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Abstract

During the past few decades, the amount of Web content has grown exponentially.

Recently, a vast amount of datasets in a variety of domains has been published as

part of the Linked Open Data (LOD) project. As a result, exploring and exploit-

ing these massive heterogeneous datasets, which are typically represented using

the Resource Description Framework (RDF), has gained a considerable attention.

With this work, we aim to address exploring and exploiting of such datasets within

two broad categories: RDF dataset summarization and RDF dataset profiling.

With respect to RDF dataset summarization, we focus on entity summarization,

which aims to produce an abridged, but sufficient descriptions of all entities in

the dataset. In other words, entity summarization is a way to absorb and dis-

till descriptive knowledge from RDF datasets. We propose a probabilistic topic

model using Latent Dirichlet Allocation (LDA) for the entity summarization task

called ES-LDA and its extension, ES-LDAext, which combines prior knowledge



with statistical learning techniques within a single framework, in order to create

more reliable and representative summaries of entities. We demonstrate the effec-

tiveness of our approach by conducting extensive experiments and show that our

models outperform state-of-the-art techniques and enhance the quality of the en-

tity summaries. RDF dataset profiling is a task that involves generating a proper

profile for RDF datasets on the Web so that they can be discovered more easily.

Basically, RDF dataset profiles are expected to facilitate data discovery, consump-

tion, and integration with statistics and useful metadata about the content of the

RDF datasets. We propose topic-wise RDF dataset profiling, called R-LDA, using

LDA technique. In our model, we identify a number of topics that can represent

an RDF dataset and assign a set of Wikipedia categories to the obtained topics

that are semantically relevant, understandable, and cover the discovered topics

well. The union of the assigned categories serves as a profile of the dataset, in a

sense that it provides an overall characterization of the datasets content.

Index words: Ontology Summarization, Entity Summarization, Semantic
Web, RDF/S Exploring, Topic Modeling, RDF Profiling.
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Chapter 1

Introduction

During the past few decades, the amount of Web content and in particular Linked

Open Data (LOD)1, enabled by widespread use of the Internet, has been con-

stantly growing. As a result, massive heterogeneous datasets which are typically

represented as Knowledge Bases (KBs) have become freely available to research

communities.

Different general purpose knowledge bases, often built on encyclopedic knowl-

edge, are publicly available and contain large amounts of knowledge for human and

machine consumption. Prominent KB examples include DBpedia [8], Wikidata

[93], YAGO [85], and Freebase [20]. Freebase, which is considered a collaborative

KB, was created based on Wikipedia data. Later, with the shut down of Free-

base, its content was transferred to Wikidata, another KB proposed by Wikimedia

Foundation [93, 69]. YAGO, which was developed in the Max Planck Institute for

1http://lod-cloud.net/
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Computer Science 2 is an automatically extracted knowledge base from Wikipedia,

GeoNames 3, and WordNet 4. The most popular knowledge base, which is also

considered as a central interlinking hub within the LOD, is DBpedia. It is often

known as the structured version of Wikipedia for mainly machine consumption.

In general, KBs provide information about entities that are mostly represented

in the form of ontologies. An ontology is typically defined by two different layers,

including the schema layer and data the layer. The two layers make up a frame-

work to represent knowledge bases, including classes, entities, and relationships

among them.

Entities within KBs that are uniquely identifiable things or objects refer to real

world and abstract things that can be described through their relations (proper-

ties) with other things (entities) such as persons, organizations, and places [11].

These relations in a knowledge base are often stored in RDF datasets and repre-

sented in RDF triples format, <subject, predicate, object> where the sub-

ject is an entity, the predicate is a relation, and the object is another entity (or

literal).

With the exponential growth of LOD in recent years, an abundance of knowl-

edge via RDF datasets has become available on the Web. These datasets vary with

respect to their topics, domain coverage, size, complexity, and so forth. Given this

scale of these RDF datasets, their heterogeneity, often their inconsistency, and the

lack of meta-data, finding the resources that can be linked, queried, or reused in

different applications has become an interesting area of research in the Semantic

2https://www.mpi-inf.mpg.de/home/
3http://www.geonames.org
4https://wordnet.princeton.edu/
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Web communities. RDF dataset profiling techniques, which aim to facilitate data

consumption and data integration with statistics and useful meta-data about the

content of the RDF datasets, are considered as an effective approach to this chal-

lenge. Additionally, as KBs are publicly available to change and grow in size, the

number of entities and their representations (via their triples) have increased. As

a result, entity descriptions often come with a large volume of statements (triples)

which make it difficult to comprehend the data, unless we can use an approach

that allows us to select the most relevant facts about that entity. Among the pro-

posed models to address this challenge, ontology summarization and in particular

entity summarization techniques have attracted a particular attention in recent

years.

1.1 RDF Dataset Profiling

Linked Open Data (LOD) has seen an exponential growth via publishing huge

volume of RDF datasets on the Web. In order to identify suitable RDF datasets

for different applications and enterprises, W3C5 recommends that potential data

publishers provide recapitulative information on their datasets available on the

Web. This information, which functions as meta-data, will facilitate access to the

datasets to be discovered, queried, and interlinked more easily. Because this in-

formation is not always available, we face with a large number of datasets without

a proper profile, leading to a high demand for different data profiling techniques.

In general, there is no comprehensive definition for data profiling and the related

5https://www.w3c.org/
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tasks; however, RDF dataset profiling typically covers several tasks including the

following [7]:

• Statistical profiling: this type of data profiling mainly focuses on statistical

information about the number of entities as well as the distribution of prop-

erties and RDF triples, which are often related to data types and patterns

in the dataset.

• Metadata profiling: dataset profile with respect to the metadata should cover

the main informative categories, including the general information (dataset

description, release and update dates), practical information (access points,

data dumps), and legal information (license information, openness).

• Topical profiling: the representative knowledge on the content and struc-

ture of the dataset in the form of tags, keywords, categories, informative

subgraphs, etc.

In this dissertation, we focus on topical profiling techniques in order to generate

a data profile for a given RDF dataset.

1.2 Ontology Summarization

As the size and the complexity of ontologies increase, there is a need to facili-

tate ontology comprehension, exploration, and exploitation and to help users take

advantage of an ontology quickly. There are numerous ontology management

techniques, including ontology partitioning, ontology segmentation, ontology sum-

marization, and others, that attempt to provide efficient and effective models to
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address these challenges. In ontology partitioning, an ontology is divided into

subsets, called partitions, to alleviate certain challenges of large ontologies, such

as scalability, complexity, and maintenance. Ontology segmentation, on the other

hand, tries to find extractable parts of an ontology that can be reused outside

its original context. Usually, a relevant segmented knowledge is acquired from

the whole ontology for the purpose of increasing tractability for both humans and

machines. In ontology summarization, which is usually defined as a ”the process

of distilling knowledge from an ontology in order to produce an abridged version

for different tasks” [101], the more important and representative ontology entities

and relationships are selected. Ontology summarization is also applicable with

respect to its different layers. In data layer, an entity description often comes

with a large volume of statements which makes it difficult to comprehend the

data unless we can use an approach that allows us to select the most relevant

facts about that entity. Among the proposed models to address this challenge,

ontology summarization, and in particular ontology summarization at the data

layer, which is typically called entity summarization, have gained a more attention

in recent years.

1.3 Topic Modeling

Recently, the topic modeling approach has become a popular method for uncover-

ing the hidden themes from data such as text corpora, images, and so forth. This

model has been widely used for various text mining tasks, such as machine trans-

lation [84], word embedding [12, 32], automatic topic labeling [95, 4, 6], and others

5



[5]. In the topic modeling approach, each document is considered as a mixture

of topics, where a topic is a probability distribution over words. When the topic

proportions of documents are estimated, they can be used as the themes (high-

level semantics) of the documents. In this dissertation, we propose a probabilistic

topic model that combines prior knowledge with statistical learning techniques

within a single framework to create more reliable and representative summaries

for entities. Additionally, we use topic modeling for RDF dataset profiling using

Wikipedia categories.

1.4 Contributions

The main research theme governing this dissertation is the integration of prior

knowledge with the topic modeling to explore RDF datasets for summarization

and profiling tasks. We propose different novel topic models which focus mainly

on summarization. We develop a probabilistic topic model called ES-LDA and

the extended version of that model, ES-LDAext , which combines prior knowledge

with statistical learning techniques within a single framework to create more reli-

able and representative summaries for entities. We demonstrate the effectiveness

of our approach by conducting extensive experiments and show that our model

outperforms the state-of-the-art techniques and enhances the quality of the en-

tity summaries. Additionally, we present a new topic-wise RDF dataset profiling,

called R-LDA, utilizing topic modeling technique and Wikipedia categories. Note

that the application of the proposed models are not limited to summarization and

6



profiling and can be generalized to other problems such as ontology partitioning,

tagging, and so on.

The main contributions of this research can be summarized as follows:

• We propose an entity summarization technique based on probabilistic topic

model, ES-LDA, and show the benefits of our method over traditional ones,

and demonstrate its effectiveness through comprehensive evaluation.

• In the extended version of ES-LDA, called ES-LDAext, we take advantages

of the Word2Vec technique in order to enhance the quality of the summary.

The results also confirm the effectiveness of our model.

• We have a comprehensive survey on ontology summarization techniques with

respect to terminological definitions in ontologies (schema layer). We mainly

sort, review, and compare various graph-based methods for ontology summa-

rization.

• We present a novel topic-wise RDF dataset profiling model, called R-LDA,

using Wikipedia categories. The proposed model aims to find number of

topics that represent a given RDF dataset and assign the representative

categories from Wikipedia which are semantically relevant, understandable

for humans and highly cover the discovered topics.

7



1.5 Dissertation Overview

The reminder of this dissertation is organized as follows:

• In Chapter 2, we primarily focus on the preliminary definitions that we need

throughout this dissertation. We describe the Semantic Web and explain a

couple of primary concepts and standards associated with it. In addition,

we explore the Latent Dirichlet Allocation (LDA) topic model and inference

algorithms for topic models

• Related work with respect to ontology summarization and RDF dataset

profiling are the topics that we mainly discuss in Chapter 3.

• Chapter 4, describes existing ontology summarization techniques and mea-

sures (at the schema layer) corresponding to each technique to identify the

most important elements of an ontology. We mainly sort, review, and com-

pare various graph-based methods for ontology summarization.

• Chapter 5, is dedicated to our model, ES-LDA, which utilizes topic mod-

eling technique within a single framework to create more reliable and rep-

resentative summaries for entities. We demonstrate the effectiveness of our

approach by conducting extensive experiments and show that our model

outperforms the state-of-the-art techniques and enhances the quality of the

entity summaries.

• Chapter 6, which considers the extended version of ES-LDA model, ES-

LDAext, focuses primarily on new augmentation techniques in order to en-

hance the entity summarization results.

8



• Chapter 7, mainly discusses R-LDA model for RDF dataset profiling using

topic modeling.

• Chapter 8, concludes the dissertation, summarizing the contributions and

describing directions for further research building on the foundations estab-

lished in this work.

9



Chapter 2

Background

In this chapter, we present the Semantic Web concept and its associated compo-

nents. Understanding the nature, purpose and principles of the Semantic Web are

the key points before the challenges of the RDF exploring. We begin with a big

picture of the World Wide Web and the Semantic Web and a short background

description related to ontology, Resource Description Framework (RDF) and RDF

Schema (RDFS). Finally, we continue with describing probabilistic topic modeling

technique, and in particular Latent Dirichlet Allocation (LDA), a technique we

use to explore RDF data.

2.1 World Wide Web and Semantic Web

The World Wide Web (WWW) was invented by Tim Berners-Lee [15] in 1989

with the idea of accessing documents using different machines through the Web

via the Internet. His idea was based on combining three technologies includ-

10



ing Uniform Document Identifier (UDI), later called Uniform Resource Identifier

(URI), designed to uniquely identify a document; Hyper Text Markup Language

(HTML), used to publish documents; and Hypertext Transfer Protocol (HTTP),

employed to enable communications between machines. Over the years, with the

explosion of both the quantity and range of data over the Web, finding, sharing,

and exchanging data on the Web have become increasingly difficult. The Semantic

Web [14, 13], as an extension of the WWW, aims to describe the meaning of web

content using semantic annotations in order to enable data to be found, shared,

and reused among different applications and enterprises. In 2001, Tim Berners-

Lee [13] proposed the main idea of evolving Web content into the Semantic Web

where Semantic Web aims to structures the Web and to allow information shar-

ing/exchanging across applications using a framework that makes the data not

only human-readable but also represented it in a form that is machine-processable

[14]. The key point in the Semantic Web is defining a common model that en-

ables easy communication among different platforms. Ontology term, which was

highlighted more in 2001 by Tim Berners-Lee [13], functions as a framework that

allows for implementation of sharable and exchangeable environment for Web

content.

Tim Berners-Lee in [13] describes the Semantic Web as ”...The Semantic Web

is not a separate Web but an extension of the current one, in which information

is given well-defined meaning, better enabling computers and people to work in

cooperation.”

A few technologies which are usually associated with Semantic Web including

Ontology, RDF/S, and Linked Data will be discussed later in forthcoming sections.

11



2.1.1 Ontology

Ontologies, which are considered as basic building blocks of the Semantic Web,

have been designed and used as a way to represent knowledge in different domains.

In general, an ontology proposes a common vocabulary to enable exchange, shar-

ing or reuse of domain knowledge. Concepts in the domain and the relations

among the concepts are two key components which play an important role in each

ontology. An ontology is typically defined by two different layers. The first layer,

called the schema layer, the semantic layer, or an ontology’s TBox, functions as

meta-data and describes the fundamental aspects of the data layer. The other

layer, called the data layer or ontology’s ABox, stores the actual data according

to the defined schema layer. The two layers make up a framework that represents

knowledge bases, including classes, entities, and relationships among them.

DBpedia [8], Wikidata [93], YAGO [85] and Freebase [20] are among the most

prominent knowledge bases, that are freely available to research communities.

They contain large amounts of knowledge for human and machine consumption.

The aforementioned knowledge bases consist of millions of entities and billions of

edges (relations) that connect those entities together through proper relations and

make a large-scale knowledge graph. Entities in a knowledge based data graphs

refer to real world and abstract things that can be described through their relations

(properties) with other things (entities). Resource Description Framework (RDF),

RDF Schema, and Ontology Web Language (OWL) are common recommended

languages by W3C to represent ontologies [59]. In the next section we explain

RDF in details.

12



2.1.2 RDF and RDF Schema

RDF is an XML-based language recommended by W3C for describing resources

on the Web. RDF relies heavily on the Web structure, utilizing many of its

features and extending them in order to define distributed network of data. RDF

uses URIs 1 for identifying resources (location, person, web page, organization,

etc) on the Web and describes them in statement form with named properties and

values. Statements in RDF are represented in the form of triples including Subject,

Predicate, and Object, <Subject, Predicate, Object>, where Subject denotes a

given resource that has property value (Object) for property Predicate. In an

RDF statement, a Subject is typically a URI reference, Object can be a URI

reference or Literal 2 and Predicate is a URI reference. RDF statements with the

same subjects can form a graph-shaped representation of RDF statements which

is called an RDF graph (Figure 2.1).

In such an RDF graph, all the resources, including subjects and objects (liter-

als), are represented as vertices, resources are represented within, and predicates

are described as the labels of directed edges from subjects to corresponding ob-

jects (literals). An example of nine RDF triples and corresponding RDF graph

from DBpedia are depicted in Table 2.13 and Figure 2.1 respectively (by con-

vention oval and rectangle are drawn around resources and literals respectively).

The first statement in Table 2.1 conveys the information that J.C.Penney is

1Uniform Resource Identifier.
2Literal is a string often comes with URI datatype, which utilizes lexical format to identify

values.
3For simplification, terms of a statement are represented in an abbreviation form in table

and figure.
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Figure 2.1: Sample entity description of the entity J.C.Penney in RDF graph
format.

a type of Public Company. Similarly, the remaining statements describe other

characteristics of the J.C.Penney entity.

An RDF graph typically comes with RDF Schema (RDFS), which describes

vocabularies used in RDF statements. RDFS is proposed by W3C and functions

as RDFs vocabulary description language. In other words, RDFS describes prop-

erties, classes of resources, and the relation among them in another layer on top

of RDF [22]. RDFS has some predefined semantic terminology such as Class and

subClassOf where it makes the hierarchy of classes using subClassOf property.
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Table 2.1: Example of RDF triples for J.C.Penney entity

Triples
<dbpedia1 :J. C. Penney><rdf2 :type><dbpedia-owl3 :Public Company>
<dbpedia:J. C. Penney><dbpprop4 :foundedBy><dbpedia:James Cash Penney>
<dbpedia:J. C. Penney><dbpprop:areaServed><dbpedia:United States>
<dbpedia:J. C. Penney><dbpprop:founders><dbpedia:James Cash Penney>
<dbpedia:J. C. Penney><dbpedia-owl:industry><dbpedia:Retail>
<dbpedia:J. C. Penney><dbpedia-owl:keyPerson><dbpedia:Ron Johnson>
<dbpedia:J. C. Penney><dbpprop:homepage><http://www.jcpenney.com>
<dbpedia:J. C. Penney><dbpprop:regionServed><dbpedia:United States>
<dbpedia:J. C. Penney><dbpprop:location><dbpedia:Plano, Texas>

1 http://dbpedia.org/resource/ 2 http://www.w3.org/1999/02/22-rdf-syntax-ns#
3 http://dbpedia.org/ontology/ 4 http://dbpedia.org/property/

As an example, consider that “Person” is defined as a class and “Grad Student”

is defined as a subClassOf of the “Person”. Therefore, if “Amin” is represented

as a “Grad Student”, we can easily infer that “Amin” is a type of “Person” due

to the semantics of the RDFS.

2.1.3 Web Ontology Language (OWL)

The Web Ontology Language (OWL) [68, 33] is the W3C recommendation to

make Web resources more processable for applications and enterprises by adding

information about the resources. OWL, which is considered as one of the most

expressive standardized Semantic Web languages, is placed on top of RDF/S.

OWL facilitates the representation of the meanings of terms that are utilized

in vocabularies and also relationships between those terms. Applying additional
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vocabularies with formal semantics, makes OWL as a powerful language for ex-

pressing meaning and semantics in comparison with XML, RDF, and RDFS for

expressing meaning and semantics. In other words, OWL provides more abil-

ities for describing machine readable and interpretable contents [60]. OWL is

represented through three different sublanguages including OWL-Lite, OWL-DL

and OWL-Full which have been designed for the use of specific communities and

users. OWL-Lite is the simplest version of OWL language and corresponds to

description logic, OWL-DL aims to support maximum expressiveness with com-

putational completeness and decidability, finally, OWL-Full comes with maximum

expressiveness and the syntactic freedom of RDF [38, 60].

2.2 Linked Data

Linked data aims to provide large scale integration of, and reasoning on data

on the Web [94]. In other words, linked data is a method of publishing semi-

structured data in such a way that it is interlinked with other data sources in

order to facilitate the discovery of new knowledge. Linked Data, which is based

on the standard Web technologies such as HTTP, RDF, and URI, was invented

by Tim Berners-Lee. He provided the following set of rules for publishing linked

data on the web [94]:

1. Use URIs as names for things.

2. Use HTTP URIs, so that people can look up those names.
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Figure 2.3: LOD cloud diagram in 2017 (as of April). See http://lod-cloud.net/ for details.Figure 2.2: LOD cloud diagram4

3. When someone looks up a URI, provide useful information, using the stan-

dards (RDF, SPARQL).

4. Include links to other URIs, so that they can discover more things.

Following the aforementioned rules, Linked Data has grown exponentially via

publishing datasets on the Web. As a result, it includes a vast number of inter-
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connected datasets that can be classified as domain specific, domain independent,

or even encyclopedic in nature. These datasets can be used in a multitude of

applications. The most recent Linked Open Data (LOD) cloud depicted in Figure

2.2 provides an overview of the linked data sets that are available on the Web.

DBpedia is known as one of the most important and primary datasets of LOD [8]

and is essentially an ontology containing structured information extracted from

the Wikipedia documents. It consists of description logic, known as schema layer,

and data repository, called data layer, resides on the Web in the LOD cloud. The

most recent DBpedia’s ontology5 contains 685 classes, which form a subsumption

hierarchy and are described by 2,795 different properties. As of April 2016, the

English version of the DBpedia6 knowledge base, describes 6 million entities, of

which 4.6 million have abstracts, 1.53 million have geo coordinates and 1.6 million

depictions.

Recently, enhancing the intelligence of Web, enterprise search, and informa-

tion integration using DBpedia knowledge bases are attracting more attention in

different communities for variety of applications. Additionally, as the datasets

on DBpedia continue to grow in size and complexity [10], there is great demand

for new management techniques such as compression [51], summarization [87, 89],

partitioning [54, 97], and profiling [1] because these techniques allow useful infor-

mation to be extracted and a quick snapshot to be provided.

5https://wiki.dbpedia.org/services-resources/ontology
6https://wiki.dbpedia.org/dbpedia-version-2016-04
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2.3 Probabilistic Topic Models

Probabilistic topic models are built on the assumption that there is a hidden

thematic structure behind each observation in a dataset. In the case of a corpus

of documents, the expected assumption is that there is a hidden topic behind each

word. In topic models, documents are considered as a mixture of topics, where a

topic is a probability distribution over words. There are two main topic models

including Probabilistic Latent Semantic Analysis (pLSA) proposed by Hofmann

(1999) [48] and Latent Dirichlet Allocation (LDA) coined by Blei [19]. pLSA

mainly focuses on document modeling and does not provide any probabilistic

model at the document level which makes it difficult to generalize it to model

new unseen documents while LDA, which is considered as an extended version of

pLSA, by utilizing a Dirichlet prior on mixture weights of topics per documents.

The ultimate goal of Latent Dirichlet Allocation (LDA) [19] is discovering

the thematic structure of a collection of documents and annotate each document

based on the extracted thematic. The basic assumption in LDA is that each

document in a corpus of documents is exhibited various topics, where each topic

is a probability distribution over vocabularies.

Based on this assumption, consider D = {d1, d2, . . . , dD} as a corpus of doc-

ument and V = {w1, w2, . . . , wV } is the vocabulary of the corpus. A topic

zj, 1 ≤ j ≤ K is described as a multinomial probability distribution over the |V|

words, p(wi|zj) while
∑|V|

i p(wi|zj) = 1. Figure 2.3 depicts the graphical model

of LDA. Each node in this model is a random variable and its role in the model
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defines its label accordingly. The latent nodes are unshaded while observed ones

are shaded. The rectangles are called plate notion and refer to replication.

Based on the graphical model of LDA in Figure 2.3, the generative process for

the corpus D is as follows:

1. For each topic k ∈ {1, 2, . . . , K}, sample a word distribution φk ∼ Dir(β)

2. For each document d ∈ {1, 2, . . . ,D},

(a) Sample a topic distribution θd ∼ Dir(α)

(b) For each word wn, where n ∈ {1, 2, . . . , N}, in document d,

i. Sample a topic zi ∼ Mult(θd)

ii. Sample a word wn ∼ Mult(φzi)

The ultimate goal of LDA is computing conditional distribution of hidden variables

(φ1:K , θ1:D, z1:D) given the observed ones (w1:D). The aforementioned conditional

distribution the topic structure given the observed documents, known as posterior

probability, is calculated as follow:

P (φ1:K , θ1:D, z1:D|w1:D) =
P (φ1:K , θ1:D, z1:D, w1:D)

P (w1:D)
(2.1)

The numerator, the joint distribution of all the random variables, can be calcu-

lated for any configuration of hidden variables based on the equation 2.2.

P (φ1:K , θ1:D, z1:D, w1:D) =
K∏
j=1

P (φj|β)

|D|∏
d=1

P (θd|α)

(
N∏
n=1

P (zd,n|θd)P (wd,n|φ1:K , zd,n)

)
(2.2)
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Figure 2.3: The LDA Graphical Model

The denominator, called marginal probability, is intractable [19] and the exact

value of posterior distribution can not be computed; however, there are wide

variety of efficient methods such as sampling or variational techniques available

for approximating it. Gibbs Sampling which is most commonly used sampling

algorithm tries to collect samples from the posterior distribution in order to ap-

proximate it with an empirical distribution.

Gibbs sampling, which is an iterative approach, initially starts with randomly

assigned topics to all words, then the algorithm iterates over all the words and

in each iteration, it samples a new topic assignment for each word using the con-

ditional distribution of that word given all other current word-topic assignments
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based on equation 2.3. The word-topic probability distributions will be available

when the algorithm reaches a steady state after the final iteration.

P (zi = k|wi = w, z−i,w−i, α, β) =
n
(d)
k,−i + α∑K

k′=1 n
(d)
k′,−i +Kα

×
n
(k)
w,−i + β∑W

w′=1 n
(k)
w′,−i +Wβ

(2.3)

where zi = k is the topic assignment of word i to topic k, z−i refers to the topic

assignments of all other words. n
(k)
w,−i is the number of times word w assigned to

topic k excluding the current assignment. Similarly, n
(d)
k,−i is the number of times

topic k is assigned to any words in document d excluding the current assignment.

For a theoretical overview on Gibbs sampling see [25, 45].

2.4 Word Embedding

In Natural Language Processing (NLP), vector space models [81] are usually uti-

lized to represent words in a vector space [2]. This space contains all words, while

semantically similar words are introduced in a such way that they can be close to

each other [91]. Mikolov et al. [63] proposed Word2Vec as an efficient technique

to create these vector spaces.

Word2Vec, which is considered as a semantic learning framework, uses a shal-

low neural network model to learn the representations of words/phrases in a par-

ticular text document. The interesting point about Word2Vec is that this model

applies a neural network consisting of an input layer, a projection layer, and an

output layer to understand the semantic meaning behind terms.
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2.4.1 Word2Vec

The Word2Vec model, which is recognized as one of the most popular and exten-

sively used word embedding techniques, has recently attracted significant atten-

tions from different communities, including machine learning and the Semantic

Web. It offers a computationally efficient way, based on a neural network model

to learn word embedding from raw text [79]. The intuition behind the Word2Vec

model focuses on training a network to predict neighboring words. Addition-

ally, the most interesting property of Word2Vec is its ability to carry semantic

meanings, which are beneficial in a wide range of data applications, ranging from

semantic data integration to NLP. There are two architectures available based on

the Word2Vec model (Figure 2.4), including Continuous Bag of Words (CBOW)

and Skip-Gram. In the CBOW architecture, the Word2Vec model predicts a word

given surrounding words while Skip-Gram receives a word as an input and esti-

mates the surrounding words of that word (we utilize the skip-gram technique in

Chapter 6 ).

Skip-Gram model: Given a sequence of training words w1,w2, w3,..., wT , and

a context window, c, The skip-gram model attempts to predict the surrounding

words or similar words to an input word. This process is completed through

maximizing the following average log probability:

1

T

T∑
t=1

∑
−c6j6c,c 6=0

logp(wt+j |wt) (2.4)
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(a) CBOW Architecture. (b) Skip-Gram Architecture.

Figure 2.4: Word2Vec Architecture [63, 62]

where:

p(wt+c|wt) =
exp(v′Twt+c

vwt)

V∑
v=1

exp(v′Twv
vwt)

(2.5)

where V is the complete vocabulary of words, v′w is the output vector of the

word w, and v̄ is the averaged input vector of all the context words calculated as

follow:

v̄ =
1

2c

∑
−c6j6c,c 6=0

p(wt|wj−c, · · · , wt+c) (2.6)
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2.5 Named Entity Recognition

Named Entities are usually defined as nouns or noun phrases that refer to partic-

ular types of entities, such as persons, organizations, locations, and so on. Named

Entity Recognition (NER), which is one of the core components in Natural Lan-

guage Processing, aims to identify, extract and classify named entities in a text.

Spotting named-entities in text is an important task in different areas, such as

information retrieval, summarization, question answering, and machine transla-

tion. We utilize this technique to retrieve entities in literals, which is described

in Section 6.5.1.
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Chapter 3

Related Work

This chapter focuses primarily on the most important existing RDF/S exploration

techniques with respect to ontology summarization and RDF dataset profiling.

Considering ontology summarization, various techniques have been developed to

distill knowledge from a given ontology in order to produce an abridged version of

that [101]. The proposed methods utilize mainly the common measures available

in graph theory which aim to identify the most important part(s) of a graph

[73, 76]. In general, different approaches highlight different aspects of ontology

summarization such as diversity, centrality, and coverage in order to come up with

a new model for ontology summarization. However, they attempt to generate a

concise and coherent summary to convey enough information for an adequate

understanding and provide and extensive coverage respectively.

RDF datasets profiling approaches, on the other hand, aim to facilitate data

integration and consumption with statistics and meta-data about the content of

RDF datasets. In the literatures, RDF dataset profiling is considered as the task
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of providing insights through the data such as statistics about value distribution

and of finding and extracting information patterns in the data. RDF dataset

profiles are usually expected to represent the importance of datasets without any

extra needs for detailed inspection of the raw data.

3.1 Ontology Summarization

In the literature, ontology summarization is referred to as an extractive summa-

rization approach, in which the important terminological concepts (at the schema

layer, or the TBox) and the important entities (at the data layer, or the ABox) are

extracted to represent a summary of an ontology. Based on different measures,

various methods of ontology summarization have been proposed, which utilize

various criteria of generating a summary for a given ontology. In this chapter,

we focus on the cutting-edge techniques of ontology summarization at the data

layer, often referred to as the Entity Summarization. Advancements of ontology

summarization at the schema layer will be discussed in Chapter 4.

3.1.1 Entity Summarization

Summarization, in general, is considered as one of the main approaches to making

the information more readily available. Researchers in different communities have

taken a strong interest in this task and, accordingly, have proposed various meth-

ods for a wide variety of summarization techniques in multiple areas. Document

summarization [66], database summarization [23], and graph summarization [65]

are just a few examples of techniques that have been studied by different commu-
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nities. RDF data summarization, and in particular Entity summarization, as a

task of producing a abridged, but still sufficient entity descriptions, has attracted

considerable attentions as a way to absorb and distill descriptive knowledge from

RDF datasets. Many tasks such as semantic data integration [30] and natural lan-

guage processing such as entity disambiguation [31], and many others can benefit

from entity summarization.

RELIN, proposed by Cheng et al. [29], utilizes relatedness and informativeness-

based centrality to weight features that are expressed by predicate-object pairs

of entities. The PageRank algorithm is used to rank individual features and ul-

timately extract representative triples, called representative features, for RDF

graph entities. RELIN highlights the most similar and central triples, while in

summarization, keeping the diversity of summarized triples is the key point. The

SUMMARUM model [87], which also uses the PageRank algorithm to rank triples

according to the popularity, utilizes the Wikipedia pages for a better navigation

within Linked Data through the ranking of triples. The two aforementioned ap-

proaches could not meet the diversity requirement in the summarization process.

FACES [43], on the other hand, aims to incorporate the diversity in the selected

triples for each entity. Partitioning the feature set and ranking the partitioned

features are two primary steps in the FACES model. The main idea behind this

model is to generate semantically diverse clusters, called “facets”, from a given

entity using an adaptation of the COBWEB algorithm [36]. The triples within

each clusters is ranked using tf-idf-related popularity measure on the subject.

LinkSUM [86], the recent version of SUMMARUM, focused primarily on the

objects instead of the diversity of properties for entities and showed a better result
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on the same dataset, in comparison with FACES. Both SUMMARUM and FACES

also discount literals in entity summarization. The extended version of FACES,

FACES-E [42], and RELIN consider literals as good candidates for use in entity

summarization. FACES-E gleans types for literals in RDF triples and uses this

technique to be able to employ literals in entity summarization, while RELIN

computes summaries for object and datatype properties (literals). The modified

version of RELIN, called RELINM, also uses literals in the entity summarization

[42].

In addition to the aforementioned models dedicated to entity summarization,

variety of ranking models and tools, including TripleRank [37] and TRank [88] that

aim to rank triples and concepts, respectively, incorporating ranking algorithms.

However, Cheng et al. [29] indicated that these methods are not appropriate for

the entity summarization problem, which needs ranking of feature sets based on

their importance to identify the underlying entity.

3.2 RDF Dataset Profiling

As LOD datasets, and in particular RDF datasets, vary with respect to different

features, such as statistics, quality, dynamics, etc., discovering reliable informa-

tion with related to these features is essential in most applications. There exist

wide variety of approaches and tools which aim to automatically extract statistics

and descriptive information from RDF datasets. They focus mainly on different

aspects such as statistical, topical and so on, in order to generate a profile to

describe and understand an RDF dataset.
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Assaf et al.[7] proposed Roomba as a framework to automatically generate, val-

idate, and enrich descriptive dataset profiles in four main categories including

general, access, ownership or provenance.

RDFStats [53] proposed by Langegger et al. aims to generate statistics such as

entity counts (per class) and histograms (per class, property, value type) for RDF

datasets.

The ExpLOD [52] tool utilizes the metadata about the structure of an RDF

dataset (set of used RDF classes or properties) in order to summaries a dataset.

The metadata is augmented with other information such as number of instances

per class or the number of used properties.

Mäkelä et. al proposed Aether 1 [58] as a web application which is utilized to

generate, visualize, and compare extended VOID statistical descriptions of RDF

datasets. The generated statistical descriptions includes triples, entities, and

statistics that are related to both triples and entities.

LODStats [9] is a statement-stream-based tool which can be used to gathering 32

comprehensive different statistical criteria for datasets. These statistics mainly

represent the dataset in both data (instance) and schema layers using Vocabulary

of Interlinked Datasets (VOID)2 [3] and Data Cube Vocabulary3. It primarily

covers triple frequencies, triples with blank nodes, average length of literals, la-

beled subjects, class and property usage, class hierarchy depth, cardinalities, and

others.

1http://demo.seco.tkk.fi/aether/
2https://www.w3.org/TR/void/
3https://www.w3.org/TR/vocab-data-cube/
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Abedjan et al. proposed ProLOD [1] as a web-based tool which analyzes and

visualizes datasets in order to generate statistics such as data type and patterns

distribution upon them. Mining and cleansing datasets are two other available

options in the extended version of ProLOD, called ProLOD++4, which enables

it to generate a profile based on key analysis components such as frequencies,

distribution of subjects, predicates, and objects.

Although the existing works are primarily focused on different aspects of RDF

datasets at the schema and data layers, none of them have provided topic-wise

RDF dataset profiling using knowledge based topic modeling techniques.

4https://www.hpi.uni-potsdam.de/naumann/sites/prolod++/
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Chapter 4

Graph-based Ontology

Summarization: A Survey 1

1Seyedamin Pouriyeh, Mehdi Allahyari, Qingxia Liu, Gong Cheng, Hamid Reza Arabnia,
Maurizio Atzori, Krys Kochut, ”Graph-based Ontology Summarization: A Survey”.
Submitted to IEEE International Conference on Artificial Intelligence and Knowledge Engineer-
ing (AIKE 2018).
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Abstract

Ontologies have been widely used in numerous and varied applications, e.g., to

support data modeling, information integration, and knowledge management.

With the increasing size of ontologies, ontology understanding, which is play-

ing an important role in different tasks, is becoming more difficult. Consequently,

ontology summarization, as a way to distill key information from an ontology and

generate an abridged version to facilitate a better understanding, is getting grow-

ing attention. In this survey paper, we review existing ontology summarization

techniques and focus mainly on graph-based methods, which represent an ontol-

ogy as a graph and apply centrality-based and other measures to identify the most

important elements of an ontology as its summary. After analyzing their strengths

and weaknesses, we highlight a few potential directions for future research.
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4.1 Introduction

An ontology provides an explicit specification of a vocabulary for a shared do-

main [41]. Terms in that vocabulary are mainly classes and properties denoting

concepts and their relationships in the domain, respectively, forming a conceptu-

alization of the world that we wish to represent for some purpose. In an ontology,

the interpretation and use of terms are constrained by formal axioms. As on-

tologies can help people and organizations reach consensus on conceptualizations,

they have found wide application in knowledge management, information integra-

tion, data access, etc. In particular, they play an important role in the recent

explosive growth of Semantic Web deployment, where an ontology is frequently

used as the schema of a knowledge base.

With the dramatic growth in both size and complexity of ontologies, their

comprehension, exploration, and exploitation are becoming increasingly difficult.

Summarization, in order to generate an overview or a preview of an ontology, is

one possible solution that has received increasing research attention, recently. On-

tology summarization is defined as a technique of distilling key information from

an ontology in order to produce an abridged version for different tasks [101]. The

output is a compact ontology summary, for a better and quicker understanding of

an ontology, which can facilitate and reduce the cost of the next tasks in various

applications such as ontology evaluation [21], matching [82], and search.

Compared with an early literature review [57], we have witnessed the emer-

gence of many ontology summarization techniques, in recent years. In this survey

paper, rather than providing a comprehensive bibliography, we mainly sort, re-
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view, and compare various graph-based methods for ontology summarization. An

ontology can be transformed into different graph models to represent the relations

between terms and/or axioms. A broad range of measures have been presented to

assess the importance of each node, which can be a term or an axiom. A subset of

top-ranked nodes form an ontology summary, so the output of an ontology sum-

marization approach is usually a list of ranked terms or axioms. Some approaches

further choose paths to connect selected nodes and return a subgraph.

Table 4.1 summarizes the methods that will be reviewed in this paper. We

will first compare different graph models, and then discuss measures for assessing

node importance including centrality-based, coverage-based, and others. Finally,

we conclude the paper with future directions. Note that our survey focuses on the

summarization of terminological definitions in ontologies (i.e., TBox). Methods

for summarizing instance data in knowledge bases (i.e., ABox), e.g., [34], will not

be addressed.

4.2 Graph Models

An ontology provides definitions (i.e., axioms) for a set of terms. To represent

the relations between terms and/or axioms, various graph models have been de-

veloped. In this section we review, illustrate, and compare those models.

4.2.1 RDF Graph

An ontology encoded in RDFS or OWL, which are languages recommended by

W3C, can be transformed into an RDF graph as illustrated in Fig. 4.1. Each
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Table 4.1: Ontology Summarization Methods

Output Graph Model Centrality Other Measures

[102] ranked terms vocabulary dependency graph EC TC

[92] ranked terms class graph DC, BC, EC -

[101] ranked axioms RDF sentence graph DC, BC, EC Di

[70] ranked axioms RDF sentence graph DC QR

[71] ranked terms class graph DC, PC Co, NS, Po

[98] ranked terms class graph EC -

[100] ranked axioms term-sentence graph EC Di, Po

[26] ranked terms class graph EC -

[72] subgraph class graph DC FC

[27] ranked axioms term-sentence graph EC QR, Ch

[55] ranked terms class graph DC -

[39] subgraph vocabulary dependency graph - QR

[77] subgraph class graph DC, CC -

[89] subgraph class graph RC -

[24] ranked terms class graph EC QR

[67] subgraph class graph
DC, BC, EgC

-
BrC, HC, Ra

[90] subgraph class graph RC -

node-edge-node triple in the graph is called an RDF triple. In this example

ontology, three classes and two properties are described by five axioms which are

distinguished by different line styles in the figure.

RDFS is an extension of RDF; it is straightforward to represent an RDFS

ontology as a graph. In such a graph, all the terms defined in an ontology are

represented by nodes. Nodes are connected by directed arcs representing rela-

tions between two classes (e.g., rdfs:subClassOf), between two properties (e.g.,

rdfs:subPropertyOf), or between a property and a class (e.g., rdfs:domain,

rdfs:range).
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vin:madeFromGrape

vin:Wine owl:Restriction

vin:WineGrape food:madeFromFruit

rdfs:subClassOf rdf:type

owl:onProperty
rdfs:domain

rdfs:range
rdfs:subPropertyOf

vin:DessertWine

rdfs:subClassOf

“1”

owl:minCardinality

vin:WineGrape

vin:Wine

vin:DessertWine

rdfs:subClassOf vin:madeFromGrape

vin:madeFromGrape

vin:Wine

vin:WineGrape food:madeFromFruit

vin:DessertWine

Figure 4.1: An example RDF Graph.

For OWL, W3C provides a document (as part of the OWL language) that

defines the mapping of OWL ontologies into RDF graphs. OWL is more ex-

pressive than RDFS, and allows complex term definitions. Some axioms, e.g.,

owl:Restriction, which involves multiple terms, are transformed into multiple

RDF triples connected by blank nodes.

Comments. As a “standard” graph representation of ontology, RDF graphs

have rich tool support. They can be easily processed, stored, queried, and ex-

changed. However, in many cases an RDF graph representation of an ontology

appears unnatural from the semantics point of view.

4.2.2 Class Graph

In order to directly represent semantic relations between classes, Wu et al. [98]

presented a graph model where nodes represent classes and directed arcs repre-

sent binary relations between classes, which we call a class graph. Figure 4.2
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illustrates a class graph for the ontology in Fig. 4.1. Note that some axioms (e.g.,

owl:Restriction) are not covered by this graph representation.

As to the relations between classes, if we only allow rdfs:subClassOf, the

resulting graph will be a class hierarchy representing subsumption relations, as

considered in [71]. More generally, a relation can also be a property defined in the

ontology, connecting from its domain (which is a class) to its range (also a class).

Comments. Class graphs are close to human cognition. As classes are first-

class citizens, class graphs are particularly suitable for approaches to ranking

classes. However, the expressivity of class graph is limited. It well supports

binary relations between classes but not more complex axioms involving multiple

classes, e.g., owl:unionOf.

vin:madeFromGrape

vin:Wine owl:Restriction

vin:WineGrape food:madeFromFruit

rdfs:subClassOf rdf:type

owl:onProperty
rdfs:domain

rdfs:range
rdfs:subPropertyOf

vin:DessertWine

rdfs:subClassOf

“1”

owl:minCardinality

vin:WineGrape

vin:Wine

vin:DessertWine

rdfs:subClassOf vin:madeFromGrape
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Figure 4.2: An example class graph.

4.2.3 RDF Sentence Graph

Zhang et al. [101] proposed an RDF sentence graph. An RDF sentence is a subset

of RDF triples, and a set of RDF sentences form the finest partition of the triples

in an RDF graph such that each blank node only appears in one block. In many

cases, an RDF sentence corresponds to an axiom in OWL, since when mapping

OWL ontologies into RDF graphs, blank nodes are introduced when an axiom is

transformed into multiple RDF triples.
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Figure 4.3: An example RDF sentence graph derived from Fig. 4.1, where each
RDF sentence corresponds to a subset of the RDF triples in Fig. 4.1 that have a
particular line style.
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Figure 4.4: An example vocabulary dependency graph.

In an RDF sentence graph, nodes represent RDF sentences, which are adjacent

if the terms they describe overlap. Figure 4.3 illustrates an RDF sentence graph

for the ontology in Fig. 4.1; the five RDF sentences exactly correspond to five

axioms. Zhang et al. [101] differentiate between two types of arcs, depending on

the structural role of the shared terms, which we will not elaborate. Penin et

al. [70] further cluster textually similar RDF sentences into topic nodes.

Comments. Compared with RDF triples, there is a better correspondence

between RDF sentences and OWL axioms. In an RDF sentence graph, RDF

sentences (or roughly speaking, axioms) are first-class citizens, making this model
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particularly suitable for ranking triples/axioms. However, terms are not explicitly

represented in this model, which may limit its application.

4.2.4 Vocabulary Dependency Graph

Based on RDF sentences, Zhang et al. [102] propose vocabulary dependency graph,

where nodes represent terms, and edges connect terms that co-occur in an RDF

sentence. Co-occurrence in an RDF sentence indicates dependency between terms.

Figure 4.4 illustrates a vocabulary dependence graph for the ontology in Fig. 4.1,

derived from Fig. 4.3. Compared with the class graph in Fig. 4.2, this new graph

covers more terms (e.g., properties), though the edges are unlabeled. Essentially,

in a vocabulary dependence graph, each axiom (represented by an RDF sentence)

as a complex relation over multiple terms is decomposed into multiple binary

relations.

Comments. Compared with the a sentence graph, a vocabulary dependence

graph explicitly represents terms in the model, thereby being suitable for ranking

terms. Compared with a class graph, a vocabulary dependence graph has both

classes and properties as nodes, being suitable for ranking both of them. However,

the meaning of an edge in a vocabulary dependence graph is not as explicit as in

a class graph.

4.2.5 Term-Sentence Graph

Zhang et al. [100] present a bipartite graph model, where terms and RDF sentences

are both represented by nodes, which we call a term-sentence graph. A directed
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arc connects an RDF sentence to a term if the term is described in that RDF

sentence. Figure 4.5 illustrates a term-sentence graph for the ontology in Fig. 4.1,

derived from Fig. 4.3. Zhang et al. [100] differentiate between three types of

arcs, depending on the structural role of term in RDF sentence, which we will

not elaborate. The model is simplified in [27], where edges are undirected and

unlabeled.
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Figure 4.5: An example term-sentence graph.

Comments. A term-sentence graph is more complex than all the above-

mentioned models. One advantage is that, compared with an RDF sentence graph

and a vocabulary dependence graph, it explicitly represents both the terms and

RDF sentences in the model, thereby expanding its potential application.

4.3 Assessment Measures

In a graph model, a broad range of node importance meanings in the context of

ontology summarization has led to many different algorithms. In this section we

primarily review popular centrality-based measures. We also discuss coverage-

based, application-specific, and other measures.

41



4.3.1 Centrality-based Measures

Centrality-based measures are used to find topologically important nodes in a

graph representation of an ontology. In general, centrality-based measures are

defined via the available structure of the elements of a graph including nodes

and edges. These measures primarily focus on the quantitative properties of

graph structure such as number of edges and position of nodes, to assess the

importance of a node. Some measures take edge types into consideration. As

different centrality measures highlight different topological properties of a graph,

their outputs are usually not consistent.

Degree Centrality (DC)

As one of the simplest centrality measures, degree centrality calculates the number

of edges incident to a node v:

DC(v) = |Number of edges incident to v| . (4.1)

Pappas et al. [67] use this measure on a class graph to assess the local centrality

of each class as its importance. The degree of a class indicates the richness of its

description. Nodes with higher degree centrality are more important.

For a directed graph, degree centrality is divided into two categories: in-

degree centrality and out-degree centrality, used in [101, 77]. The former counts

the number of incoming arcs, and the latter counts the number of outgoing arcs.

Instead of considering all the edges incident to v, we may also count only those

of specific types. More generally, different types of edges can be assigned different
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weights, to measure weighted degree. For example, Peroni et al. [71] define the

density of a class v as the weighted sum of its number of subclasses, properties,

and instances:

Density(v) = wS ∗ Number of subclasses of v

+ wP ∗ Number of properties of v

+ wI ∗ Number of instances of v ,

(4.2)

where wS, wP , wI are weights. Similar methods have been used in [92, 55]. Pirez

et al. [72] and Queiroz-Sousa et al. [77] divide edges by their types into standard

(e.g., is-a, part-of, same-as) and user-defined, which are weighted separately.

Relative Cardinality (RC)

Whereas in the above approaches weights are empirically configured, we highlight

relative cardinality [89, 90], which is a way of automatically weighting edges for

calculating weighted degree. In a class graph, the cardinality of an edge which

represents a property connecting two classes is the number of the corresponding

instances of the classes connected with that specific type of property. Therefore,

classes and properties having more instances in a knowledge base are considered

more important.

Comments on Degree Centrality Degree centrality and its variants (e.g.,

relative cardinality) can be efficiently computed in linear time, which is important

when an ontology is very large. However, to assess the importance of a node,

these measures mainly use its local information, i.e., the subgraph surrounding
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that node. Without exploiting the global graph structure, the effectiveness of

these measures is limited.

Path-based Centrality (PC)

Path-based centrality calculates the number of paths that pass through a particular

node. For example, Peroni et al. [71] count the number of root-leaf paths in a

class hierarchy that pass through each class v as its importance:

PC(v) = |Number of root-leaf paths passing through v| . (4.3)

A class in the middle of many root-leaf paths is central.

Betweenness Centrality (BC)

As a special case of path-based centrality, it makes sense to only consider shortest

paths. Specifically, betweenness centrality is defined as the number of shortest

paths from all nodes in a graph to all other nodes that pass through that node.

Tzitzikas et al. [92] use the following implementation of betweenness to assess the

importance of each node v in a class graph:

BC(v) =
∑
s 6=v 6=t

σst(v)

σst
, (4.4)

where σst is the total number of shortest paths from node s to node t in the graph,

and σst(v) is the total number of those paths passing through node v. The same
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as degree centrality, a node with a higher betweenness value is considered more

important. Betweenness has also been used on RDF sentence graph [101].

Ego Centrality (EgC)

Alternatively, for each node v, let Gv be the subgraph induced by v and its

neighbors, which contains all the edges between them. Pappas et al. [67] calculate

the betweenness centrality of v within Gv, which is called ego centrality :

EgC(v) = BC(v) calculated within Gv . (4.5)

Bridging Centrality (BrC)

As an improvement to betweenness, Pappas et al. [67] presented bridging central-

ity. A node with a high bridging centrality is one that connects densely connected

components in a graph. To measure that, the bridging centrality of a node v is de-

fined as the product of v’s betweenness centrality (BC) and v’s bridging coefficient

(Br):

BrC(v) = BC(v) · Br(v)

where Br(v) =
DC(v)−1∑

u∈N(v) DC(u)−1
,

(4.6)

where DC(v) is the degree of node v and N(v) is the set of v’s neighbors. Be-

tweenness centrality and bridging coefficient characterize global and local features

of a node, respectively.
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Comments on Path-based Centrality Compared with degree centrality,

path-based centrality and its variants (e.g., betweenness centrality, bridging cen-

trality) exploit the global graph structure, going beyond the neighborhood of a

node. However, it is computationally expensive to calculate betweenness, which

involves calculating the shortest paths between all pairs of nodes in a graph.

Closeness Centrality (CC)

Similar to betweenness, closeness centrality is another measure for determining

the importance of nodes on a global scale within a graph. A node is usually

considered as a key node if it can quickly interact with all the other nodes in

a graph, not only with its immediate neighbors. The closeness of a node v is

originally defined as the average length of the shortest paths between v and all

other nodes in a graph:

CC(v) =
n− 1∑

u6=v d(v, u)
, (4.7)

where d(v, u) is the distance between v and u, i.e., the number of edges in the

shortest path between them, and n is the number of nodes in the graph.

Closeness centrality is used in [77], where an improved implementation for

assessing the importance of each class v in a class graph is proposed:

CC(v) =

∑
u6=v

score(u)

d(v, u)∑
u6=v

1

d(v, u)

, (4.8)
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where score(u) is the importance score of node u determined by some other mea-

sure. This new implementation gives emphasis on the classes that are close to

other important classes.

Harmonic Centrality (HC)

We have seen several minor modifications made to the definition of closeness.

Pappas et al. [67] present harmonic centrality, in which the average distance is

replaced by the harmonic mean of all distances:

HC(v) =
1∑

u6=v d(v, u)
. (4.9)

Radiality (Ra)

Pappas et al. [67] also present radiality, which takes the diameter of a graph into

account:

Ra(v) =
1∑

u6=v (D − d(v, u)−1)
, (4.10)

where D is the diameter of the graph, namely the greatest distance between any

pair of nodes in the graph.

Comments on Closeness Centrality Closeness centrality and its variants

(e.g., harmonic centrality, radiality) are similar to betweenness, also involving

calculating the shortest paths between all pairs of nodes in a graph. One difference

is that, a node with a high closeness value is usually located at the center of the

graph (in terms of distance), but such a node may not have a high betweenness
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value because it may not be a bridging node that resides in many shortest paths

connecting other nodes.

Eigenvector Centrality (EC)

A widely adopted principle is that a node is important if it is connected with

important nodes. For example, in a class graph, a class is important if the classes

it connects with are important. This gives rise to eigenvector centrality which

iteratively calculates the importance of each node v in a graph:

EC(v) =
1

λ

∑
u∈N(v)

EC(u) , (4.11)

where N(v) is the set of v’s neighbors, and λ is a constant factor for normalization.

The eigenvector centrality of a node is the sum of the eigenvector centrality of its

neighbors. The computation iterates over all the nodes in the graph, one round

after another until convergence.

Whereas this basic measure has been used in [26], its improved variants are

more popular in the literature. PageRank, a well-known implementation of eigen-

vector centrality, is used in [92, 24]. Different from the above basic measure,

PageRank introduces a damping factor which is added to the centrality. Weighted

PageRank, weighted HITS, or their variants are used in [102, 101, 100, 98, 27],

where centrality is defined as a weighted sum. The weight of an edge between v

and u indicates the strength of the connection between them; a stronger connec-

tion will transport more centrality score from u to v.
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Comments on Eigenvector Centrality Eigenvector centrality and its

variants (e.g., PageRank, HITS) have shown their effectiveness in many applica-

tions. However, they require iterative computation over all the nodes in a graph

until convergence, which is time-consuming for large graphs.

Empirical Comparison of Centrality-based Measures

It seems that the effectiveness of a centrality-based measure is related to the graph

model, and may also depend on the specific ontology to be summarized as the

application and the domain of an ontology provide a guideline in order to select

a proper set of measures.

Specifically, according to the experiment results presented in [92], the simple

degree centrality (DC) appears more effective than PageRank (i.e., EC) on some

class graphs. However, Zhang et al. [101] report that weighted PageRank (i.e.,

EC) outperforms degree (i.e., DC) on several RDF sentence graphs; both of them

are considerably better than betweenness (i.e., BC). Pappas et al. [67] find that

degree (i.e., DC) and betweenness (i.e., BC, EgC, and BrC) are notably better

than closeness (i.e., HC and RA) on a few class graphs.

Unfortunately, we could not draw any reliable conclusions from the current

empirical results reported in the literature as they all experiment with a small

number of ontologies.
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4.3.2 Coverage-based Measures

Top-ranked nodes in a graph representation of an ontology may not form the

best ontology summary. For many applications, a good summary is expected to

have a good coverage of the contents of an ontology, to form a comprehensive

and unbiased overview. Accordingly, the quality of a subset of nodes forming a

summary is to be assessed as a whole.

Coverage (Co)

Peroni et al. [71] propose the coverage criterion which aims to show how well the

selected set of classes are spread over the whole class hierarchy. For each node v,

let N+(v) be the set of nodes covered by v, including v and its neighbors, i.e., its

subclasses and superclasses in the class hierarchy. The coverage of a set of selected

nodes V is defined as the proportion of nodes in the graph that are covered by V :

Co(V ) =
|⋃v∈V N

+(v)|
n

, (4.12)

where n is the number of nodes in the graph.

Further, Peroni et al. [71] consider an interesting measure called balance which

is directly related to coverage. It measures how balanced the selected nodes are,

i.e., the degree to which each selected node contributes to the overall coverage of

the set, which is characterized by standard deviation.
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Diversity-based Re-ranking (Di)

In [101, 100], the coverage of a summary is improved by a re-ranking step after

centrality-based ranking. In these approaches, nodes are iteratively selected to

form a summary. In each iteration, the next node to be selected may not be the

top-ranked one among the remaining nodes, which will be re-ranked such that a

node similar to those selected in previous iterations will be penalized. Specifically,

let score(v) be the centrality score of node v, and let sim(v, u) be the similarity

between nodes v and u. Given a set of nodes Vs which are already selected into

the summary and a set of candidate nodes Vc, the next node to be selected from Vc

is

arg max
v∈Vc

(score(v)−
∑
u∈Vs

sim(v, u)) . (4.13)

Zhang et al. [101, 100] use this algorithm to rank RDF sentences, where two

RDF sentences are similar if they share terms. The resulting ontology summary

is diversified with regard to the terms it contains.

Comments on Coverage-based Measures Coverage-based methods com-

plement centrality-based measures, but their current implementations are subop-

timal. Coverage in Eq. (4.12) considers the neighborhood of each node, not taking

the global graph structure into account. Diversity-based re-ranking in Eq. (4.13)

has a greedy nature, and may not find the optimum summary in terms of centrality

and diversity.
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4.3.3 Application-specific Measures

The following two methods are not graph-based but are designed for specific

applications.

Query Relevance (QR)

A special kind of ontology summary is a snippet presented in search results pages

of an ontology search engine. In this application, terms [39, 24] or RDF sen-

tences [27, 70] that are relevant to a user query (e.g., containing query keywords)

are prioritized for being presented in a snippet, to show the relevance of an on-

tology to the user’s information needs.

Frequency of Correspondences (FC)

Pires et al. [72] consider applications where an ontology to be summarized can

be an integrated ontology obtained by merging several local ontologies. In that

case, an important term in the integrated ontology is one that has a high fre-

quency of correspondences, namely it finds correspondences to many classes in

local ontologies.

4.3.4 Other Measures

In addition to graph-based and application-specific measures, we briefly review

other methods used in the literature.
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Name Simplicity (NS)

Peroni et al. [71] emphasize that natural categories or basic objects are good

representers of an ontology. They propose that a natural category normally has

a relatively simple label, and hence they assess the importance of a class by the

simplicity of its name. A class having compound words in the name will be

penalized.

Textual Centrality (TC)

Zhang et al. [102] calculate the textual centrality of a term in an ontology. Different

from the centrality-based measures discussed in Section 4.3.1 which are defined

over graph structure, the textual centrality of a term is the similarity between its

textual description and the one for the whole ontology.

Popularity (Po)

The wide use of a term on the Web suggests its importance. To measure the

popularity of a term, Peroni et al. [71] submit the name of the term as a keyword

query to a Web search engine and resort to the number of returned results. Zhang

et al. [100] calculate the number of websites hosting RDF documents where the

term is instantiated.

Cohesion (Ch)

Cheng et al. [27] measure the quality of a summary as a whole. Different from

diversity-based re-ranking described in Section 4.3.2 which penalizes an ontology
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summary where RDF sentences share terms, such a summary will be awarded

in [27] as it exhibits cohesion.

4.4 Future Directions

We have investigated different graph models and measures for ontology summa-

rization. We believe that other directions to generate more reliable ontology

summaries exist, and we are trying to address some of them to conclude our

survey.

Although many algorithms for the ontology summarization problem have been

proposed, empirical results reported in the literature suggest that none of them

consistently generates the best ontology summary. In an ideal case, the ontology

summarization technique needs to be more flexible in the way that users or appli-

cations are able to tune the model in order to generate different summaries based

on different requirements or inputs. In other words, dynamic or adaptive ontology

summarization can be viewed as an interesting topic to explore.

Defining new measures, either graph-based or not, is another research activity

in the context of ontology summarization. Ideas may come from thorough investi-

gations into human-made “gold-standard” summaries. Research advances in the

field of information retrieval and text summarization, as well as recent research on

entity summarization (e.g., [75, 74]) which is closely related to ontology summa-

rization, can also provide inspiration. In particular, machine learning techniques

have not been extensively used for ontology summarization.
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The available approaches apply extractive techniques to generate the final sum-

mary. In the extractive scenario, a subset of the terms and/or axioms from the

original input ontology are selected as a summary. Non-extractive or abstractive

ontology summarization will be a new direction in this area. In that scenario, the

key research question is how to define the output of ontology summarization, e.g.,

as some kind of high-level aggregate representation of terms and axioms.

There is a lack of evaluation efforts. To the best of our knowledge, experiments

presented in the literature are all based on a small number of ontologies. No

benchmark for ontology summarization is available so far.

Dozens of software systems, libraries, or APIs for text summarization are avail-

able, many of which are open-source. By comparison, it is rare to see any software

tool support for summarizing ontologies. In fact, if such a tool or an application

aims to directly serve ordinary users, it needs to also address the presentation

(e.g., verbalization, visualization) of and the interaction with ontologies, in which

some other challenges would emerge.

Last but not least, almost all of the methods we have discussed generate on-

tology summaries to be presented to human users. Summaries may also facilitate

computer processing in certain tasks. It would be interesting to explore applica-

tions of this kind.
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Chapter 5

ES-LDA: Entity Summarization

using Knowledge-based Topic

Modeling 1

1Seyedamin Pouriyeh, Mehdi Allahyari, Krys Kochut, Gong Cheng, Hamid Reza Arabnia,
”ES-LDA: Entity Summarization using Knowledge-based Topic Modeling”, Proceedings of the
Eighth International Joint Conference on Natural Language Processing (IJCNLP 2017).
Reprinted here with permission of the publisher.
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Abstract

With the advent of the Internet, the amount of Semantic Web documents that

describe real-world entities and their inter-links as a set of statements have grown

considerably. These descriptions are usually lengthy, which makes the utiliza-

tion of the underlying entities a difficult task. Entity summarization, which aims

to create summaries for real world entities, has gained increasing attention in

recent years. In this paper, we propose a probabilistic topic model, ES-LDA,

that combines prior knowledge with statistical learning techniques within a sin-

gle framework to create more reliable and representative summaries for entities.

We demonstrate the effectiveness of our approach by conducting extensive exper-

iments and show that our model outperforms the state-of-the-art techniques and

enhances the quality of the entity summaries.
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5.1 Introduction

With the emergence of Linked Open Data (LOD)2 as a way of publishing and

interacting with the information, many datasets such as DBpedia [17] and YAGO

[47] have been created and are publicly available on the Web. For example, DB-

pedia as part of LOD is a knowledge base extracted from Wikipedia that consists

of Wikipedia resources (entities) described as RDF statements (i.e., RDF triples).

The Resource Description Framework (RDF) is the Semantic Web standard data

model used for representing information on the Web. An RDF triple is repre-

sented in the form of < subject, predicate, object >. The latest English version of

DBpedia contains over 4.5 million entities collectively described by over 1.6 bil-

lion triples. This means that each entity description has an average of 355 RDF

triples. Human users and computer applications need to consider these lengthy

descriptions while performing various semantic tasks. Thus, entity summariza-

tion, a task of producing more concise, but still sufficient entity description, has

garnered a significant amount of attention.

Recently, with the huge growth of information, summarization techniques are

becoming some of the main approaches to making the information more readily

available. In fact, summarization techniques aim to facilitate the identification of

structure and meaning in data. Researchers in different communities have taken

a strong interest in this task and, accordingly, have proposed various methods for

a wide variety of summarization techniques in multiple areas. Document sum-

marization [66], database summarization [23], and graph summarization [65] are

2http://linkeddata.org
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just a few examples that have been studied by different communities. RDF data

summarization and in particular entity summarization, has attracted considerable

attentions in recent years as it can benefit many other tasks in the natural language

processing area, including entity recognition [103], entity disambiguation [31], and

many others. Several approaches have been developed to summarize RDF data

with respect to entities, including RELIN [29], FACES [43], and LinkSUM [86].

RDF summarization differs from document summarization in the sense that RDF

triples are structured and do not have many frequently used words to help the

summarization task, which makes RDF summarization more challenging.

Topic modeling has become a popular method for uncovering the hidden

themes from text corpora. Topic models usually consider each document as a

mixture of topics, where a topic is a probability distribution over words. When

the topic proportions of documents are estimated, they can be used as the themes

(high-level semantics) of the documents. Topic models have been widely used

for various text mining tasks, such as machine translation [84], word embedding

[12, 32], automatic topic labeling [95, 4, 6], and others[5].

In this paper, we propose a novel topic model, called ES-LDA, that integrates

prior knowledge with the topic modeling within a single framework for RDF entity

summarization. In our approach, each entity, which is considered as a document, is

a multinomial distribution over the predicates (properties), where each predicate is

a probability distribution over the subjects and objects of the triples in the RDF

data. We rank the triples based on their probability distributions and choose

the top-k triples that best describe the underlying entity as its summary. We

evaluated our approach against state-of-the-art techniques and our experiments
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indicate that our approach outperforms other methods in terms of the quality of

summarization.

The rest of the paper is organized as follows: Section 5.2 presents an overview

of related work. Section 5.3 introduces the baseline for this paper. In Section

5.4, we define the main problem and propose our model in detail and afterwards,

in Section 5.5, we explain the configurations of our model and describe the ex-

periments. Finally, in Sections 5.6 and Section 5.7, we discuss the results and

conclude the paper, respectively.

5.2 Related Work

Summarization methods can be divided into two main categories, which are called

extractive and none-extractive (abstractive) summarization. In extractive ap-

proaches, which are usually applicable in text and ontology summarization [50]

[101], a set of features is extracted directly from the input data. On the other

hand, in non-extractive methods, which generally are employed in graph [65] and

database [23] summarization, new sentences from the input data are generated

[44] to form a summary. In this research, we focus on extractive summarization.

The concept of entity summarization in the form of RDF graph data has attracted

more attention in recent years. Cheng et al. [29] proposed entity summarization

method, called RELIN, based on the PageRank algorithm to extract represen-

tative triples, called representative features for RDF graph entities. Because of

the centrality based ranking issue, RELIN highlights the most similar and central

triples, while in summarization, the diversity of summarized triples is the key
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point.

SUMMARUM [87] is a system for a better navigation within Linked Data through

the ranking of triples. This system also uses the PageRank algorithm to rank

triples according to the popularity of resources with the help of Wikipedia pages.

Two aforementioned approaches could not meet the diversity requirement in the

summarization process. FACES [43], on the other hand, tries to keep a balance

between the centrality and diversity of the selected triples for each entity. It uti-

lizes a clustering algorithm, called Cobweb [36], to cluster related triples before

ranking them to keep the diversity in the summarization. The recent version of

SUMMARUM, which is called LinkSUM [86], focused more on the objects in-

stead of the diversity of properties for entities and showed a better result on the

same dataset, in comparison with FACES. Beside the aforementioned techniques

dedicated to entity summarization, there are various ranking models and tools,

including TripleRank [37] and TRank [88] that rank triples and concepts, respec-

tively, incorporating ranking algorithms. However, Cheng et al. [29] indicated

that these methods are not appropriate for the entity summarization problem,

which needs ranking of feature sets based on their importance to identify the

underlying entity.

5.3 Preliminaries

An RDF data graph is a collection of nodes and edges that connect the nodes

together. Nodes are usually recognized by unique IDs which are called Uniform

Resource Identifiers (URIs) or exact values (i.e. numbers, dates, etc) namely
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Table 5.1: J.C.Penny entity predicates and corresponding objects with the top-5
ES-LDA summary.

Predicate Object Top-5

http://dbpedia.org/property/areaServed http://dbpedia.org/resource/United States 7

http://dbpedia.org/ontology/foundedBy http://dbpedia.org/resource/James Cash Penney 3

http://dbpedia.org/property/founder http://dbpedia.org/resource/James Cash Penney 7

http://dbpedia.org/ontology/industry http://dbpedia.org/resource/Retail 3

http://dbpedia.org/property/keyPerson http://dbpedia.org/resource/Ron Johnson 3

http://dbpedia.org/property/homepage http://www.jcpenney.com/ 7

http://dbpedia.org/ontology/location http://dbpedia.org/resource/Plano, Texas 3

http://dbpedia.org/ontology/regionServed http://dbpedia.org/resource/United States 7

http://dbpedia.org/property/tradedAs http://dbpedia.org/resource/S&P 500 7

http://dbpedia.org/ontology/type http://dbpedia.org/resource/Public company 3

Literals. An RDF graph is represented in a form of a collection of triples, each

including a Subject, Predicate, and Object. In an RDF graph, an entity is defined

as a subject with all predicates and corresponding objects to those predicates,

collectively forming the entity’s description. As Table 5.1 shows, the J.C.Penny

entity is represented by its predicates (properties) and the corresponding objects

in the triple format. For example, the triple < J.C.Penny, industry,Retail > in-

troduces J.C.Penny ’s industry as Retail (due to space limitations we have dropped

the first part of the URIs).

Definition 1 (Entity summary): Given an entity e and a positive integer k,

a summary of the entity e, denoted Sum(e, k), is the top-k subset of all predicates

and corresponding objects that are most relevant to that entity. As Table5.1 shows

the top-5 summary for J.C.Penny entity, which is represented through foundedBy,

industry, keyPerson, location, and type.
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5.3.1 Latent Dirichlet Allocation (LDA)

The Latent Dirichlet Allocation (LDA) is a generative probabilistic model for

extracting thematic information (topics) from a collection of documents. LDA

assumes that each document is made up of various topics, where each topic is a

probability distribution over words.

Let D = {d1, d2, . . . , d|D|} be a corpus of documents and V = {w1, w2, . . . , w|V|}

a vocabulary (words) of the corpus. A topic zj, 1 ≤ j ≤ K is represented as a

multinomial probability distribution over the |V| words, p(wi|zj),
∑|V|

i p(wi|zj) = 1.

LDA generates the words in a two-stage process: words are generated from topics

and topics are generated by documents. More formally, the distribution of words,

given the document, is calculated as follows:

p(wi|d) =
K∑
j=1

p(wi|zj)p(zj|d) (5.1)

The graphical model of LDA is shown in Figure 5.1 and the generative process

for the corpus D is:

1. For each topic k ∈ {1, 2, . . . , K}, sample a word distribution φk ∼ Dir(β)

2. For each document d ∈ {1, 2, . . . ,D},

(a) Sample a topic distribution θd ∼ Dir(α)

(b) For each word wn, where n ∈ {1, 2, . . . , N}, in document d,

i. Sample a topic zi ∼ Mult(θd)

ii. Sample a word wn ∼ Mult(φzi)
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Figure 5.1: LDA Graphical Representation

In the LDA model, the word-topic distribution p(w|z) and topic-document distri-

bution p(z|d) are learned entirely in an unsupervised manner, without any prior

knowledge about what words are related to the topics and what topics are related

to individual documents.

5.4 Problem Statement

In this section, we first describe the problem and then define how to utilize topic

models for RDF graphs. Then, we formally introduce our ES-LDA model and

explain how to integrate prior knowledge from RDF data graph within a topic

model for entity summarization.

5.4.1 Problem Definition

Generating summaries for voluminous Semantic Web data, and in particular RDF

data, for quick identification of entities has gained considerable attention as a
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challenging problem in the Semantic Web community. In the literature, Entity

Summarization is defined as selecting a small but representative subset of the

original triples associated with an entity. In this context, given an RDF data

set comprising a collection of entities, where each entity is described by a set

of its properties (i.e., all triples with the entity as the subject), our goal is to

choose top-k representative triples for each entity. In other words, since all triples

associated with an entity (as its description) share the same subject, our objective

is to select top-k predicates and their corresponding objects among these triples

that best summarize the entity’s description.

5.4.2 Topic Models for RDF Graphs

Topic models were originally introduced for text documents, however, they have

been applied to other types of data, such as images [18], and recently [83] used

topic modeling for RDF graphs. The first step in applying topic models is to define

documents and word-like elements as the basic building blocks of documents.

Since an RDF graph is usually represented as a set of triples, where each triple t

consists of a subject s, predicate p, and an object o, in the form of <s, p, o>, we

can consider a collection of such triples as a “document”.

Definition 2 (document): A document d is defined as a set of triples,

d = {t1, t2, · · · , tn}, that describe a single entity e. In other words, all triples of a

document d have the same subject.

“Words” of a document can be extracted from different parts of its triples. We

define a “word” w as the subject or object of a triple t in document d. Therefore,
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each document is represented by a “bag of words” including all the subjects and

objects of its triples. In this paper, all subjects in the triples of a document are

the same, because each document corresponds to a single entity, hence, in practice

each document is a “bag of objects”3

Topic models usually utilize some data preprocessing, such as punctuation

removal, downcasting, and abbreviation expansion, etc., to enhance the final per-

formance. We also performed preprocessing on the RDF data and filtered out

the schema and dataset dependent predicates, such as sameAs, wikiPageExter-

nalLink, subject, wikiPageWikiLink, in addition to literals. Since we work with

RDF graphs that differ from typical text documents in the sense that RDF data

are represented as triples, we need to address several challenges mentioned in [83]

to be able to run topic models on RDF data. These challenges include sparseness,

use of unnatural language, and the lack of context. RDF data can be affected by

Sparseness. We consider documents as sets of triples associated with a single

entity. Such a set can be very large, leading to a large bag of words with a seman-

tic theme, or small (sparse), resulting in a poor bag of words with less contextual

information. It is also possible that a document with a high number of triples

ends up having a small bag of words after pre-processing; for example based on

Table 5.1, J.C.Penny entity comes with United States, James Cash Penney, Re-

tail, Ron Johnson, Plano, Texas, United States, S&P 500 and Public company as

a bag of words for J.C.Penny entity, which shows sparseness in this document.

Unnatural Language can be problematic for RDF data. A typical text docu-

ment contains sentences where each sentence has a natural structure. These extra

3“bag of words” and “bag of objects” are interchangeably used.
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components of a sentence usually provide a further “context” for understand-

ing words that are ambiguous or have multiple meanings, such as polysemous or

homonymous ones. The aforementioned example for the J.C.Penny entity also

confirms the unnatural language problem. The ”lack of context” can further

impact RDF data because they are potentially sparse, described by unnatural

language, and often using words that have multiple meanings, difficult to differ-

entiate (J.C.Penny bag of words example). Additionally, triples are more prone

to pre-processing, because it is not uncommon for triples to contain unexpected

characters. RDF data resemble short texts in terms of the aforementioned chal-

lenges. Sparseness in a short text causes the model to be less discriminative to

recognize how words are related and the limited context makes it hard for the

model to identify the meanings of the words in such short text documents [99].

In order to alleviate these issues, researchers usually take two approaches. They

either augment the short text or design custom versions of the LDA model that

address their specific problems. In this paper, we have used both approaches. We

describe how to supplement the RDF data in the following section and describe

the details of our model in Section 5.4.4.

5.4.3 Supplementing RDF Data

As topic modeling is based on statistics of the co-occurrence of terms [83], when

we are dealing with short texts with a very limited number of repetitions, which is

the case with RDF data, we need to find a way to supplement the data to elevate

the performance of the topic modeling approach. We augment the documents
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Figure 5.2: Entity Summarization Model

using two different methods. In the first method, we increase the frequency of

the words in each document. But the question is “How many times each word of

a document should be repeated?”. Entities in DBpedia have been organized into

a category network, therefore, every entity has a number of categories associated

with it. The relationship between an entity and a category is defined by the

“http://purl.org/dc/terms/subject” predicate. Since each word of a document

is an object of a triple, and accordingly, an entity in DBpedia, it is related to

several categories. We assume that objects (words) of a document that have

more categories are likely more important. Thus, We expand each document
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Algorithm 1: ES-LDA Model

1 foreach predicate r ∈ {1, 2, . . . , R} do
2 Draw an object distribution φr ∼ Dir(βr × Λr)
3 end
4 foreach document d ∈ {1, 2, . . . , D} do
5 Draw a predicate distribution θd ∼ Dir(αd)
6 foreach subject s and object o of document d do
7 Draw a predicate r ∼ Mult(θd)
8 Draw a subject s from predicate r, s ∼ Mult(φr)
9 Draw an object o from predicate r, o ∼ Mult(φr)

10 end

11 end

by increasing the frequency of each object by the number of its categories. In

the second method, instead of repeating each object a certain number of times,

we enlarge each document by adding categories of the objects as extra words,

directly to the document. There are multiple advantages of supplementing each

document by adding object categories: (i) the sparseness in the document, related

to each entity, is lowered as we are adding a number of related words to it; (ii) we

reduce the ambiguity in the document, because adding extra categories alleviates

the lack of context and helps distinguish the appropriate meanings of the words

with multiple connotations; and lastly (iii), adding object categories makes the

documents semantically more relevant to their topical themes. We evaluated our

model using both methods and the results demonstrate that the first method gives

significantly better summaries than the second method.
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5.4.4 Proposed Model

ES-LDA is a probabilistic generative model for modeling entities in RDF graphs.

The key idea behind our model is twofold: (1) we exploit statistical topic models

as the underlying quantitative framework for entity summarization; and (2) ES-

LDA incorporates the prior knowledge from the RDF knowledge base directly into

the topic model. The plate notation is shown in Figure 5.2.

In our model, each document is a multinomial distribution over the predicates.

If we consider predicates as topics, at the document level, our model is the same

as standard LDA. However, we set the number of topics in ES-LDA to be the

number of unique predicates in the corpus. Unlike the standard LDA, where each

topic is a multinomial distribution over the vocabulary from the Dirichlet prior

β, in our model each predicate is a multinomial distribution over all the subjects

and objects of the RDF graph. In our approach, a document consists of a set

of triples describing a single entity, i.e. all these triples share the same subject.

Thus, we constrain the documents to only have the objects of related triples and

also restrict the predicates to be defined only over the objects. In addition, for

each predicate r, we further smooth its distribution by Λr. Λ is a matrix that has

encoded the background knowledge about predicate-object values from DBpedia.

Section 5.4.5 explains how Λ is constructed. The generative process of ES-LDA

is shown in Algorithm 1.

Following this process, the joint probability of generating a corpus D =

{d1, d2, . . . , d|D|}, the predicate assignments r given the hyperparameters α, β and
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the prior matrix Λ is:

P (o, s, r|α, β,Λ)

=

∫
φ

P (φ|β; Λ)
∏
d

∑
rd

P (od|rd, φ)P (sd|rd, φ)

×
∫
θ

P (θ|α)P (rd|θ, φ)dθdφ (5.2)

5.4.5 Constructing Predicate-Object Prior Matrix Λ

In the ES-LDA model, each predicate has a probability distribution over the

objects of the RDF graph. Entity summarization is the task of choosing the top-

k predicate-object pairs that best describe an entity. Presumably, if an object

is associated with more categories in DBpedia, it is likely more important. We

create the the Λ matrix to encode the prior weight of the predicate-object pairs

and utilize it to smooth the predicate-object distributions φ by incorporating this

domain knowledge into the topic model. We build the Λ matrix of size R × O,

where R is the number of predicates and O is the number of objects in the RDF

graph. Let f be an indicator function where f(i, j) = 1 if there is a triple in

RDF graph with predicate i and object j, and 0 otherwise, for 1 ≤ i ≤ R and

1 ≤ j ≤ O. Additionally, let c be the number of categories assigned to object j.

Then, we define Λij as follows:

Λij =

 c if f(i, j) = 1

1 otherwise.
(5.3)
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For example, the “Barack Obama” entity has multiple predicate-object pairs in

DBpedia, including “profession-author”, “profession-lawyer” and “profession-professor”

pairs. According to DBpedia, cauthor = 2, clawyer = 4 and cprofessor = 2. It is rea-

sonable to expect a higher probability for the “profession-lawyer” pair as it seems

to be slightly more important than the other two pairs for “Barack Obama”. As

a result, Λprofession−lawyer = 4, which promotes “profession-lawyer” in Eq. 5.5.

5.4.6 Inference using Gibbs Sampling

Since the posterior inference of the LDA is intractable, we need to find an algo-

rithm for estimating the posterior inference. A variety of algorithms have been

used to estimate the parameters of topic models, such as variational EM [19] and

Gibbs sampling [40]. In this paper we use the collapsed Gibbs sampling procedure

for our ES-LDA topic model. Collapsed Gibbs sampling [40] is a Markov Chain

Monte Carlo (MCMC) [80] algorithm, which constructs a Markov chain over the

latent variables in the model and converges to the posterior distribution, after

a number of iterations. In our case, we aim to construct a Markov chain that

converges to the posterior distribution over r conditioned on observed subjects s,

objects o, hyperparameters α, β, and the prior matrix Λ.

In our modified version of the learning algorithm to infer p(oi|rj) and p(rj|d),

we (1) constrain the objects that are not paired with a predicate to have 0 prob-

ability, i.e. p(oi|rj) = 0, if (ri, oj) /∈ RDF graph, and (2) P (s|rj) = 1, since all the

triples of a document have the same subject s. We derive the posterior inference

from Eq. 5.2 as follows:
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P (r|o, s, α, β,Λ) =
P (r,o, s|α, β,Λ)

P (o|α, β,Λ)

∝ P (r,o|α, β,Λ) ∝ P (r)P (o|r)P (s|r)

(5.4)

P (ri = r|oi = o, r−i,o−i, α, β,Λ) ∝

n
(d)
r,−i + αr∑

r′ (n
(d)
r′,−i + αr′)

×
n
(r)
o,−i + Λroβo∑

o′ (n
(r)
o′,−i + Λroβo)

(5.5)

where n
(r)
o is the number of times object o is assigned to predicate r. n

(d)
r denotes

the number of times predicate r is associated with document d. The subscript −i

indicates that the contribution of the current object oi being sampled is removed

from the counts. After Gibbs sampling, we can use the sampled predicate to

estimate the probability of a predicate, given a document, θdr and the probability

of an object, given a predicate, φro:

θdr =
n
(d)
r + αr∑

r′ (n
(d)
r′ + αr′)

(5.6)

φro =
n
(r)
o + Λroβo∑

o′ (n
(r)
o′ + Λroβo)

(5.7)

5.5 Experiments

We evaluated our ES-LDA model against the state-of-the-art LinkSUM [86] and

FACES [43] systems. Our goal was to show that the ES-LDA model produces re-

sults that are closer to human judgment, in comparison with the other approaches.
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We used the same dataset4 that was used in the experiments conducted with

FACES, as well as LinkSUM models. The dataset contained 50 entities randomly

selected from DBpedia (English version 3.9) in domains including politician, ac-

tors, scientist, song, film, country, city, river, company, game, etc.. 15 people in

the field of Semantic Web were selected as reviewers and each entity was evaluated

by at least 7 reviewers to produce the top-5 and top-10 summaries. The average

number of properties for each entity was 44.

Based on the two types of RDF supplement methods we discussed in 5.4.3,

we applied two different configurations for the proposed model. In the first

experiment, ES-LDA @config-1, we configured the system to supplement each

entity (document) by repeating each object based on the number of categories

that the object has in the DBpedia knowledge base. For example, for the triple

< J.C.Penney, industry,Retail > we repeated Retail object, 5 times in that doc-

ument, as Retail has five different categories in DBpedia (i.e. ”Retailers, Retailing,

French words and phrases, Merchandising, Marketing” )

In the second experiment, ES-LDA @config-2, we configured the system to

supplement each entity (document) by adding the corresponding category(ies)

of each object into the document. In this case, each entity is defined as a bag

of words including objects and categories of each object. For example, for the

aforementioned triple, in addition to the Retail we included ”Retailers, Retail-

ing, French words and phrases, Merchandising, Marketing” as the corresponding

categories to the Retail object.

4http://wiki.knoesis.org/index.php/FACES
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Table 5.2: Overall quality results of different models. Best result are bold.

Model Top-5 Top-10

ES-LDA @ config-1 1.20 3.50
ES-LDA @ config-2 1.10 3.26
LinkSUM@ config-1 1.20 3.15
LinkSUM@ config-2 1.20 3.20
FACES 0.93 2.92

For the other parameters, we assumed a symmetric Dirichlet prior and set

β = 0.01 and α = 50/R, where R is the total number of unique predicates. We

ran the Gibbs sampling algorithm for 1000 iterations and computed the posterior

inference after the last sampling iteration. We selected the top-5 and top-10 most

probable properties for each entity and calculate the quality of the summary for

each entity through equation 5.8.

Quality(Sum(e)) =
1

n

n∑
i=1

|Sum(e) ∩ SumI
i (e)| (5.8)

In our experiments, we used the quality of the summary proposed in [29], in

which n ideal summaries SumI
i (e) generated by expert users for i = 1, ..., n and

the summaries generated by the system Sum(e) were compared. The average of

the overlap between an ideal summary and a summary generated by the system

is denoted as the quality of the summary, which is 0 ≤ Quality(Sum(e)) ≤ k in

the top-k settings.
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Table 5.3: Top-10 predicates for three randomly selected entities after applying
three different models.

Marie Curie Reign of Fire Seychelles

ES-LDA LinkSUM FACES ES-LDA LinkSUM FACES ES-LDA LinkSUM FACES

doctoralStudents birthPlace spouse starring country starring leaderName largestCity leaderName
doctoralAdvisor birthPlace field producer starring country governmentType governmentType governmentType
deathPlace field workInstitutions music starring distributor leaderTitle governmentType largestCity
children field birthPlace director starring musicComposer officialLanguage governmentType sovereigntyType
knownFor knownFor deathPlace cinematography studio director capital governmentType source
spouse almaMater doctoralAdvisor country producer editing currency sovereigntyType capital
almaMater birthPlace knownFor distributor producer studio timeZone source leaderTitle
birthPlace knownFor almaMater studio director music legislature capital language
field doctoralAdvisor doctoralStudents editing artist producer anthem language languages
establishedEvent knownFor thumbnail screenplay producer thumbnail callingCode timeZone legislature

5.5.1 Experiment Results

The summary in our model is defined as sets of representative triples that can

summarize each entity (sets of triples with the same subject) in a way close to a

human-created summary. We decided to use the last part of a URI to compare

the generated summaries with the expert summaries and produce the Summary

Quality for each entity and average them. As [86] reproduced the FACES over-

all Summary Quality based on this criteria and also applied it to their model,

we decided to use their result as it was completely aligned with our summary

definition.

In Table 5.2, we compare the quality of the results from LinkSUM, FACES, and

ES-LDA with two distinct configurations (supplementing by object reputation and

object categories). As Table 5.2 shows, the quality of our model outperforms the

FACES approach, in both cases. The ES-LDA @ config-2 demonstrates a compa-

rable result with the two configurations of LinkSUM, while ES-LDA @ config-1

outperforms LinkSUM. For some of the entities, the predicates that ES-LDA se-
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Table 5.4: Probabilities of top-5 predicates for two randomly selected entities.

Lexus Mortal Kombat Trilogy

Predicate Probability Predicate Probability

foundedBy 0.21 platforms 0.30
owner 0.17 publisher 0.18
location 0.15 developer 0.17
keyPerson 0.06 computingMedia 0.07
service 0.04 designer 0.05

Table 5.5: Distributions of two randomly selected predicates over top-5 objects.

Party Starring

Object Probability Object Probability

Democratic Party (United States) 0.36 Arnold Schwarzenegger 0.05
Republican Party (United States) 0.17 Angelina Jolie 0.04
Democratic-Republican Party 0.12 Raven Symone 0.03
Communist Party of the Soviet Union 0.08 Matthew McConaughey 0.02
Independent(politician) 0.08 Alan Arkin 0.02

lected as top-5 most probable did not exist in the FACES dataset. It forced us to

calculate the quality of summary for some of the entities with just 4 predicates

instead of 5. We believe that might to be the only reason why top-5 Quality

of Summary was lower than or equal to LinkSUM. Although, we had the same

issue for the top-10 results, overall, ES-LDA shows a better performance in two

configurations.
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5.6 Discussion

We evaluated our approach against the state-of-the-art summarization techniques,

including LinkSUM and FACES. LinkSUM primarily focuses on the most rele-

vant facts for each entity, while FACES tries to keep a balance between diversity

and relevancy in entity summarization. There is usually a trade-off between di-

versity and relevancy of the selected predicates. Our ES-LDA model maintains

both diversity and relevancy, while representing each entity through top-k pred-

icates. As shown in Table 5.2, our model outperforms the state-of-the-art ap-

proaches. Table 5.3 illustrates a sample of entities from the dataset along with

their top-10 predicates, for all approaches. As Table 5.3 shows, the LinkSUM

model is focusing more on the objects, while predicate repetition is permitted.

For example, <Marie Curie, birthPlace, Warsaw>, <Marie Curie, birthPlace, Rus-

sian Empire>, and <Marie Curie, birthPlace, Congress Polandare> are representing

Marie Curie’s birth place. Although, they differ in terms of objects, it is arguable

that referring to the same predicate with multiple objects that are more likely rel-

evant reduces the chance of other important triples that could potentially appear

in the summary. It should be noted that in the current ES-LDA configuration,

we have not considered predicate repetition, thus, all the predicates of the triples

appearing in the resultant summary are unique. FACES on the other hand, con-

siders predicate diversity and tries to keep a balance between the diversity and

relevancy but the overall quality of the FACES model is lower than LinkSUM and

ES-LDA. In the FACES model, there are selected predicates which seems to be

less informative in the sense to be top-10 representative for a particular entity.
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For example, <Marie Curie, thumbnail, 200px-Marie Curie c1920.png>, which is re-

ferring to a png file, could be replaced with more descriptive one. Additionally,

our proposed technique features several unique characteristics: (1) the ES-LDA

is a knowledge-based probabilistic model that combines prior knowledge with sta-

tistical learning technique into a unified framework for entity summarization; (2)

for each entity, it ranks all predicates based on their importance by computing

marginal probabilities for the predicates. Table 5.4 illustrates the top-5 predicates

for a sample of two entities; and finally (3), each predicate can be represented as

a probability distribution over objects in the ES-LDA model, which allows us to

describe the relations (predicates) of the RDF graph based on its nodes as shown

in Table 5.5.

5.7 Conclusions

We have proposed a knowledge-based probabilistic topic model, called ES-LDA,

based on the RDF entity representation for entity summarization. In our ex-

periments, we have applied two different configurations: one based on object

repetitions and the other based on adding object’s categories, to alleviate com-

mon RDF data problems including sparseness, unnatural language, and lack of

context. We conducted extensive experiments, which show the quality of the

top-10 triples in both configurations outperforms the state-of-the-art techniques,

LinkSUM and FACES, while for the top-5 quality we surpassed FACES and

equaled the LinkSUM results.
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There are many interesting future research directions of this work. It would

be interesting to investigate how this model and a much richer set of topic models

that combine prior knowledge with statistical learning techniques could be used

for various tasks in the Semantic Web domain, such as ontology summarization,

ontology tagging, and finding similar ontologies.
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Chapter 6

Combining Word Embedding and

Knowledge-Based Topic Modeling

for Entity Summarization1

1Seyedamin Pouriyeh, Mehdi Allahyari, Krys Kochut, Gong Cheng, Hamid Reza Arabnia,
”Combining Word Embedding and Knowledge-Based Topic Modeling for Entity Summariza-
tion”, 12th IEEE International Conference on Semantic Computing (ICSC 2018).
Reprinted here with permission of the publisher.
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Abstract

Word embedding is becoming more popular in the Semantic Web community as

an effective approach for capturing semantics in various contexts. In this paper,

we combine word embedding technique and topic modeling to model RDF data

for the entity summarization task. In our model, ES-LDAext, which is the ex-

tended version of our previous model, we utilize the word embedding technique

to supplement RDF data before applying entity summarization. In addition, in

the model presented here, we use RDF literals as a very good source of infor-

mation to create more reliable and representative summaries for entities. To do

that, we use the Named Entity Recognition approach to extract entities within

literals before feeding them into the word embedding model to enrich the RDF

data. Experimental results demonstrate the effectiveness of the proposed model.
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6.1 Introduction

With the ongoing success of Linked Open Data (LOD)2 as a way to publish large-

scale data, the amount of Web content has been constantly growing. Massive

datasets, such as DBpedia [17] and YAGO [47], have been created and are pub-

licly available on the Web. They contain large amounts of knowledge for human

and machine consumption in different formats. Resource Description Framework

(RDF), is the data modeling language of the Semantic Web and is widely used

to encode information and publish data on the Web. RDF represents data in

the form of triples < subject, predicate, object >, which are the basis of those

datasets. The aforementioned knowledge bases consist of millions, or even billions

of entities and properties that connect those entities together through proper re-

lations and make-up a large-scale knowledge graph to describe entities via RDF

triples. These lengthy descriptions become a problem while performing various

semantic tasks, due to the fact that it is difficult to extract or focus on relevant

and useful information in that massive data. Entity summarization, as a task of

producing a condensed, but still sufficient entity descriptions, has gained consid-

erable attentions as a way to absorb and distill descriptive knowledge from RDF

datasets. In this work, our contributions are twofold: (1) we combine a word em-

bedding technique with topic modeling within a single framework for RDF entity

summarization, and (2) we consider the triples with literals as good resources to

represent the underlying entities. We propose a method to augment triples with

2http://linkeddata.org
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datatype properties in such a way that increases their chance to be selected as

top-k representative triples and the entity summary.

6.2 Related Work

RELIN, proposed by Cheng et al. [29], is based on the PageRank algorithm to

extract representative triples, called representative features, for RDF graph enti-

ties. The SUMMARUM model [87], which also uses the PageRank algorithm to

rank triples according to the popularity, utilizes the Wikipedia pages for better

navigation within Linked Data through the ranking of triples. The two aforemen-

tioned approaches could not meet the diversity requirement in the summarization

process. FACES [43], on the other hand, tries to incorporate the diversity in the

selected triples for each entity. It uses the Cobweb algorithm [43] to cluster re-

lated triples before ranking them. Both SUMMARUM and FACES also discount

literals in entity summarization. The extended version of FACES, FACES-E [42],

and RELIN consider literals as good candidates to be utilized in entity summa-

rization. FACES-E gleans types for literals in RDF triples and uses this technique

to be able to employ literals in entity summarization while RELIN computes sum-

maries for object and datatype properties (literals). Pouriyeh et al. [75] proposed

ES-LDA which is a probabilistic topic model to create more reliable and represen-

tative summaries for entities. ES-LDA shows a better performance on the same

dataset as compared to the LinkSUM and FACES models.
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6.3 Preliminaries

6.3.1 Resource Description Framework (RDF)

An RDF data graph is a collection of entities (nodes) and relationships (edges)

between them. Nodes are usually identified by unique IDs which are called Uni-

form Resource Identifiers (URIs) or by literal values (i.e., numbers, dates, strings,

etc.) commonly referred to as Literals.

Definition 1 (Entity summary): Given an entity e and a positive integer k,

a summary of the entity e, denoted Sum(e, k), is the top-k subset of all predicates

and corresponding objects that are most relevant to that entity.

6.3.2 Probabilistic Topic Modeling

The Latent Dirichlet Allocation (LDA) [19] is a generative probabilistic model for

extracting thematic information (topics) from a corpus of document.

6.3.3 Word Embedding and Word2Vec

The word2vec model [63], which is recognized as one of the most popular and

extensively used word embedding techniques, has recently attracted significant

attentions from different communities, including machine learning and Seman-

tic Web. The word2vec model focuses on training a neural network to predict

neighboring words.
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6.3.4 Named Entity Recognition

Named Entities are usually defined as nouns or noun phrases that refer to partic-

ular types of entities, such as persons, organizations, locations, and so on. Named

Entity Recognition (NER), which is one of the core components in Natural Lan-

guage Processing, aims to identify, extract and classify named entities in text.

6.4 Problem Statement

6.4.1 Problem Definition

In the literature, Entity Summarization is defined as selecting a small but repre-

sentative subset of the original triples describing an entity. In this context, given

an RDF data set, entities are described by sets of their properties (i.e., all triples

with the entity as the subject) and corresponding objects. The ultimate goal is

to choose top-k representative triples for each entity.

6.4.2 Topic Models for RDF Graphs

In topic modeling, defining documents and word-like elements are the key points.

Since an RDF graph dataset is a collection of triples connected together where

each triple t consists of a subject s, predicate p, and an object o, in the form

of <s, p, o>, we can consider each entity with its predicates and corresponding

objects as a “document”.
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Definition 2 (document): A document d is defined as a set of triples,

d = {t1, t2, · · · , tn}, that describes a single entity e. Thus, all triples of a document

d have the same subject.

In topic modeling, each document is treated as a “bag of words”. The key

point is what would be the best definition for the “words”. In this paper, we

define a “word” w as the subject or object of a triple t for document d. As all

the subjects in the triples of document d are the same, hence, in practice each

document can be considered as a “bag of objects”3.

In the next step, in the pre-processing phase, in order to enhance the final

performance of our model we filtered out the schema and dataset dependent

predicates, such as sameAs, wikiPageExternalLink, subject, wikiPageWikiLink.

Additionally, since RDF data are recognized as short text [83], we need to ad-

dress several challenges including sparseness, unnatural language, and the lack of

context [83], to be able to properly run topic models on RDF data.

6.4.3 Supplementing RDF Data

As topic modeling is based on statistics of the co-occurrence of terms (words), we

expand each document by adding similar words, based on their similarity scores.

We utilize the Word2Vec model (Skip-Gram architecture) to predict the most

related objects (words) to each of the words in our bag of words for each entity,

based on their similarity scores generated by Skip-Gram architecture. We use pre-

trained entity vectors with Freebase. Entity vectors trained on 100B words from

3“bag of words” and “bag of objects” are interchangeably used.
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Figure 6.1: Entity Summarization Model

various news articles4. To be able to do that, we take advantage of the gensim

package [78] to implement the deep learning with the word2vec model.

6.5 Proposed Model

ES-LDAext is an extended version of ES-LDA, a probabilistic generative model for

modeling entities in RDF graphs (Figure 6.1). The key ideas behind our model are

as follows: (1) we exploit statistical topic models as the underlying quantitative

framework for entity summarization, and (2) ES-LDAext incorporates the prior

4https://code.google.com/archive/p/word2vec/
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knowledge from the word embedding approach into the topic model, which is the

primary difference with ES-LDA model.

In our model, each document is a multinomial distribution over the predi-

cates and each predicate is a multinomial distribution over all the subjects and

objects of the RDF graph. Furthermore, a document consists of a set of triples

describing a single entity, i.e., all these triples share the same subject. Thus,

we constrain the documents to only have the objects of related triples and also

restrict the predicates to be defined only over the objects. In addition, for each

predicate r, we further smooth its distribution by Λr. Λ is a matrix that has

encoded the prior knowledge about predicate-object values from DBpedia. Sec-

tion 6.5.1 explains how Λ is constructed. The generative process of ES-LDAext

is shown in Algorithm2. Please note that since the structure of the ES-LDA and

ES-LDAext models are similar, the generative processes, joint distributions and in-

ference algorithms are essentially the same. The fundamental differences between

two models are (i) type of the prior knowledge; (ii) generating the Λ matrix; and

(iii) considering triples with object value of literals in ES-LDAext.

Following this process, the joint probability of generating a corpus D =

{d1, d2, . . . , d|D|}, the predicate assignments r given the hyperparameters α, β and

the prior matrix Λ is:
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Algorithm 2: ES-LDAext Model

1 foreach predicate r ∈ {1, 2, . . . , R} do
2 Draw an object distribution φr ∼ Dir(βr × Λr)
3 end
4 foreach document d ∈ {1, 2, . . . , D} do
5 Draw a predicate distribution θd ∼ Dir(αd)
6 foreach subject s and object o of document d do
7 Draw a predicate r ∼ Mult(θd)
8 Draw a subject s from predicate r, s ∼ Mult(φr)
9 Draw an object o from predicate r, o ∼ Mult(φr)

10 end

11 end

P (o, s, r|α, β,Λ)

=

∫
φ

P (φ|β; Λ)
∏
d

∑
rd

P (od|rd, φ)P (sd|rd, φ)

×
∫
θ

P (θ|α)P (rd|θ, φ)dθdφ (6.1)

6.5.1 Predicate-Object Prior Knowledge Matrix Λ

We create the Λ matrix to encode the prior weights of the predicate-object pairs

and integrate this knowledge into the topic model to smooth the predicate-object

distributions φ. We build the Λ matrix of size R × O, where R is the number of

predicates and O is the number of objects in the RDF graph. Let f be an indicator

function where f(i, j) = 1 if there is a triple in RDF graph with predicate i and

object j, and 0 otherwise, for 1 ≤ i ≤ R and 1 ≤ j ≤ O. Additionally, let v be
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the number of similar objects (words) assigned to the object j. Then, we define

Λij as follows:

Λij =

 v if f(i, j) = 1

1 otherwise.
(6.2)

6.5.2 Inference using Gibbs Sampling

In this paper we use the collapsed Gibbs sampling [40] procedure in our ES-LDAext

topic model for estimating the posterior inference.

In our modified version of the learning algorithm to infer p(oi|rj) and p(rj|d),

we (1) constrain the objects that are not paired with a predicate to have 0 proba-

bility, i.e., p(oi|rj) = 0, if (ri, oj) /∈ RDF graph, and (2) P (s|rj) = 1, since all the

triples of a document have the same subject s. We derive the posterior inference

from Eq. 6.1 as follows:

P (r|o, s, α, β,Λ) =
P (r,o, s|α, β,Λ)

P (o|α, β,Λ)

∝ P (r,o|α, β,Λ) ∝ P (r)P (o|r)P (s|r)

(6.3)

P (ri = r|oi = o, r−i,o−i, α, β,Λ) ∝

n
(d)
r,−i + αr∑

r′ (n
(d)
r′,−i + αr′)

×
n
(r)
o,−i + Λroβo∑

o′ (n
(r)
o′,−i + Λroβo)

(6.4)

where n
(r)
o is the number of times object o is assigned to predicate r. n

(d)
r denotes

the number of times predicate r is associated with document d. The subscript −i
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indicates that the contribution of the current object oi being sampled is removed

from the counts. After Gibbs sampling, we can use the sampled predicate to

estimate the probability of a predicate, given a document, θdr and the probability

of an object, given a predicate, φro:

θdr =
n
(d)
r + αr∑

r′ (n
(d)
r′ + αr′)

(6.5)

φro =
n
(r)
o + Λroβo∑

o′ (n
(r)
o′ + Λroβo)

(6.6)

6.6 Experiments

We compared our ES-LDAext model with the the state-of-the-art techniques in-

cluding ES-LDA [75], LinkSUM[86], FACES [43],FACES-E [42],and RELIN [29].

We demonstrated the effectiveness of our model by showing that it produces closer

results to human judgment, as compared to the other systems. We ran two dif-

ferent experiments with multiple configurations and evaluated ES-LDAext based

on the quality of summary (equation 6.7) proposed in [29], in which n ideal sum-

maries SumI
i (e) generated by expert users for i = 1, ..., n and the summaries

generated by the system Sum(e) were compared.

Quality(Sum(e)) =
1

n

n∑
i=1

|Sum(e) ∩ SumI
i (e)| (6.7)

For the other parameters, we assumed a symmetric Dirichlet prior and set

β = 0.01 and α = 50/R, where R is the total number of unique predicates. We
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ran the Gibbs sampling algorithm for 1000 iterations and computed the posterior

inference after the last sampling iteration. We selected the top-5 and top-10 most

probable properties for each entity and calculated the quality of the summary for

each entity through equation 6.7, for both experiments.

6.6.1 The First Experiment

In the first experiment we operated on the same dataset5 that was used in the

experiments conducted by the FACES and LinkSUM systems. As Table 6.1 shows,

our proposed ES-LDAext model outperformed all other baselines, including our

previous ES-LDA model, which shows that exploiting word embedding technique

has significantly improved the quality of summary in both top-5 and top-10 cases.

For the details of different configurations of other baselines, please see [75].

Table 6.1: Overall quality results of different models. Best result are bold.

Model Top-5 Top-10

ES-LDAext 1.27 3.71
ES-LDA @ config-1 1.20 3.50
ES-LDA @ config-2 1.10 3.26
LinkSUM@ config-1 1.20 3.15
LinkSUM@ config-2 1.20 3.20
FACES 0.93 2.92

6.6.2 The Second Experiment

In this experiment, in addition to the triples with object properties, we involved

the triples having literals as object value of datatype properties. We first fil-

5http://wiki.knoesis.org/index.php/FACES
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tered out the triples with numeric literals as they are not very informative and

only considered the string literals. Literals often comprise a few words, or even

a sentence. Therefore, we needed one more pre-processing step before running

word2vec model to extract similar words. We employed Natural Language Tool

Kit (NLTK) to recognize named entities from the literals. Then, for each extracted

entity, we identified the similar words according to the similarity score and added

them to the bag of words. By doing this, we increased the co-occurrence of similar

words for literals in the document of each entity and consequently, giving them a

chance to be selected as part of top-k representative triples. Among the baseline

approaches in entity summarization, only FACES-E [42], RELIN [29], and RE-

LINM (the modified version of RELIN) took literals into account. To evaluate our

model, we used the FACES-E dataset which contained 80 unique entities. Table

6.2 shows that ES-LDAext outperforms significantly other baselines for top-5 sum-

maries. For the top-10 summarizes, ES-LDAext gives better quality than RELIN

and RELINM but could not meet FACES-E result. Since the fine-grained results

of FACES-E system were not available6, the reasons that we can think of are as

follows: (i) we discard literals with numeric values, however, some users might

have chosen from these triples in the summary; and (ii) some of the triples with

literals might unnecessarily get overweighted (large Λij) because of the large num-

ber of similar words the recognized name entities from these literals may have.

This could make some of these triples appear in the top-k summary regardless of

being unimportant, which can ultimately lead to results with lower quality.

6We contacted the first author, but they could not provide us with their results dataset.
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Table 6.2: Overall quality results of different models (considering literals). Best
result are bold.

Model Top-5 Top-10

ES-LDAext 1.65 3.95
FACES-E 1.53 4.53
RELINM 1.02 3.65
RELIN 0.96 3.09

6.7 Conclusions

We have proposed ES-LDAext, an extended version of ES-LDA model, that inte-

grates word embedding and knowledge-based probabilistic topic model for entity

summarization. In addition, we included literal-valued properties to produce more

reliable and comprehensive summaries. We utilized both Named Entity Recogni-

tion and Word Embedding techniques to spot entities within literals and extract

similar words through word2vec model, respectively, in order to supplement the

RDF data. In general, the results of exhaustive experiments confirm that combin-

ing word embedding technique with topic models improves the quality of summary.

However, in the second experiment, we could not achieve the expected quality for

top-10 triples.

There are interesting future directions of this work. Considering the link or

relation between the extracted entities from literals and the corresponding subject

as a way to weight extracted entities is a potential area of research to improve the

quality of summary. Also, taking numeric literals into account could be another

path to develop an effective entity summarization model.
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Chapter 7

R-LDA: Profiling RDF datasets

using Knowledge-based Topic

Modeling 1

1Seyedamin Pouriyeh, Mehdi Allahyari, Gong Cheng, Hamid Reza Arabnia, Krys Kochut,
”R-LDA: Profiling RDF datasets using Knowledge-based Topic Modeling”
Submitted to 17th IEEE International Conference On Machine Learning And Applications
(ICMLA 2018).
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7.1 Abstract

Recently, Linked Open Data (LOD) has experienced an exponential growth via

publishing huge volume of datasets on the Web. This vast amount of information

needs to be searched, queried, and interlinked easier than before. It is recom-

mended that potential data publishers provide recapitulative information about

their datasets published on the Web. These information which play as a meta-

data, will facilitate those datasets to be discovered easily. As it is not always

the case, we are faced with a large number of datasets without a proper profile,

leading to a high demand for different data profiling techniques. In this paper,

we focus on RDF dataset profiling utilizing unsupervised machine learning tech-

niques, namely knowledge based topic modeling. We also investigate the use of

Wikipedia categories to represent the topics identified in an RDF dataset. In the

proposed model, called R-LDA, we extract a number of representative topics for

an RDF dataset and annotate them with Wikipedia categories. The union of the

assigned categories serves as a profile of the dataset, in a sense that it provides

an overall characterization of the content of the dataset.
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7.2 Introduction

With the explosive growth of the Linked Open Data (LOD)2 and an ever-increasing

number of datasets which are published via LOD, there is a real need to create and

adopt automatic methods that make those datasets easily discoverable, queried,

and used in applications [16]. Recent LOD statistics have shown thousands of

publicly available linked datasets in different domains, including over 28 billion of

distinct triples [35], suitable for human and machine consumption. Although the

LOD cloud is considered as a valuable source of knowledge, mostly represented

in the form of Resource Description Framework (RDF) datasets, its application

is still largely not exploited, as exploring large and unfamiliar datasets remains a

challenge. Given this scale of RDF datasets along with their heterogeneity, often

inconsistency and the lack of suitable metadata, finding the resources that can be

linked, queried, and used in different applications, such as entity linking, entity

summarization, query federation, etc., has become an interesting area of research

within the Semantic Web. RDF dataset profiling techniques, which aim to facil-

itate data consumption and data integration with statistics and useful metadata

about the content of the RDF datasets, are considered as a promising approach

to address this challenge.

Recently, a considerable amount of research has been dedicated to the Linked-

Data profiling task, involved in Web-based techniques to locate, browse, and

search RDF datasets LODlive3. Cheng et al. [28] extract a small representative

subset of triples from a dataset as a way to quickly inspect its contents. LOD-

2http://lod-cloud.net/
3http://en.lodlive.it/
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Stats introduced by [9] is a framework to produce statistics about RDF datasets.

Given an RDF dataset, its profiling aims to create descriptive information about

the data and collect statistics about the dataset at data and schema layers. In

the current research literature, it is considered as the task of providing valuable

insight into the data, such as the statistics about value distributions and locating

and extracting information patterns in the data. RDF dataset profiles are usu-

ally expected to represent the importance of datasets without any extra need for

detailed inspection of the raw data. It is more significant when dealing with an

unfamiliar dataset [56], where profiling facilitates assessing the importance of the

dataset and improving efficiency of applications utilizing the dataset. Currently,

there is no established definition of data profiling and related tasks. However,

data profiling typically covers several tasks, including [7]:

• Statistical profiling: this type of data profiling mainly focuses on statistical

information about the number of entities as well as the distribution of prop-

erties and RDF triples, which are often related to data types and patterns

in the dataset.

• Metadata profiling: dataset profile with respect to the metadata should cover

the main informative categories, including the general information (dataset

description, release and update dates), practical information (access points,

data dumps), and legal information (license information, openness).

• Topical profiling: the representative knowledge on the content and struc-

ture of the dataset in the form of tags, keywords, categories, informative

subgraphs, etc.
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In this paper, we focus on Topical profiling techniques in order to address the

challenges of generating a descriptive dataset profile. We propose a probabilistic

framework based on topic modeling to produce a reliable RDF dataset profile

based on Wikipedia categories.

The remainder of the paper is organized as follows. In Section 7.3, we review

recent work in this area. Section 7.4 covers important preliminary definitions.

Problem definition and the proposed frameworks architecture is discussed in Sec-

tion 7.5 and 7.6 respectively. In Section 7.7, we evaluate the proposed model and

finally conclude and outline some future work in Section 7.8.

7.3 Related Work

As LOD datasets, and in particular RDF datasets, vary with respect to different

features, such as statistics, quality, dynamics, etc., discovering reliable information

with related to these features is essential in most applications. In general, state-

of-the-art approaches focus on different aspects of statistics and topical content

in order to generate a profile describing an RDF dataset.

Assaf et al.[7] proposed Roomba, a framework to automatically generate, val-

idate, and enrich descriptive dataset profiles in four main categories, including

general information, access, ownership or provenance.

The ExpLOD [52] tool utilizes the metadata about the structure of an RDF

dataset (set of used RDF classes and properties) in order to summarize the dataset.

The metadata is augmented with other information such as the number of in-

stances per class or the number of used properties.
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Langegger et al. in [53] presented RDFStats a model which aims to generate

statistics such as entity counts (per class) and histograms (per class, property,

value type) for RDF datasets.

LODStats [9] is a statement-stream-based tool which can be used to gather

32 different statistics for a dataset. These statistics mainly represent the dataset

at both the data (instance) and schema (vocabulary) levels using frequencies of

triples, triples with blank nodes, average length of literals, labeled subjects, class

and property usage, number of owl:sameAs links, class hierarchy depth, cardinal-

ities, and others.

Abedjan et al. proposed ProLOD [1] as a Web-based tool, which analyzes ob-

ject and literal values of triples in an RDF dataset and generate statistics, such as

data type and patterns distribution upon them. Mining and cleansing datasets are

two other available options in the extended version of ProLOD, called ProLOD++

4, which enables it to generate a profile based on key analysis components such

as frequencies, distribution of subjects, predicates, and objects.

Although the existing works primarily focused on different aspects of RDF

datasets at the schema and data layers, none of them have provided topic-wise

profiling using knowledge-based topic modeling techniques. Additionally, we as-

sign Wikipedia categories, which are semantically relevant to most or all of the

discovered topics.

4https://www.hpi.uni-potsdam.de/naumann/sites/prolod++/
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7.4 Preliminaries

7.4.1 Resource Description Framework (RDF)

RDF [46] is one of the popular data model languages for representing knowledge

in the form of resources on the Web. Shortly speaking, an RDF dataset is a collec-

tion of resources (entities) and properties describing them. Resource descriptions

(their properties), are represented in a form of triples <subject, predicate, object>,

where subjects are resources and are usually represented by unique identifiers,

called Uniform Resource Identifiers (URIs). Objects are either resources or lit-

eral values (i.e., numbers, dates, strings, etc.), commonly referred to as Literals

(L). Properties are also resources identified by URIs. Some resources do not have

URIs and are referred to as blank nodes.

7.4.2 Probabilistic Topic Modeling

The Latent Dirichlet Allocation (LDA) [19] is a generative probabilistic model

for extracting thematic information (topics) from a corpus of documents. LDA

assumes that each document is a mixture of topics (assuming K topics), where

each topic is a multinomial probability distribution over the words.

LetD = {d1, d2, . . . , d|D|} be a collection of documents and V = {w1, w2, . . . , w|V|}

the vocabulary (words) of the corpus. A topic zj, 1 ≤ j ≤ K is represented as a

multinomial probability distribution over the |V| words, p(wi|zj),
∑|V|

i p(wi|zj) = 1.

LDA generates the words in a two-stage process: words are generated from topics

and topics are generated by documents. More formally, the distribution of words,
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given the document d, is calculated as follows:

p(wi|d) =
K∑
j=1

p(wi|zj)p(zj|d) (7.1)

The generative process for the corpus D is as follows:

1. For each topic k ∈ {1, 2, . . . , K}, sample a word distribution φk ∼ Dir(β)

2. For each document d ∈ {1, 2, . . . ,D},

(a) Sample a topic distribution θd ∼ Dir(α)

(b) For each word wn, where n ∈ {1, 2, . . . , N}, in document d,

i. Sample a topic zi ∼ Mult(θd)

ii. Sample a word wn ∼ Mult(φzi)

In the LDA model, the word-topic distribution p(w|z) and topic-document distri-

bution p(z|d) are learned entirely in an unsupervised manner, without any prior

knowledge about what words are related to the topics and what topics are related

to individual documents.

7.5 Problem Statement

In this section, we describe how to utilize topic modeling for RDF dataset profiling.
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7.5.1 Problem Definition

With the tremendous growth in both the size and complexity of available RDF

datasets, especially those within LOD, the process of exploring and exploiting

these datasets in various applications is becoming harder, especially when these

RDF datasets do not provide any meta-data describing their overall characteristics

and content. In fact, the heterogeneity of these datasets pose significant challenges

for applications and users when trying to find useful datasets without having any

prior knowledge about those available datasets.

RDF dataset profiling techniques can help to generate descriptions and various

statistics that offer the needed insight into the content of the datasets. In this

context, a broad range of techniques for RDF dataset profiling have been proposed

that typically focus on identifying the following three characteristics of the dataset:

its statistics, schema, and some description of its actual content. Up to this

point, none of them considered topic-modeling based approaches to describe the

dataset’s content. Given an RDF dataset, our goal is (i) to find the a suitable

number of topics, which represent the RDF dataset well and (ii) to assign a set of

representative Wikipedia categories to the identified topics and then to the whole

dataset.

Definition 1 (RDF Dataset’s Profile): Given an RDF dataset, its data

profile is a set of Wikipedia categories C = {c1, c2, . . . , c|C|} that are most relevant

to the dataset and represent its content well. The categories to be included in

the data profile are selected based on the most coherent topics identified in the

dataset.
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7.5.2 Topic Models for RDF Graphs

Knowledge-based topic modeling techniques have been utilized to discover latent

topics in text corpora. Topic modeling techniques have also been applied to other

types of data, such as images [18], music analysis [49], etc. However, only recently

Pouriyeh et al. [75] applied topic modeling to RDF data and created the ES-LDA

model for RDF entity summarization.

In topic modeling, each document is represented as a “bag of words” and a

key point is ”what should be defined as documents and words?”. Here, we will

treat a description of a resource as a document, while predicate-object pairs will

be regarded as words.

Definition 2 (Document): A document d is a set of predicate-object (p-o)

pairs, d = {(p − o)1, (p − o)2, · · · , (p − o)n}, that form a description of a single

resource r. Thus, all predicate-object pairs of a document d describe the same

subject (an RDF resource being described).

For example: Stephen King, a resource representing an American author, is

descrribed by the following triples (due to space limitations we have chosen only

a few of triples and dropped the first part of each URIs :

<Stephen King, award, Hugo Award>,

<Stephen King, genre, Gothic fiction>,

<Stephen King, notableWork, Carrie (novel)>,

<Stephen King, influencedBy, William Golding>,

The corresponding document for the Stephen King resource is represented by the

following set of predicate-object pairs:
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{award-Hugo Award, genre-Gothic fiction, notableWork-Carrie (novel), influencedBy-

William Golding}.

Consequently, in our model, a word is a predicate-object pair, and so Words

come from triples forming a description of a single resource, which we regard as

a document. As all subjects in the triples of the same document are the same,

we treat each document as a “bag of pairs”. In the rest of this paper, we use the

terms “word” and “pair” interchangeably.

7.6 Proposed Model

Figure 7.1 illustrates a probabilistic generative model of R-LDA, where each doc-

ument is a multinomial distribution over topics and each topic is a multinomial

distribution over all predicate-object pairs (words). Our model is similar to the

standard LDA. However, unlike the standard LDA, where each topic is a multi-

nomial distribution over the vocabulary from the Dirichlet prior β, in R-LDA

model, each topic is a multinomial distribution over all predicate-object pairs of

the entire RDF dataset.

R-LDA uses a similar generative process as the one used in the standard LDA.

Consequently, the joint probability of generating a corpus D = {d1, d2, . . . , d|D|},

the topic assignments z given the hyperparameters α, β is:
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Figure 7.1: Topic model for RDF datasets

P (p− o, z|α, β) =

∫
φ
P (φ|β)

∏
d

∑
zd

P (p− od|zd, φ)

×
∫
θ
P (θ|α)P (zd|θ, φ)dθdφ (7.2)

7.6.1 Inference using Gibbs Sampling

There are various algorithms, such as variational EM [19] and Gibbs sampling [40],

which can be used to estimate the parameters of topic models. In this work, we

utilize the collapsed Gibbs sampling [40] method in order to estimate the posterior

inference of the proposed model.
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Table 7.1: Probabilities of top-10 pairs (predicate object) for three randomly
selected topics from 30 topics (K=30)

Topic 1 Topic 5 Topic 10

Pairs (predicate object) Probability Pairs (predicate object) Probability Pairs (predicate object) Probability

party Democratic Party (United States) 0.015 country United States 0.017 bodyStyle Sedan (automobile) 0.006
party Republican Party (United States) 0.015 type American Viticultural Area 0.010 layout Front-engine design 0.005
profession Politician 0.010 growingGrape Cabernet Sauvignon 0.007 class Mid-size car 0.004
profession Lawyer 0.008 grapes Cabernet Sauvignon 0.007 layout Four-wheel drive 0.004
nationality United States 0.006 grapes Chardonnay 0.006 assembly Germany 0.003
militaryBranch United States Army 0.005 grapes Merlot 0.006 bodyStyle Hatchback 0.003
battle World War II 0.004 grapes Cabernet Franc 0.005 class Compact car 0.003
party Federalist Party 0.002 growingGrape Syrah 0.005 assembly Mexico 0.003
allegiance United States 0.001 growingGrape Pinot noir 0.005 assembly United States 0.002
occupation Politician 0.001 grapes Sauvignon blanc 0.004 layout Front-wheel drive 0.002

Table 7.2: Topic Coherence on top T words (pairs). A higher coherence score
means more coherent topics.

TopWords (predicate− object)

Topics 5 10 15 20

K = 10 −10.96 −48.65 −109.68 −199.88

K = 20 −9.27 −43.12 −104.66 −191.35

K = 30 −6.09 −26.15 −60.56 −111.08

K = 40 −8.93 −37.51 −87.15 −147.06

K = 50 −9.35 −50.21 −105.03 −221.32

Collapsed Gibbs sampling is a Markov Chain Monte Carlo (MCMC) algorithm

[80], which creates a Markov chain over the latent variables in the model and after

a number of iterations will ultimately converge to the posterior distribution. In

our model, we aim to construct a Markov chain that converges to the posterior

distribution over z conditioned on observed pairs p− o, hyperparameters α, and

β. We derive the posterior inference from Eq. 7.2 as follows:
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P (z|p− o, α, β) =
P (z,p− o|α, β)

P (p− o|α, β)

∝ P (z,p− o|α, β) ∝ P (z)P (p− o|z)

(7.3)

P (zi = z|(p− o)i = p− o, z−i, (p− o)−i, α, β) ∝

n
(d)
z,−i + αz∑

z′ (n
(d)
z′,−i + αz′)

×
n
(z)
p−o,−i + βp−o∑

(p−o)′ (n
(z)
(p−o)′,−i + βp−o)

(7.4)

where n
(z)
p−o is the number of times object p − o is assigned to predicate z. n

(d)
z

denotes the number of times predicate z is associated with document d. The

subscript −i indicates that the contribution of the current object (p − o)i being

sampled is removed from the counts. After Gibbs sampling, we can use the sam-

pled predicate to estimate the probability of a predicate, given a document, θdz

and the probability of an object, given a predicate, φzp−o:

θdz =
n
(d)
z + αz∑

z′ (n
(d)
z′ + αz′)

(7.5)

φzp−o =
n
(z)
p−o + βp−o∑

(p−o)′ (n
(z)
(p−o)′ + βp−o)

(7.6)
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7.6.2 Topic coherence

In order to find a suitable number of topics, which represent well the RDF dataset,

we utilize the topic coherence metric and compute topic coherence score to eval-

uate the quality of the identified topics. We consider the top 5, 10, 15, and 20

predicate-object pairs in each topic. The topic coherence score for measuring the

quality of topics has been proposed in [64]. Arguably, this has become the most

commonly used topic coherence evaluation method. Given a topic z and its top

T words V (z) = (v
(z)
1 , · · · , v(z)T ) ordered by P (w|z), the coherence score is defined

as:

C(z;V (z)) =
T∑
t=2

t−1∑
h=1

log
D(v

(z)
t , v

(z)
h ) + 1

D(v
(z)
h )

(7.7)

where D(v) is the document frequency of word v and D(v, v′) is the number of

documents in which words v and v′ co-occurred. It has been demonstrated that

the coherence score is highly consistent with human-judged topic coherence [64].

Higher coherence scores indicate higher quality of topics.

7.6.3 Category Assignment

Wikipedia has become a vast source of information including huge volume of dif-

ferent resources from numerous areas of knowledge (it is an encyclopedia). Each

resource is typically assigned to a number of categories, organized into a hierarchi-

cally. Wikipedia categories have been used to support many text processing tasks,

including text classification [96]and annotation [61], etc. In this work, we utilize

Wikipedia categories as a way to represent and describe the topics identified in an

RDF dataset and then to describe the dataset itself. To select suitable categories,
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Algorithm 3: Topic Category Assignment

Input : {P - a set of top-l pairs (predicate-object) of a topic T }
Output: {Topic T Category Assignment}

1 foreach pair p ∈ P do
2 SubjectSetp ←set of all subjects among all triples with predicate and

object values p
3 end
4 for h=1 to Max level do
5 foreach subject s ∈ SubjectSetp do
6 CategorySetp,h ← Extract categories of s until level h.
7 end
8 CommonCategorySet← Max common categories of CategorySetp,h

9 CScore =
| p covered by CommonCategorySet |

|P |
10 foreach category c ∈ CommonCategorySet do
11 SumOfLevels = number of categories in path(s) c to immediate

categories of p
12 CatNumber = count number of c until level h

13 Avg.height=
SumOfLevels

CatNumber

14 CategoryScore =
λ× CScore

(1− λ)× Avg.height
15 end

16 end
17 Sort CommonCategorySet based on CategoryScore

we use Algorithm 3. Given a topic and its top-l pairs, we first identify the subjects

of all these pairs. Note, that each pair (predicate-object) may occur in a number

of triples (subject-predicate-object), each with a different subject. For example,

Name-Helen may be used to describe the city in Montana and a person named

Helen. Then, our algorithm traverses the Wikipedia category hierarchy (in fact,
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Table 7.3: Assigned categories based on Top-10 pairs of a randomly selected topic
(K=30)

Topic 4 Assigned Categories

Pairs (predicate object) (Ordered by CategoryScore )

modes Single-player video game Games on seventh-generation consoles
computingPlatform Microsoft Windows Video games by platform
platforms Microsoft Windows Video games
computingPlatform Xbox 360 Sony Interactive Entertainment
computingPlatform PlayStation 3 Games on Microsoft platforms
genre Platform game
platforms Xbox 360
computingPlatform PlayStation 2
modes Multiplayer video game
publisher Activision

Wikipedia categories form a graph) to identify categories that serve as direct or

indirect categories of subjects in most of the top-l pairs. If a high-scoring category

(covering most pairs) is not yet found, we consider the next category level (i.e., the

parents of all categories from the first level) and compute their scores, in turn. As

we increase the level of considered categories (finding parents of parents, etc.), the

chance of finding a category with a higher score (CScore) increases, as each higher

category level consists of progressively more general categories. At the same time,

very general categories (Content is the highest level Wikipedia category) would

not serve as highly descriptive representations of topics. To avoid that, we define

a penalty factor (Avg.height) to diminish the category score due to its height.

It is included in the CategoryScore computation, in order to capture a trade off

between the coverage of a category for a topic and the specificity of that category.
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At each level, we check the coverage of each category (CScore) and then for each

category c ∈ CommonCategorySet, we compute the penalty factor as a ratio of

the number of categories in a path from category c to all immediate categories

over the number of occurrences of category c from the immediate category level

to the current level of category c. We compute CategoryScore of each category c

at each level and produce the final result as an ordered set of categories (Com-

monCategorySet). We choose the top category as a descriptive category for that

topic. Additionally, we define λ as a smoothing factor to control the influence of

coverage score (CScore) and the penalty factor (Avg.height). In practice, λ = 0.7

has shown better results in our experiments.

7.6.4 Evaluation

For quantitative evaluation of our model, we asked ten human assessors to evalu-

ate the extracted categories for different topics. We randomly selected a subset of

topics and for each topic, the extracted Wikipedia category for each topic is pro-

vided. The assessors need to choose between “Good” and “Unrelated” to evaluate

each topic based on the corresponding category and top-10 predicate-object pairs

in each topic. We use the Precision@k, taking the extracted Wikipedia category

into consideration. We then averaged the precision over all the topics.

Precision for a topic at top-k is defined as follows:

Precision@k =
# of “Good” category with rank ≤ k

k
(7.8)
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7.7 Experiments

For experimental evaluation of our model, we randomly chose 50 classes in several

different domains from DBpedia and extracted 5,225 instances from those classes,

which resulted in 211,512 distinct predicate-object pairs. For other parameters,

we assumed a symmetric Dirichlet prior and set β = 0.01 and α = 50/K, where K

is the number of topics. We ran the Gibbs sampling algorithm for 1000 iterations

with the number of topics set to K={10, 20, 30, 40, 50} and computed the pos-

terior inference after the last sampling iteration. Table 7.1 shows the top-10 most

probable predicate-object pairs in three different topics, selected as an example,

selected out of K=30 topics. Additionally, in order to find the best number of

topics to represent the RDF dataset used in our experiment, we computed the

topic coherence with varying numbers of topics, set to K ∈ {10, 20, 30, 40, 50}

and for top-5, top-10, top-15, and top-20 predicate-object pairs in each topic. As

Table 7.2 depicts, the most coherent topics describing our RDF dataset were ob-

tained with K=30 topics. It confirms that when we increase the number of topics

the chance of having more relevant pairs in each topic also increases, because we

expect to have the number of topics to be relatively close to the number of classes

we have in the RDF dataset. On the other hand, as the number of topics gets

closer to the number of classes, the topic coherence declines. The main reason

for this outcome is the possible overlap between classes, which makes it harder

for the pairs to be discriminated under different topics. To evaluate the final re-

sult, we computed the average precision of each topic, considering Top-5 assigned

categories using equation 7.8. We asked ten experts in the Semantic Web field
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Figure 7.2: The precision of assigned categories using human evaluation

to evaluate the Top-5 assigned categories for each topic. Figure 7.2 shows the

averaged precision over topics (K=30 ). As it illustrates, we received the highest

precision at Top-1 assigned Wikipedia categories for topics, which also confirms

the efficiency of our algorithm for topic category assignment.

7.8 Conclusions

In this paper, we proposed an automatic approach for RDF dataset profiling with

Wikipedia categories using a knowledge-based topic modeling (called R-LDA).

Given an RDF dataset, our approach, which is a novel Topical profiling method,

aims to find the best number of representative topics and extract a proper set

of Wikipedia categories for each obtained topic. Computing topic coherence en-

ables our model to find the best number of representative topics for an RDF

dataset. Additionally, the proposed model utilizes Wikipeida categories as a way
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to describe each topic and ultimately, uses those Wikipedia categories as key rep-

resentative terms in order to generate an RDF profile of the dataset. To the best

of our knowledge, there are no similar topic-model based RDF profiling systems,

so we decided to use Precision@k technique to evaluate the effectiveness of our

model.

There are many avenues to extend the current work. It would be interesting

to involve the RDFS schema in our model and incorporate the schema knowledge

to improve this model. Furthermore, our method can be utilized as a way for

RDF dataset partitioning, as it possible to represent each document (resource de-

scription) as a vector of K topic membership probabilities, we can apply different

similarity measures in order to cluster similar entities with respect to their topics

and ultimately partition the given RDF dataset into K partitions.
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Chapter 8

Conclusion and Future Work

With an ever-increasing size and number of datasets which are published within

the Linked Open Data project, there is a immediate need to create and adopt

automatic methods that make those datasets easily discoverable, queried, and

used in various applications. In this work, we aimed to address these issues within

two broad categories: RDF dataset summarization and RDF dataset profiling,

utilizing knowledge-based topic modeling. We proposed two new models, which

are dedicated to RDF datasets and applicable in different tasks, such as RDF

dataset summarization and RDF dataset profiling.

With respect to RDF dataset summarization, we focused mainly on entity

summarization using topic modeling. Experimental results demonstrated the ef-

fectiveness of the proposed model, compared to other state-of-the-art approaches.

Additionally, the extended version of our model for entity summarization con-

firmed the efficiency of our model. Considering RDF dataset profiling, we pro-

posed a model based on knowledge-based topic modeling technique to identify a
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number of topics that represent a given RDF dataset and then create a profile

based on Wikipedia categories corresponding to those topics. Additionally, we

conducted a comprehensive review about different ontology summarization tech-

niques with respect to the ontology schema layer. We presented different types

of graphs used for representation of an ontology and different measures of node

importance.
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8.1 Summary of Contributions

The major contributions of this dissertation is as follows:

1. Graph-based Ontology Summarization: A Survey. In Chapter 4, we

have investigated different graph models and measures for ontology sum-

marization. We focus mainly on graph-based methods, which represent an

ontology as a graph and apply centrality and other measures to identify the

most important elements of an ontology as its summary. After analyzing

their strengths and weaknesses, we highlight a few potential directions for

future research.

2. ES-LDA: Entity Summarization using Knowledge-based Topic Mod-

eling. In Chapter 5, we have proposed a knowledge-based probabilistic

topic model, called ES-LDA, for entity summarization task. In our model,

we combined prior knowledge with statistical learning techniques within a

single framework to create more reliable and representative summaries for

entities. We have applied two different configurations to alleviate common

RDF data problems including sparseness, unnatural language, and lack of

context. We demonstrate the effectiveness of our approach by conducting

extensive experiments and show that our model outperforms the state-of-

the-art techniques and enhances the quality of the entity summaries.

3. Combining Word Embedding and Knowledge-Based Topic Model-

ing for Entity Summarization. In Chapter 6, we have proposed ES-LDAext,

an extended version of the ES-LDA model, which integrates word embed-
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ding and knowledge-based probabilistic topic modeling for entity summa-

rization. In addition, we include literal-valued properties as a good source

of information to produce more reliable and comprehensive summaries. We

utilize both Named Entity Recognition and Word Embedding techniques to

spot entities within literals and extract similar words through the Word2Vec

model, respectively, in order to supplement the RDF data. The results of our

exhaustive experiments confirm that combining word embedding technique

with topic models improves the quality of summary.

4. R-LDA: Profiling RDF datasets using Knowledge-based Topic Mod-

eling. In Chapter 7, we proposed a new topic model for RDF datasets and

applied it to RDF dataset profiling. Given an RDF dataset, our approach,

which is a novel Topical profiling method, identifies a number of coherent

topics in the dataset and assigns a set of representative Wikipedia categories

to each obtained topic. Collectively, the categories can be used as the profile

of the RDF dataset.

8.2 Future Work

1. Ontology Summarization using Knowledge-based Topic Modeling.

There are many interesting future research directions for this work. It would

be interesting to investigate how to use the prior knowledge from the schema

layer in entity summarization summarization task.
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Additionally, considering the link or relation between the extracted entities

from literals and the corresponding subject as a way to weight extracted

entities is a potential area of research to that could lead to the improved

quality of summaries. Also, taking numeric literals into account could be

another path leading to the development of an effective entity summarization

model.

2. Dynamic Ontology Summarization.

Although many algorithms for the ontology summarization problem have

been proposed, empirical results reported in the literature suggest that none

of them consistently generates an ontology summary of sufficiently high

quality. Ideally, an ontology summarization technique needs to be more

flexible in the way to enable users or applications to tune the model in

order to generate different summaries based on different requirements or

inputs. In other words, dynamic or adaptive ontology summarization can

be viewed as an interesting topic to explore.

3. Abstractive or Hybrid Ontology Summarization.

The available approaches apply extractive techniques to generate the final

summary. In the extractive scenario, a subset of the terms and/or axioms

from the original input ontology are selected as a summary. Abstractive

(Non-extractive) or Hybrid (Extractive and Abstractive) ontology summa-

rization will be a new area with great potential. In that scenario, the key

research question is how to define the output of ontology summarization, i.e.,

as some kind of a high-level aggregate representation of terms and axioms.
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4. Ontology Partitioning Ontology partitioning an interesting avenue for re-

search. In ontology partitioning is an ontology is divided into subsets, called

partitions, to alleviate some of the challenges posed by large ontologies, such

as scalability, complexity, and maintenance. Utilizing topic modeling tech-

niques in order to partition a given ontology based on the extracted topics

could be highly effective in future research.
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[10] Sören Auer, Jens Lehmann, and Axel-Cyrille Ngonga Ngomo. Introduction

to linked data and its lifecycle on the web. In Proceedings of the 7th inter-

national conference on Reasoning web: semantic technologies for the web of

data, pages 1–75. Springer-Verlag, 2011.

[11] Krisztian Balog. Encyclopedia of Database Systems, chapter Entity Re-

trieval, pages 1–6. Springer New York, New York, NY, 2017.

124



[12] Kayhan Batmanghelich, Ardavan Saeedi, Karthik Narasimhan, and Sam

Gershman. Nonparametric spherical topic modeling with word embeddings.

arXiv preprint arXiv:1604.00126, 2016.

[13] Tim Berners-Lee and James Hendler. Publishing on the semantic web.

Nature, 410(6832):1023, 2001.

[14] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Sci-

entific american, 284(5):34–43, 2001.

[15] Timothy J Berners-Lee. Information management: A proposal. Technical

report, 1989.

[16] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story

so far. International journal on semantic web and information systems,

5(3):1–22, 2009.

[17] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian
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[58] Eetu Mäkelä. Aether–generating and viewing extended void statistical de-

scriptions of rdf datasets. In European Semantic Web Conference, pages

429–433. Springer, 2014.

[59] Frank Manola, Eric Miller, Brian McBride, et al. Rdf primer. W3C recom-

mendation, 10(1-107):6, 2004.

[60] Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology

language overview. W3C recommendation, 10(10):2004, 2004.

[61] Pablo N Mendes, Max Jakob, Andrés Garćıa-Silva, and Christian Bizer.
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