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ABSTRACT 

An urban water distribution network (WDN) is a network of components (e.g. pipes, 

pumps, valves, tanks, etc.) that transport water from a source to the consumers. Due to the 

substantial cost associated with the material and installation of WDN, it is necessary to optimize 

its design by selecting the lowest cost combination of appropriate component configuration while 

the hydraulic and resilience constraints are satisfied. Thus far, a large variety of algorithms have 

been proposed for this optimization problem, among which swarm intelligence algorithms (SIA) 

attract the most recent attentions. In the project, several new SIAs are tested on this problem for 

the first time and different Machine Learning techniques are also used to further improve the 

performance of these swarm intelligence search algorithms. Ten different algorithms are 

proposed in this thesis project for WDN optimization problem. All of the proposed algorithms 

are tested on two famous benchmark networks and their performances are compared extensively, 

the results show that some of the proposed algorithms are very promising in the real application, 

especially for large size water distribution networks. What is more, one of the proposed 



 
 

algorithms successfully achieves a new record of the best solution cost on the larger size 

network.  

INDEX WORDS:       Swarm Intelligence Algorithms, Machine Learning, PSO, WDN, 

Engineering Optimization, FSS,  EDA, EM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

WATER DISTRIBUTION NETWORK OPTIMIZATION: A HYBRID APPROACH 

 

By 

 

XUEWEI QI 

B.E., China Agricultural University, Beijing, China, 2007 

 

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment 

of the Requirements for the Degree 

 

 

MASTER OF SCIENCE 

 

 

ATHENS, GEORGIA  

2013 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2013 

 XUEWEI   QI 

All Rights Reserved



 

 

 

WATER DISTRIBUTION NETWORK OPTIMIZATION: A HYBRID APPROACH 

By 

XUEWEI  QI 

 

Major Professor:     Ke  Li 

        Committee:    Walter D. Potter 

                                                                                                                     Khaled M. Rasheed 

 

 

 

Electronic Version Approved:  

 

Maureen Grasso  

Dean of the Graduate School  

The University of Georgia  

August 2013 



 IV 

                                                  

ACKNOWLEDGEMENTS 

 

At the very beginning, all my gratitude would absolutely be first given to my parents: Qiyang Qi 

and Bifen Xiong. Without their support, I could not make any achievement so far.  

 

Of course, this thesis would not have been completed without the efforts of following individuals 

who have worked with me in UGA: 

 

First and foremost, my sincere thanks go to my major advisor Dr. Ke Li for his mentoring and 

providing me the funding and equipment for my research projects. Dr. Li also has been very 

generous with his time and wisdom for providing me advice on how to do research and how to 

write papers. His attitude towards life as well as scientific research always inspires me a lot. The 

research work under his guidance in The University of Georgia will be a valuable and beneficial 

experience in my life and also a good foundation for my future academic career. 

 

Besides, I also would love to show my sincere thanks to Dr. Walter D. Potter and Dr. Khaled M. 

Rasheed. As my committee members, they helped me a lot with great kind, patience and also 

their outstanding expertise since the very beginning of my study in UGA. I really appreciate their 

support and guidance in my graduate study and research. Most of the basic ideas of my thesis 

project derive from the experience obtained in their courses. It is them who led me into the realm 



 V 

of Computational Intelligence, where I found great research interests and formed my research 

direction. The research method and academic attitude I learned from them will definitely benefit 

me all of my future life. 

In addition, I could not go without acknowledging my lab-mates, specifically including Fang 

Zeng, Pretthi Rao , Junjie Hou, , Xiang Li, Nathan Hester, and so on. They all made 

contributions to this thesis research, tremendously helpful and supportive.  

 

Last but not least, sincere thanks to all of my friends, especially including Jun Chen, Lvjun Zhou, 

Timothy Gary, Shu Zhang, Xi Jiang and so on. Great deals of credits are owed to their support 

and encouragement in developing this technical report.  

 

At last, I should also appreciate US. National Science Foundation and China Scholarship Council 

of Ministry of Education of China, which both have funded me for the research in UGA.  

 

 

 

 

 

 

 

 



 VI 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENT……………..…………………………………….……………..……IV  

LIST OF TABLES……………….………………………………………..……………..……....VIII  

LIST OF FIGURES………………………………………………………………..………........ IX 

 

U1U UINTRODUCTIONU ...........................................................................................................................................................1 

U1.1U USwarm Intelligence AlgorithmsU ......................................................................................................................1 

U1.2U UUse Machine Learning to Improve Evolutionary AlgorithmsU .............................................................2 

U1.3U UOptimization of Urban Water Distribution NetworkU .............................................................................3 

U1.4U UOrganization of This ThesisU ..............................................................................................................................4 

U2U ULITERATURE REVIEW AND ANALYSISU .........................................................................................................6 

U2.1U UDeterministic MethodsU .......................................................................................................................................6 

U2.2U UEvolutionary AlgorithmsU ...................................................................................................................................7 

U2.3U UHybrid StrategiesU ..................................................................................................................................................8 

U2.4U USwarm Intelligence AlgorithmsU ......................................................................................................................9 

U2.5U ULimitations of Previous WorkU..........................................................................................................................9 

U3U UMOTIVATIONS & OBJECTIVESU ......................................................................................................................... 11 

U3.1U UMotivationU............................................................................................................................................................. 11 

U3.2U UObjectivesU .............................................................................................................................................................. 11 

U4U UPROBLEM REPRESENTATIONU ........................................................................................................................... 12 

U4.1U UProblem FormulationU ....................................................................................................................................... 12 

U4.2U URepresentation & Fitness EvaluationU ........................................................................................................ 13 

U4.3U UBenchmark ExamplesU ...................................................................................................................................... 15 

U5U USWARM INTELLIGENCE ALGORITHMSU ...................................................................................................... 18 

U5.1U UParticle Swarm OptimizationU ........................................................................................................................ 18 

U5.2U UFish School Search AlgorithmU ....................................................................................................................... 21 



 VII 

U6U UMACHINE LEARNING ENHANCED SEARCH ALGORITHMSU ........................................................... 28 

U6.1U UPreserve Population DiversityU ..................................................................................................................... 28 

U6.2U UPredict Promising Region in Search SpaceU.............................................................................................. 61 

U6.3U UParameter AdaptationU ..................................................................................................................................... 75 

U6.4U UOperator Self-adaptation for PSOU ............................................................................................................... 93 

U6.5U UHybridized with a Local Search algorithmU ........................................................................................... 106 

U7U UPERFORMANCE COMPARISONU ..................................................................................................................... 112 

U7.1U USummary of Proposed AlgorithmsU .......................................................................................................... 112 

U7.2U UPerformance Evaluation MetricsU .............................................................................................................. 113 

U7.3U UPerformance ComparisonU ........................................................................................................................... 113 

U7.4U UCompare with Previous WorkU ................................................................................................................... 117 

U8U UCONCLUSIONS AND FUTURE WORKU ........................................................................................................ 120 

U8.1U UConclusionsU ....................................................................................................................................................... 120 

U8.2U UFuture WorkU...................................................................................................................................................... 121 

U9U UREFERENCESU ........................................................................................................................................................... 123 

 

 

 

 

 

 

 

 

 

 

 



 VIII 

 

 

LIST OF TABLES 

 

UTable 1.1.Overview of the Structure of This ThesisU ....................................................................... 5 
UTable 2.1.Evolutionary Algorithms Applied in WDN Optimization.U ............................................. 7 
UTable 4.1.Individual Representation Example (n is the number of pipes)U ................................... 13 
UTable 5.1.Experimental Setting and Results of IPSOU ................................................................... 20 

UTable 5.2.Preliminary Tuned Results for Two Major Parameters U ................................................ 27 
UTable 5.3.Experimental Setting and Results. (Compared with standard PSO)U ............................ 27 
UTable 6.1.Experimental Results on Hanoi Network(Shuffle-PSO)U .............................................. 35 
UTable 6.2.Experimental Rsults on Balerma Network(Shuffle-PSO)U ............................................ 35 
UTable 6.3.Sample Used in The LiteratureU ..................................................................................... 41 
UTable 6.4.Explanation of Historical Best PositionsU ...................................................................... 42 
UTable 6.5.Experimental Results.U ................................................................................................... 49 
UTable 6.6.(b).Comparison of the Best Cost Achieved by Different Algorithms (Balerma) U ......... 54 
UTable 6.7. Comparison with the same number of evaluations (Balerma)U .................................... 54 
UTable 6.8.Experimental Setting and ResultsU ................................................................................. 59 
UTable 6.9.Parameter Setting for Experiments of EMPSOU ............................................................ 68 

UTable 6.10.Experimental Results of EMPSOU ............................................................................... 69 
UTable 6.11.Experimental Results of EMPSO on Balerma networkU .............................................. 73 
UTable 6.12.The Tuning and Estimated Results for c1 and c2U ....................................................... 80 
UTable 6.13.Time Consumption by Two Different Methods on Different Problems U ..................... 84 
UTable 6.14.Estimated Results for Hanoi NetworkU ........................................................................ 85 
UTable 6.15.Experimental Setting.U ................................................................................................. 86 
UTable 6.16.Minimal Cost for the Hanoi NetworkU ......................................................................... 86 
UTable 6.17.Parameter Setting for OSPSOU................................................................................... 100 
UTable 6.18.Experimental results of OSPSO.U .............................................................................. 105 
UTable 6.19.Experimental Results of PSO-EOU .............................................................................. 111 

UTable 7.1.Index and Abbreviation of Proposed AlgorithmsU ........................................................ 112 
UTable 7.2.Performance of the Proposed Algorithms on Hanoi NetworkU ..................................... 114 

UTable 7.3.Performance of the Proposed Algorithms on Balerma Network U ................................. 115 
UTable 7.4.Algorithms that Perform well on Both two Networks U ................................................. 117 
UTable 7.5.Comparison of the Best cost Achieved by Different Algorithms (Hanoi) U ................... 118 
UTable 7.6.Comparison of the Minimal Cost Achieved by Different Algorithms (Balerma) U ....... 119 

 

 

 

 



 IX 

 

 

LIST OF FIGURES 

 

UFigure 4.1.Schematic flowchart of the optimization algorithm for WDNU ................................... 15 
UFigure 4.2Hanoi Network([34])U.................................................................................................... 16 
UFigure 4.3.Balerma Network ([35])U .............................................................................................. 17 
UFigure 5.1.Fitness track on Balerma network(IPSO) U ................................................................... 21 

UFigure 6.1.Flowchart of shuffled PSOU .......................................................................................... 32 
UFigure 6.2.Performances over percentage of population used for shuffleU .................................... 33 
UFigure 6.3.Performances over the standard deviation of shuffle process U ..................................... 33 
UFigure 6.4.Performances over shuffle step sizeU ............................................................................ 34 
UFigure 6.5.performances over shuffle-std and percentage (Hanoi network)U ................................ 34 
UFigure 6.6.Fitness track of Shuffle-PSO (Hanoi Network)U .......................................................... 36 
UFigure 6.7.Fitness track of Shuffle-PSO (Balerma Network)U ...................................................... 36 
UFigure 6.8.General flowchart of PSO on WDN optimization problemU ........................................ 38 
UFigure 6.9.Flow chart of distribution estimation (sorted by descending order)U ........................... 40 
UFigure 6.10.Flow chart of PEDPSOU ............................................................................................. 47 
UFigure 6.11.Fitness track of different algorithms (Balerma network) U .......................................... 50 

UFigure 6.12.Fitness track of last 1000 generations (Balerma network)U ........................................ 50 
UFigure 6.13.Diversity tracks of different algorithms (Balerma network)U ..................................... 51 
UFigure 6.14.Track of the number of clusters at different R value (Hanoi) U ................................... 60 
UFigure 6.15.Fitness track of CAFSS on Hanoi network U ............................................................... 60 
UFigure 6.16.Illustration of personal best positionU ......................................................................... 62 
UFigure 6.17.An example of Gaussian mixture with 3 components.U ............................................. 64 
UFigure 6.18.Average and best optimal cost on Hanoi network under Univariate Gaussian 
Distribution with different number of componentsU ...................................................................... 70 
UFigure 6.19.Average and best optimal cost on Hanoi network under Multivariate Gaussian 
Distribution with different number of componentsU ...................................................................... 70 

UFigure 6.20.Compare the average performance of algorithms based on Univariate and 
Multivariate Gaussian models.U ..................................................................................................... 71 

UFigure 6.21.Compare the average number  of generations before convergence based on 
Univariate and Multivariate Gaussian models.U ............................................................................. 71 
UFigure 6.22.Classification of parameter control methodsU ............................................................ 76 
UFigure 6.23.Parameter tuning results for two numerical optimization problemsU ......................... 80 
UFigure 6.24.Track of c1 and c2 of one particle in one run (Ackley’s function)U ........................... 82 

UFigure 6.25.Track of c1 and c2 of one particle in one run (Rastrigin’s function)U ........................ 83 
UFigure 6.26.Track of c1 and c2 of 10 particles in one run (Ackley’s function)U ........................... 84 
UFigure 6.27.Track of estimated C1 and C2 values for 30 particles on Hanoi network U ................ 88 
UFigure 6.28.Estimated C1 and C2 values for Hanoi network U ....................................................... 89 
UFigure 6.29.Minimal costs achieved with the estimated U .............................................................. 91 
UFigure 6.30.Fitness track of 5 runsU ............................................................................................... 92 



 X 

UFigure 6.31.Performance of OSPSO on different update frequencyU ............................................ 99 
UFigure 6.32.Performance of OSPSO on different updateU ............................................................. 99 
UFigure 6.33.Fitness track of 3 runs of OSPSO on Hanoi network U ............................................. 100 
UFigure 6.34.Track of average selection probability for each operator of U ................................... 101 
UFigure 6.35.Track of average selection probability for each operator of U ................................... 101 
UFigure 6.36.Fitness track of 3 runs of OSPSO on Balerma network U .......................................... 103 
UFigure 6.37.Track of average selection probability for each operator of U ................................... 103 
UFigure 6.38.Track of average selection probability for each operator of U ................................... 104 
UFigure 6.39. Performance at different local search frequencyU .................................................... 109 
UFigure 6.40.Fitness track of 3 runs on Hanoi networkU ................................................................ 110 
UFigure 6.41.Fitness track of 3 runs on Balerma networkU ............................................................ 111 
UFigure 7.1.Average performance of the proposed algorithms on Hanoi networkU ....................... 116 

UFigure 7.2.Average performance of the proposed algorithms on Balerma network U ................... 117 



 1 

 

 

CHAPTER 1 

1 0BINTRODUCTION 

 

 

1.1 9B Swarm Intelligence Algorithms 

Evolutionary computation (EC) [1] is a kind of optimization methodology inspired by the 

mechanisms of natural evolution and behaviors of living organisms. Generally speaking, EC 

algorithms include genetic algorithm (GA), evolutionary programming (EP), evolutionary 

strategies (ES), genetic programming (GP), learning classifier systems (LCS), differential 

evolution (DE), and estimation of distribution algorithm (EDA). Recently, by interpreting and 

modeling swarm intelligence, a new category of evolutionary algorithm: “Swarm Intelligence 

Algorithm (SIA)” is identified and has gained increasing popularity in the EC research 

community [2]. 

 

Swarm intelligence (SI) is a type of intelligence, which is observed in the Hcollective behaviorH of 

HdecentralizedH, Hself-organizedH swarm systems, especially biological swarm systems in the nature. 

As a sub area of evolutionary algorithms (EA), SIA focuses on the study of computational 

systems inspired by the “collective intelligence”, which emerges through the cooperation of large 

numbers of homogeneous agents in certain environment. In a swarm, agents often follow similar 

http://en.wikipedia.org/wiki/Collective_behavior
http://en.wikipedia.org/wiki/Decentralization
http://en.wikipedia.org/wiki/Self-organization
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simple rules, and interact locally with each other in the local environment. Most of the original 

inspirations come from natural biological systems, such as insects and animal swarms. Typical 

examples are bird flock, fish school, and ant colony. Like other EAs, such swarm intelligence 

algorithms or strategies are typically applied to search and optimization domains. The most 

popular examples are particle swarm optimization (PSO), ant colony optimization, fish school 

search and etc.  

1.2 10BUse Machine Learning to Improve Evolutionary Algorithms 

Machine Learning, a branch of Hartificial intelligenceH, is about the construction and study of 

systems that can HlearnH from data. Machine learning HalgorithmsH can be organized into a 

HtaxonomyH based on the desired outcome of the algorithm or the type of input available during 

training the machine: Supervised Learning, Unsupervised Learning, Semi-supervised Learning, 

and Reinforcement Learning.  

 

As the development of both Machine Learning (ML) and evolutionary algorithms, many 

researchers have turned their attention to combining these two different type of methods so that 

they can complement with each other with their own advantages.   There is a large variety of 

ways on how to hybridize them together, among which using ML to enhance EAs is a very active 

research spot recently [3].  

 

A large variety of Machine Learning (ML) techniques have been used to enhance the 

Evolutionary algorithms [1]. These ML techniques include: statistical methods, interpolation and 

regression, clustering analysis, orthogonal experimental design, opposition-based learning, 

artificial neural networks, support vector machines, case-based reasoning, reinforcement 

http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Learning
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Taxonomy_(general)
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learning, and competitive learning and Bayesian network.  In terms of the way ML used to 

improve EAs, there are 5 major different directions: 

1. Population Initialization: ML techniques could be used to create or improve the initial 

population for EAs. 

2. Fitness Evaluation and Selection: ML techniques could be used to model and 

approximate the fitness evaluation functions which are usually the most computational 

expensive part of the search algorithms.   

3. Population Reproduction: ML could be used to predict promising region or reduce 

dimensionality of the problem. 

4. Algorithm Adaptation: Use ML to adapt both Parameters and Operators. 

5. Local Search: Use ML to control or perform local search operators.  

 

1.3 11BOptimization of Urban Water Distribution Network 

An urban water distribution network (WDN) is a network of components (e.g. pipes, pumps, 

valves, tanks, etc.) that transport water from a source (e.g. reservoir, treatment plant, tank, etc.) 

to the consumers (e.g. domestic, commercial, and industrial users). Due to the substantial cost 

associated with the installation and material of WDN, it is necessary to optimize its design by 

selecting the lowest cost combination of appropriate component sizes and component settings 

while the hydraulic and resilience constraints are satisfied. In engineering practices, the diameter 

setting of pipelines is the major factor which determines the size of components and the 

installation cost.  Therefore, the selection of pipe diameters, namely “pipe sizing”, becomes the 

classical WDN optimization challenge. The objective of pipe sizing is to minimize the total cost 

of the network design. Mathematically, this optimization problem can be defined as  a non-linear, 
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non-convex and multi-modal problem or an NP-hard combinatorial problem, involving a 

complex set of implicit constraints, such as conservation of mass and energy equations, which 

are commonly satisfied through the use of hydraulic simulation solvers. Thus far, a variety of 

optimization methods have been proposed for WDN optimal design, including classical 

operational research techniques (e.g. linear programming); typical evolutionary algorithms (e.g. 

genetic algorithm) and relatively new swarm intelligence algorithms (e.g. ant colony 

optimization).  Through the literature review, there is an obvious trend can be observed, which 

that is more and more researchers are shifting their focus onto the new swarm intelligence 

algorithms for this hard optimization problem.  

1.4 12BOrganization of This Thesis 

In this thesis research, two famous swarm intelligence algorithms and their variants are 

introduced to solve the WDN optimal design problem, they are all tested on the benchmark 

networks and their performances are compared with each other experimentally.  

The remainder of this thesis is organized as follows: Chapter 2 reviews the related work and 

provides an elaborate analysis of the previous work. Chapter 3 provides the motivation and the 

objectives of this thesis research. Chapter 4 describes the problem representation and benchmark 

examples. Details of conventional version of the selected swarm intelligence algorithms are 

given in Chapter 5.   Chapter 6 explains what kind of Machine Learning techniques and how they 

are used to further improve the performance of the selected search algorithms. The last two 

sections compare the performances of different algorithms on the specific WDN optimization 

problem, make a conclusion and point out the potential future work.  For the sake of convenience 

to the readers, following table 1.1 provides an overall sense of the structure of this thesis: 
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Table 1.1.Overview of the Structure of This Thesis 

Chapter  Total Number of Pages 

1.   Introduction 6 

2.  Literature Review & Analysis 5 

3.   Motivation & Objectives 1 

4.   Problem Representation 6 

5.  Swarm Intelligence Algorithms 9 

6.Machine Learning enhanced Search Algorithms  68 

7.  Performance Comparison 5 

8.  Conclusions & Future Work 3 
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CHAPTER 2 

2 1BLITERATURE REVIEW AND ANALYSIS 

 

Pipe sizing is one essential step in the optimal design of WDN, where the decision variables have 

primarily been associated with the pipes within the system. More specifically, the decision 

variables in pipe sizing are limited to the selections of diameters of the pipes in a WDS and the 

only hydraulic constraint in these optimization process are the minimum allowable pressures at 

each of the nodes that have to be satisfied.  

Mathematically, this optimization problem can be defined as a non-linear, non-convex and multi-

modal problem or an NP-hard combinatorial optimization problem, involving a complex set of 

implicit constraints, such as conservation of mass and energy equations, which are commonly 

satisfied through the use of hydraulic simulation solvers. 

In the past three decades, a large variety of optimization methods have been proposed for WDN 

pipe sizing by many researchers. These methods can be generally classified into three distinct 

major categories: 

 

2.1 13BDeterministic Methods 

At the very early stage of this research, many earlier researchers have attempted to solve this 

optimization problem using some traditional operational research techniques (including linear 

programming, dynamic programming, and nonlinear programming). But no efficient method is 
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found due to the limitations they intuitively have. These models usually result in a local optimum 

which is dependent on the starting point in the search process. For more information, the readers 

are referred to [4]~[11].  

2.2 14BEvolutionary Algorithms 

In the optimization domain, evolutionary algorithms are one of the most popular algorithms 

recently. Many researchers shifted the focus from traditional operational methods to the 

evolutionary algorithms and  a number of EAs have been introduced to solve the WDS 

optimization problem, such as Genetic Algorithms ([12]~[21]), Particle Swarm 

Optimization([22]~[23]),  Simulated Annealing[24], Tabu Search[25], Cellular Automata[17], 

Harmony search[26], Frog Leaping Algorithm[27], Honey-Bee Mating Optimization[28], 

Immune Algorithm[29]. Shuffled Complex Evolution[30],  Ant Colony Optimization[31], 

Genetic Heritage Evolution[32].  In table 2.1, a full list of evolutionary algorithms, which have 

been used, is given. 

Table 2.1.Evolutionary Algorithms Applied in WDN Optimization. 

Algorithms Year 

Genetic Algorithm 1987, 1996, 1999, 2001, 2005, 2006, 2008, 2010(3), 2012 

Simulated Annealing 1999 

Tabu search 2004 

Shuffled Complex Evolution 2004 

Cellular Automata 2006 

Ant Colony Optimization 2006 * 

Particle Swarm Optimization 2008, 2010,2012 * 
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Immune Algorithm 2008 

Harmony Search 2009 

Genetic Heritage Evolution 2010 

Frog Leaping Algorithm 2010    * 

Honey-Bee Mating Optimization 2010    *                                                         

Memetic Algorithm 2010 

 

 

Among these evolutionary algorithms, swarm intelligence algorithms attract the attentions of 

many researchers, including Particle Swarm Optimization, Ant Colony Optimization and Honey-

Bee Mating Optimization ( marked with * in table 1 ). This category of evolution algorithms 

share some similar characteristics and rationales. They are more appropriate for problems with 

high dimensionality. In addition, new swarm intelligence algorithms are still being created by 

observing and molding the collective behavior of different biological swarms in the nature. 

Therefore, applying new swarm intelligence algorithms for the optimal design of WDN is still a 

hot and promising research topic.  

 

2.3 15BHybrid Strategies 

More recently, a new trend to improve or create novel efficient search algorithms is to hybridize 

different algorithms with different search abilities. As we know, some evolutionary algorithms 

(e.g. Genetic Algorithm) are good at exploring the search space while others (e.g. Iterated Local 

Search) performs better in exploiting the local search space.  The hybrid algorithms attempt to 

obtain the best from the hybridization of  classical evolutionary search algorithms that perform 
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together and complement each other to produce a new efficient algorithm modal. R. Banos [33] 

proposes a Memetic Algorithm which applies a local search process to each of the agents in the 

iteration process of an outer population based meta-heuristic algorithm to optimize the pipe 

sizing problem. The experimental results show that the proposed hybrid algorithm outperforms 

other methods in comparison, especially when the network size increases. As this is still an 

active research area, there is still large space for us to improve the efficiency of the optimization 

algorithms and design promising hybrid strategy for real-world engineering applications.  

 

2.4 16BSwarm Intelligence Algorithms 

As we can see in table 2.1, the methods marked with “*” are from the same category of 

evolutionary algorithms called “swarm intelligence algorithms”.  This is a new trend in the 

development of new optimization tool for water distribution network. The previous research 

already shows some of their advantages over other categories of evolutionary algorithms, such as 

fast convergence rate and high efficiency. Since there are many other swarm intelligence 

algorithms have not been tested in this specific engineering optimization problem, it is still a 

promising research area.  

 

2.5 17BLimitations of Previous Work 

Although all the above reviewed methods have shown their successful application on the 

optimization of water distribution network, there are still some limitations for these methods: 

1. No algorithm could be regarded as perfect tool for optimization of water distribution. 

This is due to the fact that there is no big difference between them in terms of the overall 

performance and also the fact that some algorithms are better in some aspect of the 
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performance (e.g. efficiency), while they are worse than other in other aspect of the 

performance (e.g. reliability). 

 

2. Lack of generality. Most of the algorithms are only tested on the small size benchmark 

networks, not tested on the large size network. Since a good performance on a small size 

network cannot guarantee good performance on larger size network.  

 

 

3. Specifically, for the research on swarm intelligence algorithms, only a limited number of 

swarm intelligence algorithms have been tested on this engineering optimization 

problem. What is more, few variants of these algorithms have been proposed for the 

optimization problem. 
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CHAPTER 3 

3 2BMOTIVATIONS & OBJECTIVES 

 

3.1 18BMotivation 

Inspired by above analysis of the literature and discussion of limitations of previous work, there 

are three major directions of further research on WDN optimization problem: 

1) Continue to introduce new algorithms (e.g. swarm intelligence algorithms) that have  

      never been used for this problem and test them on the benchmark networks;  

2) Further improve the performance of existing methods and propose more effective  

variants of these algorithms. 

3.2 19BObjectives 

The overall goal of this proposed project is to propose new efficient search algorithms for 

optimization of WDN and try to achieve better optimal solution than the literature on the 

benchmark example networks. The specific objectives are as follows: 

1. Apply new Swarm Intelligence optimization algorithms (e.g. Fish School Search) and 

their new variants to the optimal design of WDS and try to achieve better optimal 

solutions on the benchmark networks.  

2. Use different Machine Learning methods to further improve the performance of the 

proposed optimization algorithms and test them on the benchmark networks. 

3. Compare different swarm algorithms experimentally. 
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CHAPTER 4 

4 3BPROBLEM REPRESENTATION 

 

 

4.1 20BProblem Formulation 

The optimal pipe sizing for a water distribution network with a pre-specified layout can be 

described as: 

             Minimize C0=∑ 𝐶𝑖𝐿𝑖
N
1                                                                                                  (4.1) 

Where 𝐿𝑖 is the length of the link i;  𝐶𝑖 is the cost per unit length of the pipe used in link i;  N is 

the number of the links (pipes) used in the network; The above minimization is subject to the 

following constraints: 

               Hydraulic constraints: 

                ∑ 𝑞𝑖𝑖𝑛(𝑘) -∑ 𝑞𝑖𝑜𝑢𝑡(𝑘) =𝑄𝑘,                   k=1…..J,                                                   (4.2) 

       ∑ 𝐽𝑖𝑖∈𝑙 =0, l=1,….L,                                                                                                    (4.3) 

               𝑞𝑖=Kch𝑖d𝑖∂(J𝑖/J𝑖)β                                                                                                      (4.4)      

where J and L are the number of existing nodes and loops in the network respectively; qi is the 

flow rate in pipe i; 𝑄𝑘 is the required demand at consumption node k;  𝐽𝑖 is the head loss in the 

ith pipe; chi is the Hazen-Williams coefficient for the ith pipe and α= 2.63, β= 0.54, and K = 

0.281 for q in cubic meters and d in meters. These constraints, therefore, describe the flow 

continuity at nodes, head loss balance in loops and the Hazen-Williams equation.                
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                      Head constraints: 

                 𝐻𝑚𝑖𝑛 ≤  𝐻𝑘  ≤ 𝐻𝑚𝑎𝑥,                                         k=1….J                                    (4.5) 

                          

Pipe size availability constraints: 

               𝑑𝑚𝑖𝑛 ≤  𝑑𝑖  ≤ 𝑑𝑚𝑎𝑥,                                  i=1…..N                                       (4.6) 

where N is the number of existing pipes; 𝐻𝑚𝑖𝑛 is the nodal head; 𝐻𝑚𝑖𝑛 and 𝐻𝑚𝑎𝑥 are minimum 

and maximum allowable nodal head; and 𝑑𝑚𝑖𝑛  and 𝑑𝑚𝑎𝑥 are minimum and maximum 

commercially available pipe diameters. 

 

4.2 21B Representation & Fitness Evaluation 

In the practical implementation, for the population-based algorithms, each individual is encoded 

as a string of integers, these integers represent the index of available commercial diameters, and 

table 4.1 gives an example. 

Table 4.1.Individual Representation Example (n is the number of pipes) 

Pipe1 Pipe 2 Pipe 3          ……………….. Pipe n-1   Pipe n 

7 1 6         …………………. 4 5 

 

Normally, pipes with larger diameters are more expensive. Larger diameters are given larger 

index in the algorithm.  

As we are trying to minimize the total cost of the pipes in the network, it is easy to obtain 

following basic fitness function: 

                              𝐶0 = ∑ 𝐶𝑖𝐿𝑖
𝑁
1                                                                                               (4.7) 

where Ci     is the unit price of ith  pipe and   𝐿𝑖  is the length of ith pipe. However, this simple 

fitness function fails to include the hydraulic consideration into the fitness evaluation. Therefore, 
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a penalty method is used to formulate the optimization of a pipe network as an unconstrained 

optimization problem in which head constraints are included in the objective function leading to 

a new problem defined by minimization of the following penalized objective function: 

           Minimize 𝐶0 = ∑ 𝐶𝑖𝐿𝑖
𝑁
1 (1+𝐻𝐷2)                                                                              (4.8) 

           HD=∑ max (𝐻𝑖,𝑚𝑖𝑛 −𝐻𝑖,𝑎𝑐𝑡𝑢𝑎𝑙)𝑖∈𝑁                                                                          (4.9) 

Where the 𝐻𝑖,𝑚𝑖𝑛  and 𝐻𝑖,𝑎𝑐𝑡𝑢𝑎𝑙   denote the required minimal head pressure and actual head 

pressure in node i respectively. Total cost will be increased by means of the hydraulic head 

deficit HD. Although the mathematical calculations of the hydraulic head deficit of a pipe 

network are very complicated and time consuming, an existing hydraulic solver could be adopted 

to implement the calculation for the fitness function: EPANET2.0. This hydraulic solver could be 

downloaded freely from the following website: 

HUhttp://www.epa.gov/nrmrl/wswrd/dw/epanet.htmlU 

 

Figure 4.1 shows the general flow chart for pipe size optimization.  One candidate solution is a 

set of diameters for all the pipes in the water distribution network. A famous hydraulic simulator 

(EPANET2.0) is used to evaluate each candidate solution.  The input of the simulator is one 

candidate solution (diameter set) and output is the actual head pressure of each node in the 

network.  

http://www.epa.gov/nrmrl/wswrd/dw/epanet.html
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Figure 4.1.Schematic flowchart of the optimization algorithm for WDN 

 

 

4.3 22BBenchmark Examples 

In most of the literature, the algorithms are evaluated on several benchmark examples. In this 

project, all the proposed algorithms are tested on the following two famous benchmark 

examples: 

 

4.3.1 Hanoi Network 

The Hanoi network (Figure 4) presented by Fujiwara and Khang [34], requires the optimal 

design of 34 pipes, allowing a minimum hydraulic head of 30 meters for all its 32 nodes, by 
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means of 6 available diameters. The total solution space is then equal to 634. It serves as a 

prototype of medium sized network for the evaluation of optimization algorithm. 

 

Figure 4.2Hanoi Network([34]) 

 

 

4.3.2 Balerma Network 

Balerma network was originally proposed by Reca and Martinez [35]. It has a total of 443 

demand nodes supplied by 4 source nodes (Figure 5). There are 454 pipes, arranged in 8 loops. 

The diameter of available pipes ranges from 125 and 600 mm with an absolute roughness 

coefficient k = 0.0025 mm. Total enumeration of the search space is 1010454 . The Darcy–

Weisbach equation has been adopted to calculate head losses, using EPANET2. The minimum 
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required pressure head is 20 meters for each node. The Balerma network serves as a large sized 

WDN prototype for optimization algorithm evaluation. 
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Figure 4.3.Balerma Network ([35]) 
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CHAPTER 5 

5 4BSWARM INTELLIGENCE ALGORITHMS 

 

 

In previous sections, we know that one major task for this thesis research is to introduce new 

swarm intelligence algorithms and test their performance on the benchmark examples. Two 

typical algorithms: Particle Swarm Optimization and Fish School Search are selected here. 

The reason why PSO is selected is that it is very popular in many optimization domains and it 

has already been successfully used for the WDN optimization problem. More importantly, 

there is still space for improvement of PSO on the problem because there are various ways to 

improve PSO. The reason why I select FSS is that it is a relatively new swarm intelligence 

algorithm and it has been proved successful in many difficult optimization problems.  The 

details of the implementation of these two famous swarm intelligence algorithms are given in 

following sections.  

5.1 23BParticle Swarm Optimization 

Particle Swarm Optimization (PSO) is a population based optimization method inspired by the 

collective behaviour of a bird flock. It is an intelligent computational technique proposed by 

Kennedy and Eberhart in 1995[36]. This technique is commonly used to solve optimization 

problems of nonlinear functions. The idea behind PSO is to create particles that simulate the 

movements of birds to achieve a specific goal within the search space. It explores the social 
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behaviour of an organized group of individuals and the group’s communication capacity. Each 

particle represents a solution in a multi-dimensional space. All the particles in the swarm use the 

same communication mechanism. In the most common PSO implementations, particles move 

through the search space using a combination of the attraction to the best solution of the entire 

swarm (gbest), and the attraction to the best solution that any particle in the neighbourhood has 

ever found (pbest). More specifically, each particle in the flock holds the following information: 

(i) The current position xi  

(ii) the current velocity vi 

(iii) The best position that the particle has achieved so far Pbesti 

(iv) The best position that  all the particles in the swarm has ever achieved  gbesti 

During each iteration, each particle updates its position toward the Pbesti and gbesti according 

to the following equations: 

𝑣𝑖𝑗
𝑡+1=w𝑣𝑖𝑗

𝑡 +𝑐1𝑟1𝑗(𝑝𝑏𝑒𝑠𝑡𝑖𝑗𝑡 -𝑥𝑖𝑗𝑡 ) + 𝑐2𝑟2𝑗(𝑔𝑏𝑒𝑠𝑡𝑖𝑗𝑡 -𝑥𝑖𝑗𝑡 )                                                (1) 

𝑥𝑖𝑗
𝑡+1=𝑥𝑖𝑗𝑡 + 𝑣𝑖𝑗

𝑡+1                                                                                                       (2) 

Where j denotes the index of dimension and i is the number of particles; w is the inertia weight 

and t is the iteration number;  r1 and  r2 are two random numbers uniformly distributed in the 

range [0,1]; c1  and c2 are the acceleration factors. After all the particles are updated, the  Pbesti 

and gbesti are also updated if better results are found. Both  c1  and c2 are set to be 2 and w is set 

to be 0.8 in all the following experiments. 

 

In order to obtain a performance benchmark for the following experiments on the improvement 

of PSO, we tested the original integer PSO (IPSO) on the benchmark examples first.    
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5.1.1 Experimental results of standard integer PSO 

According to the inherent characteristic of WDN optimization problem, we choose to use integer 

PSO because there are limited number of available diameters for each pipe and these options 

could be encoded into integers. In order to obtain a benchmark for the following new variants of 

PSO, we tested this standard integer PSO on the network examples. The experimental setting and 

results are listed in table 5.1. 

 

Table 5.1.Experimental Setting and Results of IPSO 

Network Population 

 size 

#of iteration c1  c2   w # of 

runs 

Best cost Average cost 

Hanoi 500 500 2,2,0.8 30 6.369x10  

 

7.110x10  

Balerma 1000 1000 2,2,0.8 30 6.299x10  6.729x10  

 

 

 

Figure 5.1. Fitness track on Hanoi network(IPSO) 
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Figure 5.1.Fitness track on Balerma network(IPSO) 

 

5.2 24B Fish School Search Algorithm 

Many oceanic fish species, as with other animals, present social behaviour. There are two major 

categories of behaviours are observed in fish schools and they are also the main inspirations for 

modelling [37]: 

 Feeding: inspired by the natural instinct of individuals (fish) to find food in order to grow 

strong and to be able to breed. Food here is used as a metaphor for the evaluation of 

candidate solutions in the search process. An individual fish can lose as well as obtain 

weight, depending on the regions it swims in; 

 

 Swimming: it is the most obvious behaviour of a fish school and also the most 

sophisticated movement for modelling. There are different types of swimming movement 

and various motivations for these moves. It could be a self-motivated individual 
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movement or swarm-motivated collective movement. Swimming movement is primarily 

driven by feeding needs. 

Inspired by aforementioned observations, a novel search algorithm Fish School Search (FSS) is 

proposed by Bastos Filho et al.[38]. And a set of operators are proposed to form the main 

routines of the Fish school search algorithm (FSS).  To understand the operators, a number of 

concepts need to be defined. The concept of food is related to the function to be optimized in the 

process. For example, in a minimization problem the amount of food in a region is inversely 

proportional to the function evaluation in this region. The “aquarium” is defined by the delimited 

region in the search space where the fish can be positioned. 

The operators are grouped in the same manner in which they were observed when drawn from 

the fish school. They are as follows: 

 Feeding: food is a metaphor for indicating to the fish the regions of the aquarium that are 

likely to be good spots for the search process; 

 Swimming: a collection of operators that are responsible for guiding the search effort 

globally towards subspaces of the aquarium that are collectively sensed byall individual 

fish as more promising with regard to the search process. 

 

5.1.1 Feeding Operator 

As in real situations, the fish of FSS are attracted to food scattered in the aquarium in various 

concentrations. In order to find greater amounts of food, the fish in the school can move 

independently (see individual movements in the next section). As a result, each fish can grow or 

diminish in weight, depending on its success or failure in obtaining food. It is believed that fish’s 

weight variation is proportional to the normalized difference between the evaluation of fitness 
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function of previous and current fish position with regard to food concentration of these spots. 

The assessment of ‘food’ concentration considers all problem dimensions, as shown in the 

following equation (5.1): 

 

𝑊𝑡+1
𝑖 =𝑊𝑡

𝑖+ 𝑓(𝑋𝑡+1
𝑖 )−𝑓(𝑋𝑡

𝑖)

max {|𝑓(𝑋𝑡+1
𝑖 )−𝑓(𝑋𝑡

𝑖)|}
                                                                                           (5.1) 

 

where 𝑊𝑡
𝑖 is the weight of the fish i;  𝑋𝑡𝑖 is the position of the fish i and f (𝑋𝑡𝑖) evaluates the 

fitness function (i.e. amount of food) in 𝑋𝑡𝑖. Fish weight variation is evaluated once at every FSS 

cycle. An additional parameter, named weight scale (Wscale) was created to limit the weight of a 

fish. The fish weight can vary between”1” and  Wscale. All the fish are born with weight equal to 

Wscale.  

 

5.1.2 Swimming Operators 

For fish, swimming is related to the important individual and collective behaviours such as 

feeding, breeding, and escaping from predators, moving to more livable regions of the aquarium 

or, simply being gregarious. In FSS, the causes of swimming are grouped into three classes: (i) 

individual, (ii) collective-instinct and (iii) collective volition. Accordingly, three operators are 

proposed to model different types of movements of fish:  Individual movement operator, 

instinctive movement operator and volitive movement operator. The specific implementations of 

these three swimming operators are described as follows: 

i) Individual movement operator 

Individual movement occurs for each fish at every cycle of the FSS algorithm. The swim 

direction is randomly chosen. After each random movement, the fish assesses whether the food 
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density there seems to be better than at its current location. If this is not the case, the individual 

movement of the fish does not occur. Soon after each individual movement, feeding operator is 

implemented. For this movement, we define a parameter “step_ind” calle individual step to 

control the movement step size. Each fish moves if the new position has more food than the 

previous position. In the implementation, the movement step size for each individual is generated 

by multiplying step_ind by a random number generated by a uniform distribution in the interval 

[-1,1], as shown in (5.2): 

 

𝑑𝑗
𝑖(𝑡 + 1)=𝑑𝑗𝑖(𝑡)+rand(-1,1) * step_ind                ………………………………..……(5.2) 

 

Where 𝑑𝑗𝑖(𝑡 + 1) denotes the j th dimension of i the fish of after the move and  𝑑𝑗𝑖(𝑡)  denotes 

the j th dimension of i the fish of before the move.  

 

ii) Instinctive movement operator 

After all fish have moved individually, a weighted average of individual movements based on the 

instantaneous success of all fish of the school is computed. This means that fish that had 

successful individual movements influence the resulting direction of movement more than the 

unsuccessful ones. When the overall direction is computed, each fish is repositioned. This 

movement is based on the fitness evaluation enhancement achieved, as shown in (5.3). 

 

𝑋𝑡+1
𝑖 =𝑋𝑡𝑖+

∑ ∆𝑖𝑛𝑑𝑖{𝑓(𝑋𝑡+1
𝑖 )−𝑓(𝑋𝑡

𝑖)}𝑁
𝑖=1

∑ {𝑓(𝑋𝑡+1
𝑖 )−𝑓(𝑋𝑡

𝑖)}𝑁
𝑖=1

         …………………………………………… (5.3) 

 

      where ∆𝑖𝑛𝑑𝑖 is the displacement of the fish i due to the individual movement in the FSS cycle. 
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iii) Volitive movement operator 

This movement is devised as an overall success/failure evaluation based on the incremental 

weight variation of the whole fish school. In other words, this movement is implemented 

according to the overall performance of the fish school. The rationale is as follows: if the fish 

school is putting on weight (meaning the search has been successful), the radius of the school 

should contract; if not, it should inflate. This operator is deemed to help greatly in enhancing the 

exploration abilities in FSS. The fish-school inflation or contraction is applied as a small step 

drift to every fish position with regard to the school’s barycenter. The fish-school’s barycenter is 

obtained by considering all fish positions and their weights, as shown in (5.4).Collective-volitive 

movement will be inwards or outwards (relative to the the  barycenter), according to whether the 

previously recorded overall weight of the school has increased or decreased in relation to the 

new overall weight observed at the end of the current FSS cycle. The implementation of volitive 

movement is shown in (5.5) and (5.6). 

        Rarycenter(t)=∑ 𝑋𝑡
𝑖∗𝑊𝑡

𝑖𝑁
𝑖=1

∑ 𝑊𝑡
𝑖𝑁

𝑖=1

                                                                                            (5.4) 

 For this movement, we also define a parameter called volitive step (step_vol). We evaluate the 

new position as in (5.5) if the overall weight of the school increases in the FSS cycle; if the 

overall weight decreases, we use (5.6). 

 

      𝑋𝑡+1𝑖 =𝑋𝑡𝑖(𝑡) -  step_vol *rand(0,1) *[𝑋𝑡 𝑖 - bari(t)]                                                      (5.5)     

      𝑋𝑡+1
𝑖 =𝑋𝑡𝑖(𝑡) + step_vol *rand(0,1) *[𝑋𝑡 𝑖 - bari(t)]                                                      (5.6)     

_____________________________________________________________________ 

Algorithm 5.1   Fish School Search 
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_______________________________________________________________________ 

 Initialize fish in the swarm 

 While maximum iterations or stop criteria is not attained do 

       for each fish i in the swarm do 

a. update position applying the individual operator (5.2) 



b. apply feeding operator 

update fish weight according to (5.1) 

c. apply collective-instinctive movement 

update fish position according to (5.3) 

d. apply collective-volitive movement 

if overall weight of the school increases in the cycle 

           update fish position using (5.5) 

elseif overall weight of the school decreases in the cycle 

            update fish position using (5.6) 

        end for 

End while 

 

 

5.2.3 Experimental Setting and Results  

There are two major parameters need to be tuned in the experiments, which are step size for 

individual movement (st-i) and supersize for volitive movement (st-v). The results of preliminary 

tuning are in table 5.2. And the experimental setting and results on Hanoi network are given in 
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table 5.3. 

Table 5.2.Preliminary Tuned Results for Two Major Parameters 

Parameters Tuned results 

St-i 2 

St-v 0.5 

 

Table 5.3.Experimental Setting and Results. (Compared with standard PSO) 

method St-i St-v Pop size NO. of iterations NO. of runs Best cost  Average cost 

FSS 2 0.2 500 500 30 6.733x10  7.174x10  

IPSO -- -- 500 500 30 6.369x10  

 

7.110x10  

 

 

 

 

 

 

 

 

 

 

 

 

 



 29 

 

 

CHAPTER 6 

6 5BMACHINE LEARNING ENHANCED SEARCH 

ALGORITHMS 

 

 

In section 1.2, we have introduced how Machine Learning techniques are used to improve 

Evolutionary Algorithms. In this thesis research, one of the major tasks is to further improve the 

swarm intelligence algorithms selected in Chapter 5 using different machine learning techniques 

and test them on benchmark networks.  

 

6.1 25B Preserve Population Diversity 

6.1.1 Population Diversity and Premature Convergence 

Classical PSO usually suffers from premature convergence especially when solving complex 

multi-modal-search problems [39]. When premature convergence is present, the search process is 

apt to be trapped in local optima. This could get detrimental when the problem has high 

dimensionalities. Parameter tuning is a conventional way to improve PSO performance as well as 

address parameter convergence yet fast diversity losing is still a challenge.  

 

Population diversity measures how diverse the population is and it is used as a detector of 

premature convergence. Many researchers have proposed their strategies to control the diversity 
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of the population so that premature convergence could be prevented. Most recent efforts to tackle 

this problem focus on the following three approaches below: 

 

1) Topology control.  Population topology has a significant effect on the performance of PSO.  

Different population topologies, such as circle, wheels and stars, may have different influence on 

the performance of the search strategy on different problems [43]. An appropriate topology could 

help solve the premature convergence problem. Kennedy and R. Mendes [44] proposed a social-

network topology that mimics the different communication structure of social networks. A more 

recent study [45] indicates that PSO algorithms with a ring topology are able to locate multiple 

global or local optima. The rationale behind the strategy is that divided population could help 

preserve the diversity of the whole population to some extent. However, an obvious drawback is 

that a large population size is usually required to ensure the performance of different topologies.  

 

2) Randomness injection.  This is a way to preserve the diversity by arbitrarily introducing a 

certain level of randomness into the population when the diversity of population fades.  Krink et 

al. proposed a method to inject diversity into the population by introducing a concept of “particle 

collision”[46]. In this model, there is repulsive force between two particles which are too close to 

each other. An attractive and repulsive PSO (ARPSO) is proposed by Monson and Seppi[47], 

which divides the optimization into two different phases: an attraction phase when individuals 

are attractive to each other by sharing the information of personal best position and global best 

position and a repulsion phase when individuals repel by its personal best position and best 

known global position.  The repulsion phase is implemented when the diversity is below a 

threshold. The alternation of attraction and repulsion phase preserves the diversity while ensure 
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the convergence does occur.  The randomness injection methods could help preserve the 

diversity but with the sacrifice of the fast convergence of PSO.  

 

 

3)Hybridization. In order to introduce advantages of other search algorithms to PSO, researchers 

start to combine another algorithm with PSO to form a hybrid PSO.  The first hybrid PSO was 

developed by Angeline by introducing a selection scheme[48].  A more recent trend is to 

hybridize a local search strategy with PSO. Extreme optimization (EO) is integrated into PSO 

framework to perform exploiting behaviour, which performs superiorly in preventing premature 

convergence.  However, the overhead of fitness evaluation is increased largely due to the nature 

of high computationally expensive of EO. R. V. Kulkarni [49] proposes an Estimation of 

Distribution improved PSO in which the particle swarm is allowed to estimate the distribution of 

promising solution regions. During each iteration, each particle is updated by both the PSO 

equation and EDA sampling and the one with better fitness is used to replace the previous 

particle. The diversity is measured by the ratio between mean and the maximum of the fitness 

function of all particles in iteration. M. El-Abd [50] proposed another PSO improved by EDA 

that used a uniform distribution and a threshold to decide the choice between PSO equation and 

EDA sampling while updating each particle. The EDA in these two hybrid variants performs like 

a local search algorithm which might improve the overall performance of the PSO algorithm but 

might not preserve the diversity. Since it is possible for two different individuals to have the 

same fitness value, using fitness to measure the population diversity may be problematic, 

especially when the problem is highly dimensional. This is analogous to the situation in the 

nature where different genotype may represent the same phenotype (fitness).  
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In order to measure the population diversity quantitatively in this research, the following formula 

is adopted to calculate the diversity [51]: 

                       Diversity(S) = 1

|𝑆|.|𝐿|
. ∑ √∑ (𝑝𝑖𝑗 − 𝑝�̅�)

𝑁
1

|𝑆|
1                                     (6.1) 

Where S is the swarm; |S| is the population size; |L| is the length of longest the diagonal in the 

search space; N is the dimensionality of the problem; pij is the jth  value of the ith particle and pj̅ 

is the  average value of  jth  dimension. It is obvious that this diversity measure is independent of 

population size, the dimensionality of the problem as well as the search range of each dimension. 

 

6.1.2 Use Shuffle process to preserve the population diversity of PSO  

In order to preserve the population diversity and prevent the premature convergence of 

conventional PSO, a shuffle process is integrated into the iteration process of PSO algorithm 

when the population turns to be approaching the convergence. Specifically, “Shuffle” here means 

creating next generation using a random normal distribution. Standard deviations of diameters of 

each pipe in previous generation are used as threshold of the “shuffle” process: if the population 

diversity is below the threshold, the shuffle process will be activated.  Mean value of the 

diameters of certain percent (is a tunable parameter of the algorithm) of top individuals in 

previous population is used as the mean of the normal distribution for generating the next 

generation. And the standard deviation used for shuffle is a tunable parameter.  The flowchart of 

this proposed model is showing in following figure: 
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Figure 6.1.Flowchart of shuffled PSO 

 

Apparently, there are 3 additional parameters need to be adjusted besides PSO parameters: 

Percentage of top guys (percentage), Standard deviation used for shuffle (std) and shuffle step 

size which means how often the shuffle process is used.  Following are the results of fine tuning 

of the parameters in shuffle PSO (Hanoi network). In the experiment, we set the population size 

500, and maxim number of generation is 500.  
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Figure 6.2.Performances over percentage of population used for shuffle 

 

 

 

Figure 6.3.Performances over the standard deviation of shuffle process 
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Figure 6.4.Performances over shuffle step size 

 

 

 

Figure 6.5.performances over shuffle-std and percentage (Hanoi network) 
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percentage of population used for shuffle (percentage) and shuffle step size (INV). Figure 6.3 

help us identify the optimal value for Shuffle-std is around 0.8.  The best value for INV is around 

80, which is indicated by Figure 6.4. From Figure 6.5, we can conclude that the parameter 

shuffle-std dose affect the performance significantly, while the percentage doesn’t have big 

impact on the performance. Finally, the optimal parameter setting is identified:  

Shuffle-std =0.7 

Percentage=0.3 

INV=80 

 

This proposed algorithm are tested on both medium size and large size benchmark examples, and 

then compared with standard PSO. The following table 6.1 and 6.2 are showing the comparison. 

And the fitness tracks on two benchmark examples are given in Figure 6.6 and Figure 6.7. 

Table 6.1.Experimental Results on Hanoi Network(Shuffle-PSO) 

 Population 

size 

Number 

of 

iteration 

C1  

C2   w 

percentage Shuffle-

std 

Shuffle  

Step 

size 

Number 

of runs 

Average 

cost 

Best cost 

StandardPSO 500 500 2,2,0.8 -- -- -- -- 7.110x10  6.3691x 

Shuffle-PSO 500 500 2,2,0.8 80% 0.7 50 30 6.299x10  6.0811 

 

 

Table 6.2.Experimental Rsults on Balerma Network(Shuffle-PSO) 

 Populatio

n size 

Number 

of 

iteration 

C1  

C2   w 

percent Shuffle-

std 

Shuffle  

Step size 

Numbe

r of 

runs 

Average cost Best 

cost 

StandardPS 1000 1000 2,2,0.8 -- -- -- -- 6.729x10  6.299 
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O 

Shuffle-PSO 1000 1000 2,2,0.8 80% 0.7 50 30 4.2548x10  4.1256 

 

 

Figure 6.6.Fitness track of Shuffle-PSO (Hanoi Network) 

 

 

 

 

Figure 6.7.Fitness track of Shuffle-PSO (Balerma Network) 
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6.1.3 Use EDA to Preserve the Population Diversity of PSO 

6.1.3.1 Particle Swarm Optimization 

As introduced in Section 5.1, the updating equations (5.1) and (5.2) are given. For the sake of 

better understanding, besides the above particle-level updating equations, a population-level 

description using matrix is also given: 

Let 𝑃𝑚𝑛(t) = {𝑋𝑚𝑛 (t),  �̂�𝑚𝑛 (t),  𝛺𝑚
𝑛 (𝑡),   𝑉𝑚

𝑛(𝑡) } be a configuration of the particle swarm in the 

current iteration. Where n is the population size and m is the dimensionality.  X(t) represent the 

whole swarm, );  �̂�𝑚𝑛 (t) denotes all the personal best positions, 𝛺𝑚
𝑛 (𝑡) is a matrix in which every 

row is the current global best particle; 𝑉𝑚𝑛(𝑡) is the velocity matrix of the current generations. 

Please note all above matrix are n x m matrix. So the updating process of the PSO could be 

simply described as follows: 

 

 

     

What is noteworthy is the relationship among 𝑋𝑚𝑛 (t),  �̂�𝑚𝑛 (t),  𝛺𝑚
𝑛 (𝑡). For each individual (a row 

in the matrix) in �̂�𝑚𝑛 (t), it is updated if the corresponding individual in 𝑋𝑚𝑛 (t) is better. And all the 

individuals in 𝛺𝑚
𝑛 (𝑡) will be updated with the best individual in �̂�𝑚𝑛 (t) if it is better.  So the 

average fitness of all the individuals in 𝛺𝑚
𝑛 (𝑡) is better than �̂�𝑚𝑛 (t) and  �̂�𝑚𝑛 (t) is better than 𝑋𝑚𝑛 (t). 

following figure 6.8 provides a general flowchart of using PSO on WDN optimization problem. 

𝑋𝑚
𝑛 (t),  �̂�𝑚𝑛 (t),  𝛺𝑚

𝑛 (𝑡),   𝑉𝑚
𝑛(𝑡) 𝑋𝑚

𝑛 (t+1)  �̂�𝑚𝑛 (t+1)  𝛺𝑚
𝑛 (𝑡 + 1) 𝑉𝑚

𝑛(𝑡 + 1) => 
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Figure 6.8.General flowchart of PSO on WDN optimization problem 

 

6.1.3.2 Estimation Distribution Algorithm 

Estimation of distribution algorithms (EDAs) are evolutionary algorithms that derived from the 

genetic algorithm (GA). But unlike GA, EDAs only have one updating operator. During the 

iteration process, EDAs estimate the probability distribution by using selected individuals to 

construct a probabilistic model. The constructed probabilistic model is then used to predict the 

promising region and generate the next new generation around that region. It is noteworthy that 

the probabilistic model in the EDAs is continuously updated.  The best solution generated in 

each generation continually approaches the global optima as the probabilistic model approaches 

the unknown actual distribution. The typical structure of an EDA is shown in Algorithm 6.1 

below: 
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Algorithm 6.1   Estimation distribution algorithm 

1: P<= Initialize the population 

2: Evaluate the initial population 

3: While iter_number ≤  Max_iterations do 

4:           Ps<= Select the top s individuals from P 

5:           M<= estimate a new Model from Ps  

6:           Pn <= Sample n individuals from M 

7:           Evaluate Pn 

8:           P<= Select n individuals from P U Pn 

9:           iter_number =iter_number +1 

                   10: end While  

 

The key of the EDA algorithm is the way to estimate the probability distribution. A simple 

Gaussian distribution could be assumed for the distribution of pipe diameters when the 

individuals are approaching the global optima. In each iteration, a certain percentage of the top 

individuals in the population are used to estimate the mean and standard deviation of the 

distribution of each pipe. The new population is generated by sampling the estimated 

distribution. Figure 6.9 describes how the estimation and sampling work: 
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Figure 6.9.Flow chart of distribution estimation (sorted by descending order) 

 

Where n is the population size; p is the dimensionality of the problem; m is the mean value of 

corresponding dimension; s is the standard deviation of the dimension.  The above example 

shows the process of updating diameters of pipe3 in the offspring population by the Gaussian 

distribution calculated according to the top individuals in the parent population. 

 

The key issue of applying EDA to improve PSO is to find the right sample for the construction of 

the probabilistic distribution in EDA process. A good sample could more accurately cover the 

most promising region of the search space and guide the search toward it, so the quality of the 

sample directly affect the accuracy of the probability distribution model which is built on it. In 

the previous work of hybrid EDA and PSO, the better half of personal best position (�̂�𝑚𝑛 (t)) and 
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the current swarm (𝑋𝑚𝑛 (t)) are the most commonly used sample for EDA (see table 6.3), however 

a more appropriate sample could be used, which is called “historical good positions”. We use 

𝐻𝑚
𝑛 (t) to denote it. 𝐻𝑚

𝑛 (t) records the top best individuals  that all the swarm has ever travelled 

rather than the best positions each particle has ever travelled.  Why 𝐻𝑚
𝑛 (t) is better than �̂�𝑚𝑛 (t)? 

Here is the explanation: we assume the following configuration of the particle swarm at two 

consecutive generations, which are shown in table 6.4. We assume the population size is 5(n=5) 

and the fitness value of each individual in different matrix are given (assume it is a maximization 

problem).  As we can see, in generation t+1, the personal best position of the second particle is 

updated from 5 to 6, and the particle with fitness 5 is disregarded. But the particle with fitness 5 

is actually a very good one which is successfully kept in  𝐻𝑚
𝑛 (t+1). So if we use the top 40% of 

the �̂�𝑚𝑛 (t+1) as sample, it would be the particles with fitness value 6 and 4, but if we use top 40% 

of 𝐻𝑚
𝑛 (t+1) as the sample , it would be the particles with fitness value 6 and 5.   Therefore, the 

top individuals in historical best positions are better sample positions for EDA.  In the following 

sections, an improved hybrid algorithm of PSO and EDA is proposed using the historical best 

positions and it is compared with previous work. 

 

Table 6.3.Sample Used in The Literature 

Literature  Sample used for EDA 

Y.Zhou and J. Jin[52] Better half of 𝑋𝑚𝑛 (t) 

Mudassar Iqbal[53] Top ones  of �̂�𝑚𝑛 (t) 

R. V. Kulkarni[54] Better half of �̂�𝑚𝑛 (t) 

M. El-Abd[55] Better half of �̂�𝑚𝑛 (t) 

M. El-Abd [56] Top ones of 𝑋𝑚𝑛 (t) 
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Hongcheng Liu[57] Better half of �̂�𝑚𝑛 (t) 

Chang Wok Ahn [58] Top ones of local �̂�𝑚𝑛 (t) 

 

 

 

 

 

 

Table 6.4.Explanation of Historical Best Positions 

 Generation t Generation      t+1 

 𝑋𝑚
𝑛 (t) �̂�𝑚

𝑛 (t) 𝛺𝑚
𝑛 (𝑡) 𝐻𝑚

𝑛 (t) 𝑋𝑚
𝑛 (t+1) �̂�𝑚

𝑛 (t+1) 𝛺𝑚
𝑛 (𝑡 + 1) 𝐻𝑚

𝑛 (t+1) 

Fi
tn

es
s 

2 3 6 6 4 3 6 6 

5 6 6 3 4 6 6 5 

1 2 6 2 3 2 6 4 

3 1 6 2 3 3 6 3 

4 2 6 1 5 4 6 2 

 

6.1.3.3 Population Diversity 

As analysed in the introduction part, an accepted hypothesis is that maintenance of high diversity 

is crucial for preventing premature convergence in multi-model optimization. Before discussing 

how to preserve the population diversity, we need to first define how to measure population 

diversity. There two different types of diversity by measuring from genotype and phenotype 

space. The diversity of phenotype space is indicated by the distribution of fitness values of 



 44 

individuals in the population. It is calculated by the following equation: 

                                    Diversity (𝑆) = √1

𝑁
∑ (𝑓𝑖 − 𝑓)̅2𝑁
1                                                   (6.1) 

Most of the time the diversity of phenotype is not enough to indicate the real population diversity 

when there are too many different individuals that have the same fitness values, which is more 

likely to be present in the problem with high dimensionality. Hence, we choose genotype 

diversity in the research of this paper. In order to measure the population diversity of genotype 

space quantitatively, the following formula is adopted to calculate the diversity [51]: 

                       Diversity (𝑆) = 1

|𝑆|.|𝐿|
. ∑ √∑ (𝑝𝑖𝑗 − 𝑝�̅�)

𝑁
1

|𝑆|
1                                     (6.2) 

Where S is the swarm; |S| is the population size; |L| is the length of longest the diagonal in the 

search space; N is the dimensionality of the problem; pij is the jth  value of the ith particle and pj̅ 

is the  average value of  jth  dimension. It is obvious that this diversity measure is independent of 

population size, the dimensionality of the problem as well as the search range of each dimension.  

 

6.1.3.4. Convergence Process 

How convergence happens in PSO? Before we know how to address premature convergence 

problem of PSO, we need to know the convergence mechanism of PSO first. According to 

equation (5.1) and (5.2), in a classical PSO updating process, the position of next step is decided 

by the velocity of next step (see equation5.2).  And the velocity update of particles consists of 

three parts: the first is the inertia of particles; the second is cognitive acceleration which 

represents the particle’s own experience; and the third is social acceleration which represents the 

social interactions between particles. So when the latter two parts are close to 0, the velocity will 

be close to 0. That is to say when most of the particles are approaching their personal best 
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positions and all the personal best positions are very close to each other, the convergence 

happens. At the moment, the population tends to lose its diversity and a particle could leave the 

place only if the inertia weight and its current velocity is not equal to 0. If the current position 

coincides with the global best position by chance, this particle stops improve, and when all 

particles becomes the global best position, the population completely converge.  However, if this 

global best position is not the global optimum of the search space, premature convergence 

occurs.  

 

6.1.3.5. Improved Sequential hybridization of PSO and EDA  

Inspired by the above analysis of premature convergence, a potential way to prevent the 

premature convergence could be “boosting the personal best position ( �̂�𝑚𝑛 (t))”, which means to 

improve the personal best positions �̂�𝑚𝑛 (t) when the particles are very close to them by borrowing 

the strength from the outside, such as EDA. This could also explain the reason why hybridizing 

with EDA could improve the performance of PSO. In previous version of hybrids of PSO and 

EDA, EDA is used to estimate better positions and replace the current personal best positions 

with the better ones, so that the current best positions are boosted and the convergence is 

therefore delayed.  As we discussed in previous section, however, in most of the previous version 

of hybrid PSO and EDA, top good individuals of personal best positions or just the current 

swarm are used to construct the estimation model in EDA. Hence, in order to further improve the 

“boosting” ability of EDA, we adopt the historical best positions as the sample positions for 

building the probabilistic model in EDA.   This will result in more space for fitness improvement 

when the search process is close to convergence. Please note the EDA process is not started at 

the first generation, since at the very early stage of PSO search, all the particles are not in very 
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good positions, so the estimation model built on these positions should not be useful. Therefore, 

EDA process is started only 𝑀𝑠(tuneable) generations after PSO started.  After EDA process 

starts, it is not implement at each iteration but only activated every certain number of iterations 

( 𝑀𝑓 ), which is also tuneable. The Pseudo-code of the Improved Sequential PSO-EDA 

(ISEDPSO) algorithm is illustrated below: 

 

Algorithm 6.2   ISEDPSO 

________________________________________________________________________ 

1: Initialization for PSO: set the initial positions: 𝑋𝑚𝑛 (t=0), initial velocities 𝑉𝑚𝑛(𝑡 = 0) , personal 

            best positions �̂�𝑚𝑛 (t=0) , global best position 𝛺𝑚𝑛 (𝑡 = 0)  and historical best Hm
n (t=0).  

             (n is population size, m is dimensionality). 

2: While  t ≤  Max_iterations && t > 𝑀𝑠  do 

4:         Update the 𝑋𝑚𝑛 (t), 𝑉𝑚𝑛(t), �̂�𝑚𝑛 (t), 𝛺𝑚𝑛 (𝑡)  according to equation (1) and (2).   

5:              If  MOD(t, 𝑀𝑓)==0 

6                       Rank the mixture of �̂�𝑚𝑛 (t) and Hm
n (t-1) according to their finesses (ascending).  

7:                    Take 50% of the top individuals in the mixture as Hm
n (t) as sample for EDA. 

8:                    Estimate the probabilistic distribution model using Hm
n (t). 

9:                    Generate n new individuals 𝑇𝑚𝑛(𝑡) using the estimated distribution model and  

                       evaluate them. 

10:                    Mixture 𝑇𝑚𝑛(𝑡) and Hm
n (t), rank the mixture according to fitness (ascending). 

11:                 Take better half of the mixture as Hm
n (t). 

12:                  Use Hm
n (t) to update �̂�𝑚𝑛 (t) again.  

 13                 End If. 

14:       t =t +1; 
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15: End While 

  _____________________________________________________________________________________ 

        

In order to verify the advantage of this improved sequential hybridization of PSO and EDA, two 

other variants of this algorithm are also designed and will be tested and compared with 

ISEDPSO in the experiment phase.  The only difference between the proposed algorithm and the 

two variant is the sample they used for EDA process. Specifically, SEDPSO-1 use better half of 

personal best positions and SEDPSO-2 adopts better half of swarm positions. 

 

6.1.3.6. Parallel Combination of PSO and EDA (PEDPSO) 

In previous version of hybridization of PSO with EDA that discussed in the literature review, 

although they have different specific implementation strategies, there is a common characteristic 

that the PSO updating process and EDA updating process are implemented sequentially. They 

either update the particles using PSO and EDA alternately, or select PSO and EDA updating 

process probabilistically for each particle. In our proposed ISEDPSO, PSO and EDA updating 

processes are implemented alternately for the whole population. Is there any other way to 

cooperate the PSO and EDA updating process? In this study, beside ISEDPSO, another novel 

parallel hybridization strategy for PSO and EDA is proposed to address the premature 

convergence problem. In the parallel hybrid algorithm, a standard PSO and a simple EDA 

process are combined in parallel rather than sequentially as depicted in Figure 6.10.  
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Figure 6.10.Flow chart of PEDPSO 

 

 

The parallel algorithm starts from ranking and splitting the whole population into two sub 

populations: the better half is going to be updated by a typical EDA updating process, the worse 

half is updated by a typical PSO process. The reason behind this choice is that PSO is strong in 

improving very bad positions very fast (fast convergence ability), and EDA have to use a set of 

good positions to construct the correct probabilistic distribution model for estimation. At the end, 

both of the two new populations (P1 and P2) generated by PSO and EDA process, as well as the 

current population are mixed together and then better half of them is selected as the next new 

generation. There are two basic features and also the advantages for this novel hybrid strategy: 
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1). the population is actually the historical best positions throughout the search process, because 

at each iteration, we mix the current population and the newly generated population and then 

select the better half as next generation. This ensures that the search process always starts from 

very good positions the swarm has ever travelled. In terms of the EDA part, as we have discussed 

before, using historical best positions for constructing the distribution model is better than using 

personal best positions or good positions in the swarm. And 2) as we use the better half of the 

population as the personal best positions when updating the worse half of the population in PSO 

process, there is always space left for the swarm in PSO process to improve and the convergence 

process is therefore slowed down. This strategy is right similar to “boosting personal best 

positions” strategy used in ISEDPSO but it is more effective since at each iteration, before the 

population is completely convergent, the personal best position for each particle in PSO process 

is guaranteed to be better than the particle, while in previous sequential hybrids, it is not 

guaranteed. So this is the most distinctive part for this new hybrid method with respect to the 

previous sequential hybrids of PSO and EDA. In sum, this hybridization strategy is trying 

combine the advantage of PSO in fast convergence and the advantage of prediction of EDA 

together to control the population diversity and prevent premature convergence problem.   

 

6.1.3.7 Parameter Settings 

In the experiment phase, we compare the proposed two algorithms (ISEDPSO and PEDPSO) 

with the standard integer PSO and two other different versions of ISEDPSO in which the 

personal best positions and swarm are used by EDA process.  We not only compare the best 

results they can achieve but also compare the diversity control ability of each algorithm. And 

then the two proposed algorithm in this paper will be compared with other algorithms for WDN 



 50 

optimization from the literature on two benchmark networks.  

In order to make the results more comparable, PSO parameters are set uniformly. Both C1 and c2 

are set to 2; inertia weight is 0.8, Vmax is 50%, which denotes the absolute value of the boundary 

when updating velocity of each particle.  Each algorithm runs for 30 times on Hanoi network and 

Balerma network. The population size is set as 500 and the maximum number of generations is 

2500. For the number of generations before EDA process (𝑀𝑠 ) starts and the frequency of 

implementing EDA in ISEDPSO and its variants (𝑀𝑓), preliminary experiments are carried out 

and a proper parameter setting is identified: 𝑀𝑠=100,  𝑀𝑓=50. 

 

6.1.3.8 Experiment Results and Analysis  

The experimental results are shown in Table 6.5. As we can see, for Hanoi network, both of the 

proposed algorithms achieve the known best results in the literature. For Balerma network, only 

ISEDPSO and PEDPSO could achieve best cost below 2M€. IPSO and ISEDPSO-2 performs 

much worse than the others on both of the networks.   

Table 6.5.Experimental Results. 

Algorithm           Hanoi Network(M$)       Balerma Network(M€) 

 Best cost Average cost Best cost Average cost 

IPSO 6.369x10  7.110x10  6.299x10  6.729x10  

ISEDPSO-2 6.412x10  7.321x10  6.715x10  7.062x10  

ISEDPSO-1 6.081x10  6.210x10  2.021x10  2.043x10  

ISEDPSO 6.081x10  6.102x10  1.932x10  2.026x10  

PEDPSO 6.081x10  6.113x10  1.921x10  2.002x10  
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Figure 6.11.Fitness track of different algorithms (Balerma network) 

 

 

 

 

 

Figure 6.12.Fitness track of last 1000 generations (Balerma network) 
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Figure 6.13.Diversity tracks of different algorithms (Balerma network) 

 

 

 

In order to find out the relationship between the search performance and diversity control ability 

of the algorithms, the change of average fitness and diversity of the population in the experiment 

on Balerma network are both tracked and recorded. Figure 6.11 and Figure 6.12 show the fitness 

track of the algorithms. It is obvious that IPSO and SEDPSO-2 converge very fast and fail to 

achieve very good results. The other three algorithms including the two novel algorithms 

proposed in this paper could achieve much better results and the track of the last 1000 

generations can be observed in Figure 6.12. It shows that the two proposed algorithms 

outperform the others and PEDPSO is one with the best performance. 

What is noteworthy is that these results could be explained by the diversity track of the search 

process which is shown in Figure 6.13. The population diversity is calculated according to 
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equation (6). As we can see, conventional integer PSO losses population diversity very quickly 

and therefore results in premature convergence. On the contrary, SEDPSO-2 could maintain very 

high diversity throughout the search process, which causes an almost random search. So in both 

of these two extreme situations, the search algorithms could not achieve good results. The other 

three algorithms successfully control the population diversity gently and let it decrease more 

smoothly. As we can see in Figure 6.13, the diversity of SEDPSO-1 decrease slowly but it is 

close to 0 after only 2000 iterations. While the two proposed algorithms (ISEDPSO and 

PEDPSO) always maintain higher diversity through the search process and approach 0 at around 

500 and 1000 iterations later.  

 

From the analysis, we are able to make at least following four conclusions: 1) the diversity 

control ability of the search algorithm affect the overall performance of the algorithm. 2) A 

smooth decreasing trajectory of the population diversity throughout the search process could help 

prevent premature convergence. 3) Using historical best position in EDA process could really 

help PSO to better control the diversity and achieve better results. And 4) it is obvious that both 

of the proposed new hybrids of PSO and EDA effectively control the population diversity and 

prevent the premature convergence problem. 

                

6.1.3.9 Compare with previous methods for WDN optimization 

In order to justify the advantages of our proposed algorithms over previous methods, we 

compare the proposed algorithms with previous work extensively. We select several most recent 

related works which all adopt 10.6668 as Hazen-Williams roughness coefficient for hydraulic 

calculations on Hanoi network and Darcy–Weisbach roughness coefficient 0.0025 for Balerma 

network. The selected work also includes all the previous attempts of applying PSO to WDN 
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optimization problem. Please note some of the previous work did not test their method on the 

larger Balerma network.  

 

 

Table 6.6(a) shows that both ISEDPSO and PEDPSO can achieve the best reported cost for 

Hanoi network. Although the number of evaluation calls of both proposed algorithms (17,600 

and 23,400 respectively) are a little higher than the best of the other models(16,600), the 

proposed two novel algorithms perform very well in terms of reliability: The successful rates for 

ISEDPSO and PEDPSO are 93% and 90% respectively, only one previous work achieved better 

successful rate that is over 90% . Since Hanoi network is relatively smaller and is not difficult for 

most of algorithm to identify the known best cost (6.0811 price units), most of the recent 

methods could achieve this result. So no one was able to find a better result in including our two 

proposed algorithms. While on Balerma network, the situation is completely different, so far no 

commonly recognized best result has ever been identified.  

 

Table 6.6(a).  Comparison of The Best Cost Achieved by Different Algorithms (Hanoi) 

Algorithms Min cost Average Success rate Min # of 

evaluations 

GA([32] 2006) 6.173 n/a n/a 26,457 

ACO([57].2006) 6.134 n/a n/a 35,433 

HS([58], 2006) 6.081 n/a 1/81 27,721 

PSHS([59],2009) 6.081 n/a 1/81 17,980 

GHEST([39], 2010) 

PSO ([35],2008) 

6.081 

6.133 

n/a 

n/a 

6/10 

3/100 

16,600 

n/a 
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HD-DDS([60], 2009) 

SAPSO([38],2010) 

NLP-DE([61],2011) 

6.081 

6.081 

6.081 

6.252 

n/a 

n/a 

8/100 

1/100 

98/100 

5000,000 

n/a 

48,724 

ISEDPSO(this work) 6.081 6.102 28/30 17,600 

PEDPSO(this work) 6.081 6.103 27/30 23,400 

(In all algorithms, Hazen-Williams roughness coefficient for hydraulic calculations is 10.6668. Price unit: M$) 

 

 

Table 6.6.(b).Comparison of the Best Cost Achieved by Different Algorithms (Balerma) 

Algorithms Min cost Average Success rate Min # of evaluations 

GA([32], 2006) 2.302,000 n/a n/a 10,000,000 

HS([58], 2006b) 

HD-DDS([60], 2009) 

2.018,000 

1.940,923 

n/a 

2.165,000 

1/81 

n/a 

10,000,000 

30,000,000 

GHEST([39], 2010) 

NLP-DE([61], 2011) 

2.002,387 

1.923,000 

n/a 

1.927,000 

1/10 

n/a 

290,500 

1427,850 

ISEDPSO(this work) 1.971,460 2.026,672 16/30   89,700 

PEDPSO(this work) 1.933,407 2.002,231 17/30 217,400 

(In all algorithms, Darcy–Weisbach roughness coefficient for hydraulic calculations is 0.0025, Price unit: M€) 

 

 

Table 6.7. Comparison with the same number of evaluations (Balerma) 

Algorithms Min cost NO. of  evaluations 

GA([36]., 2008) 3,738 45,400 

SA([36], 2008) 3.476 45,400 

MSATS([36], 2008) 3.298 45,400 

HS([58], 2006) 2.601 45,400 
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PSHS([59], 2009) 2.633 45,400 

MA([37], 2010) 3.120 45,400 

GHEST([39], 2010) 2.178 45,400 

ISEDPSO(this work) 2.1083 45,400 

PEDPSO(this work) 2.3781 45,400 

(In all algorithms, Darcy–Weisbach roughness coefficient for hydraulic calculations is 0.0025, Price unit: M€) 

  

Table 6.6(b) shows the optimization results of Balerma network. Both ISEDPSO and SEDPSO 

are tested 30 times on this larger size network and both of them can achieve a very good cost 

with much less computation effort, compared to the literature. Specifically, ISEDPSO 

successfully achieved a new record of the best result, which is 1.921 unit price, using only 

201,400 fitness evaluations. PEDPSO could also achieve a very good result (1.933 price unit) 

using much less fitness calls (217,400) comparing to the most recent work [59]. So, both of the 

proposed algorithms in this work outperform all the previous work in terms of the efficiency. 

And the high efficiency on this larger network indicates they have great potential ability on even 

larger real-world networks.   

In order to further reveal the potential of our proposed methods, the proposed algorithms are 

compared according to the best results each algorithm could achieve with the same evaluation 

calls. Since only a limited number of previous work provides such data, we only includes several 

previous methods in this comparison. Table 6.7 shows that SEDPSO achieved the lowest cost 

within the required evaluation calls(45,400), while PEDPSO cannot obtain lower cost but the 

result still can rank the second in the available results in the literature. So we can say that these 

two algorithms still maintain certain level of fast convergence ability at the early stay of search 

which is the inherent advantage of PSO, although we already use EDA to control the population 
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diversity and prevent the fast convergence process. 

 

We have to mention the most recent method which achieved minimal cost on Balerma network 

[59]. Comparing to this best method from the literature, we believe our method has better 

generality and easy to implement and extend, especially when we need include other 

considerations in the optimization, such as the reliability of the water network. In such situations, 

the method in [59] will have to adapt large part of their methods, while our method only need to 

convert the new consideration into numerical evaluation and add it into the calculation of fitness 

values. Moreover, when we apply our method into a new network, the only thing we need to 

change is the length of each individual, but in [59], all the implementation of NLP and shortest-

distance tree search algorithm will have to be modified accordingly.  

 

 

6.1.4 Clustering Analysis enhanced Fish School Search 

 Clustering Analysis (CA) has been used to improve many other swarm intelligence algorithms, 

such as PSO. In most cases, CA is used to split the whole population into smaller sub populations 

and each of the sub population evolves separately so that the diversity of the entire population 

could be preserved. It is also very suitable for further enhance the search ability of Fish School 

Search due to the following two reasons: 1) from the observation of natural behavior of fish 

schools,  the populations size of the fish school is dynamic and small size schools are more 

reliable. And 2) in the instinctive movement operator of FSS, all the movements of the fishes in 

next iteration, are decided by the good movements of previous iteration. If the fishes are located 

around different local optima(or landscape), it is not reasonable to move the fish according to the 
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good move direction of the fishes around other local optima. 

Upon aforementioned analysis, a dynamic seeded Clustering Analysis is used to improve the Fish 

School Search. The basic idea of predefined radius 𝑅 (tunable) to split the entire school into 

small sub schools, when a fish is within the distance of 𝑅𝑖 to the seeding fish of one school, then 

the particle will be absorbed into that sub school, otherwise if there no sub school could absorb 

that fish, it will be a seed for a new fish school. Algorithm 6.1 provides the details for this 

dynamic clustering procedure. After the entire fish school is split into small sub schools, each 

sub school is then updated according to a complete FSS updating process(Algorithms 5.1), 

therefore the number of the sub schools are keep changing throughout the search process.  This 

new variant of FSS is named as “Clustering Analysis enhanced Fish School Search (CAFSS)” 

The details of this new algorithm could be found in the following algorithm 6.2: 

Algorithm 6.1   Dynamic clustering peocedure 

1: Sort the population (P) according to their fitness (ascending). (Minimization problem) 

2:   While i < population size do   

                   if  𝑃𝑖 is not assigned into any sub swam 

                             While  i+1<= j< population size do 

                                            If  𝑃𝑗 is not been assigned to any sub swarm 

                                                          If  Distance(𝑃𝑖, 𝑃𝑗)<= R 

                                                           Assign 𝑃𝑗 into the sub swarm which is seeded by 𝑃𝑖 

                                                           End If 

                                            End If 

                                            j=j+1; 

                             End While 

                else if  
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                i=i+1; 

        End while 

3. Output all the seeds of each sub swarm and membership of each fish. 

                

 

Algorithm 6.2   CAFSS 

1: Initialization of population: set the initial population (P), populations size(N) and Max 

iterations. 

2: While iter_number ≤  Max_iterations do 

                Update membership of each fish according to Algorithm 6.1. 

                For each sub fish school, update all the fishes according to Algorithm 5.1. 

3:           iter_number =iter_number +1 

4: end While 

 

6.1.4.1 Experimental Setting and Results 

The proposed algorithm is tested on Hanoi network and compared with original FSS and 

standard PSO. There is one important parameter of this algorithm: the clustering radius R. So the 

first step of the application of this algorithm is to find a good value for R.  As we know the 

possible biggest distance between any two points in the search space could be identified if we 

use Euclidian distance and we also know the value range of each dimension.  Specifically, for 

Hanoi network, the biggest distance is D= ∑ (6 − 1)234
1 . In the experiment, we tested all the 

following R: 1/10, 1/9. 1/8, 1/7, 1/5 and the track of number of clusters are given in Figure 6.14.  

As we can see that, when R is very small, such as less than D/8, the number of clusters almost 

not changes along the entire search process, which means it is hard to converge. On the contrary, 
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when R is very big, such as larger than D/7, the number of sub swarms is very small and also 

does not change too much along the search process, in such situation, the diversity of the 

population is not contained very well. Only when R=D/8, the number of clusters decrease 

smoothly from 300 to 100 hundred and then converges to 100(population size is 500). This is a 

very ideal situation for the balance between preserving the population diversity and keeping the 

fast convergence rate. Therefore, we use D/8 as the clustering distance and the other parameters 

are listed in the table 6.8. Experimental results are also shown in table 6.8. 

 

Table 6.8.Experimental Setting and Results 

Algorithms  St-i St-v Pop 

size 

NO. of 

iterations 

NO. of 

runs 

Best cost Average 

cost 

FSS 2 0.2 500 500 30 6.733x10  7.174x10  

Standard PSO -- -- 500 500 30 6.369x10  

 

7.110x10  

CAFSS 2 0.2 500 500 30 6.587x10  

 

7.095x10  
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Figure 6.14.Track of the number of clusters at different R value (Hanoi) 

 

 

 

Figure 6.15.Fitness track of CAFSS on Hanoi network 
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6.2 26BPredict Promising Region in Search Space 

6.2.1 Predicting Promising Region 

Among the different ways of using ML to enhance EAs, Predicting Promising Region is a hot 

research area in the domain. During the search process of EAs, predicting promising positions or 

region according to previous data could help generate better population for the next generation 

and guide the search toward promising region where the optima is more like to be.  Thus far, 

variants of ML techniques such as statistics and analysis methods have been used to predict 

promising regions in the search space and to guide the generation of new populations. Liang and 

Suganthan [60] proposed using a history learning strategy to create statistics on the historical 

data and to predict the promising moving direction of a particle when designing PSO algorithm. 

Zhang et al. [61] used a statistical method to design intelligent crossover operator for GP so as to 

predict a promising search region. Li and Tam [62] used the CA technique to cluster the 

individuals into different groups during the search process and preserved the best individual of 

each group to predict a promising search direction and to help generate a better population. CA 

techniques are also used in PSO to predict a promising leader for guiding the flying behavior of 

particles [63] and used in DE to generate promising new population according to the cluster 

centers [64]. 

Based on the above analysis of the literature, the basic idea of predicting the promising region is 

to first assume the good positions in the search space follow certain type of probability 

distribution and then estimate the distribution, at last, use the estimated distribution to predict the 

promising positions. Therefore, type of distribution estimated is the key issue and it may vary for 

different specific problems.  
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6.2.2 Particle Swarm Optimization 

We select Particle Swarm Optimization here as the search algorithm. As we have introduced 

before, PSO is a population based optimization method inspired by the collective behavior of a 

bird flock.  

Why we choose PSO here? There is an important property of PSO is that the best position each 

particle has ever traveled are all recorded and these particles could be regarded as the 

representative sample of good positions from the promising region of the search space, use 

follow figure 6.16 to illustrate: During the entire search process, personal best position for each 

particle keep updated. Whenever a particle been around the peak(a), the position will be recorded 

as the personal best position and  at the later stage of the convergence, most of  personal best 

positions will be around peak (a) although some of the them might be around other lower peaks. 

But the top individuals of personal best positions will most like all being round the highest peak.  

This analysis is the premise of the following experiments.  

 

Figure 6.16.Illustration of personal best position 
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6.2.3 Gaussian Mixture Model 

A Gaussian Mixture Model (GMM) is a parametric probability density function represented as a 

weighted sum of Gaussian component densities. It can be given by following equation, 

 

                                     P(Χ|λ)=∑ ωig(Χ|μi, Σi)
M
i=1 ,                                                  (6.1) 

 

where X is a D-dimensional continuous-valued data vector, ωi , i=1…….,M, are the mixture 

weights, and g(X|μi, Σi), i=1,…….,M, are the component Gaussian densities. Each component 

density is a D-vitiate Gaussian function of the form, 

 

            g(Χ|μi, Σi)=
1

(2π)D/2|Σi|
1/2 exp {−

1

2
(X − μi)

′Σi
−1(X − μi)},                             (6.2) 

 

With mean vector μi and covariance matrixΣi. The mixture weights satisfy the constraint that: 

∑ ωi = 1M
i=1 . 

 

The complete Gaussian mixture model is parameterized by the mean vectors, covariance 

matrices and mixture weights from all component densities. These parameters are collectively 

represented by the notation λ, 

 

                                 λ={ωi, μi, Σi}   i=1,…..,M.                                                                            (6.3) 

 

Figure 6.17 shows a simple example of Gaussian Mixture Model when there are 3 Gaussian 

components. 
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Figure 6.17.An example of Gaussian mixture with 3 components. 

 

 

6.2.4 Expectation Maximization 

Given training data (vectors) and a GMM configuration (number of components and probability 

for each component), we wish to estimate the parameters of the GMM, which best matches the 

distribution of the training data. There are several techniques available for estimating the 

parameters of a GMM [65]. By far the most popular and well-established method is maximum 

likelihood (ML) estimation. 

The aim of ML estimation is to find the model parameters which maximize the likelihood of the 

GMM given the training data. For a sequence of T training vectors X={𝑋1, ……𝑋𝑇}, the GMM 

likelihood, assuming independence between the vectors, can be written as, 

                                 P(X|𝜆)=∏ 𝑝(𝑋𝑡|𝜆)
𝑇
𝑡=1                                                               (6.4)                        

 

Unfortunately, this expression is a non-linear function of the parameters λ and direct 

maximization is not possible. However, ML parameter estimates can be obtained iteratively 

using expectation-maximization (EM) algorithm[66]. 
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The basic idea of the EM algorithm is, beginning with an initial model λ, to estimate a new 

model λ, such that p(X|λ) >= p(X|λ̅). The new model then becomes the initial model for the next 

iteration and the process is repeated until some convergence threshold is reached.  

 

On each EM iteration, the following re-estimation formulas are used which guarantee a 

monotonic increase in the model’s likelihood value, 

Mixture Weights: 

 

𝑤𝑖̅̅ ̅=
1

𝑇
 ∑ Pr (𝑖|𝑋𝑡, 𝜆)

𝑇
𝑡=1                                                   (6.5) 

 

Means 

 

𝜇�̅�= ∑ Pr (𝑖|𝑋𝑡,𝜆)
𝑇
𝑡=1 𝑋𝑡

∑ Pr (𝑖|𝑋𝑡,𝜆)
𝑇
𝑡=1

                                                           (6.6) 

 

Variances (diagonal covariance) 

 

 

𝜎2𝑖̅̅ ̅̅ = ∑ Pr (𝑖|𝑋𝑡,𝜆)
𝑇
𝑡=1 𝑥2𝑡

∑ Pr (𝑖|𝑋𝑡,𝜆)
𝑇
𝑡=1

-𝜇2
𝑖

̅̅ ̅̅                                               (6.7) 
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6.2.5 Assumptions for Distribution Model 

Before we estimate the parameters of the assumed distribution, we need to make the assumptions 

for the distribution. We can assume the dimensions are independent with each other and each 

dimension follows a type of distribution; or we can also assume all the dimensions together 

follow a multivariate distribution. For this specific engineering problem, we can make following 

assumptions: 

 

(1) Assume the diameters of different pipes are independent with each other. Good values of 

diameters of each pipe follow a mixture Univariate Gaussian distribution. 

 

(2) Assume the diameters of different pipes are dependent with each other, which means that the 

good settings of diameters of all the pipes in the network follow a mixture of Multivariate 

normal distributions. 

 

Based on above assumptions, two different algorithms are proposed in the next section.  

 

6.2.6 Predict the Promising Region for PSO 

According to the abovementioned assumptions, two different methods of predicting the 

promising region are proposed.  

With either of the two assumptions, a mixture Gaussian model is assumed, and EM is used to 

estimate parameters for the mixture model, then the estimated model is used to re-sampling 

again.   More specifically, during each iteration of  PSO, the top 20% of the personal best 
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positions are used as the sample for estimation. After the re-sampling, the newly generated 

individuals are re-ranked with previous personal best positions and better half of them is adopted 

as the personal best positions for the next generation.  

 

1) Univariate Gaussian Mixture 

 When assume the dimensions are independent with each other, it means the good diameter 

settings for each pipe in the network follow a mixture of  Univariate Gaussian Distribution. We 

call the proposed algorithm based on this assumption “Univariate EM based Particle Swarm 

Optimization “(EMPSO-U). 

Algorithm 6.3.   EMPSO-U 

1: Initialization for PSO: set the initial population(N): 𝑋0 , initial velocities 𝑉0 , 𝑃𝑏𝑒𝑠𝑡0  , 𝑔𝑏𝑒𝑠𝑡0   

(c1=c2=2,w=0.5)   

2: While iter_number ≤  Max_iterations do 

4:           Update the velocities V, positions X, 𝑃𝑏𝑒𝑠𝑡𝑖  , 𝑔𝑏𝑒𝑠𝑡𝑖 according to PSO strategy.   

5:           Rank the updated personal best positions according to their finesses.  

6:           Take 20% of the top individuals in 𝑃𝑏𝑒𝑠𝑡i (N) to estimate the distribution using EM for each pipe. 

7:           Regenerate   N individuals according the estimated distribution. 

8:           Mix the newly generated with the previous personal best positions and take the better half as the 

              Personal best positions for the next.   

 9           Update the 𝑔𝑏𝑒𝑠𝑡i. 

10:           iter_number =iter_number +1 

11: end While 

 

 

2) Multivariate Gaussian Mixture 

When assume the dimensions are dependent with each other, it means the good diameter settings 
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for all the pipes in the network follow a mixture of Multivariate Gaussian Distribution. We call 

the proposed algorithm based on this assumption a “Multivariate EM based Estimation Particle 

Swarm Optimization “(EMPSO-M). 

Algorithm 6.4.   EMPSO-M 

1: Initialization for PSO: set the initial population(N): 𝑋0 , initial velocities 𝑉0 , 𝑃𝑏𝑒𝑠𝑡0  , 𝑔𝑏𝑒𝑠𝑡0   

(c1=c2=2,w=0.5)   

2: While iter_number ≤  Max_iterations do 

4:           Update the velocities V, positions X, 𝑃𝑏𝑒𝑠𝑡𝑖  , 𝑔𝑏𝑒𝑠𝑡𝑖 according to PSO strategy.   

5:           Rank the updated personal best positions according to their finesses.  

6:           Take 20% of the top individuals in 𝑃𝑏𝑒𝑠𝑡i (N) to estimate the distribution using EM. 

7:           Regenerate   N individuals according the estimated distribution. 

8:           Mix the newly generated with the previous personal best positions and take the better half as the 

              Personal best positions (𝑃𝑏𝑒𝑠𝑡i+1)for the next.   

 9           Update the 𝑔𝑏𝑒𝑠𝑡i. 

10:           iter_number =iter_number +1 

11: end While 

 

 

 

6.2.7 Experimental Results and Analysis 

Both of the proposed algorithms are tested on two benchmark networks. And also they are 

compared with a conventional integer PSO. The parameter setting for the algorithms are listed in  

Table 6.9.Parameter Setting for Experiments of EMPSO 

Network Assumption  Population    size Max  # of generations Percentage of pbest for 

sampling 
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In order to test the performance of the proposed search algorithms on different number of 

Gaussian components and identify the best number of Gaussian components, for each of above 

setting, the algorithms run 30 times on each of the following number of components: 1, 2, 3, 5, 8, 

10, 20. Due to the fact that the convergence time for EM increase largely as the time of 

components increase, so larger number (>20) of components are not tested on this problem.  

From Figure 6.18 and 6.19, on both assumptions, the number of components does affect the 

performance of the PSO. And we know that when using Univariate assumption, 10 Gaussian 

mixture model is the best and when using Multivariate model, 2 Gaussian mixture is the best. 

With the best Assumed Gaussian model, the final experimental results on Hanoi network are 

recoded in Table 6.10.  

 

Table 6.10.Experimental Results of EMPSO 

Assumption NO. of  Gaussian 

components 

Best cost Average best cost Standard  

deviation 

Univariate 10 6.2361x10  6.2617x10  1.151x105 

Multivariate 2 6.1138x10  6.1972x10  1.210x105 

 

Hanoi Univariate  500 100 20% 

Multivariate 500 100 20% 

IPSO 500 100 NA 

Balerma Univariate 1000 200 20% 

Multivariate 1000 200 20% 

IPSO 1000 200 NA 
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Figure 6.18.Average and best optimal cost on Hanoi network under Univariate Gaussian 

Distribution with different number of components 

 

 

 

 

 

Figure 6.19.Average and best optimal cost on Hanoi network under Multivariate Gaussian 
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Distribution with different number of components 

 

 

Figure 6.20.Compare the average performance of algorithms based on Univariate and 

Multivariate Gaussian models. 
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Figure 6.21.Compare the average number  of generations before convergence based on 

Univariate and Multivariate Gaussian models. 

 

 

In Figure 6.18 and Figure 6.19, the average and best optimal cost achieved by the proposed 

algorithms based on different assumptions are compared with that of conventional integer PSO. 

It is obvious that with the same population size and number of generations, both of the two 

proposed new methods performance much better than conventional PSO and this could prove 

that the proposed method for predicting promising region could effectively improve the search 

performance of PSO. On the other hand, on different number of Gaussian components, 2 or 3 

components are better in terms of the average optimal cost, although there are similar results 

achieved by larger number of components.   When compare the performance on different 

assumptions, from Figure 6.20, we can see that the average optimal cost of Multivariate model 

are better than Univariate Model. It might shows that fact that there are interactions between 

different pipes.  
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The Search speed (convergence rate) is also investigated and it is measured by the average 

number of generations before convergence within 100 generations. Figure 6.21 shows that the 

Algorithm based on Multivariate model converges much faster than that of Univariate model. 

 

In sum, based on the experimental results on Hanoi network, we find that the assumption of 

Multivariate Gaussian model is more appropriate for Hanoi network than Univariate mode 

because the algorithms based on Multivariate model outperformances better in terms of search 

ability and search speed. 

 

Due to the high dimensionality for the large network (Balerma), the proposed algorithms could 

not run on larger number of Gaussian components because the matrix manipulation crashed 

because of the singularity of the matrix data.  Therefore, the algorithms only run on several 

number of Gaussian mixture models. The results are shown in f following table 6.11. 

 

As listed in Table2, the performance of conventional PSO is terribly worse than the proposed 

algorithms, which could uncover the potential search ability of these proposed algorithms for 

larger size networks.  The performance of UEPSO  is generally better than that of MEPSO, 

especially the UEPSO under single Gaussian assumption. This implies that Univariate 

assumptions are more suitable for large size network, which might be due to the curse of high 

dimensionality. 

Table 6.11.Experimental Results of EMPSO on Balerma network 

Algorithms # of Average cost (Million Minimal cost 
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Gaussian  

Compone

nts 

USD) 

IPSO NA 102.4481 43.4391 

UEPSO (Univariate)    

 2 9.175852 8.920233 

 3 4.307014 3.584975 

 >3 Not available (the matrix are singular) 

MEPSO(Multivariate) 1 3.74591 5.93152 

 >1 Not available (the matrix are singular) 

 

6.2.8 Conclusions & Future Work 

In this paper, two different strategies of predicting promising region using Expectation 

Maximization (EM) for PSO are proposed and compared. The implementation of prediction is 

based on two different assumptions about the distribution of good positions in the search space. 

The proposed algorithms are applied to the practical engineering optimization problem of urban 

water distribution network. Two famous benchmark examples are utilized to test the performance 

of the new algorithms and compared with previous work. Based on the experimental results so 

far, we can draw following conclusions: 

1. Predict promising region using EM could greatly improve the search performance of PSO 

on the Water Distribution Network optimization problem. 

2. Multivariate Gaussian Mixture Model is more suitable for small size network and 

Univariate Gaussian Mixture Model is more suitable for larges size network. 

3. When used Gaussian Mixture Model, 2 or 3 Gaussian components are the best choice. 
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So far the experimental results has proven the proposed methods are much better than the 

conventional PSO and predicting promising region using Gaussian Mixture Model and EM could 

greatly improve search ability of PSO. In order to further verify the proposed methods, the 

following work needs to be done: 

1. Compare the proposed methods with other methods other than PSO based algorithms on 

the same optimization problem. 

2. Try to figure out a way to reduce the dimensionality of the network so that the methods 

cold be applied on larger size network.  

 

6.3 27BParameter Adaptation 

6.3.1 Introduction of Parameter Adaptation 

For most of the meta-heuristics, including PSO, performing the appropriate parameter 

adjustments is always a cumbersome and laborious task. Normally, meta-heuristics can only 

perform efficiently and effectively by adjusting the parameters properly. There are two primary 

ways of setting parameter values: parameter tuning and parameter control. Parameter tuning 

consists of finding and setting a priori parameter values before running, whereas parameter 

control is about adjusting the parameters as the algorithm is running. More specifically, three 

distinct ways of parameter control can be used: Deterministic parameter control, adaptive 

parameter control and self-adaptive parameter control (Figure 6.22). In deterministic control 

strategy, the parameters are altered by some deterministic rule, such as time varying strategy in 

which the parameter is varying over time following a predefined function of time. Adaptive 

parameter control takes place when there is some form of feedback from the search that is used 

to determine the change strategy of the parameters. Parameters are encoded into the 
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representation of the individuals in the population to co-evolve with the configurations of the 

individuals. The rationale behind the self-adaptive control is that the better values of the encoded 

parameters lead to better individuals, which in turn are more likely to survive and produce 

offspring and hence propagate these better parameter values. Adaptive parameter control is 

common for PSO and has shown effectiveness in solving various problems in the past [67]~[69]. 

It has also been used for WDN optimization problem. Montalvo [23]  uses a self-adaptive 

parameter controlled PSO to optimize the  

WDS for the first time. The performance results of the proposed algorithm show that the self-

adaptive featured PSO averages out the standard PSO and other EAs applied to the WDS 

optimization problem. 

 

Figure 6.22.Classification of parameter control methods 

 

6.3.2 Co-Evolution Strategy for Parameter Setting of PSO 

In our proposed parameter estimation strategy, there are two iterative loops which run 
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settings (c1 and c2) online for each individual in PSO loop. In PSO population, each individual is 
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a candidate solution for the specific optimization problem. In EDA population, each individual is 

a pair of values for c1 and c2. The population size for both PSO and EDA loop are the same and 

one individual in PSO corresponds to one individual in EDA population respectively. Each 

individual in PSO is updated based on (1) only using the corresponding pair of c1 and c2 in EDA 

poplation. Each individual in EDA population is updated every generation (see Algorithm 6.5). 

But this update is only implemented every M (1-10) generations in PSO loop, which means the 

parameter values for each individual in PSO keeps unchanged during every M consecutive PSO 

loop interactions. The fitness used in EDA loop is the progress of the particle under the 

corresponding parameter settings in PSO loop during M consecutive generations. Therefore, the 

values of c1 and c2  in EDA loop will hopefully converge to the best combination under which 

the corresponding particle in PSO could achieve the biggest progress in M consecutive 

generations. There is a assumption behind is that a good setting of parameters for the most recent 

iterations (e.g. past M iterations) will also be good (at least not worse) for the immediate future 

iterations. The complete pseudo code is given in following Algorithm 6.6. 

 

Algorithm 6.5.  Updating process in  EDA Loop 

1: t   is the generation index of PSO loop; 

2: 𝑥𝑖𝑡 is the ith individual in  𝑃𝑒𝑑𝑎at generation t; 

3: 𝑦𝑖𝑡 is the ith individual in  𝑃𝑒𝑑𝑎 at generation t; 

4: N is populations size; 

5: While i ≤  N do 

6:            f(𝑦𝑖𝑡)= 𝑓(𝑥𝑖𝑡)-f(𝑥𝑖𝑡−𝑀); 

7:              i=i+1; 

8: End While; 
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9: Rank 𝑃𝑒𝑑𝑎 according to fitness (decsending);                 

10: Select the top individuals from 𝑃𝑒𝑑𝑎; 

11: Estimate the mean and standard divaton  for each dimension; 

12: Sample N individuals by the estimated distribution; 

13: Update all the individuals in 𝑃𝑒𝑑𝑎 with the sample. 

 

 

 

Algorithm 6.6.   Parameter co-evolving algorithm 

1: t   is the generation index of PSO loop; 

2: N is populations size of both Ppso and Peda; 

3: Initialize the population for PSO: Ppso; 

4: Initialize the population for EDA: Peda; 

5: Evaluate the each individual in population Ppso;  

6:While iter_number ≤  Max_iterations do 

7:            Update all the individuals in Ppso according to  

8:               (1)and (2); 

9:               If (iter_number)mod(M)=0 

10:                     Update all the individuals in Peda 

11:                      according to Algorihtm 2; 

12:             End if ;  

13:End While . 

 

 

6.3.3 Validation by Numerical Optimization 

The proposed parameter setting method is validated on two different numerical optimization 
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problems. The estimated optimal parameter settings (c1 and c2 ) obtained by the proposed 

algorithm on these problems are compared with the values found by a fine parameter tuning. 

Ackly’s function and  Restringing’s function are selected in this experiment due to their very 

rough landscapes with large numbers of local minima which makes any search algorithm 

vulnerable to being trapped in a local minimum.  They are also usually used as benchmark 

problems for evaluating proposed new optimization algorithms.  

1) Parameter Fine Tuning 

A fine-tuning experiment was conducted to identify the optimal combination of the parameters c1 

and c2. The best combinations for c1 and c2 were found to be [0.8, 1.8] for Ackley’s function and 

[1.2, 1.6] for Ratrigin’s function. Actually, from the 3D scatter plot in Figure 6.23, we can see 

that the best c1 and c2 combination is not just one point, but rather an area in the basin. In other 

words, there is a family of c1 and c2 combinations which could help the PSO algorithm perform 

the best. 

 

Ackley’s    
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Rastrigin’s 

Figure 6.23.Parameter tuning results for two numerical optimization problems 

 

 

 

 

 

Table 6.12.The Tuning and Estimated Results for c1 and c2 

parameters Tuned results Estimated results and difference 

 Ackley’s 

function 

Rastrigin’s 

function 

Ackley’s function Rastrigin’s function 

C1 0.8 1.2 0.861752   1.121347  (-6.6%) 
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(+7.72%) 

C2 1.8 1.8 1.722622  (-4.3%)          1.665069   (-7.4%) 

 

2) Parameter Estimation 

 For each of the problems, the above proposed parameter coevolving strategy is used to estimate 

the best parameter setting. And it was run 10 times. The average values for c1 and c2 are taken as 

the estimated result.  From Figures 6.24 and 6.25 below, we can see that, for one particle, the c1 

and c2 converged to almost fixed values at the end of the search process. Also from Figure 6.26, 

it is clear that for all the particles tracked, c1 and c2 converged to the same or nearly the same 

values respectively. Table 6.12 shows both fine-tuned and estimated best combination of c1 and 

c2 for each problem. The differences of between them are all less than 8%.  Furthermore, in the 

3D plot of the results of parameter tuning, there is an obvious basin which means three are more 

than one pair of good parameter settings and all the settings located in the basin can be regarded 

as optimal or near optimal settings. The estimated results are found to be located in the basin 

area. Therefore, we can say all the estimated results are generally consistent with the results of 

fine tuning. 



 83 

 

Figure 6.24.Track of c1 and c2 of one particle in one run (Ackley’s function) 
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Figure 6.25.Track of c1 and c2 of one particle in one run (Rastrigin’s function) 
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Figure 6.26.Track of c1 and c2 of 10 particles in one run (Ackley’s function) 

0

0.5

1

1.5

2

2.5

3

1 201 401

0

0.5

1

1.5

2

2.5

3

1 201 401



 86 

 

6.3.4 Benefits of the Fast Estimation Strategy 

For most practical optimization problems, especially for engineering design optimization 

problems, exhaustive parameter tuning is very costly and probably intractable due to the resource 

limits (time and experimental cost).  However, by using this fast parameter estimation strategy, 

an optimal parameter setting (or near optimal) can be identified in a very short time. Table 6.13 

shows the average value of estimated values and Table 6.14 shows the time consumed by the two 

methods on different problems. 

Table 6.13.Time Consumption by Two Different Methods on Different Problems 

Parameters Mean value Standard Deviation 

c1 1.186576193 0.228964 

c2 2.057563122 0.423434 

 

 

 

Table 6.14.Estimated Results for Hanoi Network 

Problem Tuning Estimation Time reduced 

Ackley’s function 

 

2250 runs 

(37.5 hours) 

 

10 runs 

(10 minutes) 

 

99.5% 

 

Rastrigin’s 

 

2250 runs 

(30  hours) 

 

10 runs 

(8 minutes) 

 

99.5% 
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6.3.5 Experimental Settings 

In the implementation of PSO in this work, in addition to the two acceleration coefficients to be 

estimated by the proposed approach, there are two other parameters that need to be set.  The first 

is the inertia weight over the generation which is computed using the following equation 

proposed by Jin et al.[70]: 

ω=0.5+ 0.5

ln(t)+1
                                                                   (6.8)  

Where: t is the iteration number. The boundary for the updated velocity (see Equation (1)) during 

the search process denoted by Vmax  also needs to be set. It is used to constrain the velocity of 

each particle to the range of [-Vmax ,    Vmax]. If  Vmax  is too large, the search process will be 

close to a random walk which will make it very difficult to converge; on the other hand, if Vmax 

is too small, the search process can easily  be trapped in a local optimum. It is therefore 

important to set an appropriate value for Vmax. Based on the findings by [23], the appropriate 

range for  Vmax   is between 40% and 100% of the variable range. We use 50% in our 

experiments. Table 6.15 shows the details for the experimental settings: 

 

Table 6.15.Experimental Setting. 



 88 

 

 

Table 6.16.Minimal Cost for the Hanoi Network  

 

Configuration   Hanoi Network 

Dimensionality 34 

Inertia weight Varied according to equation (3) 

Population size 200 

Number of Iterations 500 

Range of c1 and c2 [0,5] continues 

NO. of runs 30 

Implementation platform Matlab2012 
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*No specific number was given in the paper, but the authors compared their results in this paper with the results of their previous paper and 

found the average minimal costs are worse 

 

 

6.3.6 Results & Discussion 

The proposed estimation algorithm ran 30 times on the Hanoi network to estimate the optimal 

parameter settings for this engineering design problem. The results are presented in Table 6.16 

and Figures 6.27 and 6.28 below.  

As we can see from Figure 6.27, in each single run, there is a clear convergence of both c1 and 

c2 values during the co-evolution process. The average values of parameters in every run are 

recoded and the results of all 30 runs are displayed in Figure 6.28. We can see that all the average 

values are close, which means the estimated results are consistent throughout the experiments.   

The final average parameter values of the 30 runs are shown in Table 6.13, which is used as the 

estimated optimal parameter setting in the subsequent experiments.  

Methods Minimal cost  (x   $) Average 

(x   $) 

Average NO. 

of 

Fitness 

evaluations 

GA[22] 6.093   

GA[23] 6.182   

GA[24] 6.195   

ACO[25] 6.367   

PSO[19] 6.133 6.487 80,000 

PSO[20] 6.081 6.297 80,000 

PSO[18] 6.081 >6.297* 80,000 

PSO(this work) 6.081 6.252 20,000 
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Figure 6.27.Track of estimated C1 and C2 values for 30 particles on Hanoi network 
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Figure 6.28.Estimated C1 and C2 values for Hanoi network 

                                              

 

 

With the estimated optimal parameter settings: c1= 1.1866, c2=2.0576, we run the PSO for 30 

times on the Hanoi network and the results are summarized in Table 6.16 above. An extensive 

comparison between the proposed algorithm and other methods from the literature is made. Our 

PSO with the estimated optimal parameter settings achieved the best known minimal cost which 

is 6.0811(unit price).  

Although the best optimal solution known in the literature is only achieved once in the 30 runs 

(See Table 6.16), the reliability and efficiency are comparable to other methods (Table 6.16). The 

reliability of an optimization method could be measured by the average performance achieved by 

the proposed algorithm in a certain number of runs. Herein, we use the average minimal cost as 

the indicator of reliability. We know from Table 6 that our proposed algorithm achieved the 

smallest average cost compared to the other methods which also achieved the best minimal cost.  

Efficiency is measured by the average number of fitness calls used by the algorithm to achieve 

the best solution because in most engineering applications, fitness evaluation is the most time 
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consuming part of the optimization algorithm. Obviously, our method achieves the best 

efficiency, which is almost 4 times better than other methods. For the sake of clarity, in order to 

make the comparison justifiable, we need to point out that, except for the two adjusted 

parameters, all other parameters (e.g. inertia weight and Vmax) are set to the same values used in 

the three previous works in which PSO was adopted. The 30 minimal costs are shown in a 

histogram in Figure 6.29 and we can see that most of the achieved minimal costs are close to 

6.252 (unit price). The fitness traces of 5 runs are shown in Figure 6.30, from which a very fast 

convergence process can be observed. Another important observation from this figure is that all 

the 5 search processes converged after around 100 iterations. This might indicate that we could 

achieve a very good result with a very small number of fitness evaluations (around 2,000). This 

is a clear advantage over all other methods. From a practical point of view, an “early” almost-

optimal solution may be preferred to a “very late” optimal solution when the cost of time is taken 

into consideration. On the other hand, this observation also suggests that there might be a 

premature convergence problem, which is a common problem with the application of PSOs. 

Several researchers have proposed methods to address this problem with no conclusive solution. 

The major task for our proposed estimation method is to help the PSO obtain a very good 

parameter setting in a very short time, but it is not able to tackle the premature convergence 

problem, so more work is required to further improve the performance of PSO. 
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Figure 6.29.Minimal costs achieved with the estimated 

 

 

 

Figure 6.30.Fitness track of 5 runs 
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6.3.7 Conclusions and Future Work 

In this work, a fast parameter estimation strategy for PSO is proposed to estimate the optimal 

acceleration parameter settings. The self-adaptive control and co-evolution strategies are used 

together for the parameter estimation of PSO. In the proposed estimation model, the PSO is used 

to search the optimal solution for the specific problem while an Estimation Distribution 

Algorithm is used to adjust two acceleration coefficients iteratively according to the performance 

of their settings. In such way, acceleration coefficients of each particle are co-evolved throughout 

the search process. The tests on two numerical optimization problems show that the estimated 

optimal parameter settings are consistent with the optimal parameter settings achieved by 

parameter tuning. The application to a WDN optimal design problem shows that the proposed 

algorithm successfully estimated good parameter settings with which the PSO was able to 

identify the best known optimal solution for the benchmark example. The algorithm also 

performs better than other methods in the literature in terms of reliability and efficiency, although 

there is a premature convergence problem. The proposed parameter estimation strategy is 

promising and may perform better when combined with a premature convergence elimination 

strategy. The major contributions of the work presented in this paper are as follows: (1) A novel 

fast parameter estimation strategy to replace the inefficient conventional parameter tuning 

method for PSO is proposed. As long as a good parameter setting could be identified for a 

specific problem, it is not difficult for the optimization algorithm to achieve a good solution. 

And(2), a new optimization method with PSO is proposed for the optimal design of a Water 

Distribution Network. It is reliably able to achieve a very good solution with a small number of 

fitness evaluations.  
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Our future work will focus on the following topics: (1) to extend the proposed fast parameter 

estimation strategy for PSO to other Evolutionary Algorithms where there is a need for parameter 

tuning. And (2) to apply the proposed algorithm to the design optimization of larger water 

distribution networks design or other practical engineering design and/or optimization problems. 

 

                  

6.4 28BOperator Self-adaptation for PSO 

6.4.1 Operator Adaptive Strategies  

Adaptation is one promising research trend in PSO. Many adaptive and self-adaptive strategies 

are used to improve the performance of PSO. However, most of them focus on the parameter 

adaptation, only a few have focuses on the operator adaptation mechanism. In conventional PSO, 

all the particles are updated by the same strategy, in other way, all particles behave according to 

the same strategy. While as a matter of fact, there is no single operator is optimal for all the 

problems all the time. Therefore, each particle has several operators for selection. They can 

select the most suitable operator to update its velocity according to the environment or 

landscape. And the most important thing is that all the particles in the swarm have the ability of 

sensing the environment in the landscape of the search space and act independently upon what 

situation they encounter and where they are in the landscape. That is to say, each particle use 

different updating strategy at different time intervals and all these particles are using different 

updating strategies at the same time instant. The hypothesis of this method is that each particle 

can be regarded as an agent and can own a certain level of intelligence because it possesses the 

basic characters of an agent: perceiving its environment and acting upon that environment 

through actuators. From an agent’s point of view, the environment for each particle agent in the 



 96 

search landscape can be regarded as partially observable, stochastic, episodic and cooperative 

multi-agent environment. The philosophy behind this proposed model is that when each particle 

in the swarm has some kind of intelligence, the overall performance and search quality of the 

whole swarm will be improved.  

This type of adaptation mechanism based hyper heuristic was investigated in [71]. Based on the 

fact that no single operator is optimal for all problems and the optimal choice of operators for a 

given problem is also time-variant, Smith and Fogarty [72] proposes a framework for the 

classification based on the learning strategy used to control them and reviewed a number of 

adaptation methods in GAs. They also addresses the issue that the set of available operators may 

change over time, Smith [73] proposed a method for estimating an operator’s current utility, 

which is able to avoid some of the problems of noise inherent in simpler schemes for memetic 

algorithms. In [74], [75], an adaptive allocation strategy, called the adaptive pursuit method, was 

proposed and compared with some other probability matching approaches in a controlled, 

dynamic environment. In [76], a specific dynamic method based on the multi-armed bandit 

paradigm was developed for dynamic frameworks. In order to well evaluate the performance of 

operators, recently, a new strategy [77] was introduced by considering not only the fitness 

improvements from parent to offspring, but also the way they modify the diversity of the 

population, and their execution time. 

 

Based on abovementioned analysis, in this proposed operator self-adaptation strategy (OSPSO), 

there are two issues we need to solve: a set of effective operators which could the particles learn 

from different information source to improve the fitness of the particles, and a credit assignment 

system which forms the operator selection mechanism that automatically select the best operator 
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for each particle at different stage of the search process. In the following two sections, we will 

discuss about how to solve these two problems. 

 

6.4.2 Learning Operators 

In this proposed operator self-adaptation PSO (OSPSO), three operators are designed for each 

particle so that they could independently deal with different situations and select the most 

suitable operator accordingly. The equations for each of the proposed operator are listed below: 

 

(3) Operator a: learning from its own best position (Exploitation) 

                               𝑣𝑘𝑑 = 𝑤𝑣𝑘
𝑑 + 𝛼 ∗ 𝑟𝑘

𝑑(𝑝𝑏𝑒𝑠𝑡𝑘
𝑑 − 𝑥𝑘

𝑑)                     (6.9) 

 

(4) Operator b: Learning from the global best position (Exploration) 

                              𝑣𝑘
𝑑 = 𝑤𝑣𝑘

𝑑 + 𝛼 ∗ 𝑟𝑘
𝑑(𝑔𝑏𝑒𝑠𝑡𝑘

𝑑 − 𝑥𝑘
𝑑)                        (6.10) 

     

(5) Operator c: Learning from good positions in the history (Prediction ) 

                                𝑝𝑘+1
𝑑 = 𝑚𝑒𝑎𝑛(𝑝𝑘

𝑑) + 𝑠𝑡𝑑(𝑝𝑘
𝑑) ∗ 𝑟𝑎𝑛𝑑𝑛()                              (6.11) 

 

Where k is the iteration number; d is the dimension index;  𝑝𝑏𝑒𝑠𝑡  is the personal best position 

of each particle; gbest is the global best position of the entire swarm; randn()is a random 

standard normal distribution. 𝑚𝑒𝑎𝑛(𝑝𝑘𝑑)   and 𝑠𝑡𝑑(𝑝𝑘𝑑)   are the mean value and standard 

deviation of each dimension of better half of personal best positions in the current population.     

As we can see, the first two operators are directly introduced from the updating strategy of 

original PSO. But the last one is a new operator which could learn the useful information from 
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the historical good positions the particles have ever traveled. This information is recorded in the 

personal best positions of the current population during the search process.  

 

6.4.3 Operator Selection Mechanism 

After the operators are designed, the next issue is about how to select the best one from them 

which involves the operator selection mechanism. There is a very important assumption for the 

operator selection mechanism which is that good operators in the previous several iterations are 

also good choice for the particle in the immediate successive following iterations.  The key 

function of operator selection mechanism is to assign the credit for each operator as reward 

according to its performance in previous implementations. Our basic idea is to assign each 

operator for each particle a selection probability. And the selection probability will be updated 

every certain iterations of the search process according to the performance of each operator in 

previous iterations. There are two aspects of performance of the operator should be taken into 

consideration: 

(1)  The successfully ratio:  which means how many time the operator successfully improve 

the fitness of the particle when the operator is selected.  

 

(2) The progress achieved: which means how big the improvement achieved by applying the 

operator on the particle.  

Beside above two performance metrics, the selection probability in previous iterations should 

also be included into consideration of assigning the reward of each operator. The reward 

assignment mechanism is defined as 
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                                    𝑟𝑖𝑘= 𝑝𝑖
𝑘(𝑘)

∑ 𝑝𝑖
𝑘(𝑘)3

𝑗=1

 *β+𝑔𝑖
𝑘

𝐺𝑖
𝑘 (1-β) + 𝑐𝑖𝑘𝑠𝑖𝑘(𝑡)                              (6.12) 

                                        𝑐𝑖
𝑘={0.8,   𝑖𝑓𝑔𝑖

𝑘 = 0 𝑎𝑛𝑑 𝑠𝑖
𝑘 = max (𝑝𝑖

𝑘) 

1,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                      (6.13) 

Where 𝑔𝑖𝑘 is the counter that records the number of successful learning times of particle k, in 

which its child is fitter than particle k by applying operator i since the last selection ratio update,  

𝐺𝑖
𝑘 is the total number of iterations where operator i is selected by particle k since the last 

selection ratio update, 𝑔𝑖
𝑘

𝐺𝑖
𝑘 is the success ratio of operator i for particle k, β is a random weight 

between 0.0 and 1.0, in this research, we set it as 0.5 because we give the same importance of 

successful ratio and the progress made by the operators.  𝑐𝑖𝑘 is a penalty factor for operator i of 

particle k. Please note in (6.13), we are trying to give penalty for the operator which fails to 

make any improvement of the particle but it has the biggest selection ratio in the previous 

iterations. This is to avoid the situation that a good operator the past will still be in the 

domination position when the environment has completely changed. The full details of the 

OSPSO are given in following Algorithm 6.7. 

Algorithm 6.7.   Operator Self-adaptation PSO (OSPSO) 

1: Initialize population; Selection probability update frequency=M. 

2: Initialize selection probability of each operator for each particle in the population. 

3: While (i< Max_iteration) do 

4:             Select one operator for each particle according to the selections probabilities. 

5:             Update each particle using the selected operator.(equaiton6.9,10,11) 

                 If  mod(i, M)==0 

                          Update the slection probability of each operator for each particle according to  

                          equaitons 6.12 and 6.13. 



 100 

                 End if. 

6:             Go to line 4. 

7:  End while. 

 

6.4.4 Experimental Setting and Parameter Tuning 

To test the performance of the proposed OSPSO on the optimization of WDN, it is used to 

optimize the two benchmark examples. At the very beginning, there is a very important 

parameter need to be tuned: update frequency of selection probability. So before the algorithm is 

tested on both the benchmark examples, it is fine-tuned and the results are shown in Figure 6.31 

and 6.32. As we can see, the best update frequency for different network is not the same, for 

Hanoi network, the best frequency is 5 but for the larger Balerma network, it is 30.  Based on 

these results, the parameter setting for the experiments are listed in the following table 2 

 

Figure 6.31.Performance of OSPSO on different update frequency 

on Hanoi network 
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Figure 6.32.Performance of OSPSO on different update 

 

 

Table 6.17.Parameter Setting for OSPSO 

Network Population 

size 

iterations NO. of 

runs 

Update 

Frequency  

α β w 

Hanoi 500 500 30 5 2 0.5 1 

Balerma 1000 1000 30 30 2 0.5 1 

 

6.4.5 Experimental Results and Analysis 

 Using the parameter setting in table 6.17, OSPSO is applied to both of the benchmark networks 

and the results on Hanoi network are shown in Figure6.33 to Figure 6.35. 
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Figure 6.33.Fitness track of 3 runs of OSPSO on Hanoi network 

 

 

 

Figure 6.34.Track of average selection probability for each operator of 

OSPSO on Hanoi network 
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Figure 6.35.Track of average selection probability for each operator of 

OSPSO on Hanoi network( #2) 

 

Figure 6.34 and 6.35 provide two examples of tracking the average probabilities of each operator 

throughout the search process. There is a very obvious fixed pattern of change of the probability 

for each operator.  For the operator which learns from personal best position, its selection 

probability increase at the early stage but decreases as the population is close to convergence, 

which can be explained by the fact that at the ealy stage of the search process, many particles 

could move toward a local optima very quickly by learning from its personal best position which 

is usually an local optima, however, when the populations is close to convergence, the particle 

will be trapped in a local optima if it only learns from the local optima. On the contrary, the 

selection probability for operator learning from the global best positions is very high at the early 

stage, but it starts to decrease after about 10th update. This decrease is not because learning from 

global best position does not work anymore, but because the selection probability of the third 

operator which learns from the historical good positions increase very fast (please note, the sum 
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of selection probability of these three operators is equal to 1).  At the the very early stage, all the 

personal best positions are more scattered in the search space, so the distribution model built on 

these positions is not accurate enough, while as all the personal best positions are close to global 

optima, learning from these good positions will likely to find a better position in the landscape. 

Therefore, as the population approaches convergence, the selection probability of the third 

operator first decrees and then keeps increasing until it completely lose its function when the 

population is completely got convergent. And at last, all the operators will lose their function 

together and the selection probability will not change any more. In Figure 6.33, we can see that, 

at about 200th iteration, the search process got convergent, as the selection probability updating 

frequency is 5, so in figure 6.34, 6.35 we can see the selection probability of all the three 

operators got convergent after about 40th updating times.  

Now, let’s look at the same experiment on the Balerma network that has different search space 

landscape. 

 

Figure 6.36.Fitness track of 3 runs of OSPSO on Balerma network 
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Figure 6.37.Track of average selection probability for each operator of 

                                                            OSPSO on Balerma network( #1) 

 

 

Figure 6.38.Track of average selection probability for each operator of 

OSPSO on Balerma network( #2) 
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As we can see in figure 6.37 and figure 6.38, the change trend of all the operators is completely 

different from that on Hanoi network. This is mainly due to the reason that the search space 

landscape is completely different form that of Hanoi network, on the other hand, this could also 

verify our assumption that each particle could select the right operator according to its position in 

the landscape. As we can see, at the early stage, the operators learning from personal best and 

global best positions lose their function very quickly and the selection operator learning from 

historical best positions dominates the two others very quickly. What is notable is that this result 

gives a perfect explanation why the conventional integer PSO performances very badly on 

Balerma network (see Figure 7.2), because in conventional integer PSO, only the operators 

learning from personal best and global best positions used. Additionally, it could also explain 

why SEDPSO and PEDPSO could both perform well on Balerma network (also see figure 7.2), 

because the process of learning from historical good positions are also integrated into the search 

process.  The best achieved minimal costs are recorded in table 6.18. 

Table 6.18.Experimental results of OSPSO. 

network Populati

on size 

iteration

s 

NO. of 

runs 

Update 

Frequency  

Best cost Average 

cost 

Standard 

deviation  

Hanoi 500 500 30 5 6.081x10  6.231x10  1.332x105 

Balerma 1000 1000 30 30 2.256x10  2.325x10  8.958x104 

 

6.4.6 Conclusions and Future work 

This proposed operator self-adaptive PSO is very efficient PSO variant for the problem. The 

experimental results could explain some theoretical analysis of the PSO performance.  
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Tis should be very promising research spot and following directions could be immediately 

figured out: 

 

1). Create more operators to learn from different information source. For instance, we can 

introduce some operators from other swarm intelligence algorithms to this operator self-adaptive 

algorithm framework (e.g. instinctive movement operator from Fish school search). 

 

2). More efficient decision making strategy could be introduced to implement the procedure of 

selecting the most suitable operator. 

 

6.5 29B Hybridized with a Local Search algorithm  

6.5.1 Hybrid Evolutionary Algorithms 

As we know, some evolutionary algorithms (e.g. Genetic Algorithm) are good at exploring the 

search space while others (e.g. Iterated Local Search) performs better in exploiting the local 

search space.  So many researchers try to hybridize different type of EAs. The hybrid algorithms 

attempt to obtain the best from the hybridization of classical evolutionary search algorithms that 

perform together and complement each other to produce a new efficient algorithm modal.  

In this chapter, a new hybrid algorithm that consists of PSO and EO is proposed for WDN 

optimization problem. 

6.5.2 Extreme Optimization 

Extreme optimization (EO) is a general-purpose local search heuristic based on the 

understanding of the far-from-equilibrium phenomena in terms of self-organized criticality 

(SOC) [P.Bak,1987]. EO appears to be a powerful addition to the traditional Meta-heuristics (e.g. 
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Genetic Algorithm) in its generality and its ability to explore complicated configuration spaces 

efficiently. The major feature of EO is that it is not population based and during the iterations the 

worst components of the representation is continually identified and replaced.   Following 

Algorithm 6.8 is a basic model of EO. 

Algorithm 6.8   Basic EO model  

1: Initialize the configuration S at will; set  𝑆𝑏𝑒𝑠𝑡 = S. 

2: For the “current” configuration S, 

(a) Evaluate each variable in S and give them a fitness value: for each variable in S, we keep 

other variable constant and then increase and decrease by 1 to see in which direction the 

entire S will be improved largely. At last, record the direction and fitness value for each 

variable in S. 

(b) Sort the variables according to the fitness value and find the largest fitness and 

corresponding direction. This variable can be regarded as the worst variable 𝑥𝑗  

(c) Change the variable 𝑥𝑗 randomly in its corresponding direction and obtain a new solution 

𝑆 ,  in the neighborhood of S. 

(d) Accept 𝑆 ,  = S unconditionally. 

(e) If C(S)< C(𝑆𝑏𝑒𝑠𝑡) t hen set 𝑆𝑏𝑒𝑠𝑡=S 

3: Repeat at step 2 as long as desired 

4:Return 𝑆𝑏𝑒𝑠𝑡 and C (𝑆𝑏𝑒𝑠𝑡) 

 

To avoid the situation in which the original EO is likely to be trapped in a deterministic process: 

selecting always the worst variable in step (2b) which constrains the diversity of the selection 

results. So, a stochastic process is added into the algorithm. The improved algorithm is 

implemented as following: 
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Algorithm 6.9.  Improved EO model  

1 Initialize the configuration S at will; set  𝑆𝑏𝑒𝑠𝑡 = S. 

2 For the “current” configuration S, 

(a) Evaluate each variable in S and give them a fitness value: for each variable in S, we keep 

other variable constant and then increase and decrease by 1 to see in which direction the 

entire S will be improved largely. At last, record the direction and fitness value for each 

variable in S. 

(b) Sort the variables according to the fitness value and find the largest fitness and 

corresponding direction. Consider a probability distribution over the ranks k, and then 

select 𝑥𝑗 according to𝑃𝑘. 

𝑃𝑘 ∝ 𝐾−𝑡 

(c) Change the variable 𝑥𝑗 randomly in its corresponding direction and obtain a new solution 

𝑆 ,  in the neighborhood of S. 

(d) Accept 𝑆 ,  = S unconditionally. 

(e) If C(S)< C(𝑆𝑏𝑒𝑠𝑡) t hen set 𝑆𝑏𝑒𝑠𝑡=S 

3 Repeat at step 2 as long as desired 

4 Return 𝑆𝑏𝑒𝑠𝑡 and C (𝑆𝑏𝑒𝑠𝑡) 

 

In the proposed hybrid algorithm, EO will be used as a local search strategy integrated into PSO 

to enhance the exploitation ability of the search.  

 

6.5.3 Test on Hanoi network  

 

For Hanoi network, we use EO algorithm to update all the particles every certain number of PSO 
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iterations. The local search frequency (LSF) is a very essential parameter needs to be fine-tuned.  

We set the LSF as 5, 10, 20 and 40.  As can be seen in Figure 6.39, 5 is the best local search 

frequency, which means use EO to improve all the particles every 5 PSO iterations.  Figure 6.40 

gives the fitness track, we can see that there is no clear premature convergence problem 

compared to convention integer PSO without local search process.  

 

Figure 6.39. Performance at different local search frequency 
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Figure 6.40.Fitness track of 3 runs on Hanoi network 

 

 

6.5.4 Test on Balerma Network  

On Balerma network, different strategy is used. Since the number of fitness evaluations used for 

one single EO process is the number of pipes and the populations size is also proportional to the 

network size, EO is not used to update every particle in the population, instead, it is used only to 

improve the global best position every PSO.   

Figure 6.41 and Table 6.19 are showing the final results on Balerma network. 
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Figure 6.41.Fitness track of 3 runs on Balerma network 

         

 

 

Table 6.19.Experimental Results of PSO-EO 

Network Population 

size 

Maxim 

#NO. of 

generations 

c1,c2,w LSF Best cost Average 

cost 

Standard 

deviation  

Hanoi 500 500 2,2,0.8 10 6.198x10  6.368x10  1.495x105 

Balerma 1000 1000 2,2,0.8 1 6.046x10  6.734x10  6.543x105 
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CHAPTER 7 

7 6BPERFORMANCE COMPARISON 

 

7.1 30BSummary of Proposed Algorithms 

Eleven different Algorithms are proposed for optimization of Urban Water Distribution network 

in this thesis research. For the sake of easy comparison, we give each algorithm an abbreviation 

and index which will be used in the following tables and figures. Their descriptions are listed in 

following Table 7.1: 

 

Table 7.1.Index and Abbreviation of Proposed Algorithms 

Index Abbreviation Description  Chapter  

1 SPSO Standard Integer PSO 5.1 

2 PE- PSO Parameter Fast Estimation  PSO 6.3 

3 ISEDPSO Sequential EDA enhanced PSO 6.1.3 

4 PEDPSO Parallel  EDA enhanced PSO 6.1.3 

5 PSO-EO EO enhanced  PSO 6.4 

6 OS-PSO Operator self adaptation PSO 6.4 

7 Shuffle-PSO PSO with shuffle process 6.1.2 

8 EMPSO-U Expectation Maximization enhanced PSO using 

Univariate Gaussian  mixtures 

6.2 
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9 EMPSO-M Expectation Maximization enhanced PSO using 

Multivariate Gaussian  mixtures 

6.2 

10 FSS Original  Fish School search  5.2 

11 CFSS Cluster Analysis enhanced FSS 6.1.4 

 

 

 

 

7.2 31BPerformance Evaluation Metrics 

The performances of evolutionary algorithms are usually measured by the following famous 

metrics in the literature: 

1. Success rate: when the optimal solution is already known for a specific problem, the 

percentage of runs that successfully achieve the already known global optima. This metric is 

mainly used to measure the search ability of the algorithm of interest.  

2. Number of evaluations: the number of evaluations for an algorithm to achieve a target 

solution of predefined quality. This metric is majorly used to measure the efficiency of the 

algorithm of interest.  

3. Reliability: it is measured by the standard deviation of the best solutions that can be achieved 

by the algorithm in a number of runs. 

 

 

7.3 32BPerformance Comparison 

According to above performance metrics used in the literature, the corresponding values are 
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receded in Table 7.2:  the best cost (minimal cost) that could be achieved in 30 runs; the average 

best cost of 30 runs; and the standard deviation of the best achieved cost in 30 runs. Since the 

average best cost is the most suitable indicator of the overall performance of the algorithm, all 

the algorithms are compared by the average best cost in Figure 7.1. As we can see, for Hanoi 

network, SPSO, FSS and CFSS are the much worse than the others. EMSPSO-M, PEDPSO and 

ISPEDPSO are the top three algorithms. However, for Balerma network, the situation is 

completely different. PSO-EO is the worst one and there are three algorithms much better than 

the others, they are PEDPSO, OS-PSO and ISEDPSO.  The results show that different algorithms 

perform differently on the two benchmark networks. And from table 7.4, we know that only three 

algorithms performance well on both networks, they are PEDPSO, ISEDPSO and OS-PSO.  

 

 

Table 7.2.Performance of the Proposed Algorithms on Hanoi Network 

Index Algorithm  Populati

on size 

NO. of 

iterations 

Number of 

fitness 

evaluation  

Best cost Average 

best cost 

Standard 

deviation 

1 SPSO 500 500 250,000 6.369x10  7.110x10  1.557x10  

2 PE-PSO 500 500 250,000 6.081x10  6.252x10  1.317x105 

3 ISEDPSO 500 500 375,000 6.081x10  6.102x10  9.441x104 

4 PEDPSO 500 500 250,000 6.081x10  6.103x10  7.288x104 

5 PSO-EO 500 500 1950,000 6.198x10  6.368x10  1.495x105 

6 OS-PSO 500 500 250,000 6.081x10  6.231x10  1.332x105 

7 Shuffle-PSO 500 500 250,000 6.081x10  6.299x10  1.140x105 

8 EMPSO-U 500 500 250,000 6.236x10  6.262x10  1.151x10  

9 EMPSO-M 500 500 250,000 6.114x10  6.197x10  1.210x105 
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10 FSS 500 500 250,000 6.733x10  7.174x10  9.775x104 

11 CFSS 500 500 250,000 6.587x10  7.095x10  1.581x105 

 

 

Table 7.3.Performance of the Proposed Algorithms on Balerma Network 

Index Algorithm  Populat

ion size 

NO. of 

iterations 

Number of 

fitness 

evaluation  

Best cost Average best 

cost 

Standard 

deviation 

1 SPSO 1000 1000 1,000,000 6.299x10  6.7290x10  5.542x10  

2 PE-PSO -- -- -- -- -- -- 

3 ISEDPSO 1000 1000 1,500,000 1.9334x10  1.9772x10  5.555x104 

4 PEDPSO 1000 1000 1,000,000 1.9214x10  1.9421x10  3.936x104 

5 PSO-EO 1000 1000 1,022,700 6.0460x10  6.7341x10  6.543x105 

6 OS-PSO 1000 1000 1,000,000 2.2560x10  2.3250x10  8.958x104 

7 Shuffle-PSO 1000 1000 1,000,000 4.1256x10  4.2551x10  1.716x105 

8 EMPSO-U 1000 1000 1,000,000 3.58498x10  4.3070x10  5.195x105 

9 EMPSO-M 1000 1000 1,000,000 3.74591x10  5.9315x10  1.213x10  

10 FSS -- -- -- -- -- -- 

11 CAFSS -- -- -- -- -- -- 
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Figure 7.1.Average performance of the proposed algorithms on Hanoi network 

 

 

 

 

Figure 7.2.Average performance of the proposed algorithms on Balerma network 
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Table 7.4.Algorithms that Perform well on Both two Networks 

Network  1st  2nd  3rd  4th  

Hanoi ISEDPSO PEDPSO EMPSO-M OS-PSO 

Balerma PEDPSO ISEDPSO OS-PSO Shuffle-PSO 

 

7.4 33BCompare with Previous Work 

We have only compared the proposed algorithms with each other so far, now we need to compare 

these algorithms with other peer method in previous work. Table 7.5 and 7.6 show the 

comparisons with some of the previous work. In order to compare the efficiency, the average 

number of fitness evaluations before it converges of the runs which successfully achieves the 

best cost.  As we can see in Table 7.5, on Hanoi network, five proposed algorithms successfully 

get the best know cost in the literature and most of them are better than previous work in terms 

of the success rate. While for Balerma network, due to its high dimensionality and difficulty, 

there are only 3 algorithms successfully obtained the comparable best cost with previous work, 

and two of them break the record of minimal cost of Balerma network.  
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Table 7.5.Comparison of the Best cost Achieved by Different Algorithms (Hanoi) 

Algorithms Min cost Average Success rate Min # of 

evaluations 

GA([32] 2006) 6.173 n/a n/a 26,457 

ACO([57].2006) 6.134 n/a n/a 35,433 

HS([58], 2006) 6.081 n/a 1/81 27,721 

PSHS([59],2009) 6.081 n/a 1/81 17,980 

GHEST([39], 2010) 

PSO ([35],2008) 

HD-DDS([60], 2009) 

SAPSO([38],2010) 

NLP-DE([61],2011) 

6.081 

6.133 

6.081 

6.081 

6.081 

n/a 

n/a 

6.252 

n/a 

n/a 

6/10 

3/100 

8/100 

1/100 

98/100 

16,600 

n/a 

5000,000 

n/a 

48,724 

GA([32] 2006) 6.173 n/a n/a 26,457 

ACO([57].2006) 6.134 n/a n/a 35,433 

ISEDPSO       (this work) 6.081 6.102 28/30 17,600 

PEDPSO        (this work) 

Shuffle-PSO   (this work) 

OS-PSO          (this work) 

PE-PSO          (this work) 

6.081 

6.081 

6.081 

6.081 

6.103 

6.299 

6.231 

6.252 

27/30 

11/30 

13/30 

8/30 

23,400 

126,500 

48,500 

20,000 

(Hazen-Williams roughness coefficient for hydraulic calculations is 10.6668. Price unit: M$) 

 

Table 7.6.Comparison of the Minimal Cost Achieved by Different Algorithms (Balerma) 

Algorithms Min cost Average Success rate Min # of evaluations 

GA([32], 2006) 2.302,000 n/a n/a 10,000,000 

HS([58], 2006b) 

HD-DDS([60], 2009) 

2.018,000 

1.940,923 

n/a 

2.165,000 

1/81 

n/a 

10,000,000 

30,000,000 

GHEST([39], 2010) 2.002,387 n/a 1/10 290,500 
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(Hazen-Williams roughness coefficient for hydraulic calculations is 10.6668.  Price unit: M€) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NLP-DE([61], 2011) 1.923,000 1.927,000 n/a 1427,850 

ISEDPSO(this work) 1.933,407 1.976.672 16/30   89,700 

PEDPSO(this work) 

OS-PSO(this work)                              

1.921.428 

2.256,000 

1.942.231 

2.3250,000 

17/30 

89,580 

217,400 

193,500 
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CHAPTER 8 

8 7BCONCLUSIONS AND FUTURE WORK 

 

 

8.1 34BConclusions 

In this thesis, 11 algorithms are proposed for WDN optimization problem in total. Except 

conventional integer PSO (SPSO), all other 10 algorithms are the first time applied to this 

engineering problem. And also except SPSO and FSS, there are 5 algorithms(PEPSO, ISEDPSO, 

PEDPSO, OSPSO and CAFSS),  which are brand new variants based on PSO and FSS, to our 

best knowledge, are also the first time been proposed. 

 

Based on the elaborate analysis and intensive comparison in Chapter 7,  following conclusions 

can be drawn: 

1. For Hanoi network, all the proposed PSO variants outperforms the conventional integer 

PSO, which proves that all these adopted Machine Learning techniques successfully 

improve the search ability of SPSO on Hanoi network. 

2. For Balerma network, due to its high dimensionality, the results are different. Except 

PSO-EO, all other 7 algorithms could outperform SPSO. 



 122 

3. For Fish School Search, its overall performance is even worse than SPSO. Although its 

only variant CAFSS dose better than standard FSS, its performance still cannot be 

comparable to PSO and PSO based variants. So we can say PSO is much more suitable 

for this specific engineering optimization problem than FSS. 

4. The ISEDPSO, PEDPSO and OSPSO are the best 3 algorithms for the problem of both 

small and large networks. It is notable that all these 3 algorithms include the same 

process, which learns from the historical good positions. This learning process is 

implemented by EDA process in practical application. 

5. Comparing to the previous work in literature, there are 3 proposed algorithms are 

competitive, but more experiments still need to be carried out to further dig out the 

potential of these 3 algorithms.  

6. For each specific proposed variant, we also have specific conclusions about the 

performance of that specific algorithm, which are given in previous corresponding 

chapters. 

 

8.2 35BFuture Work 

Apart from the specific discussion of future work for each of the proposed algorithm, which have 

been already been given in previous corresponding chapters, there are some potential research 

directions from the overall point of view: 

1. Optimization of Water Distribution Network is still a challenge, especially for large size 

network. It is still worthy to propose more alternative optimization methods for this 

problem. 
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2. Introduce more swarm intelligence algorithms to solve this engineering optimization 

problem. 

 

3. From Machine Learning point of view, more learning methods could be tested to improve 

the performance of PSO and other swarm intelligence algorithms.  
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APPENDIX 

 

SOURCE CODE 

 

 

All the experiments for this thesis project are carried on Matlab2012 platform (Basic version 

with one Global Optimization Tool Box and Statistics Tool Box). The source code is not released 

at this time, if you’re interested, please contact the author at     HUqixuewei@uga.eduUH  . 
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