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ABSTRACT 

             The objective of this study was to evaluate the performances of a mixed linear model 

under a frequentist and a Bayesian implementation for analysis of microarray data. A simulation 

was conducted following the structure of an existing Affymetrix chip data. PROC MIXED of 

SAS was used for the frequentist implementation. T-test, p-values, and the estimated difference 

between the two treatment levels were used to detect differentially expressed genes, as well as 

false positive and false negative cases.  In the Bayesian implementation, the probabilities of a 

gene being in each of five pre-defined significance level classes were used for performances 

testing. The results indicate that both methods performed exceptionally well in identifying highly 

differentially expressed genes with a success rate of 0.96 and 0.98, respectively. However, the 

Bayesian approach was superior in clustering the most important genes. Both procedures 

performed similarity in detecting false positive and negative cases.   
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CHAPTER 1 

INTRODUCTION 

In the last decade, scientists have marked a significant development in the study of 

biology.  The completion of a "working draft" of the human genome and of some domestic 

animals, bacteria and viruses signals the beginning of a new stage of the modern biology in 

which most of the biological and biomedical research will be based on the sequences of the 

genome.  This new approach promises not only a fast advance in the understanding of the basic 

biological processes but also in the prevention, diagnostic and cure of diseases of genetic origin.  

Although the optimal use of the genome information will take a long period of time (tens or 

perhaps hundreds of years), the implications of this new achievement for the basic forms of 

biological research, such as those in medicine or life sciences are very promising (Brazma, 2001). 

Traditionally, medical and agricultural scientists have concentrated, for example, the 

study of the relationship between a single gene (or a very small assembly of genes) and animal or 

plant diseases. Although much progress has been observed, the understanding of the underlying 

mechanisms at the genetic level has been often incomplete. This can be due to not paying 

accounting for potential interactions between genes or the genes under consideration and the rest 

of the genome.   

The advances at the genomic level have produced a massive amount of information and 

have created the need to develop quantitative methods directed toward the optimal use of this 

information, with the  objective being to obtain a better understanding of the biological processes 

that take place.  The knowledge of the coding sequences of virtually every gene in the genome 



  2  

invites the development of methodology which allows the identification of the function of these 

genes and their potential interactions.  A possibility to exploring the function of an individual 

gene is the determination of its pattern of expression.  At the moment, several techniques are 

available to quantify this level of expression.  Northern blots, differential display, 

representational analysis and serial analysis of gene expression are just a few of these. cDNA 

microarrays are distinguished from the other methods by their potential to measure the level of 

expression on hundreds or even thousands of genes in a single experiment.  This capacity allows 

measurement the expression of the complete genome during different stages of development, in 

different tissues or organisms, or as a the response to a specific drug.  Thus, microarray 

technology has raised much interest both in the academic and commercial sector, especially in 

the field of human medicine, for obvious reasons. 

At the moment, a detailed examination of the multidimensional genetic system is possible 

thanks to these new hybridization techniques. A single hybridization experiment using a DNA 

chip allows simultaneously the examination of profiles of expression for thousands of genes.  

This can change dramatically the strategies to study relationships between genes and 

agriculturally important traits, or diseases.  Nevertheless, a new quantitative genomic framework 

must emerge for a complete and optimal use of the available information (Waston et al., 1998).   

A typical microarray research project is a multi-step process (Schena, 1999). It starts with 

experimental design and array fabrication, and proceeds with array reading (scanning) and image 

processing. Subsequently, the information contained in the images must be reduced somehow; 

this is known as gene expression statistical analysis. Typically, a massive amount of data is 

generated, containing a variety of information that ranges from molecular sequences for genes or 

clones, to expression values (quantitative) for each gene under different experimental conditions 
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(Zhu et al., 2000).  As mentioned by Douglas et al. (2001), a challenge posed by microarray 

technology resides in how to deal with the massive amounts of data, such that it can be explored 

and interpreted in the context of available biological knowledge. Arguably, the low number of 

primary research papers in the microarray field, relative to the number of review papers on gene 

expression, may not be due to a limited amount of primary data, but to difficult in sensibly 

analyzing the data which has been colleted.(Douglas et al., 2001). 

 In the early years of microarray technology, most statistical research done with gene 

expression data focused on the development of visualization tools, and standard statistical 

methods such as cluster analysis and principal components were applied (Carr et al., 2003). 

These techniques have been useful to summarize information, to identify clusters or groups of 

genes based on similarity or dissimilarity, and to predict biochemical and physiological pathways 

for some uncharacterized genes. Recently, more sophisticated statistical tools are being used to 

analyze expression data. Parametric and non-parametric methods have being developed to 

overcome the shortcomings of earlier procedures. The Mixed linear model (Wolfinger et al., 

2002) is becoming a standard tool for several research groups in the analysis of microarray data; 

because of its flexibility in accommodating different experimental designs and its clear statistical 

proprieties. 

 In this study, performances of mixed linear model under frequentist and Bayesian 

implementations are evaluated based on simulated data. Quantities such as the correct 

identification of differentially expressed genes, false positive and false negative rates and 

computational cost will be used in performance assessment. 
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CHAPTER 2 

REVIEW OF LITERATURE 

1. DNA Microarrays 

DNA microarrays constitute an extension of the hybridization methods that have been 

used for more then 20 years for the identification and quantification of nucleic acids in a sample.  

They consist of a great number of DNA molecules spotted in a systematic way on a solid 

substrate which can be crystal slides or a nylon membrane.  Depending on the size of wells on 

the array where the DNA is spotted, this can be classified as microarray (the diameter of each 

well is inferior to 250 microns) or macroarray (if the diameter is superior to 300 microns).  Two 

main methods exist to make DNA microarrays or DNA Chips. The first method consists of oligo 

nucleotides sequences having a size between 20-30 base pairs synthesized directly on a solid 

surface using the combination of photolithography technique and light directed chemical 

synthesis.  This method allows the making of DNA microarrays with very high density (about 

250000 oligo spots per cm2). Although this approach has numerous advantages, its major 

disadvantage is the high cost of the necessary equipment for its manufacture and reading, in 

addition to the lack of design flexibility (Dieckgraefe et al., 2000).  The second method, referred 

to as cDNA microarray, involves the analysis of a small amount of DNA which is spotted on a 

solid surface.  The cDNA microarrays consist of long DNA sequences (500 -2000 base pairs) 

deposited with a high-speed robot.  The density of the chip depends on the capacity of the 

dispensing device. Its greater advantage with respect to the method is the possibility of its routine 
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manufacture in a regular laboratory and the design flexibility leading to an important cost 

reduction (Schena, 1999).   

The underlying principle of DNA microarray technology is the spontaneous biochemical 

base-pairing process of complementary base pairs, called hybridization, which provides high 

sensitivity and specificity of detection as a consequence of exquisite, mutual selectively between 

complementary strands of nucleic acids (Southern et al., 1999). An array is an orderly 

arrangement of known cDNA sequences or oligonucleotides. It provides a medium for matching 

known DNA (probe sequences) and unknown, fluorescently labeled DNA or RNA samples 

(target sequences). The labeled target sequences allow a quantitative measurement of their 

abundance in a sample, i.e. tissue, cells, organ etc., being investigated. On the chip, target 

sequences are organized in so called spots. The sample spots size in microarrays are typically 

less than 200 microns in diameter and these arrays usually contain millions of spots (Duggan et 

al., 1999). Microarrays require specialized high-speed robotics for manufacturing and imaging 

equipment (scanner) for measuring the raw intensity data for each spot.  Either fluorescence 

intensity, or extent of radio labeling at each spot, is proportional to the amount of target 

hybridized to each probe. Since the concentration of the probe is large relative to that of the 

target, hybridization occurs at a rate, which is proportional to the concentration of the target and 

to the incubation time (Duggan et al, 1999). Specific digital image processing procedures take 

advantage of the highly regular arrangement of the gene spots on the array to extract the intensity 

value of each spot (Cheng et al., 1999; Lipshutz et al., 1999). 
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1.1 Spotted cDNA Microarrays 

                          The process of producing and using spotted cDNA microarray in comparative 

experiments is summarized in Figure 2.1. It consists of two major components: a) array 

production and b) the different stages of a comparative study.  

 

Figure 2.1: Different steps of a comparative microarray experiment (Dudoit et al., 2002) 

 

1.1.1 Production of the array 

The process of a microarray experiment begins with the hypotheses of the biologist and 

the selection of genes (EST) of interest that will be printed to the Array.  Selected genes are 

amplified using a Polymerase Chain reaction (PCR).  After purification, the products of PCR will 

be printed into the pretreated microscope slides using a robotic arrayer.  Two methods of 

mechanical microspotting and ink jetting are used (Cheng et al., 1999).  
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Once the DNA Array has been made, it can be used in one of the two possible 

applications: genomic studies or gene expression studies. The genomic studies consist basically 

of the identification and genotyping of mutations and polymorphisms.  Oligonucleotides 

microarrays have been used in the identification of single-nucleotide polymorphisms (SNPs), 

variations that happen frequently in the genome (each 100-300 bases). However, the majority of 

DNA microarray applications have focused on the study of changes in gene expressions (Bolstad 

et al., 2003)   

1.1.2 Stages of a comparative study using cDNA microarray 

The design of a comparative gene expression experiment is a multi-stage task (Figure 

2.1) which needs the intervention of many specialists as well as the use of sophisticated and 

expensive equipment.   

 a) Cell lines or populations: This stage depends only on the hypotheses and objectives of the 

biologist or geneticist. It consists of choosing the cellular lines of which the genetic material will 

be used in the comparative study.  As of now, many interesting applications have been carried 

out using the genes of the following cellular populations (Waston et al., 1998):   

- genes of specific tissues:  cells from different tissues on the same organism (i.e. 

nervous system and heart muscle) were used.  This type of comparative study allows 

the identification of genes that are preferentially expressed in a specific tissue. 

- genes of the same tissue under different environmental conditions:  the objective of 

this type of experiments is to understand the adaptation of a cell line to environmental 

changes such as temperature, PH, radiation, pesticide or the response to a drug.  This 

type of application is very frequent in comparative studies, especially in the search of 

treatments for many diseases.  In its simplest form, one could study the alteration of 



  8  

the expression of genes after subjecting them to an excitation or treatment and 

comparing them to a control population.   

- genes of the same tissue at different stages of development:  this type of experiment 

allows the study of genetic changes at the cellular level in the same tissue.  Different 

stages of breast cancer for example, suggest the intervention of different genetic 

mechanism, and consequently a change in the gene expression patterns.  In dairy 

cattle, one can investigate changes of expression in the mammary gland at different 

stages of lactation. 

- genes on the same tissue for diseases with genetic heterogeneity:  These types of 

comparative experiments are frequent in the studies of diseases such as cancer.  A 

group of individuals with cancer in the same tissue can have different groups of 

missing or damaged genes. In this case, comparative methods can be considered as 

techniques for diagnosis but also for classification, and obviously they play a very 

important role in the design of the appropriate and effective treatment for each patient 

given his/her individual pattern of gene expression.   

b) Extraction of mRNA and reverse transcription: Once the cellular lines for the comparative 

study have been chosen, the second stage consists on the extraction of the messenger RNA 

(mRNA) and the reverse transcription.  Before that, it seems of interest to remind the reader of 

the main mechanisms that regulate the relationship between DNA and proteins as shown in 

Figure 2.2.   

              The transcription mechanism begins with the recognition of promoter; small DNA 

sequence that indicates the beginning of a gene.  In Eukaryotes, the coding regions called exons 
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are separated by non-coding zones called introns. Coding regions is DNA sequence which 

transcript as function protein.  The final product of transcription is the 

 

 

 

 

 

     Figure 2.2: Mechanisms regulating the relation between DNA and protein (Lockhart et al., 

1996) 

messenger RNA (mRNA) obtained by copying the coding regions of the gene and eliminating 

the introns.  Once obtained, mRNA must be purified from other cellular contents. Producing 

sufficient quantity of mRNA for a microarray experiment (1-2 micrograms) is not an easy task 

since the latter represent only 3% of the total RNA in a cell.  Further, it is difficult to work with 

mRNA since it is not stable and it is susceptible to detection by environmental conditions. In 

order to avoid these problems, mRNA obtained from the two cell lines will be transformed to a 

more stable DNA form by means of reverse transcription.  The products of this transformation 

are the complementary DNA or cDNA whose sequences are complementary to the original 

sequences of mRNA (Schena, 1999).   

The major problem associated with the production of the cDNA comes from the fact that 

the reverse transcription is not equally efficient for all mRNA, leading to a well know 

phenomena called “reverse transcription bias”.  Although this does not prevent the comparison of 

the same mRNA between two cell lines, it prohibits the quantitative comparison between 

different mRNA in the same array (Yang et al., 2002; Schena et al., 1999). 

mRNA DNA 
Protein 

Reverse transcription 

Transcription Translation 

Replication 
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c) cDNA labeling: In order to measure the relative abundance of the DNA sequences spotted in a 

specific position of the array, the two cDNA samples or targets are labeled with reporter 

molecules able to identify their presence. Quite often, two different fluorescent dyes (red-

fluorescent:  Cy5, green-fluorescent:  Cy3) are used for labeling due to the clear difference in 

their wavelength of excitation.   

d) Hybridization: Both labeled cDNA targets are mixed and then hybridized to the DNA 

sequences immobilized to the surface of the array.  If a target contains cDNA whose sequence is 

complementary to the one immobilized in a specific well of the array, it will hybridize to it.  The 

relative abundance of specific sequences of DNA in the two target samples will be reflected by 

the ratio of fluorescence intensities at each point of the array. Usually, there will be sufficient 

DNA in each well so that both targets can hybridize to it without interferences (Schena et al., 

1999).   

e) Reading of the array: After hybridization, the array is scanned to determine the magnitude of 

hybridization of each target with each well in the array.  Since targets are labeled with reporter 

molecules that emit light after being stimulated with a laser, a detector able to measure its 

intensity will capture this light.  As a result of the difference in their excitation waves, the light 

emitted by the fluorescents dyes can be filtered therefore allowing the separation of both 

intensities.  In the opposite case, the intensities will be contaminated as a result of "cross talk" 

between the channels of the two fluorescent dyes.   

In spite of precautions, the measured intensities during the scanning of the array are not 

clean of noise. Such noise typically originates from light emitted from the hybridization of some 

molecules to an incorrect well or the crystal of the array.  This additional light represents the 
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background of the image of the scanned array.  Nevertheless, this background is relatively small 

using microarray technology compared with other hybridization techniques (Yang et al., 2001).   

f) Image analysis: The final product of a comparative hybridization experiment is a colored 

image (two dimensional array), where the color at each point is a combination of the intensities 

of red and green fluorescent dyes (Figure 2.3).  Spots in the array having DNA present in a high 

level in the red (green) labeled target are predominant red (green).  A yellow spot indicates an  

equal amount of DNA bounded to each one of the two cell lines, since the yellow color is a 

mixture of an equal amount of red and green colors (Waston, 1998).   

The next step in a comparative gene expression experiment is the extraction of the 

information in the scanned image.  This is an image analysis task aiming to measure intensities at 

different points of the array, where such intensities reflect the level of expression.  Under ideal 

conditions (all the wells are of the same size, constant distance between wells, all the wells are 

circular and of the same diameter, etc.), this step is reasonably simple.  However, in true 

applications the idealized conditions are violated to diverse degrees, as a result of irregularities 

of dimension, size and well position, in addition to contamination. These and other factors have 

motivated scientists to develop software and algorithms for the process and detection of signal 

that are specific to microarray technology (Zhu et al., 2000). There is an extensive literature on 

techniques used in the gene expression field to extract the needed information from the scanned 

images. Several commercial and public software (i.e. BioDiscovery, ScanAlyse) are available.  

However, there is no universal solution to the problem and human intervention is still necessary 

in many cases.   

When signal and background pixels in each well have been identified and their respective 

intensities have been measured during the image-processing step, some quantitative methods are 
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need to allowance to deduce the level of expression of each gene in the array and in both 

channels.  In most applications, the ratios of total or average intensities within a well have been 

used to evaluate the relative level of the expression in a comparative experiment.  There is a 

certain tendency for the use of the ratio of averages of intensities between both channels is the 

best method of the measurement, although other ratios based on the midpoint, or the volume of 

values of the intensities of pixels have been used in some cases (Cheng et al., 1999).  

 

Figure 2.3: A typical image obtained in an comparative gene expression experiment (Dudoit et al., 2002). 

 

In order to calculate the ratio of intensities between both channels, one must first needed 

to determine the background and signal intensities (Yang, et al., 2002; Brazma, 2001). 

- Background intensity:  in general, background intensity in a microarray image is not 

uniform, such that a local background adjustment is needed.  There are many methods 

to determine the background intensity.  The simple and most used method consists of 
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estimating the background as the average of pixel intensities in the zone near the box 

for each well. 

- Signal detection:  one of the most complicated stages of the image processing is the 

determination of the region of interest (or signal) for each gene spotted in the array.  

The method of fixed threshold is widely used and consists of classifying a pixel as 

signal if its intensity is greater then a fixed quantity T (threshold).   

T= m+c*s 

Where m is the average of the background intensity, s is the standard deviation and c is a 

constant subjectively determined (e.g., c=3). Other more sophisticated methods using variable 

thresholds or predicting the shape of the signal area were used in several applications. 

Once the average background and signal intensities for every gene in both channels (red 

and green) have been determined, a corrected average is computed by subtracting the 

background from the signal intensity. The relative expression for each gene will be calculated as 

the ratio between the corrected averages in both channels.  These two corrected signals will be 

symbolized in the remaining of this chapter as R and G for the red and green channels, 

respectively. At the logarithmic scale, the relative expression is given by (Cheng et al., 1999): 

M=log2(R/G) 

g) Normalization: Before using the ratio of gene expression in a statistical analysis, this ratio has 

to be calibrated (or normalized).  There are many sources of systematic variation in microarray 

experiments that affect the measured levels of expression.  Normalization is the term used to 

describe the process of removing such variation. For example, consider differences in labeling 

effectiveness between fluorescent dyes.  In such cases, a constant adjustment is used to force the 

distribution of the ratios of expression to have an average (or medium) equal to zero.  In 
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statistical terms, this process consists of satisfying the null hypothesis in which signals in both 

channels (red and green) are assumed to be probabilistically the same.  

In its simple form, normalization can be carried out by subtracting a constant from the 

expression ratio.  Generally, this constant is calculated as the average or median of the intensities 

ratio of a particular assembly of genes frequently called "housekeeping genes".  These genes are 

chosen based on biological reasons and their experimental behavior (ratio of expression near 1).  

After normalization, the ratio of expression will be equal to: 

M=log2(R/G)-k 

where ‘k’ is the mean or median of the log ratio of expression level of the “housekeeping genes”. 

 Recently, more sophisticated statistical methods are being used to analyze microarray 

data. Background adjusted data is being used rather than the normalized log ratio. By doing so, 

the “heuristic” normalization step is replaced by more rigorous statistical modeling technique 

that accounts in a systematic way for all sources of variation in the data. In section 2, a detailed 

discussion of statistical methods used for microarray data analysis is presented.    

1.2. Oligonucleotide Microarrays 

            Oligonucleotide microarrays or GeneChips have fundamental differences compared to  

the spotted cDNA microarrays both in their fabrication and the process of their use. In 

GeneChips, each gene is represented by 12 to 20 pairs of 25 base length oligonucleotide probes. 

One component of each pair is referred to as a perfect match (PM) probe and it is designed to be 

specific to the transcript from the intended gene. The second component of the pair is called 

mismatch (MM) probe, and it is designed the same way as the first component, except that 

middle base (base in the 13th position of 25) has been changed (Figure 2.4).  The mismatch probe 

is used to account for the optical background and non-specific hybridization noises. Therefore, 



  15  

the observed intensities must be adjusted to yield accurate measurements of specific 

hybridization. The default adjustment approach, provided as part of the Affymetrix system, is 

based on the difference between perfect match and mismatch probe intensities (PM-MM). 

              

 

 

 

 

 

 

 

Figure 2.4: The process of oligonucleotide Chip design, fabrication and use  (Dudoit, 2002) 

 

          After hybridization and scanning, the quantitative fluorescence image, along with the 

known identity of the probes, is used to assess the ’presence’ or ’absence’ of a particular 

molecule (such as a transcript), and its relative abundance in one or more samples. Because the 
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oligonucleotides at each physical location (or address) is well described, and the recognition 

rules that govern hybridization are well characterized, the signal intensity at each position of the 

microarray gives a quantitative measurement of one single target sequence with known identity 

(http://www.affymetrix.com/index.affx). 

         Contrary to cDNA arrays, the GeneChip are not hybridized to samples (targets) from two 

populations (cell lines, treatments, etc.) to be compared at the same time. Instead, the 

hybridization is performed for each population separately. For other tasks, such as scanning and 

image analysis, both methods share many commonalities. 

2. Statistical Analysis of Gene Expression Data 

Once the image analysis process is completed, the results of the hybridization can be 

represented in a matrix form. Each element of the matrix represents either the level of expression 

or the ratio of expression of a given gene.  In the majority of statistical analyses, the goal is to 

extract information about the underlying biological possess (Brazma et al., 2001).  

   Depending on the objective of the experiment and the availability of external information, 

the study of the expression information can be carried out in a supervised or unsupervised 

manner. Clustering methods are an example of unsupervised techniques used to cluster genes 

and/or samples based on some measure of similarity such as the distance. Several methods have 

been developed to implement cluster analysis (k-mean clustering, hierarchical clustering, self 

organizing maps). Classification techniques such as discriminant analysis, principal components 

or support vector machines are supervised methods and require additional information such as 

the phenotype (sick/healthy) or the functional class of the gene. For these methods, there is an 

extensive literature (Getz et al., 2000).  
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             Although there are several differences in the experimental design and the quantitative 

output between the two platforms actually used  for the study of gene expression profiling, they 

share a lot of similarities in their statistical analysis. Thereafter, we will focus more on 

GeneChips data analysis given that the simulation study carried out in the following chapter of 

this thesis is based on the Affymetrix chip platform.   

          A typical application of GeneChip technology is finding genes that are differentially 

expressed in different tissues or under different environmental conditions. Due to the large 

amount of information and the intrinsic variation in the data obtained in a microarray experiment, 

statistical methods have been applied to systematically extract biological information and to 

assess the in associated uncertainty. Successful analysis will detect all and only genes that are 

differently expressed due to biological variations. Here we review some widely used methods for 

detecting differentially expressed genes. 

2.1 Fold Change Method 

          Fold change is the simplest method for identifying differentially expressed genes (Cui and 

Churchill, 2003). It is based on the observed ratio (or ratio of averages) between two treatment 

levels. An arbitrary cut-off value (for example, 2 folds) is often used to identify differentially 

expressed genes. This is not a statistical test and there is no associated level of confidence.  The 

fold change method is subject to bias if the data are not properly normalized and may also be 

sensitive to variance heterogeneity across genes. For example, an excess of low intensity genes 

may be mis-identified as being differentially expressed due to an excess of variation relative to 

high intensity genes (Rocke et al., 2001; Cui and Churchill, 2003).  

        The most commonly used fold change estimate is AvDiff, the Affymetrix default. For each 

probe set  on each array i, AvDiff is defined as: 
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where A is the subset of probes for which jjj MMPMd −= is within +3 standard deviations 

(SD) away from the average, #A represents the cardinality of A. Many of the other expression 

measures commonly used are modifications of AvDiff which result from accounting somehow 

for outliers or for dealing with low expression values. 

Realizing the inadequacy of the linear method, Affymetrix has presented a new algorithm 

MAS 5.0, where the log of the difference between perfect match and mismatch is being used.  

Specifically, the MAS 5.0 signal (measure) is defined as: 

                                          Signal = Tukey’s  Biweight {log(PMj  - CTj)} 

with CTj a quantity derived from the MMs that is never larger than its PM pair (Hubbell,  2001).  

2.2 Robust Multi-array Analysis (RMA)  

          Given the exaggerated variance of the gene expression estimates using the log 

transformation of the difference between the perfect match (PM) and mismatch (MM) probe 

intensities, Irizarry et al. (2003) proposed the robust multi-array analysis (RMA) method. It 

consists of a global background adjustment step that ignores the MM intensities followed by 

quantile normalization. This intended to make the distribution of probe intensities similar across 

all arrays involved in the experiment. Consequently, the I- dimensional quantile –quantile plot of 

the normalization probe level data from all arrays ( Ii ,...,2,1= ) will follow an I–dimensional 

identity line.   

        Finally, for each probe set of size n, the background adjusted, normalized and log 

transformed PM intensities, denoted by y , will be modeled following an additive linear model. 
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ijmjiijm ey ++= αµ ; Ii ,...,2,1= ; Jj ,...,2,1= and m=1,2,…,M 

where iµ  represents the log scale expression level for array i, jα  is a probe specific affinity 

effect, and ijme  is an independent identically distributed error term with mean 0. To make all 

parameter identifiable, it is assumed that � =
j

j 0α  for all probe sets. The estimate of iµ  

represents the expression measures for probe set n in array i, which was referred to by Irizarry et 

al. (2003) as robust multi-array average (RMA).  RMA has been implemented in the software 

developed in the Bioconductor project (http://www.bioconductor.org) and it has become a 

popular alternative to the default algorithm provided by Affymetrix. 

2.3. Mixed Linear Model  

Wolfinger et al. (2001) developed a statistically rigorous approach to analyze probe-level 

Affymetrix GeneChips data. It provides a general and powerful framework to fully utilize the 

available information in microarray experiments with multiple factors and/or a hierarchy of 

sources of variation. The method simultaneously considers the data across all chips in an 

experiment. It accommodates complex experiments involving many types of treatments and can 

test for their effects at the probe level in a systematic manner. Finally, this approach combines 

both the normalization and statistical testing steps.  

Before data analysis, a log base 2 (log2) transformation for individual PM and MM is 

needed to improve the normality assumption and increase the fit of an additive model. Recently, 

several studies (Irizary et al., 2003) comparing different ways of using PM and MM intensities 

have concluded that it is better to exclude mismatch (MM) information from the analysis because 

of its exaggerated variance, and the reduced efficiency to translate the mathematical subtraction 
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to a biological subtraction. To adjust for gross array-level effects, the global normalization 

centering the logged values so that they have zero mean is required. 

In the mixed model setting, an important issue is to decide whether effects are ‘fixed’ or 

‘random’. Fixed effects are those effects with a well-defined, finite number of levels and only 

those finite levels are of interest in the experiment. Random effects are considered to be drawn 

from an infinite population having some probability distribution, usually normal. For random 

effects, the linear mixed model estimates the parameters of this probability distribution (mean 

and variance components in the normal case). For Microarray data, typically cell line, treatment 

and probe effects are considered to be fixed, but effects impacting arrays may be considered 

random, reasoning that they are the accumulation of small experimental sources of noise. Putting 

all these together, the following linear mixed model serves as an initial template for data from a 

single gene: 

                               ijklijljkikkijjiijkl eATPLPPLTTLy +++++++= )(  

where ijkly  is the transformed and centered expression measurement of the thi  cell line applying 

the thj treatment at thk probe in the thl replicate. The symbols L, T, LT, P, LP, TP and A in the 

formula represent cell line, treatment, cell-treatment interaction, probe, cell line-probe interaction, 

treatment-probe interaction, and array effects respectively.  The )(ijlA s are assumed to be 

independent and identically distributed normal random variables with mean 0 and variance 2
aσ  

and ijkle ’s are assumed to be independent identically distributed normal random variables with 

mean 0 and variance σ2, and independent of )(ijlA ’s. Both variance components are unknown 

and often maximum likelihood based methods were used for their estimation. PROC MIXED of 

SAS offers several options for estimating these parameters.  
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            Further, the Bayesian approach can be used to estimate the unknown parameters of the 

mixed linear model. In fact, there is a huge literature on the Bayesian implementation of the 

mixed linear model (Lindley and Smith, 1972; Box and Tiao, 1972; Dempfle, 1977; Gianola and 

Fernado, 1992). Basically, the Bayesian formulation is based on two sources of information, one 

is provided by the collected data set and the other is the prior information or degree of belief that 

the researcher had about the parameters of the model before the data was collected.  These two 

sources of information are combined to generate the joint distribution necessary for all Bayesian 

statistical inferences. If y  is a sample of observed data and �  is a vector of unknown parameters 

in the model, the joint density of � and y is given by: 

)()|()()|()( ��yyy�y�, fffff ==  

where )(�f  and )(yf  are the marginal densities of � and y , respectively and )|( �yf  is the 

conditional density of the data given the parameters of the assumed model, known as the 

likelihood function. 

 From the previous formula, it is easy to write that: 

)(/)()|()|( y��yy� ffff =  

 Given that the marginal density )(yf  does not depend on the vector � , 

)()|()|( ��yy� fff ∝  

 The latest formula is a representation of Bayes theorem and shows clearly that the 

posterior density of the parameters vector combines the data information, )|( �yf  or likelihood, 

and the accumulated information about the parameters before the data was collected, known in 

the Bayesian formulation as the prior, )(�f .  
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 In general, the Bayesian formulation does not require more principles than those 

previously exposed. The difficulty of the inference process depends on the complexity of the 

obtained joint distribution. Although theoretically simple it is based only on a series of 

integrations of the joint posterior distribution, the Bayesian inference is very complex to carry 

out analytically, except in a very special cases (few parameters, normality, …etc.). As a result, 

several approximations have been proposed over time, such as Gauss-Hermite quadratic rules, 

Laplacian approximation (Shun, 1995) and more recently the Markov Chain Monte Carlo 

techniques. 

 In the gene expression literature, the Bayesian approach was successfully used as an 

alternative to the fold change method (Baldi and Long, 2001; Newton et al., 2001). However, 

very few, if any, comparisons between the frequentist and Bayesian implementations of mixed 

linear model for analysis of microarray data have been conducted. Furthermore, it is widely 

recognized that the Bayesian and frequentist approaches yield similar results (at least point 

estimates) when the data is highly informative. However, such a condition is not satisfied in the 

majority of gene expression experiments, where less than a dozen arrays are involved.  
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COMPARISON BETWEEN FREQUENTIST AND BAYESIAN IMPLEMENTATION OF 

MIXED LINEAR MODEL FOR ANALYSIS OF MICROARRAY DATA 1 
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ABSTRACT 

Microarray data obtained from Affymetrix chips are proving to be extremely useful for 

gene expression analysis. The Mixed linear model is becoming a widely accepted tool for 

analysis of microarray data. In this study, a simulation was carried out to compare the 

performances of a frequentist and Bayesian implementation of mixed linear model for analysis of 

expression data. Eight arrays, with 10,000 genes each, equally divided between two treatments 

levels were simulated following a pre-existing real data structure. Four simulation scenarios with 

varying variances ratio (ratio between array variance and residual variance) of 0.25, 0.50, 0.75 

and 1.0 were implemented. The mixed linear model used in the simulation and analysis included 

treatment and probes as fixed effects and array and error term as random effects. In order to 

minimize the inherent Monte Carlo error, 5 replicates were carried out for each simulation 

scenario. The results indicate that both methods performed exceptionally well in identifying 

highly differentially expressed genes with a success rate of 0.96 and 0.98 for the frequentist and 

Bayesian approach, respectively. However, the Bayesian approach was far more superior in 

clustering the most important genes into their correct significance classes. In fact, 139 out 145 

most important genes (98%) were correctly classified by the Bayesian approach versus 74 (51%) 

genes using the frequentist approach. With respect to the false positive and negative cases, both 

procedures performed similarity with a slight superiority for the Bayesian approach. 

   

Keywords: Microarray, Mixed linear model, Bayesian analysis 

INTRODUCTION 

Research groups from diverse fields have become actively involved in designing and 

analyzing gene expression data from microarray experiments. Specifically, oligonucleotide 
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technology as provided by the Affymetrix system is proving to be an extremely valuable tool for 

studying gene expression patterns. The methods developed for utilizing the GeneChips provide 

the potential for obtaining enormous amounts of data in a relatively short period of time. Most of 

the research done with gene expression data so far has focused on the development of 

visualization tools, using statistical techniques such cluster analysis. These have proven 

somewhat useful for identifying gene clusters and for the prediction of biochemical pathways 

involved. However, the technology requires the development of appropriate and meaningful 

statistical methods for analyzing and interpreting the large amount of data obtained. 

The Affymetrix arrays utilize probe pair sets for each transcript of interest, comprised of 

perfect match (PM) and mismatch (MM) probes. Initial studies detailing the production of the 

Affymetrix arrays have outlined a clear rationale behind using these probe pair sets (Lockhart et 

al., 1996). Recent studies (Chu et al., 2002; Irizarry et al 2003) have individually identified two 

primary facts of Gene Chip Analysis. The first factor to be taken into consideration involves the 

relevant data that must be acquired from the GeneChips for utilization in the analysis, while the 

second factor involves the appropriate statistical modeling approaches to be used in analyzing 

the collected data. These studies outlined alternatives to the data analysis approaches that 

Affymetrix had recommended with its Microarray Suite (MAS 5.0) software (Irizary et al., 2003). 

Basically, two approaches were proposed as alternatives. The first one recommends the use of 

summarized probe level data for eventual comparison between arrays (Li and Wong, 2001; 

Irizarry et al., 2003; Bolstad et al., 2003). The second approach relies on the use of the probe 

level data on a gene-by-gene basis (Chu et al., 2002, Wolfinger et al. 2001) and the mixed linear 

model was proposed for the analysis of such data. Although both modeling approaches can weed 

out sources of variability between arrays, the mixed linear approach is more flexible as it can 
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handle different experimental designs and sources of variation in a clear and straightforward 

manner.  

There is an extensive literature on the Bayesian and frequentist implementation of mixed 

linear models in virtually every area of scientific research. However, there have been very few, if 

any, comparisons between the performances of both implementations for analysis of microarray 

data. Furthermore, the limited number of arrays (less than a dozen) in the majority of microarray 

experiments makes such comparisons more relevant. Using the fold change approach, several 

authors (Baldi and Long, 2001) showed that the Bayesian approach compared favorably to a 

simple fold change or a straight t-test and helped in a statistically consistent way, partially 

overcomes deficiencies related to low replication. In this study, a comparison between a 

frequentist and a Bayesian implementation of mixed linear models using probe level data is 

conducted. The correspondence between the two lists of differentially expressed genes obtained 

offers a simple, yet very objective way of accessing the adequacy as well as the efficiency of the 

analysis.  

MATERIAL AND METHODS 

Simulation 

A simulation study was conducted to investigate the adequacy of a Bayesian approach via 

Markov Chain Monte Carlo (MCMC) methods to detect genes that are differently expressed. The 

simulation was conducted following a simple mixed linear model with the array being the 

random effect. Mathematically, the model can be expressed as: 

ijklkjiijkl eaPtPM +++=)(log2  

where )(log2 ijklPM : normalized 2log  perfect match intensities 

                             ti : is the treatment effect i )2,1( =i  
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       Pj: is the probe effect j )20,...,3,2,1( =j  

                             ak : is the random effect of the array k (k=1,2,…,8) 

                             eijkl: is the residual term 

Further, the following assumptions were made about the distribution of both random effects in 

the model: 

                              ),(~ 2
a�N I0a ; ),(~ 2

eN σI0e  

where I is the identity matrix with the appropriate dimension and 2
eσ and 2

aσ are the within and 

between array variation, respectively. 

Data sets were simulated using the following combinations of the model parameters: 

1.  The magnitude of the array variation as a proportion of the residual variance (0.25, 0.50, 

0.75, 1.0) 

2. The percentage of differentially expressed genes (10%) 

     In total, four simulation scenarios were implemented. For each scenario, five replicates 

were simulated. The simulation was conducted following an existing structure of a real gene 

expression experiment generated at the Department of Animal and Dairy Science (Rao et al., 

2004). This consisted of 8 arrays with 10,000 genes each. For each gene and depending of the 

model parameter combination, values were assigned to the within and between array variation. In 

all case, both variances were assumed to be non zero. The array effects were generated from a 

normal distribution with mean zero and variance equal to the already specified value for 2
aσ . 

Depending on the percentage of genes differentially expressed, the status of every gene being on 

or off was assigned randomly. If the status of a gene was off then both treatment levels was set 

equal to zero )0( 21 == tt  otherwise, 1t  was set to zero and 2t were sample from a uniform 
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distributions U[0.3, 3] or U[-3, -0.3] with equal probabilities. In other words, we assumed that 

differentially expressed genes are equally likely to be up or down regulated. The boundaries of 

the uniform distributions were chosen in a way such that the observed fold change for gene 

differentially expressed range between 1 and 8 folds.  The probe effects were generated 

from )09.0,7.0(N . The residual terms were sampled from a normal distribution with zero mean 

and variance equal to the already specified value for 2
eσ . Finally, the log2 intensity for every 

observation in the data set was calculated as the sum of the assigned values for all effects in the 

model.  

Analysis of the simulated data 

 Each data set was analyzed using proc mixed of SAS and a full Bayesian approach via 

the Gibbs Sampling. In both cases, the simulation model was fitted.  For the SAS analysis, the 

Restricted Maximum Likelihood (REML) method was used to estimate the variance components. 

The estimate statement was used to estimate the contrast between the two treatment levels as 

well as the associated standard deviation. The critical t value and the associate p-value were 

calculated using the appropriate degrees of freedom. For the Bayesian implementation, all 

needed conditional distributions were in closed form, being normal for the position parameters 

and scaled inverted chi square distributions for the dispersion parameters ( 2
uσ and 2

eσ ) and the 

marginal posterior distributions of all parameters were easily obtained by successive sampling 

for their respective conditional distributions. Furthermore, quantities of interest such as the 

probability of treatment effect being significant, greater than a specific fold change, or the 

probability of being between two specific fold changes were computed and used to assess if the 

gene was differentially expressed. Furthermore, the genes detected by the analysis as being 
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differentially expressed were contrasted against the true differentially expressed genes 

(determined during the simulation process).  

Bayesian implementation 

 Based on the assumptions made during the simulation, the conditional distribution of the 

data given the model parameters was assumed to be normal: 

),(~,,| 22
ee N σσ IZaX�a�y +      [1] 

where y is nx1 vector of log2 intensities, �  is a px1 vector of systematic effects that includes the 

treatment and probe effects and a  is the vector of the array effect of order qx1. Further, X and 

Z  are known incidence matrices with the appropriate dimensions, n is the total number of 

observations in data set, p is the sum of the treatment and probe levels and q=8 (number of 

arrays).  

 To complete the Bayesian formulation, prior information has to be specified to all 

unknown parameters in the model. It was assumed a prior that: 

)10,(~ 40� N   

),(~| 22
aa N σσ I0a  

]1,0[~2 Ueσ  

2

2 1
)(

a

ap
σ

σ ∝  

where N(.,.) is a normal distribution with the specified mean and variance and U(.) is the uniform 

distribution. 

 The joint posterior distribution of all parameters is easily obtained as the product of the 

density in equation [1] and the densities of all priors. 
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)()()|()(),,|()|,,( 222222
eaaeea pppppp σσσσσσ a�a�yya�, ∝   [2] 

 Finally, the fully conditional distributions of all parameters required for the 

implementation of the Gibbs sampler were derived from equation [2] by taking those terms that 

are function of the parameter of interest and treating all the rest as nuisance parameters. Let 

]  [ ZXW = and )'','( a�� = . The conditional distribution of the position parameters, assuming 

that the inverse of the coefficients matrix exist, is given by: 

),(~,,| 2122
eea N σσσ −C�y�

^
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 For the dispersion parameters, 22  and ea σσ , their respective conditional distributions were 

inverted scaled chi-square distributions with the following parameters 

222 )'(~,,| −
qea χσσ aay�  

2
2

22 )()'(~,,| −
−−−−− nae χσσ ZuX�yZuX�yy�  

 For all analysis, convergence was assessed using methodology presented by Raftery and 

Lewis (1992). The required length of the burn-in period was always less then 2,000 iterations for 

all parameters. Thus, 25,000 iterations of the sampler were run with a conservative 5,000 

iterations discarded as burn-in; all remaining 20,000 iterations were retained without thinning for 

post Gibbs analysis. 

 One of the big advantages of the Bayesian approach implementation via Markov Chain 

Monte Carlo (MCMC) such as the Gibbs sampler is the flexibility for computing statistics of 

interests, harder to compute with other methods, in a very simple manner. For example, the 

probability of the difference between two treatment levels being greater than a specified value or 
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being within a given interval can be computed as a by-product of the sampling process. As an 

illustration, the probability that absolute difference between two treatment levels is greater than a 

specific value can be computed as follow: 

samples ofnumber  total
|| with samples of #

)|(| 21
21

ctt
cttp

>−=>−    

where 1t  and 2t are the two treatment levels and c is the specified value. 

RESULTS AND DISCUSSION 

The simulated data was first analyzed using proc mixed of SAS. Data of each gene (96 to 

128 observations) were analyzed separately. The estimate statement was used for estimating the 

difference at the log base two of the perfect match (PM) intensity for the two treatment levels. 

The p-value of the corresponding t-test of the estimate statement was used as a criterion for 

selecting the most differently expressed genes.  Given that five replicates were performed to 

reduce the inherent Monte Carlo error, the significant level was computed based on the five 

simulated data sets. To do so, the average of the estimated treatment differences and associated 

standard deviations were used to compute the critical t value and subsequently the p-value for 

each gene. The resulting t-test p-values were used to identify the most differentially expressed 

genes. 

          The Volcano plot is the easiest and most effective way of presenting the results graphically. 

It combines both the differences between the two treatment levels and the associated p-values. It 

is a scatter plot of the negative 10log of the p-values versus the 2log of the estimated treatment 

difference ( 21 tt − ). For the four simulation scenarios, the correspondent volcano plots are 

presented in Figure 3.1. As expected, plots have the well recognized ‘V’ shape indicating that 

genes with large fold change due to the treatment effect tend to have a lower p-value. However, 
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such relationship is not a one to one mapping. As a results, it is not infrequent that genes with 

large fold changes have low significance levels and vise versa. Given the large number of 

statistical tests performed, it is necessary to account for the multiple testing to reduce the 

percentage of false positive cases. Although several methods exist to deal with such problem, we 

decided to use restrictive criteria at least for two reasons: a) to reduce to the maximum the 

number of false positive cases and b) to reduce the number of highly differentially expressed 

genes. The latest is important, at least for practical reasons, because very few laboratories can 

study and understand the function of large number of genes mostly for economical reasons. 

Hence, it seems reasonable to focus in the most important genes (top genes). Therefore, the 

Bonferroni correction at 1% level was used in this study. Given that 10,000 genes and two 

treatment levels were used in the simulation, the p-value cut off point was set to 610 −e  

(horizontal line in figure 3.1 indicate the negative 10log  of the cutoff value). The vertical lines in 

the same figure indicate the 4 fold changes in the treatment effect estimates. The genes of 

interest or “top” genes are those residing in the top left and right of the plot. Those in the left 

represent the under regulated genes or genes with reduced expression after being subjected to the 

treatment. In the opposite side, are the upper regulated genes those expressions have increased as 

a result of the treatment. 

 To evaluate the adequacy of the statistical analysis and its ability of detect the truly 

differentially expressed genes, the list of genes in the top left and right boxes of the volcano plots 

have to be contrasted against the list of true differentially expressed genes determined during the 

simulation process. Table 3.1 presents the highly differentially expressed genes identified by the 

statistical analysis and their distribution in each class of true fold change for the four simulation 

scenarios. In all cases, the highly differentially expressed genes resulting from the statistical 
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analysis have a true fold change greater than 2 and the majority of them (over 95%) have a fold 

change greater than 4. These results indicate that no non-differentially expressed gene (true fold 

change less than 2) was misidentified as differentially expressed. However, this result has to be 

interpreted with caution as it indicates just a part of the whole picture as it will be described in 

the next paragraph.  

            

                             (a)                                                                      (b)                                                                           

                                                              

                               (c)                                                                        (d) 

Figure 3.1 Volcano plots for the four simulation scenarios based on the ratio between the array 

and residual variances: a) 0.25, b) 0.50, c) 0.75 and d) 1.0  
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          It is not sufficient merely that the highly differentially expressed genes determined by the 

statistical analysis correspond to true genes of interest, but it is also required that all genes of 

interest must be identified. Table 3.2 presents the number of genes with true fold change greater 

than 4 which were not identified by the statistical analysis as genes highly differentially 

expressed (false negative cases). The number of those genes varies depending on the ratio 

between the array variance and the residual variance. It was higher (53) when the ratio was large 

(1.0). Further, the number of false negative cases decreases with the decrease of the variances 

ratio. 

Table 3.1. Most differentially expressed genes based on the volcano plot and their distribution   

into the different true fold change classes.  

Ratio1 

 
0.25 

 
0.5 

 
0.75 

 
1 

 
True Difference 
True fold change 
Number of genes  

N=3542 
 

N=3602 
 

N=3482 
 

N=3182 

Abs (T1-T2) = 0 
Fold = 1 

Ng = 9,000 

 
0 

 
0 

 
0 

 
0 

0 < Abs (T1-T2) ≤ 1 
1< Fold ≤ 2 

Ng =236 

 
0 

 
0 

 
0 

 
0 

1 < Abs (T1-T2) ≤ 2 
2< Fold ≤ 4 
Ng = 404 

 
6 

 
10 

 
10 

 
11 

2<Abs (T1-T2) ≤ 2.58 
4< Fold ≤ 6 
Ng = 215 

 
204 

 
205 

 
193 

 
162 

Abs (T1-T2)> 2.58 
Fold ≥ 6 
N=145 

 
144 

 
145 

 
145 

 
145 

1:  Ratio between array variance and residual variance 
2: The total number of highly differentially expressed genes 
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For all scenarios, the number of false negative cases was not negligible indicating that 

some genes of interest to biological process will not be identified, especially if the variances ratio 

is large. Furthermore, the number of important genes being non-identified by the statistical 

analysis increases when the fold change cutoff point is reduced. In fact, for a true fold change of 

2 or greater the number of genes of interest not identified by the analysis ranges from 205 to 258.   

 
Table 3.2 Number of false negative cases for genes with true fold change greater than 2 and 4. 
 

Ratio1  

True Fold change 0.25 0.5 0.75 1 

ABS (t1-t2) > 2, 4 fold       

ABS (t1-t2) > 1, 2 fold 

12        

215 

10 

       205 

22 

        205 

53 

       258 
1:  Ratio between array variance and residual variance 

 

           A more detailed examination of true genes of interest non being identified as well as less 

important genes being identified as highly differentially expressed (false positive cases) is 

graphically presented in Figure 3.2. It clearly noticeable that both the genes truly non-

differentially expressed that are detected as differentially expressed (blue dots) and truly 

differentially expressed genes that were not identified as such (red dots) are very close to the 

edges of upper left and right boxes indicating only a small bias. 

 Although the small misclassification of some genes based on the mixed linear model 

analysis, the results could be very useful and can be used for sample classification or as a 

diagnostic tool with minor consequences. However, if the objective of the experiment is to 

determine the list of the most important genes for the study of biological functions or pathways 

for drug discovery for example, only a small number of genes can be looked at with great details. 

As a consequence, it is crucially important that the ranking of highly differentially expressed 
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genes has to be maintained so that the biologist or geneticist will have access to the correct short 

list of most influential genes for further experimentation. For example, if only 145 genes were to 

be picked for a more detailed study out of the 354 highly differentially expressed genes 

determined during the analysis when the variances ratio was 0.25 (results for the other three 

scenarios are presented in Appendix A), such list will include 74, 61 and 10 genes from the true  

         

                            ( a )                                                                            ( b) 

    

                            ( c )                                                                              ( d ) 

   Figure 3.2: Distribution of false positive and false negative cases for the four simulation 

scenarios based on variances ratio a) 0.25, b) 0.50, c) 0.75 and d) 1.0  

highest fold change, the 4 to 6 true fold change and 2 to 4 true fold change classes, respectively 

as indicated in Table 3.3. This result indicates that almost half of the most important genes will 
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not be selected and will be replaced by less interesting genes. Furthermore, this result indicates 

that selection of differentially expressed genes based only on the p-values can lead to misleading 

conclusions. In fact, this pronounced re-ranking of most influential genes could explain, in part, 

the large discrepancy and low reproducibility of several microarray experiment results. A 

detailed examination of those genes that were not identified correctly when the decision was 

based on the p-values indicates that 18 of them have their associate array variance wrongly 

estimated (set to zero).        

 

Table 3.3: Distribution of top identified genes into the different true fold change classes 

(Variances ratio = 0.25). 

Rank1 True Difference 
True fold change 
Number of genes 

 
1 ~ 145 

 
146 ~ 360 

 
361 ~ 764 

 
765 ~ 1000 

 
> 1000 

Abs (T1-T2) = 0 
Fold = 1 

Ng = 9,000 

 
0 

 
0 

 
0 

 
4 

 
8996 

0 < Abs (T1-T2) ≤ 1 
1< Fold ≤ 2 

Ng =236 

 
0 

 
0 

 
39 

 
193 

 
4 

1 < Abs (T1-T2) ≤ 2 
2< Fold ≤ 4 
Ng = 404 

 
9 

 
69 

 
287 

 
39 

 
0 

2<Abs (T1-T2) ≤ 2.58 
4< Fold ≤ 6 
Ng = 215 

 
61 

 
90 

 
64 

 
0 

 
0 

Abs (T1-T2) > 2.58 
Fold ≥ 6 
N=145 

 
75 

 
56 

 
14 

 
0 

 
0 

1 Rank based on p-values  

This result is disturbing given that no gene was simulated with array variance equal to 

zero. Although those zero estimates of the arrays variance are in part the result of the small 
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number of arrays (8) involved in the simulation, such number is not infrequent in microarray 

experiments. In fact, the vast majority of expression experiments involve less than a dozen arrays. 

Bayesian implementation 

         Contrarily to the frequentist implementation where all information about unknown 

parameters is in the data, the Bayesian approach combines the data information with an external 

source of information through the prior. Although a non-informative prior (reference prior) was 

used for the array variance, all estimates of the latter were different from zero, as expected. In 

situations where the information content of the data is limited, such as in microarray experiments, 

the prior information plays a crucial role for having meaningful estimates for the parameters of 

interest. However, the prior information must be carefully chosen to avoid unrealistic estimates. 

          A full Bayesian implementation via Markov Chain Monte Carlo (MCMC) methods offers 

the possibility of calculating quantities of interest in a straightforward manner. In fact, the whole 

posterior distributions of unknown parameters are easily obtained and can be used to compute 

several quantities of interest such as point estimates, standard deviations, high density intervals 

and order statistics. In this study, the probabilities that the differences between the treatment 

levels being greater (smaller) than a specific value or being within a giving interval were 

computed as indicated in the material and methods part. The results presented are based on the 

average of 5 replicates.  For each gene, four probabilities were computed: the probability that the 

difference between the two treatment levels is less than 2 fold change (p1); the probability that 

the difference between the two treatment levels is between 2 and 4 fold change (p2); the 

probability that the difference between the two treatment levels is between 4 and 6 fold change 

(p3); and the probability that the difference between the two treatment levels is greater than 6 

fold change (p4). Genes were assigned to fold change classes based on these four probabilities. 
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Table 3.4 presents the distribution of genes and their average probability in each of the four fold 

change classes for variance ratio of .25 (results for the other three scenarios are presented in 

Appendix B). For the 145 most highly differentially expressed genes, 139 genes or 96% were 

correctly classified with an average p4 probability greater than 0.96. Only 6 genes out of 145 

were classified in the 4 to 6 fold change when their true fold change was greater than 6. This 

number is smaller than the one (11) obtained using a frequentist approach when both fold change 

and p-values were considered. The Bayesian results are much more superior when only the p-

values are used for genes selection in the frequentist setup. In fact, only 74 out of the 145 most 

important genes were correctly classified (Table 3.3) from Frequentist. For genes with true fold 

change between 4 and 6 and between 1 and 2, the correct classification rate was 91.6% and 

98.3%, respectively. For truly non-differentially expressed genes (9000 genes), they were 

correctly detected as such with probability of one. 

Comparison between linear mixed model and Bayesian implementation 

             The purpose of this study was to evaluate the performances of a frequentist and Bayesian 

implementation of linear mixed model in the analysis of simulated microarray. The comparison 

between both approaches was based on four criteria: a) the correct identification of differentially 

expressed genes, b) the correct classification of differentially expressed genes into their true fold 

change classes, c) the minimization of false positives cases or non-differentially expressed genes 

being identified as differentially expressed and d) computation cost. For the first criteria, both 

methods have performed exceptionally well. In fact, out of the 360 true highly differently 

expressed genes (true fold change greater than 4), 348 (96.7%) and 350 (97.2%) genes (See 

Tables 3.3 and 3.4) were correctly identified by the frequentist and Bayesian analyses, 

respectively. Additionally, even for less highly differentially expressed genes (true fold change 
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between 2 and 4), both methods gave good and similar results. When both methods were 

compared based on their capacity of clustering differentially expressed genes into their true fold 

change classes, the Bayesian approach was far superior. Out of the 145 true most highly 

differentially expressed genes, only 74 or 51% were within the top 145 genes with the smallest 

p-values (Table 3.3) using the frequentist approach with true variance ratio of 0.25.  However, 

for the same comparison, 139 (96%) genes were correctly classified using the Bayesian approach 

(Table 3.4).  The same trend was observed for less differentially expressed gene (true fold 

change between 2 and 4) and the other three simulation scenarios. This superiority of the 

Bayesian approach in classifying  

 
Table 3.4.  Distribution of genes and their average probability in each of the five true fold change 

classes (variances ratio = 0.25) 

True difference 
True fold change 
Number of genes 

 
P1 

 

 
P2 

 

 
P3 

 

 
P4 

 
t1-t2 = 0 
Fold =1 

Ng = 9000 

0.9999 
9000 

0 
0 

0 
0 

0 
0 

0 <t1-t2 <1 
Fold = 1~2 
Ng = 236 

0.9775 
232 

0.6765 
4 
 

0 
0 

0 
0 

1 ≤ t1-t2 ≤ 2 
Fold = 2~4 
Ng = 404 

0.6496 
11 
 

0.9475 
388 

0.680 
5 
 

0 
0 

2 < t1-t2 < 2.58 
Fold = 4~6 
Ng = 215 

0 
0 

0.6902 
10 
 

0.932 
197 

0.692 
8 

T1-t2 >2.58 
Fold > 6 
Ng = 145 

0 
0 

0 
0 

0.704 
6 
 

0.96 
139 
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differentially expressed genes is of crucial interest to biologists and geneticist as it helps them 

focus on real important genes rather than wasting time and money looking at less interesting 

ones. 

                 Finally, a point worth mentioning is the computational cost of both implementations. For 

the 10,000 genes in the data set, it took 3 minutes for the frequentist analysis using proc mixed of 

SAS in a Dell 2650 machine with four processors. However, it took almost 5 hours in the same 

machine to conduct the Bayesian implementation. 

CONCLUSIONS 

    Mixed linear model offers a general and flexible framework for analysis of microarray 

data. It replaces the ad-hoc normalization step by a systematic and theoretically sound procedure 

to account for all sources of variation. In situations where the number of arrays in the experiment 

is limited, the Bayesian implementation has proven to be superior to the frequentist counterpart, 

especially in the clustering or ranking of most important genes. Such superiority is of crucial 

practical interest as it gives biologists and geneticists better opportunities to focus on truly 

important genes for the biological process under investigation.      
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CHAPTER 4 

CONCLUSIONS 

The advances at the genome level have produced a massive amount of information and 

have created the necessity to develop the quantitative methods capable of identifying the 

underlying biological processes that take place. Microarray technology has raised much interest 

both in the academic and commercial sector, especially in the field of human medicine. Mixed 

linear model is becoming a standard tool for the analysis of microarray data. It offers a general 

and flexible framework for analysis of microarray data. It replaces the ad-hoc normalization step 

by a systematic and theoretically sound procedure to account for all sources of variation. The 

frequentist and Bayesian implementations of the mixed linear model gave similar results in 

identifying highly differentially expressed genes. However, the Bayesian approach was far more 

superior in clustering the most important genes into their correct significance classes. In fact, 139 

of 145 most important genes were correctly classified by the Bayesian approach verses 74 genes 

using the frequentist approach. Such superiority is of crucial practical interest as it gives 

biologists and geneticists better opportunities to focus on truly important genes for the biological 

process under investigation. These results suggest that in situations where the number of arrays 

in the experiment is limited, the Bayesian implementation seems to have better performances 

compared to the frequentist counterpart. 
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APPENDIX A 

FREQUENTIST RESULTS FOR VARIANCES RATIOS OF 0.5, 0.75 AND 1.0 

Table 3.5: Distribution of top identified genes into the different true fold change classes 

(Variances ratio = 0.50). 

Rank1 True Difference 
True fold change 
Number of genes 

 
1 ~ 145 

 
146 ~ 360 

 
361 ~ 764 

 
765 ~ 1000 

 
> 1000 

Abs (T1-T2) = 0 
Fold = 1 

Ng = 9,000 

 
0 

 
0 

 
0 

 
    13 

 
8987 

0 < Abs (T1-T2) ≤ 1 
1< Fold ≤ 2 

Ng =236 

 
2 

 
1 

 
40 

 
180 

 
9 

1 < Abs (T1-T2) ≤ 2 
2< Fold ≤ 4 
Ng = 404 

 
53 

 
80 

 
228 

 
      43 

 
0 

2<Abs (T1-T2) ≤ 2.58 
4< Fold ≤ 6 
Ng = 215 

 
47 

 
78 

 
90 

 
0 

 
0 

Abs (T1-T2) ≥ 2.58 
Fold ≥ 6 
N=145 

 
43 

 
56 

 
46 

 
0 

 
0 

1 Rank based on p-values  
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Table 3.6: Distribution of top identified genes into the different true fold change classes 

(Variances ratio = 0.75). 

Rank1 True Difference 
True fold change 
Number of genes 

 
1 ~ 145 

 
146 ~ 360 

 
361 ~ 764 

 
765 ~ 1000 

 
> 1000 

Abs (T1-T2) = 0 
Fold = 1 

Ng = 9,000 

 
0 

 
0 

 
0 

 
27 

 
8973 

0 < Abs (T1-T2) ≤ 1 
1< Fold ≤ 2 

Ng =236 

 
0 

 
2 

 
41 

 
166 

 
27 

1 < Abs (T1-T2) ≤ 2 
2< Fold ≤ 4 
Ng = 404 

 
17 

 
73 

 
271 

 
43 

 
0 

2<Abs (T1-T2) ≤ 2.58 
4< Fold ≤ 6 
Ng = 215 

 
56 

 
       89 

 
70 

 
0 

 
0 

Abs (T1-T2) ≥ 2.58 
Fold ≥ 6 
N=145 

 
72 

 
      51 

 
       22 

 
0 

 
0 

1 Rank based on p-values  
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Table 3.7: Distribution of top identified genes into the different true fold change classes 

(Variances ratio = 1.0). 

Rank1 True Difference 
True fold change 
Number of genes 

 
1 ~ 145 

 
146 ~ 360 

 
361 ~ 764 

 
765 ~ 1000 

 
> 1000 

Abs (T1-T2) = 0 
Fold = 1 

Ng = 9,000 

 
0 

 
0 

 
0 

 
37 

 
8963 

0 < Abs (T1-T2) ≤ 1 
1< Fold ≤ 2 

Ng =236 

 
0 

 
3 

 
41 

 
155 

 
37 

1 < Abs (T1-T2) ≤ 2 
2< Fold ≤ 4 
Ng = 404 

 
17 

 
      74 

 
269 

 
44 

 
0 

2<Abs (T1-T2) ≤ 2.58 
4< Fold ≤ 6 
Ng = 215 

 
        55 

 
      89 

 
71 

 
0 

 
0 

Abs (T1-T2) ≥ 2.58 
Fold ≥ 6 
N=145 

 
73 

 
       49 

 
23 

 
0 

 
0 

1 Rank based on p-values  
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APPENDIX B 

BAYESIAN RESULTS FOR VARIANCES RATIOS OF 0.5, 0.75 AND 1.0 

Table 3.8.  Distribution of genes and their average probability in each of the five true fold change 

classes (Variances ratio = 0.50) 

True difference 
True fold change 
Number of genes 

 
P1 

 

 
P2 

 

 
P3 

 

 
P4 

 
t1-t2 = 0 
Fold =1 

Ng = 9000 

0.9999 
9000 

0 
0 

0 
0 

0 
0 

0 <t1-t2 <1 
Fold = 1~2 
Ng = 236 

0.974 
226 

0.6427 
         10 

 

0 
0 

0 
0 

1 ≤ t1-t2 ≤ 2 
Fold = 2~4 
Ng = 404 

0.6936 
12 
 

0.9474 
384 

0.674 
8 
 

0 
0 

2 < t1-t2 < 2.58 
Fold = 4~6 
Ng = 215 

0 
0 

0.6983 
12 
 

0.8991 
192 

0.7028 
      11 

T1-t2 >2.58 
Fold > 6 
Ng = 145 

0 
0 

0 
0 

0.734 
7 
 

0.9478 
138 
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Table 3.9.  Distribution of genes and their average probability in each of the five true fold change 

classes (Variances ratio = 0.75) 

True difference 
True fold change 
Number of genes 

 
P1 

 

 
P2 

 

 
P3 

 

 
P4 

 
t1-t2 = 0 
Fold =1 

Ng = 9000 

0.9999 
9000 

0 
0 

0 
0 

0 
0 

0 <t1-t2 <1 
Fold = 1~2 
Ng = 236 

0.9633 
226 

0.7065 
10 
 

0 
0 

0 
0 

1 ≤ t1-t2 ≤ 2 
Fold = 2~4 
Ng = 404 

0.6623 
18 
 

0.9374 
378 

0.6962 
8 
 

0 
0 

2 < t1-t2 < 2.58 
Fold = 4~6 
Ng = 215 

0 
0 

0.669 
18 
 

0.8858 
182 

0.6873 
15 

T1-t2 >2.58 
Fold > 6 
Ng = 145 

0 
0 

0 
0 

0.7362 
8 
 

0.9302 
137 
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Table 3.10.  Distribution of genes and their average probability in each of the five true fold 

change classes (Variances ratio = 1.0) 

True difference 
True fold change 
Number of genes 

 
P1 

 

 
P2 

 

 
P3 

 

 
P4 

 
t1-t2 = 0 
Fold =1 

Ng = 9000 

0.9999 
9000 

0 
0 

0 
0 

0 
0 

0 <t1-t2 <1 
Fold = 1~2 
Ng = 236 

0.9614 
224 

0.6870 
12 
 

0 
0 

0 
0 

1 ≤ t1-t2 ≤ 2 
Fold = 2~4 
Ng = 404 

0.6623 
18 
 

0.9311 
376 

0.683 
9 
 

0 
0 

2 < t1-t2 < 2.58 
Fold = 4~6 
Ng = 215 

0 
0 

0.6747 
19 
 

0.8728 
180 

0.693 
16 

T1-t2 >2.58 
Fold > 6 
Ng = 145 

0 
0 

0 
0 

0.749 
8 
 

0.9191 
137 

 
 

 
 


