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Abstract

The scope of scientific data collection in modern projects such as the human genome

project has made it effectively impossible for careful by-hand analyses of such data to be

carried out. Simultaneously, the increase in computer power raises the possibility of replacing

human scrutiny with computer systems that could effectively sort and filter copious data,

presenting only the most salient features to researchers. This thesis details a method for

combining a generalized version of the classical statistical method known as canonical corre-

lation analysis, that possesses good computational properties, with the more recently devel-

oped multitaper spectral estimators. The developed method allows researchers to combine

data from multiple experiments to generate more accurate spectral decompositions of the

underlying processes involved while also giving researchers a sensitive method for finding the

links between variables in the data sets. The only limitation is that the data to be analyzed

must be homogeneous in certain specific ways (for example, it must contain no pronounced

trends).
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Chapter 1

Introduction

The widespread availability of computers as well as the nature of many forms of scientific

inquiry today presents new challenges as well as possibilities. It is essential in this setting

for techniques to be developed and implemented for dealing with the onslaught of data

demanded by the types of analyses being undertaken. Numerous techniques are available

although many techniques are presented in specific settings that, if we confine ourselves to,

place unnecessary limitations on the analyses that may be performed. Combining powerful

techniques from across the mathematical spectrum in order to help researchers cope with

the pace of the accumulation of data and, at the same time, to improve the fineness of their

results, is of some importance and it is from this point of view that the following work

derives.

The mathematical approach taken specifically within this work is the combination of the

statistical technique known as “canonical correlation analysis” with another statistical tech-

nique called “multitaper spectral estimation” to form a technique we call “spectral canon-

ical correlation analysis.” The types of experimental data we wish to be able to handle are

described, mathematically, by “stationary stochastic processes” and it is the case that a

certain type of spectrum is a good description of these processes. Further, we will see that

multitaper spectral estimation allows us to obtain good estimates of the actual spectrum of

any given stationary stochastic process from realizations of that process (data). The esti-

mated spectra of any given set of variables (say from data set A) may then be compared to

the estimated spectra of the variables from other data sets (data sets B,C,...) using canon-

ical correlation analysis. This process both picks out variables with similar spectra across

1
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the data sets and also gives a sort of averaged estimate of what the common spectra are

across the data sets1. In particular, if the same experiment is performed multiple times, this

averaging should result in better estimates of the spectra of specific underlying processes.

1These “canonical” spectra are different from normal spectra and may include negative values:
they should really be understood in a vertical translation invariant manner as indicating which
frequencies are being accentuated and which removed in the corresponding transformed data sets,
see below.



Chapter 2

Statistical Background

2.1 Introduction

One of the primary ways mathematics interfaces with the physical world is through mea-

surements. Given an appropriate numerical scale and a method for assigning a number from

that scale to a specific attribute of a physical object, we may summarize (physical) attributes

concisely and in a form amenable to treatment by the methods of mathematics. For example,

wealth may be measured in dollars, distance in miles and electrical potential in volts. This

is particularly crucial for the concise specification of relationships between attributes (in the

form of formulas, ranging from the fact that one particular skyscraper may be taller than

another to the specification of the electrical potential between two points in a circuit as it

depends on the amount of electricity flowing through the circuit and the resistance of the

circuit). For various reasons, however, this approach does not work out as cleanly as the

description above might suggest. Measurement error, the fact that even reproducible experi-

ments may give somewhat different results each time they are carried out, the desire to have

mathematically tractable models and the importance of human interpretability of the results

leads to quite a lot of complication on top of the simple initial idea. The methods of statistics

may be used to deal with the questions of measurement error, differences in reproducible

experiment outcomes and human interpretability. We will primarily deal with the last two

here without much consideration of the issue of measurement error.

There are two primary issues that arise in handling measurements taken from the phys-

ical world. The first issue is due to the sheer quantity of measurements of even a single

attribute that may be taken. A data set containing the carbon dioxide concentrations of

3
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the atmosphere recorded across the United States on any given day might contain thou-

sands of data points1. This leads naturally to the further summarizing of the data itself by

“measuring” attributes of the data such as “central tendency” often clarifying the relation-

ships between different sets of data both objectively and subjectively (i.e., from a human

interpretability standpoint). Summarizing data in this manner is the purview of descriptive

statistics. The relevant descriptive statistics for this work will be means, covariances, corre-

lations and spectra. The second issue arises from the variability of measurements we may

record due to differences in the state of the system we are drawing measurements from over

time as well as measurement error. Using the carbon dioxide concentration example, it may

be that if the measurement recorded on a given day had been recorded an hour later, the

concentration would have been found to be nearly double that which was recorded at the

time the sample was taken (for example if there were a fire nearby and the wind changed

direction). This is an example of uncertainty arising in the form of sampling error and, in

order to robustly characterize and analyze measurements, some accounting of this uncer-

tainty must take place. This naturally falls into the realm of probability theory which, when

applied to problems of this nature, forms the backbone of inductive statistics. Methods from

inductive statistics will be used to help ensure that our estimates of the various descriptive

statistics we are interested in are sound2.

By way of example, consider the problem of determining the height of a young tree. If

twenty different people measure the tree using the same measuring tape and record their

measurements in a table, there may well be twenty different numbers recorded in the table.

One way of looking at the numbers in the table is as a relative frequency distribution,

an essentially probabilistic point of view. We can then ask, for example, for methods of

combining the measurements in the table to get an estimate that is more likely (than any

one of the individual measurements) to be close to the actual height of the tree. The process

1Information from the Data Assimilation for the Carbon Cycle workshop held at MSRI in 2006.
2Confidence bounds, estimates of how good a descriptive statistic is (does it tend to be closer

to the “correct value” than others...), etc., provide examples of inductive statistics in action.
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of combining the measurements is the process of computing (a “realization” of) a descriptive

statistic while the desire that the computed estimate be more likely to be close to the actual

height is a statement about the reduction of uncertainty in the computed estimate (an

example of inductive statistics). The multitaper spectral estimation technique that will be

detailed later works (statistically) in an exactly analogous manner by essentially splitting up

signals (the results of which correspond to the distinct measurements recorded by different

people in the tree example) and combining estimates based on these statistically distinct

measurements to reduce uncertainty and variability in the overall estimate.

The remainder of this chapter will alternate between more casual descriptions of the

important concepts necessary for the rest of this work and the introduction of mathematical

language and notation implementing these concepts precisely. Specifically, we begin with the

basic mathematical development following from the concepts already mentioned which is

needed for the following chapter. In the second half of this chapter, we outline and fill in the

development needed for the spectral analysis chapter. The following section assumes knowl-

edge of the mathematical definitions of random variable, sample space, etc. from probability

theory.

2.2 Mathematical Setting (Probability Theory)

2.2.1 General Notation

The greek letter Ω will generally be used to represent a (usually abstract) probability space

and ω a sample point in such a space. A (real) random vector X : Ω → Rn is a real vector-

valued function on some sample space Ω, the coordinate functions of which are simply (real)

random variables on Ω. A (real) random matrix is defined analogously. Random vectors and

matrices will be distinguished from random variables in part by the convention of bold-facing

letters that name vectors. Random vectors/matrices and random variables are distinguished

from fixed matrices and constants by the convention of using only upper-case italicized
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symbols for probabilistic elements (fixed matrices and vectors will be denoted by upper-

case, bold-faced but non-italicized symbols). Of course, any statement made about random

vectors will usually apply in the case when n = 1, that is, to a real-valued random variable,

and it will often be the case that we will not explicitly distinguish random variables, random

vectors and random matrices when defining terms and introducing notation (preferring to

use just the term random vector). In particular, a random vector may contain a mixture of

coordinate functions including an arbitrary selection of the coordinates of, say, a random

matrix previously defined, along with explicitly named random variables etc. The notation

P (·) will be used for probability measure and E{X} will be used for the expected value of

X which for vectors would be a vector consisting of the expected values of each coordinate

random variable. Realizations of random variables and vectors may be written using a lower-

case version of the letter naming the random vector or variable, e.g., x is a realization of

the random vector X which is simply X(ω) for some ω ∈ Ω. Finally, covariances may be

written σX,Y and correlations ρX,Y (and the shorthand σX = σX,X for the variance of X).

Subscripts may be dropped when there is no ambiguity.

2.3 Statistics

As touched upon in the introduction, the process of defining and computing a (descrip-

tive) statistic is a method of data reduction. Mathematically, given a set of random vectors

{X t|t ∈ 1, . . . , n}, a statistic is a random vector defined by T n = gn(X1, . . . ,Xn) where

gn is an appropriate (deterministic) vector valued function (in particular, there must be

one mathematical function for each n). A given statistic is often defined in such a way as

to give information about a specific parameter of the underlying distribution of its input

random vectors. For example, the mean E{X} of a random variable is a parameter of its

distribution. The sample mean is a statistic where Tn = gn(X1, X2, . . . , Xn) =
∑n

i=1 Xi and
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X1, X2, . . . , Xn are independent identically distributed random variables3. The greek letter θ

will be typically be used to represent a fixed (vector) parameter of a probability distribution.

In this case, the data reduction role of a statistic comes from the idea that estimates and

inferences about a specific parameter θ will (then) be based solely on realizations of T n

rather than the entire set of observations. In the case where T n is defined specifically to be

used to provide a single fixed numerical estimate of a given parameter θ of the underlying

distribution, T n is called a point estimator of that parameter. As T n is a random variable,

in general, realizations of it will not be equal to the parameter of the distribution it is an

estimator of. So the term sampling error is used to refer to the difference between tn (some

realization of T n) and θ. In the univariate case, this is usually quantified by Tn − θ, in the

multivariate case it may be quantified by matrix or vector norms.

With these notions in hand, we can now set out to specify properties of a point estimator

that are desirable. These properties are generally concerned with keeping sampling error low

both on average and minimizing its effect for a given realization. In terms of keeping sampling

error low on average, we will typically work with estimators that are unbiased and consistent.

An unbiased point estimator of a parameter θ has the property that for fixed n, E{T n} = θ.

This means in a strict sense that if we average the estimates of θ provided by T n over all

possible samples of size n (with n fixed, each taken once), we will obtain the correct result θ

and in a looser sense that, under random sampling, as the number of samples of size n taken

increases, the average of the T n’s calculated from those samples tends to θ. A consistent point

estimator of a parameter θ has the related property that as the size of a given single sample

increases, the estimates of θ given by T n tend toward θ in probability. Minimization of the

effect of sampling error due to use of any specific given realization is generally characterized

by the variance of the estimator in question. It is desirable to have an estimator that is

both unbiased and has minimum variance. Such an estimator is said to be efficient and in

practical terms, may be thought of as typically giving an estimate close to the true value for

3We will typically omit n in the names of statistics, except when necessary to indicate properties
of statistics in the abstract.
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any given individual sample (for example, it is possible to give precise confidence bounds on

the closeness of an unbiased estimator in general based on its variance using Chebyshev’s

Theorem, this may be sharpened considerably when information is available as to the type

of the true distribution). Demonstrating that an estimator has minimum variance over all

possible estimators of a given parameter is somewhat less straightforward than checking

whether or not the estimator is unbiased and consistent. Interestingly, it turns out to be

possible to demonstrate an exact lower bound for the variance of a given estimator, without

reference to a specific distribution, under certain mild regularity conditions4. We will be

content to indicate that the estimators we are interested in are fairly efficient with respect

to this lower bound.

2.4 Background for Canonical Correlation Analysis

In this section, we define the estimators underlying canonical correlation analysis and justify

their use based on the preceding discussion. We then provide some discussion to aid in

understanding and recalling the properties and meaning of correlation(s).

2.4.1 Estimators for Canonical Correlation Analysis

To fix notation for this section, let X be a random vector and let x1, x2, . . . ,xn denote

realizations of this random vector. Let µ = E{X} be the mean vector of X and Σ =

E{X − µ)(X − µ)′} be the covariance matrix of X (the notation ′ indicates transpose).

Define the sample mean vector 5 for such a set by x̄ = 1
n

∑n
i=1 xi and the sample covariance

matrix for such a set by S = 1
n−1

∑n
i=1(xi − x̄)(xi − x̄)′. The following section will detail

the desirable properties that these estimators possess.

4The Cramér-Rao bound, see Anderson [2], p. 86 and Panik [14], p. 387
5Note that the term sample mean, for example, refers both to the statistic X̄ =

∑n
i=1 Xi where

the Xi are independent identically distributed random vectors and also to any realization of this
statistic, x̄ = 1

n

∑n
i=1 xi.
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The sample mean vector and sample covariance matrix are each unbiased and consistent

estimators of their respective parameters. Further, the (relative) efficiency of X̄ and S when

θ includes both µ and Σ is [(n−1)/n]p(p+1)/2 (Anderson [2], p. 85). These properties generally

justify the use of the sample covariance matrix in the classical canonical correlation analysis

computation (it is also possible to justify precisely the use of a slightly scaled version of S,

[n/(n − 1)]S, when normally distributed random vectors are used, see Anderson [2], p. 103

and p. 500).

2.4.2 Correlation

We provide here a little background on correlation to aid in understanding the operation

and effect of canonical correlation analysis. Two viewpoints helpful in understanding most

classical statistical techniques and notions (including sample correlation and canonical cor-

relation analysis) are the linear algebraic and/or geometric viewpoint, and the probability

theoretic or measure theoretic viewpoint (involving the form and analysis of functions). The

more geometric side will be covered later although we will point out now that saying that

random variables are uncorrelated is equivalent to saying that they are orthogonal in L2(Ω).

We focus here on a useful tool of measure theory that may be used to obtain additional

intuition as to how sample correlation ranges as a (data) sequence ranges with respect to

another and dually what we can expect of sequences depending on their correlation. This

tool is Chebyshev’s inequality. Chebyshev’s inequality is a generalization of the intuitive

statement that if n positive numbers sum to s, then for any number c > 0 we choose, only

bs/cc of the numbers may be greater than or equal to c (or equivalently the proportion

bs/(cn)c of the numbers). For our purposes, Chebyshev’s inequality constrains the number

of measurements that may be any given distance from the mean, most usefully measured in

terms of the standard deviation, and can be viewed as providing a characterization of the

notion of standard deviation. Specifically, standard deviation is “average” deviation in the

sense that if a random variable (uniformly) deviates from its mean by an amount +d with
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probability 1/2 and deviates by −d with probability 1/2, then its standard deviation is d.

Chebyshev’s inequality constrains the possible distributions of deviations in the case when

these are not uniformly distributed and not limited to two values. The characterization thus

provided may also be applied to a deterministic sequence using the definitions of sample

mean and scaled sample standard deviation6 yielding precise (though in some sense loose)

bounds for the given deterministic sequence7. We will see how this constrains sequences

based on correlation below.

First, we work out the algebra in the setting of random variables and then follow this by

illustrative examples focused specifically on data sequences (or data vectors). Chebyshev’s

inequality may be stated in the convenient form: given any random variable Z with µ =

E{Z}, and σ = (E{(Z − µ)2})1/2, P (|Z − µ| ≥ kσ) ≤ 1/k2. Now, let X and Y be random

variables each with mean zero and variance one (so that σX = σY = 1 - the situation is slightly

more complicated if X and Y have different variances). We wish to look at how different

X and Y can be so we consider the expression X − Y and note that this random variable

has mean zero. Consequently, P (|X − Y | ≥ kσX−Y ) ≤ 1/k2 by Chebyshev’s inequality.

Correlation comes into play in calculating σX−Y . Specifically,

σ2
X−Y = E{(X − Y )2}

= E{X2} − 2E{XY }+ E{Y 2}

= 2− 2E{XY } = 2− 2ρX,Y .

We see that the higher the correlation, the smaller σX−Y becomes and the tighter the region

of variation (the less X is allowed differ from Y ) on the given set. So, for a given fixed k,

X must be closer to Y as correlation increases, or alternatively, as correlation increases, the

measure of the set on which X is within some fixed quantity of Y becomes larger.

6
√∑n

i=1
1
n(xi − x̄), (the root mean square deviation of the sequence values from the sample

mean)
7Note that properties such as bias are not important in the deterministic case.
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Simply applying the Chebyshev inequality, we see that X and Y cannot be further from

each other than 2 standard deviations more than 1/4 of the time and cannot be further

than 3 standard deviations more than 1/9 of the time (etc.). So, specifically, if ρX,Y = 1/2,

then σX−Y = 1 and so X and Y cannot be further than 2 apart more than 1/4 of the time

and cannot be further than 3 apart more than 1/9 of the time. Considering movement on

the order of 3 standard deviations for each, if X and Y were uncorrelated in this example,

they could be 3 apart about 1/4 of the time (25% vs. approximately 10%). If ρX,Y = 7/8

(a correlation of .875), then σX−Y = 1/2 and so X and Y in such a case cannot be further

than 1 apart more than 1/4 of the time and cannot be further than 1.5 apart more than 1/9

of the time. This is fairly close correspondence as X and Y were assumed to have standard

deviations of one each and so they may vary fairly arbitrarily within a range of 2 around 0

(in particular being at say +1 half the time and −1 the other half the time).

We now transition to applying these ideas to simulated “time series” (realizations of

random variables). The following examples (with figures on the next page) were generated

in matlab and are labelled by their computed correlations. The rectangles give a clearer

impression of how far the series tend to be from each other progressing across the simulated

data.

Denote the time series in 2.1 rendered with asterisks (*) for its points by {xi} and that

rendered with circles (o) for its points by {yi}. Comparing these simulated time series to the

results of applying Chebyshev’s inequality, we notice first of all that there aren’t any indices

at which |xi − yi| ≥ 2. Chebyshev’s inequality essentially covers the extreme where all of

the difference between xi and yi is concentrated at subset of the points with no differences

between the series on the complementary subset. The time series xi − yi, for xi, yi from

2.1, has its variation distributed much more evenly (as can be seen from the sizes of the

rectangles) so that most of it falls below the one standard deviation mark. Using Chebyshev

and correlation at about .5, we can say, however, that P (|xi− yi| ≥ 3/2) ≤ 4/9. We see that

in this case |xi − yi| ≥ 3/2 only for i = 6, 10, 15 and the measure of this set is 3/20. That is,
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Figure 2.1: Correlation .5511 (µ = 0, σX = 1, σY = 1)
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Figure 2.2: Correlation .8806 (µ = 0, σX = 1, σY = 1)
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|xi − yi| ≥ 3/2 on only 15% (by measure) of the measure space, far less than the allowable

∼44%.

As for the time series’ in 2.2, it is immediately apparent, visually, that they follow one

another significantly more closely than those in 2.1. Using {xi} now to denote the time series

in 2.2 rendered with asterisks and {yi} to denote the time series in 2.2 rendered with circles,

we notice first of all that the time series xi − yi deviates from its mean of 0 by more than

its standard deviation of ∼1/2 only at the indices i = 2, 7, 11, 13, 14, 20. Only at i = 20

is the deviation greater than two standard deviations (magnitude one with σ ≈ 1/2), in

comparison to the bound given by Chebyshev’s inequality, which allows this to occur at up

to five indices. Also, this example is even more illustrative of the fact that the greater the

measure of the set on which deviation is larger than the standard deviation, the smaller

deviation tends to be on the set on which deviation is below the standard deviation (notice

the smallness of |xi − yi| at i = 1, 3, 12, 13, 19).

While these types of analyses give a good idea of what to expect for a given sample

correlation level, the exact significance of a correlation obtained still depends heavily on the

setting in which the correlation was computed. The techniques we are using still depend

to a degree on human examination of the features of the data the algorithms deem most

important.

2.5 Background for Spectral Analysis

We begin this section with an example relevant to the use of spectral analysis and that

further clarifies the difficulties we face when using measurements. Consider a scenario in

which we record both an EKG (electrocardiogram) and blood pressure continuously for one

person over time, starting at some random time. As there are many other factors that may

effect these variables and their relationship to one another, when considering these attributes

alone, only probabilistic statements can be made. Again, we may think of the measurements

as coming from a certain relative frequency (or probability) distribution (e.g., how frequently
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will blood pressure be high given that the heart just beat etc.). If the underlying state of the

system we are measuring is changing in some coherent fashion, for example, if the person

is a runner and has just started running in a race, each set of measurements we take may

better be understood as coming from different probability distributions (in particular, the

distributions of these measurements at different levels of exertion). The properties of any

one of these exertion-level based distributions would be difficult to determine from the data

set collected in such a case as in sampling theory it is important to sample repeatedly from

a single given distribution in order to have any reasonable hope of accurately characterizing

that distribution. If instead, we consider the same type of measurements taken over a period

of time during which the runner has simply been lounging about in a slug-like fashion, then

the exertion-level is constant and we are in a good position to determine the parameters of

the distribution for this state. The important properties this example possesses, assuming

that we are thinking about repeatedly recording some number n of measurements of blood

pressure and heart state with a sampling starting time independent of the state of the

person’s circulatory system8, are that the distribution of any single sample point is the same

as that of any other and that the relationship between a given sample value and one taken

at a pre-specified fixed time later is only a probabilistic function of the difference in times.

This is basically the notion of stationarity. This example is very similar in form to that of

a specific type of stationary stochastic process known as a harmonic process (more detail to

come).

2.5.1 Stochastic Processes Notation

A stochastic process is defined as a set of random vectors {X t|t ∈ T} indexed by a set T

(whose elements are often times). The notation {X t} will often be used to indicate that a

collection of random vectors is grouped as a stochastic process as opposed to being simply

some random vectors distinguished by subscripts. Unless otherwise noted, the index set T

8We don’t always start measuring exactly after the heart has beat, etc.
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is assumed to either be Z or 0, 1, . . . , n for convenience. A stochastic process {X t|t ∈ T} is

called stationary if, for all k ≥ 1, for any set of indices t1 ∈ T, . . . , tk ∈ T and for any τ

such that t1 + τ ∈ T, . . . , tk + τ ∈ T , the distribution of the random vector (X t1 , . . . ,X tk)
′

is the same as the distribution of the random vector (X t1+τ , . . . ,X tk+τ )
′. As we will only

deal with moments of first and second order of the distributions under consideration, we

will use the term stationary to refer to distributions where the assumption of stationarity

applies at least to all moments of first and second order (processes where this slightly weaker

assumption is used are often termed weakly stationary or second-order stationary). Note that

the assumption of (second-order) stationarity about a given stochastic process {X t|t ∈ T}

has the following implications (that can, in particular, be used to evaluate the suitability of

the assumption of stationarity in a given situation):

1. All of the random vectors in the process have the same mean vector, that is, there is

a µ such that E{X t) = µ for all t ∈ T .

2. The covariance of any two of the random vectors in the process depends only on the

difference in their indices (often thought of as the amount of time in the process between

the indices), that is, E{(X t1 −µ)(X t2 −µ)} = E{X t1X t2}−µ = E{X0Xt2−t1}− µ,

with the last equality following from a direct application of the assumption of second-

order stationarity.

Additional detail along with some discussion of the properties of estimators we will use for

stationary stochastic processes will be given in the spectral analysis section.

It is important to further point out the difficulties of statistically dealing with the results

of experiments. The appropriate mathematical model for such a situation really is that of

a stochastic process. In particular, for any subprocess of a fixed length, there are depen-

dence relations between each of the random vectors in that subprocess. Often, however, the

measurements from a single realization are used to estimate the distribution of a subprocess

{X t1} where t1 is fixed (essentially, we’re down to just a random vector). This is particularly
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appealing when the stochastic process is reasonably assumed to be stationary (as the means,

variances and covariances between the variables in the vector don’t change with index).

A simple example illustrates the potentially extremely poor estimates that may arise from

this method. Consider recording video of a flashing light. Now, suppose that we start the

recording in between flashes and that the flashes occur with the same frequency as frames

are recorded by the video camera. Then in every frame recorded, the light may be dark - the

recorded sample is clearly significantly skewed and not representative of the distribution of

{X t1} at all. In fact, with this setup, it does not matter when the camera is started, using

the individual frames of any given sample to estimate the distribution of {X t1} will give

very poor results. The problem is a lack of independence between the random vectors (in the

process) so that we’re not independently sampling one random vector. Therefore, using only

a single random vector to represent the mathematical situation is suspect. This problem may

be addressed by either introducing some form of independence (for example, by recording

multiple samples with the same number of frames with random start times and integrating

the data) or through more careful setup of the experimental protocols (to mitigate the effects

of “aliasing” which is part of the problem in the example), each of which will be touched

upon in the following chapters. Our methods generally address the issue of independence

through the use of repeated independent samples, but this has its own perils in the context

of stationary processes. We will return to this point many times.

2.5.2 Remaining Notation

We have nearly undoubtedly left out certain notation definitions. Readers are advised to

consult either Percival and Walden [15] (who have a good notation section from pages xix

to xxvi) or Anderson [2]. The notation used in the remainder is generally consonant with

the notation used in these books. Although we have tried to set the notation carefully, it

is the case, particularly in the spectral section, that the conventions break down a little. In

particular, we use S(f) for the spectrum although it is not random, etc.



Chapter 3

Canonical Correlation Analysis

3.1 Introduction

In this chapter, we consider the first technique we will need: the mathematical technique

that will be used to integrate information from, compare variables across, and distinguish

variables within, any given class of data sets. The technique we will use is called canonical

correlation analysis. The idea behind this technique is to find those variables, across the

entire class of data sets being compared, that are most similar in the sense of correlation.1

This will allow for the integration of data to obtain more accurate estimates for the param-

eters of a given underlying process (such as when one experiment is performed repeatedly)

and for the comparison of distinct data sets (from, say, different experiments) to determine

important relationships between their underlying processes. The integrative aspect in par-

ticular is important as it allows for the use of more clearly independent estimates - those

made across data sets - which is advantageous from a statistical standpoint. As to the struc-

ture of this chapter, after fleshing out more fully the importance and usefulness of canonical

correlation analysis in the remainder of the introduction, we move on (section by section)

to the mathematics of “classical” canonical correlation analysis, an example illustrating the

results obtainable applying this classical technique to data and a brief discussion of its

statistical workings. From this foundation, we go on to detail a generalization of “classical”

canonical correlation analysis due to Carroll and a numerically stable computational method

1For reference, variables similar in the sense of correlation exhibit a relationship like that of
height and weight among people: taller people tend to be heavier (see the statistics section for more
detail).

17
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for applying this generalization (justifying its use in the numerical setting, particularly on

current computers - see the appendix for more information on stability).

To elaborate on the importance of the integrative and comparative aspects of canonical

correlation analysis (CCA), we consider a couple of typical situations starting with one

in which an experimenter may run an experiment, collect data, and then at a later date

perform essentially the same experiment again. Mathematically, we have two realizations

of a stochastic process {Xt|t ∈ T} where Xt contains only the variables that are shared

between the two experiments. The discussion in the previous chapter makes it clear that

there are many reasons to want to combine the data from these two realizations. Combining

data can be a challenge, however. As an example, if the experiment involves the recording of

video, the setup might be slightly different or the geometry of the contents of the recorded

apparatus may have changed even if the underlying setup (the organisms under consideration

etc.) is the same. Consequently, a priori we cannot simply concatenate the data sets and use

principal component analysis (another potentially applicable technique) even with a nearly

identical setup (it isn’t clear how the variables match up). Further, a situation in which a

few experiments are performed, even without the intent to compare the results rigorously or

directly, is fairly common - probably more common than simply taking more data in a given

experiment - and so it is quite important to use some technique to maximize useful data

extraction from multiple examinations of a given process. Finally, another situation in which

CCA can be of significant value occurs when data is recorded of ostensibly distinct processes

but there is a desire to see what these processes have in common. For example, there has

been some interest recently in looking at the influence of a broad range of demographic

factors on aging. One surprising result was a strong positive correlation between length of

formal education and length of life. Although CCA was apparently not used for this study,

it could have very easily been applied to the various data sets used in a more automated

fashion than the analyses actually carried out ([9]).
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3.2 Classical CCA, Stationarity

We begin with the “classical” canonical correlation analysis (CCA) problem. Given a random

vector with mean vector zero

X =

 X1

X2


partitioned as shown, determine linear combinations α′X1 and γ ′X2 each of unit vari-

ance (E{α′X(1)}2 = 1 etc.) such that their covariance is maximized (i.e., maximizing

E{(α′X1)(γ
′X2)}), and frame the discussion in terms of it. The partitioning of X deter-

mines a corresponding partitioning of the covariance matrix

Σ =

 Σ11 Σ12

Σ21 Σ22

 .

Note that we may write the variance of any linear combination of the random variables

in one of the distinguished sets using a quadratic form α′Σ11α and the covariance of linear

combinations of variables from distinct sets using α′Σ12γ (where α and γ are column vectors

of coefficients for the linear combinations in question).

The solution to the CCA problem may be determined using Lagrange multipliers to

maximize α′Σ12γ subject to α′Σ11α = 1 and γ ′Σ22γ = 1. A variable thus determined, such

as α′X1, is known as a canonical variable and its correlation with the corresponding variable

γ ′X2 is known as a canonical correlation. The canonical variables are usually ordered by

canonical correlation so that the first set has the highest canonical correlation, the second

set has the second highest etc. The coefficients in α and γ are called canonical coefficients.

Let αi, γi correspond to the ith set of canonical variables and αj, γj correspond to the jth

set. The computations reveal the following important properties of the solutions:

1. The canonical variables derived from a given subvector are all mutually uncorrelated

(orthogonal) so canonical correlation analysis produces an orthogonal decomposition

of the spaces spanned by the random variables in X1 and X2. That is, α′
iΣ11αj = 0

when i 6= j.
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2. Non-corresponding canonical variables derived from X1 and X2 are uncorrelated

(orthogonal). That is, α′
iΣ12γj = 0 when i 6= j.

These conditions are of significant importance in the usefulness of CCA and we will see that

a version of the second property holds for the generalization which will be plenty for our

application.

In the practical setting, a straightforward application of the CCA technique just presented

would involve the estimation of the covariance matrix Σ given two data sets using, for

example, the sample covariance matrix estimator. This will not work directly, though, for the

types of data we wish to treat. To be precise, we really need to work with stochastic processes

and not just random vectors and within this context we will see (later on) that the problem

is caused both by the independent sampling of the stochastic processes in question and by

the stationarity of those processes. We will return to these issues when we are in a position

to transform data from stationary stochastic processes into a form amenable to treatment by

CCA (that is, after we cover spectral analysis). For the remainder of this chapter, however,

we will work within the general case where there may be arbitrary dependence relations

between the subvectors of X and ignore the difficulties more specific to our setting. We

begin with an illustrative example.

3.3 Example

Let X = [xij] and Y = [yij] for i = 1, . . . , 128 and j = 1, . . . , 10 be data matrices with data

courses running down their columns (and distinct variables running across their rows). Let

the values of the ten variables in each set across the 128 time indices be defined by

xij = 3 sin(2πfsi) + cos(2πfci) + ε for j = 1, . . . , 5

xij = sin(2πfsi) + 4 cos(2πfci) + ε for j = 6, . . . , 10

yij = 3 sin(2πfsi) + cos(2π(fc + .08)i) + ε for j = 1, . . . , 5

yij = sin(2πfsi) + 3 cos(2π(fc + .05)i) + ε for j = 6, . . . , 10
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where fs = 4/128 and fc = 2/128 are the basic frequencies of the sine waves and cosine waves

and ε is a Gaussian random variable with mean 0 and standard deviation .3. So the columns

of X and Y contain mixtures of sine and cosine “signal” and Gaussian noise. Canonical

correlation analysis (generalized and classical are equivalent for two data sets) finds the

following:

R = (0.9959 0.9829 0.4413 0.3355 0.2722 0.2189 0.1370 0.1147 0.0744 0.0193)

and

A =



0.1377 0.1059 −2.5346

0.1197 −0.0267 0.8864

0.0672 −0.0943 0.4552

0.0897 0.0937 1.2267

0.0994 0.0293 −0.0450

−0.0271 −0.1378 0.0771

−0.0399 −0.0473 −0.8972

−0.0348 0.0066 0.2659

−0.0077 −0.0506 −0.9882

−0.0268 −0.1430 1.4938



B =



0.1306 0.0982 −1.2159

0.1433 0.0397 −0.8129

0.1003 0.0012 1.4480

0.0798 −0.0341 0.7870

0.0713 0.0447 −0.1697

−0.0096 −0.1102 −1.3591

−0.0619 −0.3044 0.5037

−0.0206 −0.1781 0.9753

−0.0592 0.1053 −1.5334

−0.0404 −0.0407 1.4619


where R is the vector of canonical correlations and A and B are matrices containing the

first three sets of canonical coefficients (one set per column). First, we see that CCA has

largely identified the variables that are most similar based on their definitions. In particular,

the first set of canonical coefficients in both A and B clearly distinguish the first 5 variables

among each set of variables (for example, in A, the smallest magnitude coefficient for the

first five variables is .0672 while the largest magnitude coefficient for the last five variables

only has magnitude .0399). These are the variables dominated by the sine signal. The second

set of canonical coefficients in both A and B distinguish the last 5 variables among each

set of variables, although the distinction is less clear (especially in A). This is, in actuality,
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Figure 3.1: Canonical Variable 1 (first data set)

a good illustration of the variable identification aspect of CCA in the presence of noise. In

terms of data matrices, these coefficients determine a change of basis for the column spaces of

the original matrices. The third set of canonical coefficients and beyond basically determine

noise dimensions in the data in this case (note the much lower canonical correlations for

three and beyond).

Now, let’s look at the canonical variables themselves. The figures are spread across a

couple of pages.

We see that CCA has separated the uncorrelated sine and cosine signals out of mixed

signals, like that plotted in 3.3, that are also noisy, illustrating the effectiveness of CCA

in separating orthogonal coherent signals. Now, let’s examine the effect of the averaging.

Each input signal was contaminated with mean zero, standard deviation 0.3 gaussian noise.

Comparing the plots in 3.4 and 3.5, the effect of averaging in reduced variance (increase

smoothness) is apparent.
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Figure 3.2: Pure Sine Signal
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Figure 3.3: 3sin+cos Without Noise
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Figure 3.4: Canonical Variable 2 (first data set)
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Figure 3.5: cos + noise
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This example demonstrates the important properties of CCA - that coherent yet distinct

features are separated by orthogonality or uncorrelatedness while noncoherent features are

averaged out (noise/variability).

3.3.1 Geometry

It is possible to give a geometric interpretation of CCA that can be quite helpful in under-

standing its effect. The example just discussed may be represented schematically as in figures

3.6 and 3.7 (the numbers on the axes should be ignored). In these diagrams, the v1 direc-

tion corresponds to the sine signal, the v2 direction corresponds to the cosine signal and the

complement to the subspace spanned by v1 and v2 is represented by the arrow labelled with

v3,v4, . . .. These grouped complementary dimensions2 contain noise and other less impor-

tant features of the simulated data. In 3.6, the green arrows represent the first five column

vectors of the X matrix (lying primarily along the sine direction and gaussian distributed

around the v1,v2 subspace in the noise dimensions), and the red arrows represent the last

five column vectors of the X matrix. The black dotted lines illustrate that the vectors in

each set contain the same mixtures of the sine and cosine signals but have differences in the

noise dimensions. The same basic comments apply to the figure 3.7. Note that the altered

frequency used with the cosine signal in this data set accounts for the fact that the red

vectors are not centered on the v1,v2 subspace.

Geometrically, the classical CCA method consists of a projection onto x1+x2+ . . .+xn =

0 (removal of the mean) followed by the determination of (specially) ordered orthogonal

bases for the subspaces spanned by the two projected collections of variables. The ordered

orthogonal bases generated have the important property that the first basis vectors for

each projected collection minimize the (projective) distance between the one-dimensional

subspaces each spans (or equivalently maximize the cosine of the angle between them), the

second set minimize the distance out of the remaining dimensions, etc. The first canonical

2In the example there are 126 complementary dimensions.
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Figure 3.6: First Data Set
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Figure 3.7: Second Data Set
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Figure 3.8: After CCA

correlation is, in this interpretation, the cosine of the angle between the subspaces spanned

by the first canonical variables, etc. The result of this in the example is illustrated in figure

3.8. The blue plane corresponds to the subspace spanned by the first two canonical vectors

(variables) of the first data set with the canonical variables themselves shown as thick black

arrows. The canonical variables are nearly exactly v1 and v2 for this data set (the deviation

is practically negligible and isn’t visible in the rendering). The red plane corresponds to the

subspace spanned by the first two canonical variables of the second data set. Note that the

first canonical variable is again almost exactly v1 but that the second canonical variable is

a more clearly perturbed version of v2.

3.4 Statistics

Briefly, the use of the methods here may be justified by the good statistical properties

of the sample covariance matrix. In particular, the sample covariance matrix is usually a

good estimate of the actual covariance matrix (as detailed previously) and so the robustness
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depends on how much the correlations and coefficients can change due to small perturbations

in the matrix. Although we are in the set of polynomials with real coefficients and real roots,

and consequently those roots are smooth functions of the coefficients, there may still be

some sensitivity of the canonical correlations themselves to perturbations. Specifically, the

equations for the classical case above may be written in the form of a generalized eigenvalue

problem3. In this form, the symmetry of our problem precludes the eigenvalues of the two

matrices S̃ = A − λB is split into from being particularly sensitive and we can say that

the correlations in general will not be particularly sensitive to perturbations as long as the

magnitudes of corresponding ordered eigenvalues of the A and B matrices are similar. The

only trouble we may have is in the case that B has a very small eigenvalue and A has no

correspondingly small eigenvalue. References for the sensitivity of the eigenvectors may be

found in Golub and Van Loan [10]. In the classical theory, it is also possible to justify the

technique using the method of maximum likelihood after assuming that the random vectors

are normally distributed. The unbiased estimator of the covariance matrix is simply a scale of

the maximum likelihood estimator of the covariance matrix assuming a normal distribution

(n/(n − 1)) and we in fact end up with the same numerical correlations and simply slight

scales of the canonical coefficient vectors adding weight to the claim of robustness.

3.5 Generalized Canonical Correlation Analysis

It is desirable to use an extension of the “classical” canonical correlation analysis that may

be applied to n ≥ 2 data sets as opposed to simply 2 data sets (again to incorporate more

independence into our estimation). Since we will not be presenting the statistical properties of

the method in its general form and due to the elegance and clarity of the approach outlined by

Carroll, only the original data matrix presentation of this method will be detailed. Interested

readers may refer to Kettenring [11] for a random variable casting of the approach (which

for the present discussion would seem only to complicate matters). The statistical theory,

3See Anderson [2] for the determinant expression for the equations, p. 490.
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which is not the focal point here, will be presented for the two variable classical CCA as

this is relatively straightforward and we will simply appeal to the equivalence between the

classical and generalized approach in this case.

Carroll’s approach (generalized CCA) proceeds from a nice reframing of the canonical

correlation problem. Instead of casting the problem in terms of finding linear combinations

of random variables maximally correlated with one another, Carroll casts the problem in

terms of finding a new variate that allows for a certain sum of squared correlations of linear

combinations of the original variables with this new variate to be maximized. Specifically,

let X1, . . . ,Xn be n matrices with Xi of dimensions k×mi representing k observations of mi

variables and the column means all 0. The goal is then to find a variate Z (a column vector

of length k whose components sum to zero) and linear combinations Ai (Ai a column vector

with mi components) with A′
iX

′
iXiAi) = 1 (variance one) maximizing the expression

R2 =
n∑

i=1

r(Z,XiAi)
2

where r(Z,XiAi) = (Z′XiAi)/(Z
′Z) is the product moment correlation between Z and

XiAi. We now present a quick run through to the solution of this problem (which is also

quite elegant), filling in a couple of details alluded to in Carroll’s paper.

First, it is possible to determine the maximum possible value of the expression r(Z,XA)2

for a given fixed Z over all possible A’s with the variance of the linear combination defined

by A held equal to 1. It will be shown below that the maximum value is

max
A

r(Z,XA)2 =
Z′X(X′X)−1X′Z

Z′Z

subject to X′X being invertible. So the maximum possible value of R2 is (only) achievable

when Z is determined maximizing

1

Z′Z

n∑
i=1

Z′Xi(X
′
iXi)

−1X′
iZ =

Z′QZ

Z′Z
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where Q =
∑n

i=1 Xi(X
′
iXi)

−1X′
i. The solution to this derived maximization problem is, of

course, well known as Q is positive definite or semi-definite4 allowing for an application of

the spectral theorem. The eigenvector of Q corresponding to its largest eigenvalue solves

the problem. In fact, the spectral theorem gives successive uncorrelated “best” Z variates

essentially decomposing as much of the data spaces as the rank of Q allows. Once a given Z

has been determined, the Ai may be determined by Ai = (X′
iXi)

−1X′
iZ which will also be

shown below.

A couple of brief computations using Lagrange multipliers establish the claims made

above (alternatively Hilbert space methods may be used). Under the assumption Z′Z = 1

and on the constraint curve A′
iX

′
iXiAi = 1 (which is a compact manifold guaranteeing

maxima and minima and their occurence at critical points - with appropriate assumptions

on Xi), r(Z,XiAi) = Z′XiAi, the expression that will actually be optimized (as opposed to

its square). The following computations were down with the transposes of the terms discussed

above. Letting

Ψ = Z′XA− 1

2
λ(A′X′XA− 1)

(where X is some fixed Xi) so that the critical point equation(s) is (lambda portion)

∂Ψ

∂A
= Z′X− λA′X′X = 0

multiplying through by A on the right and applying the constraint shows that λ = Z′XA

when the critical point equation is satisified. Consequently

0 = Z′X− λA′X′X = Z′X(X′X)−1 − λA′ = Z′X(X′X)−1X′Z− λA′X′Z

= Z′X(X′X)−1X′Z− (A′X′Z)2

assuming that (X′X) is invertible and so we see that (A′X′Z)2 = Z′X(X′X)−1X′Z at both

the maxima and minima of r(Z,XiAi) so that the maximum value of r(Z,XiAi)
2 is neces-

sarily Z′X(X′X)−1X′Z/Z′Z upon dropping the assumption Z′Z = 1. This last computation

4Carroll’s paper [3] also allows for weights in the expression to be maximized but the analysis
is the same. See Carroll for more.
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also shows that Ai = Z′Xi(X
′
iXi)

−1 is the appropriate choice for Ai (or really a scale). The

equivalence of this technique and the classical technique may be verified by algebraic manip-

ulations involving the eigenvector equation with Q and the transformation vector equations

on the generalized side and the critical point equations (found in Anderson [2] for example)

for the classical CCA. This is a key point but the actual verification itself is not as impor-

tant and so is omitted. The only property of the classical approach that does not carry over

exactly (for n ≥ 3) is that of the mutual orthogonality or uncorrelatedness of the trans-

formed vectors from each data set. In exchange, however, we obtain uncorrelatedness of the

canonical variates themselves.

The above gives an “analytic approach” to the problem of generalizing the CCA, as

Carroll points out (thinking of eigenvalue and eigenvector determination as analytic). As

always, the specter of numerical instability with limited precision floating point numbers

is looming in these computations (see the appendix for more information about numerical

stability). It turns out, though, that this approach works out particularly well (numerically)

when combined with PCA (principal component analysis) leading to numerically stable and

efficient computational procedures.

3.6 Numerically Stable Computation

Carroll’s CCA depends on the computation of the matrix Q as presented in his paper, a

computation that isn’t particularly numerically stable. In particular, small changes in the

entries of the data matrices can cause large changes in the resulting canonical correlations and

coefficients. Further explanation of this problem may be found in the appendix. We will now

demonstrate that Q (with the weighting terms, wi, given by Carroll) may be computed using

the left singular vectors that arise from a singular value decomposition5 (SVD) performed

on the original data matrices. This importantly gives a stable computational method for the

correlation scores and a generally stable method for the canonical variates. It also makes

5See the appendix.
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certain features of this analysis clearer. We have not had time to find a reference for this

material (which may be new or may be known to more seasoned researchers in the area).

In this section, we assume that each of the Xi’s is full rank with mean vector zero and

that k ≥ mi for all i. By the “economical version” of the SVD theorem6, then, Xi may be

written as Xi = UiSiV
′
i where Ui is a partial isometry with dimensions k×mi (that is, the

columns of Ui form an orthonormal basis of a subspace of Rk), Si is a diagonal matrix with

dimensions mi ×mi, and Vi is an orthogonal matrix with dimensions mi ×mi. Then,

Q =
n∑

i=1

wiXi(X
′
iXi)

−1X′
i

=
n∑

i=1

wiUiSiV
′
i(ViSiU

′
iUiSiV

′
i)
−1ViSiU

′
i

=
n∑

i=1

wiUiSiV
′
i(V

′
i)
−1S−2

i V−1
i ViSiU

′
i

=
n∑

i=1

wiUiSiS
−2
i SiU

′
i

=
n∑

i=1

wiUiU
′
i,

which avoids computations of inverses as well as involving only multiplications of well-scaled

matrices. This expression has yet another advantage in that it may be written in a particu-

larly convenient form using block matrices such that explicit matrix products may be avoided

altogether. Forming the block matrix U = [
√

w1U1
√

w2U2 . . .
√

wnUn], the sum may be

written UU′ = [
√

w1U1
√

w2U2 . . .
√

wnUn][
√

w1U1
√

w2U2 . . .
√

wnUn]′ =
∑n

i=1 wiUiU
′
i =

Q, and as we have seen, the eigenvectors of UU′ may be computed using a singular value

decomposition. Specifically using the standard SVD, U is a k ×
∑n

i=1 mi matrix decompos-

able as U = ŨS̃Ṽ′ with Ũ orthogonal of size k × k, S̃ of size k ×
∑n

i=1 mi with nonzero

entries only on its diagonal, and Ṽ a
∑n

i=1 mi ×
∑n

i=1 mi orthogonal matrix. Therefore,

UU′ = ŨS̃Ṽ′ṼS̃Ũ′ = ŨS̃2Ũ′, showing that the columns of Ũ are eigenvectors of UU′ and

so of the matrix Q.

6See Kincaid and Cheney [12], p. 295.
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As for the transformation vectors, the computation as given by Carroll is Ai =

(X′
iXi)

−1X′
iZ. Using the matrix factorizations above, the nature of this computation may

be clarified and its computational qualities improved. Rewriting, we have

Ai = (ViSiU
′
iUiSiV

′
i)
−1ViSiU

′
iZ

= (ViS
2
i V

′
i)
−1ViSiU

′
iZ

= (V′
i)
−1S−2

i V−1
i ViSiU

′
iZ

= ViS
−1
i U′

iZ

which is really an application of the Moore-Penrose pseudo-inverse of Xi to Z. This shows

that that Ai is a least-squares solution to XiAi = Z and gives a numerically improved

computational method.



Chapter 4

Spectral Analysis

4.1 Introduction

In this chapter, we will transition from discussion of the multivariate (“uni-time” - that is,

corresponding to drawing one number for each variable each time a sample is taken) set-

ting, where we were concerned with finding relationships between different variables (e.g.,

representing different attributes of some population) under independent sampling from a

fixed multivariate distribution, to the univariate (“multi-time”) setting, where we will be

concerned with sampling a single attribute some number of times in succession (over time)

and the probabilistic relationships between the values that might be obtained at different

time points. That is, instead of a multivariate random vector, we focus on a stochastic pro-

cess consisting of (univariate) random variables. Although the distributions of interest are

multivariate in both cases and may be handled identically from a mathematical standpoint,

the additional structure of the time series our stochastic processes model (the natural, mean-

ingful ordering by time and the assumed stationarity) may be exploited to some good effect.

In particular, it is possible to develop a powerful, sensitive and useful statistic that provides

a good description of the types of (univariate) stochastic processes we are interested in. This

statistic can then be applied in the multivariate case (variable by variable) and combined

with the CCA technique discussed previously simultaneously resolving the difficulties with

applying CCA discussed previously. After providing additional motivation for the impor-

tance of sensitivity etc. in the scientific (data) setting, we begin the technical exposition by

considering a basic statistical approach to time series analysis, followed by consideration of

its limitations, and moving from there to discuss spectral analysis, how it improves upon

34
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some of these limitations and the important relationship between the spectral statistics and

the initial described “basic” statistics. The most significant portion of this chapter (both

in length and in the value of the results) is concerned with estimation and the practical

implementation of spectral analysis.

While we have appealed repeatedly to the flood of data in modern science in arguing for

(improved) computational techniques, we have ignored the subtle point that in any single

run of a given experiment, each variable may be sampled relatively few times and the size

of the data set generated may stem more from the number of variables (for example, videos

of biological processes often have this property). Further, in order for a model with assumed

stationarity to be justifiable, it is often better to deal with data sets that were collected

over a relatively short period of time. Therefore, we need techniques that are sensitive and

robust when dealing with relatively short time series. For this reason, we will employ the

multitaper spectral estimators that have these properties. There is yet another important

reason to turn to spectral analysis, however, and that is the naturalness of working in the

frequency domain with certain types of data. For example, in brain imaging studies (using,

say, fMRI), the subjects may be exposed to a periodic stimulus such as a flashing light and so

the expected response would likely be periodic. Even more importantly, though, the human

body naturally generates a variety of periodic signals corresponding to periodic event such

as heartbeats, breathing etc. It is often possible to relatively easily filter or at least separate

these out in the frequency domain - something that is typically not easy in the time domain

(see Mitra and Pesaran [13]). With this “practical side” motivation in hand, we turn first to

the basic statistical development.

4.2 Autocovariance

The most basic measures from probability theory for quantifying the properties of and rela-

tionships within a collection of random variables consist of the numerical means, variances

and covariances (or correlations) of the random variables and pairs of random variables. As
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we are interested in how a stochastic process evolves in time, the focus will be on the covari-

ances between the random variables for different time indices. In this situation, the index

set is of course ordered and so it is natural to use this order when presenting the covariances

giving rise to the notions of autocovariance functions and autocovariance sequences. It is these

descriptions of the properties of a stochastic process we will initially focus on. These more

straightforward statistical descriptions are crucially related to the spectral decompositions

of interest.

For any continuous parameter stationary stochastic process {X(t)}, the autocovariance

function is defined by

s(τ) = cov{X(t), X(t + τ)} = cov{X(0), X(τ)}.

The properties of this descriptive tool as well as its relationship to the tools that will be

developed in the course of this section are most illuminated by considering a specific type of

stationary stochastic process called a harmonic process which underlies the area of spectral

analysis and is the key to casting time series analysis in this light. Consequently, throughout

the first part of this section we will consider the specific simple harmonic process {X(t)}

defined by X(t) = a cos(2πft + φ) where a is the constant amplitude, f is the constant

frequency and φ is a random variable with a uniform distribution on [−π, π]. This process

may be thought of as a model for the voltage across the conductors of a wall outlet (energized

with fhz aV AC) with φ representing the random time at which voltage tracking commences.

Calculating the autocovariance function for this process is quite instructive (note mean zero):

s(τ) = cov{X(0), X(τ)}

= E{X(0)X(τ)}

=

∫ π

−π

(a cos(φ))(a cos(2πfτ + φ))
dφ

2π

=
a2

2
cos(2πfτ)

and we see that calculating the autocovariance function amounts to discarding the random

phase information while retaining (transformed) the important parameters of the model. If
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we wished to compare different stochastic processes of this type, calculating the autocovari-

ance functions of each would place all periodic components of each in phase making the

autocovariance functions properly comparable (as opposed to the raw time series which are

not robustly (statistically) comparable).

The above certainly suggests a candidate statistic that might be used to analyze and

compare time series. However, there are a number of drawbacks to this approach. First and

foremost among these is the difficulty of interpreting an autocovariance function or sequence.

This is connected to the difficulty of visualizing a typical time series that might give rise

to a given autocovariance function or sequence as well as to the statistical properties of

autocovariance functions/sequences. For convenience, consider the (lag k) theoretical auto-

correlation

ρk = E{(Xt − µ)(Xt+k − µ)}/σ2

for the discrete parameter stochastic process Xt and the corresponding (lag k) sample auto-

correlation for a given realization xt

ρ̂k =

∑N−k
t=1 (xt+k − x̄)(xt − x̄)∑N

t=1(xt − x̄)2
,

the first of which, as k varies, defines the theoretical autocorrelation sequence (acs) and the

second of which, as k varies, defines the sample autocorrelation sequence (acs). Percival and

Walden note that “Unfortunately, it takes a fair amount of experience to be able to look at a

theoretical acs and visualize what kind of time series it corresponds to.” (p8). So, even with

the theoretical acs available, its usefulness as a direct description of the process by a typical

user of time series analysis is limited. On the statistical side, this problem is related to the

fact that in most cases “the estimators ρ̂k and ρ̂k+1 are highly correlated and compounded

by the difficulty in obtaining reliable estimates of ρk for k large relative to N (that is, k that

represent a substantial proportion of the length N of a time series). In particular, Percival

and Walden note that the standard deviation of ρ̂k “...depends on k and the true acs in a

complicated way - typically it increases as k increases...” and that this property along with
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“the correlation between nearby estimators” cause significant interpretation issues. Further,

these statistical properties also make statistical inference difficult. It is for these reasons as

well as the general usefulness of having additional (more robust) methods that we turn to

spectral analysis.

4.3 Spectral Analysis

One of the major themes present across all of the techniques surveyed in this thesis is that of

(orthogonal/direct sum/spectral) decomposition. CCA (classical) decomposes vector spaces

of random variables into sets of canonical variables, each of which captures a distinct portion

of the behavior of the combined set of variables. The same may be said about the singular

value decomposition detailed in the appendix. Mathematically, each of these is a type of

spectral decomposition (for example, the singular values form the spectrum in the singular

value decomposition case). The quintessential spectral decomposition from a physical stand-

point may be said to be that of light. Light, among electromagnetic wave phenomena more

generally, is naturally described by its spectrum. The spectrum of light from an unchanging

source contains essentially all of the fixed information about the light in the form of the

power level at the various constituent frequencies, from which it is possible to make state-

ments about the color of the light, the total power output of the light source etc. It’s worth

pointing out, for the analogy that will develop, that this type of spectrum also does not

contain generally irrelevant details such as phase information, which is, from the point of

view of arbitrary sampling, basically random and usually not even coherent (across multiple

points emitting radiation from non-laser sources). Interestingly, the mathematical version of

this for deterministic functions, part of the area of Fourier analysis, was developed before

the electromagnetic wave model for light propagation. The importance of spectral anal-

ysis in the field of time series analysis derives from the existence of a representation (with

favorable properties) for any stationary stochastic process similar to the Fourier transform
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for absolutely integrable deterministic functions allowing for a natural definition of a spec-

trum almost precisely analogous to the spectrum detailed in the light example above. This

spectrum decomposes the variance of a stationary stochastic process in contrast with the

decomposition of power provided by the electromagnetic spectrum example and so repre-

sents a kind of statistical spectrum. More generally, the spectral representation itself is the

gateway to a variety of powerful techniques in addition to providing a more directly usable

(by most researchers) statistic than the acs, in the form of the spectrum, for dealing with

stationary stochastic processes.

In order to define a spectrum for stationary stochastic processes, it is necessary to develop

a representation of such processes that allows for the type of spectral decomposition of

interest. Beginning with a search for forms that can represent arbitrary realizations of sta-

tionary stochastic processes, the obvious options are to employ either a Fourier series or

Fourier integral based representation (each of which has an existing comprehensive theory

and notion of spectrum), but it is also clear that the assumption of stationarity precludes

these approaches in general. In particular, there is no reason for realizations of a stationary

stochastic process to be periodic, and the constant variance property also precludes realiza-

tions from tending to “die down” as t → ∞. A candidate representation exists in what is

sometimes called the Fourier-Stieltjes integral representation, developed rigorously by Wiener

(1930) (in the same extensive paper, Wiener also introduced the term “generalized harmonic

analysis” for a very comprehensive theory of which we are covering only a small part here).

This representation has the form

g(x) =

∫ ∞

−∞
eifxdP (f)

where f represents frequency and P (f) is a complex-valued function which is the Fourier-

Stieljes transform of g(x). It is possible to represent periodic and absolutely integrable func-

tions using this form, but also functions that have neither property. A good example of this
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is given by Priestley taking

P (f) =


1
2

if f = ±1, ±
√

2

0 otherwise.

In this case,

g(x) = cos(x) + cos(
√

2x)

which is neither periodic (due to the incommensurability of
√

2) nor absolutely integrable.

This is certainly a representation that can be used to describe realizations of stationary

stochastic processes in general. Amazingly enough, it turns out that it is possible not only

to use this representation on a realization by realization basis, but it is in fact possible to

develop a stochastic version of this representation for stationary stochastic processes them-

selves. This approach, also developed by Wiener in his seminal paper of 1930, is very similar

(in spirit) to Fourier’s original work using Fourier transforms to solve the heat equation

by separating the temporal and spatial variables. A crucial result/property of the spectral

theorem for stationary stochastic processes is that it decomposes the process into a portion

that is a function of time and a separate portion that is random (that is, a function on the

underlying sample space) with the two portions linked by frequency. This is exactly analo-

gous to the Fourier approach to differential equations with frequency linking space and time

variables. From the separated random part, a variance spectrum may be defined. We will

flesh this approach out more fully after listing the desirable properties this variance spectrum

possesses1.

The spectrum of a stationary stochastic process, the existence of which is guaranteed by

the spectral representation theorem, (will be seen to) possesses the following useful properties

(primarily in contrast with the acs)

1. Decomposition of the variance of the process (by frequency): Makes it easier

to visualize the types of time series that may be generated by the process and to

1The material discussed in this paragraph also receives a very nice treatment in the first chapter
of Priestley’s book.
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get a sense of any tendencies for oscillation to occur at particular frequencies. Also

structurally useful.

2. Approximate uncorrelatedness of estimates of the spectral components:

Allows for the development of good statistical tests in contrast to the highly corre-

lated increments for the sample acvs. This stems from the “diagonalization” of the

process in frequency space provided by the spectral representation.

3. Existence of a ‘variance stabilizing’ transformation: The use of a ‘decibel’

(10 log10) scale equalizes the variance of estimates of the spectrum at different fre-

quencies (no such variance stabilizing transformation is known for the acvs).

4. Sensitivity and interpretability: Interpretability stems primarily from the already

mentioned properties. Percival and Walden give a fairly striking example of the greater

sensitivity versus the acvs in a specific case on pages 147-149. In fact, the definition and

study of the spectral estimator known as the periodogram was motivated in part by

the question of discovering periodicities hidden by noise in noisy data (394, Priestley).

5. Relationship between measurement limitations and frequency domain char-

acterization: The limitations of measurements recorded by instruments are usually

most easily expressed and understood in the frequency domain. The frequency response

or ‘transfer’ function is often known for a given instrument.

In particular, on a statistical level, the spectrum would typically be preferred just based on

the statistically oriented properties in this list. Another critical aspect of this theory is the

fact that the estimation procedures that will be fleshed out in the following sections serve the

dual (connected) role of improving results on the deterministic or realization by realization

level.
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4.4 The Spectral Representation

The approach of Percival and Walden to the spectral representation theorem is fairly illumi-

nating. They present the basis for the theorem without formally proving it and we will briefly

summarize this approach while also attempting to clarify certain aspects of it. The special

case of the harmonic processes provides the necessary motivation and so we will consider the

real-valued discrete time harmonic process

Xt =
N∑

n=1

an cos(2πfnt + φn), t = 0,±1,±2, . . . ,

with an and 0 < fn < 1/2 representing the constant real-valued amplitudes and frequen-

cies and the φn terms representing independent random variables uniformly distributed on

[−π, π]. Transitioning to the complex exponential representation of the right hand side reveals

how the random variables may be separated from the time variable for this process. Specifi-

cally,

Xt =
N∑

n=1

an cos(2πfnt + φn) =
N∑

n=1

an
eiφnei2πfnt + e−iφne−i2πfnt

2

=
N∑

n=−N

Bne
i2πfnt

with

Bn = ane
iφn/2 and B−n = ane

−iφn/2, n = 1, . . . , N

and, B0 ≡ 0, f0 ≡ 0 and f−l ≡ fl. The (random) coefficients B1, . . . , BN are clearly indepen-

dent and thus are mutually uncorrelated (the expectations are finite here). Upon checking,

we see that cov{Bn, B−n} = E{B∗
nB−n} = (a2

n/4)(E{e−i2φn}) = 0 for n = 1, . . . , N and,

therefore, that the random variables B−N , . . . , BN are all mutually uncorrelated. The means

and variances of the (random) coefficients are

E{Bn} = 0 and var{Bn} = E{B∗
nBn} = a2

n/4
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(defining a0 ≡ 0 and a−n ≡ an) and therefore

var{Xt} = E{X∗
t Xt}

=
N∑

m=−N

N∑
n=−N

E{B∗
mBn}ei2π(fn−fm)t

=
N∑

n=−N

a2
n/4.

This decomposes the variance of the stochastic process {Xt} into the expected squared

amplitudes of the oscillations at each frequency. So, a (variance) spectrum for this process

with the properties mentioned previously may be defined by

S(f) ≡

 a2
n/4 if f = fn, n = 0,±1, . . . ,±N

0, otherwise.

It is important to note that while the Bn coefficients contain all of the information necessary

to reconstruct the process Xt, the spectrum itself does not and, paralleling the discussion

above, only captures the non-random information that accounts for the variability of this

process (the fixed amplitudes). In general, however, we will in fact be finding the average

contribution to variance at a given frequency (this is literally how much power is expected

at a particular frequency in any given realization of the process - i.e., the variance spectrum

is basically the average of the “power” spectra over all realizations2) when the amplitudes

are allowed to vary as well. This is also non-random but it is important to distinguish the

harmonic process case from the general stationary process case (this will manifest itself in

the use of the expectation operator in expressions defining, for example, the “integrated”

spectrum below).

The above is representative of the notion of, and process of deriving, spectral represen-

tations for stationary stochastic processes in general. By introducing the Fourier-Stieltjes

integral discussed previously, we can remedy, in a natural manner, the discrete nature of

the frequency increments essentially imposed by the sum based expression above. Using a

2See Percival and Walden section 4.2 for discussion of the limitations of this statement, which
is, notwithstanding these, still useful for intuition.
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stochastic form of this integral, we can transform any stationary stochastic process into a

form from which a clear notion of spectrum emerges. To illustrate the specifics of this integral

based representation, we begin by translating the above example into it. The expression

Z(f) ≡
N∑

n=0

Bn, fn < f ≤ fn+1 for n = 0, . . . , N,

defines a stochastic process with orthogonal increments. This means that

E{(Z(f1)− Z(f2))(Z(f̃1)− Z(f̃2))} = 0

whenever f1 < f2 ≤ f̃1 < f̃2 (i.e., on non-overlapping intervals). Given such a process, it is

then possible to define, for arbitrary continuous deterministic functions g(f),

Y =

∫
A

g(f)dZ(f).

by taking the random variable Y to be the random variable satisfying

lim
n→∞

E{(
n∑

j=1

g(fj){Z(fj)− Z(fj−1)} − Y )2} = 0

where max(fj − fj−1) → 0 as n → ∞. This is a stochastic version of the Riemann-Stieltjes

integral which we see is defined in a mean-square sense over the underlying probability space3.

It is reasonably straightforward to check that under this definition∫ 1/2

−1/2

ei2πftdZ(f) =
N∑

n=−N

Bne
i2πfnt = Xt.

With this motivation, the spectral representation theorem may now be stated (notation

will be explained following the theorem statement).

Spectral Representation 1 Let {Xt} be a zero-mean discrete parameter stationary

stochastic process. Then there exists an orthogonal process {Z(f)} with respect to which

Xt =

∫ 1/2

−1/2

ei2πftdZ(f)

in the mean-square sense for all integers t. The process Z(f) has the following properties:

3For more information on the role of orthogonality in this definition and for the Lebesgue-Stieltjes
approach, see Doob [8].
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1. E{dZ(f)} = 0 for all |f | ≤ 1/2,

2. the expression dS(I)(f) ≡ E{|dZ(f)|2} defines a bounded nondecreasing function

S(I)(f) with the properties we desire a spectrum to possess

3. for any distinct frequencies f and f ′ contained in [−1/2, 1/2],

cov{dZ(f), dZ(f ′)} = 0

This theorem essentially says that any discrete parameter stationary process may be rep-

resented as an infinite sum of complex exponentials with random amplitudes |dZ(f)| and

random phases arg(dZ(f)) and that in so doing a useful variance spectrum may be defined

based on this representation. Further, the representation given by this theorem has the

important property that its increments (the random variables dZ(f) for f ∈ [−1/2, 1/2]) are

uncorrelated. That is, the correlation (or covariance) matrix of the random variables extant

in this representation is diagonal (the third property in the statement of the theorem). This

is in contrast to the correlation (or covariance) matrix for the process itself which is usually

not diagonal (cov{Xt, Xt + τ} 6= 0 when τ > 0 typically).

The notation used in the statement of this theorem is slightly obscure. The notation

dZ(f) when used either within the expectation operator or the covariance form essentially

means Z(f + df) − Z(f) for all df > 0 with df small (for the covariance property, the

intervals must be non-overlapping). This notation is being used to indicate (important)

features of Z in the context of Stieltjes integrals. The notation dS(I)(f) ≡ E{|dZ(f)|2}

means that there is a function S(I)(f), called the integrated spectrum, with the property that

S(I)(f2)− S(I)(f1) = E{|Z(f2)− Z(f1)|2} for all f2 > f1 (Doob [8], 101). It is this function

that is of interest.

The relationship between the spectral representation for a given process and its auto-

covariance sequence may be seen by a calculation that makes immediate use of one of the

most useful properties of the spectral representation, the uncorrelated increments of the Z(f)
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process. Since

X∗
t Xt+τ =

∫ 1/2

−1/2

e−i2πf ′tdZ∗(f ′)

∫ 1/2

−1/2

ei2πf(t+τ)dZ(f)

=

∫ 1/2

−1/2

∫ 1/2

−1/2

e−i2πf ′tei2πf(t+τ)dZ∗(f ′)dZ(f),

the acvs may be written

sτ = E{X∗
t Xt+τ}

=

∫ 1/2

−1/2

∫ 1/2

−1/2

ei2π(f−f ′)tei2πfτE{dZ∗(f ′)dZ(f)}.

The uncorrelated increments yield contributions in integrals only when f = f ′ and conse-

quently

sτ =

∫ 1/2

−1/2

ei2πfτE{|dZ(f)|2} =

∫ 1/2

−1/2

ei2πfτdS(I)(f).

Now, consider the case where S(I)(f) is differentiable with derivative S(f). We may then

write

sτ =

∫ 1/2

−1/2

S(f)ei2πfτdf,

that is, sτ is the inverse fourier transform of S(f). Assuming that S(f) is square integrable

and appealing to Parseval’s theorem, it is then the case that

S(f) =
∞∑

τ=−∞

sτe
−i2πfτ

and so S(f) and sτ form a fourier transform pair. Although the autocovariance sequence

and the spectrum can now readily be seen to contain the same amount of information, as

has already been mentioned, the spectrum possesses a number of properties making it the

(usually) preferred statistic. We will also see how to calculate improved estimates of the

spectrum using techniques that are not directly applicable to calculating the acvs (although

clearly the just detailed relationship could be used to apply them).

4.5 Estimation

In order to make use of the notions detailed above in practice, it will be necessary to estimate

the spectrum of a stationary stochastic process from finite length discrete (digital) samples.
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This raises two issues. The underlying processes of interest will generally be (mathematically)

continuous time processes (such as laboratory experiment evolution over time) which, when

the discreteness of sampling is brought into play, will become discrete parameter processes.

So the first question is how accurately will the spectrum of the derived discrete parameter

process reflect that of the continuous parameter process - we will see that aliasing is the major

determinant of the answer to this question. However, this only takes us from dealing with

infinite-length continuous parameter process to infinite-length discrete parameter processes.

The second (issue) question is, therefore, a question of how accurately the spectrum of a

discrete (infinite-length) parameter process may be determined from finite-length sample

subsequences of that process. This question of course also arises in the deterministic fourier

theory and the results are very much the same - resolution may be lost (that is, the fine

features of spectra are “smeared” out) and power may be transferred between different

spectral components. The primacy of spectral techniques will be seen to depend on powerful

methods for controlling and reducing the effects of these undesirable traits.

The relationship between the acvs and the spectrum gives us a starting point from which

to discuss the transition from continuous parameter processes to discrete. If {X(t)} is a

continuous parameter process then

Xt ≡ X(t0 + t∆t), t = 0,±1,±2, . . .

is a discretized version of it based on equally spaced sampling (the most common sampling

scheme) for given sampling interval ∆t > 0 and time offset t0
4. If {X(t)} is stationary with

sdf SX(t)(f) and acvf {s(τ)} then Xt will be stationary as well with some sdf SXt(f) and

acvs

sτ = cov{X0, Xτ} = cov{X(t0), X(t0 + τ∆t)} = s(τ∆t).

So in sampling X(t) we effectively also sample s(τ) with the same sampling rate. Now, since

SX(t)(f) and s(τ) form one fourier transform pair and SXt(f) and {sτ} form another subject

4We typically assume ∆t = 1 in which case things match up directly with the statement of the
spectral theorem, e.g., f(N) = 1/2.
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to the relationship above, it may be shown that

SXt(f) =
∞∑

k=−∞

SX(t)(f + k/∆t), |f | < 1

2∆t
≡ f(N)

where f(N) is the Nyquist frequency due to the phenomenon known as aliasing. From this,

it is clear that if a continuous process is sampled at such a rate that its spectrum is zero

or nearly zero for |f | ≥ 1/(2∆t) then the spectrum of the discrete process will match the

spectrum of the continuous process very closely for |f | < 1/(2∆t) (note that the discrete

process spectrum is periodic). On the other hand, if the spectrum of the continuous process

is large at any frequency above the Nyquist frequency due to the sampling rate chosen, the

estimate provided by computing the spectrum of the discrete parameter process can be poor.

It is therefore important to either be sure that the sampling rate is high enough (arguments

may be based on physical properties of conductors for example etc.) or to use a filter to

remove frequencies that would be aliased due to the sampling rate.

Once aliasing is accounted for, we must determine the effect of finite sample sizes on

estimates of spectra for discrete parameter processes. Suppose Xt is a discrete parameter

process with zero mean and a purely continuous spectrum with sdf S(f) forming a fourier

transform pair with the acvs of the process sτ . Continuing along the lines used for the tran-

sition from continuous to discrete, we will now estimate the acvs for this discrete parameter

process given a sample and determine the effect of so doing on the spectral estimates we may

base on this. For a variety of reasons (given by Percival and Walden), time series analysts

often prefer to use a biased estimator of the acvs

ŝτ =
1

N

N−|τ |∑
t=1

XtXt+|τ |.

Applying the fourier relationship between the acvs and the spectrum we may define the

following basic spectral estimator (using the simple approach amounting to considering sτ
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to be 0 for |τ | ≥ N in the usual fourier pair):

∆t
N−1∑

τ=−(N−1)

ŝ(p)
τ e−i2πfτ∆t =

∆t

N

N−1∑
τ=−(N−1)

N−|τ |∑
t=1

XtXt+|τ |e
−i2πfτ∆t

=
∆t

N

N∑
j=1

N∑
k=1

XjXke
−i2πf(k−j)∆t

=
∆t

N

∣∣∣∣∣
N∑

t=1

Xte
−i2πft∆t

∣∣∣∣∣
2

≡ Ŝ(p)(f).

This estimator is known as the periodogram. One important property of this estimator (for

this work and computational reasons more generally) is that at the fourier frequencies, its

value is the squared modulus of the discrete fourier transform coefficient at such frequencies

scaled by 1/(N∆t). We may now examine the consequences of estimating the spectrum using

this estimator.

Percival and Walden (6.3) begin by summarizing the properties of Ŝ(p)(f) in contrast with

the properties of the spectrum S(f) itself. The properties given in the spectral representation

theorem for dZ(f) coupled with the desire for an unbiased estimator lead to the claim that

if S(p)(f) were a good estimator then we should have

1. E{Ŝ(p)(f)} ≈ S(f) for all f ,

2. var{Ŝ(p)(f)} → 0 as N →∞ and

3. cov{Ŝ(p)(f ′), Ŝ(p)(f)} ≈ 0 for f ′ 6= f .

It turns out, however, that the periodogram doesn’t in general satisfy any of these properties.

In particular, 2 doesn’t hold at all for frequencies at which S(f) > 0 and 1 and 3 only hold

with certain limitations. We will only consider the first item at present and will show how

to deal with both it and the second item in later sections.

To see what happens when we compute the periodogram (on average) it is convenient to

rewrite E{Ŝ(p)(f)} as a convolution of S(f) with some kernel (this strategy is motivated by
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the clearer case of deterministic subsequences - Percival 3.7). The result is

E{Ŝ(p)(f)} =

∫ −f(N)

f(N)

F(f − f ′)S(f ′)df ′

where

F(f) ≡ ∆t sin2(Nπf∆t

N sin2(πf∆t)

is Fejér’s kernel (related to Dirichlet’s kernel). Percival and Walden explicitly enumerate its

properties but we will simply comment that it is possible to show that as N → ∞ Fejér’s

kernel limits to a Dirac delta function and so with S(f) assumed continuous it is the case

that

lim
N→∞

E{Ŝ(p)(f)} = S(f),

that is, Ŝ(p)(f) is asymptotically unbiased. However, asymptotic properties are often not

particularly useful with real data and it is the “small sample” properties of the above that

are of concern. Plotting Fejér’s kernel for small N (see Percival and Walden [15] p. 200)

we obtain an idea of what convolution by this kernel results in. The central lobe results in

what is known as loss of resolution. Essentially, power at frequencies near the frequency we

are attempting to estimate the power at is averaged together with the power at the actual

frequency in question. This causes fine details of the spectrum to be lost. An even potentially

more significant problem is caused by the sidelobes of this kernel. These sidelobes show that

power from frequencies across the spectrum is averaged into estimates of power at a given

frequency - this is known as leakage. Leakage becomes a significant issue when the frequency

response in a given band is very low compared to frequency response in other bands (a crude

metric of this is given by the notion of dynamic range, this is a significant issue when a

process has high dynamic range and it is the case that many real physical processes do have

high dynamic range). Leakage can contribute to significant bias in estimating the spectrum

of a process and in general the periodogram is often too badly biased in many cases to be

a usable statistical tool (see the Thomson quote, Percival and Walden [15] p. 199). The

ability to demonstrate these properties using convolutions does suggest a way to repair the
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problems noted: namely replace the kernel in the convolution. This turns out to be fairly

straightforward due to the well-known convolution theorem.

4.5.1 Convolution Theorem

The convolution theorem immediately comes to mind if we wish to replace the kernels in the

various integrals above with kernels with better properties. The various forms of this theorem

amount to the fact that convolution in the frequency domain amounts to multiplication in the

time domain and vice versa. In particular, this allows us to replace the kernel discussed above

with another kernel by multiplying sample sequences pointwise by certain other sequences

with desirable properties. Such sequences are called tapers.

The ideal taper would of course transform to a Dirac delta function in the frequency

domain. Since we are dealing with finite length sequences, this is impossible. In particular,

there are no non-trivial time-limited and band-limited functions (this may be seen in the

continuous case by an appeal to analyticity). So it becomes necessary to optimize. That is,

to try and find the sequences of a given fixed length (time) that are most concentrated in

frequency with respect to some measure of concentration. This is known as the frequency

concentration problem and it has a particularly useful solution with the appropriate setup.

4.5.2 Concentration Problem

The concentration problem for the discrete time, continuous frequency case was explored

by Slepian (1978)5 and the following approach and results are due to him. In the general

setting, the concentration of a time-limited signal (with ∆t = 1) in the frequency domain

may be written as

β2(W ) ≡
∫ W

−W

|Gp(f)|2df

/∫ 1/2

−1/2

|Gp(f)|2df

5Also discussed in Percival and Walden [15], section 3.9.
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where W < 1/2. This is simply the fraction of the total power of the signal in the band

|f | ≤ W . In the case of an index limited signal the fourier transform is defined by

Gp(f) =
∞∑

t=−∞

gte
−i2πft =

N−1∑
t=0

gte
−i2πft

and so we have in this case that

β2(W ) =

∫ W

−W

|Gp(f)|2df

/∫ 1/2

−1/2

|Gp(f)|2df

=

∫ W

−W

N−1∑
s=0

N−1∑
t=0

g∗sgte
i2πf(t−s)df

/
N−1∑
t=0

|gt|2

=
N−1∑
s=0

N−1∑
t=0

g∗s
sin(2πW (t− s))

π(t− s)
gt

/
N−1∑
t=0

|gt|2

by making use of Parseval’s equality to handle the denominator and the Euler relationship

after integrating. In fact, the above expression does gloss over the terms where s = t and

for these terms the fraction in the numerator should be replaced by 2W . In any case, this

expression may be seen to be a quadratic form and may be written as a matrix. The problem

may then be seen to be of the same type as seen earlier, namely the maximization of the

form g∗Ag subject to g∗g = 1 where the terms in the symmetric A matrix are the middle

fractional terms of the above summation in the numerator. The complete solution to this

problem is again given by the eigenvalues and eigenvectors of the matrix A. The eigenvectors

are known as the discrete prolate spheroidal sequences (dpss’s) and the eigenvalues (as may be

seen from the above expressions) quantify the concentration of each. One of the most useful

outcomes of this approach from a statistical point of view is the fact that an orthogonal

set of sequences is generated. The trade-off in using these sequences is in the width of the

central lobe they generate in the replaced kernel (which as discussed before is related to

loss of resolution). Aside from this caveat (which the multitaper approach addresses), these

sequences form nearly ideal tapers. It is also an important fact that there is a stable and

fast method for computing the tapers themselves based on a difference equation the dpss’s

satisfy.
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4.6 Multitaper Approach

The multitaper spectral estimator is a direct spectral estimator, as is the periodogram, but

with tapering applied to the data in an effort to improve bias properties. In particular, not

only do multitaper methods potentially significantly reduce bias, decrease the variance of

estimates, reduce the bounds of confidence intervals and allow for a straightforward quantifi-

cation of the bias of estimates made into local bias (due to the user selected bandwidth W )

versus broadband bias (due to power outside the [−W, W ] window around a given frequency),

they achieve these results automatically - that is, without the need for user intervention -

and hence are ideal candidates for use in software to help researchers to cope with the

ever-increasing rate at which data is collected.

The simplest multitaper spectral estimator is formed in the manner suggested by its name

by using several data tapers. In particular, for a realization X1, X2, . . . , XN of a stationary

process {Xt} with zero mean the definition is

Ŝ
(mt)
K (f) ≡ 1

K

K−1∑
k=0

Ŝ
(mt)
k (f) for Ŝ

(mt)
k (f) ≡ ∆t

∣∣∣∣∣
N∑

t=1

ht,kXte
−i2πft∆t

∣∣∣∣∣
2

where {ht,k} is the kth data taper used. That is, this simple multitaper estimator uses the

average of the estimates given by K data tapers. The averaging strategy in general reduces

the variance of the final estimate so that as long as bias is not introduced, the computed

spectrum should match more closely the actual spectrum of the process. In particular, if

the Ŝ
(mt)
k (f) estimates are pairwise uncorrelated then the variance of Ŝ

(mt)
K (f) should be

approximately a multiple of 1/K of the variance of any of these individual direct estimates.

In order not to introduce bias, it is necessary that the tapers also be chosen to provide good

protection against leakage. These desired properties of the Ŝ
(mt)
k (f) being approximately

uncorrelated and relatively leakage-free follow from the use of data tapers that are approxi-

mately uncorrelated with small sidelobes for processes whose spectral density functions have

certain properties. This motivates the choice of the dpss’s as good sequences to use as tapers.

An intuitive justification for the uncorrelatedness of the Ŝ
(mt)
k (f) for spectra of appropriate
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type follows from the easy to see property (consult the plots in Percival and Walden [15],

p. 336-338) of the dpss tapers that each successive taper tends to accentuate and attenuate

different regions of the data.



Chapter 5

Spectral Canonical Correlation Analysis and Results

5.1 Spectral CCA

It is possible to precisely characterize the problem with using CCA directly on the time series

of stationary stochastic processes sampled independently by writing down an expression for

the sample correlation statistic using the random variables in such a process. This same

approach illustrates why the spectra can be compared using correlation1. With these facts

in hand, we may move on to the method itself.

We are now ready to combine Carroll’s generalization of canonical correlation analysis

and Thomson’s multitaper spectral estimators to obtain a technique we call “spectral CCA”

or “spectral canonical correlation analysis” (or even just SpecCCA). This method will find

correlations in the spectra of variables across data sets which amounts to determining which

variables amongst the different data sets share similar features. It should be noted that

the use of correlations to compare spectra in some sense amounts to throwing out white

noise (the mean) and looking for tendencies for there to be more or less pronounced peri-

odicities at given frequencies. At the same time, the averaging effect of the CCA technique

amounts to averaging spectral estimates both within each data set (in the form of the trans-

formation vectors projected into the spectra of a given data set) and across the sets (in the

form of the canonical variates). This is obviously advantageous from the point of view that

S(f) = E{|dZ(f)|2}. After summarizing the technique, we will also discuss how this approach

remedies the problem of applying CCA to data from stationary stochastic processes.

1These are omitted due to time constraints.
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Given data sets X1, . . . ,Xn with time courses running down the columns and dimensions

k × mi where k > mi, we begin by calculating basic multitaper spectral estimates at the

fourier frequencies for each variable. This results in transformed data sets X̃1, . . . , X̃n where

X̃i has the form2

X̃i =


Ŝ

(mt)
Xi(:,1)

(f1) Ŝ
(mt)
Xi(:,2)

(f1) . . .

Ŝ
(mt)
Xi(:,1)

(f2) Ŝ
(mt)
Xi(:,2)

(f2) . . .

...
...

. . .

 .

We then perform Carroll’s canonical correlation analysis on these transformed data sets

(using the numerically stable method discussed above). The result is a set of canonical

variates in a matrix Z and the transformation vectors (containing the canonical coefficients)

in the matrices A1, . . . ,An. The canonical variates (or canonical spectra) represent spectra

most similar to certain linear combinations of the spectra from each data set (they are

the most similar across all the data sets). These variates also represent averaged spectral

estimates from across all the data sets (see Carroll’s comment in the case of two data sets

for motivation for this interpretation). The transformation vectors in a given Ai indicate, on

the one hand, which variables are most closely related to one another and to other variables

across the data sets (in the sense of their spectra), and on the other hand, may be used

to produce averaged spectra for a given data that are most similar to spectra contained in

the other data sets. Finally, it should be noted that the above may easily be applied to

data sets where k ≤ mi by using a method of data compression such as the SVD or principal

component analysis. It is important to note that data compression should be performed after

tapering.

5.1.1 Results

We now give a brief example of some results obtained. The figures contain graphical rep-

resentations of the transformation vectors found (which are images in this case) when the

2We use MATLAB notation for convenience - e.g., X(:, 1), which means the first column of X.
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technique was applied to four videos taken of biological processes. The plots are of the corre-

sponding “canonical spectra.” The successive vectors and different spectra plotted within the

same figure correspond to the four different data sets used. The figures are (unfortunately)

on the pages after the explanatory text.

In figure 5.1, the blue line corresponds to vector 1, the red to vector 2, the black to

vector 3 and the magenta to vector 4. Vectors 1-4 are transformation vectors associated with

the “averaged” spectra plotted and the averaged spectra correspond to the first canonical

variate. Ellipses have been added to try to pick out some similarities between the canonical

spectra over part of the frequency range. The black and magenta seem to follow each other

most closely (corresponding to vectors 3 and 4).

Note that the canonical spectra aren’t exactly normal spectra in that they may be nega-

tive. The CCA process (and SVD used for data compression) is very effective at separating

out power at different frequencies, exploiting sometimes small differences between the orig-

inal spectra. The effect is that it can actually drive the “power” in the canonical spectrum

down at a given frequency while driving the next frequency up. Often, of course, this process

results in negative “power” at some frequencies. This is simply the result of the process

selecting for power at some frequencies and against power at others within any given canon-

ical variable. Power at frequencies selected against in any given variable is generally being

put into other canonical spectra and is therefore being subtracted out of that given variable,

sometimes causing the spectrum to be negative at those points.

In figure 5.2, the blue line corresponds to vector 5, the red to vector 6, the black to vector

7 and the magenta to vector 8. Vector 5 corresponds to vector 1 in the first set etc. Again,

the last two data sets appear most similar in terms of their canonical spectra.

The above correspond to the first two canonical variates using multitaper spectral esti-

mates from the four data sets with NW = 4.3 The data was tapered producing the multitaper

3The time/bandwidth product, N is the number of time points and W is the bandwidth from
the frequency concentration problem.



58

estimates, an SVD was performed and finally a CCA was performed. The remaining trans-

formation vectors and spectra did not seem interesting. Due to significiant power at low

frequencies and possible loss of resolution, it seemed important to also try the analysis with

NW = 2. With some additional work, approximately five sets of transformation vectors and

spectra contained features of interest. This work may be published in the future.
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Figure 5.1: Canonical Spectra 1
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Figure 5.2: Canonical Spectra 2
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Appendix A

Singular Value Decomposition

A.1 Introduction

The singular value decomposition provides us with a factorization of a rectangular matrix

into a product of orthogonal or unitary matrices and a diagonal matrix1. It is essentially a

generalization of the spectral decomposition for square symmetric matrices. It is extremely

useful theoretically as well as practically and is, due to the computational properties of

certain methods for computing it, essential in applying certain statistical techniques to data

(such as principal component analysis and canonical correlation analysis). The next few

paragraphs define and motivate this decomposition and the following sections detail its

usefulness computationally.

Given an m×n (data) matrix A, the singular value decomposition (SVD) is a factorization

of A as A = USV ∗ with U an m × m unitary matrix, V an n × n unitary matrix and S

an m × n matrix with nonzero entries only on its diagonal. Given such a factorization, we

readily see that A∗A = V S∗SV ∗ and AA∗ = USS∗U∗, that is, the columns of U and V

eigenvectors of the respective sample covariance matrices. So, in fact, the SVD gives us not

only the eigenvectors of the two sample covariance matrices, but in so doing, also gives us

the projections of these eigenvectors in the data (ie AV = US and AU∗ = SV ∗). This

factorization is also important as we may compute variations of it such as the “thin SVD”

and so avoid completely orthonormally decomposing the null-space of the matrix A.

1This appendix contains a rough outline of some important numerical material and may not
adhere very well to the notation set up in the body. Readers may consult Demmel [6] or Golub and
Van Loan [10] for a more careful exposition and more information.
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A number of simple proofs of the existence of the singular value decomposition for an

arbitrary matrix are known. To motivate the existence of this decomposition based on the

better known spectral theorem, consider the computation (AA∗)AV = A(A∗AV ) = AV D,

which demonstrates that the columns of AV are eigenvectors of the matrix AA∗ so we ought

to be able to write AV = US for some unitary matrix U and some diagonal matrix S. To

analyze the scalars S must contain, computing the norm of a given column of AV , say A(Vi)

where Vi denotes the ith column of V, we see that ‖AVi‖2 =< AVi, AVi >=< Vi, A
∗AVi >=<

Vi, DiVi >= Di < Vi, Vi > which implies that ‖AVi‖ =
√

Di‖Vi‖, that is, the singular values

are the square roots of the eigenvalues of the matrices AA∗ etc.

When working with data and computers, two additional problems arise that are not

encountered in the “purely” mathematical realms. The first of these is measurement error,

a problem that was previously mentioned in the statistics section. Error of this type may be

dealt with using statistical methods but is also amenable to treatment through the selection

of methods with good numerical properties. In particular, The second problem occurs due

to the use of digital computers which are limited to finite-precision computation.

The first is measurement error which could potentially effect our ability to even accu-

rately determine parameters of the (actually) sampled population. The second is the effect

of finite-precision computation and storage of numbers within computers on the solutions

obtained using computers. Due to these two factors, it is very important to use computa-

tional algorithms that exhibit a form of Lipschitz continuity (with a small multiplier). That

is, it would be quite undesirable to use algorithms for which the results can swing wildly with

even small changes in the inputs as, given that error is practically guaranteed to be present

in our data, the validity of any results thus obtained would be highly suspect. Further, it

is important that the computations themselves when carried out on a finite-precision com-

puter do not introduce significant error. An algorithm for which small changes in inputs can

only (in relevant cases) result in small changes in the outputs is called numerically stable or

simply stable. This notion may also be used to justify the claim that an algorithm itself car-
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ried out on finite-precision hardware does not introduce significant error by introducing the

complementary notion of backward stability. Alternatively, forward stability may be shown

directly. The specifics will be offered after a motivating example. It is important to note that

the simple computation used to motivate the existence of the SVD lacks stability and is not

robust if implemented on a computer.

A.2 Example

As mentioned previously, the computation given to motivate the existence of the SVD is

unsuitable for the purpose of actually computing the SVD. Specifically, for our purposes, it

is unwise to actually form the sample covariance matrix. To see this, consider the following

computations which are carried out in a floating point number system using base 10 with

6 digits worth of precision (the exact meaning of this is explained in the next section). The

function fl maps a matrix with entries in R to its floating point representation in this system.

Let

A =


1 1

10−3 0

0 10−3


which, for our purposes, could be a data matrix with each column corresponding to the time

course of one variable so that computing the sample covariance matrix would involve the

formation of AT A. The result of actually computing this matrix in the given floating point

system is

fl(AT A) =

 1 1

1 1


which has eigenvalues 1 and 0 (implying singular values of the original matrix of 1 and 0)

regardless of how high a precision we use to compute them. However, it is clear by forming

AT A without rounding that the smaller of the two eigenvalues is 10−6 and so the original

matrix has the singular value 10−3 as its smaller singular value. So, simply forming the

matrix AT A results in an immediate loss of precision of absolute size 10−3 which is 100×
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greater than the unit of roundoff in the given floating point system and represents a relative

error of size 1 indicating essentially no significant digits in the solution obtained. Hence, any

algorithm based on forming AT A or AAT cannot (reasonably) be said to be backward stable.

The above may be contrasted with the behavior of the algorithms that will be specified

later in this section. With the same floating point system, the bidiagonalization of A yields

fl(B) =


−1 −1

0 0.00141421

0 0


which has the smaller singular value .000999997 computed using the high accuracy SVD

method of Demmel and Kahan. In this case, this is basically full relative precision. In general,

for this case, we are guaranteed an answer in the interval [.00099, .00101] which is equivalent

to a relative error of about 10−2, essentially indicating at least 2 significant digits in the

solution, significantly better than the result when AT A was formed.

The matrix used in this example is also used in a similar way by Golub and Van Loan

in their discussion of the least-squares problem. Their example illustrates the numerical

difficulties arising when the normal equations are used to solve the least-squares problem.

This is relevant to material that will be covered in the CCA section. This is also discussed

by Demmel who notes that the normal equations method can lose twice as many digits as

methods based on the SVD and that the normal equations method isn’t even necessarily

stable (p. 118). There is a very nice discussion of the use of the SVD in the case of the rank-

deficient least-squares problem given by Demmel in section 3.5.1 indicating that dropping

singular values below some tolerance can change a very ill-conditioned problem to a well-

conditioned problem in an appropriate manner. (*) This is important in the computation

of the transformation vectors in the CCA section (see also Golub [10] p. 243, 250 - about

Hansen regularization - and 571).
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A.3 Floating Point Numbers and Error Analysis

In order to describe more precisely and generally the accuracy of computational methods

carried out with finite-precision, a few additional concepts are needed. In this section, a few

basics will be given, followed by a model for floating point number systems and, finally, some

reference material for matrix norms.

A.3.1 Error

Let x ∈ Rn for some n ≥ 1 (when n is one, x is a scalar). Typically, an approximation to

such a vector will be represented by placing a hat over the name for the vector, as in x̂.

To quantify the relationship between the two, either the notion of absolute error or that of

relative error may be used. The absolute error (for a given vector p-norm) is defined by the

expression

‖x̂− x‖p

and the relative error (for a given vector p-norm) by

‖x̂− x‖p

‖x‖p

.

One important comment is that results involving relative error are typically preferred,

especially when the norm involved is the (scalar) absolute value. Relative error in this case

essentially indicates how many of the nonzero digits in a nonzero computed result are correct

(regardless of size). This was alluded to before and a more exact statement, following Golub

and Van Loan [10] p. 54, is: if

|x̂− x|
|x|

≈ 10−p

then x̂ has approximately p correct significant digits. This is in contrast to absolute error

bounds where the number of correct digits in a computed result then depends entirely on

how large the correct value is in a particular case (specifically, if the correct value is small,

there may be no useful guarantee on the error at all).



68

A.3.2 Floating Point Numbers

Computers are, of course, unable to represent arbitrary real numbers. Instead, floating point

number systems are usually employed as an approximation to the real number system. A

floating point number system F is essentially characterized by four integers (Golub and Van

Loan [10] p. 61), the base β, the precision t and the exponent range [L, U ]. Nonzero numbers

in F are of the form

±.d1d2 . . . dt × βe 0 ≤ di < β, di 6= 0, L ≤ e ≤ U

and so (following a comment of Demmel [6] p. 9), floating point representation is analogous to

scientific notation based representation. To distinguish between an exact (real) computation

and a floating point result, the function fl is typically introduced. For our purposes, this

function will have the signature fl : R → F and, given x ∈ R, will be defined by: fl(x) is

the closest number to x representable in F , rounding in a specified manner (depending on

the floating point system) in the case of a tie.

With this background, the key features the relevant floating point systems possess may be

illuminated. The symbol� will be used to denote any of the arithmetic operations +,−,×,÷.

If a and b are floating point numbers, a�b will stand for the exact result of such a computation

(implicitly an element of R), fl(a� b) will be the floating point result and (a� b)− fl(a�

b) is often termed the roundoff error. The maximum relative representation error may be

approximated based on the following computation

|fl(β0 + 1
2
β−t+1)− (β0 + 1

2
β−t+1)|

|β0 + 1
2
β−t+1|

=
1
2
β−t+1

1 + 1
2
β−t+1

<
1

2
β1−t

and so the constant ε is typically defined by ε = 1
2
β1−t and termed the machine epsilon or

machine precision. It then follows that fl(a� b) = (a� b)(1 + δ) where |δ| ≤ ε. Therefore,

|fl(a� b)− (a� b)|
|a� b|

≤ ε a� b 6= 0,
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that is, the relative error in any given single arithmetic operation is small. According to

Demmel, “this is the most common model for roundoff error analysis.”

Details have been left out, including the handling of overflows and underflows, the phe-

nomenon of catastrophic cancellation and other possibilities for rounding, in favor of pre-

senting the most relevant features of the model underlying the IEEE floating point standard

(754 - implemented in virtually all modern computers including those with Intel, AMD,

IBM Power, SUN SPARC CPUS etc.). The analyses on which the following stability results

depend have, seemingly in all cases, been carried out with respect to the above model and

are valid on any computer implementing a system conforming to this model (in particular,

the IEEE standard). Demmel [6] provides some additional illuminating comments regarding

the IEEE standard on p. 13 of Applied Numerical Linear Algebra.

A.3.3 Matrix Norms

All that will be offered here is the definition of the class of norms from which the norms

used later are drawn. Consult Golub and Van Loan for more detail. The matrix p-norm of a

matrix A is defined by

‖A‖p = sup
x 6=0

‖Ax‖p

‖x‖p

which it should be noted utilizes the corresponding vector p-norm.

A.4 Algorithms and Stability

MATLAB uses the LAPACK function DGESVD to compute the SVD of double-precision

floating-point matrices (the default floating-point matrix type in MATLAB). This driver

function makes use of a number of other LAPACK functions to compute singular value

decompositions by bidiagonalizing input matrices (when necessary) and then applying the

“implicit zero-shift QR algorithm” of Demmel and Kahan [7]. The bounds on the resulting

errors are as follows (as detailed in the LAPACK users guide)
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Let A = UΣV T where UΣV T is the exact singular value decomposition of A.

The computed SVD, ÛΣ̂V̂ T , will be nearly the exact SVD of a perturbed matrix

A + E (an example of backward stability) with ‖E‖2/‖A‖2 ≤ p(m, n)ε, where

p(m, n) is a modestly growing function of m and n, so that

|σ̂i − σi| ≤ p(m, n)εσ1.

The qualification of “nearly the exact SVD” stems from the use of finite precision

representations of the orthogonal matrices. As noted in the LAPACK users guide,

this bound means that “large singular values (those near σ1) are computed with

high relative accuracy and small ones may not be.”

The singular vectors computed by LAPACK also satisify a couple of error bounds.

First, they are nearly orthogonal to machine precision whether or not they are

close to the true singular vectors. That is,

|ûT
i ûj| = O(ε)

when i 6= j. Second, the closeness of a computed singular vector corresponding

to the singular value σi depends on the separation between σi and the rest of

the singular values of the matrix. Specifically, the following approximate bound

holds

θ(ûi, ui) .
p(m, n)ε‖A‖2

gi

where gi = minj 6=i |σi−σj| is the absolute gap between σi and the nearest distinct

singular value.

Finally, it is worth pointing out that the error bounds are much improved when

dealing with bidiagonal matrices which is also detailed in the LAPACK users

guide.

As noted by Golub and Van Loan [10] (p. 65), quoting Wilkinson, a priori error bounds

themselves are often less precise than they could be and it may be argued that it is the
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potential instabilities revealed in the analysis that are most important. For this reason and

for the sake of completeness, a brief overview of some of the details leading to the above

bounds follows.

Given a matrix A for which the SVD is desired, the Demmel and Kahan algorithm consists

of the following phases

1. Compute orthogonal matrices P1 and Q1 such that B = P1AQ1 is a bidiagonal matrix

(a type of banded matrix with nonzero entries only on its diagonal and immediate

superdiagonal).

2. Perform implicit (zero-shift) QR iteration to remove the superdiagonal entries of B

while preserving its singular values. This is equivalent to the formation of orthogonal

matrices P2 and Q2 such that P2BQ2 = Σ is diagonal with the singular values of

B on its diagonal. The actual computation is carried out iteratively without explicit

QR-factorizations (in forming P2 and Q2) in the same manner as the traditional Golub-

Kahan algorithm, but with all shifts set to 0 and organized in such a way as to compute

all intermediate matrices as well as the final result to nearly full machine precision.

The paper of Demmel and Kahan [7] discusses the fact that the singular values of a bidiagonal

matrix are determined very precisely by the entries of such a matrix and the above algorithm

is constructed in such a way as to determine these to nearly the precision with which they

are determined by the data. The stability of algorithms such as the above comes generally

from the use of orthogonal matrices as detailed in Demmel sections 3.4.3 and 3.4.4. The

specific precision achieved by the Demmel and Kahan algorithm depends on an accurate

Givens rotation construction function detailed in section 3 of Demmel and Kahan and the

manner in which error propagates within the QR algorithm as given by Lemma 6 of section

8 yielding bounds on the error in each step which are given in Lemma 7 of section 8. Finally,

this is combined with what Demmel and Kahan term the “central result” of section 2, a

theorem that details the change in the eigenvalues of a related type of matrix depending on
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perturbations, to conclude with Theorem 6 bounding the relative error to nearly machine

precision. This error bound applies only to bidiagonal matrices in general and the looser

error bound given above is due primarily to the (possible) introduction of error during the

initial phase of the SVD computation involving a dense matrix, the bidiagonalization phase.


