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Abstract

Many IRT models have been developed to maintain the quality of items and estimate an

individual’s underlying latent ability, θ, more accurately. The conventional one-, two-, and

three-parameter normal or logistic models assume local independence after controlling for

an individual’s ability, θ. Although this conventional assumption is straightforward, some

studies have shown that it may not be accurate under some conditions as shown in testlets

(Bradlow et al., 1999). Testlets composed of a set of items sharing common stimuli have

been widely used in educational and psychological tests. With the demand for more accurate

estimation of items and an individual’s θ, the need for new estimation procedures has become

obvious.

The purpose of this study is to examine the sensitivity of different prior distributions

within the 3PLT model. First, the efficacy of the 3PLT model in the WinBUGS 1.4 pro-

gram (Spiegelhalter, Thomas, Best, & Lunn, 2003) was compared to the 3PLT model in the

SCORIGHT 3.0 (Wang, Bradlow, & Wainer, 2004) and the Gibbs (Du, 1998) programs, nei-

ther of which can manipulate pre-specified prior distributions. Later, the impacts of different

prior distributions in the 3PLT model will be discussed.
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Dedication

Mysterious Joviality

Mirage whirling within hearts

Inserts puffs of loving touch to souls

Now, in the hours of grey the moment

Jadegreen eyes whispering lovable smiles

Usher us into mosaic roads

Numbed hearts stuck in the dark

Glide into the rainbow

Seize the moment

Of missing, loving touch

Never forget the moments

Gracious tears flowed into sun,

and to whom I loved.
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Chapter 1

INTRODUCTION

1.1 STATEMENT OF PROBLEM

There have been enormous statistical advances made in the analysis of standardized educa-

tional and psychological tests. Parallel with this, the practical advantages of the Bayesian

approach were recognized in item response theory (IRT) and have been adopted to pro-

vide more detailed information about item parameters and an individual’s underlying latent

ability.

Recently, testlets comprising a set of items from a common stimulus (Rosenbaum, 1988;

Wainer & Kiely, 1987; Wainer & Lewis, 1990) have emerged in educational tests as a remedy

for multiple-choice items which are often criticized for decontextualization (Li, 2004). Once

Bradlow, Wainer, and Wang (1999) suggested a two-parameter normal testlet model so as

to include the testlet effect in the model, subsequent studies (Wainer, Bradlow, & Du, 2000;

Wang, Bradlow, & Wainer, 2002) showed that testlet models effectively account for local

dependence existing among items sharing the same stimulus and also yield accurate model

parameter recovery.

However, issues of prior specification on testlet models have been neglected and need

to be investigated, especially, under the three-parameter logistic testlet (3PLT) model. It

is well known that prior distribution affects the rate of convergence when sample sizes are

small. Furthermore, it is not appropriate to assume all item parameters follow the normal

distribution (Wang & Wilson, 2005a, 2005b; Irvine & Kyllonen, 2002; Li, 2004).

Wang and Wilson’s (2005a, 2005b) study showed that it is not always realistic and appro-

priate to assume item parameters are normally distributed under the one-parameter logistic

1
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testlet model. Other studies (e.g., Irvine & Kyllonen, 2002; Li, 2004) also revealed that

the distribution of item parameters may not follow the normal distribution, even though

items are sometimes randomly selected from an item bank. Although there is a great deal

of research examining the substantive and statistical characteristics of prior distributions,

there have been little research investigating the sensitivity of prior specification within the

testlet models.

1.2 THE PURPOSE OF THE STUDY

Many IRT models have been developed to maintain the quality of items and estimate an

individual’s underlying latent ability, θ, more accurately. The conventional one-, two-, and

three-parameter normal or logistic models assume local independence after controlling for

an individual’s ability, θ. Although this conventional assumption is straightforward, some

studies have shown that it may not be accurate under some conditions as shown in testlets

(Bradlow et al., 1999). Testlets composed of a set of items sharing common stimuli have

been widely used in educational and psychological tests. With the demand for more accurate

estimation of items and an individual’s θ, the need for new estimation procedures has become

obvious.

Recent developments in Markov chain Monte Carlo (MCMC) analyses facilitated the

implementation of Bayesian analysis of complex data sets with testlets. Despite a large

volume of research on estimation techniques, the effects of the characteristics of the data

sets, and violations of model assumptions within testlet models, few studies are available on

the sensitivity of prior distributions within testlet models.

The purpose of this study is to examine the sensitivity of different prior distributions

within the 3PLT model. First, the efficacy of the 3PLT model in the WinBUGS 1.4 pro-

gram (Spiegelhalter, Thomas, Best, & Lunn, 2003) was compared to the 3PLT model in the

SCORIGHT 3.0 (Wang, Bradlow, & Wainer, 2004) and the Gibbs (Du, 1998) programs, nei-
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ther of which can manipulate pre-specified prior distributions. Later, the impacts of different

prior distributions in the 3PLT model will be discussed.

1.3 SIGNIFICANCE OF THE STUDY

Teslets have commonly been used in psychological and standardized educational tests such

as the Graduate Record Examination (GRE) and the Test of English as a Foreign Language

(TOEFL). Implementing testlets in conventional IRT models involve a variety of challenging

measurement problems such as local dependence within testlets on ability and item parameter

estimation, and test reliability. As the Bayesian method with MCMC for complicated IRT

models is becoming increasingly common, (e.g., Albert, 1992; Béguin & Glas, 2001; Bradlow,

et al. 1999; Patz & Junker, 1999a, 1999b), relevant research is needed to ensure that the most

efficient, accurate, and flexible prior distributions are incorporated into testlet models.

Overview of later chapters

This study is organized as follows. Chapter 2 provides some theoretical background for

this study. Previous studies related to testlet models and issues of local dependence and

prior specification are reviewed. Chapter 3 outlines the specifications of components in

testlet models used for this study, data generation methods, implementing prior distribu-

tions, research design and the evaluation criteria. Chapter 4 discusses the estimation of

parameters with the WinBUGS 1.4 program, shows some simulation results, applies the pro-

posed models and methods to real test data, and summarizes the results. Chapter 5 contains

discussions of the results from the simulation study and the real data analysis and discusses

limitations and possible future work.



Chapter 2

THEORETICAL BACKGROUND

This chapter serves to provide a general background and theoretical framework for this study.

There are three sections in this chapter. Section I describes violations of local independence.

Testlet models and some topics related to prior distributions are described in sections II and

III.

2.1 LOCAL INDEPENDENCE

IRT models have been widely used in standardized educational tests to measure an indi-

vidual’s θ and psychometric properties of items (Loevinger, 1947; Lord & Novick, 1968). IRT

models commonly assume local independence, in which an individuals’ response to items are

independent and based only on an individual’s θ (Lord, 1980). When a set of items on a test

are locally independent for given individuals, the probabilities of a response pattern on those

items are equal to the product of probability associated with the individual’s response to the

individual items (Hambleton & Swaminathan, 1985; Hambleton, Swaminathan, & Roger,

1991).

Recently, testlets composed of a set of items sharing common stimuli have been widely

used in standardized educational tests. (Li, 2004; Rosenbaum, 1988; Wainer & Kiely, 1987;

Wainer & Lewis, 1990; Wainer & Wang, 2000). Testlets (e.g, reading passages, essays, math-

ematical reasoning, algebra tests, and analytical reasoning) have advantages of reducing

impact of item ordering, of reducing time and cost, and securing test content and balancing

content (Ariel, Veldkamp, & Breithaupt, 2006; Wainer, Kaplan, & Lewis, 1992; Wainer,

Lewis, Kaplan, & Braswell, 1991).

4



5

As a consequence, the testlet approach is considered as a realistic method of measuring

an individual’s θ (Wainer, Sireci, & Thissen, 1991). However, testlet-based tests are likely

to violate the local independence assumption (Wainer & Thissen, 1996). The assumption of

the local independence in IRT has emerged as a crucial problem in testlet-based tests since

items within testlets rely on a common stimulus (Sireci, Thissen, & Wainer, 1991; Thissen,

Steinberg, & Mooney, 1989). The presence of local dependence (LD) is an indication that

the items on tests do not measure individual’s θ accurately (Ackerman, 1992).

Also, ignoring LD among items within testlets results in inflated estimates of score relia-

bility and test information (Sireci et al., 1991; Thissen et al, 1989; Wainer & Lukhele, 1997;

Wainer & Thissen, 1996; Wang & Wilson, 2005a, 2005b; Yen, 1993). Thissen et al. (1989)

showed that lower validity correlation coefficient obtained when traditional IRT procedures

applied for a testlet-based test.

Study (Wainer & Thissen, 1996) showed that the possible effects of ignoring the presence

of LD on measurement is that test information function was overestimated and standard

error of measurement (SEM) was underestimated. A study by Wainer and Wang (2000) also

showed that standard IRT models assuming the local independence assumption result in an

overstatement of precision of the θ estimates as well as a bias in item difficulty and discrim-

ination parameter estimates when the assumption of the local independence was violated.

More specifically, overestimated guessing parameters occurred for both reading comprehen-

sion and listening comprehension items when testlet-associated local item dependence was

ignored for reading comprehension. Also, underestimated item discrimination parameters

occurred for listening comprehension items while overestimated item discrimination param-

eters occurred. Furthermore, studies (Wainer & Lukhele, 1997; Sireci et al., 1991) showed

that reliability was overestimated when LD was ignored within testlets.
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2.2 TESTLET MODEL

A collection of items sharing common stimuli in which possibilities of correction within an

individual’s responses exist is called a testlet or an item bundle (Wainer & Kiely, 1987; Wainer

& Lewis, 1990; Rosenbaum, 1988). Testlets are suggested as the unit of construction, and are

commonly used for computerized adaptive tests (Wainer et al., 1992). Furthermore, testlets

are regarded as more realistic and even better for measuring contextualized problem-solving

skills that are difficult to develop in a single item (Bao, 2007; Wainer, Lewis, & Braswell,

1991).

Tests containing testlets can minimize content exposure (Ariel et al., 2006), reduce time

and cost (Bradlow et al., 1999; Wainer & Wang, 2000), and increase construct validity

(Zenisky, Hambleton, & Sireci, 2002). Despite the advantages of testlets, LD within the

same testlets is likely to be introduced when testlets are included in tests (Rosebaum, 1988;

Sireci et al., 1991; Thissen et al., 1989). Thus, covariances among the items in testlets often

are not solely explained by the traits of interest. When ignored, this additional within-testlet

covariation results in overestimates of the true reliability.

In order to avoid LD problems, researchers have paid close attention to LD within testlets

(Bradlow et al., 1999; Du, 1998; Lee, Kolen, Frisbie, & Ankernmann, 2001; Thissen et al.,

1989). One approach for dealing with LD is to calculate a single score over all items in testlets

and then fit polytomous models [e.g., Samejima’s (1969) graded response model, Bock’s

(1972) nominal response model, and Muraki’s (1992) generalized partial credit model] to

testlets (Lee & Frisbie, 1999; Lee et al., 2001; Sireci et al., 1991; Thissen et al., 1989; Wainer

& Thissen, 1996). When a set of items within testlets is treated as units of analysis, the score

for each testlet would be computed as the sum of the correct answer to items nested in that

testlet.

Studies (Sireci et al., 1991; Thissen et al., 1989; Zenisky et al., 2002) suggested that

the problem of LD can be effectively avoided if a set of items within testlets is treated as

the units of analysis, assuming local independence across testlets, but not within testlets.
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Studies (Thissen et al., 1989; Wainer & Wang , 2000; Wang & Wilson, 2005a, 2005b; Yen,

1993) showed that fitting polytomous IRT models to testlets provides limited information

because information about item-level discrimination and response pattern is lost.

A second limitation to this approach is related to item selection in computer adaptive

testing (Wainer & Wang, 2000). If only the summed scores for testlets are used for parameter

estimation, then an individual’s responses to items within a testlet would not be able to

provide any information about the levels of an individual’s θ until he or she has responded

to all of the items in that testlet. This implies that an individual’s responses to the initial

items in a testlet could not be used in selecting the subsequent items in that testlet. This

could present practical difficulties in the development of computer adaptive testing.

The other approach is to consider LD in testlets as an additional random effect in the

model. Bradlow et al. (1999) first suggested the two-parameter normal ogive model for a

mixture of binary independent and testlet items and demonstrated its accuracy and effec-

tiveness via 2 × 3 factorial simulation study. The number of examinees (N = 1000), test

length (n = 60), and percentage of items nested within testlet (50%) were held constant

across study conditions. They considered the testlet effect as a random effect in addition to

the latent ability of interest to be measured by the test. The variance of testlet effects were

assumed to be constant across different testlets. A random testlet effect can be explained as

the interaction between individuals and testlets. Once an individual’s θ and random testlet

effect are controlled, an individual’s responses are independent.

In addition, Wang and Wilson (2005a, 2005b) also proposed the Rasch testlet model

for dichotomous responses. It is a variation of the two-parameter testlet model if the item

discrimination power is kept to be constant for all items and all items are assumed to be

scored dichotomously. Later, this model was extended to the more general testlet models

(Du, 1998; Wainer, Bradlow, & Du, 2000; Wang, Bradlow, & Wainer, 2004). Du (1998) and

Wainer et al. (2000) extended their previous model (Bradlow et al., 1999) by including the
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guessing parameter, ci, to the two-parameter probit model and by allowing random variation

across different testlets.

The three-parameter logistic testlet (3PLT: Du, 1998; Wainer et al., 2000) was further

extended to include dichotomously and polytomously scored items (Wang et al., 2004). The

study (Wang et al., 2004) was composed of a simulation study and two applications using

operational data from the Test of Spoken English and the North Carolina Test of Computer

Skills. The simulation component of the study examined the success of the model in recov-

ering the true parameters. Three factors were manipulated: Number of categories for each

item (2, 5, 10), testlet length (3, 6, 9), and testlet variance ( σ2
γ = 0, 0.5, 1). Response data for

1000 simulees were simulated for a 30-item test across five replications for each condition. Of

the 30 items, 12 were independent dichotomous items, and 18 were testlet items. The 3PLT

model (Du, 1998; Wainer et al., 2000) is as follows :

P(yij = 1|θj, ai, bi, ci, γjt(i)) = ci + (1− ci)
[

exp(ai(θj − bi − γjt(i)))
1 + exp(ai(θj − bi − γjt(i)))

]
In this model, P(yij = 1) is the probability that an individual j, answers item i correctly;

θj is the ability of an individual j; bi is the difficulty parameter of item i, ai denotes the

discrimination parameter of item i, ci denotes the guessing parameter of item i; and ci in

testlet model is reparameterized as exp(qi)
1+exp(qi)

, which becomes qi = log( ci
1−ci ). γjt(i) is a random

effect which represents the interaction of individual j with a testlet ti.

γjt(i) is constant within a testlet for individual j , but the value of γjt(i) differs for each

individual. The variances of γ are allowed to vary across testlets and indicate the amount of

LD in each testlet. If the variance of γjt(i) is zero, items within the testlet can be considered

conditionally independent. The larger the variance, γjt(i), the greater the proportion of total

variance in the test score that is attributable to the testlet.

Advantages of testlet models are that they are flexible because an individual’s response

patterns can be considered while keeping the same traditional scoring rubric systems and

the same concept of item parameters (Wang & Wilson, 2005a, 2005b). Thus, information
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contained in the response patterns for individual items within testlets is not lost as it is with

polytmous models. Testlet models are embedded in a Bayesian hierarchical framework and

inferences use MCMC techniques.

2.3 PRIOR

2.3.1 PRIORS IN ONE-, TWO-, AND THREE-PARAMETER IRT MODELS

It is well known that incorporating prior distributions into the Bayesian framework yields

more precise item parameters by preventing parameters from drafting out of reasonable

ranges (Baker & Kim, 2004; Lord, 1980). The Bayesian methods with the MCMC algorithm

make it possible to build more complex IRT models because estimation of models is com-

paratively easier with MCMC than with either joint maximum likelihood estimation and

marginal maximum likelihood estimation (De Ayala, 2009).

The Bayesian method with MCMC has been increasingly used for complicated IRT

models (Albert, 1992; Bradlow et al., 1999; Patz & Junker, 1999a, 1999b; Wainer et al.,

2000). Albert (1992) used a full Bayesian method based on Gibbs sampling to estimate

the two-parameter normal ogive IRT model, and later Patz and Junker (1999a, 1999b)

discussed Metropolis-Hastings sampling algorithms to estimate two-, and three-parameter

logistic models and mixed models.

Studies (Bazán, Branoco, & Bolfarine, 2006; Swaminathan & Gifford, 1982, 1985, 1986;

Swaminathan, Hambletion, Sireci, Xing, & Rivazi, 2003; Mislevy, 1986) showed that esti-

mation of item parameters can be accurately made, and estimation can be carried out with

smaller sample sizes by incorporating prior distributions.

All the prior distributions regarding parameters of interest need to be incorporated into

the model parameters, but prior distributions in many cases are either vague or non-existent

in the Bayesian approach (De Finetti, 1974; Gao & Chen, 2005; Wainer, Bradlow, & Wang,
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2007). This makes it very difficult to specify a unique prior distribution. Thus, the speci-

fication of prior distributions in the Bayesian approach has emerged as an important issue

(Bazán et al, 2006).

Studies (Albert & Ghosh, 2000; Swaminathan et al., 2003) have explained how to use

informative prior distributions in IRT models. If appropriate a priori information about

parameters was available, tight prior distributions have substantial effects on estimates (Har-

well & Baker, 1991). Tight prior distributions implied small variance and led parameters to

shrinkage toward the mean of the prior (Baker & Kim, 2004).

Different prior distributions for item and individual parameters have been used in the

same IRT models. In previous studies, there seems to be consensus with respect to the

prior distribution for θ. It is commonly assumed that ability follows the standard normal

distribution, θ ∼ N(0, 1). Fixing the location and scale parameters of ability distribution

ensures identifiability of the curve parameters.

Regarding item parameters, different prior distributions have been investigated for item

parameters (Rupp, Dey, & Zumbo, 2004). Studies (Patz & Junker, 1999a) revealed that it is

difficult to assign dependent priors for those parameters, even if a multivariate normal prior

distribution is specified. Thus, independent prior distributions for the parameters of item

discrimination a, item difficulty b, and pseudo-guessing parameter, c, are preferred (Bazán

et al, 2006).

Either informative and noninformative prior distributions on item discrimination param-

eter, a has been used. The reason to use informative prior distributions on a, is that a correct

answer in testing always implies a higher ability. Thus, a is constrained to be grater than 0.

Informative prior distributions on a was also implemented because the existence of the joint

posterior distribution is not guaranteed when an improper prior is used (Bazán et al, 2006;

Ghosh, Ghosh, Chen, & Agresti, 2000). Several studies have been done using informative

prior distributions. Johnson and Albert (1999) specified the normal distribution for µa and

σ2
a, N(µa, σ

2
a), with or without hyper-parameters. Studies (Kim, Cohen, Baker, Subkoviak, &
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Leonard, 1999; Patz & Junker, 1999a, 1999b; Sahu, 2002) have used the log-normal distribu-

tion for µa and σ2
a, LN(µa, σ

2
a), with or without hyper-parameter distributions. In addition,

other studies (Spiegelhalter, Thomas, Best, & Gilks, 1996; Sahu, 2002) used the half-normal

distribution for µa and σ2
a with a constraint a > 0, N(µa, σ

2
a)I(0, ).

Additional studies (Swaminathan & Gifford, 1985, 1986) have used a χv with v degree of

freedom for the item discrimination parameter, a. Bafumi, Gelman, Park, and Kaplan (2005)

has used a gamma and an inverted gamma distribution, with parameter m and n, IG(m,n, )

for a. Other studies (Albert, 1992; Fox & Glass, 2001, 2003) besides the ones mentioned

above have been done using improper noninformative prior distributions for the parameters

a and b.

Regarding b, it is common to assign the normal distribution for b ∼ N(µb, σ
2
b ). Moreover,

when little prior information is available about b, relatively large values are assigned to σ2
b .

Studies (Patz & Junker, 1999a, 1999b; Swaminathan & Gifford, 1982, 1985, 1986) have used

uniform distribution for µb and σ2
b , N(µb, σ

2
b ), in which µb follows uniform distribution and

σ2
b follows inverse chi-square distribution.

Regarding c, studies (e.g., Patz & Junker, 1999a, 1999b; Swaminathan & Gifford, 1986)

have specified the Beta(si, ti) distribution mentioned by Novick and Jackson (1974), where

si = m∗M and ti = m(1−M)−2 (m = the number of observations the prior information is

worth and M = mean value). Another study (Mislevy, 1986) employed a normal distribution

on transformed c, that is q = log( c
1−c).

2.3.2 PRIORS IN TESTLET MODELS

Bradlow et al. (1999) specified noninformative prior distributions for the unknown means

and variances. Thus, the distribution of the parameters of interest can be determined by the

data. Therefore, with the noninformative prior distributions, the MCMC via Gibbs sampling

is drawn from the posterior distribution to make inference about parameters of interest.

Within testlet models, it is common to use a normal distribution, N(0, 1), for parameters of
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θ (Bradlow et al., 1999; Du, 1998; Li, Bolt, & Fu, 2006; Wainer et al., 2000; Wang et al.,

2004).

In addition, the mean of the testlet parameters for a particular testlet across all indi-

viduals is usually set to 0 in order to identify the scale of the parameters. Thus, a normal

distribution for γjt(i) is commonly used, γjt(i) ∼ N(0, σ2
γ). Bradlow et al. (1999) specified the

normal distribution for µa and σ2
a, N(µa, σ

2
a) with hyper-parameters for a. Li (2004) used the

half normal priors, N(µa, σ
2
a)I(0, ) for a. Regarding b, several studies (Bradlow et al., 1999;

Du, 1998; Li et al., 2006; Wang et al., 2004) implemented a normal prior N(µb, σ
2
b ) for b.

In terms of hyper-prior distributions, all noninformative hyper-priors are µa ∼ N(0, σ2
µa),

µb ∼ N(0, σ2
µb

), and µq ∼ N(0, σ2
µq) for prior means, and σ2

a ∼ χ−2
ga , σ2

b ∼ χ−2
gb

, and σ2
q ∼ χ−2

gq for

prior variances, where χ−2
ga , χ−2

gb
, and χ−2

gq are inverse chi-square random variables with ga, gb,

and gq degrees of freedom which are defined as 0.5 to reflect a small amount of information.

Either σ2
µa , σ

2
µb

, and σ2
µq = 1002 (Li et al., 2006; Wang et al., 2002) or σ2

µa , σ
2
µb

, and σ2
µq =

0 (Du, 1998; Bradlow et al., 1999; Wang et al., 2002, 2004) was used to indicate a lack of

information.

As shown in previous studies, choosing a prior distribution of the parameters of a model

is a tedious task (Carlin & Louis 2000) because there is possibility of not reflecting uncer-

tainty about the parameters of interest. Second, the posterior distribution is available but

not derivable in closed form in the non-conjugate priors, in general. Last, it is difficult to

describe uncertainty about the parameter of interest in the form of a particular distribution.

In particular, uncertainty about the parameters of the prior distribution requires more infor-

mative model such as in empirical Bayesian methods. Thus, it is rare for anyone to make any

claims that a particular prior can logically be defended as truly noninformative. Instead, the

focus is on investigating various prior distributions and comparing them to see if any have

advantages in some practical senses (Kass & Wasserman, 1996).
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2.3.3 CONVERGENCE AND BURN-IN PERIOD

It is necessary to confirm whether convergence is reached because a non-converged MCMC

algorithm may lead to incorrect information about estimates (Shinharay, 2004). If the chain

does not converge, the simulated draws from this chain would not represent the posterior

distribution of parameters of interest. Thus, the inference about parameters based on the

distribution of these draws would be invalid. Therefore, it is very important to assess con-

vergence of Markov chains before any Bayesian inferences are made.

A number of convergence diagnostics have been developed (Cowles & Carlin, 1996; Brooks

& Robert, 1998). The most popular diagnostics are time-series plots, autocorrelation plots,

and the Gelman-Rubin statistic, R. A time-series plot, also called a “history plot”, is a

scatter plot showing the generated values of a parameter at each iteration number in a

chain of sample values. Clear trends in the plot indicate that successive simulated values of

parameters are highly correlated and a chain has not converged. Time-series plots provide a

simple way to check the stability of simulated parameter values.

An autocorrelation plot is a plot of the correlation between sequential draws of a param-

eter in Markov chain. It is a commonly-used tool for checking randomness in a data set.

This randomness is ascertained by computing autocorrelations for data values at varying

time lags. Autocorrelation plots are not strictly a convergence diagnostic tool, but they help

indirectly to assess convergence. A MCMC algorithm generating highly correlated param-

eter values will need a large number of iterations to converge to the appropriate posterior

distribution. In other words, such autocorrelation can cause inefficient MCMC simulation.

Solution to high autocorrelation is to “thin” the chains by keeping every kth simulation draw

from each sequence and discarding the rest.

The R statistic (Gelman & Rubin, 1992) suggests monitoring convergence based on mul-

tiple chains with different starting points. Once convergence is reached, between-chain vari-

ance and within-chain variance for each parameter should be almost equivalent because

variation within the chain and variation between the chains should coincide. There, R near
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1 for all parameters of interest means the MCMC algorithm has converged. However, one

drawback it has is that its value depends on the choice of starting value. However, it is not

straightforward in determining the convergence of algorithm with a single definitive conver-

gence diagnostic tool. Therefore, using multiple tools is recommended in order to increase

the chance of correctly assessing convergence (Sinharay, 2004).

In the context of testlet situation, previous researchers employed different ways of

checking convergence of algorithm and the appropriate length of the burn-in period. How-

ever, it is possible to categorize various convergence algorithm into two possible classes. One

is to import other computer software [e.g, Bayesian Output Analysis (BOA:Smith, 2001)

program, Convergence Diagnosis and Output Analysis Software for Gibbs sampling output

(CODA:Best, Cowles, & Vines, 1995), and SCORIGHT]. For instance, Sinharay(2004)

implemented BOA or CODA program on the output of SCORIGHT (Wang et al., 2004).

He also used the Gelman-Rubin convergence statistic (Gelman & Rubin, 1992) to determine

the number of burn-in period. The other approach is to rely on the outputs of the Win-

Bugs program. Bao’s study (2007) is one of many examples. Bao (2007) mainly used the

information available in the WinBUGS program. Those information are history plots (trace

plots) showing random sampling within the same part of the same space for all chains,

Brooks-Gelman-Rubin (BGR) showing the convergence of both the pooled and within

interval widths to stability, and auto-correlation function showing where the autocorrelation

has decreased to zero. Density plots are examined to investigate whether enough iterations

have been completed. If enough iterations are run, the error due to the nature of MCMC

being an empirical approximation to the posterior is less than 5% of the estimated posterior

standard deviation (Spiegelhalter, Thomas, Best., & Lunn, 2003).

As expected, researche in testlet models selected different number of iterations and burn-

in period (Gelman, Carlin, Stern, & Rubin, 2003; Raftery & Lewis, 1996; Sinharay, 2004;

Sinharay, Johnson, & Stern, 2006; Sinharay & Stern, 2002). Information for previous research

in the testlet model is provided in Table 2.1. Gelman et al. (2003) suggested discarding the
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first half of the iterations to be conservative. Raftery and Lewis (1996) suggested there were

fewer than 500 burn-in periods for convergence diagnostic, and the recommended lengths

of chain were typically less than 15,000 iterations. Sinharay, Johnson, and Stern (2006)

suggested five chain of 6,000 iterations after discarding 2,000 iterations as burn-in periods

and drew every 20th for one-, two-, and three-parameter logistic models. Sinharay (2004)

also recommended several chains of 50,000 iterations with 1,000 burn-in periods or one longer

chain having 120,000 iterations with 20,000 burn-in periods for convergence for the testlet

model.

Table 2.1: Summary of Previous Studies

Studies N ITEMS ITERATION REPLICATION MODEL

Bao 5,000 50 items 4,000 10 2PLT
(2007) 30, (10 items for 2 testlets) (1,500, brun-in)

Baldwin 2,000 50 items 30,000 50 3PLT
(2008) (No specific information) 10,000 (burn-in)

60 items
Bradlow et al. 1,000 30, ( 5 items for 6 testlets) 10,000 No 2PNO
(1999) 30, ( 6 items for 5 testlets) (5,000, burn-in)

30, (10 items for 3 testlets)

Du 1,000 70 items 12,000 No 3PLT
(1998) N 30, (10 items for 4 testlets) (7,000, burn-in)

2,000 24 items
Li et al. (5 items for 1 testlet) 15,000 No 2PNO
(2006) (6 items for 2 testlets) (1,000, burn-in)

(7 items for 1 testlet)

1612 60 items 50,000
Sinharay 35, (5 items for 3 testlets) (10,000, burn-in) No 3PLT
(2004) (4 items for 1 testlet) 120,000

(6 items for 1 testlet) (20,000, burn-in)

Wang & Wilson 2,000 20 items 15,000 100 1PLT
(2005) (5 items for 4 testlets) (1,000, burn-in)

30 items
Wang et al. 1,000 12, (3 items for 6 testlets) 3,000 5 3PLT
(2002) 12, (6 items for 3 testlets) (2,000, burn-in)

12, (9 items for 2 testlets)

Note:1PLT (one-parameter logistic testlet model); 2PLT (two-parameter logistic testlet model);
3PLT (three-parameter logistic testlet model); 2PNO (two-parameter normal testlet model).
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METHODS

3.1 Computer Programs

The WinBUGS 1.4 program is the main computer program in this study. Note that both

the SCORIGHT 3.0 (Wang et al., 2004) and the Gibbs (Du, 1998) computer programs were

used for comparison purposes in the analysis of real data. Both computer programs [Gibbs

(Du, 1998) and SCORIGHT (Wang et al., 2004)] use MCMC to fit the 3PLT model and

allow users options for choosing the number of chains and iterations of MCMC. Differences

existing between the two programs, however, concern availability of possible models and

options for choosing the number of thins, in which only every nth iterations are used to

decrease autocorrelation. The SCORIGHT 3.0 program allows users to implement the two-

parameter logistic testlet model, whereas the Gibbs does not. Also, options for choosing the

number of thins are available in the SCORIGHT 3.0 program but not in the Gibbs program.

In addition, both computer programs do not provide any diagnostic method for MCMC

convergence and any options for changing prespecified prior values.

However, the WinBUGS 1.4 computer program (Spiegelhalter et al., 2003) is more flexible

than the SCORIGHT 3.0 and the Gibbs programs. The MCMC employing Gibbs sampling

in the WinBUGS 1.4 program was implemented to estimate the 3PLT model parameters.

Under MCMC, model parameters are estimated by repeatedly sampling each parameter

from its posterior distribution, conditional on the data and the most recent estimates of all

other parameters. After an initial burn-in period, it is possible to create a Markov chain

in such a way that the sampled values are drawn from the parameter’s full conditional

distribution. The value of each parameter is estimated as the mean of the Markov chain.

16
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Sampling from posterior distribution requires the specification of prior distribution for all

MCMC parameters. Both real and simulated data sets are analyzed in the study. A detailed

description is presented later.

3.2 RESEARCH DESIGN

Since test design affects quality of estimates about items, ability, and final inferences

(Bradlow et al., 1999), several simulation conditions will be considered. The WinBUGS 1.4

program (Spiegelhalter et al., 2003) was implemented to fit the 3PLT model with the same

prior distributions as in the SCORIGHT 3.0 program (Wang et al., 2004) and the Gibbs

program (Du, 1998) for comparison purposes with real data. Later, different prior distribu-

tions on items parameters will be implemented in the WinBUGS program (Spiegelhalter et

al., 2003).

3.2.1 DATA GENERATION

The simulation study will be performed to evaluate the sensitivity of prior distributions in

3PLT model by using the WinBUGS program. Item responses for the hypothetical individuals

will be obtained based upon a testlet response theory model (Bradlow et al., 1999; Wainer

et al., 2000; Wang et al., 2002). Item responses will be randomly generated by imitating a

testlet-based test. Factors that are varied across the simulation are prior and hyper-prior

distributions of item parameters and the testlet variances.

For parameters of items, the discrimination parameter, a, will be generated using the half

normal distribution, a ∼ (µa, σ
2
a)I(0, ); the difficulty parameter, b will be generated using the

normal distribution, b ∼ N(µb, σ
2
b ); and the transformed guessing parameter, q = log( c

1−c)

will be generated by using the normal distribution, q ∼ N(µq, σ
2
q ). Parameters were obtained

from results of the Florida Comprehensive Assessment Test (FCAT). An example input file

for the WinBUGS program to generate data is presented in Appendix B.
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Ability and random effects for the testlet effect were assumed to be independent of each

other (Bradlow et al., 1999; Li et al., 2006; Wainer et al., 2000; Wang et al., 2002). Since it is

assumed that the distribution of the ability is known up to a scale parameter, the generated

ability parameters follow a normal distribution, N(0, 1).

Two sample sizes will be employed; both 1000 and 2000 individuals will be simulated.

In addition, the variance of the testlet effect parameters over individuals will be used to

quantify the magnitude of the interaction. Since the researchers are generally concerned

with the means of the testlet parameters, which are customarily set to 0 to make the scale

of the model identifiable in the estimation process, the degree of the testlet effect will be

determined by the variances of the testlet parameter values, (0, σ2
γ). Thus, testlet parameters

will be generated using a normal distribution, N(0, σ2
γ). The magnitudes of the testlet effects

are determined by the ratio of the random-effect variance of testlets to the random-effect

variance of ability (Li et al., 2006; Wainer et al., 2007). In this study, three conditions of

different degrees of testlet effects will be simulated: no testlet effect , σ2
γ=0; moderate testlet

effect, σ2
γ=0.5, and strong testlet effect, σ2

γ=1. These conditions of testlet effects were similar

to those simulation conditions specified in various studies (Bao, 2007; Bradlow et al., 1999;

Wang et al., 2002; Wang & Wilson, 2005a, 2005b), in which σ2
γ was specified as 0.0, 0.5, and

1.0.

When the parameter values are in place, the probability of getting each item correct will

be calculated using the 3PLT model. These parameters of generated latent ability, testlet

effect, and defined item parameters will be used to compute the corresponding probability.

Two conditions will be studied:

1. the three-parameter logistic (3PL) model assuming local dependence,

2. the 3PLT model assuming local dependence and testlet effect function homogeneous

across

Condition 1 assumes that all the items in a test are independent of one another. Condition

2 presumes that the testlet parameter applies constantly to all items in testlets: a constant
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testlet variance will be generated across all testlets. Regarding conditions 2, variances of

testlet effects related to this model will be no testlet effect(0.0), medium (0.5), and large(1.0).

A total of 60 dichotomous items will be generated in a test. Common test structure is

set by fixing the test composed of first 5 independent dichotomous items among 60 items.

A different number of testlets will have different number of items: 3, 6, and 10 items for

each testlet, respectively. The reason each testlet has different numbers of items is that the

number of items in a testlet affects the degree of variance of testlets. Also, in general, larger

the number of items there are clustered in a testlet, the more likely the testlet effect can be

shown (Bradlow et al., 1999). Two chains of iterations and 20 replications will be conducted.

3.2.2 PRIOR and HYPER-PRIOR DISTRIBUTION

Prior specification is an important step in Bayesian analysis because statistical analysis in

the Bayesian approach needs to include prior distributions in the model specification. Also,

it is reasonable to use vague information about hyper-parameters in the absence of a strong

theory regarding the prior distribution of items and individuals.

Ability parameters, θ will be estimated with N(0, 1). Item parameters will be estimated as

follows: N(µa, σ
2
a)I(0, ) for a, N(µb, σ

2
b ) for b, and N(µq, σ

2
q ), in which q = log( c

1−c). Values of

σ2
µa , σ

2
µb

, and σ2
µq are specified as 0.01, 0.001 which indicates different amount of information.

σ2
a ∼ χ−2

ga , σ2
b ∼ χ−2

gb
, and σ2

q ∼ χ−2
gq for prior variance, where χ−2

ga , χ−2
gb

and χ−2
gq are inverse

chi-square random variables with ga, gb, and gq degrees of freedom, which are defined as

0.4, 0.5, and 2.0 to reflect different amount of information. Parameter of testlet effect will

be estimated with (0, σ2
γ), in which σ2

γ follows χ−2
gγ and will be defined as 0.4, 0.5, and 1.0.

Furthermore, Figure 3.1 shows inverse chi-squared distribution with the different degrees of

freedom.

A normal distribution imposed on prior distributions in the 3PLT model has two param-

eters, the mean, µ, and the variance, σ2. The normal distribution is as follows:

P (x1, x2, · · · , xp|µ, σ2) ∝ 1

σn
exp(− 1

2σ2

∑
(xi − µ)2).
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Figure 3.1: Inverse Chi-squared distribution with different degrees of freedom

Conjugate prior distribution having the same functional form as the likelihood function

leads to posterior distribution belonging to the same distribution as prior distribution. Con-

jugate prior distributions for these parameters, µ and σ2 are needed. Assuming µ is fixed,

then the conjugate prior for σ2 is an inverse gamma distribution that is a general case of the

inverse chi-squared distribution (Spiegelhalter et al., 2003, p. 58) which is as follows:

f(σ2|α, β) ∼ IG(α, β)

Then

P (σ2|α, β) =
βα

Γ(α)
(σ2)−α−1 exp(−β

x
).

The posterior distribution obtained when likelihood and prior distribution combined is

as follows:

P (x|µ, α, β) =
βα

Γ(α)
(σ2)−α−1 exp(− β

σ2
)(

1√
2πσ2

)p exp(− 1

2σ2

∑
(xi − µ)2).

The inverse variance term, 1
σ2 , is usually called the precision and is denoted by τ (Spiegel-

halter et al., 2003, p. 58). Thus, when σ2 is reparameterized in terms of precision, τ , the

conjugate prior becomes a gamma distribution as follows:

f(τ |α, β) ∼ G(α, β), P (τ |α, β) =
βα

Γ(α)
(τ)α−1 exp(−τβ).
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Then, the posterior distribution is as follows:

P (x|µ, α, β) =
βα

Γ(α)
τα−1 exp(−τβ)(

τ

2π
)p/2 exp(−τ

2

∑
(xi − µ)2).

It is also possible to compute the probability of getting new data given old data by marginal-

izing out parameters:

P (θ|x, µ, α, β) =

∫
P (θ|x, µ, α, β)P (τ |x, α, β)dτ =

∫
P (θ|x, µ, τ)P (τ |x, α, β)dτ

=

∫
βα

Γ(α)
τα−1 exp(−τβ)(

τ

2π
)p/2 exp(−τ

2

∑
(xi − µ)2)dτ

Then

=
βα

Γ(α)

1

(2π)p/2

∫
τ (α+

p
2
)−1 exp−τ(β+ 1

2

∑
(xi−µ)2) dτ.

By normalizing constant, this integral becomes:

=
βα

Γ(α)

1

(2π)p/2
Γ(α + p

2
)

(β + 1
2

∑
(xi − µ)2)α

p
2

=
Γ(α + p

2
)

Γ(α)

1

(2πβ)
p
2

1

(1 + 1
2β

∑
(xi − µ)2)α+

p
2

.

This integral make a normal distribution having a heavier tailed distribution, which becomes

a student’s t-distribution. In this model, µ is a location parameter, β is a dispersion param-

eter, and α is a shape parameter, or degrees of freedom. The multivariate Student t distri-

bution can be reparameterized if k is α, and λ is α
β
:

P (x|µλ, k) =
Γ(k+1

2
)

Γ(k
2
)

(
λ

kπ
)
p
2

1

(1 + λ
k
(xi − µ)2)

k+1
2

.

This multivariate Student’s t distribution becomes a multivariate Cauchy distribution if the

degrees of freedom, α, is 1, and becomes a multivariate normal distribution if the degrees of

freedom, α, goes ∝. Also, it is commonly known that degrees of freedom need to be larger
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than 2 to ensure the existence of the variance matrix. However, there is no mathematical

reason why the degrees of freedom should be an integer (Heikkinen, & Kanto, 2002), even

though Student (1908) considered the distribution only with integer degrees of freedom.

First, the same prior and hyper-prior distribution were used for the comparison purposes.

Then, different prior specifications in WinBUGS will be employed so as to compare the

sensitivity of prior distributions.

3.2.3 CONVERGENCE AND ITERATIONS

With item parameter estimation via MCMC methods, convergence of the parameter estima-

tion needs to be examined. If the parameter estimates do not converge, incorrect inference

about parameters of interest will result. Thus, it is necessary to determine the number of

iterations to discard, during which the parameter estimation stabilizes or converges. It is

important to decide how many MC iterations are necessary to obtain robust posterior esti-

mation with appropriate burn-in periods. Some of the initial observations should be discarded

to avoid the impact of starting states on estimating parameters of interest because unstable

iterations affect MC errors (Bazán et al., 2006; Gelman et al., 2003).

Various tools are commonly used such as simple graphical methods, methods using ratio

of dispersions, methods based on spectral analysis, method based on the theory of Markov

chains available in CODA (Best et al., 1995) and BOA (Smith, 2001). Furthermore, The

convergence diagnostic provided in the WinBUGS 1.4 program, including the Gelman-Rubin

convergence statistic, R, (Gelman & Rubin, 1992; Brook & Gelman, 1998) and sample his-

tory, were computed from multiple chains to determine the number of burn-in periods.

It is also important to recognize that the error in posterior estimation can be caused

by not only the standard deviation, but also the sampling error, referred to as MC error

(Spiegelhalter et al., 2003). Spiegelhalter et al. (2003) also suggested that the simulation

should be run until the MC error for each parameter of interest is less than about 5% of the

sample standard deviation. The smaller the MC error, the larger the MCMC iterations.
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Post and confshrink statistics available in the SCORIGHT program were also employed

to assess convergence when the real data was analyzed: confshrink estimates potential scale

reduction with an estimates and an approximate 97.5% upper bound (Wang et al., 2004).

3.3 SIMULATION STUDY

Simulation study was summarized in this section. In order to examine impacts of prior

distributions in the 3PLT model, item responses were randomly generated by mimicking

a testlet-based test. It was assumed that there were 60 items in a test. Three simulation

factors were considered in the simulation study; magnitude of random effect due to testlets,

magnitude of prior distribution, magnitude of hyper-prior distribution, different number of

items in a testlet, and different number of sample sizes.

The variance of testlet effect, σ2
γ, was varied in order to simulate varying degrees of

dependence. The no testlet effect condition (σ2
γ = 0) was also included as a baseline for

comparisons. Three levels of testlet effect were 0.0, 0.5, and 1.0. The magnitudes of prior

distributions were 0.01 to 0.001. The same magnitude of prior distribution was assigned to

all item parameters. Degrees of freedoms were 0.4 to 2.0. The number of different items in a

testlet was 3 to 10. The number of samples sizes was 1000 and 2000. Thus, the total number

of simulation conditions resulted in 3 × 2 × 3 × 3 × 2 = 108 conditions (see Table 3.1). Prior

to running analysis, the estimates are rescaled on to the same metric by fixing 5 common

items among 60 items. An example WinBUGS estimation file is presented in Appendix C.

Table 3.1: Design of Simulation Study
MODEL N ITEM σ2γ σ2µ· for µa, µb, µq d.f of σ2ga , σ

2
gb
, σ2gq

N = 1000 3 (10 testlets) σ2γ=0.0

3PLT 6 (5 testlets) σ2γ=0.5 σ2µ· = 0.01, 0.001 d.f = 0.4, 0.5, 2.0

N = 2000 10 (3 testlets) σ2γ=1.0

Combination 2 3 3 2 3
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3.4 MODEL EVALUATION

In each simulation condition, the simulation studies were replicated 25 times which were

between low and large number of replication based on previous studies (see Table 2.1).

The success of the model was evaluated with two criteria, the root mean squared error

(RMSE) of the estimates from the true values and correlation between the true and the

estimated parameters which used in the other study (Wang et at., 2002). The RMSE was

the discrepancy between the estimated values and the true values. The RMSE was defined

as

RMSE (T̂i) =
√

1
r

∑r
r=1(T̂i − T )2

where T is a true parameter and T̂i is the estimated value of the parameter from the

ith replication, and the the simulation is replicated r times, which is 25 in this simulation

study.
¯̂
Ti is the mean of the estimated parameters. The RMSE (T̂i) can be further dissected

into two parts: the standard error of estimated parameters and the bias of the estimated

parameters:

RMSE (T̂i) = Bias(T̂i) + SE (T̂i)

= 1
r

∑r
i=1(T̂i − T ) +

√
1
r

∑r
r=1(T̂i −

¯̂
Ti)2 .



Chapter 4

RESULTS

This chapter presents the results from simulation studies and real application study. First,

the design of the simulation study is described. Simulation study aims to explore impacts

of prior distributions on the parameter estimates. In order to investigate the impacts of

different means of prior distributions, different degrees of freedom, different number of items

nested in testlets in estimating parameters, 108 conditions were considered (see Table 3.1).

The second section presents results obtained from the real data.

4.1 Convergence

Convergence of the parameter posterior distribution to a stationary distribution is crucial to

MCMC estimation. Using WinBUGS, two chains of length of 50000 were run and approxi-

mately 6 hours to complete with the sample size (N = 1000) and 14 hours with the sample

size (N = 2000). The first 10000 iterations in each chain were discarded (burn-in iterations).

All the sampling histories, BGR diagrams, and autocorrelation plots suggested the Markov

chains converge to stationary posterior distributions.

Convergence was examined through visual inspection of several convergence diagnostic

plots available in WinBUGS. The first plot is a “sampling history plot” for each parameter.

Figure 4.1 illustrates the histories of the item discrimination, item difficulty, item guessing

and testlet parameters of item 6. The sampling histories showed that each chain displayed

convergence to a stationary distribution. Similar results were observed for the other items

and testlets.

25
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Figure 4.1: Sampling History Plots of Item Parameters Associated with Item 6

In WinBUGS, “BGR diagram” is often used to show the Gelman-Rubin convergence

statistic for multiple chains. It includes three lines in different colors. The green (G) and

blue (B) lines reflect the pooled and within-chain posterior variances, respectively. The ratio

of these two variances, that is, the Gelman-Rubin statistic, is represented by the red (R)

line. Figure included the “BGR diagram” for the item discrimination, item difficulty, item

guessing, and testlet parameters of item 6. As seen, the red line (Gelman-Rubin statistic)

converged to 1, indicating equality between the pooled and within-chain variances. Thus,
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these plots demonstrated the convergence of the two chains with 50000 iterations was attained

for all the parameters of item 6. Similar results were obtained for the other parameters. Figure

4.2 included the BGR diagrams Similar results were observed for the other items.

Figure 4.2: BGR Diagrams for the Parameters of Item 6

Autocorrelation plots are also helpful in evaluating convergence. High correlations

between adjacent states imply a slow rate of convergence, thus requiring more iterations to

achieve stationary posterior distributions for the model parameters. Figure 4.3 provided

the autocorrelation plots for the parameters of item 6. As can been seen, the correlations

among the successive draws were reduced to 0, indicating the length of 50000 iterations

was sufficient to ensure convergence. Similar autocorrelation plots were found for other item

parameters.

Figure 4.3: Autocorrelation Plots for the Parameters of Item 6
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Based on the preliminary analysis with real data and simulation study, it had been

decided that 40000 samples should be drawn from each posterior distribution after 10000

samples were discarded as burn-in periods.

4.2 Parameter Recovery

Once the estimations were done, the results of the WinBUGS runs illustrated the simulation

conditions under which those models could recover the parameters used to generated the

data, give the model that generated the data matched the model used. The quality of model

parameter recovery using MCMC estimation is an important factor in determining whether

the 3PLT model could be implemented successfully. As a result, parameter recovery was

examined. The recovery of the true parameter values are estimated using the root mean

square error (RMSE).

Variances of Testlet Parameter. Table 4.1 represented the magnitudes of average esti-

mated testlet parameters across 25 replications. When variances of the testlet parameters

were 0, all conditions tended to overestimate impacts of testlet effects. For instance, testlet

parameters ranged 0.138 to 0.214 under the σ2
µ· = 0.01 and 0.134 to 0.254 when σ2

µ· = 0.001.

In addition, as the number of items nested in testlets increased, values of testlet parameters

also increased under the σ2
µ· = 0.01 while values of testlet parameters decreased when items

nested in testlets increased under σ2
µ· = 0.001. However, For the moderate and large testlet

effect cases, the patterns were not as evident as in the no testlet effect with the respect to the

number of items nested in testlets. However, when variances of the testlet parameters were

0.5 and 1.0, all conditions tended to underestimate impacts of testlet effects. These patterns

were clearly showed in Figure 4.4 and Figure 4.5. However, values of testlet parameters were

close to the true values when the number of examinees increased.

In addition, Appendix A.1 provided average RMSE for variances of testlet parameters

and the smaller RMSE values indicates better estimation performance. Testlets consisted of

10 items had the smallest RMSE values, ranging from 0.099 to 0.026 regardless of different
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Table 4.1: Magnitude of Variances of Testlet Effect
N = 1000 N = 2000

σ2µ· = 0.01

d.f. Item 0.0 0.5 1.0 0.0 0.5 1.0

0.4 3 0.138 0.363 0.652 0.103 0.376 0.751
6 0.146 0.356 0.701 0.143 0.396 0.765
10 0.191 0.364 0.727 0.168 0.403 0.775

0.5 3 0.166 0.369 0.718 0.150 0.393 0.771
6 0.167 0.372 0.748 0.159 0.398 0.768
10 0.191 0.403 0.776 0.170 0.407 0.783

2.0 3 0.185 0.370 0.701 0.149 0.395 0.747
6 0.192 0.390 0.748 0.157 0.402 0.790
10 0.214 0.407 0.758 0.159 0.413 0.790

σ2µ· = 0.001

0.4 3 0.155 0.366 0.688 0.144 0.386 0.734
6 0.141 0.376 0.765 0.100 0.395 0.765
10 0.134 0.374 0.731 0.099 0.404 0.775

0.5 3 0.254 0.373 0.751 0.150 0.399 0.751
6 0.241 0.373 0.770 0.148 0.401 0.770
10 0.212 0.387 0.782 0.145 0.406 0.803

2.0 3 0.194 0.385 0.743 0.157 0.395 0.751
6 0.157 0.390 0.765 0.154 0.404 0.791
10 0.154 0.418 0.795 0.151 0.405 0.848

number of items within testlets across different hyper-prior distributions when the number

of same sizes is 1,000. Overall, testlets consisted of 10 items still had smaller RMSE values

compare to testlets having different number of items when variances of the testlet parameters

were 0. When the sample sizes increased to 2,000, RMSE values dramatically decreased.

Figure 4.6 and Figure 4.7 showed these trends.

The parameter recovery of testlet parameter of γ seemed to be not as good as those of item

and person parameters. That might be due to the facts that each testlet provided relatively

little information to estimate its person-testlet interaction parameter, γ, since items nested

within testlet had the same testlet parameter. The testlet structure, 3 testlets of size 10
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Figure 4.4: Average Variances of Testlet with σ2
µ· = 0.01

versus 5 testlets of size of 6 did not have a consistent directional impact on the summary

measures chosen when parameters were estimated with σ2
µ· = 0.01.

Person Parameter. Correlations between average estimated θ estimates and true θ values

are presented in Table 4.2. Higher correlation indicates better estimation performance for the

model. All the conditions produce very similar correlations under each of the three testlet

effect conditions. For example, when the variance of the testlet parameters are 0, the mean
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Figure 4.5: Average Variances of Testlet with σ2
µ· = 0.001

corelation of the estimated person parameter and the true person parameter r(θ̂, θ) = .915.

According to the information given in the above table, the correlations of true and estimated

person parameters were around .86 ∼ .93. When comparing r(θ̂, θ) of σ2
µ· = 0.01 to that of

σ2
µ· = 0.001, the better r(θ̂, θ) were obtained in the context of µ = 0.001.

Item Parameter. Performance of different prior distributions are also evaluated by exam-

ining how well it recovers the true item parameters. For each sample, correlation between
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Figure 4.6: RMSE of Testlet Parameters with σ2
µ· = 0.01

the estimated item parameters and the true item parameters were computed. Table 4.3, 4.4,

and 4.5 presented the summary statistics of the correlations for item parameters.

Item Discrimination Parameter. With respect to σ2
µ· = 0.01, Table 4.3 showed that the

mean correlation for the item discrimination parameters was much higher when there was a

large testlet effect with N = 1000, ranging from .962 to .973. Overall mean correlations for

the item discrimination parameters were smaller when the item discrimination parameters
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Figure 4.7: RMSE of Testlet Parameters with σ2
µ· = 0.001

were estimated under the mild variance of the testlet effects. For instance, when the variance

of the testlet parameter were 0.5, mean r(â, a) was .944, ranging from .807 to .997. When

there was no testlet effect, mean r(â, a) was .965, ranging .960 to .971.

With respect to degrees of freedom, higher mean r(â, a) was obtained with large numbers

of items nested in testlets. The large r(â, a) was obtained when the number of items within

testlets was not considered; the average r(â, a) was .945 for d.f. = 0.4, .957 for d.f. = 0.5
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Table 4.2: Correlation of True and Average Estimated Person Parameters
N = 1000 N = 2000

σ2µ· = 0.01

d.f. Items 0 0.5 1.0 0 0.5 1.0

0.4 3 .929 .888 .888 .921 .925 .922
6 .929 .887 .883 .921 .925 .922
10 .929 .866 .863 .921 .926 .922

0.5 3 .929 .888 .873 .921 .925 .922
6 .929 .887 .888 .921 .925 .922
10 .866 .866 .871 .921 .925 .922

2.0 3 .866 .888 .866 .921 .925 .922
6 .929 .866 .862 .921 .925 .922
10 .929 .865 .888 .921 .926 .922

σ2µ· = 0.001

0.4 3 .929 .930 .929 .922 .935 .933
6 .928 .931 .929 .922 .934 .933
10 .929 .930 .929 .922 .935 .934

0.5 3 .929 .931 .930 .922 .934 .934
6 .929 .931 .930 .922 .935 .933
10 .929 .931 .930 .922 .935 .933

2.0 3 .929 .930 .931 .922 .935 .933
6 .929 .931 .930 .922 .936 .934
10 .929 .931 .930 .922 .936 .933

and .975 for d.f. = 2.0. However, when the number of sample sizes were increased to 2000,

the mean r(â, a) across all conditions were increased. When there was no testlet effect, mean

r(â, a) was .977, ranging from .971 to .979.

Besides correlation for the item discrimination parameters, Figure 4.8 and 4.9 showed

patterns of RMSE of item discrimination parameters. Also, Appendix A.2 presented sum-

mary statistics of average RMSE for item discrimination parameter estimates. When the

degrees of prior distribution was specified to σ2
µ· = 0.01, the lower RMSE of item discrimina-

tion parameters was obtained when the item discrimination parameter was estimated with

d.f. = 0.4 (0.153); 0.161 for d.f. = 0.5 and 0.163 for d.f. = 2.0. When the sample sizes were
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Table 4.3: Correlation of True and Average Estimated Item Discrimination Parameters
N = 1000 N = 2000

σ2µ· = 0.01

d.f. Items 0 0.5 1.0 0 0.5 1.0

0.4 3 .960 .807 .963 .978 .978 .968
6 .964 .907 .962 .978 .976 .962
10 .971 .997 .970 .978 .972 .961

0.5 3 .962 .907 .962 .979 .972 .967
6 .964 .907 .968 .978 .974 .961
10 .971 .997 .971 .971 .968 .960

2.0 3 .962 .979 .963 .979 .971 .964
6 .964 .994 .973 .978 .973 .961
10 .971 .997 .972 .978 .975 .960

σ2µ· = 0.001

0.4 3 .960 .961 .962 .978 .961 .962
6 .963 .963 .962 .978 .962 .963
10 .970 .969 .963 .977 .961 .963

0.5 3 .962 .963 .964 .978 .969 .964
6 .965 .965 .931 .978 .974 .962
10 .972 .969 .962 .977 .972 .961

2.0 3 .965 .961 .962 .978 .963 .964
6 .965 .964 .963 .978 .966 .964
10 .970 .965 .963 .977 .973 .965

increased to 2000, values of RMSE dramatically decreased. The smallest RMSE values were

obtained when item discrimination parameters were estimated with d.f. = 0.5 (0.052); 0.053

for d.f. = 0.4 and 0.053 for d.f. = 2.0.

Item Difficulty Parameter.Table 4.4 also showed that the correlations between true and

average estimated item difficulty parameters, with the mean correlations ranging from .774 to

.929. Appendix A.3 presents summary statistics of the average RMSE. When item difficulty

parameters were estimated with µ = 0.01, the higher mean correlation for the item difficulty

parameters was obtained under the condition when the variance of the testlet parameters

were 0 with N = 1000, ranging from .911 to .926.
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Figure 4.8: RMSE of Item Discrimination Parameters with σ2
µ· = 0.01

Overall mean correlations for the item difficulty parameters were smaller when the item

difficulty parameters were estimated under the large variance of the testlet effects. For

instance, when the variance of the testlet parameter were 0.5, mean r(b̂, b) was .860, ranging

from .807 to .915. When the variance of the testlet parameters was 1.0, mean r(b̂, b) was

.884, ranging .774 to .911.
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Figure 4.9: RMSE of Item Discrimination Parameters with σ2
µ· = 0.001

With respect to degrees of freedom, mean r(â, a) = .975 obtained from d.f. = 2.0 under

the large testlet effect condition, which was higher than other values obtained from d.f. =

0.5 (r(b̂, b) = .957) and d.f. = 0.0 (r(b̂, b) = .945). However, when the number of sample sizes

increased to 2000, the mean r(b̂, b) across all conditions increased as well. When there was no

testlet effect, mean r(b̂, b) was .926, ranging from .921 to .929. In general, higher correlation

was obtained from d.f. = 2.0, r(â, a) = .927.
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Table 4.4: Correlation of True and Average Estimated Item Difficulty Parameters
N = 1000 N = 2000

σ2µ· = 0.01

d.f. Items 0 0.5 1.0 0 0.5 1.0

0.4 3 .926 .807 .893 .921 .917 .918
6 .925 .823 .774 .924 .923 .924
10 .924 .915 .897 .925 .924 .925

0.5 3 .924 .828 .892 .927 .915 .916
6 .922 .829 .891 .927 .915 .916
10 .911 .827 .894 .929 .921 .923

2.0 3 .916 .902 .901 .929 .915 .915
6 .922 .904 .911 .927 .917 .916
10 .922 .911 .903 .925 .926 .917

σ2µ· = 0.001

0.4 3 .916 .913 .915 .921 .918 .917
6 .916 .923 .917 .924 .925 .925
10 .918 .924 .917 .925 .935 .925

0.5 3 .924 .914 .921 .927 .923 .926
6 .924 .912 .924 .927 .921 .926
10 .925 .914 .924 .929 .935 .925

2.0 3 .926 .916 .921 .929 .928 .925
6 .925 .917 .921 .927 .932 .926
10 .925 .917 .924 .925 .936 .927

As the testlet effect increased, the r(b̂, b) revealed similar values. Figure 4.10 showed

overall patterns across all conditions.

Figure 4.11 showed overall patterns of item difficulty parameters. When σ2
µ· was increased

to 0.001, the higher mean value of correlation was obtained when the item difficulty parameter

was estimated with d.f. = 2.0 (r(b̂, b) = .922); (r(b̂, b) = .918 for d.f. = 0.4 and r(b̂, b) =

.920 for d.f. = 0.5.) When the sample sizes were increased to 2000, the same results were

obtained; r(b̂, b) = .924 for d.f. = 0.4, r(b̂, b) = .926 for d.f. = 0.5, and r(b̂, b) = .928 for d.f.

= 1.0.
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Figure 4.10: Average Correlation of Item Difficulty with σ2
µ· = 0.01

Figure 4.11: Average Correlation of Item Difficulty with σ2
µ· = 0.001

Besides correlation for the item discrimination parameters, Figure 4.12 and 4.13 showed

patterns of RMSE of item difficulty parameters. In addition, Appendix A.3 presented sum-

mary statistics of the average RMSE for item difficulty parameter estimates. When σ2
µ· was

increased to 0.01, the lower RMSE of item difficulty parameters was obtained when the item

difficulty parameter was estimated with d.f. = 2.0; .434 for d.f. = 0.0, .425 for d.f. = 0.5,

and .412 for d.f. = 2.0 (Figure A.3). When the sample sizes were increased to 2000, values

of RMSE were dramatically decreased. The smallest RMSE values were obtained when item
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difficulty parameters were estimated with d.f. = 0.5; .343 for d.f. = 0.4, .342 for d.f. = 0.5,

and .353 for d.f. = 2.0.

When the prior distribution was increased to σ2
µ· = 0.001 (Figure ??), lower RMSE value

was obtained when the item difficulty parameters were estimated with d.f. = 0.5; .367 for

d.f. = 0.4, .355 for d.f. = 0.5 and .364 for d.f. = 2.0. However, when the sample sizes were

increased to 2000, the lower RMSE value was estimated with d.f. = 2.0; .330 for d.f. = 0.4,

.331 for d.f. = 0.5, and .314 for d.f. = 2.0.

Figure 4.12: RMSE of Item Difficulty Parameters with σ2
µ· = 0.01

Item Guessing Parameter. Table 4.5 presented correlations between true and average

estimated q parameters, ranging from .281 to .575. Table 4.5 demonstrated that the estimated
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Figure 4.13: RMSE of Item Difficulty Parameters with σ2
µ· = 0.001

guessing parameters were somewhat far away from the true parameter regardless of testlet

effects. Also, Appendix A.4 shows the average RMSE of the guessing parameters.

When item guessing parameters were estimated with σ2
µ· = 0.01 with N = 1000, the higher

mean correlation for the item guessing parameters was obtained when there was no testlet

effect, ranging from .330 to .458. Overall mean correlations for the item guessing parameters

were smaller when the item guessing parameters were estimated under the large variance of
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the testlet effects. For instance, when the variance of the testlet parameter were 0.5, mean

r(q̂, q) was .308, ranging from .252 to .351. When the variance of the testlet parameters was

1.0, mean r(q̂, q) was .348, ranging .281 to .428.

Table 4.5: Correlation of True and Average Estimated Item Guessing Parameters
N = 1000 N = 2000

σ2µ· = 0.01

d.f. Items 0 0.5 1.0 0 0.5 1.0

0.4 3 .428 .320 .320 .412 .469 .529
6 .429 .281 .281 .395 .416 .533
10 .461 .337 .370 .369 .468 .528

0.5 3 .414 .351 .351 .461 .454 .438
6 .418 .285 .370 .424 .457 .446
10 .330 .327 .428 .423 .453 .437

2.0 3 .458 .252 .252 .451 .460 .530
6 .419 .320 .343 .424 .453 .538
10 .406 .302 .420 .394 .471 .503

σ2µ· = 0.001

0.4 3 .431 .420 .420 .402 .552 .529
6 .417 .444 .481 .405 .565 .535
10 .411 .470 .470 .412 .575 .576

0.5 3 .467 .428 .451 .462 .477 .534
6 .436 .485 .470 .423 .560 .469
10 .417 .431 .452 .427 .565 .511

2.0 3 .465 .452 .369 .415 .565 .531
6 .449 .420 .419 .414 .570 .535
10 .432 .440 .409 .450 .575 .541

With the respect to degrees of hyper-prior distributions, mean r(q̂, q) = .389 obtained

from d.f. = 0.4 under the no testlet effect condition. When there was mild testlet effect, the

estimated guessing parameter with d.f. = 0.5 had highest correlation; (r(q̂, q) = .313) for

d.f. = 0.0, r(q̂, q) = .321 for d.f. = 0.5. and r(q̂, q) = .291 for d.f. = 2.0. However, when

the number of sample sizes was increased to 2000, the mean r(q̂, q) across all conditions were

increased. When there was no testlet effect, mean r(q̂, q) was .417, ranging from .369 to .461.

Higher values r(q̂, q) was obtained from d.f. = 2.0; r(q̂, q) = .498 for d.f. = 2.0, and r(q̂, q)

= .456 for d.f. = 0.5. Figure 4.14 and 4.15 showed the similar patterns. However, when
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compared values of r(q̂, q) obtained between σ2
µ· = 0.01 and σ2

µ· = 0.001, in general values of

r(q̂, q) was higher when item guessing parameters were estimated with σ2
µ· = 0.001.

Figure 4.14: Average Correlation of Item Guessing with σ2
µ· = 0.01

Figure 4.15: Average Correlation of Item Guessing with σ2
µ· = 0.001

Besides correlation for the item discrimination parameters, Figure 4.16 and 4.17 showed

patterns of RMSE of item difficulty parameters. In addition, Appendix A.4 presented sum-

mary statistics of the average RMSE for item guessing parameter estimates. When σ2
µ· was

increased to 0.01, the lower RMSE value of item guessing parameters was obtained when

the item guessing parameter was estimated with d.f. = 0.4; .397 for d.f. = 0.4, .429 for d.f.

= 0.5, and .414 for d.f. = 2.0 (Figure A.3). When the sample sizes were increased to 2000,

values of RMSE decreased. The smallest RMSE values were obtained when item guessing

parameters were estimated with d.f. = 0.4; .288 for d.f. = 0.4, .315 for d.f. = 0.5, and .313

for d.f. = 2.0.
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When the prior distribution was increased to σ2
µ· = 0.001 (Figure ??), lower RMSE value

was obtained when the item guessing parameters were estimated with d.f. = 0.5; .330 for

d.f. = 0.4, .319 for d.f. = 0.5, and .348 for d.f. = 2.0. However, when the sample sizes were

increased to 2000, the lower RMSE value was estimated with d.f. = 2.0; .293 for d.f. = 0.4,

.292 for d.f. = 0.5, and .289 for d.f. = 2.0.

Figure 4.16: RMSE of Item Guessing Parameters with σ2
µ· = 0.01

Appendix A.5 described information about the RMSE values of items only nested testlets.

Among 60 items, 5 items were fixed for the scaling purpose and 25 items were considered

as independent items. Last 30 items were nested in different number of testlets. In general,

testlets having a relatively large number of items reveal small degree of RMSE compared to
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Figure 4.17: RMSE of Item Guessing Parameters with σ2
µ· = 0.001

other testlets having small number of items. Figure 4.18 showed that with the sample sizes

1000, lower RMSE of item discrimination occurred when the item discrimination parameter

were estimated with d.f. = 0.5 under the condition of no testlet effect. When the testlet

effects existed, lower RMSE values of item discrimination parameters happened when the

item discrimination parameters were estimated with d.f. = 2.0. Similar results were also

obtained when the item discrimination parameters were estimated with σ2
µ· = 0.001 (see
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Figure 4.19). However, given the sample size (N = 1000), smaller RMSE values of item

discrimination parameters occurred if those parameters were estimated with σ2
µ· = 0.01

under the condition of no testlet effect when compared RMSE values of item discrimination

parameters between σ2
µ· = 0.01 and σ2

µ· = 0.001. However, if there were testlet effects, item

discrimination parameters estimated with σ2
µ· = 0.01 had smaller RMSE values than those

estimated with σ2
µ· = 0.001. When the sample sizes increased to 2000, no big difference

between σ2
µ· = 0.01 and σ2

µ· = 0.001 occurred.

Figure 4.18: RMSE of Item Discrimination Parameters within Testlets with σ2
µ· = 0.01

Appendix A.5 and Figure 4.20 showed the patterns of RMSE of item difficulty parameters.

In general, smaller RMSE values of item difficulty parameters were obtained when large
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Figure 4.19: RMSE of Item Discrimination Parameters within Testlets with σ2
µ· = 0.001

number of items were nested in testlets. Lower RMSE values were obtained when the item

difficulty parameters were estimated with d.f. = 0.4 across three different testlet effects.

Given the sample sizes of 1000, smaller RMSE values of item difficulty parameters were

obtained when the item difficulty parameters were estimated under no testlet effect. When

there were testlet effects, lower RMSE values of item difficulty occurred when the item



48

difficulty parameters were estimated with d.f. = 2.0. Similar results were also obtained

when the item difficulty parameters were estimated with σ2
µ· = 0.001 (see Figure 4.21).

When values of RMSE were compared between σ2
µ· = 0.01 and σ2

µ· = 0.001, smaller RMSE

values of item difficulty parameters occurred if those parameters were estimated with σ2
µ· =

0.001 across all conditions. However, when the sample sizes increased to 2000, relatively

small RMSE of item difficulty parameters were obtained with σ2
µ· = 0.01.

Figure 4.20: RMSE of Item Difficulty Parameters within Testlets with σ2
µ· = 0.01

With respect to item guessing parameters, Figure 4.22 showed the patterns of RMSE of

item guessing parameters. The results showed that smaller RMSE values of item guessing
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Figure 4.21: RMSE of Item Difficulty Parameters within Testlets with σ2
µ· = 0.001

parameters were obtained when large number of items were nested in testlets. Lower RMSE

values were obtained when the item guessing parameters were estimated with d.f. = 0.4

across three different testlet effects in general. Given the sample sizes of 1000, smaller RMSE

values of item guessing parameters were obtained when the item guessing parameters were

estimated under the no testlet effect. When there were testlet effects, lower RMSE values of

item guessing occurred when the item guessing parameters were estimated with d.f. = 2.0.
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Similar results were also obtained when the item guessing parameters were estimated with

σ2
µ· = 0.001 (see Figure 4.23).

When values of RMSE were compared between σ2
µ· = 0.01 and σ2

µ· = 0.001, relatively

smaller RMSE values of item guessing parameters occurred if those parameters were esti-

mated with σ2
µ· = 0.01. However, when the sample sizes increased to 2000, there were no big

difference between σ2
µ· = 0.01 and σ2

µ· = 0.001.

Figure 4.22: RMSE of Item Guessing Parameters within Testlets with σ2
µ· = 0.01
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Figure 4.23: RMSE of Item Guessing Parameters within Testlets with σ2
µ· = 0.001

4.3 RESULTS OF REAL DATA ANALYSIS

The 2003 form of the Florida Comprehensive Assessment Test (FCAT) Reading Test for

Grade 9 contains seven reading passages and 51 items. Each of these testlets consists of 6 to

9 items. The last 6 try-out items were discarded. The first six tests containing 45 items were

used for this study. The six testelts were composed of six reading passages with 7, 9, 7, 8, 8,
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and 6 items, respectively. A sample of 1,000 examinees was randomly drawn from the total

sample and used for this preliminary analysis.

4.3.1 CONVERGENCE

It is important to determine whether the Markov chain has reached its stationary distribu-

tion. If the chain does not converge, the simulated draws from this chain would not represent

the posterior distribution of parameters of interest. The convergence diagnostics in prelimi-

nary results indicated that as many as 5,000 iterations are necessary to achieve convergence.

Gibbs and SCORIGHT. The Gibbs program does not provide any statistics to monitor

convergence. However, SCORIGHT provides statistics as in post (i.e., posterior) and con-

fshrink (i.e., confidence interval shrunk) for convergence when more than two chains are

performed at the same time. Post statistic provides 2.5%, 50%, and 97.5% quantitles for the

target distribution based on the Student-t distribution, whereas confshrink statistic, termed

as the potential scale reduction,
√
R̂, in Gelman and Rubin (1992), indicates how much

estimated posterior intervals would shrink as the iterative simulations keep continuing and

provides 97.5% quantiles of
√
R̂ (Gelman & Rubin, 1992; Wang et al., 2004).

√
R̂ is the

square root of estimated variance divided by within chain variance,
√

V (θ)
W

, where V(θ) =

(1 − 1
n
) is estimated variance and W within chain variance (Gelman & Rubin, 1992; Wang

et al., 2004). The value of confshrink should be around 1 which indicates reasonable conver-

gence (Gelman & Rubin, 1992; Wang et al., 2004) because variation within the chain and

variation between the chains should be equivalent. Otherwise, a longer iterations should be

performed. The summary statistics of post and confshrink statistics with the real data are

presented in Table 4.6.

WINBUGS. A number of convergence diagnostics such as plot history, autocorrelation

plots, and the Gelman-Rubin statistic, R, from the WinBUGS program were also used to

check convergence. It is easy to check the stability of simulated parameters by using the

plot history, which shows the generated values of a parameter at each iteration in a chain
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Table 4.6: Post and Confshrink Statistics from SCORIGHT

5,000 iterations 15,000 iterations
Post Confshrink Post Confshrink

2.5% 50% 97.5% 50% 97.5% 2.5% 50% 97.5% 50% 97.5%
a −0.07 0.22 0.50 1.00 1.02 −0.08 0.22 0.52 1.00 1.00
b −0.27 −0.13 0.02 1.03 1.11 0.27 −0.11 0.06 1.04 1.19
q −1.86 −1.59 −1.32 1.57 3.00 −1.81 −1.56 −1.30 1.18 1.63

Testlet 1 0.10 0.21 0.31 1.27 1.99 0.11 0.21 0.31 1.01 1.02
Testlet 2 0.08 0.16 0.24 1.08 1.18 0.10 0.17 0.25 1.01 1.03
Testlet 3 0.15 0.33 0.52 1.23 1.78 0.21 0.34 0.48 1.00 1.02
Testlet 4 0.12 0.22 0.32 1.06 1.20 0.11 0.21 0.31 1.00 1.03
Testlet 5 0.14 0.22 0.32 1.01 1.04 0.11 0.21 0.30 1.01 1.02
Testlet 6 0.20 0.32 0.43 1.10 1.37 0.20 0.32 0.44 1.00 1.01

of sample values. The sample history of the first item estimated with a normal distribution

is presented in Figure 4.24, in which two chains start from different values and then mix

together. Similar results were observed for the other items. However, the sample history of

the first item estimated with a log-normal distribution is shown in Figure 4.25, in which

two chains start from the different values and then mix together quickly.

Figure 4.24: Sampling of History of the First Item with 5,000 Iterations under Normal Dis-
tribution

An autocorrelation plot shows correlation between each sequential draw of a parameter in

a Markov chain. However, an autocorrelation plot does not evaluate convergence of MCMC



54

Figure 4.25: Sampling of History of the First Item with 5,000 Iterations under Lognormal
Distribution

directly. Instead, an autocorrelation plot indirectly suggests appropriateness of MCMC con-

vergence because autocorrelation causes inefficient MCMC. As shown in the autocorrelation

plots in Figure 4.26, the autocorrelations for the first and the second chains decrease to

nearly zero at 40. This indicates that the correlation between any two drawn values sep-

arated by independent. The second step parameter presents the worse case, in which the

autocorrelation remains above 0.5 even at about lag 40. These high autocorrelations explain

why the convergence is slow.

Figure 4.26: Autocorrelation of the First Item with 5,000 Iterations under Normal Distribu-
tion

The Gelman-Rubin convergence statistic (Brooks & Gelman, 1998) shows whether

MCMC simulations reach stability by using multiple chains with different starting points.

A value of R near 1 for all parameters of interest indicates that MCMC has converged. The

green and blue lines reflect the pooled and within-chain posterior variance, respectively.
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The ratio of these two variances is represented by the red line. The Gelman-Rubin conver-

gence statistic plot of the first item was shown in Figure 4.27. The red line (Gelman-Rubin

statistic) converged to 1, indicating equality between the pooled and within-chain variances.

Thus, the Gelman-Rubin plot demonstrates that the convergence seems to occur around

4,200 iterations. However, the fluctuating red line might indicate the necessity of longer

iterations.

Figure 4.27: The Gelman-Rubin Convergence Statistic of the First Item with 5,000 Iterations
under Normal Distribution

A smoothed kernel density is estimated for the posterior distributions. Figure 4.28 showed

the density plots of the first and the sixth items based on the initial 5,000 iterations from two

chains for the difficulty parameter, b. The density plot for b of the first item showed unimodal

distribution which is nearly symmetric and close to the normal distribution. However, other

items does not show approximate symmetric density plots. Item 6, for instance, showed

bi-modal density distribution which might suggest the necessity of longer chains.

Figure 4.28: A Kernel Density of the First Item with 5,000 Iterations under Normal Distri-
bution
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4.3.2 ESTIMATION

Prior to data analysis, the first 5,000 iterations of each chain were discarded as burn-in

periods for the initial 5,000 iterations. Point estimates of the model parameters and standard

errors were computed, respectively, of 20,000 iterations (10,000 iterations for each chain) sam-

pled from each parameter’s marginal posterior distribution after burn-in periods. Once the

convergence of the model was checked, parameters obtained from SCORIGHT, Gibbs, and

WinBUGS were compared to one another. For instance, correlations between item param-

eter estimates from SCORIGHT and WinBUGS were .94 for item discrimination, .99 for

item difficulty, and .33 for pseudo-guessing. The results in Table A.7, Table A.8, and Table

A.9 showed that the estimated discrimination, difficulty, and pseudo-guessing parameters for

all three methods were slightly divergent: Values of original pseudo-guessing parameters in

the WinBUGS program were used instead of transformed pseudo-guessing parameters. As a

number of iterations increased, correlations among item parameters from the three programs

were getting higher. The summary statistics of the estimates from the SCORIGHT, Gibbs,

and WinBUGS runs of the real data also presented in the Table 4.7 and Table 4.8.

An individual’s response to the items not only depend on an individual’s ability and item

difficulty, but also on additional random testlet effects, which are assumed to be normally

distributed with a mean of zero and a variance, σ2
γ. A testlet effect with a similar magnitude

to the variance of the corresponding latent variable means that the variance associated with

LD is of the same order of magnitude as the variance of individuals.

In the line of recommendation for testlet effect (Bradlow et al., 1999), testlet effects among

six testlets were moderately significant, which confirmed that items on a test violated the

local independence assumption. However, slightly different testlet effects obtained from the

three programs were shown in Table A.10. Results obtained from SCORIGHT and Gibbs

showed that the third testlet had the largest testlet effect, whereas the largest testlet effect

existed at the last testlet in WinBUGS.
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Noninformative prior distributions specified as µa ∼ N(0, 1002), µb ∼ N(0, 1002), and

µq ∼ N(0, 1002) for item discrimination, item difficulty, and pseudo-guessing parameters,

respectively appeared to perform well in the 3PLT model reflecting a half normal distri-

bution on item discrimination parameter, a ∼ N(µa, σa)I(0, ). In the WinBUGS code, the

variance, σ2 = 1002, designate τ = 0.0001. As the sample size of this preliminary study was

relatively small (N=1,000), informative prior distributions seemed to be imposed for the item

discrimination parameters. It accelerated the WinBUS runs when informative long-normal

distribution for item discrimination, a ∼ LN(µa, σ
2
a).

The results of the analyses were as expected. The selection of prior distributions in

3PLT model affected the estimation of item parameters as well as model convergence. It was

noteworthy that the 3PLT model in the WinBUGS 1.4 program needed either several chains

or relatively longer iterations as Sinharay (2004) suggested.
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Chapter 5

DISCUSSION

The previous chapter reported the results of the studies conducted in this dissertation. This

chapter included a summary of the findings from these studies and a discussion of their

significance. The chapter closed by presenting some of the study limitations and suggesting

directions for future research.

The two primary goals of this research are: First, to conduct simulation studies to inves-

tigate the impacts of means of particular prior distributions and different degrees of freedom

under the context of the 3PLT model under different number of sample sizes; and second,

to apply the 3PLT model to the empirical data sets.

5.1 Summaries

Bayesian estimation using MCMC methods offer lots of potential for estimation of complex

IRT models such as testlet models (Bradlow et al., 1999; Li et al., 2005; Wang, 2002). The

advantage of the testlet model over the standard IRT models is that the former can provide

a quantitative idea about the dependence of the response of an examinee to the items within

the testlets. The 3PLT in the WinBUGS runs requires either several chains or relatively

longer iterations.

Based on the simulation study, convergence was slow for conditions in which relatively

small degrees of freedom was placed on testlets containing 10 items. It might be due to the

fact that there was not much information in estimating testlet effect. In addition, the findings

indicated that when a small number of items were nested in testlets in a test (large number

59



60

of testlets), convergence rate was relatively faster compared to one containing large number

of items within small number of testlets.

The 3PLT model assumes that parameters for testlet follow a normal distribution

N(0, γ(g)). The magnitudes of the testlet effects are determined by the variance of the

testlet parameters. In the simulation study, the true testlet parameter were specified to be

normal distributed. Estimates of the testlet variance were overestimated when there was

no testlet effect. However, Estimates of the testlet tended to be an underestimates if there

were testlet effects. The results showed that the same testlets in different means of prior

distributions exhibited different magnitudes of testlet effects. While it is hard to illuminate

the change of testlet effect across different means of prior distributions by studying item

responses only, analyzing the content of these testlets may shed some light on these shifts.

Before examining the success of the 3PLT model in recovering of the true parameters,

this study examined correlations between the generating parameter (true) and the estimated

parameters. The average values of correlations across 25 replications are .92 for θ, .94 for a,

.93 for b, and 0.45 for q, which indicates that estimation process had added small amount of

error to the estimates. The results showed slightly lower correlations between the estimated

parameters and the true parameters.

Additionally, RMSE for each condition was computed for 25 replications to evaluate the

success of recovering the true parameters. In general, the variances of testlet effect tended to

be underestimated across all conditions, yielding smaller testlet effects than it should have.

However, it should be noted that the tendency of underestimating testlet effects reversed for

the condition, which assumed no testlet effects. The tendency displayed minor testlet effects

when there was no testlet effect.

It is common to use reasonably non-informative prior distributions about the mean and

the variance of the random effects. However, the important thing is to distinguish primary

parameters of interest in which one may want minimal influence of priors from the secondary
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structure used for smoothing in which either moderate or strong informative priors may be

more acceptable. However, great caution should be considered in complex models.

5.2 Limitations of the Study

This study explored the impacts of means of prior distributions, different degrees of freedom,

different number of items nested in testlets on testlet effects within the 3PLT model. Though

the conditions were carefully designed and the factors were fixed at realistic values, the

results obtained from this study cannot be generalized beyond the conditions studied here.

For example, this study was limited in terms of the means of prior distributions, degrees of

freedom, and number of items nested in testlets because all those conditions were applied

across all parameters under the same number of sample sizes (N = 1000 and N = 2000). The

relative differences among means of prior distributions and different degrees of freedom could

vary more drastically depending on conditions such as sample size and number of items. A

lack of information on σ2
a, σ

2
b , and σ2

q had been imposed with inverse-chi square distribution.

However, it is necessary to clarify difference between inverse-gamma distribution and gamma

distribution used in other contexts (Spiegelhalter et al., 2003) .

By including a set of person-testlet interaction parameters in addition to the usual item

and person parameters, the testlet models are able to account for the testlet effects which

have been ignored by the traditional unidimensional IRT. However, the performance of the

particular means of prior distributions and different degrees of freedom for the 3PLT model

requires further study. For example, the effect of factors such as different prior distributions

and different degrees could be further explored. Regarding the testlet effect, the practice

of assuming normal distributions for testlet parameters has almost been exclusively applied

by researchers in their specification and estimation of testlet models (Bradlow et al., 1999;

Wainer et al., 2000; Wainer et al., 2007; Wainer & Wang, 2000). Although this is a generally

accepted practice, there is no guarantee that the true testlet parameters are normally dis-

tributed universally for different tests that target different content domains and examinees in
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real life. The discrepancies between the assumed testlet parameters distribution and the true

testlet parameter distribution can lead to inaccuracies in model. Therefore, it is recommended

to study the behavior of the testlet effects parameters and investigate the appropriateness

testlet response models that employ different testlet parameter distributions.

In this study, the group invariance property with the real data was not evaluated. It

should be noted that test equating results may be different for various populations. In this

study, the examinee population taking the FCAT was the same population but abilities

of those examinees were estimated by using different programs (e.g., Gibbs, SCORIGHT,

WinBUGS).

Another limitation of the current study lies in the data generation method for the simu-

lation study. In order to keep the generated discrimination and difficulty parameters within

the range of the FCAT items, samples were discarded until all the obtained parameters fell

within the rage of real item parameters. As a result, the final data samples were not randomly

generated in a strict sense.

Running the WinBUGS program is highly computation-intensive. Due to to computing

constraints of the WinBUGS 1.4 program (Spiegelhalter et al., 2003), only 25 replications

were implemented. Since an average run took about 6 hours with the sample size of 1000

and 14 hours with the sample size of 2000 under the conditions studied here, simulation

research, which typically requires large number of replications, faces even greater computing

challenges. Though it was smaller than which is typical for other Monte Carlo research, it

was larger compared to previous research involving the 3PLT model.



Appendix A

A.1 Average RMSE of Variances of Testlet

A.2 Average RMSE of Item Discrimination Parameter

A.3 Average RMSE of Item Difficulty Parameter

A.4 Average RMSE of Item Guessing Parameter

A.5 Average RMSE of Item Estimates for Items Within Testlet When σ2
µ·

= 0.01

A.6 Average RMSE of Item Estimates for Items Within Testlet When σ2
µ·

= 0.001

A.7 Correlation of Item Discrimination Parameter

A.8 Correlation of Item Difficulty Parameter

A.9 Correlation of Guessing Parameter

A.10 Estimated Variance of Testlets
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Table A.1: Average RMSE of Variances of Testlet
N = 1000 N = 2000

σ2µ· = 0.01

d.f. Items 0 0.5 1.0 0 0.5 1.0

0.4 3 0.146 0.147 0.452 0.124 0.128 0.257
6 0.156 0.154 0.291 0.143 0.117 0.254
10 0.196 0.136 0.271 0.184 0.097 0.238

0.5 3 0.178 0.135 0.292 0.177 0.113 0.238
6 0.187 0.132 0.252 0.177 0.112 0.244
10 0.195 0.097 0.234 0.186 0.093 0.229

2.0 3 0.177 0.230 0.292 0.148 0.114 0.269
6 0.175 0.210 0.252 0.175 0.098 0.215
10 0.198 0.097 0.242 0.179 0.082 0.210

σ2µ· = 0.001

0.4 3 0.165 0.263 0.322 0.142 0.131 0.273
6 0.153 0.262 0.245 0.103 0.118 0.245
10 0.137 0.265 0.271 0.101 0.117 0.225

0.5 3 0.298 0.266 0.249 0.176 0.119 0.249
6 0.285 0.266 0.231 0.173 0.118 0.230
10 0.223 0.253 0.228 0.171 0.114 0.197

2.0 3 0.201 0.255 0.267 0.167 0.118 0.248
6 0.167 0.243 0.245 0.154 0.117 0.218
10 0.164 0.158 0.215 0.151 0.119 0.152
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Table A.2: Average RMSE Item Discrimination Parameter
N = 1000 N = 2000

σ2µ· = 0.01

d.f. Items 0 0.5 1.0 0 0.5 1.0

0.4 3 0.210 0.168 0.165 0.056 0.056 0.057
6 0.179 0.142 0.138 0.049 0.046 0.057
10 0.166 0.137 0.163 0.049 0.049 0.061

0.5 3 0.218 0.164 0.163 0.054 0.056 0.056
6 0.184 0.151 0.148 0.048 0.041 0.057
10 0.118 0.148 0.162 0.052 0.054 0.060

2.0 3 0.217 0.172 0.168 0.053 0.058 0.059
6 0.184 0.140 0.145 0.048 0.050 0.057
10 0.165 0.132 0.153 0.047 0.047 0.060

σ2µ· = 0.001

0.4 3 0.170 0.183 0.211 0.050 0.056 0.060
6 0.108 0.184 0.205 0.049 0.056 0.058
10 0.107 0.185 0.196 0.049 0.059 0.059

0.5 3 0.166 0.174 0.230 0.055 0.058 0.064
6 0.159 0.183 0.229 0.048 0.058 0.076
10 0.138 0.174 0.184 0.049 0.049 0.060

2.0 3 0.166 0.182 0.211 0.054 0.059 0.060
6 0.157 0.174 0.186 0.048 0.058 0.063
10 0.155 0.182 0.179 0.048 0.058 0.058
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Table A.3: Average RMSE Item Difficulty Parameter
N = 1000 N = 2000

σ2µ· = 0.01

d.f. Items 0 0.5 1.0 0 0.5 1.0

0.4 3 0.392 0.493 0.472 0.303 0.372 0.370
6 0.391 0.494 0.492 0.300 0.343 0.360
10 0.393 0.389 0.390 0.306 0.369 0.361

0.5 3 0.394 0.393 0.393 0.302 0.357 0.395
6 0.394 0.408 0.509 0.288 0.358 0.395
10 0.421 0.421 0.497 0.287 0.353 0.343

2.0 3 0.388 0.447 0.446 0.298 0.395 0.395
6 0.394 0.399 0.433 0.288 0.372 0.395
10 0.395 0.421 0.387 0.302 0.361 0.372

σ2µ· = 0.001

0.4 3 0.380 0.386 0.385 0.305 0.370 0.370
6 0.365 0.342 0.383 0.304 0.308 0.360
10 0.364 0.337 0.363 0.308 0.280 0.361

0.5 3 0.315 0.346 0.363 0.314 0.342 0.360
6 0.375 0.381 0.348 0.283 0.370 0.360
10 0.353 0.348 0.362 0.305 0.280 0.360

2.0 3 0.348 0.372 0.368 0.294 0.300 0.361
6 0.377 0.340 0.375 0.284 0.287 0.360
10 0.372 0.332 0.393 0.300 0.277 0.359
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Table A.4: Average RMSE Item Guessing Parameter
N = 1000 N = 2000

σ2µ· = 0.01

d.f. Items 0 0.5 1.0 0 0.5 1.0

0.4 3 0.312 0.365 0.365 0.293 0.255 0.245
6 0.311 0.494 0.497 0.288 0.317 0.282
10 0.309 0.460 0.458 0.291 0.329 0.290

0.5 3 0.354 0.465 0.465 0.302 0.314 0.305
6 0.352 0.490 0.458 0.291 0.321 0.298
10 0.484 0.480 0.312 0.360 0.342 0.300

2.0 3 0.402 0.500 0.501 0.338 0.324 0.289
6 0.296 0.470 0.345 0.291 0.346 0.285
10 0.390 0.498 0.320 0.291 0.365 0.283

σ2µ· = 0.001

0.4 3 0.315 0.370 0.370 0.305 0.280 0.300
6 0.352 0.309 0.301 0.309 0.289 0.298
10 0.355 0.300 0.300 0.310 0.275 0.274

0.5 3 0.305 0.368 0.309 0.300 0.290 0.298
6 0.314 0.295 0.300 0.300 0.288 0.273
10 0.352 0.315 0.310 0.309 0.274 0.293

2.0 3 0.307 0.309 0.460 0.297 0.275 0.301
6 0.313 0.370 0.355 0.294 0.280 0.296
10 0.315 0.314 0.385 0.308 0.270 0.281

Table A.5: Average RMSE of Item Estimates for Items Within Testlet When σ2
µ· = 0.01

Item ] of Varγ = 0 Varγ = 0.5 Varγ = 1.0
Parameter Items d.f. = 0.4 d.f. = 0.5 d.f. = 2.0 d.f. = 0.4 d.f. = 0.5 d.f. = 2.0 d.f. = 0.4 d.f. = 0.5 d.f. = 2.0
N= 1000

α 3 0.302 0.255 0.252 0.285 0.291 0.075 0.273 0.215 0.262
6 0.200 0.202 0.202 0.271 0.280 0.045 0.179 0.181 0.186
10 0.176 0.176 0.176 0.037 0.049 0.032 0.171 0.171 0.160

β 3 0.302 0.307 0.337 0.689 0.690 0.723 0.689 0.690 0.591
6 0.302 0.304 0.302 0.688 0.707 0.536 0.683 0.656 0.579
10 0.301 0.300 0.299 0.541 0.579 0.499 0.630 0.642 0.632

q 3 0.335 0.345 0.376 0.269 0.319 0.392 0.332 0.319 0.402
6 0.336 0.337 0.337 0.332 0.331 0.384 0.269 0.273 0.393
10 0.331 0.321 0.335 0.410 0.412 0.421 0.271 0.308 0.245

N= 2000
α 3 0.066 0.064 0.062 0.063 0.065 0.067 0.072 0.074 0.070

6 0.055 0.052 0.052 0.050 0.055 0.052 0.066 0.072 0.065
10 0.054 0.055 0.050 0.048 0.052 0.049 0.062 0.066 0.064

β 3 0.302 0.301 0.302 0.227 0.253 0.251 0.228 0.250 0.248
6 0.297 0.287 0.289 0.216 0.212 0.207 0.257 0.242 0.238
10 0.290 0.301 0.279 0.187 0.208 0.199 0.239 0.240 0.225

q 3 0.310 0.329 0.290 0.320 0.345 0.332 0.265 0.283 0.265
6 0.302 0.290 0.275 0.318 0.322 0.324 0.260 0.273 0.256
10 0.294 0.275 0.270 0.314 0.313 0.313 0.253 0.261 0.250
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Table A.6: Average RMSE of Item Estimates for Items Within Testlet When σ2
µ· = 0.001

Item ] of Varγ = 0 Varγ = 0.5 Varγ = 1.0
Parameter Items d.f. = 0.4 d.f. = 0.5 d.f. = 2.0 d.f. = 0.4 d.f. = 0.5 d.f. = 2.0 d.f. = 0.4 d.f. = 0.5 d.f. = 2.0
N= 1000

α 3 0.172 0.185 0.182 0.298 0.300 0.185 0.283 0.285 0.264
6 0.153 0.162 0.162 0.209 0.291 0.182 0.189 0.200 0.190
10 0.103 0.103 0.103 0.194 0.149 0.182 0.181 0.181 0.173

β 3 0.172 0.198 0.200 0.389 0.407 0.423 0.389 0.396 0.391
6 0.169 0.180 0.202 0.388 0.379 0.336 0.383 0.369 0.379
10 0.162 0.161 0.199 0.341 0.315 0.399 0.330 0.342 0.332

q 3 0.351 0.462 0.366 0.320 0.339 0.302 0.356 0.337 0.356
6 0.337 0.338 0.337 0.319 0.321 0.305 0.350 0.373 0.345
10 0.332 0.325 0.334 0.317 0.312 0.302 0.371 0.358 0.334

N= 2000
α 3 0.076 0.074 0.064 0.065 0.067 0.069 0.082 0.075 0.073

6 0.065 0.062 0.055 0.055 0.056 0.066 0.068 0.073 0.068
10 0.064 0.065 0.054 0.052 0.053 0.052 0.064 0.069 0.065

β 3 0.313 0.326 0.303 0.237 0.273 0.261 0.239 0.255 0.258
6 0.312 0.282 0.294 0.226 0.243 0.247 0.267 0.243 0.248
10 0.311 0.308 0.308 0.197 0.226 0.248 0.240 0.242 0.237

q 3 0.312 0.330 0.296 0.330 0.355 0.334 0.267 0.293 0.277
6 0.302 0.295 0.285 0.325 0.342 0.325 0.265 0.281 0.266
10 0.302 0.300 0.286 0.310 0.328 0.323 0.253 0.275 0.253

Table A.7: Correlation of Item Discrimination Parameter
Condition Du SC N LN

Du 1.000 .898 .987 .978
5,000 SC 1.00 .939 .936

iterations N 1.000 .989
LN 1.000

2 Du 1.000 .947 .998 .993
15,000 SC 1.00 .947 .958

iterations N 1.000 .991
LN 1.000

Table A.8: Correlation of Item Difficulty Parameter
Condition Du SC N LN

Du 1.000 .984 .995 .994
5,000 SC 1.00 .990 .992

iterations N 1.000 .998
LN 1.000

2 Du 1.000 .991 1.000 1.000
15,000 SC 1.00 .947 .992

iterations N 1.000 .999
LN 1.000
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Table A.9: Correlation of guessing parameter
Condition Du SC N LN

Du 1.000 .213 .915 .896
5,000 SC 1.00 .218 .326

iterations N 1.000 .959
LN 1.000

2 Du 1.000 .324 .989 .987
15,000 SC 1.00 .242 .314

iterations N 1.000 .979
LN 1.000

Table A.10: Estimated Variance of Testlet
Cond Testlet Du SC N LN

1 .144 .211 .174 .193
2 .140 .151 .129 .140

5,000 3 .281 .311 .272 .264
iterations 4 .162 .207 .194 .183

5 .185 .199 .180 .170
6 .268 .286 .294 .290

1 .143 .213 .175 .178
2 .120 .173 .146 .137

15,000 3 .290 .344 .297 .294
iterations 4 .133 .209 .169 .167

5 .150 .206 .179 .181
6 .281 .321 .291 .295



Appendix B

3PL TESTLET N = 2000 55 ITEMS DATA GENERATION T 0.5 SEED:123456

MODEL {

a[1] ← 0.521172928

a[2] ← 0.077579014

a[3] ← 0.886715500

a[4] ← 1.676318913

a[5] ← 2.805824457

...

a[51] ← 1.58147946

a[52] ← 1.64617332

a[53] ← 2.15516394

a[54] ← 1.44434500

a[55] ← 1.57411228

b[1] ← -1.13956809

b[2] ← -0.54981831

b[3] ← 0.41384308

b[4] ← 1.23229356

b[5] ← 0.06482972

...

b[51] ← -0.96948734

b[52] ← 0.96107453
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b[53] ← -2.45063650

b[54] ← 0.32210101

b[55] ← -0.10069723

q[1] ← -1.7513594335

q[2] ← -0.9109805725

q[3] ← -1.0475347050

q[4] ← -2.3619323768

q[5] ← -1.8765800430

...

q[51] ← -1.4719871227

q[52] ← -1.9722319279

q[53] ← -1.7289024947

q[54] ← -0.9255847931

q[55] ← -1.7116853925

test[1] ← 0

test[2] ← 0

test[3] ← 0

test[4] ← 0

test[5] ← 0

...

test[51] ← 1.0

test[52] ← 1.0

test[53] ← 1.0

test[54] ← 1.0

test[55] ← 1.0

for (j in 1:N) {

for (k in 1:T) {
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p[j,k]← (exp(q[k])/(1+exp(q[k]))+exp(a[k]*(theta[j] - b[k]-test[k])))/(1+exp(a[k]*(theta[j]

- b[k]- test[k])))

resp[j,k] ∼ dbern(p[j,k])

} } }

list(N=2000, T=55,

theta=c(

-1.1632050534, -0.9143888319, -0.4015921904, -1.0573467692, 0.2015239017,

-0.6371621926, -0.3196387516, -0.5640802674, 1.7068394363, 0.5722573115,

· · · · · · · · · · · ·

0.8271898127, 0.9437303027, -0.6265469574, -0.4280939117, -0.0143332587 ))



Appendix C

] 3PL Testlet Model

model

{

for (j in 1:N) {

for (k in 1:T) {

r[j,k]¡-resp[j,k]

} }

for (j in 1:N) {

for (k in 6:25) {

p[j,k] ← (exp(q[k])/(1+exp(q[k])) + exp(a[k]*(theta[j] - b[k])))/(1+exp(a[k]*(theta[j] -

b[k])))

r[j,k] ∼ dbern(p[j,k])

}

for (k in 26:T) {

p[j,k]← (exp(q[k])/(1+exp(q[k]))+exp(a[k]*(theta[j] - b[k]-gamtes[j, test[k]])))/(1+exp(a[k]*(theta[j]

- b[k]- gamtes[j,

test[k]])))

r[j,k] ∼ dbern(p[j,k])

}

for (k in 2:M){

gamtes[j, k] ∼ dnorm(0, siggam[k])

73
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} }

for (j in 1:N) {

theta[j] ∼ dnorm(0,1)

}

for (k in 1:T) {

a[k] ∼ dnorm(mua, siga)I(0,)

b[k] ∼ dnorm(mub,sigb)

q[k] ∼ dnorm(muq,sigq)

}

a[1] ← 0.521172928

a[2] ← 0.077579014

a[3] ← 0.886715500

a[4] ← 1.676318913

a[5] ← 2.805824457

b[1] ← -1.13956809

b[2] ← -0.54981831

b[3] ← 0.41384308

b[4] ← 1.23229356

b[5] ← 0.06482972

q[1] ← -1.7513594335

q[2] ← -0.9109805725

q[3] ← -1.0475347050

q[4] ← -2.3619323768

q[5] ← -1.8765800430

for (k in 2: M) { siggam[k] ∼ dchisqr(.5) var[k] ← 1/siggam[k]

}

mua ∼ dnorm(0, .01)
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mub ∼ dnorm(0, .01)

muq ∼ dnorm(0, .01)

siga ∼ dchisqr(.5)

sigb ∼ dchisqr(.5)

sigq ∼ dchisqr(.5)

}
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