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ABSTRACT 

I developed a spatially explicit model of Thalassia testudinum growth and vegetative 

propagation in Florida Bay.  Thalassia is an ecologically important species in terms of primary 

production and habitat complexity; however, losses occur on many spatial scales, ranging from 

several meters to hundreds of kilometers.  Recovery of disturbed meadows is primarily through 

vegetative elongation of the rhizomes.  After 5-year simulations, the model produced annual 

maximum and minimum above-ground biomass values similar to those measured at monitoring 

locations within Florida Bay.  Additionally, the model illustrated seagrass re-growth into bare 

patches and propagation away from vegetated patches into bare areas.  The results suggest that 

considering the spatial dimension of seagrass growth can give modelers and those using the 

models more insight into the dynamics of vegetative propagation.   Through sensitivity analysis 

of model output, I determined further research is needed on two important components of the 

plants: phosphorus uptake kinetics and resource allocation. 
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CHAPTER 1 

INTRODUCTION 

Seagrass Ecology 

Seagrass beds are some of the most productive ecosystems in the world (Zieman 

and Wetzel 1980) with an average production of 1012 g DW m-2 y-1 (Duarte and 

Chiscano 1999) compared to average production of 292 g DW m-2 y-1 in coral reefs and 

1095 g DW m-2 y-1 in marsh plants (Hemminga and Duarte 2000).  In addition to their 

high productivity, seagrass meadows provide habitat for sessile organisms such as 

epiphytes, sponges and soft corals, as well as breeding grounds for invertebrates such as 

scallops and snails. Seagrass beds, with their innate structural complexity, also serve as a 

protected nursery habitat for many juvenile fish (Heck et al. 2003).  The biodiversity 

found in seagrass beds is critical to the sustainability of many surrounding ecosystems 

such as coral reefs (Goecker et al. 2005) and mangrove forests (Connolly et al. 2005). 

Many commercially important species, including grouper, shrimp, and lobster, inhabit 

seagrass beds and surrounding regions (Larkum et al. 1989 and Phillips and McRoy 

1980). Seagrasses, and their attached epiphytes, provide a food source to fisheries species 

not only within their habitat but also transferred to surrounding habitats (Connolly et al. 

2005).  For example, coral reef fishes such as the parrotfish use the seagrass beds as a 

food source (Larkum et al. 1989). 

The ecological importance of seagrass-based ecosystems is also recognized by 

many regulatory organizations.  For example, the South Atlantic Fishery Management 

Council designates seagrass beds as essential fish habitat (www.safmc.net).  The high 
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biodiversity maintained within seagrass meadows makes seagrasses useful indicator 

species of ecosystem health (Dennison and Orth 1993) and they are used as such by 

organizations such as the Environmental Protection Agency (EPA) through their 

Environmental Monitoring and Assessment Program 

(http://www.epa.gov/emap/index.html) and the Indian River Lagoon National Estuary 

Program (http://www.sjrwmd.com/programs/outreach/irlnep/index.html). 

 Light and temperature are primary influences on both the distribution and 

primary production of seagrasses (Zieman and Wetzel 1980). Seagrass meadows only 

persist in regions with low light attenuation. Increased concentrations of epiphytes, 

phytoplankton, particulates, tannins, and dissolved inorganic carbon increase light 

attenuation in the water column.  Seagrasses can reduce epiphyte growth by continuously 

growing (Larkum et al. 1989) and physical environmental conditions, such as the 

hydrology, can also affect light attenuation.  For example, riverine inputs with high 

sediment loads can dramatically decrease light availability such that certain regions, such 

as the Georgia coast, do not support any submerged aquatic vegetation. Seagrass 

meadows are known to increase sedimentation of small particulates if sediment loads are 

not too high, thereby helping maintain water clarity (Gacia et al.  1999).  Thalassia 

testudinum prefers areas with a mean water velocity of 5-100 cm s-1 (Koch 2001); this 

value allows for the accumulation of sediments through interaction with the seagrass 

blades, while not increasing turbidity drastically enough to decrease light penetration. 

Seagrass species are found in water temperatures between approximately 19 and 

36°C (Zieman 1975). More specifically, Thalassia testudinum demonstrates optimum 
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growth at 30°C (Zieman 1975).  High temperatures result in increased photosynthetic and 

respiration rates as well as decreased oxygen solubility. 

Other key factors affecting seagrass distribution and production include water 

column features, such as salinity and nutrient availability, and sediment composition 

(Koch 2001).  Different species of seagrass have different tolerances for salinity 

fluctuations and Zieman (1975) demonstrated that variations in salinity can have a 

negative effect on seagrass growth and productivity.  For example, the tropical species 

Thalassia testudinum exhibits optimal growth at a salinity range between 20 and 40 PSU 

(Berns 2001), while the sub-tropical species Ruppia maritima exhibits optimal growth at 

a salinity range between 0 and 40 PSU (Berns 2001).  Seagrass salinity tolerance is a 

result of physiological adaptations such as the presence of protective leaf sheaths and ion 

pumps (Larkum et al. 1989).   

Seagrasses are commonly found in anoxic sediments where sulfide toxicity is a 

common problem. Thalassia testudinum  die-off was observed at sulfide concentrations 

between 1000 and 3000 µM at a sediment depth of 8 to 10 cm (Carlson et al. 1998), 

whereas mortality of the temperate seagrass Zostera marina increases at sulfide levels 

near 400 µM and above measured at between 5 to 15 cm depth  (Goodman et al. 1995, 

Koch 2001).  Experimental studies have shown that the combined effects of high sulfide 

levels (greater than 6 mM), high temperatures (greater than 35ºC), and high salinities 

(greater than 55-60 PSU) lead to complete mortality in Thalassia testudinum (Koch and 

Erksine 2001).  Seagrasses prefer a sediment composition of clay and silt of less than 

20% and organic content less than 5%, as coarser sediments are often more oxygenated 

and have lower sulfide concentrations (Koch 2001).  
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The two main nutrients required for seagrass growth are nitrogen and phosphorus.  

In general, nitrogen has been shown to be the nutrient limiting production in open ocean 

marine systems dominated by phytoplankton; whereas production in coastal marine 

ecosystems, such as long-residence time estuaries, is generally phosphorous limited 

(Smith 1984).  Following the work of Smith, studies in Florida Bay have shown that 

seagrass productivity is often limited by phosphorus concentrations (Fourqurean and 

Zieman 1992).  In order to fully exploit the nutrients surrounding the plants, seagrasses 

have developed mechanisms for absorption through both roots and leaves (Larkum et al. 

1989 and Lee and Dunton 1999).  

Declines and disturbances in seagrass meadows have been documented world 

wide (Short and Wyllie-Echeverria 1996).  Seagrass disturbances can range in size from 

small scale disturbances (≈10 m2) to large scale (100 km2) losses.  Some losses can be 

attributed to natural causes such as hurricanes or biological interactions such as infection 

by the slime mold Labyrinthula spp. (Hemminga and Duarte 2000).  However, in the 

majority of documented cases the declines can be attributed to human activity (Short and 

Wyllie-Echeverria 1996).  Anthropogenic causes for loss include coastal eutrophication 

(Lapointe and Barile 2004) and motor-vessel groundings in which boat propellers cause 

an excavation of the seagrass bed and/or soil (Whitfield et al. 2004).  In the coastal waters 

of Florida, aerial surveys indicate that approximately 70,000 ha of seagrass meadow have 

been damaged by motor-vessels (Sargent et al. 1995).  ‘Prop scars’, which only damage 

the above ground biomass, typically recover over timescales of years (e.g., Thalassia can 

take anywhere from 5-10 years to recover from prop scar damage(Dawes et al. 1997)) 

while the larger and more devastating ‘blowhole’ injuries, in which the below-ground 
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biomass and soil are unearthed, have no documented long term recovery (Whitfield et al. 

2004). Many times natural and anthropogenic causes combine to exaggerate the losses, 

such as hurricanes inhibiting the recovery of propeller scars (Whitfield et al. 2004).  

Recovery of seagrass into disturbed areas occurs mostly through the activity of the 

below-ground biomass (Williams 1990, Kenworthy et al. 2002).    

Seagrass Below Ground Biomass and Vegetative Propagation 

The seagrass plant is organized by a series of ramets with interconnected rhizome 

systems. An individual ramet includes a bundle of leaves, a short shoot, a rhizome 

(horizontal or vertical), and the surrounding root system. The short shoots are similar to 

stems in land plants.  The details of the plant architecture vary from species to species.  

The tropical species Thalassia testudinum (Figure 1.1(a)) contains one or more roots per 

rhizome node, and each root possesses many root hairs, increasing the plant’s ability to 

absorb nutrients (Larkum et al. 1989).  The tropical species Syringodium filiforme and 

Halodule wrightii contain several branched roots per rhizome node and in contrast to 

Thalassia, few root hairs (Figures 1.1b and c).  The area surrounding the roots and 

rhizome within the sediments is referred to as the rhizosphere. Seagrasses release oxygen 

and dissolved organic carbon into the rhizosphere which hosts a community of 

cyanobacteria, alpha proteobacteria, fungi and other unidentified microorganisms (Kuo et 

al. 1981, Larkum et al. 1989, Weidner et al. 1996); this release is accompanied by high 

metabolic costs to the plant.   

Reproduction in seagrasses occurs in two forms.  Seagrasses propagate mainly 

asexually through rhizome elongation, although there has been little research on factors 

affecting rhizome elongation rates.  This rate varies by species from several meters to a 
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few centimeters per year (Hemminga and Duarte 2000), with measurements of Thalassia 

testudinum in Laguna Madre, Texas found to be approximately 60 cm y-1 (Kaldy and 

Dunton 2000).  Sexual reproduction occurs through flowering and hydrophilous 

pollination (Durako and Moffler 1987).  During seedling establishment in Thalassia, 

rhizome elongation rates are significantly lower, and range from 6-27 cm y-1 (Whitfield et 

al. 2004).     

Models of the horizontal distribution of seagrasses require an understanding of the 

mechanisms of clonal growth.  This is the vegetative propagation that produces new 

ramets that are genetically identical (clonal) to the plant they spread from. The 

mechanisms of clonal growth include the ability to translocate resources such as soluble 

carbohydrates and nutrients via the plant’s rhizome system (Marba et al. 2002), possibly 

as a response to gradients in environmental conditions such as light availability (Tomasko 

and Dawes 1989), nutrient concentration, sulfide concentrations in the sediment, water 

temperature, and salinity. Aside from the spatial aspect of the translocation and its 

benefits for growth, it is important to examine the interactions between connected ramets, 

especially in response to stress from varying resource concentration gradients particularly 

if examining a region with spatial heterogeneity in resources.   

Seagrasses in Florida Bay 

Florida Bay is located to the south of the Florida peninsula. The Gulf of Mexico 

borders the western boundary and the Florida Keys, a combination of both natural and 

artificial islands, provide the borders to the south and east (Figure 1.2).  The Keys protect 

the bay from the influence of the Florida Current, the Gulf Stream, and the Atlantic 

Ocean. The Bay is an inverse estuary, having few freshwater inputs.  Evaporation is the 
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driving force in salinity changes, with increases seen due to warmer temperature in the 

summer.  The salinity of the bay increases from the Northeastern portion Southwest, 

whereas the temperature of the bay does not demonstrate significant spatial variability.  

The nutrient regime of the bay varies spatially with the eastern portion of the bay having 

a carbon-to-phosphorus molar ratio of approximately 2,000 while the western basin has a 

ratio of 200 (Fourqurean and Zieman 1992).  

Seagrass beds are a prominent feature of the ecosystem in Florida Bay with three 

main species of seagrasses found: Thalassia testudinum (turtle grass), Halodule wrightii 

(shoal grass), and Syringodium filiforme (manatee grass). Halodule wrightii is the early 

colonizing species, able to grow in shallower waters, while Thalassia testudinum is the 

later successional species that has more specific habitat requirements such as deeper 

sediments for the development of a more complex root system.  The succession of 

species allows for increased sedimentation, thereby promoting favorable conditions for 

colonization and growth of Thalassia.  Carbonate sediments present in the bay affect 

seagrass production because the phosphate binds to the carbonate particles (McGlathery 

et al. 1994) thereby exaggerating any phosphorus limitation.  These seagrass beds support 

economically advantageous species such as pink shrimp, spiny lobster, and in the past 

queen conch.   

This dynamic ecosystem has gone through many changes over the past century, 

many of them affecting the seagrass populations (Zieman 1999). The dramatic increase in 

human population experienced in South Florida during the last part of the 20th century 

affected the bay significantly as land development increased.  The resulting management 

of the waterways of South Florida altered the hydrology, with water redirected from the 
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natural flow of the Everglades into the Bay causing drastic variations in salinity.  Water is 

now redirected to urban areas with runoff channeled by canals creating additional inputs 

into the Bay.  This bypassing of the natural filtering system of the Everglades is a direct 

human impact on Florida Bay.  

Current Modeling Efforts 

In the seagrass research community, there is currently a need for a connection 

between modeling efforts, monitoring programs, and field research (Bortone 2000).  

Current seagrass models focus on the development and growth of the above ground 

material.  The Hsat model developed for Zostera marina (Zimmerman et al. 1994) 

calculates production based on maximum photosynthesis rate (Pmax) and daily hours of 

saturating irradiance (Hsat).  Herzka and Dunton (1998) used field data from Thalassia 

testudinum in Laguna Madre, Texas and attempted to use the Hsat method to model 

production; however, the model underestimated production values by 70% of the 

calculated integrated production values.  In 2001, Burd and Dunton (2001) created a 

light-driven model of above and below-ground production and biomass for Halodule 

wrightii and verified the model using field data from Laguna Madre, Texas. Their whole 

plant approach demonstrated the need to further look at resource allocation. This was 

evident from the fact that recovery of below-ground biomass preceded that of the above-

ground following a prolonged period of light reduction caused by a brown tide bloom 

(Burd and Dunton 2001).   

Many problems are encountered in the development of such detailed models.  

Seagrass models are limited by the availability of data that can be used to estimate the 

parameters built into them, and data of above- and below-ground biomass that can be 
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used to validate the models.  The models also do not consider spatial variations in plant 

biomass and density and in particular they consider only the vertical transport of carbon, 

not the translocation of material horizontally through the root/rhizome network (Burd and 

Dunton 2001).  Lateral transport of materials is important for the expansion of the 

rhizome network as it feeds the production of the apical meristem where new growth 

occurs. Consequently, these existing models cannot accurately model the effects of 

spatial heterogeneity and disturbance in a seagrass bed.    

Spatially explicit models have been developed for terrestrial vegetation and used 

to study spatial dynamics and interspecific competition (Silvertown 1992).  A recent 

cellular automata model developed by Giusti and Marsili-Libelli (2005) examined the 

spatial propagation of widgeon grass, Ruppia maritima, through sexual reproduction via 

seed dispersal and asexual reproduction via rhizome expansion as a function of hydrology 

and nutrient availability.  This model was successful in predicting the growth of 

submerged vegetation in the Orbetello Lagoon.  Cellular automata models have also been 

developed to examine spatial dispersal of both terrestrial (Cain 1995) and aquatic 

vegetation (Chen et al 2002); however, there are no models available that examine marine 

submerged macrophytes that reproduce primarily through asexual vegetative propagation. 

This Study 

The importance of the Florida Bay ecosystem makes it a prime site for research 

using modeling techniques.  One of the most pressing issues in this region is the cause of 

the major seagrass die-back in the late 1980s-early 1990s that has affected over 27,000 ha 

of seagrass beds and led to the loss of approximately 25% of above-ground biomass of 

the dominant species, Thalassia testudinum (Robblee 1991).  Different stressors have 
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been hypothesized for this decline including salinity (Fourqurean et al. 1999), 

temperature (Fourqurean et al. 1999), sulfide toxicity (Goodman et al.  1995), hypoxia 

(Robblee et al. 1999, Lapointe and Barile 2004), eutrophication (Lapointe and Barile 

2004) and infection by slime mold (Robblee et al. 1999).  Because of growing concern 

for this area, there are many long term monitoring projects conducted by Florida Coastal 

Everglades Long Term Ecological Research (FCE-LTER), the Florida Keys National 

Marine Sanctuary (FKNMS), the South Florida Water Management District (SFWMD) 

and the Southeast Environmental Research Center (SERC).  This data availability is one 

of the key factors supporting model development.   

In this project, a model of growth and production for Thalassia testudinum was 

developed using the setting of Florida Bay.  Most existing seagrass models use biomass 

per unit area as their main variable, with the option of varying the environmental 

parameters with time but not space.  This model includes a spatial component which is 

particularly important in a region such as Florida Bay where physical, biological, and 

chemical conditions vary spatially.  Spatial modeling takes into account the horizontal 

vegetative spread of seagrass and its relationship to changes in biomass density. 

Examining the vegetative propagation of seagrass bed dynamics through modeling can 

produce insights into the process by which seagrasses are able to colonize new patches.   

The aim was to use the model to increase the understanding of key factors in seagrass 

propagation, and to examine the community response to multiple stressor situations.  To 

accomplish this, the model incorporated spatial variation using a cellular automaton 

model. 



 11 

Cellular Automata provide an alternative to describing spatial variation using 

systems of particle differential equations. A Cellular Automaton (CA) is a rule-based, 

spatially-explicit model based on a unit area. Using rules based on the ecology and 

physiology of the seagrass plants, this model can provide a spatial representation of the 

system and its dynamic interactions.  This type of model is useful in demonstrating 

important spatial behavior in seagrass beds.  Also, by representing seagrass reproduction 

through cellular automata, the model can be used to investigate factors such as resource 

availability and interactions among varying resource regimes.   

This project also aimed to examine the feasibility and validity of using cellular 

automata for studying the spatial variability of seagrass bed dynamics. The factors 

affecting seagrass growth and production in Florida Bay are well known from the long 

history of field and experimental research done in the system.  In addition, the model was 

used to determine which of these factors must be included in the model.  The results from 

this will give an indication of the variables and parameters important to developing such 

a model. This model can help scientists trying to understand this ecosystem and the 

managers who must make vital decisions in terms of the hydrology of the bay, and 

protection agencies who want to maintain the seagrass as a link for other endangered 

communities surrounding such as coral reefs. 
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(a)  

(b)  

(c)  

 

Figure 1.1  Diagram of the anatomy of the seagrass (a) Thalassia testudinum, (b) 

Syringodium filiforme, and (c) Halodule wrightii.  (Florida Department of Environmental 

Protection [http://www.dep.state.fl.us/coastal/habitats/seagrass/]) 
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Figure 1.2 Florida Bay, the Florida Keys and the Everglades (U.S. Fish and Wildlife 

Service [http://www.flmnh.ufl.edu/Fish/southflorida/images/floridakeys.jpg]) 
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CHAPTER 2 

MODEL 

Introduction to Cellular Automata 

Models of spatial dynamics in ecology are often formulated using reaction-

diffusion-advection equations (Murray 1989; Haefner 1996).  In contrast, cellular 

automata (CA) use a discrete, rule based structure to represent spatial processes, rather 

than a system of dynamic equations, and can accurately represent the complex behavior 

of a system over time (Wolfram 1983).  They thus provide an alternative structure for 

model behaviors that are often solved using continuous time models based on differential 

equations.  CA were originally developed by John von Neumann and Stanislaw Ulam as 

a means of simulating biological, self-replicating systems (von Neumann 1963).  John 

Conway developed von Neumann’s ideas and produced a two-dimensional CA, The 

Game of Life, which was popularized by Martin Gardner in Scientific American and 

which stimulated research on these idealized systems (Dewdney 1989).  Cellular 

automata have since been used to model dynamical systems in a wide array of fields from 

physics to ecology and biology.  Examples include the modeling of fire spread (Sarkar 

and Abbasi 2006), forest dynamics (Schlicht and Iwasa 2006, Rammig et al. 2006), and 

soil erosion (D'Ambrosio et al. 2001).   

Cellular Automata can be broken down into three main components: 

1.  The construction of a cellular automaton begins by establishing a discrete 

representation of the spatial domain, comprising an array (grid) of sites 

(cells).  In its simplest form, this is a rectangular grid of square cells that 
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completely covers the domain being considered (Figure 2.1).  The grid 

geometry may be more complicated, and, based on the scale relevant to the 

system being studied, can be in one, two, or three dimensions.  

2.  Each cell within the grid is assigned a value (state) from a finite number of 

possible states.  A simple CA may have only two possible states, 0 and 1, 

depending on whether a cell is “dead” or “alive”, respectively (Figure 2.1).  

More complicated CA can have more possible states.  For example, possible 

states may range from 0 to 10, with each value representing a range of 

coverage or biomass.  Additionally, a cell may be assigned multiple values 

representing the biomass of several different plant species within the cell. 

3.  A set of rules is established to update the states of the cells at each discrete 

time step.  The rules can be the most difficult component of the CA to 

develop and implement, and usually depend upon the states of cells in the 

defined local neighborhood.  In addition, the rules can depend on variables 

that are defined on additional grids.  For example, a CA of plant growth may 

have rules dependant upon the sediment nutrient concentration.  This can be 

tracked by using an additional grid layer and equations representing inputs 

and outputs of nutrients from a cell.  The rules can be applied simultaneously 

or in some specified order.  Usually, all cells are updated simultaneously.  

However, there are significant differences produced in model output when the 

order of how cells are updated deviates from this (Ruxton and Saravia 1998). 

 A simple example of a CA follows and is represented in Figure 2.1.  For each cell 

in a grid, the cellular neighborhood defines which adjacent cells affect the state of a given 
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cell. There are two common types of neighborhoods in two dimensions: the Moore 

neighborhood (Figure 2.1a) which consists of the eight cells surrounding the cell of 

interest, and the von Neumann neighborhood (Figure 2.1b) which consists of the cells 

directly above, below and to the sides of the cell of interest.  This example uses two 

possible cell states, 0 (white) and 1 (blue).  The rule for changing the state of cell at each 

time step in this example depends only on the sum of the states in the local neighborhood 

of the cell of interest.  A cell with a state of 1 keeps that state if the neighborhood sum 

equals 2 or 3.  If the sum is greater than 3 or less than 2, the cell state shifts to 0.  A cell 

that has a state 0 can only shift to a state of 1 if the neighborhood sum equals 3.  These 

rules are designed to mimic the spread of a population based on existing population 

density: empty cells can only become populated by immigration from surrounding cells if 

the neighborhood is heavily populated. This example shows the effect of using different 

neighborhoods. Using a Moore neighborhood, an oscillation is set up between two 

different patterns as there are more neighbors to consider with each evaluation of the 

rules. In the case of the von Neumann neighborhood there is insufficient population 

density to sustain a population as only four neighbor cells are evaluated.      

Data Used 

The Southeast Environmental Research Center (SERC) data includes temperature, 

salinity, turbidity, and both nitrogen and phosphorous concentrations (Figure 2.2 a, b).  

The South Florida Water Management District (SFWMD) data includes temperature, 

salinity, turbidity, photosynthetically active radiation (PAR) and various water column 

concentrations.  Other data including irradiance and sediment sulfide concentrations was 

taken from published research in the field (Fourqurean and Zieman 1991 and Borum 
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2005).  The Florida Coastal Everglades Long-term Ecological Research (FCE-LTER) and 

Florida Keys National Marine Sanctuary (FKNMS) examine seagrass density and health 

while also recording important environmental parameters such as salinity, temperature, 

secchi depth and turbidity.  Seagrass density is measured quarterly in the Bay using 

standing crop biomass (Figure 2.2 c) in addition to the standard Braun Blanquet method 

(Fourqurean 2001).  

Model Description 

 To simulate vegetative growth of Thalassia testudinum in Florida Bay, we used a 

CA with cells representing 1 m2 as analogs of a meter square quadrat.  In addition to the 

two-dimensional domain, it was assumed that the seagrass below-ground components and 

the biochemistry involved will be taking place in the top 40 cm of the sediment 

(Fourqurean et al.  1992). Additional “resource” layers were used to represent the spatial 

distributions of sediment nutrients and sulfide, which allowed the plants to respond to the 

spatial variability. A variety of initial conditions were chosen to represent different 

scenarios of biomass and resources being investigated.  Each cell was assigned a state 

based on the biomass in that cell and the cell states were updated monthly, although 

biomass is updated daily.  The CA will use a Moore neighborhood as this is more 

realistic for this natural system. The von Neumann neighborhood would be an unrealistic 

choice because the corner cells all come in contact with the center cell; therefore, their 

influence would undoubtedly be felt. 

Representations of CA on a computer are finite, and so the boundaries can have a 

strong impact on the evolution of the system.  Periodic boundary conditions are the most 

commonly used.  Here, the computational domain wraps around itself so that the 
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neighborhood of a cell on the far right hand side of the domain contains the cells that are 

on the far left hand side of the domain.  In the model developed, as well as in the simple 

example above, we have used periodic boundary conditions.  

A conceptual diagram shows the development of the model framework (Figure 

2.3).  The model incorporates two timescales: a daily unit time step for production and a 

monthly time step for vegetative propagation.  The reason for this is that production and 

resource allocation operate on much shorter timescales (hours to days) than rhizome 

elongation (weeks to months).  The monthly time step incorporated the CA, while the 

daily time step responds only to conditions within the individual cell.  Production is 

forced by light, with additional limiting factors of water temperature, sediment 

phosphorous and sulfide concentrations.  The rules we have implemented for both 

production and propagation are updated in the order they are represented both in the text 

and through the flow of the conceptual diagram (Figure 2.3).  Biomass for each cell is 

updated simultaneously.  Thalassia biomass is initially divided into four compartments: 

leaves (20%), short shoots (25%), roots (8.5%) and rhizomes (36.5) (Fourqurean and 

Zieman 1992).  These compartments each have their own respiratory rates (a function of 

temperature), and turnover (i.e. mortality) rates. The model runs for 5 years at an 

assigned location with specific latitude and longitude. 

Light 

The production model is based on the Hsat model developed by Zimmerman 

(1994).  Photosynthetically active radiation (PAR) is calculated from the hourly 

irradiance at a given location (Iqbal 1983) assuming clear skies and a flat air-water 

interface.  Daily production (P) is then calculated using the maximum rate of 
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photosynthesis (Pmax) for the plant multiplied by the number of hours (Hsat) per day that 

the incident irradiance (I) was greater than the saturating irradiance (Ik) (Figure 2.4). 

satHPP != max  

Values for Pmax and Ik (Table 2.1) were obtained from P vs. I curves developed for 

Thalassia testudinum in Florida Bay (Fourqurean and Zieman 1991).  This model 

assumes negligible photoinhibition, which has only been rarely observed in seagrasses 

(Hemminga and Duarte 2000). 

Temperature 

The effect of temperature on the physiological parameters of photosynthesis 

(Figure 2.5) and respiration were modeled following Burd and Dunton (1999): (terms are 

defined in Table 2.1) 

! 

" T( ) = "# exp $ T t( ) %T#[ ]
& 
' 
( 

) 
* 
+ 
= "# exp ",T( ) 

Additionally, Herzka and Dunton (1997) described the seasonal effect temperature has on 

Pmax specifically showing how increase in Pmax correlated to higher temperatures while 

Pmax decreased in the fall correlating it with cooler temperatures.  

Phosphorous Limitation 

A nutrient grid was created with phosphorous concentrations at each cell; the 

values can be the same throughout the grid or can be randomly assigned at each site 

based on the mean phosphorous concentrations found in the given area.   

The effect of phosphorus limitation was calculated using a Michaelis-Menten 

factor and an appropriate half-saturation constant (Km).  Research conducted on 

Thalassia from Florida Bay determined Km values ranging from 1-12 µM, however these 

values were calculated based on Pi concentrations from 0.5-25 µM (Gras et al. 2003).  
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Florida Bay seagrasses usually experience concentrations much lower, between 0.01-1.0 

µM (Szmant and Forrester 1996 and Boyer et al. 1997).   

In the model, this nutrient limitation (Figure 2.6) is expressed multiplicatively 

with the light limitation on production, such that the limiting factor, Qp, for the root and 

leaf uptake rates are defined independently as  

( )imip PKPQ += /  

This represents a modified Monod response based on the following assumptions: cell 

receptors on the surface are used by enzymes for uptake and no transport limitation 

occurs. 

The total limitation is affected by both leaf and root uptake and is therefore shown by the 

following equation: 

2/)( leafrootp QQQ +=  

This formulation was selected because although both leaf and root uptake are important, 

very little data exist on the differentiation of the two uptakes.  There is still considerable 

debate on which uptake dominates in a given seagrass system, especially when looking at 

tropical seagrass species in oligotrophic regions such as Florida Bay’s carbonate 

sediments (Gras et al. 2003).  Additionally, seagrasses are able to adapt to the better 

source of nutrients, whether water column or porewater (Touchette and Burkholder 

2000).  This equation will be easily used when better estimates of the different values for 

the uptake parameters of both roots and leaves are determined.  

The resulting nutrient limited production is expressed as a proportion of the production 

up to this step: 

PQoduction p !=Pr  
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Sulfide Sedimentary Feedback 

Thalassia plants have been shown to transport photosynthetically derived oxygen 

to their root and rhizome structure to counteract the anoxic sediments associated with 

their rhizosphere.  Seagrasses also leak labile dissolved organic carbon (DOC) into the 

sediments thereby stimulating the microbial loop.  Approximately 15-30% of gross 

primary production (Kaldy et al. 2006) is released from Thalassia below-ground biomass 

as DOC.  The amount of oxygen released through below-ground parts can vary based on 

primary production and sediment chemistry.  Bodensteiner (2006) measured 6% of net 

primary production is released as O2.   

The DOC released by the plant feeds dissimilatory sulfate reduction, producing 

hydrogen sulfide and carbon dioxide.  Additionally, sulfide is produced through bare 

sediment respiration.  Ku et al. (1999) reported an areal sulfate reduction rate of 200 

µmol cm-2 yr-1 in terms of carbon in unvegetated regions of Florida Bay.  Oxygen feeds 

sulfide oxidation resulting in the production of sulfate.  In addition to the oxygen released 

by the plants into the sediments, there is also diffusion of oxygen into the sediments 

through the overlying water. Assuming the equivalent amount of respiration that takes 

place in unvegetated (bare) sediments still occurs within seagrass beds, the minimum 

amount of carbon equivalents required to balance the oxygen entering the sediment from 

the bottom water would be 200 µmol cm-2 yr-1.  The maximum amount of oxygen that can 

enter the sediments is driven by a strong concentration gradient between the bottom water 

and anoxic sediments based on diffusion.  Using an average bottom water oxygen 

concentration, we calculated the rate of diffusion.  Using this maximum and the bare 

sediment estimate as a minimum, we develop a linear relationship driven by the hydrogen 
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sulfide concentration in the sediments, based on the understanding that an increase in the 

hydrogen sulfide concentration in the sediments would drive more oxygen diffusion into 

the sediments.  We set 2 mM as the value that draws the maximum oxygen diffusion into 

the sediments from the bottom water.             

In our simplified system the half reactions are:  

!+
++"+ eHCOOHOCH 44

222
 

OHHSeHSO
2

2

4
489 +!++

""+"  

This is a simplification of the system’s sulfur cycle, specifically focusing on dissimilatory 

sulfate reduction and excluding both the oxidative cycle and sulfide precipitation.  

Additionally, it also assumes that organic matter can be represented as CH2O.  

Combining these 2 reactions gives: 

OHHSCOHSOOCH
22

2

42
5.05.05.0 ++!++

"+"  

In our model, the sulfide dynamics are driven by plant DOC leakage, plant O2 

leakage, sulfate reduction in the sediment and oxidation of sulfide by O2.  These can be 

represented by the following equation:  

sedORsedOCRplantORplantOCR
t

HS
________ 22 !+!=

"

"  

The terms in the equation above are: 

R_OC_plant: sulfide introduced via DOC leakage. This is set to a constant 

percentage of gross primary production (GPP) between 15-30% (Kaldy et al. 

2006). 

R_O2_plant: sulfide consumed from plant O2 leakage. This is calculated based on 

the amount of DOC released from the plant and the GPP of the plant (Figure 2.7). 
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This parameter was established using relationships observed from simulations of 

the model developed by Miller et al. (2007). 

R_OC_sed: sulfide produced through (bare) sediment respiration.  Using the rate 

found by Ku et al. (1999) and the average temperature when the rate was 

calculated, we modified this rate as a function of temperature using the Arrhenius 

Equation:  ( )
!
"
#

$
%
&

'
(

'=
TR

Ea

kTk exp0  with the temperature (T) converted to Kelvin 

(Kelvin = ºC + 273), the Ea (activation energy) defined as 37800 J mol-1 (King 

1988) and the R value (Universal Gas Constant) of 8.314x10-3 kJ mol-1 K-1.  We 

can calculate k0 based on the rate (200 µmol cm-2 yr-1) and the temperature (20°C) 

at which the experimental measurements were made.   

R_O2_sed: sulfide consumed via O2 from the overlying water.  As a minimum, we 

use the value for bare sediment respiration as the minimum amount of oxygen 

drawn through the sediment water interface.  To calculate the maximum rate of 

oxygen uptake from the bottom water by the sediments, we have used an 

approximation of the diffusion equation (Fick’s law J = -D(ΔC/d)) with D 

(diffusion coefficient for water) as 10-9 m2 s-1 and ∆C as the difference in 

concentration of dissolved oxygen in the bottom water and the concentration of 

dissolved oxygen in the surface layers of the sediments (assuming anoxia C=0);  

this also assumes that all oxygen is consumed at the sediment-water interface.  

Using the range established between these two equations, we assume a 

relationship (Figure 2.8) between sediment sulfide concentrations (adjusted for 

area) and sediment oxygen requirements.  
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After calculating the net change in sulfide through our time step, using the equation 

sedORsedOCRplantORplantOCR
t

HS
________ 22 !+!=

"

"

 
and dividing that 

by a root zone depth of 40 cm (Fourqurean et al. 1992), we calculated the sulfide 

concentration per volume of sediment.  Using the porosity of the sediments in FL Bay of 

0.8 (Rude and Aller 1991), we calculated the sulfide concentration based on volume of 

porewater (m3) instead of total sediment volume.  We account for sulfide concentration in 

this manner because we know that sulfide here is dissolved within the porewater.  Finally, 

we add or subtract the sulfide produced or consumed to the sulfide concentrations for the 

previous time step. 

Sulfide Inhibition  

High sediment sulfide concentrations can inhibit photosynthesis, and if 

sufficiently high can kill seagrass plants (Carlson et al. 1994).  Research conducted on the 

temperate seagrass species Zostera marina shows the influence of various levels of 

sulfide on Pmax (Goodman et al.  1995); increasing the sulfide concentration experienced 

by the plant will decrease the plants Pmax.   Although we are looking at the tropical 

Thalassia, we used the data as it is the only available study with direct measures of 

photosynthetic rate.  Using the data from the study showing an inverse relationship 

between Pmax and sulfide concentration, we calculated the relative effect a given increase 

in sulfide concentration will have on the Pmax.   The curve was shifted from the original 

data to account for the fact that seagrasses in Florida Bay experience in situ sulfide 

concentrations that can be ten times greater than those experienced by seagrasses in 

Chincoteague Bay, Maryland (Figure 2.9). This allows for the higher sulfide tolerance of 

Thalassia compared to Zostera. Based on observations by Carlson et al. (1994), 
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Thalassia die-off events in Florida Bay coincided with sulfide concentrations of 

approximately greater than 3 mM. The adjustment of the curve shows that at a sulfide 

concentration of approximately 3 mM, QS = 0.8.  This 20% reduction in photosynthesis 

coupled multiplicatively with additional nutrient limitation experienced by the plant 

would lead to a significant decrease in production.   

Production Allocation 

Once photosynthesis and respiration are accounted for, total plant production must be 

allocated to various compartments of the plant.  The below-ground biomass of Thalassia 

testudinum makes up a large proportion of the total biomass of the plant, approximately 

85%, with the rest being green leaves (Fourqurean and Zieman 1991).  Considering the 

known proportion of biomass in each compartment of plant and the varying turnover 

rates for each of the compartment based on their features new production is allocated to 

the compartments in the following proportions: 

• Production allocated to Leaf = 65% 

• Production allocated to Rhizome = 26.25% 

• Production allocated to Short Shoot = 5.25% 

• Production allocated to Root = 3.5% 

The values selected are in accordance with the findings of Kaldy and Dunton (2000) that 

below-ground production in Thalassia testudinum accounted for approximately 35% of 

total plant production.  It is difficult deciphering the values for the various biomass 

divisions within the below-ground compartment; therefore, we used these estimates and 

conducted further discussion on this is described in Chapter 3.  
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Turnover 

Seagrass plants lose biomass through the shedding of senescent leaves, grazing on 

the leaves by birds and other animals, and rhizome death.  These loss processes are 

combined in the model and represented as turnover rates, representing the sum of loss 

mechanisms other than respiration.  Values used for biomass turnover were a leaf loss of 

2.5% per day and all other plant material loss of 0.75% per day (Duarte and Chiscano 

1999).  

Propagation 

Vegetative propagation occurs at a slower rate than the production and allocation 

processes and is updated in the model on a monthly basis.  Published rates of rhizome 

propagation indicate that the typical rates for Thalassia testudinum are approximately 69 

cm yr-1 (Hemminga and Duarte 2000).  The rules for propagation developed for this 

model involve a threshold of rhizome biomass (200 g m-2) being present in a cell before 

rhizomes propagate into neighboring cells.  The neighborhood was divided into two tiers, 

depending on the amount of shared boundary between the cell of interest and the 

neighboring cell.  The first tier consists of the neighbors in the four cells sharing a 

complete side with the cell of interest.  The second tier of the neighborhood is the four 

cells at the corners of the cell of interest, as they would have some interaction with the 

cell but not as much as those sharing a side.  A specific amount of biomass was divided 

among the four direct neighbor cells and the four corner neighbor cells.  The proportion 

of rhizome biomass distributed is related to the proportion of the area surrounding the cell 

of interest the neighbor cell occupies (Figure 2.10).  There are a total of eight cells in the 

neighborhood.  The cells that are directly next to the cell of interest (the Von Neumann 
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neighborhood) each receive 19.25% of the propagating biomass, while the cells at the 

corners of the cell of interest (the Moore neighborhood) each receive 5.75% of 

propagating biomass.  This value was calculated by looking at a circle with a radius of 

1m.  Excluding the area of the cell of interest within the circle, the area within the corners 

is approximately 23% of the total area encompassed within the circle outside of the cell 

of interest and the cells on the side represent approximately 77% of the total area of the 

circle.   

As the seagrass rhizomes propagate, they still use resources from the cell that they 

initially propagated from.  Research indicates that resources are translocated through the 

rhizome system as far as 60 cm away (Marba et al.  2002).  Based on the average rhizome 

elongation rate of 60 cm year-1(Kaldy and Dunton 2000), a rhizome growing at the 

standard rate would be able to use resources from the originating cell for approximately 6 

months.  In addition to the time limit on support from the originating cell, at each 

monthly time step, the portion of resources used to support the new rhizome biomass was 

decreased by a proportion (16.67% (one sixth) of initial propagating material), assuming 

a linear monthly decrease, over 6 months, in the amount of material being allocated. 

Within the model, biomass from the rhizomes is translocated to neighboring cells as a 

function of rhizome propagation.  Because of this process, it is important to consider the 

respiratory losses of the portion of the plant that are no longer within the cell boundaries 

but still may share connections with the cell for energy (i.e. carbon transfer).  An artifact 

of the development of this model structure with transport of biomass and resource 

between neighboring cells is that it leaves us unable to definitively differentiate between 

immediate neighbor cells, as these processes are constantly occurring between a given 
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cell and all neighbors.  Additionally, the rhizomes are programmed to show no preference 

for propagation into environmentally favorable cells or away from occupied cells; 

therefore, cells may have rhizome biomass propagating both into and out of it.   

 



 29 

Table 2.1  Plant associated parameters, symbols, units and values used in the model. 
(Those parameters that are calculated in the model have a * in the value column) 
Symbol Variable Units Value 
Isat  [1] Saturating Irradiance µmol photon m-2 s-1 426 

1.5336 
Pmax  [1] Maximum rate of 

photosynthesis 
mg Oxygen gram dry 
weight leaves -1 hour-1 

13.75 

Rleaf [1] Respiration rate of 
leaf biomass 

mg Oxygen gram dry 
weight leaves -1 hour-1 

0.444 

Rroot [1] Respiration rate of 
root biomass 

mg Oxygen gram dry 
weight roots -1 hour-1 

0.276 

Rshortshoots [1] Respiration rate of 
short shoot biomass 

mg Oxygen gram dry 
weight short shoots -1 

hour-1 

0.108 

Rrhizome [1] Respiration rate of 
rhizome biomass 

mg Oxygen gram dry 
weight rhizomes -1 hour-

1 

0.054 

ζ [2] Temperature effect on 
metabolic rates 

dimensionless 0.07 

Leaf_Km [4] P uptake half 
saturation constant 

µM Phosphorus 1.05-12.4 # 

Root_Km [4] P uptake half 
saturation constant 

µM Phosphorus 2.69-4.05 # 

Leafto [3] Leaf Turnover Percent biomass lost 
per day 

2.5 

Rootto, ShortShootto, 
Rhizometo [3] 

Biomass Turnover Percent biomass lost 
per day 

0.75 

B Biomass g dry wt m-2 *  Model 
Γ [2] Physiological Rate mg Oxygen gram dry 

weight-1 hour-1 
Varies- 
Photosynthesis & 
Respiration 

#- see Chapter 3- Sensitivity Analysis 
[References for Table values:  1-Fourqurean and Zieman (1991), 2-Burd and Dunton 
(2001), 3-Duarte and Chiscano (1999), 4- Gras et al.  (1992)] 
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Table 2.2  Parameters, symbols, units and values used in the model. (Those parameters 
that are calculated in the model have a * in the value column) 
Symbol Variable Units Value 
Hsat Hours at saturating 

irradiance 
hours day-1  * Model 

T Temperature ºCelsius Varies(field data) 
Pi Phosphorous 

concentration 
µMolar Varies(field data) 

Qp Nutrient Limitation dimensionless * Model 
QS Sulfide Inhibition dimensionless * Model 
HS Sulfide concentration µMolar sulfide * Model 
R_OC_plant 
[1] 

Sulfide introduced from  
consumption of DOC 
exuded from plants 

µMolar sulfide 25% Gross Primary 
Production 

R_O2_plant Sulfide consumed using 
O2 exuded from plants 

µMolar sulfide *Model 

R_OC_sed Sulfide introduced from 
bare sediments 

µMolar sulfide *Model  
 

R_O2_sed Sulfide consumption in 
bare sediments 

µMolar sulfide *Model 

k [5]  Rate  µmol cm-2 yr-1 200 
k0 constant µmol cm-2 yr-1 *model 
Ea [6] Activation Energy J mol-1 37800 

R Universal Gas Constant kJ mol-1 K-1 8.314x10-3 
D [2] Diffusion Coefficient for 

water 
m2 second-1 1E-9 

DBL  Diffusive boundary layer 
thickness 

m 0.0005 

Lsed [4] Sediment Depth m 0.4 
Р [3] Porosity dimensionless 0.8 
 
[References for Table values:  1- Kaldy et al. (2006) 2- Boudreau (1997), 3-Rude and 
Aller (1991), 4-Fourqurean et al. (1992), 5- Ku et al. (1999), 6-King (1988)] 



 31 

 

 

 

Figure 2.1   Two-dimensional cellular automata models through time.  The time step 

progression, t = 0, t=1, t=2, of two cellular automata represented in two different 

neighborhoods (a. Moore Neighborhood and b. von Neumann Neighborhood) using the 

same rules.  White cells indicate a cell state of zero, while blue cells indicate a cell state 

of 1.  The dashed line represents the designated neighborhood. 

The cell in the center of the grid is the cell of interest.   

 

  

a. b. 
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a.) 

 
b.) 

 
c.) 

Figure 2.2  Examples of data available from long-term monitoring: a) Salinity (Southeast 

Environment Research Center(SERC)  b) Temperature (SERC), c) Standing Crop 

(Thalassia above-ground biomass) (Florida Keys National Marine Sanctuary (FKNMS)  

[SERC- http://serc.fiu.edu/wqmnetwork/ and FKNMS- 

http://serc.fiu.edu/seagrass/!CDreport/DataHome.htm ] 
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Figure 2.3  The conceptual diagram of model development showing the processes the 

seagrass biomass goes through (Photosynthesis, Respiration, Exudation, Turnover, 

Propagation) the factors affecting the processes (Hsat, Sulfide, Phosphorus, Temperature) 

and the time steps (Daily and  Monthly).  
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Figure 2.4 Schematic representation of Hsat (daily period of I-saturated photosynthesis), 

as defined for a cloudless day.  Dark blue line is the variation in irradiance throughout the 

day.  Yellow line indicated the value of Ik, the half-saturation values of irradiance.  

According to this, Photosynthesis = 0 when I<Ik.  Adapted from Zimmerman et al. 

(1994).   

Hsat Ik 
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Figure 2.5  The effect of variations in temperature on Pmax:  

( ) ( )TPPTP != maxexpmaxmax "  .  Data point for Pmax from Fourqurean and Zieman 

(1992). 
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Figure 2.6  The relative effect of Phosphorus concentration on photosynthesis in 

Thalassia:  imip PKPQ += / .  Qp is the factor photosynthesis is multiplied by to 

show reduction in production with lower phosphorus concentrations.   
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Figure 2.7  The calculated hourly flux of Oxygen and DOC from the seagrass 

belowground components into the surrounding sediments. Values based on a constant 

DOC release rate as a fixed percentage (25%) of GPP. Oxygen exuded based on equation 

(Based on Miller et al. 2007): 
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Figure 2.8 The imposed effect of Sulfide Concentration on the Oxygen Flux into the 

sediments from overlying bottom-water assuming high sulfide concentrations in the 

sediments drive the flux of oxygen from the bottom water.
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Figure 2.9 Relative Effect of Sulfide Concentration (QS) on the Maximum Rate of 

Photosynthesis of Thalassia testudinum derived from the work of Goodman et al. (1995) 

on Zostera marina. 
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Figure 2.10 A diagram representing the spread of seagrass rhizomes into surrounding 

cells.  The yellow cell represents the cell of interest.  If the rhizome biomass in this cell 

reaches the threshold biomass, rhizomes will extend into the surrounding cells.  Given the 

spread of the rhizomes is radial, the cells on the sides (red) of the cell of interest each 

receive approximately 19.25% of the amount of rhizome material propagating and the 

cells on the corners (blue) each receive approximately 5.75% of the amount of rhizome 

material propagating. 
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CHAPTER 3 

SENSITIVITY ANALYSIS 

Introduction 

Models of natural processes require good mathematical descriptions of those 

processes.  This implies that accurate and precise estimates of parameter values and 

constants are available for use in those descriptions. Sometimes, values for these 

parameters are either not known or have low precision, which can be important if the 

behavior of the model depends crucially on these particular parameters; a model may 

behave differently over the range of variation of a single parameter. Consequently, 

knowing the sensitivity of the model to variations in parameter values is crucial for 

interpreting model results and predictions. Sensitivity analysis is a technique for 

identifying those parameters, that determine the model behavior, as well as constraining 

their range of possible values. Knowing which parameters are controlling the model 

behavior can provide future research directions.  

Sensitivity analysis requires selecting both the parameters and the possible model 

outputs. To do this, a baseline simulation and corresponding set of parameter values are 

chosen. The parameter values used for this simulation are typical values, and the behavior 

of the model should be representative of the behavior of the system the model was 

developed for. For example, a baseline simulation in which all seagrass plants died would 

be unsuitable for a sensitivity analysis aimed at determining seagrass survival. The range 

of model behaviors can be quantified once a suitable metric has been chosen. In the 



 42 

above example, such a metric might be simulated above and below ground biomass after 

a fixed amount of time. If p is the parameter being varied and B is the chosen metric, then 

the sensitivity of the model to variations in that parameter can be quantitatively assessed 

using 
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where pb and Bb represent the baseline values of the parameter and metric respectively. 

This equation indicates that a 1% change in parameter (p) corresponds to an S % change 

in the metric (B) (e.g., above- or below-ground biomass). 

In the sensitivity analyses presented below we chose to use the above and below 

ground biomass calculated after 5 years of simulation as the metric. This time period was 

chosen to allow the model, with the new parameter value, to reach a steady state that 

could be compared with the base-line model. It is important for the simulation to attain 

steady state conditions to ensure that transients resulting from the initial conditions are 

not being measured in S. All simulations were run with environmental conditions (such as 

light and temperature (http://serc.fiu.edu/wqmnetwork/SFWMD-CD/Pages/FB.htm)) 

representative for Rankin Lake, in north-central Florida Bay.  This site was chosen as it 

represents a location that has experienced many changes recently including major die-off 

in the early 1990s. 

Our initial model simulations indicated that the model was particularly sensitive 

to two parameters, the half-saturation constant for phosphorus uptake (Km) and the 

above/below-ground allocation of production. The development of this model itself 

placed a significant reliance on these parameters.  Additionally, these are also two areas 
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in which there is a lack of current research and supporting data available.  In this chapter, 

we provide information on the sensitivity of the model to these two parameters. 

Half-Saturation Constant for Phosphorus Uptake  

Phosphorus is generally regarded as the limiting nutrient for seagrasses in Florida 

Bay (Fourqurean and Zieman 1992). Reported water column phosphorus concentrations 

within the Bay vary between 0.2 and 1.1 µM (Szmant and Forrester 1996, Boyer et al. 

1997) and porewater concentrations vary from 0.1 to 3µM (Fourqurean et al 1992, 

Szmant and Forrester 1996, McGlathery et al. 1994). Median concentrations in the water 

column and porewater are 0.49 µM (Boyer et el. 1997) and 0.34 µM (Fourqurean et al 

1992) respectively.  

Phosphorus limitation of photosynthesis is represented in the model using a 

Monod factor (Qp=P/(Km+P)). Consequently, photosynthesis rates will be greatly 

affected if phosphorus concentrations fall below Km (Figure 3.1). In the model, 

phosphorus uptake limits photosynthesis (Qp*Photosynthesis), however phosphorus 

uptake kinetics for Thalassia testudinum are not well known. It is known that above and 

below ground biomass respond differently under limiting conditions (Burd and Dunton 

2001), so quantitative changes in whole-plant biomass are less obvious. Experimental 

studies using mesocosms give a range of Km of 1-12 µM for a range of phosphorus 

concentrations between 0.5 and 25 µM (Gras et al. 2003). However, maximum 

phosphorus concentrations in the Bay are of the order of 0.5 µM. Such concentrations 

would provide severe limitation to photosynthesis using the aforementioned 

experimentally determined values of Km. Indeed, Madden and MacDonald (2006) used an 
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assumed value of Km = 0.1 µM in their seagrass model to avoid complete system failure, 

that is seagrass decline and eventual die-off.  

We used a sensitivity analysis to determine the sensitivity of modeled above and 

below ground biomass to the value of Km and to also select an appropriate value for Km 

The environmental parameters for the Km sensitivity analysis are summarized in the 

Appendix Table A. The baseline value of the half-saturation constant for phosphorus 

uptake (0.5 µM) was based on experimental studies conducted over a range of 

concentrations (0.5 to 25 µM) (Gras et al.  2003).  We ran the model using different 

values for Km, ranging from 0.1 to 2.0 µM at a constant phosphorus concentration of 0.5 

µM (Figure 3.1).  We also ran the model at several additional concentrations (0.25, 0.375 

and 0.50 µM) that are known to exist in Florida Bay and support seagrass growth (based 

on observations from monitoring data of seagrass and nutrient levels).   

Simulations with ambient phosphorus concentrations of 0.5 µM and Km < 0.5 µM 

produced sustainable above and below ground biomass over the 5 year simulation period 

(Figure 3.2). Seagrass biomass was not sustainable if Km > 0.75 µM, as expected from 

considering uptake kinetics (Figure 3.1) because once Qp becomes too low, it is likely 

that photosynthesis becomes less than respiration. In these simulations, below ground 

biomass was generally greater than above ground biomass (Figure 3.3), as seen in natural 

systems. Steady state was reached more rapidly for lower values of Km. For simulations 

with Km > 0.5 µM, the above ground biomass declined more rapidly than the below 

ground biomass. This has been observed in natural situations of prolonged stress (Burd 

and Dunton, 2001). 
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These results indicate that the Km values obtained experimentally (>1) cannot 

sustain seagrass biomass in our modeled representation of Florida Bay, even in regions of 

maximum phosphorus concentration.  However, values of Km as low as 0.1 µM (those 

used by Madden and MacDonald (2006)) are far lower than required for these maximum 

concentrations. Lower concentrations of phosphorus will be able to sustain seagrass beds 

with lower values of Km. To investigate the range of possible values, we conducted 

additional simulations at lower phosphorus concentrations of 0.25 µM experienced in the 

Bay and Km values of 0.1, 0.5, 0.75 and 1.0 µM.  As seen in Figure 3.4, seagrass 

experienced continuous growth with the lowest Km value indicating no nutrient limitation 

affecting production.  However at values of Km ≥ 0.75 (Figures 3.5(B.)), biomass 

decreased to zero near the end of the first two years.  The results from the analysis can be 

explained simply by looking at the relative effect of varying the Km values on 

photosynthetic rate (Figure 3.1).  The larger Km values impose a greater influence on 

photosynthesis at low nutrient concentrations.   

Table 3.1 summarizes the results of the sensitivity analysis using Km of 0.5. 

Phosphorus limits photosynthesis, and consequently will influence steady state above and 

below ground biomass. If Km values are close to phosphorus concentrations in the Bay 

(e.g. 0.375), then the resulting steady-state biomass is very sensitive to the value of Km. In 

this case, a 1% change in Km, to 0.505 or 0.495, results in a 50-81% change in above 

ground biomass. A 10% increase in Km kills the plants within 2 years. If, however, Km is 

less than the ambient phosphorus concentration, a 1% change in Km results in a less than 

1% change in steady-state biomass because with these values, phosphorus is not limiting 

production (Figure 3.1).  
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This sensitivity analysis has shown that model predictions of Thalassia 

testudinum production in Florida Bay will have considerable uncertainty associated with 

them without better knowledge of the parameters regulating phosphorus uptake. In their 

review, Touchette and Burkholder (2000) show that phosphorus uptake may be related to 

phosphorus concentrations that the seagrass experience.  As stated earlier, Florida Bay 

has a distinct spatial gradient in phosphorus concentrations ranging from the highly 

oligotrophic northeast region to the less nutrient limited southwest portion.  

Understanding the variation of kinetic uptake parameters across the bay will be 

invaluable for more accurate and precise model predictions, and more effective 

management plans.  

Evidence of acclimation of Thalassia uptake of phosphorus based on 

environmental concentrations is apparent in the results of the work of Gras et al. (2003).   

They tested two ranges of phosphorus concentrations: 0-25 µM and 0-5 µM. Using the 

Lineweaver-Burke linearization, the Km values for the leaf was calculated for each of the 

two experiments represent a broad range with maximum value of 12.4 (±4.48) µM (R2 = 

0.94) and a minimum value of 1.20 (±0.63) µM (R2 =0.66).  Assuming the trend 

represented here demonstrates the varied response of phosphorus uptake by Thalassia 

under varied ambient concentrations, it could be estimated that if the experiment were 

conducted with values closer to the naturally occurring range of Florida Bay, Km values 

would be much lower. However, as noted by Pallud and colleagues (2007), the 

Lineweaver-Burke linearization, although frequently used in biological studies, may not 

be the most effective method of interpretation of kinetics data.  Better analysis of the data 

presented by Gras et al. (2003) could be conducted looking at the kinetics using the 
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Hanes linearization method.  Evaluating the results from this might give more insight 

variation in their Km values and provide values closer to those that were used in the 

model.  Using values of Km that are too low is effective at removing phosphorus 

limitation from the models, but they give unrealistic results that do not capture the growth 

limitation these plants are known to experience.  

Production Allocation 

The below-ground biomass of many seagrasses plays an important role in plant 

propagation and survival. Below-ground biomass can act as a storage organ, thereby 

serving a substantial function in plant survival during prolonged reductions in resources 

such as light (e.g., Burd and Dunton, 2000). Also, vegetative propagation of seagrasses 

occurs below-ground at the apical meristems of the horizontal rhizomes and the roots are 

responsible for nutrient uptake from sediment pore waters. The factors affecting 

dynamics of seagrass below-ground biomass remain largely unquantified. This can be 

problematic for predicting biomass and production of Thalassia testudinum because the 

majority of the plant biomass is in the below-ground compartment, and above-ground 

production has to be able to support this. Models of plant production and biomass must 

also account for different respiratory demands of the different plant components 

(Fourqurean and Zieman (1991)). The development and implementation of this model 

and the allocation of production between respiration, carbon exudation and biomass are 

shown in the conceptual diagram (Figure 3.6).    

Previous estimates of allocation to below-ground production have been made 

using models and field measurements. Burd and Dunton (2001) fitted their model of 

Halodule wrightii to data from the Laguna Madre (TX) and estimated that 34% of 
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primary production was allocated to below ground production. Kaldy and Dunton (2000) 

used field measurements of rhizome elongation to estimate that rhizome production in 

Thalassia testudinum accounted for 35% of overall production of plants from Laguna 

Madre (TX). In contrast, Duarte et al. (1998) used root biomass per node and the number 

of horizontal nodes produced annually and estimated that total below-ground production 

in Thalassia accounts for only 30% of total plant production with a majority of the 

production going towards the roots, not rhizomes.  

Resource allocation is likely to vary seasonally. Lee and Dunton (1996) have 

shown seasonal changes in the soluble carbohydrate content of above and below-ground 

components of Thalassia testudinum. They hypothesize that growth during winter and 

early spring is supported by reserves stored in the below-ground compartments. 

However, existing models allocate a constant amount of primary production to the below-

ground tissues and do not simulate these seasonal cycles.    

The model was divided into four biomass compartments to specifically account 

for the difference in behavior of the specialized regions of the plant: the leaves, short 

shoots, roots and rhizomes.  Unfortunately, we were unable to use the experimentally 

determined values of resource allocation in the model. There are several reasons for this. 

First, different authors use different definitions of above and below-ground biomass, and 

these do not correspond to the divisions in the model. For example, the short-shoot of 

Thalassia is the vertical rhizome and technically consists of both below- and above-

ground tissue.  Many authors refer to “above-ground biomass” as being only the 

photosynthetic parts of the plant, while other authors refer to below-ground components 

as being only the roots and horizontal rhizomes.  Secondly, resource allocation in the 
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model differs qualitatively from estimates of resource allocation made from field 

measurements. The latter are integrative measures, often made using leaf and rhizome 

marking techniques (e.g., Kaldy and Dunton, 2000) to measure elongation rates, and 

hence production. In the model however, resources allocated to growth were calculated at 

each time step and did not allow for storage and remobilization of resources. 

We used a sensitivity analysis to determine the sensitivity of the model results to 

the allocation of primary production to below-ground biomass, as well as to determine a 

value for the ratio of the above to below-ground production suitable for this species. The 

environmental parameters for the production allocation sensitivity analysis are 

summarized in the Appendix Table B.  We again used simulated above and below-ground 

biomass after 5 years as metrics for the sensitivity analysis. The model classifies only 

photosynthetic tissue (leaf material) as above-ground biomass (Fourqurean and Zieman 

1992) with the relative proportion of production allocated to the above-ground 

compartment varying between 60 and 70%. Below-ground production was allocated in 

fixed proportions to short shoots (10%), roots (15%) and rhizomes (75%).  

If too little production (30-32.5%) is allocated to the below-ground structure of 

the plant, the above-ground biomass can exceed the below-ground biomass (Figure 3.7). 

This tends to occur in late summer in the model and is not observed in natural, healthy 

seagrass systems where below-ground biomass is typically much greater than above-

ground biomass (e.g., Kaldy and Dunton, 2000). These simulations show qualitatively 

that a greater proportion of production needs to be allocated to the below-ground 

compartment in the model.  
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If 37.5-40% of the production is allocated to the below-ground compartment, the 

biomass cannot be sustained and dies-off within 3 years (Figure 3.8). There is a steady 

decline in the below-ground biomass during the simulation even though with the smaller 

value of production allocation, the above-ground biomass shows a very slight recovery 

(Figure 3.8(A.)). This indicates that the model is sensitive to the proportion of production 

allocated to the below-ground tissues.  

Given the above results, we chose a value of 35% of production allocated below-

ground for subsequent simulations and a baseline for sensitivity analysis (Table 3.2). 

These results confirm the previous analysis that if too small a proportion of production is 

allocated to the below-ground biomass, the above-ground biomass can be greater than the 

below-ground biomass. For example, with 28.5% of production being allocated below-

ground, the ratio of above to below ground biomass is 1.3. Conversely, if too much 

production is allocated below-ground, then the plant dies. A value of 35% of production 

being allocated below-ground produces steady-state biomasses that are in general 

agreement with those observed in Florida Bay. Therefore, subsequent simulations use this 

value. 

Conclusions  

Sensitivity analysis is an integral part of any modeling exercise as it examines the 

effect that varying values of given parameters will have on the behavior and output of a 

model.  This allows for a better understanding of where further research is most needed 

and can be useful when interpreting model results. In this work, we have also used 

sensitivity analysis to better constrain the ranges of certain parameters by requiring that 

model output be qualitatively and quantitatively consistent with field observations.  
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The two parameters we chose to examine were the half-saturation constant for 

phosphorus uptake by the seagrass and the proportion of production that is allocated to 

below-ground biomass. Values for both these parameters remain uncertain and the model 

results are sensitive to both of them. 

There is little information known about seagrasses nutrient uptake kinetics, and in 

particular about the spatial and temporal variations in plant uptake rates. Lee and Dunton 

(1999) measured uptake kinetics for NH4
+ and NO3

- for both the roots and leaves of 

Thalassia testudinum. They found both spatial and temporal variations in both the half-

saturation constants and the maximum uptake rates. For example, Km for NO3
- uptake by 

the leaves varied from 38.5 µM to 2.2 µM between February and October and Km for root 

uptake of NH4
+ varied between 34.4 µM and 649.5 µM between February and May 

respectively.  The high end value for root uptake of NH4
+ is well outside the range of 

values observed for other seagrass species (Touchette and Burkholder 2000).  Curiously, 

water column (NO3
- + NO2

-) concentrations remained below 1.2 µM throughout the year 

and pore water NH4
+ concentrations remained below 40 µM at the same site. The fact that 

ambient concentrations were less than the half-saturation constants suggests that nitrogen 

demands of the plant could be met with even uptake at a less than maximum rate, or, 

although less likely, that the plant had responded to ambient conditions that had passed.  

By contrast, the model suggests that Km for phosphorus uptake should be close to 

or less than the ambient concentration of inorganic phosphorus. If it is greater, then the 

model cannot sustain the plant biomass. This contradicts the results from mesocosm 

experiments that suggest that Km is greater than the ambient phosphorus concentration in 

Florida Bay. Temporal variations in the half-saturation constants have not been taken into 
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account in the model. Yet, if phosphorus uptake kinetics displays the same degree of 

variability as inorganic nitrogen, then we would expect at least an order of magnitude 

variation in Km during the year. However, without a proposed mechanism for these 

changes, they will be difficult to model.  

The contrast between the value of Km obtained in this study and those obtained 

from experimental mesocosms indicates that further work is required. Experimental 

studies using ambient phosphorus concentrations more typical of Florida Bay should be 

made. 

In addition, new model formulations that capture variations, seasonal or regional, 

in uptake kinetics should be investigated. This will be particularly important if models are 

to be used for management purposes. Lack of an adequate model representation of 

nutrient uptake kinetics limits the predictive ability of the model in its current form.   

The second parameter we investigated was the percentage of production allocated 

to below-ground production. Little is known quantitatively or mechanistically about 

resource allocation and translocation within seagrasses. The sensitivity analysis suggests 

that the model is very sensitive to the proportion of net primary production (NPP) is 

passed to the below ground biomass. This value selected based on this analysis, 35% of 

NPP, is in general agreement with published literature values (Kaldy and Dunton 2000 

and Duarte et al. 1998).  However, these proportions allocated to the above- versus the 

below-ground biomass also vary seasonally (Figure 3.9, adapted from Kaldy, 1997) and 

such variation is not built into the model. However, the model could be extended by 

incorporating both structural and non-structural carbohydrate. The latter is known to vary 

seasonally (Lee and Dunton, 1996) and presumably forms a resource for plant growth 
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during times of limited resources. This indicates that the below- ground material can 

supplement photosynthesis, and that there can be an allocation of resources from the 

below-ground compartment to the above ground compartment.  

 The model of Halodule wrightii developed by Burd and Dunton (2001) also 

contains allocation of production from above to below ground biomass, but not in the 

opposite sense. That model was successful at reproducing trends in above and below-

ground biomass, but failed to adequately reproduce the recovery at the end of a period of 

prolonged light limitation. In this case, after a die-back, the below-ground biomass 

recovered more rapidly than the above-ground biomass, a feature not captured in the 

model. This difference between above and below-ground recovery rates indicates a 

variation in the amount of production allocated to below-ground, providing another 

reason for concentrating on this aspect of seagrass dynamics.  
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Table 3.1 Summary of results from the quantitative sensitivity analysis of the model to 
variations in the phosphorus half-saturation constant, Km.   
   

Parameter 
Value 
Km (µM) 

Indicator I 
(Maximum 
in Year 4) 
Above-
Ground 
Biomass 
(g DW m-2) 

Indicator II 
(Maximum 
in Year 4) 
Below-
Ground 
Biomass 
(g DW m-2) 

Percent 
Change in 
parameter 

S 
above 
(%) 

S 
below 
(%) 

P (µM) 

0.5 78 111 0%   0.375 
0.505 37 55 +1% -53 -50 0.375 
0.495 141 194 -1% -81 -75 0.375 
0.55 0 0 +10% NA NA 0.375 
0.45 1304 1369 -10% -158 -114 0.375 
0.5 4109 6927 0%   1.0 
0.505 4091 6888 +1% -0.42 -0.57 1.0 
0.495 4126 6967 -1% -0.43 -0.57 1.0 
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Table 3.2  Summary of results from the quantitative sensitivity analysis of the model to 
variations in the proportion of production allocated to above and below-ground biomass. 
  
Percentage 
of 
production 
allocated to 
below-
ground 

Indicator I 
(Maximum 
in Year 4) 
Above-
Ground 
Biomass 
(g DW m-2) 

Indicator II 
(Maximum 
in Year 4) 
Below-
Ground 
Biomass 
(g DW m-2) 

Percent 
Change in 
parameter 

S above 
(%) 

S below 
(%) 

35 78 111 0%   
35.65 24 39 -1% 69.10 65.05 
34.35 181 238 1% 132.73 115.70 
41.5 0 0 -10% NA NA 
28.5 2057 1586 10% 254.44 133.46 
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Figure 3.1  Variation of phosphorus uptake limitation on photosynthesis with phosphorus 
concentration and half-saturation constant (Km) for phosphorus uptake; Km is given in 
units of  µM.   
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Figure 3.2  Above- and Below-ground biomass over 5 years with Km values of 0.1 (A.), 
0.5 (B.) and 0.75 (C.) µM and phosphorus concentration = 0.5 µM. 

C.) 

B.) 

A.) 
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Figure 3.3  The ratio of below: above ground biomass (areal averages) over time from 
model output. 
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Figure 3.4  Above- and Below-ground biomass over 5 years with Km values of  0.1 (A.) 
and 0.5 (B.) µM and phosphorus concentration = 0.25 µM. 

A.) 

B.) 



 60 

 
 
Figure 3.5  Above- and Below-ground biomass over 5 years with Km values of 0.5 (A.) 
and 0.75 (B.)  µM and phosphorus concentrations = 0.375 µM. 

A.) 

B.) 
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Gross Primary Production - 9900

(Maximum includes no limitation or inhibition)

- Respiratory losses for all plant biomass -1810

8090 remaining

-DOC exudation - 2500

(25% GPP - before respiratory losses)

5590 remaining

Production Allocation to various Plant Biomass Compartments

Above - 65% = 3633.5

Below - 35% = 1956.5

 
Figure 3.6  A conceptual diagram showing the flow of photosynthetically derived product 
through the seagrass.  The values shown here represent a summer day, with maximum 
photosynthesis occuring (i.e. no phosphorus limitation or sulfide inhibition).  The units 
for all values above are mg O2 m-2 day-1 
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Figure 3.7  Biomass over time varying the allocation of production to above and below 
compartments (70/30(A.) and 67.5/32.5(B.)).  
 
 

A.) 

B.) 
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Figure 3.8  Biomass over time varying the allocation of production to above and below 
compartments (62.5/37.5(A.) and 60/40(B.)).   
 
 

A.) 

B.) 
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Figure 3.9  Seasonal variation in ratio of leaf:rhizome production as seen in  Thalassia 
testudinum in Lower Laguna Madre Texas (created using data available from Kaldy 
1997). 
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CHAPTER 4 

CASE STUDIES 

Introduction 

Most existing seagrass models simulate spatially uniform seagrass growth within 

a given area (Fong and Harwell 1994, Burd and Dunton 2001, Madden and MacDonald 

2006). Such models cannot easily deal with spatial variations in growth and propagation, 

which makes it difficult to use them to examine spatial processes such as recovery from 

prop-scar damage and patch dynamics.  A seagrass patch is a small area of seagrass 

surrounded by bare sediments or different species of seagrasses. Natural seagrass 

populations are able to tolerate and recover from moderate disturbances. Recovery from 

extreme disturbances, arising from both natural processes (e.g., erosion, storms and other 

high energy events) and human impacts (propeller scars and blow-outs), is less certain 

and depends on a combination of seedling recruitment and vegetative propagation 

(Duarte and Sand-Jensen 1990). Seedling recruitment is most important for the initial 

colonization of unvegetated areas, which, once colonized, become established and grow 

laterally via the extension of below-ground horizontal rhizomes. However, the natural 

rate of patch formation is low because seedlings have high mortality rates and low 

densities (Duarte and Sand-Jensen 1990). Patch formation has not been measured for 

Thalassia testudinum, but formation rates for Zostera marina are approximately 5 × 10-3 

patches ha-1 y-1 (Olesen and Sand-Jensen 1994).  
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Once a patch has been formed, its growth depends on the clonal nature of the 

plants through their rhizome elongation. Similarly, the rate at which a gap in seagrass 

cover is filled will depend on rhizome elongation.  In this chapter, various case studies 

were examined where spatial dynamics are important and a comparison is made between 

the model results and field measurements obtained from the literature.  

Four classes of case studies were chosen in order to study the effects of 

heterogeneous biomass distributions and rhizome propagation on patch and gap 

evolution.  

1. Random spatial patterns.  

2. Idealized spatial patterns,  

3. Patterns resulting from boat damage.  

These were chosen for the insights they cast on the model behavior and for the amount of 

field data available to compare with model results. Particular attention was given to rates 

and patterns of seagrass recovery and factors contributing to spatial patch dynamics. 

Random Spatial Distributions 

The spatial distribution of biomass within a healthy seagrass bed is not uniform, 

but displays variation arising from diverse factors. For example, changes in sediment 

depth can affect seagrass growth (Zieman et al. 1989), as will distributions of epifaunal 

biomass and sediment sulfide concentrations. The small scale dynamics created by 

inhomogeneity in biomass cannot be examined using traditional models, but can be 

examined using a cellular automata model. Such models can be used to ask questions 

concerning the spatial distributions that arise from purely vegetative propagation.  
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Methods 

To simulate spatial variation in biomass, the initial leaf-biomass for each cell of 

the model was chosen from a normal distribution of given mean and standard deviation. 

An initial mean biomass was chosen (150 and 200 g DW m-2). Any negative values were 

multiplied by -1 to give positive values. Initial biomasses of short-shoot, rhizome and 

root for each cell were then calculated as shown in Chapter 2. Irradiance, calculated from 

the PAR model, and nutrient concentrations were spatially uniform but sulfide 

concentrations were allowed to vary (according to the formulation in Chapter 2).  The 

environmental parameters for the random spatial distribution case studies are summarized 

in the Appendix Table C.  The simulation was run for a period of 5 years.  Results from 

simulations with random initial biomass were compared with field data from Florida Bay.  

Results 

The average modeled biomass reached a quasi steady state within 2-3 years 

(Figure 4.1). The above-ground biomass decreased by over a factor of two, from an initial 

value of 150 or 200 g DW m-2 to a peak steady state value of approximately 60 g DW m-2 

– note that average standing crop of Thalassia in Florida Bay varies from about 30 g DW 

m-2 in the northeastern region of the bay to 125 g DW m-2 in the western region (Zieman 

et al. 1989 and Hall et al. 1999). If an initial average biomass of less than 150 g DW m-2 

was chosen, then the seagrass population died within the 5 years of the simulation.  

Sediment sulfide concentrations also reached a quasi steady state within 2-3 years of the 

simulation with peak values of 800 µM (Figure 4.2), which is consistent with values 

measured in Florida Bay (Carlson et al. 1994). 
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Leaf biomass within cells also reached a quasi steady state. Comparison of the 

biomass within each cell at the end of 3 years with that at the end of 5 years reveals a 

one-to-one relationship for all cases except those with very low biomass at the end of 3 

years (Figure 4.3). Cells with less than approximately 3 g DW m-2 at the end of three 

years were not able to sustain biomass during the following two years.  

The frequency distribution of biomass also changes during the simulation, 

indicating a change in the spatial biomass distributions (Figures 4.4 – 4.7). In all cases the 

initial normal distribution is shifted to lower values and its width is decreased. For an 

initial distribution with a mean leaf biomass of 150 ± 15 g DW m-2 the final distribution 

is approximately normal except for an increase in the frequency of cells having zero 

biomass (Figure 4.4). Broader initial biomass distribution however, show deviations in 

the final biomass distribution from a normal distribution are apparent in both the high and 

the low tails (Figures 4.5 – 4.7).  

Comparison of initial and final within-cell biomass showed the existence of three 

distinct populations (Figure 4.8).  For sufficiently large (in this case, greater than about 

160 g DW m-2) initial within-cell leaf biomass, the final biomass is lower than the initial 

value but related to it in an approximately linear manner. Two populations are evident for 

initial leaf biomass below 160 g DW m-2. The first population is characterized by final 

leaf biomass being less that the initial leaf biomass and the second is characterized by 

final leaf biomass being greater than the initial leaf biomass for that cell.  

The model results using an initial random distribution of above-ground biomass, 

with an average of 150 ± 15 g DW m-2, were compared with those measured at Sprigger 

Bank and Duck Key (Figure 4.9), both sites of the Florida Coastal Everglades Long Term 
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Ecosystem Research Program (data obtained from the Seagrass Ecosystem Research Lab 

website http://serc.fiu.edu/seagrass/!CDreport/DataHome.htm). These two sites were 

chosen because they represent regions of maximum and minimum seagrass standing 

stock in the Bay and long time-series are available for both sites.  The comparison of 

simulated leaf biomass with field measurements from Florida Bay shows that leaf 

biomass at Sprigger Bank and Duck Key bracket the quasi steady state biomass given by 

the model (Figure 4.10). Seasonal changes in biomass at the two sites and the model do 

not always agree, possibly indicating variation in an environmental parameter affecting 

plant growth.  In 1995-1996, the model predicts a peak in biomass, but the data from both 

Sprigger Bank and Duck Key show a minimum. However, in 1994-1995, the peak in the 

model biomass corresponds to a minimum at Sprigger Bank and is close to a maximum at 

Duck Key.  

Discussion 

These results indicate that model transients last for approximately 2 years, but that 

after 3 years, quasi steady state conditions hold. The quasi steady state is determined by 

environmental conditions (such as irradiance and nutrient concentrations) rather than the 

initial conditions (this can be seen in Figure 4.1 where different initial biomasses result in 

almost the same quasi steady state).  The seagrass biomass decline observed with an 

initial biomass of less than 150 g DW m-2 indicates that the model works toward some 

ratio of biomass values that is slightly different than our initializing conditions.  These 

values are influenced by the processes included in the model and the parameters that 

represent them.  This suggests that any major conclusions drawn from the model behavior 
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should be taken from the activity of the model following the first two years after this 

stabilization has occurred.    

The shift in frequency distribution of biomass might also indicate that the relative 

patchiness of the biomass distribution matters.  Further examination of frequency 

distributions of the specified neighborhoods surrounding cells of interest may provide an 

explanation.      

Model results also indicate that the more spatially uniform a distribution of 

biomass is, the more stable the seagrass bed is. This could have consequences for re-

planting, where the aim would be to have a uniform distribution of seedlings or transplant 

units. In replanting studies, a success rate of 68% in 15 months was achieved using a 

uniform spatial distribution of one transplant every 20 cm (Ehrlinger and Anderson 

2002).  Similarly, research has shown that the more short shoots present on a transplanted 

plant fragment, the greater the survival of the transplant (Tomasko et al. 1991). 

The magnitude of the modeled leaf biomass is consistent with the monitoring data 

indicating that our model is appropriately capturing the general behavior of the plant 

biomass.  However, the model results exhibit a slight delay in the peaks of leaf biomass 

when compared with data from the monitoring sites (Figure 4.10).  This may indicate the 

need for more modification of the model, possibly by incorporating a seasonality, in the 

values of parameters for processes such as resource allocation.          

Idealized Patterns 

The spatial distribution of seagrass biomass is determined largely by the 

vegetative production of the below ground tissues. For example, Burd and Dunton (2001) 

showed the importance of the rhizomes for recovery of Halodule wrightii after 
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prolonged, chronic light limitation. In addition, it is known that the rate at which a newly 

formed patch increases in size is determined in part by the elongation and branching rates 

of rhizomes (Vidondo et al. 1997 and Marbà and Duarte 1998).  

The seagrass model implemented here does not incorporate the structure of the 

rhizomes, but instead models their propagation as a linear advance dependent on resource 

translocation from existing seagrass tissue. In this case, one would expect that the rate of 

increase in coverage would depend on the linear dimensions of the coverage gap being 

filled, as well as its shape. In particular, the number of vertices will be important. This is 

because at a corner, more cells can contribute to the propagation of rhizomes into the gap. 

The consequences of this simplification need to be examined. To do that, a series of 

simulations were performed with initial conditions chosen to represent gaps and patches 

having known, simple geometries.   

Methods 

As previously stated, these simulations were run for five years with an initial 

uniform distribution of leaf biomass of 150 g DW m-2. The environmental parameters for 

the idealized patterns case studies are summarized in the Appendix Table D-G.  A series 

of initial gap and patch geometries were set up and are summarized in Tables 4.1 – 4.4 

and Figures 4.11 and 4.12. Within the overall grid, patches or gaps of varying sizes were 

created using rectangles, squares and multi-sided polygons.  The different gap sizes and 

shapes were selected to examine both the difference in perimeter-to-area ratio and the 

influence of multiple corners on seagrass propagation.  For gap geometries, an area of 

zero biomass was created in the initial biomass distribution. For patch geometries, a 

region of uniform leaf biomass (of 150 g DW m-2) was created, with the remaining grid 
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cells containing zero biomass. Changes in seagrass coverage were calculated using 

changes in rhizome biomass only, not above ground biomass, because we are only 

interested here in coverage changes resulting from vegetative propagation.  

Results 

The rate at which gaps are filled as a function of the perimeter-to-area ratio is 

shown in Figure 4.13. There is an approximately linear relationship between the gap 

perimeter-to-area ratio and the proportion of the gap area filled in during the simulation.  

The effect of varying the shape of the gap was inconclusive. The fill-in rate for 

the 20-sided polygon was the same as that of a rectangle having the same perimeter-to-

area ratio (Table 4.2). However, the fill-in ratio for these two shapes is greater than that 

expected from the regression relationship. Curiously, the fill-in rate for a 12-sided 

polygon has a lower than expected fill-in rate.  

Contrary to our expectations, there was no clear relationship between the number 

of corners that a gap possessed and the fill-in rate of that gap. For example, cases B and C 

in Table 4.2 have the same perimeter-to-area ratio and rhizome fill-in rate but different 

numbers of corners and different leaf fill-in rates. For both these cases, the rhizome fill-in 

rate was faster than expected. However, case D in Table 4.2 has more corners than a 

simple quadrilateral, but has a lower than expected rhizome fill-in rate (Figures 4.14 – 

4.15). 

The evolution of patches followed a similar pattern to the fill-in of gaps in the 

seagrass distribution (Tables 4.3 and 4.4 and Figures 4.16 and 4.17). Both leaf and 

rhizome coverage increased with increasing perimeter-to-area ratio, but with the increase 

in leaf coverage being lower than that of the rhizomes (Table 4.3). As with the gap fill-in 
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rate, the rectangle and polygon with identical perimeter-to-area ratios (cases B and C, 

Table 4.4) had the same increase in rhizome coverage, but the rectangle had a smaller 

increase in leaf coverage.  

Discussion 

In examining the results from the idealized pattern runs, the model behaves as 

would be expected given the way in which rhizome propagation has been represented 

although we are unable to explain all of the observed results. Colonization from one cell 

to another occurs, for the most part, along the edges of the cell, and at a constant rate.  

Patches and gaps with a greater perimeter:area ratio generally exhibited faster 

colonization.  This correlates with observation in temperate seagrass species in Australia 

(Kendrick at al. 1999).  Additional analysis could be conducted over the temporal scale of 

the simulations to analyze the change in perimeter:area ratio as the simulation progresses 

and to see if that, in turn, correlates to any variation in propagation.  Corners and vertices 

in the patch or gap geometry produce faster colonization rates because of the larger 

number of neighboring cells that can contribute to the colonization. This simple 

representation of rhizome propagation adequately captures the geometry of the rhizome 

network for Thalassia testudinum. 

Patterns of leaf fill-in of gaps lag behind those of the rhizomes (Figures 4.14 and 

4.15). This is most evident in cases with more complex geometry (Figure 4.15). The 

reason for this is that the plant must first colonize a region with below-ground material 

before building above ground material.  

Although our analysis looked at varying geometries, the focus was placed on 

polygons with 90°angled vertices.  To expand this analysis, various other shapes could be 
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incorporated, such as circles and triangles. Following these lines may lead to more 

conclusive results in terms of what parameters of patch or gap shapes have the largest 

impact for propagation.  

Motor Vessel Injuries 

Motor vessel injuries such as propeller scarring and the more serious blow-out, 

are the most common form of human disturbance to seagrass beds. Whitfield and 

colleagues (2004) made observations of a large-scale disturbance that occurred in a 

mixed species (Thalassia and Syringodium) seagrass bed in Red Bay Bank in southwest 

Florida Bay.  A 7200 m2 ‘blowhole’ was created when a tugboat ran aground in the bed, 

completely destroying the above- and below-ground seagrass community structure.  The 

perimeter of the initial injury was mapped in May 1993 and a follow-up was conducted in 

January 1998 (Figure 4.18). During the recovery a succession of seagrass species typical 

for tropical regions was observed: Syringodium made up approximately 7.1% of the 

recovery propagating into the injured regions during those 4.8 years, while Thalassia 

only accounted for 5.9% of the seagrass recovery.  The remainder of the recovery area 

was colonized by various forms of macro-algae (Whitfield et al.  2002).   

Propeller scars are more common than large-scale damage caused by motor boats. 

Although little published information exists for incidence and recovery rates of propeller 

scarring in Florida Bay, some information does exist for nearby Tampa Bay, Florida 

(Dawes et al. 1997). Initial injuries to Thalassia testudinum beds were rectangular in 

shape and approximately 5 m x 1.25 m in size.  Recovery into these injuries was found to 

take 1.7 to 7.3 years with a mean recovery rate of 3.5 years, where recovery was defined 

as re-growth to average densities of the surrounding standing crop (Dawes et al. 1997).   
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In this series of simulations, initial conditions were set up to represent typical 

prop-scar damage (Dawes et al. 1997) and the blowout examined by Whitfield et al. 

(2004). The aim was to examine if the model could replicate some of the large-scale 

features of seagrass recovery from these events. Of particular interest is whether or not 

environmental parameters (such as nutrient and sulfide concentrations) can significantly 

alter the recovery rates. This is important because we know that phosphorus is the 

limiting nutrient for seagrasses in Florida Bay, and from the model sensitivity tests we 

know that the model is highly sensitive to the phosphorus concentration. 

Methods 

Initial conditions were created for a blowhole that had a similar size and shape as 

that observed by Whitfield et al. (2004) (Figure 4.19). The region surrounding the 

blowhole was assumed to be unaffected by the disturbance and contained healthy plants. 

Average phosphorus concentrations in the region during this time varied between 0.2 µM 

and 0.4 µM (Boyer et al. 1997). To represent this, various simulations were run with 

either spatially constant phosphorus concentrations, or spatially random concentrations 

chosen from a normal distribution (parameters summarized in Table 4.5 and 4.6, and 

Appendix Table H).  If random numbers were generated less than zero, the absolute value 

was used. 

To simulate recovery from propeller scarring, initial biomass (150 g DW m-2) 

distributions were created containing rectangular gaps of length 10 m and width 2 m. 

These gaps were twice as wide as observed propeller scars. This was done because the 

spatial resolution of the model was only 1 m and rhizome propagation rates would require 
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that re-growth would occur immediately from both sides of the scar if the dimensions 

were 10 m by 1 m.  

Simulations were run for five years. Sulfide and phosphorus concentrations were 

either constant or allowed to vary spatially, with phosphorus concentrations chosen from 

the range measured by Boyer et al. (1997). The environmental parameters for the prop 

scar case studies are summarized in the Appendix Table I.  The damage caused by motor-

vehicle damage can also increase sediment sulfide concentrations by suddenly removing 

the above-ground biomass. The below-ground biomass is no longer supported and can 

die; releasing dissolved organic carbon into the sediments that can in turn fuel microbial 

production of sulfide. To mimic this process, we varied background sulfide 

concentrations in the propeller scarring simulations. 

Results 

Recovery of Thalassia into the simulated blowhole depended on the phosphorus 

concentration (Table 4.5, Figure 4.20). Rhizome recovery coverage was always greater 

than leaf recovery coverage, though for case A (Table 4.5), the difference was slight. 

Rhizome coverage always increased, with increases ranging from 6.5% to 19.9%. 

Changes in leaf coverage on the other hand were both positive and negative, with loss of 

leaf coverage occurring for phosphorus concentrations of 0.3 µM and lower.  

Recovery of both rhizome and leaf coverage was increased if the phosphorus 

concentration was spatially variable (compare cases A – C in Table 4.5). Indeed, variable 

phosphorus concentrations produced greater recovery than cases with constant 

phosphorus concentrations (compare cases A and C, Table 4.5). Leaf coverage recovery 

of 6.5%, similar to that observed by Whitfield et al. (2004), was obtained using a 
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spatially variable phosphorus concentration with mean value of 0.3125 µM (case G, 

Table 4.5). 

The results for the propeller scarring simulations are summarized in Table 4.6.  At 

constant high nutrient concentrations (0.375 µM) full rhizome recovery occurred but no 

leaf recovery took place after 5 years (case A, Table 4.6).  However, when the nutrient 

concentration was allowed to vary spatially, full recovery of both above- and below-

ground biomass was observed after 5 years (cases B and C, Table 4.6).   

High background sulfide concentrations affected the plant recovery. For initial 

background sulfide concentrations greater than 4000 µM, there was a full recovery of 

both rhizome and leaf coverage, but the biomass densities did not recover to that of the 

surrounding region, as they had for lower sulfide concentrations (cases G and H, Table 

4.6).  

Discussion 

The simulations of motor vessel injuries demonstrated that the model can give 

estimates of gap behavior in seagrass beds with realistic time scales.  The model 

possesses the ability, using the parameters it was developed with, to provide rough 

estimates of recovery into these regions using vegetative propagation.  Propeller scar 

simulations showed that full recovery took place within the five years, which is consistent 

with the mean recovery rate of 3.5 years observed by Dawes et al. (1997).  This indicates 

that the method we have selected for modeling Thalassia propagation is accurate at the 

same spatial and temporal scales that are observed in nature.   
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Conclusion 

The development of this model was a proof-of-concept project to see if a cellular 

automaton could be used to simulate the spatial evolution of a seagrass bed. It is difficult 

to incorporate processes leading to spatial dynamics in traditional seagrass unit models 

(e.g., Burd and Dunton 2001), which predict spatially uniform biomass densities. This is 

because the processes giving rise to spatial variation (such as vegetative propagation and 

resource translocation) are not easily translated into rates per unit area as would be 

required in these models.  It would be possible to add a diffusive term to these traditional 

models to represent spatial growth, however solving these models would require 

numerically solving the resulting reaction-diffusion equations. Using a cellular automaton 

for below-ground vegetative propagation incorporates spatial processes without resorting 

to sophisticated numerical approaches. The simulations reported in this chapter were 

designed to test the capabilities of the cellular automata approach, and to suggest 

improvements and alternative approaches.  

Spatial dynamics within a seagrass bed arises from two sources: environmental 

processes such as variations in sediment depth or spatial variation in nutrient 

concentrations, and plant-related processes such as seed dispersal and rhizome 

elongation. This model, and the test cases examined in this chapter, concentrates on 

rhizome elongation and variations in nutrient concentration.  

The model was parameterized for the general region of Florida Bay. This region is 

relatively oligotrophic in the eastern part of the bay (e.g., Duck Key) which is 

characterized by low seagrass biomass densities, and high seagrass biomass occurring in 

the central and western regions of the bay (Boyer et al. 1999 and Hall et al. 1999). Clear 
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sky irradiance was calculated for the latitude of the bay, and typical nutrient 

concentrations found within the bay were used in the model. Given this, the model 

predicts quasi steady state seagrass biomass densities that fall between the high values 

measured at Sprigger Bank and the low values of Duck Key. Interannual variations could 

not be modeled because neither surface nor underwater irradiance is regularly measured 

in the region and such measurements are crucial for model validation (Burd and Dunton 

2001). What is more, the quasi steady state appears to be robust to variations in the initial 

biomass.  

Additional factors, apart from irradiance, would be needed to make the model 

applicable to specific regions of Florida Bay. It is known that seagrass distributions in the 

bay reflect changes in sediment depth, with shallow sediments in the eastern region 

preventing extensive stable seagrass meadows from being established (Zieman et al. 

1989). Phosphorus concentrations also vary spatially and temporally throughout the Bay 

(Boyer et al. 1999), with lower concentrations in the eastern part of the bay. As discussed 

in Chapter 3, the model is sensitive to the parameter values used to represent phosphorus 

uptake kinetics. Values for these parameters that have been measured in mesocosm 

experiments are higher than ambient phosphorus concentrations in the bay, and 

consequently lead to mortality when used in simulations. If ambient phosphorus 

concentrations vary across the bay, then it is also possible that values of the uptake 

parameters also vary and this would need to be taken into account in any model that 

aimed to accurately represent seagrass productivity in the bay. 

The distribution of leaf-biomass per cell in the quasi steady state is not a normal 

distribution. Initializing the model with a normal distribution of within-cell biomass 
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resulted in non-normal distributions with lower means. The lower mean reflects the lower 

sustainable biomass in the quasi steady state and the larger number of cells that have zero 

biomass leading to a non-normal distribution in the quasi steady state.  

The quasi steady state biomass distributions also show deviations from a normal 

distribution at the high biomass end. This is particularly evident when the initial 

distribution was broad (e.g. Figure 4.7). Broad distribution of biomass initially would 

contain more cells within the high biomass range.  Given this, it would be expected that 

these cell would lead to more cells after the five year simulation remaining with a higher 

biomass value.  However, the final biomass distribution has fewer than expected cells 

with high biomass. This could indicate that individual cells lose biomass at rates that 

depend on the amount of biomass in the cell. For example, biomass in one cell interacts 

with its neighboring cells through self-shading of leaf biomass and through resource 

translocation and rhizome propagation. It is therefore unclear what determines the final 

steady state biomass distribution, and ultimately it may depend on the properties of the 

neighboring regions. 

A similar conundrum is apparent when the initial and final within-cell biomasses 

are plotted against each other (Figure 4.8). There are apparently two distinct populations 

that both have low initial biomass (< 150 g DW m-2). For one group, the within-cell 

biomass decreases, in many cases to zero. However, within-cell biomass increases for the 

other group. Again, interactions between the biomass of one cell and its neighbors might 

explain this. For example, a cell with low initial biomass that is surrounded by cells with 

high biomass would be colonized by its neighboring cells.  However, a plot of initial 

within-cell biomass against the sum of the biomass in surrounding cells does not show 
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any pattern that might explain the difference between these populations (Figure 4.22); 

therefore, further examination would be required to establish the relationship, if any.   

The simulations of idealized spatial patterns provide an indication of patch growth 

and gap fill-in rates in the model. In particular, these model simulations show the 

importance of patch and gap geometry.  Through testing various shapes, it was shown 

that corners and vertices in the patch or gap geometry produce faster colonization rates 

because of the larger number of neighboring cells that can contribute to the colonization.  

Seagrass rhizomes form a branched network with a rate of horizontal growth that 

varies considerably between species. For example, rhizomes of Posidonia oceanica grow 

at rates of only a few centimeters a year, whereas those of Halophila ovalis can grow at 

more than 5 m per year (Duarte 1991 and Marbà and Duarte 1998). This range in rates 

also affects the rate of production of new shoots and above-ground material, because the 

below-ground structure must be in place before the plant can produce new above-ground 

material. The rate at which seagrass rhizomes branch also varies widely between species: 

Heterozostera tasmanica branches every four nodes whereas Thalassia testudinum has, 

on average, one branch every 1600 nodes, i.e. approximately every 20 m, (Hemminga 

and Duarte 2000). In general, smaller seagrasses tend to have higher branching rates and 

consequently are more able to rapidly colonize regions (Marbà and Duarte 1998 and 

Duarte 1991).  

Given the slow rate of rhizome branching in Thalassia testudinum, the modeled 

approximation of a linear expansion of the below-ground tissue is probably reasonable. 

However, this representation does neglect the relationship between above- and below-

ground structures, so the assumption of a constant rate of expansion may not be correct. 
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Vertical shoots producing leaves are only formed at discrete spatial intervals along the 

rhizome (the plastochrone interval) and this interval varies between species.  Rhizomes 

grow faster when colonizing unvegetated areas than when growing within a seagrass bed. 

This is not taken into account in the model because explicit rhizome growth only occurs 

when cells are colonizing other cells and does not occur within the cell.  Rhizome 

biomass does increase within the cell, but each plant is not explicitly represented and so 

lateral growth of an individual rhizome is not modeled. 

The representation of rhizomes through biomass only could be a problem when 

trying to model the growth rates of patches. Seagrass patches are known to grow at an 

accelerating rate with the number of shoots in a patch increasing with the elapsed time (t) 

according to t2.3 (Vidondo et al. 1997). However, the model presented here would predict 

a linear increase in rhizome coverage. To see this, consider a square patch of seagrass 

with sides of length L (L >> 1) and the lateral increase in rhizome coverage of 1 unit per 

year (e.g., one cell per year). Then, after N years, the total coverage, C, would be  

! 

C = L
2

+ 4 (L + n)
n=1

N

"  

For large patches (L much larger than the annual lateral increase) C increases 

approximately linearly with time (n). However, for small patches (L similar in size to the 

annual lateral increase), C is a non-linear function of time (n).  

Alternatives to the cellular automata may provide more realistic propagation of 

rhizomes. Individual-based-models (Haefner 1996), which represent the growth of 

individual clones within the seagrass bed, could be parameterized using rhizome 

branching and variable rhizome propagation rates. Such a model could also make explicit 

connections between the above- and below-ground structures of the seagrass meadow.  
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Given the nature of this project, the cellular automata model is able to 

approximate spatial patterns of seagrass propagation.  Propagation rates and biomass 

values determined from these case studies are within realistic magnitude both spatially 

and temporally.  Additionally, it is useful for investigating areas where our knowledge 

needs to be improved. 
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Table 4.1: Simulation results for model runs examining the influence of the perimeter-to-

area ratio on gap fill-in rates. 

Number 
of Gaps 

Gap 
Dimensions 

 

Initial 
Total Gap 
Size (m2) 

Final  
Total Gap 
Size (m2) 

Change in 
Total Gap 
Size (m2) 

Perimeter 
(m) 

P:A ratio 
(m-1) 

1 40m x 40m 1600 1444 156 160 0.1 
1 30m x 30m 900 784 116 120 0.133 
2 45m x 10m 900 688 212 220 0.244 
9 10m x 10m 900 576 324 360 0.4 

22 10m x 4m 880 352 528 616 0.7 
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Table 4.2: Simulation results for model runs examining the effect of shape on the gap fill-
in rate.  All initial gaps are 100m2 in area. 
Model 

ID 
Size/Shape P:A 

ratio 
(m-1) 

Final gap 
size (m2)-
Rhizome 

Final gap 
size (m2)- 

Leaf 

Change in 
Gap (m2)- 
Rhizome 

Change in 
Gap (m2)- 

Leaf 
A Square (10m x 10m) 0.4 64 100 36 0 
B Rectangle(25m x 4m) 0.58 46 100 54 0 
C 20-sided polygon 0.58 46 80 54 20 
D 12-sided polygon 0.6 54 88 46 12 
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Table 4.3 Simulation results for model runs examining the spread of rhizome and leaf 
biomass radiating from a central square patch of seagrass in the center of the grid. Initial 
and final areas are given as the areas that contain no biomass (hence B=0). 

Patch Size 

Patch 
Area 
(m2) 

P:A 
ratio 
(m-1) 

Initial 
(m2) 
B=0 

Final 
Rhizome 

(m2)  
B=0 

Final 
Leaf 
(m2) 
B=0 

Change 
Rhizome 

(m2) 

Change 
Leaf 
(m2) 

30m x 30m 900 0.133 9100 8976 9088 124 12 
9(10m x 10m) 900 0.4 9100 8704 8992 396 108 
22(10m x 4m) 880 0.7 9120 8416 8856 704 264 
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Table 4.4  Simulation results for model runs examining the spread of rhizome and leaf 
biomass radiating from various shapes of seagrass placed at the center of the grid.  All 
initial patches are 100m2; initial area with zero biomass is 9900 m2. 
Size/Shape P:A 

ratio 
(m-1) 

Final 
Rhizome 
(m2)  B=0 

Final Leaf 
(m2)  B=0 

Change in 
Gap (m2) 
Rhizome 

Change in 
Gap (m2) 

Leaf 
Square (10m x 10m) 0.4 9856 9888 44 12 
Rectangle (25m x 4m) 0.58 9838 9888 62 12 
20-sided polygon 0.58 9838 9864 62 36 
12-sided polygon 0.6 9846 9876 54 24 
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Table 4.5:  Simulation results from model runs examining the effect of varying 
phosphorus concentrations (µM) on the recovery of Thalassia into a large-scale boat 
propeller blowout.    
Model ID Initial gap 

size (m2) 
Final 

rhizome gap 
(m2) 

Final leaf 
gap (m2) 

Change in 
rhizome gap 

area (%) 

Change in 
leaf gap 
area (%) 

P 
concentration 

(µM) 
A 7279 5834 5850 19.9 19.6 0.35 ± 0.1 
B 7279 7279 16384 0 -125 0.35 
C 7279 6807 7255 6.5 0.3 0.375 
D 7279 6750 13129 7.3 -80.4 0.25 ± 0.1 
E 7279 6491 7690 10.8 -5.6 0.3 ± 0.1 
F 7279 6331 6446 13.0 11.4 0.325 ± 0.1 
G 7279 6352 6807 12.7 6.5 0.3125 ± 0.1 
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Table 4.6: Simulation results for model runs examining the effect of varying phosphorus 
concentrations (µM) and sediment sulfide concentrations (µM) on the recovery into a gap 
in a seagrass bed. 

Model Run ID Change in leaf 
area (m2) 

Change in 
rhizome area (m2)  

Sulfide 
Concentration 

(µM) 

P concentration 
(µM) 

A 0(gap remained) 20 0 0.375 
B 20 20 0 0.375 ± 0.1 
C 20 20 0 0.3125 ± 0.1 
D 20 20 0 0.4 
E 20 20 1000 0.4 
F 20 20 2000 0.4 
G 20* 20* 4000 0.4 
H 20* 20* 6000 0.4 

*Filled in the entire gap, but does not reach the same density as surrounding area
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Figure 4.1:  Model results of above-ground biomass over a five year period using two 

different initial conditions: 150 ± 30 g DW m-2 (red curve) and 200 ± 40 g DW m-2 (blue 

curve). The modeled biomass reaches a quasi steady state in the third year of the 

simulation. 
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Figure 4.2: Graph showing the median sediment sulfide concentration (µM) reaching 

steady state after 3 years.   
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Figure 4.3: The relationship between the leaf biomass at the end of three years and at the 

end of five years (blue dots). The red line represents a least squares fit to the data 

(including zero data points)  and the black dashed line is the one-to-one line.  
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Figure 4.4:  Frequency distribution of leaf biomass in each cell within the grid. The initial 

distribution (blues bars) was imposed and was a normal distribution with biomass of 150 

± 15 g DW m-2. The final distribution (red bars) is the one obtained after the model was 

run for 5 years. The final distribution for leaf biomass greater than 0 can be fit to a 

normal distribution with a mean of 22.5 (22.3, 22.7) g DW m-2 and standard deviation of 

9.3 (9.2, 9.4) g DW m-2 (numbers in parentheses represent the 95% confidence interval).     
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Figure 4.5: Frequency distribution of leaf biomass in each cell within the grid. The initial 

distribution (blues bars) was imposed and was a normal distribution with biomass of 150 

± 30 g DW m-2. The final distribution (red bars) is the one obtained after the model was 

run for 5 years. The final distribution for leaf biomass greater than 0 can be fit to a 

normal distribution with a mean of 32.5 (32.3, 32.8) g DW m-2 and standard deviation of 

16.4 (16.1, 16.6) g DW m-2 (numbers in parentheses represent the 95% confidence 

interval).      
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Figure 4.6: Frequency distribution of leaf biomass in each cell within the grid. The initial 

distribution (blues bars) was imposed and was a normal distribution with biomass of 150 

± 45 g DW m-2. The final distribution (red bars) is the one obtained after the model was 

run for 5 years. The final distribution for leaf biomass greater than 0 can be fit to a 

normal distribution with a mean of 38.5 (38.0, 39.0) g DW m-2 and standard deviation of 

23.5 (23.1, 23.8) g DW m-2 (numbers in parentheses represent the 95% confidence 

interval).      
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Figure 4.7: Frequency distribution of leaf biomass in each cell within the grid. The initial 

distribution (blues bars) was imposed and was a normal distribution with biomass of 200 

± 40 g DW m-2. The final distribution (red bars) is the one obtained after the model was 

run for 5 years. The final distribution for leaf biomass greater than 0 can be fit to a 

normal distribution with a mean of 41.4 (40.7, 42.1) g DW m-2 and standard deviation of 

32.3 (31.8, 32.7) g DW m-2 (numbers in parentheses represent the 95% confidence 

interval).      
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Figure 4.8: The relationship between initial and final leaf biomass and after a five year 

simulation with an initial above-ground biomass of 200 ± 40 g DW m-2. Each circle 

represents the leaf biomass contained within a single cell of the model grid. Red circles 

show those cells for which the final biomass is greater than the initial biomass, and blue 

circles depict cells for which the final biomass is lower than the initial biomass. 
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Figure 4.9 The two sites that were selected for model comparison [TS/Ph 9-Duck Key- 
and TS/Ph 11-Sprigger Bank] located within Florida Bay 
(http://serc.fiu.edu/seagrass/!CDreport/DataHome.htm) 
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Figure 4.10: Comparison of the model leaf biomass (blue) with field measurements from 

Sprigger Bank (green) and Duck Key (red).  
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Figure 4.11   Initial Spatial Distribution of seagrass biomass within the model domain. 

White areas represent Biomass = 0. 

A.) 30 m by 30 m square gap (900 m2).  Perimeter to Area ratio of 0.133.                       

B.) 2- 45 m by 10 m rectangular gaps (900 m2).  Perimeter to Area ratio of 0.244.  

C.) 9- 10 m by 10 m square gaps (900 m2).  Perimeter to Area ratio of 0.400. 

D.) 22- 10 m by 4 m square gaps (880 m2).  Perimeter to Area ratio of 0.700. 

A B 

C D 
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Figure 4.12 Initial Spatial Distribution of seagrass biomass within the model domain 

(refer to Table 4.2).  White areas represent Biomass = 0. 

A.)  10m x 10m with a Perimeter to Area ratio of 0.40. 

B.)  25m x 4m with a Perimeter to Area ratio of 0.58. 

C.)  20-sided polygon with a Perimeter to Area ratio of 0.58. 

D.)  12-sided polygon with a Perimeter to Area ratio of 0.60. 

A B 

C D 
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Figure 4.13    The effect of the perimeter to area ratio of the seagrass gap to the rate of 

fill into the gap after five years.  (y = 83.411x + 2.1121   R2 = 0.9986) 
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Figure 4.14:  Final spatial distribution of seagrass biomass, leaf (left hand frames) and 

rhizomes (right hand frame) after 5 years for initial conditions A (top row) and B 

(bottom row) from Table 4.2.  The red cells represent areas with biomass from 1 to 50 

g DW m-2, the orange cell represent areas with biomass from 50-100 g DW m-2.

A.) 

A 

B 
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Figure 4.15:  Final spatial distribution of seagrass leaf (left hand frames) and rhizome 

(right hand frames) biomass after 5 years for initial conditions C (top row) and D 

(bottom row) from Table 4.2.  The red cells represent areas with biomass from 1 to 50 

g DW m-2, the orange cell represent areas with biomass from 50-100 g DW m-2.

C 

D 
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Figure 4.16: Final spatial distribution of seagrass leaf (left hand panels) and rhizome 

(right hand panels) biomass after 5 years of simulation for patch evolution cases A and 

B (Table 4.4).  The red cells represent areas with biomass from 1 to 50 g DW m-2, the 

orange cell represent areas with biomass from 50-100 g DW m-2. 

A 

B 
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Figure 4.17: Final spatial distribution of seagrass leaf (left hand panels) and rhizome 

(right hand panels) biomass after 5 years of simulation for patch evolution cases C and 

D (Table 4.4).  The red cells represent areas with biomass from 1 to 50 g DW m-2, the 

orange cell represent areas with biomass from 50-100 g DW m-2.

C 

D 
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Figure 4.18  Two perimeters mapped from the large-scale study shortly after the boat 

grounding occurred in May 1993 (area ~7300 m2) and 4.8 yr later, when the site was 

sampled for presence of Thalassia testudinum seedlings in January 1998 (area ~1560 m2). 

White area indicates recovery by Syringodium filiforme and gray area represents the 

remaining unrecovered area. Sample locations are indicated inside the January 1998 

Perimeter.  (From Whitfield et al. 1994) 
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Figure 4.19:  Initial spatial distribution of seagrass biomass showing the gap created by 

the boat grounding documented in Whitfield et al. (2004).   An attempt was made to 

capture the geometry as best possible when converting from real-world to the square grid 

model domain. The white region represents zero biomass above- and below-ground; the 

yellow region represents biomass of 150 g DW m-2.  
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Figure 4.20:  Final biomass distribution of rhizome after various simulations. (See 

Table 4.5 for details of conditions (A and B))  The colors represent different biomass 

categories: White = 0 g DW m-2, Red = 1-50 g DW m-2, Orange = 50-100 g DW m-2, 

Yellow = 100-150 g DW m-2, Green 150-200 g DW m-2, Turquoise 200-250 g DW m-

2, Blue 250-300 g DW m-2.  

A.) 

B.) 
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Figure 4.20 (cont’d) Final biomass distribution of rhizome after various simulations. 

(See Table 4. 5 for details of conditions (C and D)) The colors represent different 

biomass categories: White = 0 g DW m-2, Red = 1-50 g DW m-2, Orange = 50-100 g 

DW m-2, Yellow = 100-150 g DW m-2, Green 150-200 g DW m-2, Turquoise 200-250 

g DW m-2, Blue 250-300 g DW m-2.  

C.) 

D.) 
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Figure 4.20 (cont’d) Final biomass distribution of rhizome after various simulations. 

(See Table 4. 5 for details of conditions (E and F)) The colors represent different 

biomass categories: White = 0 g DW m-2, Red = 1-50 g DW m-2, Orange = 50-100 g 

DW m-2, Yellow = 100-150 g DW m-2, Green 150-200 g DW m-2, Turquoise 200-250 

g DW m-2, Blue 250-300 g DW m-2.  

E.) 

F.) 
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Figure 4.20 (cont’d) Final biomass distribution of rhizome after various simulations. 

(See Table 4. 5 for details of conditions (G)) The colors represent different biomass 

categories: White = 0 g DW m-2, Red = 1-50 g DW m-2, Orange = 50-100 g DW m-2, 

Yellow = 100-150 g DW m-2, Green 150-200 g DW m-2, Turquoise 200-250 g DW m-

2, Blue 250-300 g DW m-2.  

 
 
 
 
 
 

G.) 
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Figure 4.21  Initial spatial distribution of seagrass biomass in the model grid showing a 

simulated prop scar (10m x 4m).  The white region represents zero biomass above- and 

below-ground; the yellow region represents biomass of 150 g DW m-2.  
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Figure 4.22: Scatter plot of initial leaf biomass of an individual cell against total leaf 

biomass in surrounding cells for the simulation with initializing biomass 200 ± 40 g DW 

m-2.  The red circles represent those values for which, after a 5 year model run, the final 

biomass is greater than the initial biomass. 
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CHAPTER 5 

DISCUSSION 

Summary 

Seagrasses are important in coastal ecosystems (Zieman and Wetzel 1980). Through their 

complex root systems, they stabilize sediments (Fonseca and Fisher 1986), while their above-

ground components provide food and shelter for a wide range of organisms (Larkum et al. 1989 

and Phillips and McRoy 1980). They also play an important role as nurseries for juveniles of 

species from surrounding habitats (Heck et al. 2003).    

Declines in seagrass populations globally have caused concern among managers of 

coastal marine systems (Short and Wyllie-Echeverria 1996).  They have also highlighted the 

need for good management tools, among which will be models.  For example, Bortone (2000) 

noted that there is a need for a connection between monitoring programs, current research and 

modeling efforts.   

Florida Bay is a prime target for research as it hosts a variety of important marine 

habitats: coral reefs, mangrove islands, and most importantly, seagrass beds.  The dominant 

species of seagrass throughout Florida Bay is Thalassia testudinum, also known as turtle grass, 

with Halodule wrightii, Syringodium filiforme and Ruppia maritima also present in many 

locations.  The environmental monitoring of seagrass sites within Florida Bay makes it an ideal 

location for model development.  The natural beauty of Florida Bay makes it a recreational 

boating destination, which also increases the vulnerability of seagrass beds to significant losses 

resulting from motor boat damage.  Other, large-scale losses of seagrasses experienced in the 
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Bay have been connected to a variety of stressors, both natural and anthropogenic (Robblee et al 

1991).   

Most models of seagrass production focus on primary production. A few have included 

nutrient uptake (Zimmerman et al 1987) and some later models include simplified descriptions of 

resource allocation and below-ground production (e.g., Burd and Dunton, 2001). However, these 

models do not explicitly incorporate spatial dynamics and propagation of plants, and are usually 

constrained by the lack of information on resource allocation.    

Seagrass propagation occurs mainly through vegetative propagation of the below-ground 

tissue. This means that resource allocation within the plant is important, because production of 

new below-ground biomass must come from primary production. The complex interplay between 

above and below-ground biomass, production and resource allocation has been demonstrated in 

observations of Halodule wrightii during prolonged stress resulting from light limitation (Burd 

and Dunton, 2001). However, few measurements have been made of either below-ground 

production or resource allocation in other species, particularly Thalassia testudinum.  

Cellular Automata are rule-based models that do not use differential equations to describe 

the spatial dynamics of the system. They have been successfully used in models of forests, 

erosion, and population dynamics (Schlicht and Iwasa 2006, Rammig et al. 2006 and 

D'Ambrosio et al. 2001). Without a firm knowledge of the mechanisms involved in resource 

allocation and spatial propagation of seagrasses, a rule-based description is potentially a good 

approach. Similar approaches have been used in studies of terrestrial plant distributions 

(Silvertown et al. 1992, Schwinning and Parsons 1996) and more recently introduced in the field 

of seagrass propagation (Giusti and Marsili-Libelli 2005).  This project was developed as a 
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proof-of-concept to show that we can devise reasonable rule-based descriptions of spatial 

propagation in seagrasses.  

An important use of models is to identify areas where our knowledge does not allow for 

accurate predictions to be made. In this case, through our sensitivity analysis we have identified 

two such areas: phosphorus uptake kinetics and plant resource allocation.  Through our 

implementation of the Monod kinetics, we were able to determine that our model is particularly 

sensitive to the experimentally derived Km values.  Other more simplified approaches to nutrient 

modeling exist, such as the approach used by Fong and Harwell (1994), in which the model was 

parameterized with optimum growth occurring under specified nutrient regimes and reduced 

growth at any sub-optimal levels. However, the use of Monod kinetics is able to capture more 

dynamics within the system, which is a main objective of this model and the reason for the 

continued use of the Monod method.  Additional field studies of nutrient uptake kinetics at 

nutrient concentrations experienced in-situ may lead to more certainty in the selection of the 

method for modeling nutrient limitation in addition to the values chosen for the half-saturation 

constant for phosphorus uptake.  Furthermore, more investigations on the specific mechanisms of 

plant uptake of phosphorus would lend itself to better implementation in the model and the 

determination as to whether the Monod formulation is the most appropriate method.   

Plant resource allocation also demonstrated sensitivity to experimental values.  Having a 

strong base of experimental values to determine the model parameter values would give us a 

better grasp of the values to use and how to effectively model production allocation.  As seen in 

the case study analysis of our model results compared to time-series data from Florida Bay, the 

peaks in model leaf biomass are slightly delayed compared to measured values.  If more 
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measurements of resource allocation were made seasonally, we could implement a seasonal 

component to resource allocation that may produce better model fit to the data.   

The case studies that we have run indicate that, in its present form, the model produces 

realistic results in terms of biomass values and propagation rates that can give insight to seagrass 

spatial dynamics and be used to formulate hypotheses that can be tested in the field. The model 

produces seasonal above-ground biomass that falls between the maximum and minimum found 

in Florida Bay.   

Over 85% of the overall biomass of Thalassia lies below the sediments (Fourqurean and 

Zieman 1991).  Regular measurements of the production of the biomass below-ground at the 

seagrass monitoring sites would also contribute greatly to better understanding of this system.  It 

would also be an important contribution for practical use of this model by managers in order to 

make important decisions regarding the status of the seagrass community.  

The model can also be used to examine re-growth of gaps and evolution of  

patches. We cannot fully explain the trends in the model results with respect to geometry, but it 

would seem that the shape and number of vertices are important. Altering the dimensions of a 

gap, by giving it more sides or a greater perimeter-to-area ratio, can greatly influence the rate of 

re-growth.  This would help managers target which gaps would be the most effective to target for 

fertilization or transplantation assistance. The model also shows that to properly gauge the 

success of a re-growth, one needs to look at the rhizome distribution because the leaf distribution 

can lag behind it by as much as 64%.  This again stresses the importance of monitoring below-

ground biomass and understanding resource allocation to having a better understanding of the 

system.  Propagation of seagrasses from a patch, or re-vegetation of a gap, will be affected by  
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seasonal changes in resource allocation to below-ground tissue and changes in environmental 

conditions.  

Future Research 

Several aspects of the model presented here may be further developed and additional 

processes included to enhance its predictive ability. 

The model was set up with initial spatial distributions of nutrient concentrations that 

remained constant throughout the model run.  However, nutrient concentrations at monitoring 

sites in Florida Bay show some variability, although not a pronounced annual cycle 

(http://serc.fiu.edu/wqmnetwork/).  This variability can be caused by the plants themselves or 

other factors in the system, such as microbial activity.   Future modifications of the model 

implementation of nutrient conditions could be two-fold.  One direction may be to initialize the 

spatial distribution of phosphorus and then allow a feedback between the plants and the 

phosphorus in the system, thereby allowing the seagrass to regulate its own nutrient availability 

through organic matter release and nutrient recycling.  McGlathery et al (2001) showed that, 

although nutrient concentrations are often used to demonstrate nutrient availability, they are 

often only a small portion of the nutrients cycling within the system.  Another approach would 

be to impose a time varying phosphorus concentration, using daily or monthly variations 

according to the sampling frequency of the monitoring data.  Although this would allow for 

temporal variation, at this time data are not available on the spatial scale of each cell within our 

grid.  Therefore there would be temporal variability but not true spatial variability. 

Berns (2003) found that seagrass maintained a normal healthy appearance in response to 

varying salinities until a threshold of values over 50 and below 20 PSU.  The reason we chose 

not to include a salinity response in our study was that a majority of Florida Bay currently does 
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not experience such large salinity fluctuations, except during extreme events.  During the period 

of hypersalinity in 1989-1990, average Bay concentrations were 41 PSU with peak salinity 

values near 70 PSU.  In cases such as these, it would be important to include a salinity response 

in modeling efforts.  Incorporating salinity effects into the model will enable it to be used to 

address questions arising from the Comprehensive Everglades Restoration Plan (CERP) which 

contains proposals that may increase fresh water flows into Florida Bay.  For a manager looking 

at the implications of water management, it would be worthwhile to include the salinity response.   

Seedling recruitment is not the primary source of revegetation into disturbed areas, 

although we do know that it occurs, albeit infrequently (Whitfield et al. 2004).  Kaldy and 

Dunton (1999) looked at the expansion of seagrass meadows and found that the combined effect 

of both seedlings and rhizomes was an important factor.  Including the dynamics of seedling 

production and propagation would be a significant future development of the cellular automata 

model; however, this would require a much better understanding of the mechanisms involved 

and amount of resources allocated to reproduction.   

Additional environmental heterogeneity could be added as well.  For example, sediment 

depth is known to be important for seagrass colonization and growth, especially for Thalassia 

testudinum.  Hall et al (1999) showed that there exists a positive correlation between sediment 

depth and seagrass standing crop in Florida Bay.  Peak Thalassia standing crop, approximately 

200 g DW m-2, was present in deeper sediments, approximately 200 cm.  Indeed, the seagrass 

distribution in Florida Bay matches closely the east-west gradient of sediment depth. Also, 

small-scale changes in sediment depth arising from small depressions, as well as sediment 

modification by marine vessel, which could displace up to 50 cm of sediments, could be included 

in the model.  
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The rate of rhizome propagation is typically not uniform. Instead, rhizomes grow faster in 

directions where there are no seagrasses (Marba and Duarte 1998). However, once rhizomes 

have experienced some type of damage (i.e. boat propeller) they are unlikely to begin 

propagation as normal until some amount of lag or recovery time has occurred (Dawes and 

Andorfer 2002).  We have assumed a uniform, outward rhizome expansion from cells in the 

model. In reality, rhizome propagation is a branching process and it may be that an individual 

based model should be used to adequately simulate the dynamics of vegetative propagation. The 

model could benefit from the development of a more complex rhizome propagation component 

that includes these features; however, more information on rhizome biomass would be an 

important factor in making such a development successful.   

Conclusions 

 Seagrass growth and production can be better represented by including the spatial aspects 

of the processes involved.  This work has used a cellular automata approach, and is one of the 

first to model the spatial aspects of seagrass growth. The aim was to represent as many known 

processes as possible to make the model realistic while not overburdening the user with too 

many inputs. This model could successfully approximate the annual cycle of above-ground 

biomass seen in Florida Bay and was used to examine the behavior of propagation into gaps and 

the evolution of patches in the seagrass distribution.   

A sensitivity analysis of our model indicates that a greater understanding of three factors 

will greatly improve the ability of any seagrass model to accurately represent natural conditions. 

These factors are an improved knowledge of phosphorus uptake kinetics, sulfide dynamics and 

resource allocation within the plant. The latter is especially important for vegetative growth and 

survival during periods of resource limitation.  Although we have found some areas of 
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improvement that would enhance the model results, we have concluded that this model, even in 

its current state, may be of use to help make predictions on the spatial behavior of the seagrass 

Thalassia testudinum. 
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APPENDIX 

MODEL PARAMETERS 

Chapter 3: Sensitivity Analysis 

Table A.  Summary of parameters from the quantitative sensitivity analysis of the model to 
variations in the phosphorus half-saturation constant, Km.   

Parameter Value  
Km (µM) 

Phosphorus 
concentration 
(µM) 

Sulfide 
Concentration 
(µM) 

0.5 0.375 0 
0.505 0.375 0 
0.495 0.375 0 
0.55 0.375 0 
0.45 0.375 0 
0.5 1.0 0 
0.505 1.0 0 
0.495 1.0 0 
 

Table B.  Summary of parameters from the quantitative sensitivity analysis of the model to 
variations in the proportion of production allocated to above and below-ground biomass. 

 Percentage 
of 
production 
allocated to 
below-
ground 

Phosphorus 
concentration 
(µM) 

Sulfide 
Concentration 
(µM) 

35 0.375 0 
35.65 0.375 0 
34.35 0.375 0 
41.5 0.375 0 
28.5 0.375 0 
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Chapter 4: Case Studies 

Random Spatial Distribution 

Table C.  Simulation parameters for the model runs examining random spatial distributions. 

Simulation Phosphorus 
concentration 
(µM) 

Sulfide 
Concentration 
(µM) 

All runs 0.375 1000 
 

Idealized Patterns 

Table D.  Simulation parameters for model runs examining the influence of the perimeter-to-area 
ratio on gap fill-in rates. 

Number 
of Gaps 

Gap 
Dimensions 

 

Phosphorus 
concentration 

(µM) 

Sulfide 
Concentration 

(µM) 
1 40m x 40m 0.375 1000 
1 30m x 30m 0.375 1000 
2 45m x 10m 0.375 1000 
9 10m x 10m 0.375 1000 

22 10m x 4m 0.375 1000 
 

 Table E.  Simulation parameters for model runs examining the effect of shape on the gap fill-in 
rate.  All initial gaps are 100m2 in area. 

Model 
ID 

Size/Shape P 
concentration 

(µM) 

Sulfide 
Concentration 

(µM) 
A Square (10m x 10m) 0.375 1000 
B Rectangle(25m x 4m) 0.375 1000 
C 20-sided polygon 0.375 1000 
D 12-sided polygon 0.375 1000 
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Table F.  Simulation parameters for model runs examining the spread of rhizome and leaf 
biomass radiating from a central square patch of seagrass in the center of the grid.  

Patch Size 

Phosphorus 
concentration 

(µM) 

Sulfide 
Concentration 

(µM) 
30m x 30m 0.375 1000 
9(10m x 10m) 0.375 1000 
22(10m x 4m) 0.375 1000 
 

Table G.  Simulation parameters for model runs examining the spread of rhizome and leaf 
biomass radiating from various shapes of seagrass placed at the center of the grid.  

Size/Shape Phosphorus 
concentration 

(µM) 

Sulfide 
Concentration 

(µM) 
Square (10m x 10m) 0.375 1000 
Rectangle (25m x 4m) 0.375 1000 
20-sided polygon 0.375 1000 
12-sided polygon 0.375 1000 
 

Motor Vessel Injuries 

Table H.  Simulation parameters from model runs examining the effect of varying phosphorus 
concentrations (µM) on the recovery of Thalassia into a large-scale boat propeller blowout.    

Model ID Phosphorus 
concentration 

(µM) 

Sulfide 
Concentration 

(µM) 
A 0.35 ± 0.1 1000 
B 0.35 1000 
C 0.375 1000 
D 0.25 ± 0.1 1000 
E 0.3 ± 0.1 1000 
F 0.325 ± 0.1 1000 
G 0.3125 ± 0.1 1000 

 

 

 

Table I.  Simulation parameters for model runs examining the effect of varying phosphorus 
concentrations (µM) and sediment sulfide concentrations (µM) on the recovery into a gap in a 
seagrass bed. 
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Model Run ID Phosphorus 
concentration 

(µM) 

Sulfide 
Concentration 

(µM) 
A 0.375 0 
B 0.375 ± 0.1 0 
C 0.3125 ± 0.1 0 
D 0.4 0 
E 0.4 1000 
F 0.4 2000 
G 0.4 4000 
H 0.4 6000 

 


