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ABSTRACT

Many IRT models have been developed to maintain the quality of items and estimate an
individual’s underlying latent ability, 6, more accurately. The conventional one-, two-, and
three-parameter normal or logistic models assume local independence after controlling for
an individual’s ability, 6. Although this conventional assumption is straightforward, some
studies have shown that it may not be accurate under some conditions as shown in testlets
(Bradlow et al., 1999). Testlets composed of a set of items sharing common stimuli have
been widely used in educational and psychological tests. With the demand for more accurate
estimation of items and an individual’s €, the need for new estimation procedures has become
obvious.

The purpose of this study is to examine the sensitivity of different prior distributions
within the 3PLT model. First, the efficacy of the 3PLT model in the WinBUGS 1.4 pro-
gram (Spiegelhalter, Thomas, Best, & Lunn, 2003) was compared to the 3PLT model in the
SCORIGHT 3.0 (Wang, Bradlow, & Wainer, 2004) and the Gibbs (Du, 1998) programs, nei-
ther of which can manipulate pre-specified prior distributions. Later, the impacts of different
prior distributions in the 3PLT model will be discussed.
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DEDICATION

Mysterious Joviality

Mirage whirling within hearts
Inserts puffs of loving touch to souls

Now, in the hours of grey the moment

Jadegreen eyes whispering lovable smiles
Usher us into mosaic roads
Numbed hearts stuck in the dark

Glide into the rainbow

Seize the moment

Of missing, loving touch
Never forget the moments
Gracious tears flowed into sun,

and to whom I loved.
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CHAPTER 1

INTRODUCTION

1.1 STATEMENT OF PROBLEM

There have been enormous statistical advances made in the analysis of standardized educa-
tional and psychological tests. Parallel with this, the practical advantages of the Bayesian
approach were recognized in item response theory (IRT) and have been adopted to pro-
vide more detailed information about item parameters and an individual’s underlying latent
ability.

Recently, testlets comprising a set of items from a common stimulus (Rosenbaum, 1988;
Wainer & Kiely, 1987; Wainer & Lewis, 1990) have emerged in educational tests as a remedy
for multiple-choice items which are often criticized for decontextualization (Li, 2004). Once
Bradlow, Wainer, and Wang (1999) suggested a two-parameter normal testlet model so as
to include the testlet effect in the model, subsequent studies (Wainer, Bradlow, & Du, 2000;
Wang, Bradlow, & Wainer, 2002) showed that testlet models effectively account for local
dependence existing among items sharing the same stimulus and also yield accurate model
parameter recovery.

However, issues of prior specification on testlet models have been neglected and need
to be investigated, especially, under the three-parameter logistic testlet (3PLT) model. It
is well known that prior distribution affects the rate of convergence when sample sizes are
small. Furthermore, it is not appropriate to assume all item parameters follow the normal
distribution (Wang & Wilson, 2005a, 2005b; Irvine & Kyllonen, 2002; Li, 2004).

Wang and Wilson’s (2005a, 2005b) study showed that it is not always realistic and appro-

priate to assume item parameters are normally distributed under the one-parameter logistic
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testlet model. Other studies (e.g., Irvine & Kyllonen, 2002; Li, 2004) also revealed that
the distribution of item parameters may not follow the normal distribution, even though
items are sometimes randomly selected from an item bank. Although there is a great deal
of research examining the substantive and statistical characteristics of prior distributions,
there have been little research investigating the sensitivity of prior specification within the

testlet models.

1.2 THE PURPOSE OF THE STUDY

Many IRT models have been developed to maintain the quality of items and estimate an
individual’s underlying latent ability, 6, more accurately. The conventional one-, two-, and
three-parameter normal or logistic models assume local independence after controlling for
an individual’s ability, 6. Although this conventional assumption is straightforward, some
studies have shown that it may not be accurate under some conditions as shown in testlets
(Bradlow et al., 1999). Testlets composed of a set of items sharing common stimuli have
been widely used in educational and psychological tests. With the demand for more accurate
estimation of items and an individual’s €, the need for new estimation procedures has become
obvious.

Recent developments in Markov chain Monte Carlo (MCMC) analyses facilitated the
implementation of Bayesian analysis of complex data sets with testlets. Despite a large
volume of research on estimation techniques, the effects of the characteristics of the data
sets, and violations of model assumptions within testlet models, few studies are available on
the sensitivity of prior distributions within testlet models.

The purpose of this study is to examine the sensitivity of different prior distributions
within the 3PLT model. First, the efficacy of the 3PLT model in the WinBUGS 1.4 pro-
gram (Spiegelhalter, Thomas, Best, & Lunn, 2003) was compared to the 3PLT model in the
SCORIGHT 3.0 (Wang, Bradlow, & Wainer, 2004) and the Gibbs (Du, 1998) programs, nei-



ther of which can manipulate pre-specified prior distributions. Later, the impacts of different

prior distributions in the 3PLT model will be discussed.

1.3 SIGNIFICANCE OF THE STUDY

Teslets have commonly been used in psychological and standardized educational tests such
as the Graduate Record Examination (GRE) and the Test of English as a Foreign Language
(TOEFL). Implementing testlets in conventional IRT models involve a variety of challenging
measurement problems such as local dependence within testlets on ability and item parameter
estimation, and test reliability. As the Bayesian method with MCMC for complicated IRT
models is becoming increasingly common, (e.g., Albert, 1992; Béguin & Glas, 2001; Bradlow,
et al. 1999; Patz & Junker, 1999a, 1999b), relevant research is needed to ensure that the most
efficient, accurate, and flexible prior distributions are incorporated into testlet models.

Overview of later chapters

This study is organized as follows. Chapter 2 provides some theoretical background for
this study. Previous studies related to testlet models and issues of local dependence and
prior specification are reviewed. Chapter 3 outlines the specifications of components in
testlet models used for this study, data generation methods, implementing prior distribu-
tions, research design and the evaluation criteria. Chapter 4 discusses the estimation of
parameters with the WinBUGS 1.4 program, shows some simulation results, applies the pro-
posed models and methods to real test data, and summarizes the results. Chapter 5 contains
discussions of the results from the simulation study and the real data analysis and discusses

limitations and possible future work.



CHAPTER 2

THEORETICAL BACKGROUND

This chapter serves to provide a general background and theoretical framework for this study.
There are three sections in this chapter. Section I describes violations of local independence.

Testlet models and some topics related to prior distributions are described in sections II and

II1.

2.1 LOCAL INDEPENDENCE

IRT models have been widely used in standardized educational tests to measure an indi-
vidual’s 6 and psychometric properties of items (Loevinger, 1947; Lord & Novick, 1968). IRT
models commonly assume local independence, in which an individuals’ response to items are
independent and based only on an individual’s 6 (Lord, 1980). When a set of items on a test
are locally independent for given individuals, the probabilities of a response pattern on those
items are equal to the product of probability associated with the individual’s response to the
individual items (Hambleton & Swaminathan, 1985; Hambleton, Swaminathan, & Roger,
1991).

Recently, testlets composed of a set of items sharing common stimuli have been widely
used in standardized educational tests. (Li, 2004; Rosenbaum, 1988; Wainer & Kiely, 1987;
Wainer & Lewis, 1990; Wainer & Wang, 2000). Testlets (e.g, reading passages, essays, math-
ematical reasoning, algebra tests, and analytical reasoning) have advantages of reducing
impact of item ordering, of reducing time and cost, and securing test content and balancing
content (Ariel, Veldkamp, & Breithaupt, 2006; Wainer, Kaplan, & Lewis, 1992; Wainer,
Lewis, Kaplan, & Braswell, 1991).



As a consequence, the testlet approach is considered as a realistic method of measuring
an individual’s 6 (Wainer, Sireci, & Thissen, 1991). However, testlet-based tests are likely
to violate the local independence assumption (Wainer & Thissen, 1996). The assumption of
the local independence in IRT has emerged as a crucial problem in testlet-based tests since
items within testlets rely on a common stimulus (Sireci, Thissen, & Wainer, 1991; Thissen,
Steinberg, & Mooney, 1989). The presence of local dependence (LD) is an indication that
the items on tests do not measure individual’s 6 accurately (Ackerman, 1992).

Also, ignoring LD among items within testlets results in inflated estimates of score relia-
bility and test information (Sireci et al., 1991; Thissen et al, 1989; Wainer & Lukhele, 1997;
Wainer & Thissen, 1996; Wang & Wilson, 2005a, 2005b; Yen, 1993). Thissen et al. (1989)
showed that lower validity correlation coefficient obtained when traditional IRT procedures
applied for a testlet-based test.

Study (Wainer & Thissen, 1996) showed that the possible effects of ignoring the presence
of LD on measurement is that test information function was overestimated and standard
error of measurement (SEM) was underestimated. A study by Wainer and Wang (2000) also
showed that standard IRT models assuming the local independence assumption result in an
overstatement of precision of the 6 estimates as well as a bias in item difficulty and discrim-
ination parameter estimates when the assumption of the local independence was violated.
More specifically, overestimated guessing parameters occurred for both reading comprehen-
sion and listening comprehension items when testlet-associated local item dependence was
ignored for reading comprehension. Also, underestimated item discrimination parameters
occurred for listening comprehension items while overestimated item discrimination param-
eters occurred. Furthermore, studies (Wainer & Lukhele, 1997; Sireci et al., 1991) showed

that reliability was overestimated when LD was ignored within testlets.



2.2 TESTLET MODEL

A collection of items sharing common stimuli in which possibilities of correction within an
individual’s responses exist is called a testlet or an item bundle (Wainer & Kiely, 1987; Wainer
& Lewis, 1990; Rosenbaum, 1988). Testlets are suggested as the unit of construction, and are
commonly used for computerized adaptive tests (Wainer et al., 1992). Furthermore, testlets
are regarded as more realistic and even better for measuring contextualized problem-solving
skills that are difficult to develop in a single item (Bao, 2007; Wainer, Lewis, & Braswell,
1991).

Tests containing testlets can minimize content exposure (Ariel et al., 2006), reduce time
and cost (Bradlow et al., 1999; Wainer & Wang, 2000), and increase construct validity
(Zenisky, Hambleton, & Sireci, 2002). Despite the advantages of testlets, LD within the
same testlets is likely to be introduced when testlets are included in tests (Rosebaum, 1988;
Sireci et al., 1991; Thissen et al., 1989). Thus, covariances among the items in testlets often
are not solely explained by the traits of interest. When ignored, this additional within-testlet
covariation results in overestimates of the true reliability.

In order to avoid LD problems, researchers have paid close attention to LD within testlets
(Bradlow et al., 1999; Du, 1998; Lee, Kolen, Frisbie, & Ankernmann, 2001; Thissen et al.,
1989). One approach for dealing with LD is to calculate a single score over all items in testlets
and then fit polytomous models [e.g., Samejima’s (1969) graded response model, Bock’s
(1972) nominal response model, and Muraki’s (1992) generalized partial credit model] to
testlets (Lee & Frisbie, 1999; Lee et al., 2001; Sireci et al., 1991; Thissen et al., 1989; Wainer
& Thissen, 1996). When a set of items within testlets is treated as units of analysis, the score
for each testlet would be computed as the sum of the correct answer to items nested in that
testlet.

Studies (Sireci et al., 1991; Thissen et al., 1989; Zenisky et al., 2002) suggested that
the problem of LD can be effectively avoided if a set of items within testlets is treated as

the units of analysis, assuming local independence across testlets, but not within testlets.



Studies (Thissen et al., 1989; Wainer & Wang , 2000; Wang & Wilson, 2005a, 2005b; Yen,
1993) showed that fitting polytomous IRT models to testlets provides limited information
because information about item-level discrimination and response pattern is lost.

A second limitation to this approach is related to item selection in computer adaptive
testing (Wainer & Wang, 2000). If only the summed scores for testlets are used for parameter
estimation, then an individual’s responses to items within a testlet would not be able to
provide any information about the levels of an individual’s 6 until he or she has responded
to all of the items in that testlet. This implies that an individual’s responses to the initial
items in a testlet could not be used in selecting the subsequent items in that testlet. This
could present practical difficulties in the development of computer adaptive testing.

The other approach is to consider LD in testlets as an additional random effect in the
model. Bradlow et al. (1999) first suggested the two-parameter normal ogive model for a
mixture of binary independent and testlet items and demonstrated its accuracy and effec-
tiveness via 2 x 3 factorial simulation study. The number of examinees (N = 1000), test
length (n = 60), and percentage of items nested within testlet (50%) were held constant
across study conditions. They considered the testlet effect as a random effect in addition to
the latent ability of interest to be measured by the test. The variance of testlet effects were
assumed to be constant across different testlets. A random testlet effect can be explained as
the interaction between individuals and testlets. Once an individual’s § and random testlet
effect are controlled, an individual’s responses are independent.

In addition, Wang and Wilson (2005a, 2005b) also proposed the Rasch testlet model
for dichotomous responses. It is a variation of the two-parameter testlet model if the item
discrimination power is kept to be constant for all items and all items are assumed to be
scored dichotomously. Later, this model was extended to the more general testlet models
(Du, 1998; Wainer, Bradlow, & Du, 2000; Wang, Bradlow, & Wainer, 2004). Du (1998) and

Wainer et al. (2000) extended their previous model (Bradlow et al., 1999) by including the



guessing parameter, ¢;, to the two-parameter probit model and by allowing random variation
across different testlets.

The three-parameter logistic testlet (3PLT: Du, 1998; Wainer et al., 2000) was further
extended to include dichotomously and polytomously scored items (Wang et al., 2004). The
study (Wang et al., 2004) was composed of a simulation study and two applications using
operational data from the Test of Spoken English and the North Carolina Test of Computer
Skills. The simulation component of the study examined the success of the model in recov-
ering the true parameters. Three factors were manipulated: Number of categories for each
item (2, 5, 10), testlet length (3, 6, 9), and testlet variance ( oi =0, 0.5, 1). Response data for
1000 simulees were simulated for a 30-item test across five replications for each condition. Of
the 30 items, 12 were independent dichotomous items, and 18 were testlet items. The 3PLT
model (Du, 1998; Wainer et al., 2000) is as follows :

exp(a;i (05 — bi — Vjuw)))
1+ exp(ai(0; — bi — vjiw))

Plyi; = 1105, ai, bi, ¢, Yjeiy) = ¢i + (1 — ¢i)

In this model, P(y;; = 1) is the probability that an individual j, answers item i correctly;
¢; is the ability of an individual j; b; is the difficulty parameter of item i, a; denotes the

discrimination parameter of item i, ¢; denotes the guessing parameter of item 4 and ¢; in

exp(g:)
1+exp(qi)

. :
1_102_). Yjt(iy is a random

testlet model is reparameterized as , which becomes ¢; = log(
effect which represents the interaction of individual 7 with a testlet ¢;.

Yje(iy is constant within a testlet for individual j, but the value of ~;,(; differs for each
individual. The variances of v are allowed to vary across testlets and indicate the amount of
LD in each testlet. If the variance of vj(;) is zero, items within the testlet can be considered
conditionally independent. The larger the variance, v;4(;), the greater the proportion of total
variance in the test score that is attributable to the testlet.

Advantages of testlet models are that they are flexible because an individual’s response

patterns can be considered while keeping the same traditional scoring rubric systems and

the same concept of item parameters (Wang & Wilson, 2005a, 2005b). Thus, information



contained in the response patterns for individual items within testlets is not lost as it is with
polytmous models. Testlet models are embedded in a Bayesian hierarchical framework and

inferences use MCMC techniques.

2.3 PRIOR

2.3.1 PRIORS IN ONE-, TWO-, AND THREE-PARAMETER IRT MODELS

It is well known that incorporating prior distributions into the Bayesian framework yields
more precise item parameters by preventing parameters from drafting out of reasonable
ranges (Baker & Kim, 2004; Lord, 1980). The Bayesian methods with the MCMC algorithm
make it possible to build more complex IRT models because estimation of models is com-
paratively easier with MCMC than with either joint maximum likelihood estimation and
marginal maximum likelihood estimation (De Ayala, 2009).

The Bayesian method with MCMC has been increasingly used for complicated IRT
models (Albert, 1992; Bradlow et al., 1999; Patz & Junker, 1999a, 1999b; Wainer et al.,
2000). Albert (1992) used a full Bayesian method based on Gibbs sampling to estimate
the two-parameter normal ogive IRT model, and later Patz and Junker (1999a, 1999b)
discussed Metropolis-Hastings sampling algorithms to estimate two-, and three-parameter
logistic models and mixed models.

Studies (Bazan, Branoco, & Bolfarine, 2006; Swaminathan & Gifford, 1982, 1985, 1986;
Swaminathan, Hambletion, Sireci, Xing, & Rivazi, 2003; Mislevy, 1986) showed that esti-
mation of item parameters can be accurately made, and estimation can be carried out with
smaller sample sizes by incorporating prior distributions.

All the prior distributions regarding parameters of interest need to be incorporated into
the model parameters, but prior distributions in many cases are either vague or non-existent

in the Bayesian approach (De Finetti, 1974; Gao & Chen, 2005; Wainer, Bradlow, & Wang,
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2007). This makes it very difficult to specify a unique prior distribution. Thus, the speci-
fication of prior distributions in the Bayesian approach has emerged as an important issue
(Bazan et al, 2006).

Studies (Albert & Ghosh, 2000; Swaminathan et al., 2003) have explained how to use
informative prior distributions in IRT models. If appropriate a priori information about
parameters was available, tight prior distributions have substantial effects on estimates (Har-
well & Baker, 1991). Tight prior distributions implied small variance and led parameters to
shrinkage toward the mean of the prior (Baker & Kim, 2004).

Different prior distributions for item and individual parameters have been used in the
same IRT models. In previous studies, there seems to be consensus with respect to the
prior distribution for 6. It is commonly assumed that ability follows the standard normal
distribution,  ~ N(0,1). Fixing the location and scale parameters of ability distribution
ensures identifiability of the curve parameters.

Regarding item parameters, different prior distributions have been investigated for item
parameters (Rupp, Dey, & Zumbo, 2004). Studies (Patz & Junker, 1999a) revealed that it is
difficult to assign dependent priors for those parameters, even if a multivariate normal prior
distribution is specified. Thus, independent prior distributions for the parameters of item
discrimination a, item difficulty b, and pseudo-guessing parameter, ¢, are preferred (Bazan
et al, 2006).

Either informative and noninformative prior distributions on item discrimination param-
eter, a has been used. The reason to use informative prior distributions on a, is that a correct
answer in testing always implies a higher ability. Thus, a is constrained to be grater than 0.
Informative prior distributions on a was also implemented because the existence of the joint
posterior distribution is not guaranteed when an improper prior is used (Bazéan et al, 2006;
Ghosh, Ghosh, Chen, & Agresti, 2000). Several studies have been done using informative
prior distributions. Johnson and Albert (1999) specified the normal distribution for p, and

02, N(pta, 02), with or without hyper-parameters. Studies (Kim, Cohen, Baker, Subkoviak, &
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Leonard, 1999; Patz & Junker, 1999a, 1999b; Sahu, 2002) have used the log-normal distribu-
tion for u, and 02, LN (j14,02), with or without hyper-parameter distributions. In addition,
other studies (Spiegelhalter, Thomas, Best, & Gilks, 1996; Sahu, 2002) used the half-normal
distribution for p, and ¢2 with a constraint a > 0, N (4, c2)I(0,).

Additional studies (Swaminathan & Gifford, 1985, 1986) have used a y, with v degree of
freedom for the item discrimination parameter, a. Bafumi, Gelman, Park, and Kaplan (2005)
has used a gamma and an inverted gamma distribution, with parameter m and n, IG(m,n, )
for a. Other studies (Albert, 1992; Fox & Glass, 2001, 2003) besides the ones mentioned
above have been done using improper noninformative prior distributions for the parameters
a and .

Regarding b, it is common to assign the normal distribution for b ~ N (us, o). Moreover,
when little prior information is available about b, relatively large values are assigned to o7.
Studies (Patz & Junker, 1999a, 1999b; Swaminathan & Gifford, 1982, 1985, 1986) have used
uniform distribution for u, and o2, N(u,07), in which g, follows uniform distribution and
o2 follows inverse chi-square distribution.

Regarding ¢, studies (e.g., Patz & Junker, 1999a, 1999b; Swaminathan & Gifford, 1986)
have specified the Beta(s;,t;) distribution mentioned by Novick and Jackson (1974), where
s; =mx*M and t; = m(1— M) —2 (m = the number of observations the prior information is
worth and M = mean value). Another study (Mislevy, 1986) employed a normal distribution

on transformed c, that is ¢ = log(7%).

2.3.2 PRIORS IN TESTLET MODELS

Bradlow et al. (1999) specified noninformative prior distributions for the unknown means
and variances. Thus, the distribution of the parameters of interest can be determined by the
data. Therefore, with the noninformative prior distributions, the MCMC via Gibbs sampling
is drawn from the posterior distribution to make inference about parameters of interest.

Within testlet models, it is common to use a normal distribution, N(0, 1), for parameters of
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6 (Bradlow et al., 1999; Du, 1998; Li, Bolt, & Fu, 2006; Wainer et al., 2000; Wang et al.,
2004).

In addition, the mean of the testlet parameters for a particular testlet across all indi-
viduals is usually set to 0 in order to identify the scale of the parameters. Thus, a normal
distribution for 7, is commonly used, 7;;) ~ N(0,02). Bradlow et al. (1999) specified the
normal distribution for p, and o2, N(u,,0?) with hyper-parameters for a. Li (2004) used the
half normal priors, N(u,,c2)I(0,) for a. Regarding b, several studies (Bradlow et al., 1999;
Du, 1998; Li et al., 2006; Wang et al., 2004) implemented a normal prior N (uy, o7) for b.

In terms of hyper-prior distributions, all noninformative hyper-priors are p, ~ N(0, aza),
pip ~ N(0,07,), and p, ~ N(0, o7, ) for prior means, and o7 ~ x, %, op ~ x,,%, and a7 ~ x,? for
prior variances, where X;az, Xﬁ, and X;f are inverse chi-square random variables with g,, gs,
and g, degrees of freedom which are defined as 0.5 to reflect a small amount of information.
Either o2 , o7, and o7 = 100% (Li et al., 2006; Wang et al., 2002) or o}, , o7, and o7 =
0 (Du, 1998; Bradlow et al., 1999; Wang et al., 2002, 2004) was used to indicate a lack of
information.

As shown in previous studies, choosing a prior distribution of the parameters of a model
is a tedious task (Carlin & Louis 2000) because there is possibility of not reflecting uncer-
tainty about the parameters of interest. Second, the posterior distribution is available but
not derivable in closed form in the non-conjugate priors, in general. Last, it is difficult to
describe uncertainty about the parameter of interest in the form of a particular distribution.
In particular, uncertainty about the parameters of the prior distribution requires more infor-
mative model such as in empirical Bayesian methods. Thus, it is rare for anyone to make any
claims that a particular prior can logically be defended as truly noninformative. Instead, the
focus is on investigating various prior distributions and comparing them to see if any have

advantages in some practical senses (Kass & Wasserman, 1996).
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2.3.3 CONVERGENCE AND BURN-IN PERIOD

It is necessary to confirm whether convergence is reached because a non-converged MCMC
algorithm may lead to incorrect information about estimates (Shinharay, 2004). If the chain
does not converge, the simulated draws from this chain would not represent the posterior
distribution of parameters of interest. Thus, the inference about parameters based on the
distribution of these draws would be invalid. Therefore, it is very important to assess con-
vergence of Markov chains before any Bayesian inferences are made.

A number of convergence diagnostics have been developed (Cowles & Carlin, 1996; Brooks
& Robert, 1998). The most popular diagnostics are time-series plots, autocorrelation plots,
and the Gelman-Rubin statistic, R. A time-series plot, also called a “history plot”, is a
scatter plot showing the generated values of a parameter at each iteration number in a
chain of sample values. Clear trends in the plot indicate that successive simulated values of
parameters are highly correlated and a chain has not converged. Time-series plots provide a
simple way to check the stability of simulated parameter values.

An autocorrelation plot is a plot of the correlation between sequential draws of a param-
eter in Markov chain. It is a commonly-used tool for checking randomness in a data set.
This randomness is ascertained by computing autocorrelations for data values at varying
time lags. Autocorrelation plots are not strictly a convergence diagnostic tool, but they help
indirectly to assess convergence. A MCMC algorithm generating highly correlated param-
eter values will need a large number of iterations to converge to the appropriate posterior
distribution. In other words, such autocorrelation can cause inefficient MCMC simulation.
Solution to high autocorrelation is to “thin” the chains by keeping every ky;, simulation draw
from each sequence and discarding the rest.

The R statistic (Gelman & Rubin, 1992) suggests monitoring convergence based on mul-
tiple chains with different starting points. Once convergence is reached, between-chain vari-
ance and within-chain variance for each parameter should be almost equivalent because

variation within the chain and variation between the chains should coincide. There, R near
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1 for all parameters of interest means the MCMC algorithm has converged. However, one
drawback it has is that its value depends on the choice of starting value. However, it is not
straightforward in determining the convergence of algorithm with a single definitive conver-
gence diagnostic tool. Therefore, using multiple tools is recommended in order to increase
the chance of correctly assessing convergence (Sinharay, 2004).

In the context of testlet situation, previous researchers employed different ways of
checking convergence of algorithm and the appropriate length of the burn-in period. How-
ever, it is possible to categorize various convergence algorithm into two possible classes. One
is to import other computer software [e.g, Bayesian Output Analysis (BOA:Smith, 2001)
program, Convergence Diagnosis and Output Analysis Software for Gibbs sampling output
(CODA:Best, Cowles, & Vines, 1995), and SCORIGHT]. For instance, Sinharay(2004)
implemented BOA or CODA program on the output of SCORIGHT (Wang et al., 2004).
He also used the Gelman-Rubin convergence statistic (Gelman & Rubin, 1992) to determine
the number of burn-in period. The other approach is to rely on the outputs of the Win-
Bugs program. Bao’s study (2007) is one of many examples. Bao (2007) mainly used the
information available in the WinBUGS program. Those information are history plots (trace
plots) showing random sampling within the same part of the same space for all chains,
Brooks-Gelman-Rubin (BGR) showing the convergence of both the pooled and within
interval widths to stability, and auto-correlation function showing where the autocorrelation
has decreased to zero. Density plots are examined to investigate whether enough iterations
have been completed. If enough iterations are run, the error due to the nature of MCMC
being an empirical approximation to the posterior is less than 5% of the estimated posterior
standard deviation (Spiegelhalter, Thomas, Best., & Lunn, 2003).

As expected, researche in testlet models selected different number of iterations and burn-
in period (Gelman, Carlin, Stern, & Rubin, 2003; Raftery & Lewis, 1996; Sinharay, 2004;
Sinharay, Johnson, & Stern, 2006; Sinharay & Stern, 2002). Information for previous research

in the testlet model is provided in Table 2.1. Gelman et al. (2003) suggested discarding the



15

first half of the iterations to be conservative. Raftery and Lewis (1996) suggested there were
fewer than 500 burn-in periods for convergence diagnostic, and the recommended lengths
of chain were typically less than 15,000 iterations. Sinharay, Johnson, and Stern (2006)
suggested five chain of 6,000 iterations after discarding 2,000 iterations as burn-in periods
and drew every 20th for one-, two-, and three-parameter logistic models. Sinharay (2004)
also recommended several chains of 50,000 iterations with 1,000 burn-in periods or one longer

chain having 120,000 iterations with 20,000 burn-in periods for convergence for the testlet

model.
Table 2.1: Summary of Previous Studies
Studies N ITEMS ITERATION REPLICATION MODEL
Bao 5,000 50 items 4,000 10 2PLT
(2007) 30, (10 items for 2 testlets) (1,500, brun-in)
Baldwin 2,000 50 items 30,000 50 3PLT
(2008) (No specific information) 10,000 (burn-in)
60 items
Bradlow et al. 1,000 30, ( 5 items for 6 testlets) 10,000 No 2PNO
(1999) 30, ( 6 items for 5 testlets) (5,000, burn-in)
30, (10 items for 3 testlets)
Du 1,000 70 items 12,000 No 3PLT
(1998) N 30, (10 items for 4 testlets) (7,000, burn-in)
2,000 24 items
Li et al. (5 items for 1 testlet) 15,000 No 2PNO
(2006) (6 items for 2 testlets) (1,000, burn-in)
(7 items for 1 testlet)
1612 60 items 50,000
Sinharay 35, (5 items for 3 testlets) (10,000, burn-in) No 3PLT
(2004) (4 items for 1 testlet) 120,000
(6 items for 1 testlet) (20,000, burn-in)
Wang & Wilson 2,000 20 items 15,000 100 1PLT
(2005) (5 items for 4 testlets) (1,000, burn-in)
30 items
Wang et al. 1,000 12, (3 items for 6 testlets) 3,000 5 3PLT
(2002) 12, (6 items for 3 testlets) (2,000, burn-in)

12, (9 items for 2 testlets)

Note:1PLT (one-parameter logistic testlet model); 2PLT (two-parameter logistic testlet model);
3PLT (three-parameter logistic testlet model); 2PNO (two-parameter normal testlet model).



CHAPTER 3

METHODS

3.1 COMPUTER PROGRAMS

The WinBUGS 1.4 program is the main computer program in this study. Note that both
the SCORIGHT 3.0 (Wang et al., 2004) and the Gibbs (Du, 1998) computer programs were
used for comparison purposes in the analysis of real data. Both computer programs [Gibbs
(Du, 1998) and SCORIGHT (Wang et al., 2004)] use MCMC to fit the 3PLT model and
allow users options for choosing the number of chains and iterations of MCMC. Differences
existing between the two programs, however, concern availability of possible models and
options for choosing the number of thins, in which only every nth iterations are used to
decrease autocorrelation. The SCORIGHT 3.0 program allows users to implement the two-
parameter logistic testlet model, whereas the Gibbs does not. Also, options for choosing the
number of thins are available in the SCORIGHT 3.0 program but not in the Gibbs program.
In addition, both computer programs do not provide any diagnostic method for MCMC
convergence and any options for changing prespecified prior values.

However, the WinBUGS 1.4 computer program (Spiegelhalter et al., 2003) is more flexible
than the SCORIGHT 3.0 and the Gibbs programs. The MCMC employing Gibbs sampling
in the WinBUGS 1.4 program was implemented to estimate the 3PLT model parameters.
Under MCMC, model parameters are estimated by repeatedly sampling each parameter
from its posterior distribution, conditional on the data and the most recent estimates of all
other parameters. After an initial burn-in period, it is possible to create a Markov chain
in such a way that the sampled values are drawn from the parameter’s full conditional

distribution. The value of each parameter is estimated as the mean of the Markov chain.

16
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Sampling from posterior distribution requires the specification of prior distribution for all
MCMC parameters. Both real and simulated data sets are analyzed in the study. A detailed

description is presented later.

3.2 RESEARCH DESIGN

Since test design affects quality of estimates about items, ability, and final inferences
(Bradlow et al., 1999), several simulation conditions will be considered. The WinBUGS 1.4
program (Spiegelhalter et al., 2003) was implemented to fit the 3PLT model with the same
prior distributions as in the SCORIGHT 3.0 program (Wang et al., 2004) and the Gibbs
program (Du, 1998) for comparison purposes with real data. Later, different prior distribu-
tions on items parameters will be implemented in the WinBUGS program (Spiegelhalter et

al., 2003).

3.2.1 DATA GENERATION

The simulation study will be performed to evaluate the sensitivity of prior distributions in
3PLT model by using the WinBUGS program. Item responses for the hypothetical individuals
will be obtained based upon a testlet response theory model (Bradlow et al., 1999; Wainer
et al., 2000; Wang et al., 2002). Item responses will be randomly generated by imitating a
testlet-based test. Factors that are varied across the simulation are prior and hyper-prior
distributions of item parameters and the testlet variances.

For parameters of items, the discrimination parameter, a, will be generated using the half
normal distribution, a ~ (u,,a2)I(0,); the difficulty parameter, b will be generated using the
normal distribution, b ~ N(4,07); and the transformed guessing parameter, ¢ = log(7%)
will be generated by using the normal distribution, ¢ ~ N (1, 02). Parameters were obtained
from results of the Florida Comprehensive Assessment Test (FCAT). An example input file

for the WinBUGS program to generate data is presented in Appendix B.
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Ability and random effects for the testlet effect were assumed to be independent of each
other (Bradlow et al., 1999; Li et al., 2006; Wainer et al., 2000; Wang et al., 2002). Since it is
assumed that the distribution of the ability is known up to a scale parameter, the generated
ability parameters follow a normal distribution, N (0, 1).

Two sample sizes will be employed; both 1000 and 2000 individuals will be simulated.
In addition, the variance of the testlet effect parameters over individuals will be used to
quantify the magnitude of the interaction. Since the researchers are generally concerned
with the means of the testlet parameters, which are customarily set to 0 to make the scale
of the model identifiable in the estimation process, the degree of the testlet effect will be
determined by the variances of the testlet parameter values, (0, 03). Thus, testlet parameters
will be generated using a normal distribution, N (0, 03). The magnitudes of the testlet effects
are determined by the ratio of the random-effect variance of testlets to the random-effect
variance of ability (Li et al., 2006; Wainer et al., 2007). In this study, three conditions of
different degrees of testlet effects will be simulated: no testlet effect , 0320; moderate testlet
effect, 0320.5, and strong testlet effect, 03:1. These conditions of testlet effects were similar
to those simulation conditions specified in various studies (Bao, 2007; Bradlow et al., 1999;
Wang et al., 2002; Wang & Wilson, 2005a, 2005b), in which 03 was specified as 0.0, 0.5, and
1.0.

When the parameter values are in place, the probability of getting each item correct will
be calculated using the 3PLT model. These parameters of generated latent ability, testlet
effect, and defined item parameters will be used to compute the corresponding probability.

Two conditions will be studied:
1. the three-parameter logistic (3PL) model assuming local dependence,
2. the 3PLT model assuming local dependence and testlet effect function homogeneous
across

Condition 1 assumes that all the items in a test are independent of one another. Condition

2 presumes that the testlet parameter applies constantly to all items in testlets: a constant
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testlet variance will be generated across all testlets. Regarding conditions 2, variances of
testlet effects related to this model will be no testlet effect(0.0), medium (0.5), and large(1.0).

A total of 60 dichotomous items will be generated in a test. Common test structure is
set by fixing the test composed of first 5 independent dichotomous items among 60 items.
A different number of testlets will have different number of items: 3, 6, and 10 items for
each testlet, respectively. The reason each testlet has different numbers of items is that the
number of items in a testlet affects the degree of variance of testlets. Also, in general, larger
the number of items there are clustered in a testlet, the more likely the testlet effect can be

shown (Bradlow et al., 1999). Two chains of iterations and 20 replications will be conducted.

3.2.2 PRIOR anpD HYPER-PRIOR DISTRIBUTION

Prior specification is an important step in Bayesian analysis because statistical analysis in
the Bayesian approach needs to include prior distributions in the model specification. Also,
it is reasonable to use vague information about hyper-parameters in the absence of a strong
theory regarding the prior distribution of items and individuals.

Ability parameters, 6 will be estimated with N (0, 1). Item parameters will be estimated as
follows: N (pta,07)1(0,) for a, N(uy,03) for b, and N (pq,07), in which ¢ = log(7%). Values of
aia, crib, and criq are specified as 0.01, 0.001 which indicates different amount of information.

To~ Xgls T ~ Xg, s and o ~ x, 2 for prior variance, where x;?, x,,? and x,? are inverse
chi-square random variables with g,, g5, and g, degrees of freedom, which are defined as
0.4, 0.5, and 2.0 to reflect different amount of information. Parameter of testlet effect will
be estimated with (0,02), in which o2 follows x,? and will be defined as 0.4, 0.5, and 1.0.

Furthermore, Figure 3.1 shows inverse chi-squared distribution with the different degrees of

freedom.

A normal distribution imposed on prior distributions in the 3PLT model has two param-

eters, the mean, p, and the variance, o2. The normal distribution is as follows:

1 1
Pz, 22, Tplp, 0%) o e > (i — ).
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Figure 3.1: Inverse Chi-squared distribution with different degrees of freedom

Conjugate prior distribution having the same functional form as the likelihood function
leads to posterior distribution belonging to the same distribution as prior distribution. Con-
jugate prior distributions for these parameters, ;1 and o2 are needed. Assuming s is fixed,
then the conjugate prior for o2 is an inverse gamma distribution that is a general case of the

inverse chi-squared distribution (Spiegelhalter et al., 2003, p. 58) which is as follows:

f(o*|a, B) ~ IG(a, B)

Then

(o) exp(-2).

The posterior distribution obtained when likelihood and prior distribution combined is

as follows:
o 1 1
P(xlll"L’ 0576) = %(0_2)_a—1 eXp(_g)(W)p eXp(_@ (xz - M)2>'

The inverse variance term, =, is usually called the precision and is denoted by 7 (Spiegel-
[ea
halter et al., 2003, p. 58). Thus, when o? is reparameterized in terms of precision, 7, the
conjugate prior becomes a gamma distribution as follows:

50&
()

f(rla, B) ~ G(a, B), P(7]e, B) = (7)* " exp(=78).
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Then, the posterior distribution is as follows:

/BO{
()

It is also possible to compute the probability of getting new data given old data by marginal-

Plalp,0,8) = s exp(—78) ()" exp(~2 > (@i = 1))

izing out parameters:

PO, . 0, B) = / P(6lz, v, B)P(r]x, v, B)dr = / P62, . 7)P(rz, 0, f)dr

B W T \p/2 T 2
_/mT exp(—Tﬂ)(%) / exp(—§ Z(l'z — p))dr

Then

(6% m

By normalizing constant, this integral becomes:

1 P(a+5)
- Do) 2m)2 (B4 4 (i — )%

_ Fla+%) 1 1
P(a) (2rB)8 (1+ & X (wi — p)?)o*s

This integral make a normal distribution having a heavier tailed distribution, which becomes
a student’s t-distribution. In this model, p is a location parameter, g is a dispersion param-
eter, and « is a shape parameter, or degrees of freedom. The multivariate Student ¢ distri-
bution can be reparameterized if k is o, and A is
) 1

) (1+ 2w — )

This multivariate Student’s ¢ distribution becomes a multivariate Cauchy distribution if the

a.
3

+

F(k
I(

N)|
VS|

Plaeln B) = — 20 ()

MBS

degrees of freedom, «, is 1, and becomes a multivariate normal distribution if the degrees of

freedom, «, goes <. Also, it is commonly known that degrees of freedom need to be larger
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than 2 to ensure the existence of the variance matrix. However, there is no mathematical
reason why the degrees of freedom should be an integer (Heikkinen, & Kanto, 2002), even
though Student (1908) considered the distribution only with integer degrees of freedom.
First, the same prior and hyper-prior distribution were used for the comparison purposes.
Then, different prior specifications in WinBUGS will be employed so as to compare the

sensitivity of prior distributions.

3.2.3 CONVERGENCE AND ITERATIONS

With item parameter estimation via MCMC methods, convergence of the parameter estima-
tion needs to be examined. If the parameter estimates do not converge, incorrect inference
about parameters of interest will result. Thus, it is necessary to determine the number of
iterations to discard, during which the parameter estimation stabilizes or converges. It is
important to decide how many MC iterations are necessary to obtain robust posterior esti-
mation with appropriate burn-in periods. Some of the initial observations should be discarded
to avoid the impact of starting states on estimating parameters of interest because unstable
iterations affect MC errors (Bazan et al., 2006; Gelman et al., 2003).

Various tools are commonly used such as simple graphical methods, methods using ratio
of dispersions, methods based on spectral analysis, method based on the theory of Markov
chains available in CODA (Best et al., 1995) and BOA (Smith, 2001). Furthermore, The
convergence diagnostic provided in the WinBUGS 1.4 program, including the Gelman-Rubin
convergence statistic, R, (Gelman & Rubin, 1992; Brook & Gelman, 1998) and sample his-
tory, were computed from multiple chains to determine the number of burn-in periods.

It is also important to recognize that the error in posterior estimation can be caused
by not only the standard deviation, but also the sampling error, referred to as MC error
(Spiegelhalter et al., 2003). Spiegelhalter et al. (2003) also suggested that the simulation
should be run until the MC error for each parameter of interest is less than about 5% of the

sample standard deviation. The smaller the MC error, the larger the MCMC iterations.
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Post and confshrink statistics available in the SCORIGHT program were also employed
to assess convergence when the real data was analyzed: confshrink estimates potential scale

reduction with an estimates and an approximate 97.5% upper bound (Wang et al., 2004).

3.3 SIMULATION STUDY

Simulation study was summarized in this section. In order to examine impacts of prior
distributions in the 3PLT model, item responses were randomly generated by mimicking
a testlet-based test. It was assumed that there were 60 items in a test. Three simulation
factors were considered in the simulation study; magnitude of random effect due to testlets,
magnitude of prior distribution, magnitude of hyper-prior distribution, different number of
items in a testlet, and different number of sample sizes.

The variance of testlet effect, 03, was varied in order to simulate varying degrees of
dependence. The no testlet effect condition (03 = 0) was also included as a baseline for
comparisons. Three levels of testlet effect were 0.0, 0.5, and 1.0. The magnitudes of prior
distributions were 0.01 to 0.001. The same magnitude of prior distribution was assigned to
all item parameters. Degrees of freedoms were 0.4 to 2.0. The number of different items in a
testlet was 3 to 10. The number of samples sizes was 1000 and 2000. Thus, the total number
of simulation conditions resulted in 3 x 2 x 3 x 3 x 2 = 108 conditions (see Table 3.1). Prior
to running analysis, the estimates are rescaled on to the same metric by fixing 5 common

items among 60 items. An example WinBUGS estimation file is presented in Appendix C.

Table 3.1: Design of Simulation Study

MODEL N ITEM 03 ai_ for piq, pp, ptg  d.f of oga,agb, agq
N =1000 3 (10 testlets) 03=0.0

3PLT 6 (5 testlets) 05=0.5 o7 =0.01,0.001 d.f=04,0.5 2.0
N = 2000 10 (3 testlets) o02=1.0

Combination 2 3 3 2 3
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3.4 MODEL EVALUATION

In each simulation condition, the simulation studies were replicated 25 times which were
between low and large number of replication based on previous studies (see Table 2.1).
The success of the model was evaluated with two criteria, the root mean squared error
(RMSE) of the estimates from the true values and correlation between the true and the
estimated parameters which used in the other study (Wang et at., 2002). The RMSE was
the discrepancy between the estimated values and the true values. The RMSE was defined

as

RMSE (T)) = /1 X0, (T; — T)?

where T is a true parameter and T; is the estimated value of the parameter from the
ith replication, and the the simulation is replicated r times, which is 25 in this simulation
study. T is the mean of the estimated parameters. The RMSE (7; ) can be further dissected
into two parts: the standard error of estimated parameters and the bias of the estimated

parameters:

RMSE (7}) = Bias(T; ) + SE ()
= Zz— ) + \/ Z'r’ 1 T

'ﬂ>\



CHAPTER 4

RESULTS

This chapter presents the results from simulation studies and real application study. First,
the design of the simulation study is described. Simulation study aims to explore impacts
of prior distributions on the parameter estimates. In order to investigate the impacts of
different means of prior distributions, different degrees of freedom, different number of items
nested in testlets in estimating parameters, 108 conditions were considered (see Table 3.1).

The second section presents results obtained from the real data.

4.1 CONVERGENCE

Convergence of the parameter posterior distribution to a stationary distribution is crucial to
MCMC estimation. Using WinBUGS, two chains of length of 50000 were run and approxi-
mately 6 hours to complete with the sample size (N = 1000) and 14 hours with the sample
size (N = 2000). The first 10000 iterations in each chain were discarded (burn-in iterations).
All the sampling histories, BGR diagrams, and autocorrelation plots suggested the Markov
chains converge to stationary posterior distributions.

Convergence was examined through visual inspection of several convergence diagnostic
plots available in WinBUGS. The first plot is a “sampling history plot” for each parameter.
Figure 4.1 illustrates the histories of the item discrimination, item difficulty, item guessing
and testlet parameters of item 6. The sampling histories showed that each chain displayed
convergence to a stationary distribution. Similar results were observed for the other items

and testlets.

25
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Figure 4.1: Sampling History Plots of Item Parameters Associated with Item 6

In WinBUGS, “BGR diagram” is often used to show the Gelman-Rubin convergence
statistic for multiple chains. It includes three lines in different colors. The green (G) and
blue (B) lines reflect the pooled and within-chain posterior variances, respectively. The ratio
of these two variances, that is, the Gelman-Rubin statistic, is represented by the red (R)
line. Figure included the “BGR diagram” for the item discrimination, item difficulty, item
guessing, and testlet parameters of item 6. As seen, the red line (Gelman-Rubin statistic)

converged to 1, indicating equality between the pooled and within-chain variances. Thus,



27

these plots demonstrated the convergence of the two chains with 50000 iterations was attained
for all the parameters of item 6. Similar results were obtained for the other parameters. Figure

4.2 included the BGR diagrams Similar results were observed for the other items.
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Figure 4.2: BGR Diagrams for the Parameters of Item 6

Autocorrelation plots are also helpful in evaluating convergence. High correlations
between adjacent states imply a slow rate of convergence, thus requiring more iterations to
achieve stationary posterior distributions for the model parameters. Figure 4.3 provided
the autocorrelation plots for the parameters of item 6. As can been seen, the correlations
among the successive draws were reduced to 0, indicating the length of 50000 iterations

was sufficient to ensure convergence. Similar autocorrelation plots were found for other item

parameters.
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Figure 4.3: Autocorrelation Plots for the Parameters of Item 6
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Based on the preliminary analysis with real data and simulation study, it had been
decided that 40000 samples should be drawn from each posterior distribution after 10000

samples were discarded as burn-in periods.

4.2 PARAMETER RECOVERY

Once the estimations were done, the results of the WinBUGS runs illustrated the simulation
conditions under which those models could recover the parameters used to generated the
data, give the model that generated the data matched the model used. The quality of model
parameter recovery using MCMC estimation is an important factor in determining whether
the 3PLT model could be implemented successfully. As a result, parameter recovery was
examined. The recovery of the true parameter values are estimated using the root mean
square error (RMSE).
Variances of Testlet Parameter. Table 4.1 represented the magnitudes of average esti-
mated testlet parameters across 25 replications. When variances of the testlet parameters
were 0, all conditions tended to overestimate impacts of testlet effects. For instance, testlet
parameters ranged 0.138 to 0.214 under the o7 = 0.01 and 0.134 to 0.254 when o7 = 0.001.
In addition, as the number of items nested in testlets increased, values of testlet parameters
also increased under the ¢, = 0.01 while values of testlet parameters decreased when items
nested in testlets increased under 02‘ = 0.001. However, For the moderate and large testlet
effect cases, the patterns were not as evident as in the no testlet effect with the respect to the
number of items nested in testlets. However, when variances of the testlet parameters were
0.5 and 1.0, all conditions tended to underestimate impacts of testlet effects. These patterns
were clearly showed in Figure 4.4 and Figure 4.5. However, values of testlet parameters were
close to the true values when the number of examinees increased.

In addition, Appendix A.1 provided average RMSE for variances of testlet parameters
and the smaller RMSE values indicates better estimation performance. Testlets consisted of

10 items had the smallest RMSE values, ranging from 0.099 to 0.026 regardless of different



Table 4.1: Magnitude of Variances of Testlet Effect

N = 1000 N = 2000
o =0.01
d.f. Ttem 00 05 10 00 05 10
0.4 3 0.138 0.363 0.652 0.103 0.376 0.751
6 0.146  0.356 0.701 0.143  0.396 0.765
10 0.191 0.364 0.727 0.168 0.403 0.775
0.5 3 0.166 0.369 0.718 0.150 0.393 0.771
6 0.167 0.372 0.748 0.159 0.398 0.768
10 0.191 0.403 0.776 0.170  0.407 0.783
2.0 3 0.185 0.370 0.701 0.149 0.395 0.747
6 0.192  0.390 0.748 0.157  0.402 0.790
10 0.214 0.407 0.758 0.159 0.413 0.790
o = 0.001
0.4 3 0.155 0.366 0.688 0.144 0.386 0.734
6 0.141 0.376 0.765 0.100 0.395 0.765
10 0.134 0.374 0.731 0.099 0.404 0.775
0.5 3 0.254 0.373 0.751 0.150 0.399 0.751
6 0.241 0.373 0.770 0.148 0.401 0.770
10 0.212 0.387 0.782 0.145 0.406 0.803
2.0 3 0.194 0.385 0.743 0.157  0.395 0.751
6 0.157 0.390 0.765 0.154 0.404 0.791
10 0.154 0.418 0.795 0.151 0.405 0.848
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number of items within testlets across different hyper-prior distributions when the number

of same sizes is 1,000. Overall, testlets consisted of 10 items still had smaller RMSE values

compare to testlets having different number of items when variances of the testlet parameters

were 0. When the sample sizes increased to 2,000, RMSE values dramatically decreased.

Figure 4.6 and Figure 4.7 showed these trends.

The parameter recovery of testlet parameter of v seemed to be not as good as those of item

and person parameters. That might be due to the facts that each testlet provided relatively

little information to estimate its person-testlet interaction parameter, v, since items nested

within testlet had the same testlet parameter. The testlet structure, 3 testlets of size 10
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Figure 4.4: Average Variances of Testlet with ai. = 0.01

versus H testlets of size of 6 did not have a consistent directional impact on the summary

measures chosen when parameters were estimated with O'Z_ = 0.01.

Person Parameter. Correlations between average estimated 6 estimates and true € values

are presented in Table 4.2. Higher correlation indicates better estimation performance for the

model. All the conditions produce very similar correlations under each of the three testlet

effect conditions. For example, when the variance of the testlet parameters are 0, the mean
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Figure 4.5: Average Variances of Testlet with ai‘ = 0.001

corelation of the estimated person parameter and the true person parameter r(é, 0) = .915.

According to the information given in the above table, the correlations of true and estimated

person parameters were around .86 ~ .93. When comparing r(é, 0) of az. = 0.01 to that of

o = 0.001, the better r(6, 0) were obtained in the context of = 0.001.

Item Parameter. Performance of different prior distributions are also evaluated by exam-

ining how well it recovers the true item parameters. For each sample, correlation between
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Figure 4.6: RMSE of Testlet Parameters with (TZ. = 0.01
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the estimated item parameters and the true item parameters were computed. Table 4.3, 4.4,

and 4.5 presented the summary statistics of the correlations for item parameters.

Item Discrimination Parameter. With respect to aﬁ, = 0.01, Table 4.3 showed that the

mean correlation for the item discrimination parameters was much higher when there was a

large testlet effect with N = 1000, ranging from .962 to .973. Overall mean correlations for

the item discrimination parameters were smaller when the item discrimination parameters
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were estimated under the mild variance of the testlet effects. For instance, when the variance

of the testlet parameter were 0.5, mean 7(a, a) was .944, ranging from .807 to .997. When

there was no testlet effect, mean r(a, a) was .965, ranging .960 to .971.

With respect to degrees of freedom, higher mean 7(a, a) was obtained with large numbers

of items nested in testlets. The large r(a, a) was obtained when the number of items within

testlets was not considered; the average r(a, a) was .945 for d.f. = 0.4, .957 for d.f. = 0.5
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Table 4.2: Correlation of True and Average Estimated Person Parameters

N = 1000 N = 2000
on =0.01
d.f. Items 0 05 1.0 0 05 1.0
0.4 3 929 888 .888 921 .925 922
6 929 887 .883 921 925 .922
10 929 866 .863 921 .926 .922
0.5 3 929 888 .873 921 925 .922
6 929 887 .888 921 925 .922
10 866 866 .871 921 .925 922
2.0 3 866 888 866 921 .925 .922
6 929 866 .862 921 .925 922
10 929 865 .888 921 926 .922
o = 0.001
0.4 3 929 930 .929 922 935 .933
6 928 931 .929 922 934 933
10 929 930 .929 922 935 934
0.5 3 929 931 930 922 .934 934
6 929 931 .930 922 935 .933
10 929 931 .930 922 935 .933
2.0 3 929 930 .931 922 935 .933
6 929 931 930 922 936 .934
10 929 931 .930 922 936 .933

and .975 for d.f. = 2.0. However, when the number of sample sizes were increased to 2000,
the mean r(a, a) across all conditions were increased. When there was no testlet effect, mean
r(a, a) was .977, ranging from .971 to .979.

Besides correlation for the item discrimination parameters, Figure 4.8 and 4.9 showed
patterns of RMSE of item discrimination parameters. Also, Appendix A.2 presented sum-
mary statistics of average RMSE for item discrimination parameter estimates. When the
degrees of prior distribution was specified to ai' = 0.01, the lower RMSE of item discrimina-
tion parameters was obtained when the item discrimination parameter was estimated with

d.f. = 0.4 (0.153); 0.161 for d.f. = 0.5 and 0.163 for d.f. = 2.0. When the sample sizes were
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Table 4.3: Correlation of True and Average Estimated Item Discrimination Parameters

N = 1000 N = 2000
on =0.01
d.f. Items 0 05 1.0 0 05 1.0
0.4 3 960 .807 .963 978 978 968
6 964 907 962 978 976 962
10 971 997 970 978 972 .961
0.5 3 962 907 .962 979 972 967
6 964 907 .968 978 974 961
10 971 997 971 971 .968 .960
2.0 3 962 979 .963 979 971 964
6 964 994 973 978 973 961
10 971 997 972 978 975 960
o = 0.001
0.4 3 960 961 .962 978 961 962
6 963 963 .962 978 962 .963
10 970 969 .963 977 961 963
0.5 3 962 963 .964 978 969 .964
6 965 .965 .931 978 974 962
10 972 969 962 977 972 .961
2.0 3 965 961 962 978 963 964
6 965 .964 .963 978 966 .964
10 970 965 963 977 973 965

increased to 2000, values of RMSE dramatically decreased. The smallest RMSE values were
obtained when item discrimination parameters were estimated with d.f. = 0.5 (0.052); 0.053
for d.f. = 0.4 and 0.053 for d.f. = 2.0.

Item Difficulty Parameter.Table 4.4 also showed that the correlations between true and
average estimated item difficulty parameters, with the mean correlations ranging from .774 to
.929. Appendix A.3 presents summary statistics of the average RMSE. When item difficulty
parameters were estimated with ¢ = 0.01, the higher mean correlation for the item difficulty
parameters was obtained under the condition when the variance of the testlet parameters

were 0 with N = 1000, ranging from .911 to .926.
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Figure 4.8: RMSE of Item Discrimination Parameters with O'Z‘ = 0.01
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Overall mean correlations for the item difficulty parameters were smaller when the item

difficulty parameters were estimated under the large variance of the testlet effects. For

instance, when the variance of the testlet parameter were 0.5, mean r(lA), b) was .860, ranging

from .807 to .915. When the variance of the testlet parameters was 1.0, mean T(ZA), b) was

.884, ranging .774 to .911.



og
o0&
o7
oG
o0s
o4
o3

ol

og
o0&
o7
oG
o0s
o4
o3
02
ol

og
o0&
o7
oG
o0s
o4
o3
02
ol

N = 1000 (ltem 3)

—#—T=00
=l—=T=05
=&—T=10
B —— = ——
sigma=01.4 Sgma=D.5 sigma=.0
N = 1000 (ltem 6)
—#—T=00
=l—=T=05
=&—T=10
ey Ty
sigma=01.4 Sgma=D.5 sigma=.0
N = 1000 (Item 10)
—#—T=00
=l—=T=05
=&—T=10
—

sigma=0.4 sgma=0.5 sipa=1o

Figure 4.9: RMSE of Item Discrimination Parameters with O'Z‘ = 0.001
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With respect to degrees of freedom, mean r(a, a) = .975 obtained from d.f. = 2.0 under

the large testlet effect condition, which was higher than other values obtained from d.f. =

0.5 (r(b, b) = .957) and d.f. = 0.0 (r(b, b) = .945). However, when the number of sample sizes

increased to 2000, the mean (b, b) across all conditions increased as well. When there was no

testlet effect, mean (b, b) was .926, ranging from .921 to .929. In general, higher correlation

was obtained from d.f. = 2.0, r(a, a) = .927.
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Table 4.4: Correlation of True and Average Estimated Item Difficulty Parameters

N = 1000 N = 2000
on =0.01
d.f. Items 0 05 1.0 0 05 1.0
0.4 3 926 807 .893 921 917 .918
6 925 823 774 924 923 924
10 924 915 897 925 .924 925
0.5 3 924 828 892 927 915 916
6 922 829 891 927 915 916
10 911 .827 894 929 921 923
2.0 3 916 .902 901 929 915 915
6 922 904 911 927 917 916
10 922 911 .903 925 926 917
o = 0.001
0.4 3 916 913 .915 921 918 917
6 916 923 .917 924 925 925
10 918 924 917 925 935 925
0.5 3 924 914 921 927 923 926
6 924 912 924 927 921 926
10 925 914 924 929 935 .925
2.0 3 926 .916 .921 929 928 .925
6 925 917 921 927 932 .926
10 925 917 924 925 936 .927

As the testlet effect increased, the r(lA), b) revealed similar values. Figure 4.10 showed

overall patterns across all conditions.

2

Figure 4.11 showed overall patterns of item difficulty parameters. When o7,

~was increased
t0 0.001, the higher mean value of correlation was obtained when the item difficulty parameter
was estimated with d.f. = 2.0 (r(b, b) = .922); (r(b,b) = 918 for d.f. = 0.4 and r(b, b) =
920 for d.f. = 0.5.) When the sample sizes were increased to 2000, the same results were
obtained; (b, b) = .924 for d.f. = 0.4, r(b, b) = .926 for d.f. = 0.5, and (b, b) = .928 for d.f.
= 1.0.
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Besides correlation for the item discrimination parameters, Figure 4.12 and 4.13 showed

patterns of RMSE of item difficulty parameters. In addition, Appendix A.3 presented sum-

mary statistics of the average RMSE for item difficulty parameter estimates. When Ui' was

increased to 0.01, the lower RMSE of item difficulty parameters was obtained when the item

difficulty parameter was estimated with d.f. = 2.0; .434 for d.f. = 0.0, .425 for d.f. = 0.5,

and .412 for d.f. = 2.0 (Figure A.3). When the sample sizes were increased to 2000, values

of RMSE were dramatically decreased. The smallest RMSE values were obtained when item
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difficulty parameters were estimated with d.f. = 0.5; .343 for d.f. = 0.4, .342 for d.f. = 0.5,
and .353 for d.f. = 2.0.

When the prior distribution was increased to o, = 0.001 (Figure ??), lower RMSE value
was obtained when the item difficulty parameters were estimated with d.f. = 0.5; .367 for
d.f. =0.4, .355 for d.f. = 0.5 and .364 for d.f. = 2.0. However, when the sample sizes were
increased to 2000, the lower RMSE value was estimated with d.f. = 2.0; .330 for d.f. = 0.4,
331 for d.f. = 0.5, and .314 for d.f. = 2.0.
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Figure 4.12: RMSE of Item Difficulty Parameters with o7 = 0.01

Item Guessing Parameter. Table 4.5 presented correlations between true and average

estimated ¢ parameters, ranging from .281 to .575. Table 4.5 demonstrated that the estimated
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Figure 4.13: RMSE of Item Difficulty Parameters with UZ_ = 0.001

guessing parameters were somewhat far away from the true parameter regardless of testlet
effects. Also, Appendix A.4 shows the average RMSE of the guessing parameters.

When item guessing parameters were estimated with 024 = 0.01 with N = 1000, the higher
mean correlation for the item guessing parameters was obtained when there was no testlet
effect, ranging from .330 to .458. Overall mean correlations for the item guessing parameters

were smaller when the item guessing parameters were estimated under the large variance of
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the testlet effects. For instance, when the variance of the testlet parameter were 0.5, mean
(g, q) was .308, ranging from .252 to .351. When the variance of the testlet parameters was

1.0, mean 7(q, ¢) was .348, ranging .281 to .428.

Table 4.5: Correlation of True and Average Estimated Item Guessing Parameters

N = 1000 N = 2000
oo =0.01
d.f. Items 0 05 1.0 0 05 1.0
0.4 3 428 320 .320 412 469 529
6 429 281 .281 395 416 .533
10 461 337 .370 369 468 .528
0.5 3 414 351 351 461 454 438
6 418 285 .370 424 45T 446
10 330 327  .428 423 453 437
2.0 3 458 252 252 451 460 530
6 419 320 .343 424 453 538
10 406 .302 420 394 471503
o = 0.001
0.4 3 431 420 420 402 552 529
6 A17 444 481 405 565 .535
10 A11 470 470 412 575 576
0.5 3 467 428 451 462 477 534
6 436485 470 423 560 469
10 A17 431 452 427 565 511
2.0 3 465 452 .369 415 565 531
6 449 420 419 414 570 535
10 432440 409 450 575 .54l

With the respect to degrees of hyper-prior distributions, mean (g, g) = .389 obtained
from d.f. = 0.4 under the no testlet effect condition. When there was mild testlet effect, the
estimated guessing parameter with d.f. = 0.5 had highest correlation; (r(q, ¢) = .313) for
d.f. = 0.0, n(q,q) = .321 for d.f. = 0.5. and 7(q, q) = .291 for d.f. = 2.0. However, when
the number of sample sizes was increased to 2000, the mean (g, q) across all conditions were
increased. When there was no testlet effect, mean (g, ¢) was .417, ranging from .369 to .461.
Higher values (¢, q¢) was obtained from d.f. = 2.0; (g, q) = .498 for d.f. = 2.0, and r(q, q)

= .456 for d.f. = 0.5. Figure 4.14 and 4.15 showed the similar patterns. However, when
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compared values of 7(g, q) obtained between o7 = 0.01 and ¢, = 0.001, in general values of

(g, ¢) was higher when item guessing parameters were estimated with O'i' = 0.001.
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Figure 4.15: Average Correlation of Item Guessing with O’Z‘ = 0.001

e T2

=l=T=05

—T=00
—l—=T=05

T=10

Besides correlation for the item discrimination parameters, Figure 4.16 and 4.17 showed

patterns of RMSE of item difficulty parameters. In addition, Appendix A.4 presented sum-

2

mary statistics of the average RMSE for item guessing parameter estimates. When oy, was

increased to 0.01, the lower RMSE value of item guessing parameters was obtained when

the item guessing parameter was estimated with d.f. = 0.4; .397 for d.f. = 0.4, .429 for d.f.

= 0.5, and .414 for d.f. = 2.0 (Figure A.3). When the sample sizes were increased to 2000,

values of RMSE decreased. The smallest RMSE values were obtained when item guessing

parameters were estimated with d.f. = 0.4; .288 for d.f. = 0.4, .315 for d.f. = 0.5, and .313

for d.f. = 2.0.
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When the prior distribution was increased to o, = 0.001 (Figure ??), lower RMSE value

was obtained when the item guessing parameters were estimated with d.f. = 0.5; .330 for

d.f.=0.4, .319 for d.f. = 0.5, and .348 for d.f. = 2.0. However, when the sample sizes were

increased to 2000, the lower RMSE value was estimated with d.f. = 2.0; .293 for d.f. = 0.4,

292 for d.f. = 0.5, and .289 for d.f. = 2.0.
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Figure 4.16: RMSE of Item Guessing Parameters with 02_ = 0.01

—4—T=00
—l—=T=05

=&—=T=10

—4—T=00
—l—=T=05

=&—=T=10

—#—=T=00
=l—=T=05

=&—=T=10

Appendix A.5 described information about the RMSE values of items only nested testlets.

Among 60 items, 5 items were fixed for the scaling purpose and 25 items were considered

as independent items. Last 30 items were nested in different number of testlets. In general,

testlets having a relatively large number of items reveal small degree of RMSE compared to
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Figure 4.17: RMSE of Item Guessing Parameters with ai = 0.001
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other testlets having small number of items. Figure 4.18 showed that with the sample sizes

1000, lower RMSE of item discrimination occurred when the item discrimination parameter

were estimated with d.f. = 0.5 under the condition of no testlet effect. When the testlet

effects existed, lower RMSE values of item discrimination parameters happened when the

item discrimination parameters were estimated with d.f. = 2.0. Similar results were also

obtained when the item discrimination parameters were estimated with 024 = 0.001 (see
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Figure 4.19). However, given the sample size (N = 1000), smaller RMSE values of item
discrimination parameters occurred if those parameters were estimated with O'Zv = (.01
under the condition of no testlet effect when compared RMSE values of item discrimination
parameters between 02_ = 0.01 and ai. = 0.001. However, if there were testlet effects, item
discrimination parameters estimated with ai. = 0.01 had smaller RMSE values than those
estimated with 02_ = 0.001. When the sample sizes increased to 2000, no big difference

between o7 = 0.01 and o7, = 0.001 occurred.
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Figure 4.18: RMSE of Item Discrimination Parameters within Testlets with 0,2‘. = 0.01

Appendix A.5 and Figure 4.20 showed the patterns of RMSE of item difficulty parameters.

In general, smaller RMSE values of item difficulty parameters were obtained when large
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Figure 4.19: RMSE of Item Discrimination Parameters within Testlets with ai. = 0.001

number of items were nested in testlets. Lower RMSE values were obtained when the item

difficulty parameters were estimated with d.f. = 0.4 across three different testlet effects.

Given the sample sizes of 1000, smaller RMSE values of item difficulty parameters were

obtained when the item difficulty parameters were estimated under no testlet effect. When

there were testlet effects, lower RMSE values of item difficulty occurred when the item
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difficulty parameters were estimated with d.f. = 2.0. Similar results were also obtained
when the item difficulty parameters were estimated with o> = 0.001 (see Figure 4.21).
When values of RMSE were compared between ¢, = 0.01 and o7, = 0.001, smaller RMSE
values of item difficulty parameters occurred if those parameters were estimated with 02_ =
0.001 across all conditions. However, when the sample sizes increased to 2000, relatively

small RMSE of item difficulty parameters were obtained with 03_ = 0.01.
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Figure 4.20: RMSE of Item Difficulty Parameters within Testlets with ai = 0.01

With respect to item guessing parameters, Figure 4.22 showed the patterns of RMSE of

item guessing parameters. The results showed that smaller RMSE values of item guessing



49

N = 1000 (ltem = 3) N = 2000 (ltem = 3)
1 1
0% o9
nE [eh ]
o7 o7
ne e T 0E ——T=00
o - T=05 e —B-T=05
04 T opaze T gagE T pdag 04
o1 —e—T=1.0 o3 —h—=T=10
fepgyy— g 0258
b2 L L s 4—rrem il b2 M; ol -
o ot
[} o
sigma=0.4 Sgmas0.5 sigmasio sigma=0.4 Sgma=0.5 sigmas2o
N = 1000 (ltem = 6) N = 2000 (ltem = 6)
1 1
0% o9
nE [eh ]
o7 o7
ne e T 0E ——T=00
o —_-T=05 e —B-T05
o i L —— YR 1 ot
o1 —e—T=1.0 o3 —h—=T=10
02 n— —pr——————$ 0302 b2 —%‘%ﬁﬂ%ﬂ!—
o ot
[} o
sigma=0.4 Sgmas0.5 sigmasio sigma=0.4 Sgma=0.5 sigmas2o
N = 1000 (ltem = 10) N = 2000 (ltem = 10}
1 1
0% o9
nE [eh ]
o7 o7
ne e T 0E ——T=00
o —_-T=05 e —B-T05

o4 :‘.—n-gg-g— o4
o1 03332 —e—T=1.0 o3 —h—=T=10
LE — ._ + 0133 0 0238
=TT wo.Ihl
ol ol = 0108

sigma=0.4 sgma=0.5 sipma=20 sigma=0.4 sgma=0.5 sipma=2.0

Figure 4.21: RMSE of Item Difficulty Parameters within Testlets with ai‘ = 0.001

parameters were obtained when large number of items were nested in testlets. Lower RMSE
values were obtained when the item guessing parameters were estimated with d.f. = 0.4
across three different testlet effects in general. Given the sample sizes of 1000, smaller RMSE
values of item guessing parameters were obtained when the item guessing parameters were
estimated under the no testlet effect. When there were testlet effects, lower RMSE values of

item guessing occurred when the item guessing parameters were estimated with d.f. = 2.0.
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Similar results were also obtained when the item guessing parameters were estimated with
o> = 0.001 (see Figure 4.23).

When values of RMSE were compared between 05. = 0.01 and ai. = 0.001, relatively
smaller RMSE values of item guessing parameters occurred if those parameters were esti-

mated with aﬁ. = 0.01. However, when the sample sizes increased to 2000, there were no big

difference between o7 = 0.01 and o7, = 0.001.
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Figure 4.22: RMSE of Item Guessing Parameters within Testlets with O'i = 0.01
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Figure 4.23: RMSE of Item Guessing Parameters within Testlets with UZ_ = 0.001

4.3 RESULTS OF REAL DATA ANALYSIS

The 2003 form of the Florida Comprehensive Assessment Test (FCAT) Reading Test for
Grade 9 contains seven reading passages and 51 items. Each of these testlets consists of 6 to
9 items. The last 6 try-out items were discarded. The first six tests containing 45 items were

used for this study. The six testelts were composed of six reading passages with 7,9, 7, 8, 8,
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and 6 items, respectively. A sample of 1,000 examinees was randomly drawn from the total

sample and used for this preliminary analysis.

4.3.1 CONVERGENCE

It is important to determine whether the Markov chain has reached its stationary distribu-
tion. If the chain does not converge, the simulated draws from this chain would not represent
the posterior distribution of parameters of interest. The convergence diagnostics in prelimi-
nary results indicated that as many as 5,000 iterations are necessary to achieve convergence.
Gibbs and SCORIGHT. The Gibbs program does not provide any statistics to monitor
convergence. However, SCORIGHT provides statistics as in post (i.e., posterior) and con-
fshrink (i.e., confidence interval shrunk) for convergence when more than two chains are
performed at the same time. Post statistic provides 2.5%, 50%, and 97.5% quantitles for the
target distribution based on the Student-¢ distribution, whereas confshrink statistic, termed
as the potential scale reduction, \/E, in Gelman and Rubin (1992), indicates how much
estimated posterior intervals would shrink as the iterative simulations keep continuing and

provides 97.5% quantiles of \/l_% (Gelman & Rubin, 1992; Wang et al., 2004). \/E is the
square root of estimated variance divided by within chain variance, %, where V() =
(1 — 2) is estimated variance and W within chain variance (Gelman & Rubin, 1992; Wang
et al., 2004). The value of confshrink should be around 1 which indicates reasonable conver-
gence (Gelman & Rubin, 1992; Wang et al., 2004) because variation within the chain and
variation between the chains should be equivalent. Otherwise, a longer iterations should be
performed. The summary statistics of post and confshrink statistics with the real data are
presented in Table 4.6.

WINBUGS. A number of convergence diagnostics such as plot history, autocorrelation
plots, and the Gelman-Rubin statistic, R, from the WinBUGS program were also used to

check convergence. It is easy to check the stability of simulated parameters by using the

plot history, which shows the generated values of a parameter at each iteration in a chain
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5,000 iterations

15,000 iterations

Post Confshrink Post Confshrink

2.5% 50% 97.5% 50% 97.5% 2.5% 50% 97.5% 50% 97.5%

a —0.07 0.22 0.50 1.00 1.02 —0.08 0.22 0.52 1.00 1.00

b —-0.27 —-0.13 0.02 1.03 1.11 0.27 —0.11 0.06 1.04 1.19

q —-1.86 —1.59 —-1.32 1.57 3.00 —-1.81 —-1.56 —-1.30 1.18 1.63
Testlet 1 0.10 0.21 0.31 1.27 1.99 0.11 0.21 031 1.01 1.02
Testlet 2 0.08 0.16 0.24 1.08 1.18 0.10 0.17 0.25 1.01 1.03
Testlet 3  0.15 0.33 0.52 1.23 1.78 0.21 0.34 048 1.00 1.02
Testlet 4 0.12 0.22 0.32 1.06 1.20 0.11 0.21 031 1.00 1.03
Testlet 5 0.14 0.22 0.32 1.01 1.04 0.11 0.21 0.30 1.01 1.02
Testlet 6 0.20 0.32 0.43 1.10 1.37 0.20 0.32 044 1.00 1.01

of sample values. The sample history of the first item estimated with a normal distribution

is presented in Figure 4.24, in which two chains start from different values and then mix

together. Similar results were observed for the other items. However, the sample history of

the first item estimated with a log-normal distribution is shown in Figure 4.25, in which

two chains start from the different values and then mix together quickly.

40t
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Figure 4.24: Sampling of History of the First Item with 5,000 Iterations under Normal Dis-

tribution

An autocorrelation plot shows correlation between each sequential draw of a parameter in

a Markov chain. However, an autocorrelation plot does not evaluate convergence of MCMC



54

b[1] chains 1:2
4.0
2.0

n.ot

S20f

1 2000 <4000
iteration

Figure 4.25: Sampling of History of the First Item with 5,000 Iterations under Lognormal
Distribution

directly. Instead, an autocorrelation plot indirectly suggests appropriateness of MCMC con-
vergence because autocorrelation causes inefficient MCMC. As shown in the autocorrelation
plots in Figure 4.26, the autocorrelations for the first and the second chains decrease to
nearly zero at 40. This indicates that the correlation between any two drawn values sep-
arated by independent. The second step parameter presents the worse case, in which the
autocorrelation remains above 0.5 even at about lag 40. These high autocorrelations explain

why the convergence is slow.
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Figure 4.26: Autocorrelation of the First Item with 5,000 Iterations under Normal Distribu-
tion

The Gelman-Rubin convergence statistic (Brooks & Gelman, 1998) shows whether
MCMC simulations reach stability by using multiple chains with different starting points.
A value of R near 1 for all parameters of interest indicates that MCMC has converged. The

green and blue lines reflect the pooled and within-chain posterior variance, respectively.
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The ratio of these two variances is represented by the red line. The Gelman-Rubin conver-
gence statistic plot of the first item was shown in Figure 4.27. The red line (Gelman-Rubin
statistic) converged to 1, indicating equality between the pooled and within-chain variances.
Thus, the Gelman-Rubin plot demonstrates that the convergence seems to occur around

4,200 iterations. However, the fluctuating red line might indicate the necessity of longer

iterations.
h[1] chains 1:2
151
10f T
psp=—="
oog
4051 4200 4400

start-teration

Figure 4.27: The Gelman-Rubin Convergence Statistic of the First Item with 5,000 Iterations
under Normal Distribution

A smoothed kernel density is estimated for the posterior distributions. Figure 4.28 showed
the density plots of the first and the sixth items based on the initial 5,000 iterations from two
chains for the difficulty parameter, b. The density plot for b of the first item showed unimodal
distribution which is nearly symmetric and close to the normal distribution. However, other
items does not show approximate symmetric density plots. Item 6, for instance, showed

bi-modal density distribution which might suggest the necessity of longer chains.
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Figure 4.28: A Kernel Density of the First Item with 5,000 Iterations under Normal Distri-
bution
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4.3.2 ESTIMATION

Prior to data analysis, the first 5,000 iterations of each chain were discarded as burn-in
periods for the initial 5,000 iterations. Point estimates of the model parameters and standard
errors were computed, respectively, of 20,000 iterations (10,000 iterations for each chain) sam-
pled from each parameter’s marginal posterior distribution after burn-in periods. Once the
convergence of the model was checked, parameters obtained from SCORIGHT, Gibbs, and
WinBUGS were compared to one another. For instance, correlations between item param-
eter estimates from SCORIGHT and WinBUGS were .94 for item discrimination, .99 for
item difficulty, and .33 for pseudo-guessing. The results in Table A.7, Table A.8, and Table
A.9 showed that the estimated discrimination, difficulty, and pseudo-guessing parameters for
all three methods were slightly divergent: Values of original pseudo-guessing parameters in
the WinBUGS program were used instead of transformed pseudo-guessing parameters. As a
number of iterations increased, correlations among item parameters from the three programs
were getting higher. The summary statistics of the estimates from the SCORIGHT, Gibbs,
and WinBUGS runs of the real data also presented in the Table 4.7 and Table 4.8.

An individual’s response to the items not only depend on an individual’s ability and item
difficulty, but also on additional random testlet effects, which are assumed to be normally
distributed with a mean of zero and a variance, 03. A testlet effect with a similar magnitude
to the variance of the corresponding latent variable means that the variance associated with
LD is of the same order of magnitude as the variance of individuals.

In the line of recommendation for testlet effect (Bradlow et al., 1999), testlet effects among
six testlets were moderately significant, which confirmed that items on a test violated the
local independence assumption. However, slightly different testlet effects obtained from the
three programs were shown in Table A.10. Results obtained from SCORIGHT and Gibbs
showed that the third testlet had the largest testlet effect, whereas the largest testlet effect

existed at the last testlet in WinBUGS.
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Noninformative prior distributions specified as i, ~ N(0,100%), u ~ N(0,100%), and
pg ~ N(0,100?%) for item discrimination, item difficulty, and pseudo-guessing parameters,
respectively appeared to perform well in the 3PLT model reflecting a half normal distri-
bution on item discrimination parameter, a ~ N(p,,0,)1(0,). In the WinBUGS code, the
variance, 02 = 100%, designate 7 = 0.0001. As the sample size of this preliminary study was
relatively small (N=1,000), informative prior distributions seemed to be imposed for the item
discrimination parameters. It accelerated the WinBUS runs when informative long-normal
distribution for item discrimination, a ~ LN (i, c?2).

The results of the analyses were as expected. The selection of prior distributions in
3PLT model affected the estimation of item parameters as well as model convergence. It was
noteworthy that the 3PLT model in the WinBUGS 1.4 program needed either several chains

or relatively longer iterations as Sinharay (2004) suggested.
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CHAPTER 5

DISCUSSION

The previous chapter reported the results of the studies conducted in this dissertation. This
chapter included a summary of the findings from these studies and a discussion of their
significance. The chapter closed by presenting some of the study limitations and suggesting
directions for future research.

The two primary goals of this research are: First, to conduct simulation studies to inves-
tigate the impacts of means of particular prior distributions and different degrees of freedom
under the context of the 3PLT model under different number of sample sizes; and second,

to apply the 3PLT model to the empirical data sets.

5.1 SUMMARIES

Bayesian estimation using MCMC methods offer lots of potential for estimation of complex
IRT models such as testlet models (Bradlow et al., 1999; Li et al., 2005; Wang, 2002). The
advantage of the testlet model over the standard IRT models is that the former can provide
a quantitative idea about the dependence of the response of an examinee to the items within
the testlets. The 3PLT in the WinBUGS runs requires either several chains or relatively
longer iterations.

Based on the simulation study, convergence was slow for conditions in which relatively
small degrees of freedom was placed on testlets containing 10 items. It might be due to the
fact that there was not much information in estimating testlet effect. In addition, the findings

indicated that when a small number of items were nested in testlets in a test (large number

29
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of testlets), convergence rate was relatively faster compared to one containing large number
of items within small number of testlets.

The 3PLT model assumes that parameters for testlet follow a normal distribution
N(0,7(g)). The magnitudes of the testlet effects are determined by the variance of the
testlet parameters. In the simulation study, the true testlet parameter were specified to be
normal distributed. Estimates of the testlet variance were overestimated when there was
no testlet effect. However, Estimates of the testlet tended to be an underestimates if there
were testlet effects. The results showed that the same testlets in different means of prior
distributions exhibited different magnitudes of testlet effects. While it is hard to illuminate
the change of testlet effect across different means of prior distributions by studying item
responses only, analyzing the content of these testlets may shed some light on these shifts.

Before examining the success of the 3PLT model in recovering of the true parameters,
this study examined correlations between the generating parameter (true) and the estimated
parameters. The average values of correlations across 25 replications are .92 for 6, .94 for a,
.93 for b, and 0.45 for ¢, which indicates that estimation process had added small amount of
error to the estimates. The results showed slightly lower correlations between the estimated
parameters and the true parameters.

Additionally, RMSE for each condition was computed for 25 replications to evaluate the
success of recovering the true parameters. In general, the variances of testlet effect tended to
be underestimated across all conditions, yielding smaller testlet effects than it should have.
However, it should be noted that the tendency of underestimating testlet effects reversed for
the condition, which assumed no testlet effects. The tendency displayed minor testlet effects
when there was no testlet effect.

It is common to use reasonably non-informative prior distributions about the mean and
the variance of the random effects. However, the important thing is to distinguish primary

parameters of interest in which one may want minimal influence of priors from the secondary
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structure used for smoothing in which either moderate or strong informative priors may be

more acceptable. However, great caution should be considered in complex models.

5.2 LIMITATIONS OF THE STUDY

This study explored the impacts of means of prior distributions, different degrees of freedom,
different number of items nested in testlets on testlet effects within the 3PLT model. Though
the conditions were carefully designed and the factors were fixed at realistic values, the
results obtained from this study cannot be generalized beyond the conditions studied here.
For example, this study was limited in terms of the means of prior distributions, degrees of
freedom, and number of items nested in testlets because all those conditions were applied
across all parameters under the same number of sample sizes (N = 1000 and N = 2000). The
relative differences among means of prior distributions and different degrees of freedom could

vary more drastically depending on conditions such as sample size and number of items. A

2

lack of information on o

, o2, and 02 had been imposed with inverse-chi square distribution.
However, it is necessary to clarify difference between inverse-gamma distribution and gamma
distribution used in other contexts (Spiegelhalter et al., 2003) .

By including a set of person-testlet interaction parameters in addition to the usual item
and person parameters, the testlet models are able to account for the testlet effects which
have been ignored by the traditional unidimensional IRT. However, the performance of the
particular means of prior distributions and different degrees of freedom for the 3PLT model
requires further study. For example, the effect of factors such as different prior distributions
and different degrees could be further explored. Regarding the testlet effect, the practice
of assuming normal distributions for testlet parameters has almost been exclusively applied
by researchers in their specification and estimation of testlet models (Bradlow et al., 1999;
Wainer et al., 2000; Wainer et al., 2007; Wainer & Wang, 2000). Although this is a generally

accepted practice, there is no guarantee that the true testlet parameters are normally dis-

tributed universally for different tests that target different content domains and examinees in
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real life. The discrepancies between the assumed testlet parameters distribution and the true
testlet parameter distribution can lead to inaccuracies in model. Therefore, it is recommended
to study the behavior of the testlet effects parameters and investigate the appropriateness
testlet response models that employ different testlet parameter distributions.

In this study, the group invariance property with the real data was not evaluated. It
should be noted that test equating results may be different for various populations. In this
study, the examinee population taking the FCAT was the same population but abilities
of those examinees were estimated by using different programs (e.g., Gibbs, SCORIGHT,
WinBUGS).

Another limitation of the current study lies in the data generation method for the simu-
lation study. In order to keep the generated discrimination and difficulty parameters within
the range of the FCAT items, samples were discarded until all the obtained parameters fell
within the rage of real item parameters. As a result, the final data samples were not randomly
generated in a strict sense.

Running the WinBUGS program is highly computation-intensive. Due to to computing
constraints of the WinBUGS 1.4 program (Spiegelhalter et al., 2003), only 25 replications
were implemented. Since an average run took about 6 hours with the sample size of 1000
and 14 hours with the sample size of 2000 under the conditions studied here, simulation
research, which typically requires large number of replications, faces even greater computing
challenges. Though it was smaller than which is typical for other Monte Carlo research, it

was larger compared to previous research involving the 3PLT model.
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Table A.1: Average RMSE of Variances of Testlet

N = 1000 N = 2000

o =0.01

d.f. Ttems 0 05 10 0 05 10

0.4 3 0.146 0.147 0.452 0.124 0.128 0.257
6 0.156 0.154 0.291 0.143 0.117 0.254
10 0.196 0.136 0.271 0.184 0.097 0.238

0.5 3 0.178 0.135 0.292 0.177 0.113 0.238
6 0.187 0.132 0.252 0.177 0.112 0.244
10 0.195 0.097 0.234 0.186 0.093 0.229

2.0 3 0.177 0.230 0.292 0.148 0.114 0.269
6 0.175 0.210 0.252 0.175 0.098 0.215
10 0.198 0.097 0.242 0.179 0.082 0.210

o = 0.001

0.4 3 0.165 0.263 0.322 0.142 0.131 0.273
6 0.153 0.262 0.245 0.103 0.118 0.245
10 0.137 0.265 0.271 0.101 0.117 0.225

0.5 3 0.298 0.266 0.249 0.176 0.119 0.249
6 0.285 0.266 0.231 0.173 0.118 0.230
10 0.223 0.253 0.228 0.171 0.114 0.197

2.0 3 0.201 0.255 0.267 0.167 0.118 0.248
6 0.167 0.243 0.245 0.154 0.117 0.218
10 0.164 0.158 0.215 0.151 0.119 0.152
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Table A.2: Average RMSE Item Discrimination Parameter

N = 1000 N = 2000
o =0.01
d.f. Ttems 0 05 10 0 05 1.0
0.4 3 0.210 0.168 0.165 0.056  0.056 0.057
6 0.179 0.142 0.138 0.049 0.046 0.057
10 0.166 0.137 0.163 0.049 0.049 0.061
0.5 3 0.218 0.164 0.163 0.054  0.056 0.056
6 0.184 0.151 0.148 0.048 0.041 0.057
10 0.118 0.148 0.162 0.052 0.054 0.060
2.0 3 0.217 0.172 0.168 0.053 0.058 0.059
6 0.184 0.140 0.145 0.048 0.050 0.057
10 0.165 0.132 0.153 0.047  0.047  0.060
o = 0.001
0.4 3 0.170 0.183 0.211 0.050 0.056 0.060
6 0.108 0.184 0.205 0.049  0.056 0.058
10 0.107 0.185 0.196 0.049 0.059 0.059
0.5 3 0.166 0.174 0.230 0.055 0.058 0.064
6 0.159 0.183 0.229 0.048 0.058 0.076
10 0.138 0.174 0.184 0.049 0.049 0.060
2.0 3 0.166 0.182 0.211 0.054  0.059 0.060
6 0.157 0.174 0.186 0.048 0.058 0.063
10 0.155 0.182 0.179 0.048 0.058 0.058

65



Table A.3: Average RMSE Item Difficulty Parameter

N = 1000 N = 2000

o =0.01

d.f. Ttems 0 05 10 0 05 1.0

0.4 3 0.392 0.493 0.472 0.303 0.372 0.370
6 0.391 0.494 0.492 0.300 0.343 0.360
10 0.393 0.389 0.390 0.306 0.369 0.361

0.5 3 0.394 0.393 0.393 0.302 0.357 0.395
6 0.394 0.408 0.509 0.288 0.358 0.395
10 0.421 0.421 0.497 0.287 0.353 0.343

2.0 3 0.388 0.447 0.446 0.298 0.395 0.395
6 0.394 0.399 0.433 0.288 0.372 0.395
10 0.395 0.421 0.387 0.302  0.361 0.372

o = 0.001

0.4 3 0.380 0.386 0.385 0.305 0.370 0.370
6 0.365 0.342 0.383 0.304 0.308 0.360
10 0.364 0.337 0.363 0.308 0.280 0.361

0.5 3 0.315 0.346 0.363 0.314 0.342 0.360
6 0.375 0.381 0.348 0.283  0.370 0.360
10 0.353 0.348 0.362 0.305 0.280 0.360

2.0 3 0.348 0.372 0.368 0.294 0.300 0.361
6 0.377 0.340 0.375 0.284 0.287 0.360
10 0.372  0.332  0.393 0.300 0.277 0.359
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Table A.4: Average RMSE Item Guessing Parameter

N = 1000 N = 2000

o =0.01

d.f. Ttems 0 05 1.0 0 05 1.0

0.4 3 0.312 0.365 0.365 0.293 0.255 0.245
6 0.311 0.494 0.497 0.288 0.317 0.282
10 0.309 0.460 0.458 0.291  0.329 0.290

0.5 3 0.354 0.465 0.465 0.302 0.314 0.305
6 0.352 0.490 0.458 0.291 0.321 0.298
10 0.484 0.480 0.312 0.360 0.342 0.300

2.0 3 0.402  0.500 0.501 0.338 0.324 0.289
6 0.296 0.470 0.345 0.291 0.346 0.285
10 0.390 0.498 0.320 0.291 0.365 0.283

o = 0.001

0.4 3 0.315 0.370 0.370 0.305 0.280 0.300
6 0.352  0.309 0.301 0.309 0.289 0.298
10 0.355 0.300 0.300 0.310 0.275 0.274

0.5 3 0.305 0.368 0.309 0.300 0.290 0.298
6 0.314 0.295 0.300 0.300 0.288 0.273
10 0.352 0.315 0.310 0.309 0.274 0.293

2.0 3 0.307 0.309 0.460 0.297 0.275 0.301
6 0.313  0.370 0.355 0.294 0.280 0.296
10 0.315 0.314 0.385 0.308 0.270 0.281
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Table A.5: Average RMSE of Item Estimates for Items Within Testlet When ¢, = 0.01

Item # of Vary = 0 Vary = 0.5 Vary = 1.0
Parameter Items d.f. =04 d.f. =05 d.f. =20 d.f. =04 d.f. =05 d.f. =20 d.f. =04 d.f. =05 d.f. =20
N= 1000

Y 3 0.302 0.255 0.252 0.285 0.291 0.075 0.273 0.215 0.262
6 0.200 0.202 0.202 0.271 0.280 0.045 0.179 0.181 0.186
10 0.176 0.176 0.176 0.037 0.049 0.032 0.171 0.171 0.160
B 3 0.302 0.307 0.337 0.689 0.690 0.723 0.689 0.690 0.591
6 0.302 0.304 0.302 0.688 0.707 0.536 0.683 0.656 0.579
10 0.301 0.300 0.299 0.541 0.579 0.499 0.630 0.642 0.632
q 3 0.335 0.345 0.376 0.269 0.319 0.392 0.332 0.319 0.402
6 0.336 0.337 0.337 0.332 0.331 0.384 0.269 0.273 0.393
10 0.331 0.321 0.335 0.410 0.412 0.421 0.271 0.308 0.245
N= 2000
« 3 0.066 0.064 0.062 0.063 0.065 0.067 0.072 0.074 0.070
6 0.055 0.052 0.052 0.050 0.055 0.052 0.066 0.072 0.065
10 0.054 0.055 0.050 0.048 0.052 0.049 0.062 0.066 0.064
B 3 0.302 0.301 0.302 0.227 0.253 0.251 0.228 0.250 0.248
6 0.297 0.287 0.289 0.216 0.212 0.207 0.257 0.242 0.238
10 0.290 0.301 0.279 0.187 0.208 0.199 0.239 0.240 0.225
q 3 0.310 0.329 0.290 0.320 0.345 0.332 0.265 0.283 0.265
6 0.302 0.290 0.275 0.318 0.322 0.324 0.260 0.273 0.256
10 0.294 0.275 0.270 0.314 0.313 0.313 0.253 0.261 0.250
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Table A.6: Average RMSE of Item Estimates for Items Within Testlet When O’i = 0.001
Item # of Vary = 0 Vary = 0.5 Vary = 1.0
Parameter Items d.f. =0.4 d.f. =0.5 d.f. =2.0 d.f.=0.4 d.f. = 0.5 d.f. =2.0 d.f.=0.4 d.f. =0.5 d.f. =2.0
N= 1000
Y 3 0.172 0.185 0.182 0.298 0.300 0.185 0.283 0.285 0.264
6 0.153 0.162 0.162 0.209 0.291 0.182 0.189 0.200 0.190
10 0.103 0.103 0.103 0.194 0.149 0.182 0.181 0.181 0.173
B 3 0.172 0.198 0.200 0.389 0.407 0.423 0.389 0.396 0.391
6 0.169 0.180 0.202 0.388 0.379 0.336 0.383 0.369 0.379
10 0.162 0.161 0.199 0.341 0.315 0.399 0.330 0.342 0.332
q 3 0.351 0.462 0.366 0.320 0.339 0.302 0.356 0.337 0.356
6 0.337 0.338 0.337 0.319 0.321 0.305 0.350 0.373 0.345
10 0.332 0.325 0.334 0.317 0.312 0.302 0.371 0.358 0.334
N= 2000
o 3 0.076 0.074 0.064 0.065 0.067 0.069 0.082 0.075 0.073
6 0.065 0.062 0.055 0.055 0.056 0.066 0.068 0.073 0.068
10 0.064 0.065 0.054 0.052 0.053 0.052 0.064 0.069 0.065
B 3 0.313 0.326 0.303 0.237 0.273 0.261 0.239 0.255 0.258
6 0.312 0.282 0.294 0.226 0.243 0.247 0.267 0.243 0.248
10 0.311 0.308 0.308 0.197 0.226 0.248 0.240 0.242 0.237
q 3 0.312 0.330 0.296 0.330 0.355 0.334 0.267 0.293 0.277
6 0.302 0.295 0.285 0.325 0.342 0.325 0.265 0.281 0.266
10 0.302 0.300 0.286 0.310 0.328 0.323 0.253 0.275 0.253

Table A.7: Correlation of Item Discrimination Parameter

Condition Du SC N LN
Du 1.000 .898  .987  .978

5,000 SC 1.00 .939 .936
iterations N 1.000 .989
LN 1.000

2 Du 1.000 .947 998  .993
15,000 SC 1.00 .947  .958
iterations N 1.000 .991
LN 1.000

Table A.8: Correlation of Item Difficulty Parameter

Condition Du SC N LN
Du 1.000 984 995 994

5,000 SC 1.00  .990 .992
iterations N 1.000  .998
LN 1.000

2 Du 1.000 .991 1.000 1.000
15,000 SC 1.00 .947  .992
iterations N 1.000  .999
LN 1.000




Table A.9: Correlation of guessing parameter

Condition Du SC N LN
Du 1.000 .213 915 .896

5,000 SC 1.00 .218  .326
iterations N 1.000 .959
LN 1.000

2 Du 1.000 .324 989  .987
15,000 SC 1.00 242 314
iterations N 1.000 .979
LN 1.000

Table A.10: Estimated Variance of Testlet

Cond Testlet Du SC N LN

1 144211 174 193

2 140 .151 129 .140

5,000 3 281 311 272 .2064
iterations 4 162 207  .194 183
5 185 199 180 .170

6 268 286 .294 .290

1 143 213 175 178

2 120 173 146 137

15,000 3 290 .344 297 294
iterations 4 133 209  .169 167
5 150 206 179 181

6 281 .321 .291 .295




APPENDIX B

3PL TESTLET N = 2000 55 ITEMS DATA GENERATION T 0.5 SEED:123456
MODEL {
a[l] « 0.521172928
a[2] «+ 0.077579014
a[3] < 0.886715500
al4] « 1.676318913
al5] « 2.805824457

al51] « 1.58147946
a[52] + 1.64617332
a[53] + 2.15516394
a[54] « 1.44434500
a[55] + 1.57411228
b[1] + -1.13956809
b[2] + -0.54981831
b[3] < 0.41384308
b[4] - 1.23229356
b[5] + 0.06482972

b[51] « -0.96948734
b[52] + 0.96107453
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b[53] « -2.45063650
b[54] + 0.32210101
b[55] + -0.10069723
q[1]  -1.7513594335
q[2]  -0.9109805725
q[3] + -1.0475347050
q[4] « -2.3619323768
q[5] + -1.8765800430

q[51] + -1.4719871227
q[52] « -1.9722319279
q[53] « -1.7289024947
q[p4] « -0.9255847931
q[55] « -1.7116853925
test[1] < 0
test[2] < 0
test[3] «— 0
test[4] < 0

test[5] < 0

test[51] « 1.0
test[52] < 1.0
test[53] « 1.0
test[54] « 1.0
test[55] < 1.0
for (j in 1:N) {
for (k in 1:T) {
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pljk] = (exp(q[k])/(1+exp(q[k]))+exp(a[k]*(thetalj] - b[k]-test[k])))/ (1+exp(a[k]*(thetal]
- blk]- test[k])))

resp[j,k] ~ dbern(pl[j.k])

IS8

list(N=2000, T=55,

theta=c(

-1.1632050534, -0.9143888319, -0.4015921904, -1.0573467692, 0.2015239017,

-0.6371621926, -0.3196387516, -0.5640802674, 1.7068394363, 0.5722573115,

0.8271898127, 0.9437303027, -0.6265469574, -0.4280939117, -0.0143332587 ))



APPENDIX C

4 3PL Testlet Model

model

{

for (j in 1:N) {

for (k in 1:T) {

r[j,k]i-resp[j. k]

H}

for (j in 1:N) {

for (k in 6:25) {

pli.k] « (exp(alk])/(1+exp(qlk])) + exp(alk]*(thetalj] - b[k])))/(1+exp(alk]*(thetalj] -
b[k])))

rlj.k] ~ dbern(plj k)

h

for (k in 26:T) {

p[j.k] « (exp(a[k])/(1+exp(q[k]))+exp(alk]*(theta[j] - b[k]-gamtes]j, test[k]])))/ (1+exp(a[k]*(theta[]
- blk]- gamtes(j,

test[k]])))

r[j k] ~ dbern(plj k)

h

for (k in 2:M){

gamtes|[j, k| ~ dnorm(0, siggam[k])

73
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H}

for (j in 1:N) {

theta[j] ~ dnorm(0,1)

}

for (k in 1:T) {

alk] ~ dnorm(mua, siga)I(0,)
b[k] ~ dnorm(mub,sigh)
qfk] ~ dnorm(mugq,sigq)
}

all] « 0.521172928

al2] « 0.077579014

a[3] « 0.886715500

ald] « 1.676318913

al5] + 2.805824457

b[1] « -1.13956809

b[2] « -0.54981831

b[3] ¢ 0.41384308

bl4] « 1.23229356

b[5] < 0.06482972

a[1] + -1.7513594335
q[2] + -0.9109805725
q[3] = -1.0475347050
ql4] + -2.3619323768
ql5] « -1.8765800430
for (k in 2: M) { siggam|k| ~ dchisqr(.5) var[k] < 1/siggam[k]
}

mua ~ dnorm(0, .01)



mub ~ dnorm(0, .01)
muq ~ dnorm(0, .01)
siga ~ dchisqr(.5)
sigh ~ dchisqr(.5)
sigq ~ dchisqr(.5)

}
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