91777 0.00000

ma1 0.722292 0.001222 590.90361 0.00000

ma2 -0.825891 0.002216 -372.73619 0.00000

ma3 -1.152035 0.002957 -389.64622 0.00000

alpha1 0.144261 1.083182 0.13318 0.89405

beta1 0.827833 1.492732 0.55458 0.57918

omega 0.000129 NA NA NA

LogLikelihood : 226.9985

Information Criteria

------------------------------------

Akaike -2.6108

Bayes -2.4427
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Shibata -2.6162

Hannan-Quinn -2.5426

Weighted Ljung-Box Test on Standardized Residuals

------------------------------------

statistic p-value

Lag[1] 0.02724 0.8689

Lag[2*(p+q)+(p+q)-1][20] 7.98017 1.0000

Lag[4*(p+q)+(p+q)-1][34] 11.76821 0.9790

d.o.f=7

H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

------------------------------------

statistic p-value

Lag[1] 0.6818 0.4090

Lag[2*(p+q)+(p+q)-1][5] 3.7764 0.2833

Lag[4*(p+q)+(p+q)-1][9] 5.6643 0.3386

d.o.f=2

Weighted ARCH LM Tests

------------------------------------

Statistic Shape Scale P-Value

ARCH Lag[3] 0.6292 0.500 2.000 0.4277

ARCH Lag[5] 1.5707 1.440 1.667 0.5739

ARCH Lag[7] 3.0309 2.315 1.543 0.5077

Nyblom stability test

------------------------------------

Joint Statistic: 2.352

Individual Statistics:

ar1 0.01921

ar2 0.01891

ar3 0.01767

ar4 0.01851

ma1 0.01663

ma2 0.01988

ma3 0.02154

alpha1 0.25534

beta1 0.27472

Asymptotic Critical Values (10% 5% 1%)

Joint Statistic: 2.1 2.32 2.82

Individual Statistic: 0.35 0.47 0.75
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Sign Bias Test

------------------------------------

t-value prob sig

Sign Bias 1.3414 0.1817

Negative Sign Bias 0.3298 0.7419

Positive Sign Bias 0.6499 0.5166

Joint Effect 3.6722 0.2991

Adjusted Pearson Goodness-of-Fit Test:

------------------------------------

group statistic p-value(g-1)

1 20 33.60 0.02048

2 30 30.78 0.37566

3 40 44.02 0.26753

4 50 63.84 0.07556

Elapsed time : 2.399172
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MODEL FOR PULPWOOD

*---------------------------------*

* GARCH Model Fit *

*---------------------------------*

Conditional Variance Dynamics

-----------------------------------

GARCH Model : sGARCH(1,1)

Mean Model : ARFIMA(2,0,2)

Distribution : std

Optimal Parameters

------------------------------------

Estimate Std. Error t value Pr(>|t|)

ar1 0.036548 0.012323 2.9658 0.003019

ar2 -0.986029 0.003963 -248.8072 0.000000

ma1 -0.068075 0.008687 -7.8361 0.000000

ma2 1.010579 0.005403 187.0574 0.000000

alpha1 0.075162 0.041068 1.8302 0.067220

beta1 0.863189 0.075737 11.3972 0.000000

shape 5.242813 1.769139 2.9635 0.003042

omega 0.000569 NA NA NA

Robust Standard Errors:

Estimate Std. Error t value Pr(>|t|)

ar1 0.036548 0.016603 2.2013 0.027713

ar2 -0.986029 0.017470 -56.4399 0.000000

ma1 -0.068075 0.009440 -7.2114 0.000000

ma2 1.010579 0.005570 181.4446 0.000000

alpha1 0.075162 0.033102 2.2706 0.023170

beta1 0.863189 0.049879 17.3058 0.000000

shape 5.242813 2.094603 2.5030 0.012314

omega 0.000569 NA NA NA

LogLikelihood : 162.3953

Information Criteria

------------------------------------

Akaike -1.8610

Bayes -1.7303

Shibata -1.8644

Hannan-Quinn -1.8080
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Weighted Ljung-Box Test on Standardized Residuals

------------------------------------

statistic p-value

Lag[1] 1.106 0.29292

Lag[2*(p+q)+(p+q)-1][11] 6.954 0.06193

Lag[4*(p+q)+(p+q)-1][19] 9.876 0.48901

d.o.f=4

H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

------------------------------------

statistic p-value

Lag[1] 0.002571 0.9596

Lag[2*(p+q)+(p+q)-1][5] 1.237096 0.8041

Lag[4*(p+q)+(p+q)-1][9] 5.295955 0.3873

d.o.f=2

Weighted ARCH LM Tests

------------------------------------

Statistic Shape Scale P-Value

ARCH Lag[3] 1.257 0.500 2.000 0.2621

ARCH Lag[5] 2.300 1.440 1.667 0.4087

ARCH Lag[7] 6.000 2.315 1.543 0.1412

Nyblom stability test

------------------------------------

Joint Statistic: 0.5877

Individual Statistics:

ar1 0.08028

ar2 0.05827

ma1 0.05166

ma2 0.05339

alpha1 0.06093

beta1 0.06364

shape 0.14542

Asymptotic Critical Values (10% 5% 1%)

Joint Statistic: 1.69 1.9 2.35

Individual Statistic: 0.35 0.47 0.75

Sign Bias Test

------------------------------------

t-value prob sig

Sign Bias 0.3710 0.7111

Negative Sign Bias 0.1338 0.8937
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Positive Sign Bias 0.9176 0.3602

Joint Effect 2.6732 0.4448

Adjusted Pearson Goodness-of-Fit Test:

------------------------------------

group statistic p-value(g-1)

1 20 19.95 0.3978

2 30 37.97 0.1230

3 40 33.00 0.7393

4 50 48.27 0.5027

Elapsed time : 0.31883


