

ENHANCING WEB SERVICE DESCRIPTIONS USING WSDL-S

by

PREEDA RAJASEKARAN

(Under the Direction of John A. Miller)

ABSTRACT

Following the Service Oriented Architecture, Web Services offer an ideal solution for

integrating heterogeneous, distributed applications on a Web scale. The collection of XML based

standards, which make up the infrastructure of Web Services, makes this possible. Providing

automation to discover and execute these services increases their potential many-fold, by

enabling their use in dynamic business processes. Semantic Web Services provide machine

processable, interpretable information about service descriptions and service functionality. This

additional information helps in realizing automation of Web Services. This work presents means

of incorporating semantic annotations into the development of Web Services. WSDL-S, an

extension of WSDL with semantic enhancements, was developed as a part of this work. The

work also discusses METEOR-S Semantic Web Services Development Tool, used for building

Semantic Web Services.

INDEX WORDS: Semantic Annotation, Semantic Web Services, WSDL, WSDL-S,

METEOR-S, Source Code Annotation.

ENHANCING WEB SERVICE DESCRIPTIONS USING WSDL-S

by

PREEDA RAJASEKARAN

B.E., Anna University, India, 2002.

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2004

© 2004

Preeda Rajasekaran

All Rights Reserved

ENHANCING WEB SERVICE DESCRIPTIONS USING WSDL-S

by

PREEDA RAJSEKARAN

Major Professor: John A. Miller

Committee: Amit P. Sheth
 Eileen T. Kraemer

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
December 2004

 iv

DEDICATION

To my parents Rajasekaran and Saroja

&

To my brother Pradeep.

 v

ACKNOWLEDGEMENTS

I would like to thank my Major Advisor, Dr. John A. Miller for all the support and

guidance he extended to me throughout this work. I would also like to express thanks to my

committee members Dr. Amit P. Sheth and Dr. Eileen T. Kraemer for their encouragement and

suggestions that has helped me with my thesis. Special thanks, to the Semantic e-Business

Middleware Group at IBM T.J. Watson Research Center, Hawthorne, NY, for acknowledging

and extending support for this work. I would also like to acknowledge the help given by my

fellow-students Kunal Verma, Karthik Gomadam, Swapna Oundhakar, Richard Patterson and Ke

Li for helping me with my work. Last but not the least I would like to thank my family and

friends for putting up with me through the tension-filled, sleepless days and for motivating me to

move ahead with my work.

 vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS...v

LIST OF TABLES... viii

LIST OF FIGURES ... ix

CHAPTER

1 INTRODUCTION ...1

2 SEMANTIC WEB SERVICES ...7

3 METEOR-S..16

4 ADDING SEMANTICS TO JAVA (JAVA-S) ...19

5 ADDING SEMANTICS TO WSDL (WSDL-S)...29

6 SEMANTIC WEB SERVICES DEVELOPMENT TOOL ...42

7 RELATED WORK ..58

8 CONCLUSION AND FUTURE WORK ..62

REFERENCES ..65

APPENDICES ...73

A WSDL-S 1.1...73

B WSDL-S 2.0...76

C DISCOVERY TEMPLATE...78

 vii

D WSDL 1.1 META-MODEL ..79

E WSDL 2.0 META-MODEL ..80

F XSD FOR WSDL-S 1.1...81

G XSD FOR WSDL-S 2.0...82

H SUMO_FINANCE ONTOLOGY ...83

I ROSETTANET ONTOLOGY...84

 viii

LIST OF TABLES

Page

Table 1: Comparision of DL and OWL Constructs ...11

Table 2: JSR 181 Meta Tags..22

Table 3: Extended Tags used in Java Source Code Annotations...24

Table 4: WSDL-S 1.1 Extension Attributes ..34

Table 5: WSDL-S 2.0 Extension Tags and Attributes...37

Table 6: Packages and Tools used by the Tool..49

Table 7: Module based usage of Packages and Tools..50

Table 8: OWL-S METEOR-S Comparison ...60

Table 9: Overview of METEOR-S, OWL-S and DERI ..61

 ix

LIST OF FIGURES

Page

Figure 1: SOA Architecture ...3

Figure 2: Service Oriented Architecture with Semantics ..10

Figure 3: OWL - Overview..13

Figure 4: METEOR-S Architecture ...17

Figure 5: Functionality of an Operation...20

Figure 6: Operation Level Annotations ...26

Figure 7: Service/Class Level Annotations..28

Figure 8: Java, WSDL files and Corresponding Annotations..31

Figure 9: WSDL-S 1.1 Snippet..32

Figure 10: Meta-Model Annotated WSDL 1.1 (WSDL-S 1.1) ...35

Figure 11: Meta-Model WSDL-S 2.0 ..38

Figure 12: WSDL-S 2.0 Snippet..39

Figure 13: Type System Round-tripping ...40

Figure 14: METEOR-S Semantic Web Services Tool -GUI...43

Figure 15: File Generations in METEOR-S SWSDT..45

Figure 16: Web Services Stack ..46

Figure 17: METEOR-S SWSDT Architecture ..47

Figure 18: METEOR-S SWSDT Functionalities...53

Figure 19: Use Case: Annotation of java and WSDL files..54

 x

Figure 20: Use Case: Deployment ...55

Figure 21: Use Case: Discovery ..56

Figure 22: Use Case: Invocation..57

 1

CHAPTER 1

INTRODUCTION

Adoption of the Service Oriented Architecture (SOA) is expected to allow enterprises to

contract-out their non-critical functions. In the new world economy, business processes typically

transcend departmental as well as organizational boundaries. Web Services are expected to

provide an ideal platform to automate these processes as they allow integration of disparate

platforms and systems. As these processes become more complex, languages like BPEL4WS

(Business Process Execution Language for Web Services) [1] are required to represent them and

control their execution. Current technology requires hard-coding of the processes, as a result it is

difficult to incorporate the latest and better solutions available during runtime. The reason for not

being able to accommodate new solutions dynamically is the difficulty in automatically

discovering and integrating new services for the processes. To allow automatic and dynamic

composition of business processes, faster and more effective methods for representing services

and suitable means to automatically identify them are needed.

Though companies are eager for seamless integration solutions, they lack standards to

expose expressive representations of their services. This incurs disadvantages in terms of failure

of being identified by potential clients, unexpected exceptions during execution and other

misinterpretations about the functionality of the service. In this work, we suggest means of

overcoming this by providing richer descriptions about the services being offered. Richer

descriptions help to define the meaning or semantics of the service. To facilitate understanding

 2

by any third party, these descriptions are expressed as a standardized conceptualization of the

application domain (e.g., a taxonomy or ontology). Incorporation of machine interpretable

descriptions i.e., semantic annotations in services offered over the Web, will help to bring about

automated integration. This is the core concept behind Semantic Web Services (SWS). Here we

discuss the types of semantic content required to describe the functional aspects of a service,

means of incorporating such information into service descriptions and advantages in integration

provided by this method in a dynamic environment.

At the lower levels, Semantic Web Services utilize regular Web Service technologies

such as SOAP – Simple Object Access Protocol [2] (for messaging) and WSDL - Web Services

Description Language [3] (for services definition). At the higher levels, semantics is used to

provide machine-processable expressive description about the service and is employed in service

discovery. In this work, we propose mechanisms for augmenting WSDL to provide semantic

descriptions and enhancing UDDI [4] to provide semantic discovery. Figure 1 illustrates the

SOA architecture adapted to suit the needs of Semantic Web services, which includes Annotated

WSDL files, an Enhanced-UDDI registry and the corresponding API’s for the Service Registry

and Provider.

Service requestors depending on business needs can discover Web Services published in

UDDI Registries. The current version of UDDI (UDDIv2) provides search capabilities based on

keywords and taxonomy. In keyword-based search wild-card “%” can be used when the exact

words to search are unknown. Keyword based search is weak in capturing the syntax and

particularly the semantics of the search string. Keywords used in the search string have assumed

lexical semantics i.e., the order (structure) of words employed in the search offers no collective

 3

meaning (weak syntax). Moreover, individual words used in search typically have different

meanings; this leads to ambiguity and hence possible loss of context (weak semantics). For these

reasons the search results returned from keyword-based search often have high recall (due to the

presence of wild-cards) and low precision (due loss of context).

Also, because of synonymity, appropriate services may be missed. This necessitates

human intervention to choose the most appropriate service. This is unsuitable for dynamic

composition and automation, as it involves discovering new services at run time by software

components without human interaction. To automate this process we require 1) meaningful

description of the service, its operations and their parameters that can be processed automatically

by tools and 2) means to understand the description, for processing by discovery engines.

Annotated
WSDL Interface

Service Request

Requested
Service
WSDL Service

Discovery
Query

Annotated WSDL

Service Response

Enhanced
UDDI

Service
Requestor

Service
Registry

Service
Provider

Annotated
WSDL

Figure 1: SOA Architecture

 4

Consider the following scenario where the user is searching for a service which deals

with “Financial Bonds’ and is offering the functionality of searching for ‘calculating Simple

Yield Request’. With the current search features of UDDI, the user can either search on the name

of the Business or Service or T-Model. The naming conventions used for the business and

service names are specific to the provider of the service and the name of the T-Model is specific

to the naming convention employed in the implementation of the service. These naming

conventions can vary based on the service provider and may not indicate the functionality

offered. Unless the user knows the exact name of the service, wild cards are employed in the

search. A typical search string used to search the UDDI Registry based on service name would

be “%Bond% Service% and %calculate%Yield%Request% (%- wildcard for search in UDDI) if

the search is based on T-Model. A lexical or regular expression based search would return all

services with any one of the five words (Bond, Service, calculate, Yield, Request) occurring in

the service name or description or T-models for operation, inputs or output. As words like

‘Bond’ have different usage like Bail Bond, Bond Lawyers, we lose ‘context of use’ in our

search, and the required service might be lost amidst large number of returned results. The

wildcards used also contribute to the irrelevant service results returned. Moreover, in keyword

search if the users employ very specific terms, e.g., ‘calculateYieldRequest’, the search results

returned can be empty, as different service providers may follow different naming scheme for

their services.

While employing semantic search, the requestor is not required to guess the name of the

service being offered, but is required to provide the context in which the service is used.

Consider the search query for ’calculateYield’ being annotated with the concepts

‘Finance:#maturityDate’, ‘Finance:#couponInterest’, ‘Finance:#bondRate’ for the inputs of the

 5

operation. This helps to identify those services offering the required functionality, though they

follow different naming conventions. For example,‘calculateYieldRequest’ is our required

service advertised in UDDI, for obvious reasons we can see why the above keyword-based

search will fail. If the input of the service published in UDDI is annotated with the concept

‘Finance:#CurrencyMeasure’, or a similar concept, by employing reasoning methods

(subsumption-relations) we can identify this service as one of the potential candidates. The

reason being ‘Finance:#couponInterest’- one of the inputs is the property of

‘Finance:#CurrencyMeasure’ in the domain ontology (see Appendix H) and hence is closely

related to the service being searched. Making use of the semantics of the functional concept of

the operations and outputs of operations, we can further refine the search results. This work

elaborates on the use of such semantic information to enhance discovery of services for dynamic

composition.

Currently, companies are starting to make use of e-business process definition standards

such as RosettaNet [5] and ebXML [6] to achieve inter-operability. They are used to provide

standardized representation of service functionalities and message exchange formats. Although

such standards provide a concrete e-business transaction format, they lack the logical reasoning

inherent in ontological representations. The use of ontologies based on standards like RosettaNet

can help overcome this issue. The Web Ontology Language (OWL) [7] is used to describe the

ontologies. This approach helps Semantic Web Services to incorporate the advantages extended

by e-business standards into its framework.

While the industry focuses on inter-operability issues by means of existing e-business

standards, academic research, has turned its focus towards developing approaches tailored for

better service representation, discovery and reasoning. Identifying potential in the research of

 6

Semantic Web Services, two committees were formed in 2003 to organize the research ideas and

efforts in this field. They are the SWSA [8] (Semantic Web Services Initiative Architecture

Committee) and SWSL [9] (Semantic Web Services Language Committee) aimed at providing a

formal and definite framework for Semantic Web Services technologies. OWL-S [10], DERI

projects (WSMO [11], WSML [12], WSMX [13]) and METEOR-S [14] (METEOR for Semantic

Web Services) are active research initiatives in this direction. While the former two developed

their own solutions to this problem METEOR-S, developed at the LSDIS lab of The University

of Georgia, aims to resolve this by reinforcing current industry standards with the power of

semantics.

 7

CHAPTER 2

SEMANTIC WEB SERVICES

Semantics- the concept of ‘study of meaning’ is changing the way content is currently

organized in the World Wide Web. The Web today gives us unlimited access to a plethora of

content, but this information cannot be processed to its full potential as a ‘source of knowledge’

due to the lack of means to ‘understand’ the underlying data. The next-generation of the Web,

the Semantic Web, overcomes this obstacle by ‘adding meaning to content’, thus making the

knowledge reclaimable. This facilitates heterogeneous, distributed information to be used by any

user who has access to the content, to tailor it for their respective needs. Acquiring a detailed

understanding of semantics, the corner stone of the Semantic Web, will enable us to tap into the

applications built on top of the Semantic Web framework. This work gives insight into the basics

of semantics and its application in Semantic Web technologies such as Semantic Web Services

(SWS). The importance of SWS has been marked by the role it can play in real-world

applications such as EAI (Enterprise Application Integration) and Electronic Commerce. Both

these fields involve knowledge management, and are moving towards the ultimate goal of

‘anyone can trade with anyone else’ principle. This demands the capability to deal with

numerous heterogeneous data types. Understanding the semantics of varied data is vital to bring

about seamless application integration.

 8

2.1 NEED FOR SEMANTICS

The current Web can be viewed as a collection of documents (static and dynamic) made

up of word symbols. While as a third-party we have access to this information, automating the

interpretation and utilization of the knowledge present in them to suit our own purpose is

currently not possible. This is because the ‘meaning’ of the data content, as thought of by the

publisher of the document is not available for others explicitly. Humans can make use of their

intuition to make sense of the documents and process them accordingly, but the absence of

machine processable information to describe the content is a huge hindrance to automating the

management of knowledge present in the Web. The machine processable content that gives

meaning to the data published is referred to as meta-data or data semantics.

Semantics provides ‘interpretations’ of formal languages. This formalism of semantics

helps us to express the meaning of content, depending on the context of use, in a machine

processable and interpretable manner. ‘Understanding’ the content of the data published on the

Web not only helps in automating a number of tasks, but also serves to improve the efficiency of

searching, filtering and categorizing information on the Web. The meaning of content varies

depending upon the context of use and the intention of the publisher. For the published content to

be successfully used by others, in the right sense, semantics offers valuable assistance in

deciphering the information. E-Business today is highly dynamic with ever-changing business

needs, varying partners and heterogeneous content management. Semantic meta-data helps to

make these business transactions less time-consuming, more efficient and with increased ROI

(Return Of Investment). The reason being, agreements with partners can be reached

automatically as the application semantics helps in data-integration, exchange of policies and

 9

business agreements. Moreover, the business logic can be unambiguously defined with the help

of semantics to be understood by different partners.

2.2 SEMANTIC WEB

The Semantic Web can be defined as ‘an extended Web of machine-readable information

and automated services that extends far beyond current capabilities’ ([15], [16]). Adding explicit

semantics to underlying content will transform the Web into a global knowledge source that can

prove useful to a number of applications. As opposed to the information overload in the current

Web, the Semantic Web will help present the content in a more organized manner. The inherent

nature of Semantic Web technology (semantically enriched) helps develop new and flexible

approaches to Data Integration [17]. This facilitates many applications, particularly Semantic

Web Services, which are built using the infrastructure of the Semantic Web [18].

2.3 ONTOLOGY

The core of semantic knowledge present in the emerging Semantic Web is through

Ontologies. The term Ontology can be defined as ‘ a set of distinct objects resulting from an

analysis of a domain, or microworld’ [19]. Gruber in [20] describes Ontology to be ‘formal

specification of conceptualization shared in a community’. Based on these definitions, ontology

can be understood to be a vocabulary of terms and relations that is used to represent an

unambiguous view of the world. As ontologies provide a representation of the real-world in a

machine processable manner, they help to formalize the communication across the applications

(built upon the Semantic Web). The components of ontology can be briefly stated as (i) Concepts

(Vocabulary) (ii) Structure (hierarchy of concepts and their attributes) iii) Specific characteristics

of concepts and their attributes (e.g., Domain and Range Restrictions, Properties of relations).

 10

Figure 2: Service Oriented Architecture with Semantics

 A clear perspective on the basics of ontology and its features can help enhance the

semantic knowledge resident in the Semantic Web. The Web Ontology Language –OWL [21] is

used for representing ontologies in the Semantic Web. OWL’s semantics are based on DL

(Description Logic) [22]. Table 1, shows DL constructs and their corresponding OWL counter-

parts. The syntax associated with the constructs is shown within brackets. More detailed

explanation on DL and OWL constructs can be found at [23].

- Semantics

 11

Table 1: Comparision of DL and OWL Constructs

DL Construct

OWL-DL construct

Atomic concept

(A)
Class (A’)

Universal concept

(the entire world)

(T)

OWL: Thing

Bottom concept (nothing)

(⊥)

OWL: Nothing

Atomic negation

(�)

complementOf (C)

Conjunction

(��)

unionOf (C1 . . .Cn)

Disjunction

(��)
intersectionOf (C1 . . .Cn)

 12

DL Construct

OWL-DL construct

Value restriction

(e.g. ≥, ≤, ≠, =)

restriction (R

{allValuesFrom(C)}

{someValuesFrom(C)}

{value(o)} [minCardinality(n)]

[maxCardinality(m)]

[cardinality(l)])

Limited existential quantification

(e.g. ∃, ∀)

oneOf(o1 . . . on) ,

restriction (T

{allValuesFrom(D)}

{someValuesFrom(D)}

{value(v)} [minCardinality(n)]

[maxCardinality(m)]

[cardinality(l)])

OWL Consturcts Ledger:

A’ – Class D – Data range

C - Description v – Data value

o – Individual name l,m,n – Non-negative integers

R - Object or abstract property {elements}- Can be repeated zero or more times

T – Datatype property [elements] -Optional

B – DataType

 13

Description Logic is one of the ‘most important knowledge representation formalism

unifying and giving a logical basis to the well known traditions of Frame-based systems,

Semantic Networks and KL-ONE-like languages, Object-Oriented representations, Semantic

data models, and Type systems’ [24]. Ontology can be viewed as a Description Logic knowledge

base, which provides unambiguous, machine-processable representation of the real-world.

METEOR-S employs the use of OWL to represent the semantic annotations. OWL is accepted as

a standard by W3C. It has become a stable specification to be understood by both the industry

and the research community. It is build on web languages such as XML/XSD [25] and RDF

(Resource Description Framework) [26] /RDFS (RDF-Schema) [27]. OWL characteristics are

obtained as extensions of RDF-S (RDF-Schema).

Based on the level of expression and time-complexity of reasoning OWL comes in three

flavors OWL-Lite, OWL-DL and OWL Full. Table 1 shows the main features of OWL-DL.

OWL-DL can also be described as OWL-Lite with value restrictions added. Detailed description

OWL

Description Logics RDF/RDFS

XML/XSD

Figure 3: OWL - Overview

 14

of OWL-DL is present in [20]. It is complete and decidable and is based on SHIQ (a highly

expressive concept language) Description Logic. SHIQ is DL ALCQHIR+, the basic ALC

(Attributive Language with Constraints) augmented with qualifying number restrictions, role

restrictions, role hierarchies, inverse roles and transitive roles [28]. OWL-Lite is OWL-DL with

cardinalities restricted to 0 / 1 [29]. OWL-Full - Extends OWL-DL [30], based on F-Logic

(meta-class facility), i.e. a Class can also be treated as an Individual (instance). Features of

OWL-Full can be found at [20]. Choice of OWL to represent annotations helps to express

constraints on services. SWRL [31] (OWL + a subset of RuleML [32]) is being considered for

representing service constraints (pre and post conditions).

2.4 SEMANTIC WEB SERVICES

 Chapter 1 presented an overview of the Service Oriented Architectures and specifically

Web Services. Web Services can be defined as “self-contained, self-describing, modular

applications that can be published, located, and invoked across the Web” [33]. Semantic Web

Services combine the advantages of Web Services with the Semantic Web to provide valuable

support for information access and e-business. Web Services provide executable services and

they are described using WSDL (Web Service Description Language) files. While these

descriptions contain information about the operation and parameter names in the service, they

offer little information about the functionality of the service. Moreover, the description of

services present in UDDI (repository of services), is not machine processable (informal

descriptions). These informal descriptions force human intervention in discovering, composing

and invoking Web services. Incorporation of semantics helps to provide a formal representation

of informal descriptions. With the support offered by Semantic Web Services, the use of Web

services in discovery, composition and invocation of services can be automated to a great extent.

 15

METEOR-S, OWL-S and DERI projects (WSMO, WSML, WSMX) are research initiatives in

this direction. Their approaches to adding semantics for Web Services development will be

discussed later in this work.

 16

CHAPTER 3

METEOR-S

The METEOR (Managing End-To-End OpeRations) project at the LSDIS Lab,

University of Georgia, focused on workflow management techniques for transactional workflows

[34]. Its follow on project, which incorporates workflow management for Semantic Web

Services is called METEOR-S (METEOR for Semantic Web Services). A key feature in this

project is the usage of semantics for the complete lifecycle of Semantic Web Processes, which

represent complex interactions between Semantic Web Services.

The main stages of creating Semantic Web Processes have been identified as 1)Design,

2)Annotation, 3)Implementation, 4)Deployment, 5)Publication, 6)Discovery, 7)Invocation,

8)Composition and 9)Execution. A key research direction of METEOR-S has been exploring

different kinds of semantics, which are present in these stages. We have identified data,

functional, Quality of Service and execution semantics as different kinds of semantics and are

working on formalizing their definitions. The architectural overview of METEOR-S along with

the road map for the year 2005 is presented in Figure 4. The Process Manager, which includes a

Proxy, helps to perform dynamic binding of services. The abstract service specifications (service

template) generated by the Semantic Web Process Designer is used by the Process Manager

(Proxy) to discover appropriate services during Web Process Execution. The Process Manager

employs the Semantic Discovery Module to search for the required service, based on information

present in the service template. The Constraint Analyzer and Optimizer modules, are discussed

 17

in [35], is used to optimize the discovery results based on service constraints. The Web Process

is executed by the Invoker module, which uses the BPEL4WS Engine for execution.

Figure 4: METEOR-S Architecture

 18

A detailed explanation of the underlying conceptual foundation of METEOR-S is present

in [36; 37]. A semi-automatic approach for annotating Web Services described using WSDL is

discussed in [38]. Means of enhancing service description to improve discovery and

composition of services is presented in [39]. The METEOR-S Web Services Discovery

Infrastructure is elaborated in [40]. A detailed overview of the Composition Framework of

METEOR-S (MWSCF) is given in [41].

Semantic Web Services pose an advantage over typical Web Service applications by

offering more expressiveness of their functionality and features. This expressiveness offered by

semantic annotations can be taken advantage of by various applications, which use Semantic

Web Services to improve their performance and produce better results. The flexibility

(dynamism) of the Process Manager is achieved by its ability to choose services that satisfy

requirements on the fly and this is possible via the semantic descriptions offered by the services.

While semantics can help express the meaning of content depending upon the context of use,

choosing the correct semantic context and the incorporating semantic knowledge into Web

Services can be a tedious and time consuming. Moreover, representation of semantic annotations

to offer maximum expressiveness and at the same time be non-obtrusive to the existing standards

can be a challenging task. The Semantic Web Service Development Tool (SWSDT) of

METEOR-S is designed to address these challenges and to provide an easy and efficient means

of representing and incorporating annotations into Web Services. This will allow for the

developer of Semantic Web Service applications to focus on ‘What semantic content needs to be

added’ rather than ‘How to incorporate the semantics’.

 19

CHAPTER 4

ADDING SEMANTICS TO JAVA (JAVA-S)

With the growing popularity of Web Services, there are a number of service providers who

are exposing their business logic as Web Services to improve their clientele. Clients who use

Web services choose a particular service based on their business needs. Service requestors

choose services based on the functionality offered by the services that satisfy their requirements.

The functionality of a service is expressed in terms of the operations that make up the service.

The semantics/functionality of an operation can be expressed in terms of its input, output,

exceptions, pre and post conditions (operation elements). In this chapter we talk about Java based

development of Semantic Web Services.

1) Classification of operation

2) Output of an operation can be defined in terms of preconditions on the input,

current state of the service and the transition function –f(). Here, we represent

‘output’ with C-like conditional IF expression.

 output = pre (input) ? f (input , state i) : g (input, state i)

 State i +1 = h (input, state i)

 assert post (output, state i+1) = 1

 f() – output function

 g() – exception function

 h()- transition function

 20

Typically in Web Services, ‘name’ and ‘type’ information of the operation elements

provide information about the operation. By annotating these components we are providing

semantic meta-data. This additional information serves as a link to knowledge base ontology, by

which these (operation elements) concepts can be better understood in terms of their properties

and relationships with other concepts in the knowledge base. An unambiguous representation of

concepts helps to decrease human intervention in processing Web Services for discovery,

composition and invocation. Semantic mark-up helps to improve discovery results by capturing

the user’s needs more accurately, thereby enabling more focused search. Dynamic Process

Composition employs the use of semantics to perform run-time choice of services to be used in

composition. Moreover, a detailed representation of constraints and exceptions will help perform

relatively error-free invocation by clients and to perform error-recovery in case of exceptions,

Figure 5: Functionality of an Operation

 21

respectively. With the importance of annotation highlighted the next section talks about

incorporation of semantic annotation into Web Services.

4.1 INCORPORATING SEMANTIC ANNOTATIONS INTO WEB SERVICES

Annotations are added to improve the expressiveness of Web Services. Industry and

research communities, to operate on Web Services, currently use the following widely accepted

standards of WSDL, UDDI and SOAP. In order to make available the benefits of semantic mark-

up as well as to conform to accepted standard specification, METEOR-S proposes effective, yet

non-obtrusive means of incorporating annotations into the development of Web Services.

As mentioned, Web Service development commonly starts with either the source code of

the service or the WSDL description for the service. In this chapter, we discuss source-code

annotation, while in chapter 5 we talk about WSDL annotation. METEOR-S handles integration

of annotation into source code (Java) via the Metadata facility of Java 5.

4.2 SOURCE CODE ANNOTATION

Oracle [42] and C#.NET [43] offers features to add annotations to source code via

javadoc comments and inbuilt metatags, respectively. Here we discuss source code annotation in

relation to Java, but the source code could be in any suitable language such as C#.NET. We

represent annotations in Java, by employing the meta-tag feature of the new j2sdk, Java 5 [44].

These tags have been introduced into the language according to the specifications of JSR 175-A

Metadata Facility for Java Programming Language [45] and JSR 181-Web Services Metadata for

Java Platform [46].

Representation of semantic content in the source code is to provide convenience for

developers of Semantic Web Services. The current practices of developing Web Services

typically start by processing source code. To adhere to the same standard for developing

 22

Semantic Web Services, we include annotations at the source code level. The annotated source

code for the service implementation corresponding to the interface can be found at [47]. JSR 181

has recently released initial draft specification of the tags to be incorporated into Java Source

Code implementations of Web Services.

We have extended the tags used for developing Web Services to incorporate semantics.

Table 2 shows the JSR 181 tags used in the tool. A more detailed explanation of the JSR 181 tags

and associated attributes are given in [46].

MetaTag Name Description

WebService
Marks a particular Java Implementation to be a
Web Service.

WebMethod
Marks individual methods to be exposed as
Web Service Operations.

WebParam
Used to represent the WSDL message part
element for an operation input.

WebResult
Used to represent the WSDL message part
element for an operation output.

OneWay
To indicate that a method has only inputs and
no output.

Table 2: JSR 181 Meta Tags

 23

MetaTag Name

Description

SecurityRoles
(Proposed)

Defines the roles that are allowed to access the
operation’s methods on the service.

Handler Chain
Associates the Web Service with an externally
defined handler chain.

SecurityIdentity
(Proposed)

Defines the identity the Web Service assumes
during execution.

DocumentWrapper
Defines the name and namespace for the wrapper
elements of a document wrapped operation.

SOAPBinding
Specifies the mapping of the Web Service onto
the SOAP message protocol. It can be specified
at the method level or at the class level.

SoapMessageHandler Associates the Web Service with an externally
defined handler chain.

SoapMessageHandlers

Collection (Array) of SoapMessageHandler.

The JSR 181 tags are extended to accommodate semantic annotation attributes. Extension

is achieved by encapsulating the JSR 181 tags within custom tags of METEOR-S. The

extensions tags used in METEOR-S to incorporate semantics and their definitions are given in

Table 3.

The annotation tags, their attributes and corresponding semantic significance are

highlighted in the following discussion. A snippet of Java Source Code annotated with method

level annotations (annotations associated with an operation) is presented in Figure 6. The method

‘getQuote’ takes in the parameter requestDetails which is of type ‘Request’ and is annotated with

the ontological concept ”rosetta:QuoteRequest” from the RosettaNet ontology (see Appendix I).

 24

The result, which is of type ‘int’ is annotated with the concept ‘rosetta:QuoteConfirmation’. The

pre-condition specifies that, for the successful execution of the method, proprietary_doc_id

(property of QuoteRequest) should be greater than 0. SemanticWebMethod tag is used to specify

the functional concept associated with the operation i.e.,‘rosetta:RequestQuote’.

MetaTag Name WSDL
Tag Description

SemanticWebService
(Service Level)

Service

Specifies semantics associated with the
service like service- location and service-
domain.

SemanticWebMethod
(Method Level)

Operation

Associates semantic concept with Web
Method. Encapsulates Web Method tag.
Value of the ‘action’ attribute provides the
functional semantics of the operation.

SemanticWebParam
(Method Level)

Part

Associates semantic concept with input
parameter of an operation. Encapsulates
WebParam tag. Value of the ‘element’
attribute is used to refer to the semantic type
that closely defines the input parameter. The
user needs to ensure that the semantic and
data-type match before annotating.

SemanticWebResult
(Method Level)

Part

Associates semantic concept with output of
an operation. Encapsulates WebResult tag.

exception
(Method Level)

fault

Associates semantic concept with exceptions
thrown by methods. This tag represents
multiple exceptions thrown by an operation.

exceptions
(Method Level)

Collection (Array) of exception tags.

pre
(Method Level)

operation

Represents the pre conditions.

Table 3: Extended Tags used in Java Source Code Annotations

 25

MetaTag Name WSDL
Tag Description

post
(Method Level)

operation

Represents the post conditions.

Constraints
(Method Level)

operation

Collection of pre and post tags.

PortType
(Service Level)

portType

Associates a name with the port Type.

Namespace
(Service Level)

Definitions

Defines namespaces for the annotations
incorporated.

Namespaces
(Service Level)

Collection (Array) of namespaces.

Binding
(Service Level)

Binding

Used to specify the name associated with
‘SOAPBinding’. Extends SOAPBinding
metatag.

Service
(Service Level)

Service

Collection (Array) of related ports.

Port
(Service Level)

port

Defines individual endpoint by specifying a
single address.

The ‘@exception’ represents individual exceptions thrown by the operation. The ‘type’

associated with exception is currently xsd:string, as there is no simple XSD type to represent

exceptions. Constraints on the operation are specified using the ‘@constraints’ tag. It consists of

two meta-tags: @pre – for preconditions and @post – for post-conditions. The value of the

‘condition’ attribute is used to define the constraint the operation has to satisfy before (pre)/after

(post) the execution of the operation. The format of the pre and post conditions in the annotated

source code is adapted from Design By Contract [48] of JML [49] (Java Modeling Language).

 26

@SemanticWebMethod (
 webMethod=@WebMethod(operationName="getQuote"),
 action="rosetta:RequestQuote")

@SemanticWebResult(

webResult =@WebResult (name="result"),
 type="int",element="rosetta:QuoteConfirmation")

@SOAPBinding(use=Use.ENCODED,style=Style.RPC)

@exceptions(
 @exception (name= "RequestException",
 element="rosetta:IllegalRequestException"))
@constraints(
 @pre (condition= "rosetta:QuoteRequest. proprietary_doc_id > 0 "))

public int getQuote(
 @SemanticWebParam (webParam=@WebParam(name="requestDetails"),
 element="rosetta:QuoteRequest") Request requestDetails) throwsRequestException{

//method implementation….

 }

JML discusses various issues to be considered in the representation of pre and post

conditions. The constraints can alternatively be represented using rule languages like SWRL.

SWRL 0.6 [50] discusses the built-in features and the syntax of the language. A detailed analysis

and processing of rules to utilize the features offered by SWRL is pending.

Class Level annotations (Annotations associated with the service / Java class) provide

information for the entire service. The information provided by these tags apply to all operations

of the service. The ‘@SemanticWebService’ tag has attributes that provide interface/service

specific annotations. These attributes are valid for all implementations of the interface. Attributes

Figure 6: Operation Level Annotations

 27

such as ‘description’ can be extended according to provider’s need. Provider specific parameters

such as ‘location’, ’QoS’ (Quality of Service) and ‘reliability’ can be included as attributes of

this tag. Figure 7, provides Java code snippet of class level annotations. From the annotations we

can find that the service ‘AnnotatedPurchase Order ‘ belongs to the NAICS (North American

Industry Classification System) category ‘Commodity Contracts Brokerage’ and is located in

‘Kentucy’. The service location, gives the deployment location of the service, which is used to

invoke the service. The namespace tags contain the URLs of the ontologies used to annotated the

service and is mapped into the ‘definitions’ tag of WSDL file.

In addition to providing enhanced description of services, source code annotation can

also help in developing the actual implementation code. For example, operations annotated with

queries to a database (SQL statements) can be used to partially generate Web Service

implementations (generate source code) of the operation. Commercially available tools such as

‘UltraLite generator’ [51] and ‘OrindaBuild’ [52] provide facilities to generate source code from

SQL statements. These tools help to ease the writing of laborious access code. Developing

source code annotations of SQL statements, and JSR 181 processor to handle these annotations

to generate implementation code, will help achieve the same functionality offered by these tools,

with no additional files or documents.

 28

@namespaces ({
 @namespace(name="rosetta",url="http://a.com/ontology"),
 @namespace(

name="wsdls",
url="http://lsdis.cs.edu/METEORS/WSDLExtensions",service_extension=true)

})
@PortType(
 name="Annotated_PurchaseOrder")

@SemanticWebService(
 webService=@WebService(targetNamespace="http://rosetta_1_test_NS",

 name="Annotated_PurchaseOrder"),
 businessEntity="PurchaseOrder_BusinessEntity",
 location="iso:Kentucy",
 domain="naics:Commodity Contracts Brokerage_11",
 description="Used to place purchase orders")

@Binding(
 name="TC_2_RosettaBinding",
 binding=@SOAPBinding(style=Style.RPC))

@Service({

@port(name="NewPORT",
binding="tns:TC_2_RosettaBinding",
location="http://128.192.168.220/axis/services/AnnotatedPurchaseOrder?wsdl"

)
})

public class AnnotatedPurchaseOrder{

Figure 7: Service/Class Level Annotations

 29

CHAPTER 5

ADDING SEMANTICS TO WSDL (WSDL-S)

A basic tenet of Web Services is that any service requestor, based on the description in

the WSDL file, can invoke the service. WSDL (Web Services Description Language) provides

information about the service such as the operations present, the expected inputs and outputs for

an operation, analogous to CORBA IDL. A client of a Web Service will look at the interface to

find out the functionality offered by the service.

Service Requestor uses interface descriptions to find candidate Web Services. Such

descriptions are therefore critical to proper discovery and use of Web Services. These

descriptions (in WSDL) are sufficient when humans search for a service. However, WSDL poses

as a problem during automatic composition of services, when services are choosen during run-

time. Moreover, WSDL offers a mainly syntactical definition of a service, which cannot be

understood by new business partners without prior agreement. With the help of ontologies, the

semantics or the meaning of service functionality can be explicated. This helps to establish

successful data exchange between service provider and requestor. Hence, adding semantics to

interfaces is very important.

With our requirements for richer description we find the need for incorporating semantic

annotations into WSDL, for use in METEOR-S. WSDL 1.1 is the industry wide accepted

standard of WSDL in use today. WSDL 2.0, is the current working draft of the next version of

WSDL. In this work, we propose enhancements to Web Service description via, 1) WSDL-S

 30

1.1 (Annotated WSDL 1.1) and 2) WSDL-S 2.0 (Annotated WSDL 2.0) files. Both these files

can be generated from the annotated source code and contain enhanced description about the

service being offered.

Tags of WSDL are used to represent the interface and implementation details of the

service. The tags portType, message, part, operation, input, output, fault are used to represent

interfaces and the tags service, port, binding are used to represent implementation specifics.

Figure 8 shows WSDL file tags and their corresponding source code semantic meta-tags. The

figure also shows the various tags of annotated Java source code and WSDL, which are

annotated using ontologies. From Figure 8, it is clear that semantic annotations are added to the

interface tags. This enables us to enhance the description of interfaces present in WSDL files.

 31

Figure 8: Java, WSDL Files and Corresponding Annotations

 32

<message name = "getStatusRequest">
 <part name = "statusQuestions" type = "xsd:string"
 wsdls:concept="rosetta:PurchaseOrderStatusQuery"/>
</message>
<message name="getStatusResponse">
 <part name = "result" type = "xsd:int"
 wsdls:concept="rosetta:PurchaseOrderStatusResponse"/>
</message>
<operation name = "getStatus"
 wsdls:concept="rosetta:QueryOrderStatus"
 wsdls:preconditions=

"statusQuestions. PurchaseOrderLineItem.RequestedQuantity > 0"/>
 <input message="tns:getStatusRequest" />
 <output message="tns:getStatusResponse" />
</operation>

5.1 WSDL-S 1.1

Our annotations introduced into WSDL documents are designed to be compliant with

existing WSDL standards. This will ensure that the annotations can be taken advantage by those

who require it and can be ignored by those who do not need it. Moreover, these annotations are

aimed to add more expressiveness to WSDL files, with minimal modifications. Most annotations

are added as extensible attributes of their respective components. Annotations can also be

introduced by means of permissible extensible tags in WSDL. Appendix A contains an example

WSDL-S 1.1 file. Figure 9, a snippet of WSDL-S 1.1, shows annotations for the operation

‘getStaus’. The type information is shown in italics and semantic annotations are shown in bold.

Figure 9: WSDL-S 1.1 Snippet

 33

5.1.1 WSDL-S 1.1 META-MODEL

The explicit representation of the constructs and rules that is used in a WSDL document

is represented via Meta-model. Meta-model of WSDL consists of the tags present in WSDL

along with the associations with other tags present in the file. Appendix D, shows the meta-

model of WSDL. The meta-model clearly depicts the cardinality of the tags and the attributes of

tags. In the meta-model, the type attribute of message part is shown as an association to ‘Type’.

This is because we have not expanded the metamodel for XSD, but have reference to XSD

Schema. The ‘Types’ tag consists of XSD types such as ‘element’, ‘simpleType’ and

‘complexType’. The meta-model, with additional semantic attributes, WSDL-S 1.1 is shown in

Figure 10.

From the meta-model it is clear that the location of extensible tags in WSDL does not

always allow for a logical grouping of annotations. For example, ‘portType’ does not have the

feature of extensibility elements, which forces us to add the annotations as attributes of the

‘portType’ element (unless using the new schema of WSDL 1.1). This has led to the proposal of

WSDL-S 2.0, where suggestions are made to incorporate new tags into WSDL 2.0 to support

semantics. Table 4 shows the various the attributes of WSDL–S 1.1, which are used to

incorporate semantics into WSDL tags.

 34

WSDL Tag Attributes Introduced Explanation

Operation wsdls:concept
Used to specify semantic
annotations to specify what the
operation does.

Operation wsdls:precondition

Used to specify pre-conditions
(constraints) on an operation.
Multiple pre-conditions are
separated by logical ‘and’ (&&).

Operation wsdl:postconditions

Used to specify post-conditions
(constraints) on an operation.
Multiple post-conditions are
separated by logical ‘and’ (&&).

Part wsdls:concept

Used to specify semantic
annotations of input, output and
fault. It is used to explain the
meaning of input, output
parameters, and faults.

Service wsdls:location

Used to specify the geographic
location of the service. Elements
of ISO (International
Organization for Standardization)
taxonomy are used to specify
service location.

Service wsdls:domain

Used to specify the service
category. Elements of NAICS
taxonomy are used to specify the
service domain.

Table 4: WSDL-S 1.1 Extension Attributes

 35

Figure 10: Meta-Model Annotated WSDL 1.1 (WSDL-S 1.1)

 36

5.2 WSDL-S 2.0

WSDL-S 2.0 is a semantically enriched WSDL 2.0 document. In this section, we further

describe the motivation and features of WSDL-S. As discussed earlier, one of the central

purposes of WSDL is to describe interfaces (formerly known as port-types) to Web services. In

general, service providers/implementers could use a standard interface, extend a standard

interface or develop their own.

 In WSDL-S, an interface contains a set of operations. Each operation has a signature,

which includes an operation name, input, output and fault messages. These messages have types

that are defined using any XML-based schema language. The schema language that is commonly

used is XSD (XML Schema Definition), although OWL is an alternative. In WSDL 2.0, types

are further moved outside the standard, since types systems are complex to define. We propose

using this feature of WSDL 2.0 to use OWL as a semantic type system. The WSDL 2.0

definition offers support for type systems other than XSD, allowing the use of an OWL type as a

valid WSDL type. This helps to incorporate annotations without introducing as many new

attributes as in WSDL-S 1.1. Annotations are mainly incorporated into WSDL 2.0 via new type

elements. To represent constraints (pre and post conditions) we suggest additional tags to be

incorporated into the WSDL 2.0 as extensible tags.

5.2.1 WSDL-S 2.0 META – MODEL

This section presents the meta-model for WSDL 2.0 Interface definition. The complete

meta-model for WSDL 2.0, with binding and service definition is present in Appendix E. Dashed

lines mark extensions to WSDL 2.0. Figure 11 presents WSDL-S 2.0 with suggested extensible

tags. Dotted lines mark the proposed extensions.

 37

The following example uses an Ontology based on the RosettaNet PIP directory. An

initial draft of this ontology is available in Appendix H. The namespace feature of WSDL is used

to reference classes and properties from this Ontology. Figure 12 shows a snippet of WSDL-S

2.0 file. In WSDL 2.0, each interface consists of a number of operations. Each operation can be

seen as a unit of functionality of each service. It is imperative to capture the functionality of each

operation. In order to illustrate our extensions, consider the following operation, which allows

users to place an order. A complete WSDL-S interface is shown in Appendix B. Table 5 shows

the attributes used to add extensibility to WSDL 2.0. Proposed WSDL tags are shown in bold.

WSDL 2.0 Tag Attributes
Introduced

Explanation

Operation wsdls:concept
Depicts the action the
operation performs with the
help of ontology concepts.

Input, output and fault element
The use of OWL types is
proposed as values of this
attribute.

Service wsdls:location

Used to specify the
geographic location of the
service. Elements of ISO
(International Organization
for Standardization)
taxonomy are used to specify
service location.

Service wsdls:domain

Used to specify the service
category. Elements of NAICS
taxonomy are used to specify
the service domain.

Pre wsdls:condition
Depicts the pre conditions
with the help of a rule
language like SWRL.

Post wsdls:condition
Depicts the post conditions
with the help of a rule
language like SWRL.

Table 5: WSDL-S 2.0 Extension Tags and Attributes

 38

Figure 11: Meta-Model WSDL-S 2.0

 39

<operation name = "getStatus" pattern="mep:in-out"
 concept="rosetta: QueryOrderStatus"/>
 <input messageLabel = " statusQuestions"
 element = "rosetta: PurchaseOrderStatusQuery"/>
 <output messageLabel = "orderStatus"
 element = "rosetta:PurchaseOrderStatusResponse"/>
 <fault element = "rosetta:PurchasedOrderExpiredException"/>
 <pre condition =
 "statusQuestions. PurchaseOrderLineItem.RequestedQuantity > 0"/>
</operation>

In WSDL 2.0, OWL and UML (Unified Modeling Language)/XMI are possible type

systems, along with XSD. In the above WSDL-S example, the inputs and outputs are expressed

using OWL types (shown in bold) from the Rosetta Net ontology instead of XML schema types

(XSD)+. By employing basic transformation rules [53], WSDL-S can be employed in Web

Service composition, where the individual Web Services are used in larger Web Processes. In

Web Processes, output of one service is fed as the input of another service, so type

transformations are essential for successful execution if the inputs and outputs do not have

exactly the same types.

With the new WSDL 2.0, WSDL creators are provided features to use an external type

system in their document. This raises many research questions with relation to type system round

tripping (see Figure 13). The most commonly used type system is XML Schema,

+ This design choice represents a unification of typing and annotation, both of which may bear semantics. This
unification, would mean that annotations supply no additional information beyond the (semantic) type. Whether this
is the best choice is an open question. Perhaps it is better to maintina distinctions between types and annotations.

Figure 12: WSDL-S 2.0 Snippet

 40

whereas, Web Services are developed using languages such as C# .NET and Java. Complex and

user defined data-types require the service provider to provide the appropriate

transformations/mapping to XSD types. A discussion of mapping OWL to Java data types is

presented in [54].

 “Round-tripping is the process of mapping from one representation to another and back

again.” [53]. Complete round-tripping is desirable to maintain data-integrity when the type

systems used by the providers and requestors are different. While transformation between

(language) Java primitive types and XML-Schema can be achieved by employing some

relaxations on the primitives used. A similar mapping between XML Schema and OWL, OWL

and Java is not trivial. Due to the richness of OWL, we may have to employ complex

transformations and work-arounds to switch between these different type systems. A complete

mapping between these different type-systems is an open research issue in this area.

Figure 13: Type System Round-tripping

 41

While annotating, the developer of the service must provide ‘type’ information. The

‘type’ should match the data-structure and semantic-meaning of the concept it is used to

annotate. In the absence of a suitable type, developers can define their own extensions to the

existing types. This makes it necessary to provide transformation rules to map between user-

defined types and standardized/recognized types (e.g., in the RosettaNet Ontology). Simple

transformations such as rupees to dollars may be specified in SWRL.

 The parameter ‘http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl

getRate USA India‘ - represents: 1) The Web Service with operation ‘getRate’ to return the

exchange rate required for the transformation and 2) Operation input parameters (USA and

India). More complex transformations may be specified using XSLT (Extensible Stylesheet

Language Transformations). The developer is provided with the following choices to define the

type, 1) Use a type from a recognized ontology, 2) Extend such a type and provide at least a

downcast operation, or 3) Create their own type and provide mappings to

standardized/recognized types. Without adhering to these transformation rules, interoperation

between partners will be error-prone.

Dollar = Rupee * ‘http://www.xmethods.net/sd/2001/
CurrencyExchangeService.wsdl getRate USA India‘

 42

CHAPTER 6

SEMANTIC WEB SERVICES DEVELOPMENT TOOL

The previous chapters discussed the importance of semantics in Web Services and how

they can be incorporated in Web Service Development. This chapter will present the METEOR-

S Semantic Web Service Development Tool (SWSDT), which helps to incorporate semantic

descriptions into Web Services via a Graphical User Interface (GUI). The tool also includes

other modules, which help perform semantic publishing and discovery, deployment and

invocation of Semantic Web Services.

Development of Web Services may start with the processing of the source code for the

Web Service (either partially or fully implemented). Another approach deals directly with the

WSDL representation of the Web Service. Both the methods process either the source code/

WSDL files to deploy a service as a Web Service. To enable Semantic Web Services we need to

include semantics in the description of the services. To be consistent with the standard ways of

developing Web Services, the METEOR-S SWSDT Plug-in aims to provide an easy means of

developing Semantic Web Services from source code or WSDL files. Figure 14 shows the main

interface of the plugin.

 43

Color codes:
 File Info Panel
 Annotater Info Panel
 File Preview Panel

 Ontology Info Panel

Figure 14: METEOR-S Semantic Web Services Tool -GUI

 44

The tool offers support for developing Semantic Web Services from three different file formats.

1) Annotated and Non-annotated Source Code (Java)

2) Annotated and Non-annotated WSDL 1.1

3) Annotated and Non-annotated WSDL 2.0

To demonstrate the importance of the tool, let us consider the development of Semantic Web

Services, i.e., to perform semantic annotations of the source code/WSDL files in the absence of

the METEOR-S tool. The developer first needs to decide the elements of the source code/WSDL

files which, require annotations, then proceed to choose the corresponding ontological concept

from an existing ontology. Due to the disparate nature of the two sources that needs to be

matched, the developer needs to have to source code/WSDL open in an editor and the ontology

to be opened in an Ontology Viewer such as Protégé [55]. After the correct ontological concept

is chosen, the user needs to incorporate the annotations in the right format by editing the source

code/WSDL files. The tool appends the namespace of the ontology as the prefix of semantic

annotations. This helps to identify the ontology to which a particular semantic concept belongs.

Annotation added should consist of the correct namespace of the ontology to avoid

disambiguation problems. Errors in syntax/editing will prevent the Web Service from being

exposed to clients.

The tool is designed to circumvent theses potential problems. The tool offers tree

representations of the source code/WSDL files and Ontology files (OWL files) simultaneously to

enable to the user to choose the most appropriate mapping. Moreover, the tree representations

help the user to browse/navigate through the entire document in a comparatively less amount of

time, without having to deal with Java Implementation Code/XML syntax representations. The

‘Choose-Click-Annotate’ methodology helps the user to refrain from direct syntax/file

 45

manipulations. This reduces errors that can be brought about by manual editing of large

documents. The tool essentially frees the developer from the task of representing and

incorporating annotations and helps him/her focus on the task at hand, to provide the most

appropriate annotations.

The tool generates various file formats to be used in the development of Semantic Web

Services as shown in the Figure 15. Thus the user has the option to choose between ‘Java-based

development’ or ‘WSDL-based development’ of Semantic Web Services.

Figure 16 shows how the tool fits into the current Web Services framework. The different

layers of the Web Services stack, where the tool operates on are shown in bold in the figure. The

Web Services stack describes the various standards used to formulate the infrastructure of Web

Services.

Figure 15: File Generations in METEOR-S SWSDT Plugin

 46

 Ledger:

The tool operates on the layers marked in bold. The tool adds semantics to improve their

normal functionality. Annotations are added into WSDL documents, which are then

published unto semantically enhanced UDDI registry. The Semantic Discovery Engine

operates on the Enhanced UDDI Registry to return search results.

Figure 16: Web Services Stack

 47

6.1 ARCHITECTURAL OVERVIEW OF THE TOOL

 This section presents an architectural overview of the tool. Figure 17 outlines the various

modules that make up the tool and the way they are incorporated into the framework of the tool.

Section 6.3 discusses the individual modules in detail and presents implementation details

associated with the tool.

METEOR-S Semantic Web Service
Tool

Annotated
Java Source/
WSDL File
Generators

GUI for
Manual Java/
WSDL file
Annotation

MWSAF –For
Automatic
Annotation

Semantic Publishing
and Semantic
Discovery Engine

Deployment and
Invocation GUI

Semantically
Enhanced
UDDI Registry

Figure 17: METEOR-S SWSDT Plugin Architecture

 48

6.2 FEATURES OF THE TOOL

The METEOR-S tool has been developed as a plug-in for the Eclipse Platform. The main

features of the tool are ,

1) GUI for manual annotation of Java Source Code and WSDL files.

2) Provides an easy-to-browse tree representation of Java Source Code and WSDL files.

3) Presents a tree representation of OWL Ontology files as Classes and Properties, to be

used in the annotation of files.

4) Three different types of file formats can be used for annotation (Java Source

Code/WSDL 1.1 / WSDL2.0)

The other useful features of the tool are explained as follows. At any stage, the annotations

embedded in the file can be viewed. This helps the user to view the syntax of annotations being

embedded. Validation of WSDL files is performed before and after annotation, to ensure

consistency with WSDL standards. The interface is designed so as to remove the necessity for

users to peruse complex XML code or manually edit the syntax of annotation. This reduces the

possibility of errors. The statistics on the number of annotated concepts can be viewed during the

annotation process. This gives the user an idea of the number of concepts that require annotation.

Warning messages and error messages are used to help the user avoid mistakes. Tree

representations of Java and WSDL files; have associated help with each node describing the

definition of the component/node. This additional information will help the user make

appropriate choices in annotating the node. Complete instructions on installation and usage of the

tool are presented in: http://lsdis.cs.uga.edu/Projects/METEOR-S/Downloads.

 49

6.3 INFRASTRUCTURE AND IMPLEMENTATION OF THE TOOL

The previous sections presented the features and functionality of the METEOR-S

Semantic Web Services Development Tool. This chapter discusses the infrastructure of the tool,

i.e., the packages and tools used for developing the tool. A brief overview of implementation

details and the external modules used by the tool is also presented here. Table 6 lists the tools

and packages used. Table 7 organizes the different packages according to the module that uses

them. All modules operate on the Eclipse platform.

Packages/ Tools Usage

Jena 2.0 For Parsing OWL ontology files [56].

Axis 1.2 For Deploying and Invoking Web Services [57].

Xerces 2.6.1 For Parsing WSDL file to extract incorporated

annotations [58].

Eclipse 3.0 The base platform on which the Tool operates on

[59].

Ant 1.6 Used for invoking tools outside the eclipse

workbench [60].

Java 5.0 To offer support for semantic annotations via meta-

tags [43].

UDDI4J 2.0.2 Used for publishing and discovering into the UDDI

registry [61].

JWSDP 1.2 UDDI Registry used for publishing and discovering

Semantic Web Services +(includes Tomcat –Servlet

Engine) [62].

+ Version 1.2 is currently used due to its compatibility with UDDI4J, we will be upgrading to the latest version of
JWSDP in our future work.

Table 6: Packages and Tools used by the Tool

 50

Modules

Packages Used

Annotation

Jena, Java5, Xerces, Ant.

Deployment

Axis, Ant.

Publishing

Axis, Xerces, UDDI4J,
JWSDP, Jena.

Discovery

Axis, UDDI4J, JWSDP,
Jena, Xerces.

Invocation

Axis, Ant.

6.4 IMPLEMENTATION OF THE TOOL

The METEOR-S Semantic Web Services tool uses Java 5 to maintain source code

annotations in Java files. The reflection API of Java 5 helps to retrieve the semantic annotations.

Xerces parsers are used to parse the annotated WSDL file to extract out semantic information.

The extracted annotations in both cases are maintained in an in-memory data-model during

processing. After manual annotation the required files are generated using the ‘Generate’

modules present in the ‘utils’ package. OWL ontology files are parsed using Jena, to extract out

class, sub-class, properties and documentation information. Tools external to the plugin such as

MWSAF (METEOR-S Web Services Annotation Framework) are invoked using the ANT

(Another Neat Tool) plugin to Eclipse. The main interface of the plugin is implemented in SWT

Table 7: Module based usage of Packages and Tools

 51

[63] (Standard Widget Toolkit) for use within the Eclipse platform. The discovery and

publishing module makes use of UDDI4J to access the JWSDP UDDI registry.

6.5. MODULES USED IN THE TOOL

6.5.1 MWSAF

 MWSAF [37] –METEOR-S Web Service Annotation Framework is used by the tool to

suggest annotations to the user. It performs automated annotation of the given WSDL file, when

provided with the corresponding ontology. The SWSDT makes use of ANT to make external

calls to MWSAF to perform automatic annotation. As MWSAF works on only WSDL files, a

layer is built upon MWSAF to handle Java Source Code. This layer converts the Java Source

Code to its corresponding WSDL representation before passing it to MWSAF. The algorithm and

the details of MWSAF annotation methods are presented in [37]. The annotation performed by

MWSAF depends on the WSDL schema and the schema of the ontology used for annotation.

Therefore, depending upon the users choice of ontology and Java Source Code/WSDL the

precision of the suggested annotation can vary. The user is also requested to enter a threshold of

acceptance to perform automated annotation. The users are provided with the option of either

keeping/discarding the annotations suggested by MWSAF.

6.5.2 DISCOVERY AND PUBLISHING

 The publishing and discovery modules are used to populate and query the semantically

enhanced UDDI respectively. Publishing of annotated WSDL into the UDDI registry is

performed according to the specification stated in [64��� The algorithm used in discovery is

explained in [65]. The user can perform discovery of the published annotated WSDL files by

means of a Discovery Template. The template is built by the user and is designed to hold the

information necessary for discovery such as the functional concept of the operation, annotations

 52

for inputs and outputs, domain and location information. The tool provides facilities to build new

discovery templates or extend existing templates (reusability of existing templates). The results

returned by the discovery engine are grouped as per the users choice of ‘Operations within the

same service/different service’. The discovered Services are displayed to the users along with a

discovery rank - which represents the degree of similarity of the results returned to the discovery

template.

6.5.3 DEPLOYER AND INVOKER

 The deployer and invoker are used to deploy and invoke the Web services annotated and

discovered by the tool respectively. Like MWSAF, these modules are invoked by using ANT

scripts outside the eclipse workbench. The annotated WSDL files are deployed and the location

of deployment is returned to the user. This WSDL location is provided to the publisher when

publishing the WSDL file in the UDDI Registry. The invoker is used to invoke the

services/operations returned by the discovery module. The values of the parameters used for

invocation are obtained from the user via the GUI and the results are displayed back to the user.

Axis and Tomcat are the base packages and tools used for deployment and invocation. Details of

invocation and deployment are present in [66].

6.6 USE CASE

The following use case describes an end-to-end scenario, illustrates the use of the tool. As

mentioned in Chapter 3, the different stages of Web Service development are discussed in the

following sections. The main interface of the tool and the organization of the various prts of the

tool are shown in Figure 18. The tool is designed so as to provide an easy means of developing

Semantic Web Services.

 53

1 3 4 5 6 2 7

 Figure 18: METEOR-S SWSDT Functionalities

Top-Level Functions of SWSDT

1. File Open, Save, and Generate
2. Automated Annotation
3. Annotate
4. Deploy
5. Publish
6. Discover
7. Invoke

 54

6.6.1 ANNOTATION OF JAVA SOURCE CODE/WSDL FILES

Figure 18 shows the functionalities required to perform annotation of Java/WSDL files.

To perform annotation, the user opens the file to be exposed as a Web Service

(PuchaseOrder.wsdl in Appendix A) by using the File Open Menu. The ontology to be used for

annotation (RosettaNet ontology) is opened in the ‘Ontology Info Panel’. The user can opt for

‘automatic annotation’by providing the URL of OWL ontology and the threshold for suggesting

annotations. Depending upon the precision of the suggested annotations, the user can

keep/discard the annotations suggested. For unannotated elements, annotations are added, by first

selecting the elements of the file opened (Java Source Code/WSDL files) and then, choosing the

corresponding Ontological concept and pressing the ‘Annotate’ button. For example the user can

select the input parameter ‘statusQuestions’ of ‘getStatus’ operation and annotate it using the

RosettaNet ontological concept ‘PurchaseOrderStatusQuery’. Using the tool nodes such as

Open WSDL/
Java File

Open OWL
Ontology

User Performs
Mappings/Annotation

 Figure 19: Use Case: Annotation of java and WSDL files

 55

namespaces, exceptions, output, bindings, port and services can be edited. Domain and Location

information can be chosen from the NAICS and ISO taxonomies respectively.

6.6.2 GENERATING ANNOTATED JAVA SOURCE CODE/ WSDL FILES:

 Refer to Figure 15 for the different types of File Generations possible with the tool. After

the user has performed satisfactory annotation of the files, ‘View annotations’ Menu can be used

to get an overview of all annotations incorporated. The tool checks to see if all mandatory

annotations are made and throws error/warning messages for missing annotations. The user can

then choose File ‘Save’ Menu to generate the desired files.

6.6.3 DEPLOYMENT

 The deployment module is launched, by choosing the Deploy Menu. The module takes in

the location of the Java Source Code/ WSDL files, location of the server where the deployment

should be done, security information for the server such as username and password. It returns to

the user the location of deployment. This is the location of the WSDL file corresponding to the

service deployed. Typical deployment in Axis is performed with the help of ‘deployment

descriptors’ (.wsdd files). More information about using the deployment descriptor can be found

Deploy WSDL /
Java Source

Code

User
Location of deployed
WSDL file

Figure 20: Use Case: Deployment

 56

at [67]. A client using the service will use this location to access the WSDL file. The publishing

API requires this location during publishing into the UDDI registry.

6.6.4 PUBLISHING

 Once the file has been deployed and the location of deployment is obtained, the user is

ready to publish the service in the UDDI registry. As in deployment, the user can choose the

publishing functionality via Publish Menu. The tool comes configured to use the JWSDP UDDI

registry running on a server in the LSDIS Lab, but can be customized to use any UDDI registry.

Details on how to change the registry are given in the User Guide. The publishing module

publishes the content of the WSDL file into the appropriate data-structures of UDDI Registry.

6.6.5 DISCOVERY

The Discovery module employs the use of a discovery template to perform semantic

discovery. The Discovery Menu provides the user with options to load/save/build a discovery

template. To start discovery, the user has to first build the discovery template based on the

functionality of the operation(s) required. The functional concept of the operation, annotations of

input and output parameters and the domain and location of the service can be represented using

the discovery template. The discovery results are returned to the user and are grouped according

to the service (same/different). The rank of the discovered service is displayed along with other

Build Discovery
Template

User Call Discovery
Module

Results of
discovery

 Figure 21: Use Case: Discovery

 57

information about the service such as Service Provider (Business Entity), Service Location

(location where the WSDL file associated with the service can be accessed) and Port Details

required for the invocation of the particular operation.

6.6.6 INVOCATION

 The discovered services can be invoked by choosing the appropriate service/operation

and pressing the invoke button. The invocation module is activated via an Ant Script. The values

for the parameters of the chosen operation(s) are taken as input from the user and the results of

invocation are displayed to the user. The user can then choose to invoke other services or return

back to the main menu of the tool.

Choose a
discovered
service for
invocation

User Call Invocation
Module

Get values for
input parameters
from user

Results of
invocation

 Figure 22: Use Case: Invocation

 58

CHAPTER 7

RELATED WORK

In this thesis we have presented an approach for adding to add semantics to descriptions

of Web Services at design time, through source code or WSDL annotations. We have also

discussed the changes needed to incorporate these descriptions into WSDL standards, to enhance

discovery. This section presents ongoing research related to the work presented in this report.

As discussed in Chapter 4, source code annotations is a feature present in languages such

as Oracle, BEA [68] and C# .NET. Oracle and BEA use javadoc comments as placeholders of

annotations. However, currently in these two languages annotations are used to customize the

Web Service only in terms of functionalities such as binding, protocol and conversation. In C#, a

language feature called ‘attribute’ is used to represent meta-information about different

programming entities. The same feature can be used to specify descriptive information about

Web services. We suggest annotating Web Services with descriptions at design time, by service

providers. Our work is an extension of [69] which presents our first step towards semantic

annotation of WSDL files. An alternative approach is discussed in [37], which suggests semi-

automatic annotation of WSDL files using schema matching.

An overview of the creation and usage of service templates in process composition is

discussed in [69]. MWSDI [37] expands on this work, and presents the use of service templates

to discover suitable services during dynamic composition of business flows. An approach to

define the functionality of a Web service as the transformation of inputs to outputs is discussed

 59

in [70]. Methods to semantically enhance UDDI to support service descriptions are discussed in

[70] and [71].

The OWL-S (formerly DAML-S) project defines an ontology for the domain of Web

services. This ontology provides concepts, which can be used for describing actual Web services.

The ontology consists of three sub-ontologies: service profile, service grounding and the process

model. They are tied together using service ontology. The service profile defines the functional

and non-functional properties of the services. Service grounding contains information about

invocation. In an effort to align with industry standards, service grounding provides mapping of

OWL atomic processes to WSDL operations. The process model describes the ordering of the

operations of the service. OWL-S defines an approach to enable Semantic Web Services. We

believe that our approach is more lightweight and easier to put into practice. Our approach tries

to adhere to the current standards, while trying to maximize semantic representations required for

automation. Table 8 illustrates the differences between OWL-S and METEOR-S.

The other research initiative in this area is based on the work done by DERI in WSMF

(Web Services Modeling Framework). Digital Enterprise Research Institute’s mission can be

defined as ‘to make Intelligent Web Services an reality’. This institute led by Dr. Dieter Fensel

and Dr. Christoph Bussler focuses on Semantic Web Services oriented research. The main

research groups in DERI oriented towards the area of Semantic Web Services (SWS) are

WSMO, WSML and WSMX. Web Service Modeling Ontology (WSMO) is used for describing

services and its automation process. It is based on WSMF (Web Service Modeling Framework).

Web Service Modeling Language (WSML) focuses on developing a formal language for

Semantic Web Services. Web Service Execution Environment (WSMX) work is on developing

 60

means to achieve dynamic interoperability of Web services. WSMO (Web Services Modeling

Ontology) is developed to encompass the different aspects of Web service development.

 OWL-S

METEOR-S

Service Descriptions

Service Profile + WSDL

WSDL-S

To use/invoke
Service Model + Service

Grounding + WSDL
WSDL-S

Interaction between

Services
Process Model

BPEL (Business Process

Execution Language)

Elements Annotated

I –Inputs

O -Outputs

P –Pre-Conditions

E -Effects

Functionality of the

operation, Input, Output,

Pre-Conditions, Post-

Conditions and Faults.

Repository of services
Collection of profile instances/

UDDI

Semantically Enhanced

UDDI

WSMO aims to solve the interoperability issue by means of mediators and goals

(including pre and post conditions). WSMO introduces semantic description into Web services

by means of F-logic statements. The complexity of F-Logic can serve as a disadvantage to users

who are unfamiliar with rule languages. Our approach involves representing constraints as

Boolean expression in annotated source code and converting the same to for example, SWRL

Table 8: OWL-S METEOR-S Comparison

 61

rules in WSDL-S documents. The former representation (Boolean expressions) enables the

developers to easily understand the constraints, while the later (SWRL rules) is used for logical

querying using inference engines. Table 9 presents an overview of the three main research efforts

in this area.

METEOR-S OWL-S DERI

Service
Descriptions

WSDL-S
WSDL+Service

Profile
WSMO

Dynamic
Execution

METEOR-S

Dynamic

Processor

OWL-S Virtual

Machine
WSMX

Semantic Web
Language Used

OWL OWL
WSML

(F-logic)

Table 9: Overview of METEOR-S, OWL-S and DERI

 62

CHAPTER 8

CONCLUSION AND FUTURE WORK

 In this work, we presented an overview of the importance of Semantic Web Services,

which represent a confluence of important emerging fields, Web Services and the Semantic Web.

It discusses the importance of incorporating annotations into Web Services to improve the degree

of automation and to provide more information about the service, to service requestors. Different

design issues involved in incorporating semantic meta-data into the development of Web

Services have been discussed in terms of Java Source Code based development of Web Services

and WSDL based development of Web Services. The work provides original contribution in the

area of incorporating semantic annotations into Java Source Code via Java 5 meta-tag facility.

WSDL 2.0 offers support for varied type-systems, WSDL-S an extended version of WSDL was

suggested as a part of this work, to provide logical placeholders for annotations in Web Service

Descriptions. The advantages of incorporating annotations such as enhanced service descriptions

for enabling better service discovery, led into the discussion about the means and tools required

to develop Semantic Web Services. The work presented the METEOR-S Semantic Web Service

Development Tool, which was developed as an Eclipse Plug-in. The features of the tool and

advantages of using the tool for SWS development include simultaneous browsable views of

WSDL and OWL ontology files, a simple interface for adding semantic annotations into Web

Services, and generation of different formats for semantically annotated files (Java Source Code,

WSDL-S 1.1, WSDL-S 2.0).

 63

 The research work associated with this tool has presented other research ideas that could

be used to extend and improve the functionality of the tool. Currently, annotation of WSDL

message part elements serves as the focal point for adding semantic mark-up for operation

parameters. Future work needs to focus on adding annotations to complex types at the basic

element level, as it will help to provide more accurate semantic description of the parameters.

Moreover, the service descriptions (WSDL files) available over the Web commonly use complex

types. The name of the complex input/outputs in some cases are generic terms such as

‘parameters’, but the names of base elements (of complex type) provide information about the

inputs and outputs of the operation. These names can help guide the user to choose appropriate

annotations from ontology.

 Observations made in the process of this work, have helped to start creating test-beds for

evaluating Semantic Web Services. The WSDL files to be used in the test-bed should contain

valid names for input and output parameters. This will help in choosing appropriate annotations.

Ontologies used to annotate WSDL files, should provide a comprehensive view of the domain of

Web Services present in the test-bed. WSDL files and ontologies used in the test-bed should be

separated according to the domain of use. Performance evaluation of incorporating semantic

annotations into Web Services should be done as a part of future work. While this work offers

support for WSDL/WSDL-S 2.0 file generation from WSDL/WSDL-S 1.1 files, future work can

provide complete migration based on the revised specification of WSDL 2.0. WSDL 2.0 is the

current working draft for the next version of WSDL developed by the Web Services Description

Working Group.

 64

 As a part of future work, the namespace of the extended tags and the names of the tags

used in the source code can be refined and aligned to the upcoming JSR 181 specifications.

Additional tags to represent other service descriptions like Quality of Service and response type

can be added to the source code. Tools such as APT (Annotation Processing Tool) [72] can help

in processing annotations in an efficient manner. An interface to add constraints (pre and post

conditions) should be developed. This interface will help users to choose from the various

comparison operators and concepts/properties from ontology, to enable them to enter constraints

in a more effective manner. WSDL-S file parsing can be speeded up, by using Digestors [73] to

populate an in-memory data model directly. Another feature to help in the development of

Semantic Web Services would be a provision to perform Junit [74] testing. This functionality

could be used to test the service before actually deploying it. This would help the user to test the

service functionality by simulating the actual deployment and invocation process. Test results

(recall and precision) of semantic discovery of Services should be also done as a part of future

work. As discussed in Chapter 4 source code annotations can be used to generate

implementations for database access operations. The annotation processor for such tasks, could

be similar to the one used in this work, with additional modifications to generate JDBC SQL

statements. This work was partly funded by IBM’s Eclipse Innovation Grant Program and the

first version of the METEOR-S SWSDT is available for download at

http://lsdis.cs.uga.edu/METEOR-S/Downloads, along with the installation and user guide.

 65

REFERENCES

[1] T. Andrews et al., 2003, Specification: Business Process Execution Language for Web

Services Version 1.1, http://www-106.ibm.com/developerworks/library/ws-bpel/.

[2] N. Mitra, 2003, SOAP Version 1.2 Part 0: Primer, W3C Recommendation,

http://www.w3.org/TR/2003/REC-soap12-part0-20030624/.

[3] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana, 2001, Web Services

Description Language (WSDL) 1.1, W3C Note, http://www.w3.org/TR/wsdl.

[4] C. Riegen et al., 2002, UDDI Version 2.03 Data Structure Reference,

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2.

[5] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar and J. Miller, METEOR–S

WSDI: A Scalable Infrastructure of Registries for Semantic Publication and Discovery of Web

Services, 2005, Journal of Information Technology and Management (ITM), Special Issue on

Universal Global Integration, Vol. 6, No. 1 pp. 17-39, Kluwer Academic Publishers.

[5] RosettaNet – Lingua Franca for e-Business, http://www.rosettanet.org/ RosettaNet/ Rooms/

DisplayPages/LayoutInitial.

[6] Core Component Dictionary, ebXML Core Components, 2001, Version 1.04,

http://www.ebxml.org/specs/ccDICT.pdf.

[7] D. McGuinness and F. Harmelen, 2004, OWL Web Ontology Language Overview-

http://www.w3.org/TR/2004/REC-owl-features-20040210/.

 66

[8] M. Burstein et al., 2004, SWSA – Semantic Web Services Architecture

http://www.daml.org/services/swsa/.

[9] M. Kiefer et al., 2004, SWSL – Semantic Web Services Language,

http://www.daml.org/services/swsl/workplan.html.

[10] A. Ankolenkar et al., 2003, The DAML Services Coalition, DAML-S: Web Service

Description for the Semantic Web, The First International Semantic Web Conference (ISWC),

Sardinia (Italy).

[11] D. Roman, U. Keller and H.Lausen, 2004, WSMO – Web Service Modeling Ontology

(WSMO), DERI Working Draft, http://www.wsmo.org/2004/d2/v0.1/ 20040214/.

[12] J. Brujin, 2003, WSML- The WSMO Language, http://www.deri.at/ teaching/seminars/

internal/slides/ wsml-intro.pdf.

[13] D. Fensel and C. Bussler, 2004, The Web Service Modeling Framework-WSMF

http://www.wsmo.org/wsmx/papers/publications/wsmf.paper.pdf.

 [14] METEOR-S: Semantic Web Services and Processes, http://swp.semanticweb.org, 2004.

[15] T. Berners-Lee, J. Handler, and O. Lassila, 2001, The Semantic Web, Scientific American,

284 (5): 34-43, May 2001.

[16] D. Fensel and M. Musen, 2001, Special Issue on Semantic Web Technology,

IEEE Intelligent Systems (IEEE IS), 16(2).

[17] D. Fensel, C. Bussler, Y. Ding, V. Kartseva, M. Klein, M. Korotkiy, B. Omelayenko, and R.

Siebes, 2002, Semantic Web Application Areas. In Proceedings of the 7th International

Workshop on Applications of Natural Language to Information Systems, Stockholm - Sweden,

June 27-28.

[18] S. Hawke, 2003, How the Semantic Web Works, http://www.w3.org/2002/03/semweb/.

 67

[19] D. Jurafsky and J. Martin, 2000, An Introduction to Natural Language Processing,

Computational Linguistics, and Speech Recognition, Prentice Hall Publishing.

[20] T. Gruber, 1993, A translation approach to portable ontologies. Knowledge Acquisition,

5(2): 199-220.

[21] D. McGuinness and F. Harmelen, 2004, OWL Web Ontology Language Overview-

http://www.w3.org/TR/2004/REC-owl-features-20040210/.

[22] I. Horrocks, P. Schneider, F. Harmelen, From SHIQ and RDF to OWL: The Making of a

Web Ontology Language, 2003, Journal of Web Semantics, 1(1): 7-26.

[23] I. Horrocks and P. Schneider, 2003, Reducing OWL Entailment to Description Logic

Satisfiability, Proc. of the 2nd International Semantic Web Conference (ISWC), Sanibel Island,

FL, pp. 17-29.

[24] C. Lutz, 2004, Description Logics, http://dl.kr.org/.

[25] D. Fallside, 2001, XML Schema Part 0: Primer http://www.w3.org/TR/2001/REC-

xmlschema-0-20010502/.

[26] F. Manola and E. Miller, 2004, Resource Description Framework, http://www.w3.org/

TR/rdf-primer/.

[27] D. Brickley and R.Guha, 2004, RDF Schema, http://www.w3.org/TR/rdf-schema/.

[28] D. Fensel, 2003, Lecture Telecoporation, http://lsdis.cs.uga.edu/ SemWebProcess/ material/

sw_intro1.ppt.

[29] P. Beltrán-Ferruz, P. González-Calero and P. Gervás, 2004, Converting Mikrokosmos

frames intoDescription Logics, htttp://calisto.sip.ucm.es/people/pjjbf/slides/nlpxml.pdf

[30] S. Bechhofer, I. Horrocks and P. Schneider, 2003,�Tutorial on OWL, ISWC, Sanibel Island,

Florida, USA, October, 2003, http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial.

 68

[31] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M. Dean, 2004, Semantic

Web Rule Language, http://www.daml.org/2003/11/swrl/.

[32] H. Boley, M. Dean, B. Grosof, M. Sintek, B. Spencer, S.Tabet and G. Wagner, The Rule

Markup Initiative, 2004, http://www.ruleml.org.

[33] D. Tidwell, 2000, Web services: the Web's next revolution, IBM Web Service Tutorial,

http://www-106.ibm.com/developerworks/edu/ws-dw-wsbasics-i.html.

[34] A. Sheth, K. Kochut, J. Miller, D. Worah, S. Das, C. Lin, D. Palaniswami, J. Lynch and I.

Shvchenko, Supporting State-wide Immunization Tracking using Multi-Paradigm, 1996,

WorkflowTechnology Proceedings of the 22nd Intl. Conf. on Very Large Databases (VLDB96),

Bombay, India, September, pp. 263-273.

[35] R. Aggarwal, K. Verma, A. Sheth, J. Miller and W. Milnor, Constraint Driven Web Service

Composition in METEOR-S, Proceedings of the 2004 IEEE International Conference on

Services Computing, Shanghai, China, pp. 23-32.

[36] A. Sheth, 2003, Semantic Web Process Lifecycle: Role of Semantics in Annotation,

Discovery, Composition and Orchestration, Invited Talk, WWW 2003 Workshop on E-Services

and the Semantic Web, Budapest, Hungary. http://www.ics.forth.gr/isl/essw2003/

presentations/seth.ppt.

[37] K. Sivashanmugam, A. Sheth, J. Miller, K.Verma, R. Aggarwal, P. Rajasekaran, Metadata

and Semantics for Web Services and Processes, 2003, Book Chapter, Datenbanken und

Informationssysteme: Festschrift zum 60- Geburtstag von Gunter Schlageter, Benn et al Eds,

Praktische Informatik I, Hagen, pp. 245-272.

 69

[38] A. Patil, S. Oundhakar, A. Sheth and K. Verma, METEOR-S Web service Annotation

Framework, World Wide Conference, In the Proceedings of the 13th W3C Confernece, New

York, USA, 2004, pp. 553-563.

[39] P. Rajsekaran, J. Miller, K. Verma and A. Sheth, 2004, Enhancing Web Services

Description and Discovery to Facilitate Composition, Proceedings of the 1st International

Workshop on Semantic Web Services and Web Process Composition (SWSWPC'04), Part of the

2nd International Conference on Web Services (ICWS'04), San Diego, California, pp. 34-47.

[40] K. Sivashanmugam, K. Verma and A. Sheth, Discovery of Web Services in a Federated

Registry Environment, 2004, Proceedings of IEEE Second International Conference on Web

Services, San Diego, California, USA, pp. 270-278.

[41] K. Sivashanmugam, J. Miller, A. Sheth and K. Verma, Framework for Semantic Web

Process Composition, 2005, International Journal of Electronic Commerce (IJEC), Special Issue

on Semantic Web Services and Their Role in Enterprise Application Integration and E-

Commerce, Vol. 9, No. 2, pp. 71-106, M.E. Sharpe, Inc.

[42] Web Services Metadata Annotation Example, http://otn.oracle.com/tech/java/oc4j/

1003/how_to/how-to-ws-metadata.html.

[43] C# Programmers Reference, http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/csref/html/vclrfIntroductionToAttributes.asp.

[44] Jdk 1.5 Java Development Kit, http://java.sun.com/j2se/1.5.0/index.jsp.

[45] G. Bracha et al., 2003, JSR 175 Java Specification Requests - http://www.jcp.org/en/jsr/

detail?id=175.

[46] M. Mihic and J. Trezzo, 2002, JSR 181 Java Specification Requests, http://www.jcp.org/

en/jsr/ detail?id=181.

 70

[47] WSDL-S Document: http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s.

[48] J. Jézéquel and B. Meyer, IEEE, 1997, Vol. 30, No. 2, pp. 129-130.

[49] T. Leavens and Y. Cheon, Design by Contract with JML, 2004, http://www.cs.caltech.edu/

cs141/ resources/JML/docs/jmltutorial/jmldbc.pdf.

[50] D. Hirtle, H. Boley and M. Dean, 2004, SWRL RuleML Accessing SWRL Properties as

"Foreign" Atoms, http://www.ruleml.org/swrl/.

[51] UltraLite User Guide - UltraLite Generator, http://www.ianywhere.com/ developer/

product_manuals/ sqlanywhere/0901/en/html/ulfoen9/ulfoen9.htm.

[52] Ordina Software, OrdinaBuild 4.0, http://www.orindasoft.com/public/Introductiontwo.

php4? siteloc=Introductiontwo.

[53] R. Butek and R.Scheuerle, 2004, Maintaining data integrity across JAX-RPC, http://www-

106.ibm.com/developerworks/library/ws-tip-roundtrip1.html.

[54] A. Kalyanpur, D. Pastor, S. Battle and J. Padget, Automatic mapping of OWL ontologies

into Java, 2004, http://www.mindswap.org/aditkal/www2004_OWL2Java.pdf.

[55] N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and M. A. Musen, Creating

Semantic Web Contents with Protege-2000, 2001, IEEE Intelligent Systems 16(2): pp. 60-71.

[56] B. McBride, Jena: Implementing the RDF Model and Syntax Specification, 2001,

http://www.hpl.hp.com/semweb/publications.htm#Jena.

[57] Axis Developers Guide, http://ws.apache.org/axis/java/developers-guide.html.

[58] Xerces, http://xml.apache.org/xerces-j/.

[59] Eclipse Paltform Technical Overview, 2003, http://www.eclipse.org/articles/index.html

[60] Apache Ant 1.6.2 Users Manual, http://ant.apache.org/manual/.

 71

[61] D. Tidwell, 2001, UDDI4J Matchmaking for Web Services, http://www-106.ibm.com/

developerworks /library/ws-uddi4j.html.

[62] JWSDP 1.2, http://java.sun.com/webservices/jwsdp/index.jsp.

[63] S. Northover, 2001, Standard Widget ToolKit- http://www.eclipse.org/articles/Article-SWT-

Design-1/SWT-Design-1.html.

[64] J. Colgrave and K. Januszewski, 2004, Using WSDL in a UDDI Registry, http://www.oasis-

open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.pdf.

[65] R. Aggarwal, Constraint Driven Web Service Composition in METEOR-S, 2004, Masters

Thesis, http://chief.cs.uga.edu/~jam/ home/theses/ aggarwal_thesis/

aggarwal_rohit_200408_ms.pdf.

[66] K.Gomadam et al., 2005, METEOR-S Dynamic Invocation Framework, (in preparation).

[67] Axis User Guide, http://ws.apache.org/axis/java/user-guide.html.

[68] BEA WebLogic Workshop Help, Java Web Service Annotations, http: //edocs.bea.com/

workshop/ docs81/doc/en/core/index.html.

[69] K. Sivashanmugam, K. Verma, A. Sheth and J. Miller, Adding Semantics to Web Services

Standards, 2003, Proceedings of 1st International Conference of Web Services, pp. 395-401.

[70] M. Paolucci, T. Kawamura, T. Payne and K. Sycara, 2002, Semantic Matching of Web

Services Capabilities, Proceedings of the ISWC 2002, First International Semantic Web

Conference, Sardinia, Italy, Springer, pp. 333-347.

[71] R. Akkiraju, R.Goodwin, P. Doshi and S. Roeder, 2003, A Method For Semantically

Enhancing the Service Discovery Capabilities of UDDI, In Proceedings of the Workshop on

Information Integration on the Web, IJCAI 2003, Acapulco, Mexico, pp. 274-279.

 72

[72] Annotation Processing Tool, http://java.sun.com/j2se/1.5.0/docs/guide/apt/.

[73] Apache Commons Digester, User-Guide, http://jakarta.apache.org/commons/digester/.

[74] Junit Testing, http://www.junit.org/index.htm.

 73

APPENDIX A – WSDL-S 1.1

[AnnotatedPurchaseOrder.wsdl]

<?xml version="1.0" encoding="UTF-8"?>

<definitions
name="urn:Annotated_PurchaseOrder"
targetNamespace=
"http://mantra:8080/axis/ Annotated_PurchaseOrder.jws?wsdl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns=
 "http://mantra:8080/axis/Annotated_PurchaseOrder.jws?wsdl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:typens=
"http://mantra:8080/axis/ Annotated_PurchaseOrder.jws?wsdl"
xmlns:wsdls=
"http://lsdis.cs.uga.edu/projects/METEOR-S/WSDLExtensions/wsdls11.xsd"
xmlns:rosetta=
"http://lsdis.cs.uga.edu/projects/METEOR-S/Ontology/RosettaNet.owl"
xmlns:wsel="http://www.w3.org/wsel">

<types>
 <xsd:schema targetNamespace=
 "http://mantra:8080/axis/Annotated_PurchaseOrder.jws?wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:complexType name="Request">
<xsd:all>

<xsd:element name="Item_ID" type="xsd:int"/>
<xsd:element name="Item Name" type="xsd:string"/>

</xsd:all>
</xsd:complexType>

 </xsd:schema>
</types>

<message name="getQuoteRequest">

<part name="requestDetails" type="typens:complex"
wsdls:concept="rosetta:QuoteRequest"/>

</message>

<message name="getQuoteResponse">

 74

<part name="result" type="xsd:int"
wsdls:concept="rosetta:QuoteConfirmation"/>

</message>

<message name="getStatusRequest">
<part name="statusQuestions" type="xsd:string"
wsdls:concept="rosetta:PurchaseOrderStatusQuery"/>

</message>
<message name="getStatusResponse">

<part name="result" type="xsd:int"
wsdls:concept="rosetta:PurchaseOrderStatusResponse"/>

</message>
<portType name="Annotated_PurchaseOrder"

wsdls:GeographicLocation="iso:Kentucy"
wsdls:BusinessEntity="PurchaseOrder_BusinessEntity"
wsdls:Category="naics:Commodity Contracts Brokerage_11"
wsdls:Description="Quote Request Service Status Inquiry" >

 <operation name="getQuote" wsdls:operation-expose="true"

wsdls:concept="rosetta:RequestQuote">
<input message="tns:getQuoteRequest" />
<output message="tns:getQuoteResponse" />

 </operation>

 <operation name="getStatus" wsdls:operation-expose="true"
wsdls:concept="rosetta:QueryOrderStatus">
<input message="tns:getStatusRequest" />
<output message="tns:getStatusResponse" />

 </operation>
</portType>

<binding name="RosettaBinding" type="tns:Annotated_PurchaseOrder">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getQuote">

<soap:operation soapAction="" style="rpc" />
<input>

<soap:body use="encoded" namespace="http://mantra:8080/axis/
 Annotated_PurchaseOrder.jws?wsdl"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>

<soap:body use="encoded" namespace="http://mantra:8080/axis/
Annotated_PurchaseOrder.jws?wsdl"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

 75

</operation>
<operation name="getStatus">

<soap:operation soapAction="" style="rpc" />
<input>

<soap:body use="encoded" namespace="http://mantra:8080/axis/
 Annotated_PurchaseOrder.jws?wsdl"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>

<soap:body use="encoded" namespace="http://mantra:8080/axis/
 Annotated_PurchaseOrder.jws?wsdl"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>

<service name="Annotated_PurchaseOrder"
wsdls:location="iso:Kentucy"
wsdls:businessEntity="urn:PurchaseOrder_BusinessEntity">
<port name="RosettaNet_PortName" binding="tns:RosettaBinding">
<soap:address location =
 "http://mantra:8080/axis/services/Annotated_PurchaseOrder.jws?wsdl " />
</port>

</service>

</definitions>

 76

APPENDIX B -WSDL-S 2.0

[Annotated_PurchaseOrder.wsdl20]

<?xml version="1.0" encoding="UTF-8"?>
 <definitions
 name="Annotated_PurchaseOrder"
 xmlns:wsel="http://www.w3.org/wsel"
 xmlns:wsdls=
 "http://lsdis.cs.uga.edu/projects/METEOR-S/WSDLExtensions/wsdls20.xsd"
 xmlns:rosetta=
 "http://lsdis.cs.uga.edu/projects/METEOR-S/Ontology/RosettaNet.owl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:typens=
 "http://mantra:8080/axis/services/Annotated_PurchaseOrder.jws?wsdl20"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 targetNamespace=
 "http:// mantra:8080/axis/services/Annotated_PurchaseOrder.jws?wsdl20"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns=
 "http:// mantra:8080/axis/services/Annotated_PurchaseOrder.jws?wsdl20">

<types>
 <xsd:schema targetNamespace=

"http://mantra/axis/services/Annotated_PurchaseOrder.jws?wsdl20"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:complexType name="Request">
<xsd:all>

<xsd:element name="Item_ID" type="xsd:int"/>
<xsd:element name="Item Name" type="xsd:string"/>

</xsd:all>
</xsd:complexType>

 </xsd:schema>
 </types>

 <interface name="Annotated_PurchaseOrder"
 wsdls:businessService ="PurchaseOrder_BusinessEntity"
 wsdls:domain ="naics:Commodity Contracts Brokerage_11"
 wsdls:location ="iso:Kentucy"
 wsdls:description ="Quote Request Service Status Inquiry " >

 77

 <operation name="getQuote" pattern="mep:in-out"
 action="rosetta:RequestQuote" >
 <input messageLabel="requestDetails" type="typens:complex"
 element="rosetta:QuoteRequest" />
 <output messageLabel="result" type="xsd:int"
 element="rosetta:QuoteConfirmation" />
 </operation>

 <operation name="getStatus" pattern="mep:in-out"
 action="rosetta:QueryOrderStatus" >
 <input messageLabel="statusQuestions" type="xsd:string"
 element="rosetta:PurchaseOrderStatusQuery" />
 <output messageLabel="result" type="xsd:int"
 element="rosetta:PurchaseOrderStatusResponse" />
 </operation>
 </interface>
</definitions>

 78

APPENDIX C - DISCOVERY TEMPLATE

[PurchaseOrder.dtf]

<?xml version="1.0" encoding="UTF-8"?>
 <discovery-template>
 <ontologies>

<ontology name=
"http://lsdis.cs.uga.edu/projects/METEOR-S/Ontology/RosettaNet.owl" />

</ontologies>
<operations>

<operation name="op1" concept=
"http://lsdis.cs.uga.edu/projects/
METEOR-S/Ontology/RosettaNet.owl #RequestQuote" >
<inputs>

<input name="in1" concept=
"http://lsdis.cs.uga.edu/projects/
 METEOR-S/Ontology/RosettaNet.owl #QuoteRequest"/>

</inputs>
<outputs>

<output name="out1" concept =
"http://lsdis.cs.uga.edu/projects/METEOR-S/
Ontology/RosettaNet.owl #QuoteConfirmation"/>

</outputs>
</operation>

 <operation name="op2"
concept="http://lsdis.cs.uga.edu/projects/METEOR-S/
Ontology/RosettaNet.owl #QueryOrderStatus" >
<inputs>

<input name="in2" concept=
"http://lsdis.cs.uga.edu/projects/METEOR-S/
Ontology/RosettaNet.owl #PurchaseOrderStatusQuery"/>

</inputs>
<outputs>

 <output name="out2" concept=
 "http://lsdis.cs.uga.edu/projects/METEOR-S/Ontology/RosettaNet.owl#
PurchaseOrderStatusResponse"/>
</outputs>

 </operation>
 </operations>
</discovery-template>

 79

APPENDIX D – WSDL 1.1 META-MODEL

 80

APPENDIX E – WSDL 2.0 META-MODEL

 81

APPENDIX F - XSD FOR WSDL-S 1.1

[http://lsdis.cs.uga.edu/Projects/METEOR-S/WSDLExtensions/wsdls11.xsd]

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://lsdis.cs.uga.edu/Projects/METEOR-S/WSDLExtensions"
xmlns=" http://lsdis.cs.uga.edu/Projects/METEOR-S/WSDLExtensions "
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<xs:element ref="wsdl:operation">
 <xs:attribute name=”concept" type="anyURI" use="optional" />
 <xs:attribute name="pre-condition" type="anyURI" use="optional" />
 <xs:attribute name="post-condition" type="anyURI" use="optional" />
</xs:element>

<xs:element ref="wsdl:portType">
 <xs:attribute name="domain" type="anyURI" use="optional" />
 <xs:attribute name="descritpion" type="xs:string" use="optional" />
</xs:element>

<xs:element ref="wsdl:service">
 <xs:attribute name="location" type="anyURI" use="optional" />
 <xs:attribute name="BusinessEntity" type="xs:string" use="optional" />
</xs:element>

<xs:element ref="wsdl:part">
 <xs:attribute name="concept" type="anyURI" use="optional" />
</xs:element>
</xs:schema>

 82

APPENDIX G - XSD FOR WSDL-S 2.0

[http://lsdis.cs.uga.edu/Projects/METEOR-S/WSDLExtensions/wsdls20.xsd]

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://lsdis.cs.uga.edu/Projects/METEOR-S/WSDLExtensions"
xmlns=" http://lsdis.cs.uga.edu/Projects/METEOR-S/WSDLExtensions "
xmlns:wsdls="http://www.w3.org/2003/11/wsdl/">

<xs:element ref="wsdls:operation">
 <xs:attribute name="concept" type="anyURI" use="optional" />

</xs:element>
<xs:element ref="wsdls:operation">
 <xs:element name="pre" >
 <xs:attribute name="condition" type="anyURI" use="optional" />
 </xs:element>
 <xs:element name="post" >
 <xs:attribute name="condition" type="anyURI" use="optional" />
 </xs:element>
</xs:element>

<xs:element ref="wsdls:interface">
 <xs:attribute name="domain" type="anyURI" use="optional" />
 <xs:attribute name="descritpion" type="xs:string" use="optional" />
</xs:element>

<xs:element ref="wsdls:service">
 <xs:attribute name="location" type="anyURI" use="optional" />
 <xs:attribute name="BusinessEntity" type="xs:string" use="optional" />
</xs:element>

<xs:element ref="wsdls:input">
 <xs:attribute name="concept" type="anyURI" use="optional" />
</xs:element>
<xs:element ref="wsdls:output">
 <xs:attribute name="onto-concept" type="anyURI" use="optional" />
</xs:element>
</xs:schema>

 83

APPENDIX H – SUMO_FINANCE ONTOLOGY

[http://lsdis.cs.uga.edu/Projects/METEOR-S/Ontology/SUMO_Finance.owl]

 84

APPENDIX I – ROSETTANET ONTOLOGY

[http://lsdis.cs.uga.edu/Projects/METEOR-S/Ontology/RosettaNet.owl]

